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Co-exposure to zymosan A 
and heat-inactivated Asian sand dust 
exacerbates ovalbumin-induced murine  
lung eosinophilia
Kaori Sadakane1*, Takamichi Ichinose1, Masataka Nishikawa2, Hirohisa Takano3 and Takayuki Shibamoto4

Abstract 

Background: Epidemiological studies have implicated Asian sand dust (ASD) in the increased prevalence of respira-
tory disorders, including asthma. It has been observed that fungal elements such as β-glucan can be adsorbed onto 
ASD. In the present study, the exacerbating effect of the combined exposure to zymosan A (ZymA) containing yeast 
β-glucan and heat-inactivated ASD on ovalbumin (OVA)-induced murine lung eosinophilia was investigated.

Methods: BALB/c mice were repeatedly instilled intratracheally with one of eight immunogenic formulations con-
sisting of various combinations of (1) ZymA, (2) ASD that was briefly heated to remove organic substances (H-ASD), 
and (3) OVA in normal saline, or each of the above alone. Pathologic changes, cytological alterations in bronchoal-
veolar lavage fluid (BALF), changes in inflammatory cytokines and chemokines in BALF, and OVA-specific IgE and IgG1 
antibodies in serum were investigated.

Results: Exposure to ZymA with or without OVA had no effect on most indicators of lung inflammation. Exposure 
to H-ASD with OVA increased the recruitment of inflammatory cells to the lungs and the serum levels of OVA-specific 
IgE and IgG1. The combination OVA + ZymA + H-ASD induced a marked recruitment of eosinophils and upregula-
tion of T helper 2 (Th2) cytokines (interleukin [IL]-4 and IL-13), IL-6, eotaxin/CCL11, and monocyte chemotactic protein 
(MCP)-3/CCL7 in BALF and OVA-specific IgE in serum. This treatment also induced the most severe pathological 
changes in the lungs of mice. ZymA was found to boost the effects of H-ASD, thereby exacerbating the OVA-induced 
allergic inflammation, even though ZymA alone did not have such effect.

Conclusions: The results suggest that fungal elements such as β-1,3-glucan aggravate the allergic inflammation 
caused by ASD. Our findings may facilitate prophylaxis of some allergic diseases in Asia.
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Background
Asian sand dust (ASD) is a major source of air pollution 
in East Asia, including East China, the Korean Peninsula, 
Taiwan, and Japan, in spring and early summer [1–4]. 
Recently, other deleterious effects, including damage 
to food crops and human health, have been uncovered. 

In particular, the effects of ASD on human health have 
become more serious. Epidemiological studies have 
implicated ASD in the increased prevalence of respira-
tory disorders, including asthma [5–7]. Furthermore, 
the increase in the rate of deaths caused by respiratory 
and cardiovascular diseases may be associated with ASD 
pollution [8–10]. Our previous studies have shown that 
ASD exacerbates ovalbumin (OVA)-induced murine lung 
eosinophilia [11, 12], suggesting that ASD is an exacer-
bation factor of allergic respiratory diseases. However, it 
was unclear which component of the ASD is responsible 
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for this effect because the wind-borne ASD is not sim-
ply composed of sand dust particles but includes various 
other components such as microorganisms and chemi-
cals [13, 14].

One study showed that two types of ASD sampled dur-
ing different periods, in different source regions, and via 
different passage routes, caused different pathological 
changes in a mouse model of allergic asthma [15]. Analy-
sis of the composition of the two ASD types revealed that 
the ASD rich in microorganisms aggravated the aller-
gic inflammation more strongly. Moreover, ASD heated 
at 360  °C for 30  min to eliminate organic substances 
(H-ASD) has fewer adverse effects [12]. Taken together, 
these findings suggested that microorganisms in ASD 
may exacerbate allergic airway inflammation.

