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Abstract

Background—Brain abnormalities in adolescent heavy drinkers may result from alcohol

exposure, or stem from pre-existing neural features.

Method—This longitudinal morphometric study investigated 40 healthy adolescents, ages 12–17

at study entry, half of whom (n=20) initiated heavy drinking over the 3 year follow-up. Both

assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to

segment brain volumes, which were measured longitudinally using the newly developed QUARC

tool.

Results—At baseline, participants who later transitioned into heavy drinking showed smaller left

cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white

matter volumes (p<.05), compared to continuous non-using teens. Over time, participants who

initiated heavy drinking showed significantly greater volume reduction in the left ventral

diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared

to substance-naïve youth (p<.05).

Conclusion—Findings suggest preexisting volume differences in frontal brain regions in future

drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use

was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks
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recruited by frontal regions, as well as post-drinking consequences on brain regions involved in

language and spatial tasks.

Keywords

adolescence; alcohol abuse; brain development; neuroimaging; magnetic resonance imaging

INTRODUCTION

Alcohol use is exceedingly common during adolescence, with rates of past year alcohol use

in the US increasing from 24% to 64%, and past year drunkenness rising from 9% to 45%

from ages 12 to 18 (Johnston, O'Malley, Bachman, & Schulenberg, 2013). Furthermore,

almost a quarter of US 18 year olds report heavy episodic drinking, defined as consuming

five or more drinks on one occasion, during the past two weeks (Johnston et al., 2013).

These high rates of heavy alcohol use are concerning, as the adolescent brain undergoes

extensive morphometric and functional maturation, including decreases in gray matter and

increases in white matter volume (Giedd, 2004; Giedd et al., 1999; Gogtay et al., 2004; Luna

& Sweeney, 2004; Spear, 2000). Gray matter reductions (i.e., cortical thinning) begin during

early adolescence (approximately ages 12–14) and are generally considered to be related to

pruning of excess neurons, changes in the extracellular matrix, and white matter

encroachment (Paus, 2005), beginning primarily in posterior brain regions and progressing

to more anterior regions (Gogtay et al., 2004) with decreases in dorsal prefrontal cortical

volume continuing into early adulthood (mid-20s) (Sowell, Thompson, Tessner, & Toga,

2001). In tandem with cortical thinning, white matter volumes increases over adolescence,

due to myelination of white matter tracts (Barnea-Goraly et al., 2005; Giedd et al., 1999;

Pfefferbaum et al., 1994). These co-occurring processes are an integral component of

neurocognitive development, creating more localized and efficient information processing

and improved cognition (Squeglia, Jacobus, Sorg, Jernigan, & Tapert, 2013). Because of

these extensive maturational changes, the developing adolescent brain may be more

vulnerable to the deleterious effects of alcohol (Jacobus & Tapert, 2013).

Heavy alcohol use during adolescence has been cross-sectionally associated with

disadvantages on several neuropsychological domains, including memory, executive

functioning, visuospatial skills, and sustained attention (Brown, Tapert, Granholm, & Delis,

2000; Giancola, Shoal, & Mezzich, 2001; Sher, Martin, Wood, & Rutledge, 1997).

Importantly, longitudinal studies have suggested an adverse influence of adolescent heavy

drinking (initiated around ages 15–16) on the development of visuospatial processing,

attention, and working memory (Hanson, Medina, Padula, Tapert, & Brown, 2011; Squeglia,

Spadoni, Infante, Myers, & Tapert, 2009; Tapert, Granholm, Leedy, & Brown, 2002).

Furthermore, deficits on tasks of inhibitory functioning in substance-naïve youth have been

related to initiation of heavy alcohol use by ages 17–18 (Squeglia, Jacobus, Nguyen-Louie,

& Tapert, under review), suggesting cognitive functioning is both predictive of, and affected

by, alcohol use.

