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Abstract: Substance use disorder is associated with accelerated disease progression in people with
human immunodeficiency virus (HIV; PWH). Problem opioid use, including high-dose opioid
therapy, prescription drug misuse, and opioid abuse, is high and increasing in the PWH population.
Oxycodone is a broadly prescribed opioid in both the general population and PWH. Here, we
allowed HIV transgenic (Tg) rats and wildtype (WT) littermates to intravenously self-administer
oxycodone under short-access (ShA) conditions, which led to moderate, stable, “recreational”-like
levels of drug intake, or under long-access (LgA) conditions, which led to escalated (dependent) drug
intake. HIV Tg rats with histories of oxycodone self-administration under LgA conditions exhibited
significant impairment in memory performance in the novel object recognition (NOR) paradigm.
RNA-sequencing expression profiling of the medial prefrontal cortex (mPFC) in HIV Tg rats that
self-administered oxycodone under ShA conditions exhibited greater transcriptional evidence of
inflammation than WT rats that self-administered oxycodone under the same conditions. HIV Tg
rats that self-administered oxycodone under LgA conditions exhibited transcriptional evidence of an
increase in neuronal injury and neurodegeneration compared with WT rats under the same conditions.
Gene expression analysis indicated that glucocorticoid-dependent adaptations contributed to the
gene expression effects of oxycodone self-administration. Overall, the present results indicate that a
history of opioid intake promotes neuroinflammation and glucocorticoid dysregulation, and excessive
opioid intake is associated with neurotoxicity and cognitive impairment in HIV Tg rats.

Keywords: neuroHIV; AIDS; neuroinflammation; cognitive impairment

1. Introduction

Substance use disorder in people with human immunodeficiency virus (HIV; PWH) is
associated with treatment non-compliance, an increase in viral transmission, and the clinical
progression of HIV disease [1–12]. The nonmedical use of opioids has increased dramatically
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and is higher in North America than elsewhere in the world [13,14]. People with HIV have a
higher prevalence of chronic pain [15–17] and are more likely to be prescribed opioids at higher
doses and for longer periods of time than the general population [18–21]. Opioid use disorder
(OUD) and problem opioid use, including high-dose opioid therapy and prescription drug
misuse, are prevalent among PWH [22–27]. Oxycodone is among the most prescribed and
misuse opioids in both the general population and PWH [15,28,29]. In a recent retrospective
study, oxycodone accounted for the vast majority (71%) of 8744 opioid prescriptions in
PWH [15]. In that study, 40% of opioid prescriptions were long-term (>365 days), and about
half of them were chronic high-dose prescriptions [15].

Initial and occasional drug use is motivated by positive reinforcement [30]. The acute
reinforcing effects of drugs of abuse are modeled by paradigms of short access (ShA) to drug
self-administration [31]. In these models, rats are allowed to self-administer drugs of abuse
for less than 3 h/day, producing stable levels and patterns of intake. Addiction is character-
ized by the loss of control in limiting intake and compulsion to take the drug [30], which
can be modeled by paradigms of long access (LgA) to intravenous drug self-administration
(12 h/day for opioids) [32–36], leading to escalated (dependent) drug intake [37]. This
paradigm of escalated drug intake under LgA conditions is highly relevant to the human
condition and has been suggested to model all seven criteria for drug addiction in the
Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV), and seven of the
11 criteria for substance use disorder in the DSM-5 [37].

To model the effects of opioid misuse in HIV, we used HIV transgenic (Tg) rats
that express multiple HIV products [38,39] and exhibit changes in gene expression that
are consistent with human neuroHIV [40]. HIV Tg rats and wildtype (WT) littermates
were tested for voluntary intravenous oxycodone self-administration under either ShA
conditions (1 h/day), which is characterized by a nondependent “recreational”-like pattern
of oxycodone use, and oxycodone self-administration under LgA conditions (12 h/day),
which leads to escalated (dependent) oxycodone intake [32,41,42].

