
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Access to Relational Knowledge: A Comparison of Two Models

Permalink
https://escholarship.org/uc/item/8nq6s57w

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 23(23)

ISSN
1069-7977

Authors
Wilson, William H.
Marcus, Nadine
Halford, Graeme S.

Publication Date
2001

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8nq6s57w
https://escholarship.org
http://www.cdlib.org/

Access to Relational Knowledge: a Comparison of Two Models

William H. Wilson (billw@cse.unsw.edu.au)
Nadine Marcus (nadinem@cse.unsw.edu.au)

School of Computer Science and Engineering, University of New South Wales, Sydney,
New South Wales, 2052, Australia

Graeme S. Halford (gsh@psy.uq.edu.au)
School of Psychology, University of Queensland, Brisbane, Queensland, 4072, Australia

Abstract

If a person knows that Fred ate a pizza, then they can
answer the following questions: Who ate a pizza?, What
did Fred eat?, What did Fred do to the pizza? and even
Who ate what? This and related properties we are
terming accessibility properties for the relational fact
that Fred ate a pizza. Accessibility in this sense is a
significant property of human cognitive performance.
Among neural network models, those employing tensor
product networks have this accessibility property. While
feedforward networks trained by error backpropagation
have been widely studied, we have found no attempt to
use them to model accessibility using backpropagation
trained networks. This paper discusses an architecture
for a backprop net that promises to provide some degree
of accessibility. However, while limited forms of
accessibility are achievable, the nature of the
representation and the nature of backprop learning both
entail limitations that prevent full accessibility. Studies
of the degradation of accessibility with different sets of
training data lead us to a rough metric for learning
complexity of such data sets.

Introduction
The purpose of this research is to determine whether a
backpropagation net can be developed that processes
propositions with the flexibility that is characteristic of
certain classes of symbolic neural net models. This has
arguably been difficult for backpropagation nets in the
past. For example, the model of Rumelhart and Todd
(1993) represents propositions such as "canary can fly".
Given the input "canary, can" it produces the output
"fly". However processing is restricted, so it cannot
answer the question "what can fly?" ("canary").

There are, however, at least two types of symbolic
nets that readily meet this requirement. One type of net
model makes roles and fillers oscillate in synchrony
(Hummel & Holyoak, 1997; Shastri & Ajjanagadde,
1993) while another is based on operations such as
circular convolution (Plate, 2000) or tensor products
(Halford, et al., 1994; 1998; Smolensky, 1990). These
models appear to have greater flexibility than models
based on backpropagation nets, in that they can be
queried for any component of a proposition. We will
refer to this property of tensor product nets as omni-

directional access (cf. Halford, Wilson & Phillips,
1998). Omni-directional access is the ideal form of
accessibility.

Another reason for investigating this lies in the work
of Halford, Wilson, and Phillips (e.g. 1998) which
seeks in part to define a hierarchy of cognitive
processes or systems and to draw parallels between this
hierarchy and a second hierarchy of types of artificial
neural networks. Levels 0 and 1 of this second
hierarchy are 2- and 3-layer feedforward nets, and
levels 2-5 are tensor product nets of increasing rank. It
thus becomes interesting to consider how well
feedforward nets can emulate tensor product networks.

Figure 1 – Tensor product network of rank 3.

As tensor product networks are not as well known as
feedforward networks, we shall describe them and their
accessibility properties briefly here before proceeding.
Tensor product networks are described in more detail,
and from our point of view, in Halford et al. (1994).
Briefly, a rank k tensor product network consists of a k-
dimensional array of "binding units", together with k
input/output vectors. For example, a rank 2 tensor
product network is a matrix, plus 2 input/output vectors.
To teach the network to remember a fact (that is, a k-
tuple), the input/output vectors are set to be vectors
representing the components of the k-tuple, and a
computation is performed that alters the k-dimensional
array. Subsequently that fact can be accessed in a
variety of ways. It is common to interpret the first

3-dimensional
arrayof

binding units

inputs

outputs

relation subject object

relation subject object

component of the k-tuple as a predicate symbol, and the
remaining components as argument symbols - e.g. for
rank 3, the components might be vectors representing
the concepts likes jane pizza (Jane likes pizza) (see
Figure 1). Once this fact has been taught to a rank 3
tensor product network, the following 7 queries can be
formulated and answered by a computation involving
the tensor product network.
1) Is likes(jane,pizza) true?
2) Who likes pizza? This we often write as likes(X,

pizza)? The response depends on what else has been
taught to the tensor product network. If the tensor
product network also knows that likes(fred,pizza) and
likes(mary,pizza) then the response will be the sum of
the vectors representing Jane, Fred, and Mary - often
written jane + fred + mary.