The underlying mechanism of these behavioral changes may be related to morphometric

anomalies in brain volume or cortical thickness. Research using structural magnetic
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resonance imaging (MRI) has shown smaller hippocampal (De Bellis et al., 2000; Nagel,

Schweinsburg, Phan, & Tapert, 2005), prefrontal cortex (De Bellis et al., 2005; Medina et

al., 2008), and cerebellum (De Bellis et al., 2005; Lisdahl, Thayer, Squeglia, McQueeny, &

Tapert, 2013) volumes in heavy-drinking teens compared to non-using controls. In a recent

longitudinal study in youth characterized before (age ~17) and after (age ~19) initiating

heavy alcohol use, adolescents who began heavy drinking over the follow-up period showed

accelerated cortical thinning of right middle frontal gyrus, as well as decreased white matter

volume, when compared to demographically matched non-using teens (Luciana, Collins,

Muetzel, & Lim, 2013). No differences were found between groups before initiation,

suggesting alcohol use was related to aberrant cortical thinning, as opposed to cortical

thickness being predictive of initiation of alcohol use. Furthermore, widespread cortical

thinning and volume reduction has also been reported in alcohol dependent adults in frontal,

temporal, and occipital regions (Fortier et al., 2011; Pfefferbaum, Sullivan, Mathalon, &

Lim, 1997).

The goals of this study were to use a set of novel analytic approaches to carefully examine

within-subjects changes in morphometry and quantify cortical volume changes over time in

youth who remained non-drinkers compared to those who initiated heavy drinking. We

hypothesized that adolescents who transitioned into moderate to heavy drinking would show

smaller cortical volumes, similar as has been seen in adolescent drinkers (Luciana et al.,

2013) and adult alcoholics (Fortier et al., 2011; Pfefferbaum et al., 1997), but after a brief

period of heavy alcohol exposure.

METHODS

Participants

The sample was obtained from a larger ongoing neuroimaging study of 296 adolescents

examining neurocognition in youth at-risk for substance use disorders (Bava et al., 2010;

Squeglia, Pulido, et al., 2012; Squeglia, Schweinsburg, Pulido, & Tapert, 2011; Wetherill,

Castro, Squeglia, & Tapert, 2013). Participants were recruited through flyers sent to

households of students attending local middle schools, describing the study as a project

looking at adolescent brain development in youth who do or do not use alcohol, and

included major eligibility criteria, financial compensation ($170 for youth, $20 for parents),

and contact information. Informed consent and assent were obtained, and included approval

for youth and parents be contacted for follow-up interviews and scans. Eligibility criteria,

substance use history, family history of substance use, developmental, and mental health

functioning data were obtained from the youth, their biological parent, and one other parent

or close relative. The study protocol was executed in accordance with the standards

approved by the University of California, San Diego Human Research Protections Program.

Participants for this study (N=40) each had one brain scan (i.e., baseline scan) acquired

before the adolescent had any significant alcohol or drug use, and one follow-up scan

approximately 3 years later after half transitioned into heavy substance use, for a total of 80

scans. At baseline, inclusionary criteria included being between the ages of 12 and 17 and

having minimal to no experience with substances: ≤10 total drinks in their life, never with

more than 2 drinks in a week; ≤5 lifetime experiences with marijuana and none in the past
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three months; ≤5 lifetime cigarette uses; and no history of other intoxicant use (see Table 2).

Youth with any indication of a history of a DSM-IV (American Psychological Association,

1994) Axis I disorder, determined by the NIMH Diagnostic Interview Schedule for Children

–version 4.0 (Shaffer, Fisher, Lucas, Dulcan, & Schwab-Stone, 2000) were excluded, as

were youth who had any indicator of prenatal substance exposure, any history of traumatic

brain injury, loss of consciousness (>2 minutes), learning disorder, migraine, neurological

problem, serious medical condition, or were taking a medication that could alter brain

functioning or brain blood flow. After screening, approximately 12% remained eligible (see

Table 1). Participants in the larger study completed substance use interviews every 3

months, and those who started heavy drinking were selected for a comprehensive annual

follow-up with neuroimaging, and matched to a non-using control subject on baseline and

follow-up age and pubertal development level, gender, race, family history of alcohol use

disorders, and socioeconomic status. At follow-up, 20 were defined as heavy drinkers; 20

continuous non-drinkers were selected to match the characteristics of the heavy drinkers (see

revised Cahalan classification used in (Squeglia, Pulido, et al., 2012; Squeglia et al., 2009).