Here, we show that escalated oxycodone self-administration under LgA conditions
induces cognitive impairment in HIV Tg rats. Impairments in medial prefrontal cortex
(mPFC) function and frontostriatal connectivity are involved in the progression to com-
pulsive drug intake and cognitive impairment in neuroHIV [43–47]. To better understand
the molecular basis of detrimental interactions between HIV with excessive oxycodone
intake, we profiled gene expression from the mPFC in HIV Tg and WT rats with a history of
oxycodone self-administration under either ShA or LgA conditions and control littermate
rats. Previous studies from our group showed that changes in gene expression that are
associated with escalated cocaine, heroin, and alcohol self-administration are considerably
different from changes in gene expression that are induced by a moderate “recreational”-
like pattern of self-administration [31,36,48–54]. Gene expression analysis of the mPFC in
HIV Tg rats that self-administered oxycodone under ShA conditions showed evidence of
greater neuroinflammation than WT littermates that self-administered oxycodone under
the same conditions. HIV Tg rats that escalated their oxycodone self-administration un-
der LgA conditions exhibited transcriptional evidence of greater neuronal damage and
neurodegeneration than WT littermates that self-administered oxycodone at comparable
levels under the same conditions. Differential expression of the glucocorticoid-responsive
genes Tsc22d3 (Gilz) and serum/glucocorticoid-regulated kinase 1 (Sgk1) indicated that
glucocorticoid dysregulation and the neurotoxic actions of HIV products likely contribute
to neurodegeneration and cognitive impairment in HIV Tg rats with a history of oxycodone
self-administration.

Altogether, the present results indicate that voluntary oxycodone intake and HIV
result in an increase in neuroinflammation in the mPFC in rats with a history of non-
dependent oxycodone self-administration under ShA conditions and neurotoxicity and
neurodegeneration in rats with a history of dependent oxycodone self-administration under
LgA conditions.
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2. Materials and Methods
2.1. Animals

Male HIV Tg rats (n = 27) and WT littermate control rats (n = 28) that were backcrossed
on a Wistar background were housed two per cage on a reverse 12 h/12 h light/dark cycle
(lights off at 8:00 a.m.) in a temperature (20–22 ◦C) and humidity (45–55%) controlled
vivarium with ad libitum access to tap water and food pellets (PJ Noyes, Lancaster, NH,
USA). All of the procedures were conducted in strict adherence to the National Institutes
of Health Guide for the Care and Use of Laboratory Animals and were approved by the
Institutional Animal Care and Use Committee of The Scripps Research Institute. At the
time of testing, the rats’ body weights ranged between 350 and 400 g.

2.2. Intravenous Catheterization

The animals were anesthetized by the inhalation of a mixture of isoflurane/oxygen, and
intravenous catheters were aseptically inserted in the right jugular vein using a modified
version of a procedure that was described previously [55,56]. The vein was punctured with a
22-gauge needle, and the tubing was inserted and secured inside the vein by tying the vein
with suture thread. The catheter assembly consisted of an 18-cm length of Micro-Renathane
tubing (0.023-inch inner diameter, 0.037-inch outer diameter; Braintree Scientific, Braintree,
MA, USA) that was attached to a guide cannula (Plastics One, Roanoke, VA, USA). The guide
cannula was bent at a near right angle, embedded in dental acrylic, and anchored with 2-cm
square mesh. The catheter exited through a small incision on the back, and the base was sealed
with a small plastic cap and metal cover cap. This design helped keep the catheter base sterile
and protected. The catheters were flushed daily with heparinized saline (10 U/mL of heparin
sodium; American Pharmaceutical Partners, Schaumburg, IL, USA) in 0.9% bacteriostatic
sodium chloride (Hospira, Lake Forest, IL, USA) that contained 20 mg/0.2 mL of the antibiotic
Timentin (GlaxoSmithKline, Middlesex, UK).

2.3. Drugs

Oxycodone HCl (National Institute on Drug Abuse, Bethesda, MD, USA) was dis-
solved in 0.9% saline (Hospira, Lake Forest, IL, USA) and self-administered intravenously
at a dose of 0.15 mg/kg/infusion [33].

2.4. Oxycodone Self-Administration

Self-administration sessions were performed in operant conditioning chambers (Med
Associates, St. Albans, VT, USA) that were enclosed in lit, sound-attenuating, ventilated
environmental cubicles. The back wall of each operant chamber was illuminated by a white
house light. The front panel had two retractable response levers and two cue lights above
them. At the beginning of each self-administration session, the white house light was on,
and the two levers were extended. Responses on the right (active) lever resulted in the
delivery of 0.1 mL of oxycodone solution by the activation of an infusion pump that was
outside the operant chamber. A 20 s timeout (TO) period, signaled by illumination of the
cue light above the active lever, was interposed between each active lever response to avoid
possible oxycodone overdose. Responses on the left (inactive) lever were recorded but did
not have any scheduled consequences. Fluid delivery and responses on both levers were
controlled and recorded by a computer that interfaced with each operant chamber. In the
present study, the rats had access to oxycodone under a fixed-ratio 1 (FR1) schedule of
reinforcement. Oxycodone was delivered at 0.15 mg/kg/0.1 mL.