Eight strains of microorganisms have been previously 
identified in an ASD aerosol collected at an altitude of 
400  m over the Noto peninsula facing the Sea of Japan 
[13]. One of the microorganisms identified, the fungus 
Bjerkandera adusta, together with H-ASD, strongly exac-
erbated OVA-induced murine lung eosinophilia [16]. 
Bjerkandera adusta is a fungus that mostly colonizes rot-
ting wood [17]. It produces abundant asexual spores from 
the hyphae [18]. The size of the spores is 4–5  µm [19], 
which is the approximately the same size as that of ASD. 
In the above studies, fragments of hyphae and spores 
sonicated with an ultrasonic disrupter were used. How-
ever, other studies have shown that the fungal elements 
are actually adsorbed onto ASD [20].

In a recent paper, we reported that ASD induces Toll-
like receptor (TLR)2 and TLR4 signals to trigger T helper 
2 (Th2)-dominant lung allergic inflammation via a mye-
loid differentiation factor 88 (MyD88)-dependent signal-
ing pathway [21]. TLRs are the principal innate immune 
sensors recognizing microbial pathogen-associated 
molecular patterns from bacterial, fungal, and viral struc-
tures [22]. The TLR4 ligand lipopolysaccharide (LPS) and 
TLR2 ligands such as β-glucan are strong candidates for 
causing the exacerbation of lung eosinophilia by ASD 
[21]. An in  vitro study showed that TLR2 rather than 
TLR4 contributes to the production of pro-inflammatory 
cytokines from bone marrow-derived macrophages [23]. 
On the basis of these results, we speculated that ASD-
adherent β-glucan is one of the exacerbating factors of 
lung eosinophilia.

In the present study, the exacerbating effects of the 
combined treatment with commercial zymosan A 
(ZymA) from the yeast Saccharomyces cerevisiae, as a 
source of β-glucan, and H-ASD on OVA-induced lung 
eosinophilia were investigated in a mouse model of 
asthma. The ASD was heated at 360  °C to exclude toxic 
materials such as microbial materials including β-glucan, 
prior to application. Our investigation included the 

examination of pathologic changes, cytological altera-
tions in bronchoalveolar lavage fluid (BALF), changes in 
inflammatory cytokines and chemokines in BALF, and 
OVA-specific immunoglobulin (Ig)E and IgG1 antibodies 
in the serum.

Methods
Animals
One hundred and twelve male BALB/c mice (7  weeks 
old), born and reared under specific pathogen-free con-
ditions and weighing between 21 and 26  g, were pur-
chased from Charles River Japan (Kanagawa, Japan). The 
mice were acclimated for 1 week at a facility maintained 
at 23–25  °C and 50–70  % relative humidity under con-
ventional conditions (6–8 mice per cage, a 12/12-h light/
dark cycle, and ad libitum access to water and a commer-
cial diet [CE-2; Japan Clea Co., Tokyo, Japan]). The ani-
mals were treated humanely and every effort was made to 
reduce their suffering, in accordance with the animal care 
methods that had been approved by the Animal Care and 
Use Committee of the Oita University of Nursing and 
Health Sciences, Oita, Japan.

Preparation of the particles
National Institute for Environmental Study (NIES) No. 
30 “Gobi Kosa Dust” was used in the present study for 
preparation of the ASD samples. This ASD was col-
lected from surface soils in the Gobi Desert in Mongo-
lia. The aerodynamic diameter (median diameter) of the 
dust was approximately 4 μm, which is within the range 
of the median diameter (3–5  μm) of the Asian mineral 
dust that is wind-borne to Japan. The chemical com-
position (elements) of the particles has been reported 
previously [24]. The certified data on NIES No. 30 are 
as follows: 0.939 % ± 0.071 % Na, 1.51 % ± 0.13 % Mg, 
7.58 % ± 0.42 % Al, 2.13 % ± 0.11 % K, 4.25 % ± 0.35 % 
Ca, 0.426  %  ±  0.040  % Ti, 3.84  %  ±  0.35  % Fe, 
768 ± 83 mg/kg Mn, 93.1 ± 8.5 mg/kg Zn, 250 ± 20 mg/
kg Sr, 535 ± 31 mg/kg Ba; the reference data for this dust 
are 24.1 % Si, 955 mg/kg P, 13.1 mg/kg Sc, 57.4 mg/kg Cr, 
13.7 mg/kg Co, 29.1 mg/kg Ni, 34.1 mg/kg Cu, 40.4 mg/
kg La, 22.4 mg/kg Pb, 13.0 mg/kg Th, and 2.62 mg/kg U 
[14]. The ASD was heated at 360 °C for 30 min in an elec-
tric heater to eliminate organic matter and toxic materi-
als (e.g., LPS, β-glucan, sulfate, nitrate, microorganisms). 
The resultant heat-inactivated ASD is called H-ASD in 
this study.