Measures

Substance use measures—The Customary Drinking and Drug Use Record (Brown et

al., 1998) obtained self-report on quantity and frequency of lifetime and recent (past 3-

month) alcohol, tobacco, and other drug use (i.e., amphetamines, barbiturates,

hallucinogens, cocaine, inhalants, opiates, spice, benzodiazepines, ecstasy, ketamine,

gamma hydroxybutyrate, and other misused prescription medications), withdrawal/hangover

symptoms, and endorsement of abuse and dependence criteria. The Timeline Followback

(Sobell & Sobell, 1992) assessed substance use for the 30 days prior to the scan session, and

a parent report of youth substance use was collected as collateral evidence. Breathalyzer and

urine toxicology screens confirmed self-report data.

Family background—The Family History Assessment Module (Rice et al., 1995)

ascertained familial density of alcohol (AUD) and other substance use disorders (SUD) by

adding 0.5 for each biological parent and 0.25 per biological grandparent (Zucker, Ellis, &

Fitzgerald, 1994) endorsed by either youth or parent as having AUD. Family history data

were collected from one parent, plus the other parent or (in <7% of cases) another close

relative. Socioeconomic background (i.e., educational attainment, occupation, and salary of

each parent) was obtained from parents (Hollingshead, 1965).

Development—The Pubertal Development Scale (Petersen, Crockett, Richards, & Boxer,

1988) provided a reliable and valid 5-item self-report measure of pubertal maturation,

correlating well with physician ratings and Tanner Sexual Maturation Scale self-ratings

(Miller, Tucker, Pasch, & Eccles, 1988). Scores ranged from 1 (prepubertal) to 5

(postpubertal). Participants in this sample were, on average mid- to late-pubertal at baseline,

and late- to post-pubertal at follow-up.

Psychopathology and mood—The Child Behavior Checklist (CBCL; (Achenbach &

Rescorla, 2001) was completed by parents for youth under age 18, and Adult Self Report

(Achenbach & Rescorla, 2001) was completed by youth over age 18. These measures
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provided level of adolescent psychopathological syndromes (e.g., internalizing and

externalizing behaviors).

Cognition—To measure executive functioning (e.g., inhibition, set-shifting, and complex

problem solving), the Delis-Kaplan Executive Function System (D-KEFS; (Delis, Kaplan, &

Kramer, 2001) Trails Letter-Number Switching (Condition 4) time to complete (seconds),

Color Word Interference Inhibition and Inhibition/Switching (Conditions 3 & 4), and

Towers Total Achievement raw scores were acquired.

Image acquisition

All imaging data (baseline and follow-up) were collected from the same 3-Tesla CXK4 short

bore Excite-2 MR system (General Electric, Milwaukee, WI) with an 8-channel phase-array

head coil at the UCSD Keck FMRI Center. Eight high bandwidth receivers for ultra-short

TR times reduced signal distortions and signal dropout. Participants were placed

comfortably on the scanner table and the head was stabilized within the head coil using foam

cushions (NoMoCo Pillow, La Jolla, CA). Scan sessions involved a 10-second scout scan to

assure good head placement and slice selection covering the whole brain, followed by a

sagittally-acquired high-resolution 3d T1-weighted anatomical MRI that lasted 7 minutes

and 26 seconds (FOV 24 cm, 256×256×192 matrix, 0.94×0.94×1 mm voxels, 176 slices,

TR=20 ms, TE=4.8 ms; flip angle 12°). Total scan time was ~60 minutes.

Follow-up procedures

Participants were assessed using rigorous follow-up procedures (Kleschinsky, Bosworth,

Nelson, Walsh, & Shaffer, 2009; Twitchell, Hertzog, Klein, & Schuckit, 1992), with an

overall follow-up rate of 99% through Year 6. Specifically, every three months after the

baseline interview and imaging were complete, participants were interviewed to assess

current substance use and psychiatric functioning. Those who met criteria for heavy drinking

(see Squeglia et al., 2009 for classification) were invited to return and complete annual full

in-person assessments (see Measures section), including neuroimaging. Each participant that

endorsed heavy drinking was matched to a demographically similar participant who

continued to endorse no substance use throughout the follow-up (i.e., continuous non-

drinkers) for comparison. Moderate drinkers were excluded from analysis in this paper.