3) What does Jane like? - likes(jane,X)? Similar to 2).
4) What relationships hold between Jane and pizza? -

X(jane,pizza)? Again, similar to 2).
 These four are referred to as limited accessibility.

5) Who likes what? - likes(X,Y)? The response in this
case would be a rank 2 tensor product network
storing the pairs (X,Y) for which likes(X,Y) is known
to the original rank 3 tensor product network. The
tensor product network approach solves this by
producing a rank 2 tensor product network, which
stores the pairs (X,Y). (This output possibility, and
corresponding ones for 6) and 7) below, are not
shown in Figure 1).

6) Who does what to pizza? - X(Y,pizza)? Like 5).
7) Jane does what to what? - X(jane,Y)? Like 5).

The full set of 7 forms of access are referred to as full
accessibility, or omni-directional access.

A rank 4 tensor product network would have 15
access modes, a rank 5 tensor product network would
have 31 access modes, and so on. Provided that an
orthonormal set of vectors is used for the set of vectors
representing concepts, retrieval is perfect. Facts are
learned by a tensor product network one at a time, and
do not interfere with each other (given orthonormal
representation vectors).

Tensor product networks using orthonormal sets of
representation vectors exhibit what has been called full
omni-directional access to the facts that have been
taught, as noted above. Humans attempting similar
tasks may find some types of access easier than others.
For example, children who have recently learned sets of
multiplication facts such as 9×7=63 are able to use this
knowledge to perform division (9×X= 63, what is X?),
but may find this more difficult than multiplication
(9×7=X, what is X?). We use the term accessibility to
refer to imperfect or partial versions of omni-directional
access. It turns out that some of the nets discussed in
this paper also exhibit accessibility rather than full
omni-directional access.

Our specific aim in this paper is to experiment with a
feedforward net design that appears to have potential to
provide at least limited accessibility in a rank 3
situation. When we move to feedforward networks
trained by error backpropagation, we hope to preserve
the accessibility property that is characteristic of
symbolic nets. The model resembles an auto-encoder
but has restricted connectivity.

Architecture of the network
The particular backpropagation network we used to test
for accessibility consisted of the following components:
15 input units, 15 hidden units and 15 output units. The
15 input units were used to represent 3 items or
patterns, each made up of 5 elements. The hidden and
output units also each consisted of three groups of 5
units, connected as shown in Figure 2. The input
patterns represented relational instances of the form
RELATION(SUBJECT, OBJECT). The target output
contained the same information: namely, RELATION,
SUBJECT and OBJECT.

Figure 2 - Connections in our feedforward net
architecture.

Notice that this network consists of three functions:
one takes as inputs a relation name and a subject, and
produces an object as output, the second takes relation
name and object and produces subject as output, and the
third takes subject and object and produces relation
name as output. Thus, while it resembles a traditional
auto-association net, note that regular auto-association
nets allow connection paths between corresponding
input and output neurons, typically allowing total
interconnection between input and hidden layers, and
between output and hidden layers. In essence, the
network architecture can be unraveled into 3 distinct
networks that share common inputs. Thus, any weight
in the network is influenced by the output errors in only
one of the 3 output sets (relation, subject, object). The
net makes learning easier by constraining the learning
algorithm to look for sets of weights that, for example,
ignore predicate input when trying to infer predicate
output from argument input. We also conducted some
pilot studies with a fully connected network and the
network’s performance was inferior.

buys

mary

pizza
dog
book
icecrm
hat

likes

has
sells
jane
fred

gina
bob

units

input:buys(m
ary,book)

target output
relation

subject
object

hates

hidden

Notice that both the tensor product net architecture
and the architecture we are studying here have three
groups of input and three groups of output nodes.

Experimental design
The network was given three different sets of relational
instances to learn. Each set was made up of five
different relational instances. For example, given the
relational instance likes(jane,pizza), l i k e s is the
RELATION, jane is the SUBJECT and pizza is the
OBJECT. The training sets varied in terms of the
amount of overlap or the degree of interaction between
the elements of each of the five relational instances.
Training set 1 was set up to contain little or no overlap
between the different relational instances. Training set 3
consisted of five relational instances with a large degree
of interaction between the different instances. Training
set 2 contained an intermediate degree of overlap.

