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DOUBLE NODE NEIGHBORHOODS AND FAMILIES
OF SIMPLY CONNECTED 4-MANIFOLDS WITH b+ = 1

RONALD FINTUSHEL AND RONALD J. STERN

1. Introduction

A basic question of 4-manifold topology is whether the complex projective plane,
CP2, admits exotic smooth structures. Thus one is interested in knowing the
smallest m for which CP2#mCP

2
admits an exotic smooth structure. In the late

1980s, Dieter Kotschick [K] proved that the Barlow surface, which was known to be
homeomorphic to CP2# 8CP

2
, is not diffeomorphic to it. In the following years the

subject of simply connected smooth 4-manifolds with b+ = 1 languished because
of a lack of suitable examples. However, largely due to a beautiful paper of Jongil
Park [P], who found the first examples of exotic simply connected 4-manifolds with
b+ = 1 and b− = 7, the past year has found renewed interest in this subject. Peter
Ozsvath and Zoltan Szabo [OS] proved that Park’s manifold is minimal, and Andras
Stipsicz and Szabo [SS] used a technique similar to Park’s to construct an exotic
manifold with b+ = 1 and b− = 6.

The rational elliptic surface E(1) ∼= CP2#9CP
2

admits infinitely many distinct
smooth structures. Up to now it has not been known whether CP2#mCP

2
can

have an infinite family of smooth structures when m < 9. It is the purpose of this
paper to introduce a new technique which we use to show that for m = 6, 7, 8,
CP2#mCP

2
does have an infinite family of smooth structures. The construction

of these examples to some extent follows the ideas of Park [P] after performing
suitable knot surgeries [FS3] on E(1). The essential new idea is that after certain
knot surgeries on E(1), one is able to find an immersed sphere of self-intersection
−1 representing the ‘pseudo-section’. This is accomplished by studying ‘double
node neighborhoods’ as described below.

Shortly after the appearance of a preliminary version of this article, Park, Stip-
sicz, and Szabo [PSS] used the techniques described herein to give even better
examples: an infinite family of pairwise nondiffeomorphic smooth 4-manifolds all
homeomorphic to CP2#5CP

2
. In the final section of this paper we give a quick

construction of such a family of examples.
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2. Seiberg-Witten invariants, knot surgery, and rational blowdowns

2.1. Seiberg-Witten invariants. Let X be a simply connected oriented 4-mani-
fold with b+

X = 1 with a given orientation of H2
+(X;R) and a given metric g.

The Seiberg-Witten invariant depends on the metric g and a self-dual 2-form as
follows. There is a unique g-self-dual harmonic 2-form ωg ∈ H2

+(X;R) with ω2
g = 1

and corresponding to the positive orientation. Fix a characteristic homology class
k ∈ H2(X;Z). Given a pair (A, ψ), where A is a connection in the complex line
bundle whose first Chern class is the Poincaré dual k̂ = i

2π [FA] of k and ψ is a
section of the bundle W+ of self-dual spinors for the associated spin c structure,
the perturbed Seiberg-Witten equations are:

DAψ = 0,

F+
A = q(ψ) + iη,

where F+
A is the self-dual part of the curvature FA, DA is the twisted Dirac operator,

η is a self-dual 2-form on X, and q is a quadratic function. Write SWX,g,η(k) for
the corresponding invariant. As the pair (g, η) varies, SWX,g,η(k) can change only
at those pairs (g, η) for which there are solutions with ψ = 0. These solutions occur
for pairs (g, η) satisfying (2πk̂ + η) · ωg = 0. This last equation defines a wall in
H2(X;R).

The point ωg determines a component of the double cone consisting of elements
of H2(X;R) of positive square. We prefer to work with H2(X;R). The dual
component is determined by the Poincaré dual H of ωg. An element H ′ ∈ H2(X;R)
of positive square lies in the same component as H if H ′ ·H > 0. If (2πk̂+η)·ωg �= 0
for a generic η, SWX,g,η(k) is well-defined, and its value depends only on the sign of
(2πk̂ + η) ·ωg. Write SW+

X,H(k) for SWX,g,η(k) if (2πk̂ + η) ·ωg > 0 and SW−
X,H(k)

in the other case.
The invariant SWX,H(k) is defined by SWX,H(k) = SW+

X,H(k) if (2πk̂) ·ωg > 0,
or dually, if k · H > 0, and SWX,H(k) = SW−

X,H(k) if H · k < 0. The wall-crossing
formula [KM, LL] states that if H ′, H ′′ are elements of positive square in H2(X;R)
with H ′ · H > 0 and H ′′ · H > 0, then if k · H ′ < 0 and k · H ′′ > 0,

SWX,H′′(k) − SWX,H′(k) = (−1)1+
1
2 d(k),

where d(k) = 1
4 (k2−(3 sign+2 e)(X)) is the formal dimension of the Seiberg-Witten

moduli spaces.
Furthermore, in case b− ≤ 9, the wall-crossing formula, together with the fact

that SWX,H(k) = 0 if d(k) < 0, implies that SWX,H(k) = SWX,H′(k) for any H ′

of positive square in H2(X;R) with H · H ′ > 0. So in case b+
X = 1 and b−X ≤ 9,

there is a well-defined Seiberg-Witten invariant, SWX(k).