After 1 week of recovery from intravenous catheterization surgery, the rats were
trained to lever-press for oxycodone over 10 consecutive 1-h self-administration sessions.
The rats were then allowed to self-administer oxycodone in 1 h (ShA group) or 12 h (LgA
group) sessions for 21 consecutive days. The animals were then subjected to periods of
forced abstinence, followed by the resumption of oxycodone self-administration under the
same conditions.
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2.5. Novel Object Recognition Test

The novel object recognition (NOR) test was conducted on two consecutive days in a
black square arena (60 × 60 cm). On Day 1 (habituation), the rats were individually placed
in the empty arena and allowed to freely explore it for 5 min. The next day (Day 2, training),
two identical objects (A and A’) were placed in the arena, and the rat was allowed to freely
interact with both objects for 10 min. On the same day, 1 h after training (Day 2, test), one
of the familiar objects was changed to a novel object (A and B). The Recognition Index (RI),
defined as the ratio between the time spent with the novel object/time spent with both
objects [novel + familiar] × 100, was calculated over the 5 min test. The arena and objects
were cleaned with a 70% alcohol solution before each rat underwent the NOR test.

2.6. Total RNA Isolation and RNA-Sequencing

HIV Tg and WT rats (Figure 1A–C) were sacrificed 48 h after last self-administration
session. Microdissected tissue from the mPFC was processed for total RNA isolation
using the mirVana miRNA Isolation Kit (ThermoFisher Scientific, Waltham, MA, USA) and
Zymo Purification Kit (Zymo Research, Irvine, CA, USA). Libraries were prepared with
the KAPA mRNA HyperPrep Kit for Illumina sequencing (KAPABiosystems, Wilmington,
MA, USA) for mRNA capture with magnetic oligo-dT beads, cDNA synthesis, and library
construction and amplification. The Poly-A libraries were subsequently sequenced on an
Illumina HiSeq4000 sequencer at 30-million-read target coverage (100 bp paired-end reads).

2.7. Gene Expression Profiling and Gene Set Enrichment Analysis

The sequences were first trimmed using Trimmomatic with default setting (version
0.39). All samples passed the quality control by fastQC (version 0.11.9). Fastq files were
aligned to combined rat (RatBN7.2) and HIV-1 (NC_001802) using Bowtie2 [57] with
default settings. Transcript expression was normalized using RSEM (version 1.3.0) [58].
The two transcriptomes were combined as described previously [59]. The rat genome was
humanized using the biomaRt package from R software. Differential expression analysis
was performed using the DESeq2 package in R software (the Wald method was used). Gene
Set Enrichment Analysis (GSEA) [60] was performed in R software for MSigDB-curated
gene sets but excluding perturbation-based gene sets for a total of 1452 MSigDB gene sets.
Multiple testing adjustment was performed using the False Discovery Rate. Fastq files
were deposited in the European Nucleotide Archive project (PRJEB49963).

2.8. Quantitative Polymerase Chain Reaction Validation

Differentially expressed genes in the mPFC were validated in HIV and WT rats with
or without a history of oxycodone exposure using the SYBR Green fluorescence detection
kit with the CFX96 Touch real-time PCR detection system (Bio-Rad, Hercules, CA, USA). A
set of optimized real-time polymerase chain reaction (RT-PCR) primer assays was designed,
and the following sequences were used: TSC22D3 (GGC CCT AGA CAA GAT TGA [sense]
and GCT CAC GAA TCT GCT CCT TTA [antisense]) and β-actin (AGATTACTGCCCTG
GCTCCT [sense] and CAGTGAGGCCAGGATAGAGC [antisense]). Gene expression was
normalized to β-actin and analyzed based on the ∆∆CT method.
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Figure 1. Intravenous oxycodone self-administration in HIV Tg rats and WT rats under nondependent
(short access (ShA)) and dependent (long access (LgA)) conditions. (A) HIV Tg rats and WT littermates
self-administering oxycodone under a fixed-ratio 1 (FR1) schedule under short-access (ShA) condi-
tions in 1-h daily sessions or under long-access (LgA) conditions in 12-h daily sessions. HIV Tg rats
and WT littermates escalated oxycodone self-administration under LgA conditions. Oxycodone intake
did not differ between HIV Tg and WT rats under either ShA or LgA conditions. * p < 0.05, ** p < 0.005,
*** p < 0.0005, **** p <0.0001 vs. Session 1 (Newman–Keuls post hoc test). (B) Following a pe-
riod of enforced abstinence to model the intermittent pattern of opioid abuse in humans, HIV
Tg and WT rats both under ShA and LgA conditions promptly resumed their previous levels of
self-administration, which did not differ between genotypes. (C) Oxycodone self-administration
under ShA and LgA conditions did not differ between genotypes after a second period of enforced
abstinence. (D) The pattern of oxycodone self-administration in HIV Tg and WT rats under LgA
conditions was highly reproducible and closely replicated in an independent set of rats. * p < 0.05,
** p < 0.005, *** p < 0.0005, **** p <0.0001 vs. Session 1 (Newman–Keuls post hoc test). (E) Following
a period of enforced abstinence, rats of both genotypes promptly resumed their previous levels of
self-administration, which did not differ between genotypes. (F) HIV Tg rats with a history of escalated
oxycodone self-administration under LgA conditions performed significantly worse than WT littermates
in the NOR task during protracted withdrawal. HIV Tg rats vs. naive HIV Tg rats: * p < 0.05; HIV Tg
rats vs. naive WT rats: * p < 0.05; HIV Tg rats vs. WT rats: ** p < 0.005; Newman–Keuls post hoc test.