Image processing

Images were first reviewed for quality; images with excessive subject motion or artifact

were excluded from analysis (n=2, not described in this paper), leaving the 40 total subjects

used in analysis. Next, images were automatically corrected for spatial distortion due of

gradient nonlinearity (Jovicich et al., 2006) and B1 field inhomogeneity (Sled, Zijdenbos, &

Evans, 1998), using an in-house processing stream. Volumetric segmentation (Dale, Fischl,

& Sereno, 1999; Fischl et al., 2002; Fischl, Sereno, & Dale, 1999; Fischl et al., 2004) based

on the publicly available FreeSurfer software package were used to generate volumetric

measures (also known as automated segmentation or ASEG) for a total of 49 regions of

interest (ROIs) per hemisphere, of which a list can be found in (Fischl et al., 2002) and at the

FreeSurfer website, http://surfer.nmr.mgh.harvard.edu. Cortical parcellations were obtained

using an in-house software package with regions derived from the Desikan atlas (Desikan et
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al., 2006). Qualitative review was employed to ensure that there was no technical failure of

the application.

FreeSurfer 4.5.0 was used and required ~24-h computational time for image construction,

using a dual quad core Intel(R) Xeon(R) CPU E5420 with a processing speed of 2.50 GHz

and 16 GB ram. Use of several CPUs allowed processing of multiple subjects' scans to occur

in parallel. Subtle longitudinal morphometric changes in brain structure were measured by

using a method developed at UCSD’s Multimodal Imaging Laboratory, called “quantitative

anatomic regional change analysis,” or QUARC (Holland, Dale, & Alzheimer's Disease

Neuroimaging Initiative, 2011; Holland, McEvoy, Dale, & Alzheimer's Disease

Neuroimaging Initiative, 2012). In the QUARC procedure, each subject’s follow-up image

is registered to the baseline image using a 12-parameter affine registration and then intensity

normalized to the baseline image by an iterative procedure. A deformation field is then

calculated from the nonlinear registration (Holland et al., 2011), and used to align the

images at the subvoxel level, resulting in a one-to-one correspondence between each vertex

on the baseline and follow-up images. Subcortical segmentation and cortical parcellation

labels from the baseline image were used to extract an average volume change for each

region of interest. A visual quality control in the volume change field was performed by a

trained technician and supervised by an image analysis expert (A.M.D., 20 years

experience).

Statistical Analyses

Demographic and substance use differences at baseline and follow up—T-tests

were used to compare group differences in substance use and demographic variables at

baseline and follow-up.

Baseline neuroanatomical differences—ROI values were generated from FreeSurfer

output and exported to SPSS. Multivariate analysis of variance (MANOVA) was used to

evaluate differences between continuous controls (n=20) and heavy drinking transitioners

(n=20) in the 49 FreeSurfer ROI volumes per hemisphere at baseline, before any of the

youth had initiated alcohol use.

Longitudinal volume change—QUARC analysis provides percent volume change in

each FreeSurfer ROI for each subject, similar to FreeSurfer output. These values were

exported to SPSS for statistical analysis. MANOVA was used to evaluate group differences

in volume change for each of the 49 ROIs per hemisphere. For this initial exploratory

longitudinal examination, alpha was set at .05.

Relationship between volume change and substance use—Pearson r correlations

examined the relationship between changes in brain volumes and indices of drinking

behavior for heavy drinkers (n=20) over the follow-up period (see follow-up drinking

variables in Table 2).

Relationship between baseline volume and cognitive functioning—Pearson r

correlations examined the relationship between baseline volume and executive functioning
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performance for all participants (N=40) on cognitive variables of interest (see Methods

section). For this exploratory examination, alpha was set at .01.

RESULTS

Demographic and substance use differences at baseline and follow up

At baseline, continuous controls and heavy drinkers were well-matched, as there were no

significant differences in demographics or substance use between groups (i.e., both had no

to minimal substance use). As expected, substance use was significantly different between

groups at follow-up (p< .001) (See Table 1).

Baseline neuroanatomical differences

While there were no overall significant baseline volume differences between heavy drinkers

and controls in the full model including all brain regions [F (1, 38) = 0.83, p=.72; Wilk's Λ =

0.03, partial η2 = .97], there were significant volume differences between groups in five

brain regions (see Table 3). At baseline (i.e., when all subjects were still non-drinkers),

subjects who transitioned into heavy drinking by the three year follow-up had smaller brain

volumes in the right rostral anterior cingulate, right caudal anterior cingulate, right pars

triangularis, and left isthmus cingulate, and had less right cerebellar white matter (p<.05), as

compared to youth who remained continuous controls over the follow-up period (see Table 3

and Figure 1).