It was hypothesized that relational instances with the
least amount of interaction between the different
instances would be the easiest to learn. This is because
each instance does not have components that overlap
with the other instances. These relations are one-to-one
mappings. Accordingly, the network is most likely to
achieve success in learning such a set of facts. In
contrast, the set of relations with the highest level of
overlap is expected to be the most difficult for the
network to learn. These relations can be classified as
many-to-many mappings, and so cannot be completely
learned by a feedforward network. Accessibility may be
easier to obtain if each relational instance can be
represented in isolation, with little or no reference to the
other relations. As the overlap and interaction between
the relations and their elements increases, so the degree
of accessibility that can be obtained is likely to
decrease. This is because information from other related
instances is more likely to interfere, when the system is
presented with queries.

The software used to run the simulations described in
this paper is Tlearn v1.01 (Plunkett & Elman, 1997).
Other simulators were also used and similar results
were obtained. The settings used included a learning
rate of 0.1, momentum set to 0 (the default) and an
initial weight range of -0.5 to 0.5.

Training set 1
In this simulation, the network was trained on five
relations that have no overlap. Each relational instance
consisted of a unique OBJECT, SUBJECT and
RELATION. Within each relational instance, each field
or argument was represented by a 1-out-of-5 localist
encoding. The first five relational instances (and their
associated patterns) that were given to the network to
learn are shown in Table 1. Figure 3 (see training set 1)
contains a graphic representation of the relational

instances and their relationships (or in this particular
case, their lack of relatedness).

The system was trained for 20 000 epochs. At around
4000 epochs the error curve smoothed close to zero. In
other words, the difference between the target and the
actual output values was negligible.

Table 1 — The instances and patterns in training set 1.

 Relational instance Action Subject Object

likes(jane, pizza) 10000 10000 00100
buys(fred, book) 01000 01000 00010
hates(mary, dog) 00100 00100 00001
has(gina, icecrm) 00010 00010 10000
sells(bob, hat) 00001 00001 01000

Figure 3 - Graphical representation of 3 training sets.

The system was then presented with a set of test
patterns to assess the degree of accessibility that could
be obtained (refer to Appendix 1, test pattern set 1). For
example, to present the query likes(jane,X) the
RELATION and SUBJECT input units were set to the
patterns for likes and jane respectively, and the
OBJECT input units were set to all zeroes, i.e. the ’X ’ is
represented by ’00000’. Then the OBJECT outputs
were inspected. All of the outputs were checked to see
if they matched the target values. If the correct number
of output units that should be on is N, then a value of
3/(5N) or greater for an output unit is considered to be
on, a value of 2/(5N) or less is considered to be off and
any values in the region between 2/(5N) and 3/(5N) can
be seen to be "partially on". The output thus falls into
one of three categories: 1) Either the output is correct
and all of the outputs units are correctly on or off (as
defined above), or 2) The output is incorrect and at
least one output unit that should be on is clearly off and
vice-versa, or lastly, 3) The output is uncertain or
partially correct, and output units that should be on are
only "partially on". For example, if likes(fred,pizza)
and likes(fred,dog) are facts, then if presented with the
query likes(fred,X), the answer would be pizza and dog,
i.e. N=2. Therefore, the units representing both dog and
pizza need to be on and a value of 0.3 (3/(5N)) or
greater for both units is needed for the answer to be
accepted as correct. Moreover, output units that need to

be off should be less than 2/(5N) or in this case less
than 0.2.

With training set 1, correct scores were obtained for
all of the test queries. The system was able to handle all
of the single and double query test patterns. Therefore,
overall an excellent degree of accessibility was
achieved with the first training set.

When there is little or no overlap between the
elements of the relational instances, the system is able
to learn and access elements of the relations with ease.
This would correspond with human learning, where the
less related information is to other information, the
easier it is to understand and learn (Marcus, Cooper &
Sweller, 1996; Sweller, 1994).

Training set 2
The next training set the system was given to learn had
a higher degree of interaction between the relational
instances and their elements than training set 1. In
particular, both Fred and Jane like pizza and Jane buys
both dogs and books. For the first two instances the
same OBJECT is liked by two SUBJECTS and can be
characterized as a many-to-one mapping, and for the
last two instances the same SUBJECT buys two
different OBJECTS, a one-to-many mapping. In
contrast, hates(mary,icecream) is the only instance that
does not overlap with the other four, and is a one-to-one
mapping. The OBJECT and SUBJECT in this instance
are unique and are not contained in any of the other
instances. The five relational instances contained in
training set 2 are shown in Table 2. The overlap or
interrelations between the elements of the relational
instances can be seen graphically in Figure 3 (see
training set 2).