Reagents and analysis of ZymA
We used Zymosan A (cat. #Z4250) from S. cerevisiae pur-
chased from Sigma-Aldrich Co. (St. Louis, MO, USA) 
as a ligand for TLR2. The content of β-glucan in ZymA 
was measured using a β-1,3-d-glucan detection reagent 
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kit (Associates of Cape Cod, Inc., MA, USA). Grade VII 
OVA, the allergen that was used to induce allergic airway 
inflammation, was also purchased from Sigma-Aldrich 
Co.

Study protocol
The mice were divided into eight treatment groups 
(n = 14 per group) as follows: (1) control, (2) ZymA, (3) 
H-ASD, (4) ZymA + H-ASD, (5) OVA, (6) OVA + ZymA, 
(7) OVA +  H-ASD, (8) OVA +  ZymA +  H-ASD. The 
dose of ZymA was 20 ng per mouse, the dose of H-ASD 
was 0.1  mg per mouse, and the dose of OVA was 4  µg 
per mouse. ZymA, H-ASD, OVA, and the combinations 
thereof were dissolved or suspended in 0.1  ml each in 
sterile Otsuka normal saline (Otsuka Pharmaceutical 
Co., Ltd., Tokyo, Japan). The mice were intratracheally 
administrated with the mixed or individual solutions four 
times at 2-week intervals. Animals in the control group 
received an intratracheal administration of 0.1 ml of ster-
ile saline.

Analysis of BALF
Eight out of the 14 mice in each group were examined 
for free-cell content in BALF. These fluid and cell counts 
were analyzed using a previously reported method [25]. 
Briefly, the lungs were lavaged with two injections of 
0.8 ml of sterile saline at 37 °C. After the fluids from the 
first and second lavage were mixed and cooled on ice, the 
resultant solution was centrifuged at 210×g for 10 min at 
4  °C. The BALF supernatant was stored at −80  °C until 
analysis of cytokines and chemokines.

The total number of inflammatory cells in BALF was 
determined in the fresh precipitate by means of a hemo-
cytometer. Cell counts were also determined on cyto-
logical preparations. The slides were prepared with 
a Cytospin (Sakura Finetek Japan, Tokyo, Japan) and 
stained with Diff-Quik (Sysmex Co., Hyogo, Japan) to 
identify the eosinophils as red granules. A total of 300 
cells in each sample were analyzed under a microscope.

Histopathological examination
The remaining six mice in each group were used for his-
topathological examination. Their lungs were fixed with 
zinc fixative (BD Biosciences, Franklin Lakes, NJ, USA). 
After separation of the lobes, 2-mm-thick blocks were 
taken for paraffin embedding. The embedded blocks were 
sectioned (thickness 3  μm), and the slices were stained 
with alcian blue (AB) to evaluate the degree of mucus 
secretion in the bronchial epithelium (from proximal to 
distal parts). To determine the number of eosinophils in 
the submucosa of the airway, the slices were also stained 
with a slightly modified original luna stain [26]. The slices 
were immersed in a hematoxylin solution and then in 

Biebrich scarlet solution for 15 and 20 min, respectively. 
After a rinse with tap water, the slices were dipped in 
1 % hydrochloric acid (in ethanol) six times, followed by 
five dips in a 0.5 % lithium carbonate solution. Five ran-
domly selected visual fields were photographed by means 
of a light microscope (400× magnification). The num-
ber of eosinophils was determined. Histopathological 
examination of inflammatory cells and epithelial cells in 
the airway was performed under a Nikon ECLIPSE light 
microscope (Nikon Co., Tokyo, Japan).