3. Results
3.1. Oxycodone Self-Administration in HIV Transgenic Rats

HIV Tg rats and WT littermates were allowed to intravenously self-administer oxy-
codone under an FR1 schedule whereby one lever press resulted in one oxycodone in-
jection under ShA conditions (1-h daily sessions) or under LgA conditions (12-h daily
sessions; Figure 1A). HIV Tg and WT rats exhibited similar patterns of the acquisition of
self-administration and oxycodone intake under both ShA (two-way repeated-measures
analysis of variance [ANOVA]; genotype: F1,13 = 4.72, p > 0.05; session: F20,260 = 13.73,
p < 0.0001; interaction: F20,260 = 1.060, p > 0.05) and LgA conditions (two-way repeated-
measures ANOVA; genotype: F1,13 = 0.4767, p > 0.05; session: F20,260 = 13.36, p < 0.0001;
interaction: F20,260 = 0.988, p > 0.05). Moreover, as expected, HIV Tg and WT rats pro-
gressively escalated their oxycodone intake over the 21 consecutive sessions of LgA
(Figure 1A). After 21 sessions of oxycodone self-administration, HIV Tg and WT rats
with histories of either ShA or LgA self-administration underwent a period of enforced ab-
stinence to model the intermittent pattern of opioid misuse in humans, in which oxycodone
was unavailable for 2 weeks. Following the restoration of access to self-administration,
HIV Tg and WT rats under both ShA and LgA conditions promptly resumed their pre-
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vious levels of self-administration, which did not differ between genotypes (two-way
repeated-measure ANOVA for ShA: genotype: F1,13 = 2.013, p > 0.05; session: F9,117 = 1.525,
p > 0.05; interaction: F9,117 = 0.839, p > 0.05; two-way repeated-measure ANOVA for LgA:
genotype: F1,13 = 0.445, p > 0.05; session: F9,117 = 4.25, p < 0.0001; interaction: F9,117 = 1.339,
p > 0.05; Figure 1B). Similar results were observed after a second period of 2 weeks of enforced
abstinence (two-way repeated-measure ANOVA for ShA: genotype: F1,12 = 0.874, p > 0.05;
session: F9,108 = 3.309, p > 0.05; interaction: F9,108 = 0.807, p > 0.05; two-way repeated-measures
ANOVA for LgA: genotype: F1,13 = 0.257, p > 0.05; session: F9,117 = 2.219, p < 0.05; interac-
tion: F9,117 = 1.754, p > 0.05; Figure 1C). Oxycodone self-administration was replicated in an
independent set of HIV Tg and WT rats (Figure 1D). The statistical analysis indicated that
both groups escalated their oxycodone intake when exposed to 21 consecutive sessions of
self-administration (Figure 1), and no difference was found between genotypes (two-way
repeated-measures ANOVA: genotype: F1,23 = 1.47, p > 0.05; session: F20,460 = 21.40, p < 0.0001;
interaction: F20,460 = 1.13, p > 0.05; Figure 1D). Subsequently, after 4 weeks of forced abstinence,
the rats were re-allowed to self-administer oxycodone, again confirming the lack of difference
in drug intake over 10 consecutive sessions of LgA (two-way repeated-measures ANOVA:
genotype: F1,23 = 0.3275, p > 0.05; session: F9,207 = 6.18, p < 0.0001; interaction: F9,207 = 0.721,
p > 0.05; Figure 1E).

To investigate the cognitive consequences of a history of escalated (dependent) oxy-
codone self-administration in HIV Tg rats, we tested the rats in the NOR task [61,62] in
protracted withdrawal (2 weeks) during the period of enforced abstinence after the initial
21 sessions of self-administration under LgA conditions (Figure 1F). The NOR paradigm
was performed with a 1 h delay after exposure to the familiar objects. The two-way
ANOVA indicated a significant effect of genotype (F1,42 = 11.25, p < 0.005) and a significant
genotype × treatment interaction (F1,42 = 4.338, p < 0.05) but no effect of treatment
(F1,42 = 0.878, p > 0.05). A history of escalated oxycodone self-administration did not
affect the RI in WT rats. Conversely, HIV Tg rats had a lower RI compared with naive HIV
Tg, naive WT rats, and WT rats with a history of oxycodone self-administration (Figure 1F).