The system was trained for 20 000 epochs. At around
2000 epochs the error stabilized at around 0.6 in terms
of Tlearn’s error measure. The trained net transformed
the training patterns as follows:
input output
likes(jane, pizza) → likes(fred+jane, pizza)
likes(fred, pizza) → likes(fred+jane, pizza)
buys(gina, book) → buys(gina, book+dog)
buys(gina, dog) → buys(gina, book+dog)
hates(mary, icecrm) → hates(mary, icecrm).

It can be seen that the four (related) assertions have
now been combined into two assertions. What has been
learned is intelligible - likes(gina,book+dog) is easy to
interpret as signifying that gina likes both books and
dogs.

A set of test patterns (see Appendix 1, test pattern set
2) was then given to the system to assess performance
on the accessibility property. All output units were then
inspected to see if they matched the target units. Using
the scoring criterion described above, output patterns
were either considered to be 1) correct, 2) incorrect or
3) uncertain. All of the queries with a single unknown

element were correctly answered by the system and
some of the queries with two unknown elements were
correct. None of the queries were considered incorrect,
however, four queries obtained uncertain or partially
correct scores. These queries were likes(X,Y),
buys(X,Y), X(gina,Y), and X(Y,pizza). It is interesting to
note that all of the responses of questionable
correctness need to access information that is contained
in more than one relational instance, i.e. information
from the many-to-one and one-to-many mappings. For
instance, the answer to likes(X,Y) is that both Fred and
Jane like pizza. This can be clearly expressed in the
representation available, but the trained system does not
do so. Thus although, accessibility is still relatively
good, the net struggles with the queries that access
information that has to be integrated from two relational
instances.

Table 2 — The instances and patterns in training set 2.

 Relational instance Action Subject Object

likes (jane, pizza) 10000 10000 00100
likes (fred, pizza) 10000 01000 00100
hates(mary,icecrm) 00100 00100 10000
buys (gina, book) 01000 00010 00010
buys (gina, dog) 01000 00010 00001

We also tried training the network with the 3
patterns: likes(fred+jane,pizza), buys(gina,book+dog),
and hates(mary,icecream), that is, the 3 outputs the net
just discussed (call it net 2A) produced in response to
the training patterns. The network rapidly learned these
patterns, not surprisingly. We tested this network (net
2B) on the queries shown in Appendix 1, test pattern set
2, and found that it had inferior accessibility
performance compared with net 2A.

The greater number of uncertain or partially correct
scores obtained during testing, for training set 2 (net
2A) reflects the fact that these five assertions may be
considered harder to learn. These findings suggest that
as the degree of overlap between the relational
instances and their elements increases and as the
amount of related information that needs to be
considered at once increases, so the level of
accessibility that the system can cope with, decreases.
This corresponds with our understanding of difficulty
associated with learning for people. The more
interactivity there is between different learning
elements, the harder information is to learn (Sweller &
Chandler, 1994). The more difficult it is to learn
information, the harder it is to transform and use that
information. It thus appears, that as the information
becomes more complex and so more difficult to learn,
the backpropagation system struggles to achieve a

reasonable level of accessibility. The next training set
supports this hypothesis.

Training set 3
The last training set has the highest degree of
interaction between the relational instances and their
elements. The relational instance likes(fred,pizza)
overlaps with two other instances. The SUBJECT fred
performs the RELATION likes on both the OBJECTS
dog and pizza, a one-to-many mapping. Also, both
SUBJECTS fred and jane perform the RELATION
l ikes on the same OBJECT pizza, a many-to-one
mapping. The five relational instances contained in
training set 3 are shown in Table 3. Figure 3 (see
training set 3) contains a graphic representation of the
relational instances and their interrelatedness.

Table 3 — The instances and patterns in training set 3.