Quantitation of cytokines and chemokines in BALF
Protein levels of cytokines and chemokines were deter-
mined by enzyme-linked immunosorbent assays (ELI-
SAs). Interleukin (IL)-1β, IL-4, IL-6, IL-13, interferon 
(IFN)-γ, eotaxin/CCL11, keratinocyte chemoattractant 
(KC)/CXCL1, monocyte chemotactic protein (MCP)-1/
CCL2, and macrophage inflammatory protein (MIP)-1α/
CCL3 were quantified using ELISA kits from R&D Sys-
tems Inc. (Minneapolis, MN, USA). IL-5 and IL-12 
were quantified using an ELISA kit from Endogen, Inc. 
(Woburn, MA, USA). MCP-3/CCL7 levels were meas-
ured using an ELISA kit from Bender MedSystems Inc. 
(Burlingame, CA, USA). The detection limits of IL-1β, 
IL-4, IL-6, IL-13, IFN-γ, eotaxin/CCL11, KC/CXCL1, 
MCP-1/CCL2, MIP-1α/CCL3, IL-5, IL-12, and MCP-3/
CCL7 were 2.31, 2, 1.6, 1.5, 2, 3, 2.0, 2, 1.5, 5, 12, and 
2.6 pg/ml, respectively.

OVA‑specific IgE and IgG1 antibodies in serum
These antibodies were quantified using the Mouse 
OVA-IgE ELISA Kit and Mouse OVA-IgG1 ELISA Kit 
(Shibayagi Co., Gunma, Japan). According to the manu-
facturer’s protocol, 1 U/ml of anti-OVA IgE was defined 
as 1.3  ng/ml of the antibody, and 1  U/ml of anti-OVA 
IgG1 was defined as 160 ng/ml of the antibody. Absorb-
ance at 450  nm (sub-wavelength, 620  nm) for OVA-
specific IgE and IgG1 antibodies was measured on a 
microplate reader (Bio-Rad Laboratories, Hercules, CA, 
USA).

Statistical analysis
All calculations were performed in the SPSS Statistics ver. 
23 (IBM, Armonk, NY, USA), and the results are reported 
as the mean ±  standard error. All data were tested by 
one-way analysis of variance (ANOVA) followed by Tuk-
ey’s honestly significant difference test. A p value < 0.05 
was considered significant.

Results
Concentration of β‑glucan in ZymA
The detectable content of β-glucan in ZymA was 134 pg/
ng (13.4 %).
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Co‑exposure to ZymA and H‑ASD increased eosinophil 
infiltration into the lung according to analysis of BALF
Figure  1 shows the cellular profiles of the BALF sam-
ples. Groups ZymA and OVA did not show a significant 
increase in total cell number as compared to the con-
trol group, whereas the other groups showed a marked 
increase in total cells (Fig.  1A). H-ASD enhanced the 
infiltration by inflammatory cells according to the BALF 
analysis. In contrast, the addition of ZymA to H-ASD 
did not increase the total cell number over that of the 
H-ASD-only group. The addition of ZymA to OVA 
increased the total cell number as compared to OVA 
alone but the difference was not statistically significant. 
The addition of H-ASD to OVA significantly increased 
the total cell number in BALF in comparison with OVA 
alone. The combination of ZymA, H-ASD, and OVA sig-
nificantly increased the number of inflammatory cells 
in BALF as compared to the OVA, OVA +  ZymA, and 
OVA + H-ASD groups. Changes in macrophages showed 
a trend similar to those in total cells in all groups except 
the OVA  +  ZymA group, which showed a significant 
increase over the OVA-only group.

The number of eosinophils was not increased by 
the administration of ZymA alone, H-ASD alone, 
or OVA alone (Fig.  1B). Moreover, the combination 
ZymA +  OVA did not increase the number of eosino-
phils, and neither did the combination H-ASD +  OVA. 
Only ZymA + OVA + H-ASD caused a marked increase 
in comparison to the other groups (Fig.  1B); this was 
also the case for the number of lymphocytes in BALF. 
The administration of H-ASD increased the number of 

neutrophils; moreover, the addition of ZymA to H-ASD 
exacerbated this effect with or without OVA.