2.2. Rational blowdowns. Let Cp be the smooth 4-manifold obtained by plumb-
ing (p − 1) disk bundles over the 2-sphere according to the diagram

−(p + 2) −2 −2
u0 u1 up−2

� � · · ·· · ·· · ·· · · �
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Then the classes of the 0-sections have self-intersections u2
0 = −(p+2) and u2

i = −2,
i = 1, . . . , p − 2. The boundary of Cp is the lens space L(p2, 1 − p) which bounds
a rational ball Bp with π1(Bp) = Zp and π1(∂Bp) → π1(Bp) is surjective. If Cp is
embedded in a 4-manifold X, then the rational blowdown manifold X(p) of [FS1] is
obtained by replacing Cp with Bp, i.e., X(p) = (X \ Cp) ∪ Bp.

The rationally blown down manifold X(p) shares many properties with X. For
example, if X and X \Cp are simply connected, then so is X(p). Also, the Seiberg-
Witten invariants of X and X(p) can be compared. The homology of X(p) can
be identified with the orthogonal complement of the classes ui, i = 0, . . . , p − 2
in H2(X;Z), and then each characteristic element k ∈ H2(X(p);Z) has a lift k̃ ∈
H2(X;Z) which is characteristic and for which the dimensions of the moduli spaces
agree, i.e., dX(p)(k) = dX(k̃). It is proved in [FS1] that if b+

X > 1, then SWX(p)(k) =
SWX(k̃). In case b+

X = 1, if H ∈ H+
2 (X;R) is orthogonal to all the ui, then it also

can be viewed as an element of H+
2 (X(p);R), and SWX(p),H(k) = SWX,H(k̃).

2.3. Knot surgery. Let X be a 4-manifold which contains a homologically essen-
tial torus T of self-intersection 0, and let K be a knot in S3. Let N(K) be a tubular
neighborhood of K in S3, and let T × D2 be a tubular neighborhood of T in X.
Then the knot surgery manifold XK is defined by

XK = (X \ (T × D2)) ∪ (S1 × (S3 \ N(K)).

The two pieces are glued together in such a way that the homology class [pt×∂D2]
is identified with [pt × λ], where λ is the class of a longitude of K. This latter
condition does not, in general, completely determine the diffeomorphism type of
XK ; however if we take XK to be any manifold constructed in this fashion and if,
for example, T has a cusp neighborhood, then the Seiberg-Witten invariant of XK

is completely determined by the Seiberg-Witten invariant of X and the Alexander
polynomial of K [FS3]. Furthermore, if X and X \ T are simply connected, then
so is XK .

3. Double node neighborhoods

A simply connected elliptic surface is fibered over S2 with smooth fiber a torus
and with singular fibers. The most generic type of singular fiber is a nodal fiber,
which is an immersed 2-sphere with one transverse positive double point. A nearby
smooth fiber contains a vanishing cycle. This vanishing cycle is a nonseparating
loop on the smooth fiber, and the nodal fiber is obtained by collapsing this vanishing
cycle to a point to create a transverse self-intersection. The vanishing cycle bounds
a ‘vanishing disk’, a disk of relative self-intersection −1 with respect to the framing
of its boundary given by pushing the loop off itself on the smooth fiber. The
monodromy of the singular fiber is the diffeomorphism of the smooth fiber which
describes the torus bundle over a small circle in the base S2 bounding a disk whose
only singular point is the image of the nodal fiber. In this case the monodromy is
a Dehn twist around the vanishing cycle.

Consider E(1) which admits an elliptic fibration with 12 nodal fibers, six of
which have monodromy (a Dehn twist around) a and six of which have monodromy
(a Dehn twist around) b where a and b represent a standard basis of H1(T 2;Z).
(Note that in the mapping class group of T 2, ab has order 6.) A standard technique
for finding spheres of self-intersection −2 in an elliptic fibration is to find vanishing
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cycles on smooth fibers that vanish in two different nodal fibers. In the example
of E(1), the vanishing cycle a on a smooth fiber bounds vanishing disks which are
determined by a choice of node with monodromy a. Two such choices give a sphere
of self-intersection −2, the union of the two vanishing disks.

A double node neighborhood D is a fibered neighborhood of an elliptic fibration
which contains exactly two nodal fibers with the same monodromy. If F is a
smooth fiber of D, there is a vanishing class a that bounds vanishing disks in the
two different nodes, and these give rise to a sphere V of self-intersection −2 in D.

We now investigate the result of a knot surgery along a regular fiber in a double
node neighborhood. Let K be any genus one knot in S3 which contains a non-
separating loop Γ on a minimal genus Seifert surface Σ such that Γ satisfies the
following two properties:

(i) Γ bounds a disk in S3 which intersects K in exactly two points;
(ii) the linking number in S3 of Γ with its pushoff on Σ is +1.