 Relational instance Action Subject Object

likes (jane, pizza) 10000 10000 00100
likes (fred, pizza) 10000 01000 00100
likes (fred, dog) 10000 01000 00001
buys (fred, book) 01000 01000 00010
buys (jane, dog) 01000 10000 00001

The system was trained for 20 000 epochs. At around
3000 epochs the error stabilized at around 0.7 in terms
of Tlearn’s error measure. It should be noted that
buys(fred,book) and buys(jane,dog) each have at most
one attribute in common with the other instances. The
trained net transformed the three more overlapping
instances as follows:
input output
likes(jane, pizza) → likes(fred+jane, pizza)
likes(fred, pizza) → likes(fred+jane, pizza+dog)
likes(fred, dog) → likes(fred, pizza+dog).

Notice that from this output, there is no way to
interpret these instances without inferring that Jane also
likes dogs. The whole is not truly equivalent to the sum
of the parts, which in this case are the three (and not
four) given relational instances. Thus the pattern
likes(fred+jane,pizza+dog) even if it were valid, would
be unintelligible (in contrast to likes(gina,book+dog) in
training set 2).

The test patterns shown in Appendix 1 (test pattern
set 3) were used to test the trained net for accessibility
properties. As before, output units were inspected to see
if they matched the target units. Using the scoring
criterion described above output patterns were either
considered to be correct, incorrect or uncertain. All of
the queries with a single unknown element were
correctly answered by the system. However, only two
of the queries with two unknown elements were correct.
The two correct queries were X(Y,dog) and X(Y,book).

The rest of the queries with two unknown elements
were incorrect. These queries all access information
from more than one relational instance. For example,
the query X(jane,Y) should have a response of
likes+buys, pizza+dog. However, the system’s
response to this query is only buys, pizza+dog. As with
all the other incorrect queries, some of the relevant
information has been lost. It appears that as the
information becomes more and more overlapping, the
network finds it harder and harder to handle queries that
access related elements of information. This type of
network appears to be more suited to dealing with one-
to-one relations, rather than many-to-many mappings.

Training set 4
A fourth training set was given to the system to learn. It
consisted of the relational instances likes(jane,pizza),
likes(fred,pizza), likes(fred,dog), buys(fred,dog), and
buys(jane,book). The amount of overlap between these
instances, and the test results, fall somewhere between
training sets 2 and 3. All the single unknown element
queries were answered correctly. Three of the two
unknown element queries were answered correctly, two
were uncertain and two were incorrect.

Conclusion
As the degree of overlap between the arguments and
predicates of the relational instances in the training set
increases, the degree of accessibility provided by the
nets simulated decreases. It is well-known that when
trained on data that corresponds to a one-to-many
mapping, the activations of the output units
corresponding to the "many" will be reduced in
comparison to a one-to-one mapping. To us, the
interesting thing is the effect of argument and predicate
overlap on accessibility, and the fact that beyond some
critical level of overlap, the trained net starts to produce
"generalizations" which, seen from the relational-
instance point of view, mean that the net has learnt false
propositions e.g. likes(jane,dog).

By way of contrast, tensor product networks (Halford
et al., 1998) provide full accessibility for arbitrary sets
of relational instances, and do not lose critical
information when tested.

Backpropagation nets can handle propositional
information that is in the form of distinct functions. For
example, the model of Rumelhart and Todd (1993)
handles propositions such as "canary can fly" in the
sense that, given an input "canary can" it produces the
output "fly". However, it was not tested for the
accessibility property. Our backpropagation net was
tested for accessibility, but succeeded in only a limited
sense. It could only handle queries to data sets that are
relatively simple, in terms of the overlap and
relatedness of information. As the relational instances

in the data set become more and more related, so
accessibility deteriorates. Consequently the net could
not model propositional knowledge adequately. In
contrast, a tensor product net can process more complex
data sets and still have full access to all the elements of
the relational instances.

In a sense, it is not surprising that a backprop-trained
net does not do as well at this task - backprop tends to
do well at perceptual tasks where generalization of an
interpolative type is useful, whereas the data used in
this is discrete. Since their introduction, backprop nets
and variants have been used in cognitive modeling tasks
including those concerned with discrete relational
knowledge (Hinton, 1986; Rumelhart & Todd, 1993).
This paper has attempted to explore the boundaries of
applicability of such models.

What has come out in the wash is evidence from the
model’s performance of a new dimension of task
difficulty. This dimension measures component overlap
in a set of facts to be learned. This type of difficulty
seems to correlate with model performance at the
boundary between rank 1 and rank 2 tasks (in the sense
of Halford et al., 1998).

It is clear that humans do have accessibility with
respect to their relational knowledge. What might be
interesting to investigate is whether they have greater
difficulty learning sets of facts like those in training set
3 than those in training set 1, and whether accessibility
also takes longer to develop (see Sweller & Chandler,
1994 for a discussion of element interactivity and its
effects on learning).