Co‑exposure to ZymA and H‑ASD exacerbated 
OVA‑induced pathological alterations in the lungs
AB staining of the mouse lungs is presented in Fig.  2. 
No pathological changes were detected in the lungs 
of the control, ZymA, or H-ASD groups, whereas the 
combination ZymA  +  H-ASD caused mild to moder-
ate infiltration of the airway by inflammatory cells and 
slight proliferation of goblet cells in the airway epithe-
lium. OVA alone caused slight infiltration of the air-
way submucosa by inflammatory cells as well as mucus 
production by the airway epithelium. The pathologi-
cal changes in the OVA + ZymA group were somewhat 
stronger than those in the OVA group. The combination 
OVA + H-ASD caused moderate inflammatory cell infil-
tration of the airway submucosa by as well as moderate 
proliferation of goblet cells. In contrast, the combination 
OVA + ZymA + H-ASD induced the greatest production 
of excess mucus and proliferation of goblet cells in the 
airway epithelium, and marked accumulation of inflam-
matory cells in the airway submucosa.

Figure 3 shows the presence of eosinophils in the lung 
submucosa. The greatest accumulation of eosinophils was 
observed in the OVA + ZymA + H-ASD group (Fig. 3A). 
Exposure to ZymA, H-ASD, or ZymA  +  H-ASD 
yielded the same number of eosinophils as that in the 
control group (Fig.  3B). In the OVA, OVA  +  ZymA, 
and OVA  +  H-ASD groups, we observed a moderate 
increase in eosinophils, ranging from 69.8 ±  6.8  cells/5 

Fig. 1 Profiles of inflammatory cells in BALF. All data are expressed as the mean ± SE, n = 8 per group. A Total number of inflammatory cells and 
the number of macrophages in BALF. B Number of eosinophils, neutrophils, and lymphocytes in BALF. a p < 0.05 vs. control, b p < 0.05 vs. ZymA,  
c p < 0.05 vs. H-ASD, d p < 0.05 vs. ZymA + H-ASD, *p < 0.01 vs. OVA, †p < 0.05 vs. OVA + ZymA, ‡p < 0.05 vs. OVA + H-ASD



Page 5 of 10Sadakane et al. Allergy Asthma Clin Immunol  (2016) 12:48 

fields (OVA  +  ZymA) to 98.8  ±  18.0  cells/5 fields 
(OVA + H-ASD). In the OVA + ZymA + H-ASD group, 
eosinophils were significantly increased (221.7  ±  57.8 
cells/5 fields) compared with other groups.

Co‑exposure to OVA + ZymA + H‑ASD increased the levels 
of cytokines and chemokines in BALF
To identify the mechanism underlying the immunologi-
cal effects of ZymA and H-ASD on the allergic airway 
response during OVA-induced airway inflammation in 
mice, we analyzed the cytokine and chemokine levels in 
BALF. Protein levels of IL-4, IL-13, eotaxin/CCL11, and 
MCP-3/CCL7 in all experimental groups were almost 
the same as those in the control group, with the excep-
tion of the OVA + ZymA + H-ASD group (Fig. 4). Addi-
tion of H-ASD to OVA increased the level of IL-5 relative 
to OVA alone, but the change was not statistically sig-
nificant. By contrast, the cytokine levels (IL-4, IL-13, 
IL-6, eotaxin/CCL11, MCP-3/CCL7, and IL-5) in the 
OVA + ZymA + H-ASD group were markedly increased 
relative to the OVA and OVA + ZymA groups. The lev-
els of these cytokines were also elevated in comparison to 
the OVA + H-ASD group; in addition, we observed sig-
nificant changes in IL-4, IL-13, IL-6, eotaxin/CCL11, and 
MCP-3/CCL7 levels.

Moreover, the levels of IL-1β, MIP-1α/CCL3, 
and KC/CXCL1 were significantly greater in 
the OVA  +  ZymA  +  H-ASD than in the OVA, 
OVA + ZymA, and OVA + H-ASD groups (Fig. 5). The 
protein levels of IL-12 and MCP-1/CCL2 in BALF in the 
OVA + ZymA + H-ASD group were higher than those 

in the OVA +  H-ASD group, albeit not at the level of 
statistical significance. In addition, the protein levels of 
MIP-1α/CCL3, KC/CXCL1, IL-12, and MCP-1/CCL2 in 
the H-ASD and ZymA + H-ASD groups were the same 
as or higher than those in the OVA + ZymA + H-ASD 
group. IFN-γ was not detected in this study.