These data indicate that a history of escalated (dependent) oxycodone self-administration
is associated with impairments in working memory in the NOR paradigm in HIV Tg rats but
not in WT rats, despite their comparable levels of oxycodone intake.

3.2. Gene Expression Profiling in the mPFC in HIV Tg and WT Rats That Self-Administered
Oxycodone under Nondependent (ShA) and Dependent (LgA) Conditions

Genes that significantly increased in HIV Tg rats vs. WT rats that self-administered
oxycodone under ShA conditions included complement component 4A and B (C4a, C4b;
which is implicated in neuroinflammation and Alzheimer’s disease) [63,64], annexin A2
(Anxa2; a proinflammatory factor [65] that has been implicated in immune-mediated
diseases and viral infections) [66,67], the transforming growth factor β (TGF-β) family
member Bmp7, interferon-induced transmembrane protein 2 (Ifitm2), CXXC finger pro-
tein 4 (Cxxc4/Idax; a negative regulator of WNT signaling and epigenetic regulator), Igf2
(a mitogenic and neuroprotective peptide that is associated with inflammation in differ-
ent settings) [68,69], insulin-like growth factor-binding protein 2 (Igfbp2), and Slc6a20 (a
regulator of brain glycine and N-methyl-D-aspartate [NMDA] receptor function) [70];
Figure 2A–D, Supplemental Tables S1–S6).

The glucocorticoid-responsive gene Tsc22d3 (glucocorticoid-induced leucine zipper
[Gilz]) [71] was increased in both HIV Tg rats and WT rats with histories of oxycodone
self-administration under ShA conditions compared with their respective oxycodone-naive
controls (Figure 3).

Genes that significantly decreased in HIV Tg rats vs. WT rats that self-administered
oxycodone under ShA conditions included the epigenetic factor Mbd1, Pak6 (a member of
the group B family of PAK serine/threonine kinases), Kcnt1 (which encodes a sodium-gated
potassium channel that is implicated in cellular excitability and seizures) [72], and Tmem25
(a regulator of NMDA receptor function and excitability) [73].
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Genes that significantly increased in HIV Tg rats vs. WT rats that escalated their
oxycodone self-administration under LgA conditions included potassium voltage-gated
channel interacting protein 1 (Kcnip1/Kchip1) [74], Daam2 (which encodes a protein that
contributes to Wnt signaling and regenerative myelination) [75], and glial fibrillary acidic
protein (Gfap; which is indicative of astrogliosis).