Longitudinal volume change

While the overall model including all brain regions was not significant [F (1, 38) = 3.62, p=.

40; Wilk's Λ = 0.01, partial η2 = .99], there were significant changes in brain volume found

across time points between groups in five areas. Youth who initiated heavy drinking over the

follow-up showed significantly more reduction in volumes of the left ventral diencephalon,

left inferior and middle temporal gyrus, left caudate, and brain stem (p<.05; see Table 4 and

Figure 2).

Relationship between volume change and substance use

Substance use during the follow-up interval significantly correlated with volume changes

(i.e., in brain regions listed in Table 4) for drinkers (n=20). More lifetime alcohol use

occasions was linked to greater volume reduction of the left caudate (r = −.38, p<.05; see

Figure 3) and brain stem (r = −.38, p<.05). In contrast, lifetime cannabis and other drug use

showed a negative relationship with brain volume; more lifetime cannabis and other drug

use was linked to increasing volumes of the left caudate (r =.50, and. 63, respectively; ps<.

05), although these were driven by the relatively small number of subjects who had used

other drugs (n=4).

Relationship between baseline volume and cognitive functioning

At baseline, smaller right rostral anterior cingulate volume was related to slower total times

on the D-KEFS Trails Letter-Number Switching Task (r=.37, p<.01).
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Discussion

The goal the present study was to use a recently developed longitudinal MRI paradigm

(QUARC) (Holland et al., 2011; Holland et al., 2012) to investigate brain volume

differences pre- and post-substance use initiation to disentangle normal adolescent cortical

thinning from alcohol-related brain changes. Cortical pruning is a key component of

adolescent neural development (Giedd, 2004; Jernigan & Gamst, 2005; Ostby et al., 2009);

however, the heavy drinking group showed exaggerated volume reductions in these areas

when compared to controls, consistent with findings from adolescent (Luciana et al., 2013)

and adult populations (Fortier et al., 2011; Pfefferbaum et al., 1997). Overall, adolescent

drinkers showed greater volume reductions than demographically matched controls over the

~3 year follow-up period in the left ventral diencephalon, left inferior and middle temporal

gyrus, left caudate, and brain stem. These volumetric changes were positively correlated

with lifetime alcohol use and peak number of drinks on an occasion in the past year,

suggesting a dose-dependent effect of substance use on cortical thinning. These findings

suggest a possible effect of alcohol on neural pruning, in a way that amplifies cortical

volume reductions during adolescence. These results parallel previous longitudinal

functional MRI findings showing increasing brain activation over time in adolescents who

initiate heavy drinking (Squeglia, Pulido, et al., 2012; Wetherill, Squeglia, Yang, & Tapert,

2013). These observed alcohol-related cortical reductions may help explain why youth

required greater brain activation to complete at the same performance level as abstinent

youth (i.e., hyperactivation of regions to compensate for volume reductions).

The regions showing alcohol-related volume reductions included subcortical structures (e.g.,

diencephalon and caudate), which are important for sensory integration, motor control,

feedback processing, and habit learning, as well as inferior and middle temporal cortical

structures important in visual object recognition and language comprehension. Previous

findings suggest alcohol use interferes with language (Moss, Kirisci, Gordon, & Tarter,

1994) and visuospatial (Tapert et al., 2002) abilities during adolescence, which are

consistent with the brain regions found in this study; continued volume reductions related to

sustained drinking during adulthood might also relate to motor issues and spatial

impairments found in adult alcoholics (Sullivan, Harris, & Pfefferbaum, 2010). Volume

reductions in the caudate parallel findings from adult alcoholics (Sullivan, Deshmukh, De

Rosa, Rosenbloom, & Pfefferbaum, 2005), while reduced medial temporal volumes parallel

previous results seen in adolescent heavy drinkers (De Bellis et al., 2000; Nagel et al.,

2005).