Co‑exposure to ZymA and H‑ASD increased the production 
of OVA‑specific IgE in serum
The levels of IgE and IgG1 in the OVA and OVA + ZymA 
groups were almost the same as those in the control 
group (Fig.  6). Addition of H-ASD to OVA increased 
the production of these antibodies significantly. Moreo-
ver, the combination OVA + ZymA + H-ASD caused a 
marked upregulation of IgE but not of IgG1.

Discussion
In this study, we demonstrated the exacerbating effects of 
the combined treatment of ZymA as a TLR2 ligand cou-
pled with H-ASD on OVA-induced lung eosinophilia in 
a mouse model. ZymA alone had an effect similar to the 
control (saline), except for the macrophage number in 
BALF, which was significantly increased by ZymA. Treat-
ment with ZymA +  H-ASD caused a small increase in 
neutrophils in BALF in comparison with H-ASD alone. 
Cytokines and chemokines in BALF were not upregu-
lated. The addition of ZymA to OVA did not increase the 
numbers of inflammatory cells and pro-inflammatory 
cytokines and chemokines over those of OVA alone. 
OVA +  H-ASD significantly increased the protein lev-
els of MIP-1α/CCL3, KC/CXCL1, IL-12, and MCP-1/

Fig. 2 Effects of ZymA and H-ASD on pathological changes in lungs stained with Alcian blue. The scale bar is 20 µm
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CCL2 in BALF and OVA-specific antibodies in serum. 
Treatment with OVA  +  ZymA  +  H-ASD caused seri-
ous exacerbation of lung pathology: eosinophilic infil-
tration and production of excess mucus in the airway 
epithelium along with markedly greater numbers of 
inflammatory cells and Th2 cytokines (IL-4, IL-13, IL-5), 
other cytokines (IL-1β, IL-6), and chemokines (eotaxin/
CCL11, MCP-3/CCL7) in BALF. These Th2 cytokines 
and chemokines are key mediators of the symptoms 
of asthma and are critical for the recruitment and sur-
vival of eosinophils [27]. Therefore, we conclude that 
the combination ZymA + H-ASD may be an important 
factor in exacerbating the effects of OVA-induced lung 
eosinophilia.

Some studies have shown fungi to be associated with 
the exacerbation of allergic respiratory diseases [28–30]. 
Therefore, it is likely that microorganisms such as fungi 
present in airborne ASD are associated with an increase 
in the incidence of allergic airway diseases from spring 

to early summer in East Asia. Our previous results have 
shown that the exacerbating effect of the fungus B. adusta 
is much stronger than the effects of other microorgan-
isms, including gram-positive bacteria isolated from a 
wind-borne ASD aerosol collected on the Noto peninsula 
[31]. Although the composition of the fungal cell wall dif-
fers across various species, the cell wall skeleton in most 
fungi consists of cross-linked polysaccharides, β-1,3-
glucan, chitin, and a surface glycoprotein [32, 33]. Some 
researchers have compared the pulmonary inflamma-
tory potential of different components of the cell wall of 
yeasts and other fungi and concluded that β-1,3-glucan 
has more potent effects than chitin and mannan [34]. The 
current study suggests that β-1,3-glucan in ZymA associ-
ated with H-ASD may be the most likely culprit for exac-
erbation of OVA-induced murine lung eosinophilia.