Genes that significantly decreased in HIV Tg rats vs. WT rats that escalated their oxy-
codone self-administration under LgA conditions included F-Box and WD repeat domain
containing 11 (Fbxw11; also known as β-transducin repeat containing protein 2 [βTrCP2]),
homolog of Slimb (Hos)), Rgs19 (G-α-interacting protein [Gaip]; a modulator of dopaminer-
gic signaling) [76], the γ-1 isoform of casein kinase 1 (Csnk1g1; which is associated with
syndromic developmental delay and autism spectrum disorder) [77], Pcdh19 (the causal
gene of a form of clustering epilepsy [PCDH19-CE]) [78], the novel scaffolding receptor
Dcbld2 [79], Sec31a (which was recently identified as an ortholog of the Drosophila gene by
the same name, the null mutation of which was shown to cause a severe neurological syn-
drome) [80], the γ-aminobutyric acid receptor subunit γ-2 (Gabrg2), neurofilament medium
polypeptide (NF-M), microtubule minus-end binding protein (Camsap2; which controls
axon and dendrite morphogenesis) [81], and the neuronal pentraxin receptor (Nptxr).
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Figure 2. Gene expression profiling in the mPFC in HIV Tg and WT rats that self-administered
oxycodone under nondependent (ShA) and dependent (LgA) conditions. (A) Volcano plot of changes
in gene expression in the mPFC in HIV Tg rats with a history of oxycodone self-administration under
ShA conditions compared with oxycodone-self-administering WT rats under the same conditions.
The plots show significance (Log10 of p value) vs. fold-change (Log2) on the y and x axes, respectively.
Genes that significantly increased in HIV Tg rats vs. WT rats with oxycodone self-administration
under ShA conditions are indicated in red. Genes that significantly decreased are indicated in
blue. (B) Volcano plot of changes in gene expression in the mPFC in HIV Tg rats with a history of
oxycodone self-administration under LgA conditions compared with oxycodone-self-administering
WT rats under the same conditions. Genes that significantly increased in HIV Tg rats vs. WT rats
that self-administered oxycodone under LgA conditions are indicated in red. Genes that significantly
decreased are indicated in blue. (C) Volcano plot of changes in gene expression in the mPFC in
HIV Tg rats with a history of oxycodone self-administration under LgA conditions compared with
oxycodone-naive HIV Tg rats and (D) volcano plot of changes in gene expression in the mPFC in WT
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rats with a history of oxycodone self-administration under LgA conditions compared with oxycodone-
naive WT rats. (E) Pathway analysis by GSEA [60] of HIV Tg rats vs. WT rats that self-administered
oxycodone under ShA conditions. Transcriptional evidence of an increase in neuroinflammation
was seen in HIV Tg rats compared with WT rats that self-administered oxycodone under the same
conditions. (F) Pathway analysis of HIV Tg rats vs. WT rats that self-administered oxycodone under
LgA conditions. Transcriptional evidence of an increase in neuronal injury and neurodegeneration
was seen in HIV Tg rats compared with WT rats under the same conditions. NES, normalized
enrichment score [60].
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Figure 3. Differential expression of the glucocorticoid-responsive gene Tsc22d3 (Gilz) by histories of
nondependent (ShA) and dependent (LgA) oxycodone self-administration in HIV Tg rats and WT
rats. (A) RNA-sequencing expression of the glucocorticoid-responsive gene Tsc22d3 (Gilz) increased in
both HIV Tg rats and WT rats with histories of oxycodone self-administration under ShA conditions
compared with their respective oxycodone-naive controls, which was indicative of dysregulation of
glucocorticoid-dependent gene expression associated with oxycodone self-administration. Tsc22d3
expression did not increase in HIV Tg rats or WT rats with histories of oxycodone self-administration
under LgA conditions, consistent with adaptations that occur under conditions of chronic elevations
of glucocorticoids [82,83] (F2,34 = 21.91, p < 0.0001, n = 6–7/group). (B) Consistent results were
obtained by RT-PCR (F2,36 = 19.64, p < 0.0001, n = 7–8 /group). * p < 0.05, ** p < 0.01, *** p < 0.001
(Newman–Keuls post hoc test).

Sgk1, a glucocorticoid-responsive gene that has been implicated in Alzheimer’s disease
and Parkinson’s disease [84,85], was elevated in HIV Tg rats vs. WT rats that escalated
their oxycodone self-administration under LgA conditions (Figure 1B). Sgk1 was also
elevated in both HIV and WT rats that self-administered oxycodone under ShA conditions
compared with their respective oxycodone-naive control littermates (Supplemental Tables).
Tsc22d3 (GILZ) was not differentially regulated in HIV Tg rats and WT rats with histories of
oxycodone self-administration under LgA conditions (Figure 3), presumably indicating
an adaptation to chronic glucocorticoid dysregulation, consistent with conditions that are
characterized by chronically elevated glucocorticoids [82,83]. Differential regulation of the
glucocorticoid-responsive genes Tsc22d3 and Sgk1 suggests a role for glucocorticoids in
changes in gene expression that are caused by a history of oxycodone self-administration.
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3.3. Transcriptional Evidence of Increases in Neuroinflammation, Neuronal Injury, and
Neurodegeneration in HIV Tg Rats with a History of Oxycodone Self-Administration