Acknowledgments
This work was supported by a grant from the Australian
Research Council. We wish to acknowledge helpful
discussions with Steve Phillips, and helpful comments
made by a reviewer of a previous version of the paper.

References
Halford, G. S., Wilson, W. H., Guo, J., Gayler, R. W.,

Wiles, J., Steward, J. E. M. (1994). Connectionist
implications for processing capacity limitations in
analogies. In K. J. Holyoak & J. Barnden (Eds.),
Advances in connectionist and neural computation
theory, vol. 2: Analogical connections. Norwood, NJ:
Ablex.

Halford, G. S., Wilson, W. H., & Phillips, S. (1998).
Processing capacity defined by relational complexity:
Implications for comparative, developmental, and
cognitive psychology. Brain and Behavioural
Sciences, 21, 803-864.

Hinton, G. E. (1986). Learning distributed
representations of concepts. In Proceedings of the
Eleventh Annual Conference of the Cognitive Science
Society, 1-12, Hillsdale, NJ: Lawrence Erlbaum
Associates.

Hummel, J. E., & Holyoak, K .J. (1997). Distributed
representations of structure: A theory of analogical
access and mapping. Psychological Review, 104, 427-
466.

Marcus, N., Cooper, M., & Sweller, J. (1996).
Understanding Instructions. Journal of Educational
Psychology, 88(1), 49-63.

Plunkett, K., & Elman, J. L. (1997). Exercises in
Rethinking Innateness: A Handbook for Connectionist
Simulations. Cambridge, Mass: MIT Press.

Plate, T. A. (2000). Analogy retrieval and processing
with distributed vector representations. Expert
Systems: The International Journal of Knowledge
Engineering & Neural Networks, 17(1), 29-40.

Rumelhart, D. E., & Todd, P. M. (1993). Learning and
connectionist representations. In D.E. Meyer & S.
Korhnblum (Eds), Attention and Performance XIV
(figure 1.9 p15, top paragraph p16). Cambridge,
Mass: MIT Press.

Shastri, L. & Ajjanagadde, V. (1993). From simple
associations to systematic reasoning: A connectionist
representation of rules, variables, and dynamic
bindings using temporal synchrony. Behavioural and
Brain Sciences, 16(3), 417-494.

Smolensky, P. (1990). Tensor product variable binding
and the representation of symbolic structures in
connectionist systems. Artificial Intelligence, 46,
159-216.

Sweller, J. (1994). Cognitive load theory, learning
difficulty and instructional design. Learning and
Instruction, 4, 295-312.

Sweller, J., & Chandler, P. (1994). Why some material
is difficult to learn. Cognition and Instruction, 12,
185-233.

Appendix 1111
Test pattern set 1
likes(jane,X), buys(fred,X), hates(mary,X), has(gina,X), sells(bob,X),
likes(X,pizza), buys(X,fred), hates(X,dog), has(X,icecrm),
sells(X,hat), X(jane,pizza), X(fred,book), X(mary, dog), X(gina,
icecrm), X(bob,hat), likes(X,Y), buys(X,Y), hates(X,Y), has(X,Y),
sells(X,Y), X(jane,Y), X(fred,Y), X(mary,Y), X(gina,Y), X(bob,Y),
X(Y,pizza), X(Y,book), X(Y,dog), X(Y,icecrm), X(Y,hat).

Test pattern set 2
likes(jane,X), likes(fred,X), buys(gina,X), hates(mary,X),
likes(X,pizza), buys(X,book), buys(X,dog), hates(X,icecrm),
X(jane,pizza), X(fred,pizza), X(gina,book), X(gina,dog),
X(mary,icecrm), likes(X,Y), buys(X,Y), hates(X,Y), X(jane,Y),
X(fred,Y), X(gina,Y), X(mary,Y), X(Y, pizza), X(Y,book),
X(Y,dog), X(Y,icecrm).

Test pattern set 3
likes(jane,X), likes(fred,X), buys(fred,X), buys(jane,X),
likes(X,pizza), likes(X,dog), buys(X,book), buys(X,dog),
X(jane,pizza), X(fred,pizza), X(fred,dog), X(fred,book), X(jane, dog),
likes(X,Y), buys(X,Y), X(jane,Y), X(fred,Y), X(Y,pizza), X(Y,dog),
X(Y,book).