In this study, we used the commercial polysaccharide 
ZymA, which is prepared from the cell wall of S. cerevi-
siae. β-Glucan present in ZymA is generally known to 

Fig. 3 Eosinophilic infiltration of the lung submucosa. A Microscopic images of eosinophils stained red with the Luna dye. The scale bar is 20 µm.  
B Number of eosinophils in the lung submucosa. All data are expressed as the mean ± SE, n = 6 per group. a p < 0.05 vs. control, b p < 0.05 vs. 
ZymA, c p < 0.05 vs. H-ASD, d p < 0.05 vs. ZymA + H-ASD, *p < 0.05 vs. OVA, †p < 0.05 vs. OVA + ZymA, ‡p < 0.05 vs. OVA + H-ASD
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have a potent immunostimulatory activity and to act as 
an antiallergic agent. Oral administration of β-glucan 
prepared from Ganoderma lucidum, a medicinal mush-
room, inhibited the production of Th2 cytokines (IL-4 
and IL-5) by splenocytes and attenuated the upregula-
tion of antigen-specific IgE in the serum of B6 mice sen-
sitized with OVA intraperitoneally [35]. Intraperitoneal 
injection of curdlan, another linear β-1,3-glucan, also 
reduced the number of eosinophils and the level of Th2 
cytokines (IL-5 and IL-13) in BALF in a mouse model of 
OVA-induced allergic airway inflammation [36]. As for 
humans, it has been reported that β-glucan has a possible 
antiallergic effect on patients with allergic diseases [37, 
38]. In contrast, the exposure of the airway to β-glucan 
exacerbates the airway allergic responses. The level of Th2 
cytokines (IL-4, IL-5, and IL-13) in BALF was increased 
by the intratracheal administration of soluble β-glucan 
from Candida albicans in a mouse model of allergic sen-
sitization of the airway by OVA [39]. Sensitization of the 
airway with ZymA (1–75  µg) and OVA via pharyngeal 
aspiration increased the number of lung eosinophils and 
the levels of lung IL-5 and serum OVA-specific IgE in 

mice [40]. As mentioned above, β-glucan can exacerbate 
allergic airway disorders in murine models, and accord-
ingly, we demonstrated in the present study that exposure 
of the mouse airway to much smaller doses of ZymA with 
H-ASD also exacerbated the OVA-induced allergic air-
way inflammation. In other studies, the dose was 1–75 µg 
of ZymA or 10–25  µg of β-glucan per animal, whereas 
in this study, 20  ng of ZymA per animal was used. The 
combination OVA  +  H-ASD caused slight exacerba-
tion of the allergic airway inflammation. Therefore, this 
ZymA treatment dose can strongly elicit the potential of 
OVA + H-ASD to exacerbate allergic reactions in mice. 
We have reported similar evidence that trace LPS (1 ng) 
can elicit the potential of OVA +  H-ASD to exacerbate 
lung eosinophilia in mice [24].

In addition, we used a small dose of OVA (4  µg/
animal) in the present study. The combination 
OVA + ZymA + H-ASD induced the most severe exac-
erbation in murine lung eosinophilia despite the fact that 
the OVA alone group showed no significant difference 
as compared to the control group. Thus, this means that 
the treatment dose of OVA in this study can elucidate 

Fig. 4 Effects of ZymA and H-ASD on the levels of IL-4, IL-13, IL-6, eotaxin/CCL11, MCP-3/CCL7, and IL-5 in BALF. All data are expressed as the 
mean ± SE, n = 8 per group. a p < 0.05 vs. control, b p < 0.05 vs. ZymA, c p < 0.05 vs. H-ASD, d p < 0.05 vs. ZymA + H-ASD, *p < 0.05 vs. OVA, 
†p < 0.05 vs. OVA + ZymA, ‡p < 0.05 vs. OVA + H-ASD
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the potential of ZymA +  H-ASD to exacerbate allergic 
reaction.

In the present study, we exposed model mice to four 
times 0.4  mg of H-ASD throughout the 2-week experi-
mental period. This amount is equivalent to the amount 
of particles deposited into the lungs of mice exposed 
to air containing 7  mg/m3/day SPM for 6  weeks, which 
approximates the level of atmospheric contamination—
consisting mainly of sand dust—in China during spring 
[41, 42].