Pathway analysis was conducted by GSEA [60]. This method determines whether
a gene set shows a significant concordant expression difference between two conditions,
demonstrated by asymmetric distribution toward one of the two experimental condi-
tions of the running enrichment score plot [60]. Pathways that are indicative of general
immune activation, inflammation, and greater cytokine signaling were differentially acti-
vated in HIV Tg rats vs. WT rats that self-administered oxycodone under ShA conditions
(Figures 2E and 4). GSEA demonstrated differences in the regulation of pathways that are
involved in neurodegeneration between HIV Tg rats and WT rats that self-administered
oxycodone under LgA conditions, suggesting the differential activation of pathogenic mech-
anisms (Figures 2F, 5 and 6). Glucocorticoid-regulated genes showed greater adaptations in
HIV Tg rats with a history of dependent (LgA) oxycodone self-administration (Figure 6A).
We also observed the broad downregulation of neurodegeneration-related genes, includ-
ing genes that are regulated by Nfat3, which is implicated in neuronal survival [86,87],
synaptodendritic genes, and other genes that are involved in neuronal communication and
neural plasticity (Figure 6B–E).
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Figure 4. Transcriptional evidence of an increase in neuroinflammation in HIV Tg rats that self-
administered oxycodone under nondependent (short access (ShA)) conditions. Pathway analysis
by GSEA provided evidence of (A,B) broad immune activation and (C) the induction of cytokine
signaling, including (D) interferon (IFN) signaling, (E) Toll signaling, (F) TGFβ, (G) SHP2 signaling,
and (H) complement and coagulation cascades. Each bar represents a gene in the gene set [60]. HIV
ND, HIV Tg rats that self-administered oxycodone under nondependent (ShA) conditions; WT ND,
wildtype rats that self-administered oxycodone under nondependent conditions. NES = normalized
enrichment score [60].
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Figure 5. Transcriptional evidence of increases in neuronal injury and neurodegeneration in HIV Tg
rats that self-administered oxycodone under dependent (LgA) conditions. Representative pathways
that were differentially activated by GSEA are indicative of an increase in the expression of (A) inter-
feron (IFN) signaling and (B) complement (which has been implicated in increases in inflammation
and neurodegeneration [88]) and the broad downregulation of (C) neuronal genes, including genes
that are involved in (D) neuronal communication, (E) neural plasticity, and (F,G) signaling and
(H) genes that are involved in neurodegenerative conditions (e.g., Alzheimer’s disease) and (I,J)
trophism. Each bar represents a gene in the gene set [60]. NES, normalized enrichment score [60];
HIV D, HIV Tg rats that self-administered oxycodone under dependent (long access (LgA))
conditions; WT D, wildtype rats that self-administered oxycodone under dependent conditions.
NES = normalized enrichment score [60].
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Figure 6. Differential regulation of selected pathways by histories of nondependent (ShA) and
dependent (LgA) oxycodone self-administration in HIV Tg rats and WT rats. The figure shows the
differential regulation of gene sets that are relevant to neurodegeneration in HIV Tg rats and WT
rats with histories of nondependent (ShA) and dependent (LgA) oxycodone self-administration.
(A) Glucocorticoid regulated genes showed greater adaptations in HIV Tg rats with a history of
dependent (LgA) oxycodone self-administration. (B) Nfat3 regulated genes, (C) genes that are
involved in neuronal communication, including synaptodendritic genes, (D) genes that are related to
signaling, such as DARPP32 regulated events, and (E) genes that are related to axonal function were
downregulated in HIV Tg rats with a history of dependent (LgA) oxycodone self-administration.
* p < 0.05, ** p < 0.01, vs. oxycodone-naive control rats of the respective genotype. NES = normalized
enrichment score [60].

4. Discussion

Opioid use disorder has been shown to be associated with impairments in various cognitive
domains, including working memory, executive function, and impulsivity [89,90]. Clinical
evidence indicates that opioid misuse can promote cognitive impairment in PWH [91–94]. In
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the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) study, lifetime heroin use
was associated with worse recall and working memory [94].

Oxycodone and hydrocodone are the most prescribed Schedule II opioids [95,96].
Oxycodone and hydrocodone are powerful painkillers and among the most widely misused
prescription drugs [95–98]. Oxycodone is among the most prescribed opioids in PWH [15].

Here, we found that HIV Tg rats that self-administered oxycodone under LgA conditions
that led to escalated (dependent) drug intake exhibited significant impairments in working
memory performance in the NOR paradigm compared with WT rats that self-administered
oxycodone under the same conditions. However, oxycodone had comparable reinforcing
potential in HIV Tg and WT rats, unlike methamphetamine self-administration, whereby HIV
Tg rats exhibited an increase in methamphetamine intake under LgA conditions [99].

Working memory is the most commonly affected cognitive executive function among
PWH [100]. The NOR paradigm is an established working memory paradigm that is
sensitive to impairments in brain regions that are involved in memory, including the
hippocampus and entorhinal, perirhinal, parahippocampal, and prefrontal cortices, among
others [61,62]. The NOR paradigm does not involve rewards; instead, animals explore the
novel object as part of their natural propensity toward novelty [61]. The NOR paradigm
has been used to study working memory deficits that are induced by HIV products, such
as Tat [101,102], and working memory deficits in HIV Tg rats [103].

The mPFC in rodents is a key region in working memory and cognitive
flexibility [104–106]. Here, we found that gene expression profiling of the mPFC showed
transcriptional evidence of an increase in inflammation in HIV Tg rats that self-administered
oxycodone under ShA conditions compared with WT rats that self-administered oxycodone
under the same conditions. In HIV Tg rats that self-administered oxycodone under LgA
conditions, gene expression profiling showed transcriptional evidence of an increase in
neuronal injury compared with WT rats that self-administered oxycodone under the same
conditions.