While the cause of the accelerated cortical thinning is unclear, alcohol-induced dysregulated

developmental timing may be responsible for the observed effects (Goodlett, Horn, & Zhou,

2005). NMDA receptor functioning could help explain accelerated thinning in heavy

drinkers, as NMDA is vital for strengthening synapses and contributing to the loss of less

important connections throughout development (Stoneham, Sanders, Sanyal, & Dumas,

2010). Thus, it is possible that repeated alcohol exposure during adolescence may interfere

with normal NMDA-mediated synaptic pruning.
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Baseline group differences were found in several frontal cortical volumes. Specifically,

youth who initiated heavy drinking over the follow-up showed smaller cortical volume in

three frontal regions, as well as less cerebellar white matter volume, when compared to

youth who remained substance-naïve over the follow-up. At baseline, smaller right rostral

anterior cingulate volume was related to poorer performance on a test of executive

functioning (e.g., set-shifting, cognitive flexibility). These findings suggest heavy drinking

youth have subtle brain abnormalities that exist prior to the onset of drinking. These findings

are highly consistent with other recent functional MRI findings which found pre-existing

lower frontal brain activation in teens who later initiated heavy drinking when compared to

continuous controls over a three year follow-up (Norman et al., 2011; Squeglia, Pulido, et

al., 2012; Wetherill, Squeglia, et al., 2013). The current findings (i.e., smaller volumes in

frontal regions, as well as reduced cerebellar white matter volume) might help explain

previous findings where heavy drinking transitioners showed less brain activation in frontal

regions before they initiated alcohol use. Furthermore, the frontal regions found in this study

(i.e., rostral and caudal anterior cingulate, pars triangularis) are important brain regions for

executive control, including inhibitory functioning, attention, impulsivity, and self-

regulation (Fjell et al., 2012; Goldberg, 2001). Poorer inhibitory functioning in substance-

naïve youth has been found to be predictive of future substance use (Squeglia et al., under

review), and structural brain differences could help explain these behavioral findings.

Limitations should be noted. Although overall groups were very well matched, follow-up

lifetime cannabis use days (average: controls= < 1; heavy drinkers=27) significantly differed

between groups. Cannabis use was related to increasing volume over time, possibly

countering the volume reductions related to alcohol use. There is research that suggests

cannabis may act as a protective factor for white matter integrity in binge drinking (Jacobus

et al., 2009); therefore, volume reductions may have been even more pronounced if we had a

completely non-cannabis using comparison group. There are also statistical limitations to be

considered in this preliminary study. Findings did not survive Bonferroni or false discovery

rate correction; however, the processing technique utilized is highly sensitive to

morphometric brain changes, as each subject’s follow-up image was registered to the

baseline image. Furthermore, a typical cubic millimeter of gray matter in an adult contains

35 to 70 million neurons and almost twice as many glial cells (Lenroot & Giedd, 2006;

Pakkenberg & Gundersen, 1997), as well as over 500 billion synapses (Scheff, Price, &

Sparks, 2001), so even slight differences in cortical thickness could be associated with

significant divergence from typical synaptic pruning and gray matter loss across adolescent

development. Previous findings suggest that female heavy drinkers may be more vulnerable

to aberrant cortical thinning than male drinkers (Squeglia et al., 2011; Squeglia, Sorg, et al.,

2012). Unfortunately, our sample size (6 females per group) did not allow sufficient power

to detect gender effects. The parent study is ongoing and will offer larger sample sizes with

more equal gender distributions, which will allow us to more fully address the moderating

role of gender on the relationship between drinking and cortical thinning during

adolescence. Additionally, the sample is comprised of healthy, high functioning adolescents,

so findings may not generalize to clinical or lower functioning samples. The observed

pattern of results may be more pronounced in those with higher levels of drinking (e.g.,

adolescents with AUD). Despite these limitations, these findings have important clinical and
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public health implications, particularly given the participants’ limited, sub-diagnostic

alcohol use, limited other substance use, and absence of psychopathology. Further work with

larger populations is needed to increase statistical power to observe moderating effects of

variables of interest (e.g., gender) and help advance the understanding of the relationship

between alcohol exposure and brain morphometry, and subsequent cognitive functioning.
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Highlights

• Pre-existing frontal brain volume differences were found in future drinkers

• Adolescent drinkers showed greater brain volume reduction post-alcohol

initiation

• Volume reduction occurred in subcortical and temporal regions

• QUARC is a useful tool for quantifying longitudinal brain volume changes
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Figure 1.
Cortical brain regions (in yellow) showing significantly less volume at baseline (ages 12–

17) in youth who would initiate heavy drinking over the three year follow-up, when

compared to youth who would remain continuous controls.
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Figure 2.
Cortical regions in blue (i.e., left middle and inferior temporal gyrus) showing significant

difference in change over time (baseline ages 12–17 to follow-up ages 15–21) between

adolescents who remained non-users, and those who initiated drinking over the follow-up.
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Figure 3.
For heavy drinkers (n=20), more lifetime alcohol use occasions was linked to greater

volume reduction of the left caudate (r = −.38, p<.05)
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Table 1

Demographic characteristics at baseline and follow-up.