TLRs were the first pattern recognition receptors 
reported that helped researchers recognize pathogen-
derived molecular structures during innate immune 
responses invoked by microbial pathogens [43]. Recently, 
it was reported that the activation of innate immune 
responses via TLR–ligand binding plays an important 
role in the development of adaptive immune responses 
[44]. The activation of antigen-presenting cells, such 
as dendritic cells and macrophages, during adaptive 

Fig. 5 Effects of ZymA and H-ASD on the levels of IL-1β, MIP-1α/CCL3, KC/CXCL1, IL-12, and MCP-1/CCL2 in BALF. All data are expressed as the 
mean ± SE, n = 8 per group. a p < 0.05 vs. control, b p < 0.05 vs. ZymA, c p < 0.05 vs. H-ASD, d p < 0.05 vs. ZymA + H-ASD, *p < 0.05 vs. OVA, 
†p < 0.05 vs. OVA + ZymA, ‡p < 0.05 vs. OVA + H-ASD

Fig. 6 Effects of ZymA and H-ASD on the levels of OVA-specific 
antibodies in serum. According to the manufacturer’s protocol, 1 U/
ml of anti-OVA IgE and anti-OVA IgG1 are defined as 1.3 ng/ml and 
160 ng/ml of the antibody, respectively. All data are expressed as the 
mean ± SE, n = 14 per group. a p < 0.05 vs. control, b p < 0.05 vs. 
ZymA, c p < 0.05 vs. H-ASD, d p < 0.05 vs. ZymA + H-ASD, *p < 0.05 vs. 
OVA, †p < 0.05 vs. OVA + ZymA, ‡p < 0.05 vs. OVA + H-ASD
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immune responses requires pathogen recognition by 
TLR2 and TLR4 [45, 46]. We have reported that the 
production of pro-inflammatory cytokines caused by B. 
adusta was mediated by TLR2 rather than TLR4 in an 
in  vitro experiment using bone marrow-derived mac-
rophages from wild-type, TLR2 knockout, and TLR4 
knockout mice [23]. Furthermore, we have shown that 
co-exposure to B. adusta and H-ASD exacerbated lung 
eosinophilia via the TLR2 signaling pathway [47]. Co-
treatment with the TLR2 ligand Pam3Cys and OVA acti-
vated an OVA-associated Th2-based immune response 
in experimental asthma [48]. Hence, in the present study, 
we reasoned that the combination of ZymA and H-ASD 
might cause exacerbation of OVA-induced lung allergy 
via the TLR2-signaling pathway. Dectin-1 can recognize 
β-glucan in collaboration with TLR2. The binding of 
ligands to these receptors induces the production of pro-
inflammatory cytokines, such as IL-1β, IL-6, and tumor 
necrosis factor-α via the nuclear factor κB pathway in 
macrophages [49, 50]. Although we did not investigate 
the association with dectin-1 and its role in the exac-
erbation of allergic airway inflammation through ASD 
exposure, dectin-1 may act in concert with TLR2 in this 
process. In addition, besides β-1,3-glucan, ZymA con-
tains compounds such as mannan, chitin, and proteins 
[51]. Thus, although β-1,3-glucan is the main component 
of the fungal cell wall [34], other receptors (e.g., dectin-2 
for mannan) might play a role in the exacerbation of lung 
eosinophilia.

Widely used particulate adjuvants such as alum (alu-
minum hydroxide) are considered to induce the acti-
vation of cellular innate immune responses and evoke 
the enhancement of acquired immune responses. Par-
ticles such as Alum and silica enhance the phagocytosis 
of innate cells and then induce Th2 activation through 
specific signaling pathways involving NACHT-, LRR-, 
and PYD domain-containing protein 3 (NLRP3) inflam-
masome and/or spleen tyrosine kinase [52–54]. ASD 
contains Al2O3 and crystalline silica. However, we have 
recently reported that the enhancement of the Th2-
immune response by ASD is not through the NLRP3 
inflammasome-pathway [47].

Conclusions
This study showed that combined exposure to small 
doses of ZymA and H-ASD exacerbates allergen-induced 
lung eosinophilia. This finding supports the hypothesis 
that fungal elements such as β-glucan attached to ASD 
may contribute to the exacerbation of human asthma. 
Therefore, ASD-bound fungi, bacteria, and silica-carry-
ing particulate matter may turn asymptomatic or mild 
asthma into more severe cases.
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