Opioids have complex actions on inflammation and immune system activation.
Morphine exposure has been shown to amplify microglial activation by lipopolysaccha-
ride [107,108]. Morphine exposure exacerbates Tat-induced microglial activation in vitro [109]
and in vivo [110] following short-term exposure. Morphine potentiates the release of cytokines
by microglia and other cells that are exposed in vitro to lipopolysaccharide [107,108,111,112]
or Tat [109]. The morphine-induced potentiation of cytokine production has been shown to be
dose-dependent, and it was reduced at higher morphine concentrations [111,112]. The latter
is consistent with the dose-dependent immunosuppressive actions of opioids [113,114].

We found that mRNA expression of the glucocorticoid responsive gene Tsc22d3
(Gilz) increased in nondependent HIV Tg rats and WT rats under ShA conditions but
was not different from control values in both oxycodone-dependent HIV Tg and WT
rats under LgA conditions. Tsc22d3 is induced by glucocorticoids [71]. However, brain
Tsc22d3 is not increased in conditions that are associated with chronic glucocorticoid acti-
vation, such as chronic stress [82] and major depressive disorder [83]. Tsc22d3 contributes
to the anti-inflammatory effects of glucocorticoids by inhibiting key proinflammatory
transcription factors, such as nuclear factor-κB and adaptor protein-1, and modulates
macrophage polarization [71,115–119]. Lower Tsc22d3 and inflammatory gene expression in
oxycodone-dependent rats in the present study may be a glucocorticoid-related adaptive
response in rats with escalated oxycodone intake that are exposed to high levels of the drug.
Consistent with this view, the glucocorticoid-responsive gene Sgk1 was elevated in both
HIV Tg and WT rats that self-administered oxycodone under both LgA and ShA conditions
compared with their respective oxycodone-naive control littermates.

Cognitive impairment and evidence of an increase in neuronal injury in HIV Tg rats
that self-administered oxycodone under LgA conditions may result from the interaction be-
tween HIV products and high doses of opioids and glucocorticoid dysregulation. Elevated
glucocorticoid levels were also seen in Tat Tg mice that were exposed to oxycodone [120].
An increase in neuronal toxicity by exposure to morphine and Tat has been shown in in vitro
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model systems [121,122]. Moreover, opioid misuse is associated with cognitive impair-
ments in the general population [89,90] and PWH [91–94]. Elevated plasma glucocorticoids
are also associated with impairments in working memory in humans [123–125]. Prolonged
hypercortisolemia induces mPFC and hippocampal impairments [126–135] and memory
deficits [136–138]. Elevated cortisol levels are seen in neurodegenerative conditions, in-
cluding Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, suggesting a
general role for chronic activation of the hypothalamic–pituitary–adrenal (HPA) axis in neu-
rodegeneration [139–143]. In human Alzheimer’s disease, plasma cortisol levels correlate
with the degree of cognitive impairment, suggesting that HPA axis hyperactivity con-
tributes to the progression of cognitive decline [142,144,145]. The glucocorticoid-responsive
gene SGK1 has been implicated in Alzheimer’s disease and Parkinson’s disease [84,85].
Aging is also associated with an increase in cortisol [146]. Rodents that are exposed to
chronic stress exhibit reductions of glutamate receptor expression, reductions of markers of
synaptic plasticity, and the atrophy of pyramidal cell dendrites in the mPFC [106,147–149].

Thus, an increase in inflammation in HIV Tg rats vs. WT rats that self-administered
oxycodone under ShA conditions likely resulted from the combination of proinflamma-
tory actions of HIV products with proinflammatory actions of opioids at lower levels of
exposure [111,112]. In rats with escalated oxycodone intake under LgA conditions, the
immunosuppressive [113,114] and neurotoxic [121,122] effects of high doses of opioids may
predominate and be additive with the neurotoxic [123–145] and immunosuppressive [150]
actions of glucocorticoids.

In conclusion, we provide transcriptional evidence of an increase in immune activation
and neuroinflammation in HIV Tg rats vs. WT littermate control rats with histories of oxy-
codone self-administration under limited access (ShA) conditions, which leads to a moderate,
stable, “recreational”-like level of oxycodone intake. In HIV Tg rats with histories of oxy-
codone self-administration under conditions of extended (LgA) access to self-administration,
which led to considerably higher levels of oxycodone intake, we found transcriptional evi-
dence of an increase in neuronal injury and neurodegeneration and significant impairments
in memory performance in the NOR paradigm compared with WT rats that self-administered
oxycodone under the same conditions. Transcriptional evidence of glucocorticoid dysreg-
ulation was seen in both HIV Tg rats and WT rats that self-administered oxycodone. The
neurotoxic actions of HIV products, together with glucocorticoid-dependent adaptations,
likely contribute to cognitive impairments in oxycodone-dependent HIV Tg rats.
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