Controls
(n=20)

Heavy Drinkers
(n=20)

M SD M SD

Gender (% female) 35% 40%

Race (% Caucasian) 70% 70%

Family history of alcoholism (%) 25% 35%

BASELINE:

Age (range: 12–17) 14.94 1.50 15.07 1.25

Hollingshead Index of Social Position score 26.20 17.51 19.35 11.41

Parent annual salary ($) 101.40 68.34 105.25 45.53

WASI Vocabulary T-score 53.00 10.01 59.91 5.28

Grade point average 3.70 0.49 3.56 0.45

Females' Pubertal Development Scale total 4.00 0.63 4.67 0.50

Males' Pubertal Development Scale total 3.38 0.96 3.55 0.52

Beck Depression Inventory total 1.65 2.01 2.15 2.72

Spielberger State Anxiety total 26.80 5.24 26.95 5.66

CBCL/ASR Internalizing T-score 44.94 9.44 45.74 10.73

CBCL/ASR Externalizing T-score 39.06 6.85 44.00 8.42

FOLLOW-UP:

Age (range: 15–21) 17.15 1.55 18.03 1.96

Grade point average 3.44 0.49 3.43 0.56

Female Pubertal Development Scale total 4.43 0.53 4.67 0.52

Male Pubertal Development Scale total 4.08 0.79 4.10 0.57

Beck Depression Inventory total 1.30 1.66 2.75 4.00

Spielberger State Anxiety total 25.10 5.59 23.35 3.22

CBCL/ASR Internalizing T-score 42.84 8.10 40.74 8.95

CBCL/ASR Externalizing T-score 42.53 7.28 46.63 10.26

*p<.05

Abbreviations: WASI, Weschler Abbreviated Scale of Intelligence; CBCL, Child Behavior Checklist; ASR, Adult Self Report.

Note: Hollingshead scores: higher scores represent lower socioeconomic status; annual salary based on $100K US dollars; grade point average on a
0 to 4.0 scale, with higher scores corresponding to better grades; pubertal development scores range from 1–5, with higher numbers corresponding
to more mature developmental levels. Beck Depression Inventory and Spielberger State Anxiety scores: higher scores represent more depressive or
anxiety symptoms. Ethnicity was: 70% Caucasian, 8% Latino/a, 4% Asian, and 18% multiracial (no significant group differences).
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Table 2

Substance use characteristics at baseline (ages 12–17) and follow-up (ages 15–21).

Controls
(n=20)

Heavy Drinkers
(n=20)

M SD M SD

Baseline

Lifetime drinks 1.05 4.47 1.20 2.71

Lifetime cannabis use occasions 0.25 1.12 0.05 0.22

Lifetime other drug use occasions 0.00 0.00 0.00 0.00

Follow-up

Lifetime alcohol use occasions** 1.75 6.46 67.40 55.25

Peak drinks on an occasion, past year** 0.50 1.24 10.90 5.16

Average drinks per occasion, past month** 0.33 0.97 4.73 2.32

Days since last alcohol use** 119.25 89.36 37.10 66.65

Cigarettes per day, past month 0.00 0.00 0.20 0.62

Lifetime cannabis use occasions** 0.35 1.14 26.55 65.70

Cannabis use days, past month** 0.00 0.00 2.40 6.10

Used cannabis >5 times (%)** 0% 20%

Lifetime other drug use occasions 0.00 0.00 0.70 2.45

**
Continuous controls ≠ heavy drinkers, p<.01

Note:Other drugs included: amphetamines, barbiturates, hallucinogens, cocaine, inhalants, opiates, spice, benzodiazepines, ecstasy, ketamine,
gamma hydroxybutyrate, and other misused prescription medications
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