It follows from these properties that Γ bounds a punctured torus in S3 \ K. Ex-
amples of (K, Γ) which satisfy (i) and (ii) are the twist knots T (n) with Alexander
polynomials ∆T (n)(t) = nt − (2n − 1) + nt−1:

�
�

�

�
�
�

�

	


�
2n − 1
RH 1

2
-

twists

T (n) = twist knot

where Γ is the loop which runs through both half-twists in the clasp.
Now consider the result of knot surgery in D using a knot K with a loop Γ on its

Seifert surface so that (K, Γ) satisfies (i) and (ii). In the knot surgery construction,
one has a certain freedom in choosing the gluing of S1 × (S3 \N(K)) to D \N(F ).
We are free to make any choice as long as a longitude of K is sent to the boundary
circle of a normal disk to F . We choose the gluing so that the class of a meridian
m of K is sent to the class of a × {pt} in H1(∂(D \ N(F ));Z) = H1(F × ∂D2;Z).

Before knot surgery, the fibration of D has a section which is a disk. The result
of knot surgery is to remove a smaller disk in this section and to replace it with the
Seifert surface of K. Call the resulting relative homology class in H2(DK , ∂;Z) the
pseudo-section. Thus in DK , the result of knot surgery, there is a punctured torus
Σs representing the pseudo-section. The loop Γ sits on Σs and by (i) it bounds a
twice-punctured disk ∆ in {pt} × ∂(S3 \ N(K)) where ∂∆ = Γ ∪ m1 ∪ m2 where
the mi are meridians of K. The meridians mi bound disjoint vanishing disks ∆i in
D \N(F ) since they are identified with disjoint loops each of which represents the
class of a × {pt} in H1(∂(D \ N(F ));Z). Hence in DK the loop Γ ⊂ Σs bounds a
disk U = ∆ ∪ ∆1 ∪ ∆2. By construction, the relative self-intersection of U relative
to the framing given by the pushoff of Γ in Σs is +1− 1− 1 = −1. (This uses (ii).)

Lemma 3.1. Let (K, Γ) be a knot together with a loop Γ on its Seifert surface
which satisfies (i) and (ii), and let D be a double node neighborhood. Then in DK

the pseudo-section is represented by an immersed disk Λ with one positive double
point.
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Proof. Since Γ is nonseparating in Σs, surgery on it kills π1(Σs). This surgery
may be performed in DK by removing an annular neighborhood of Γ and replacing
it with a pair of disks U ′, U ′′ as obtained above. This is precisely the complex-
algebraic model of a nodal intersection. So the resultant surface is as claimed. �

4. Families of 4-manifolds

In this section we will construct a family of mutually nondiffeomorphic simply
connected 4-manifolds with b+ = 1 and b− = 6. For the reader who has read
Park’s lovely paper [P], our construction closely parallels the construction there;
however we first do a knot surgery on E(1) and then need to blow up one less
time to get started. Begin with E(1). As Park points out, E(1) has an elliptic
fibration with 5 singular fibers, an Ẽ6 fiber and 4 nodal fibers. The nodal fibers
can be chosen to consist of a pair of fibers with monodromy a and two others with
monodromies b and a−1ba where a and b generate π1(T 2). (We obtain an elliptic
fibration of E(1) with this collection of singular fibers by factoring the monodromy
(ab)6 = (ab)4a2(a−1ba)b, and noting that (ab)4 is the monodromy of an Ẽ6 fiber.)

Thus we can find a double node neighborhood D ⊂ E(1) containing the two
nodal fibers with monodromy a and so that E(1) \D contains an Ẽ6 fiber and the
two remaining nodal fibers F1 and F2.

Let η be the class of a line in CP2 and εi, i = 1, . . . , 9, be the classes of the
exceptional curves in the elliptic surface E(1) = CP2#9CP

2
. Then each εi is a

section of the elliptic fibration, and the fiber F represents 3η − ε1 − · · · − ε9.

−2 −2 −2 −2 −2

S1 S2 S3 S4 S5

S7 −2

S6 −2

�
�

� � � � �
Ẽ6 :

Let K be the twist knot K = T (n), and let Yn = E(1)K be the result of knot
surgery using K and identifying a smooth fiber F of the elliptic fibration with
T = S1×m in S1× (S3 \N(K)) (and where m denotes a meridian to K in S3). We
can do the surgery inside the double node neighborhood D; so Yn = (E(1)\D)∪DK.

It follows from Lemma 3.1 that Yn contains an immersed sphere S of self-
intersection −1 which is obtained from replacing a disk in the pseudo-section arising
from ε9 with the immersed disk Λ given by Lemma 3.1. In E(1) \D = Yn \DK the
two nodal fibers F1 and F2 each intersect S transversely in a single positive point.
Now blow up Yn three times, at the double points of S, F1 and F2, and let Zn be
the blowup, Zn = Yn#3CP

2
, with exceptional curves Ei, i = 0, 1, 2.

In Zn we have the configuration consisting of the embedded sphere S′ of self-
intersection −5 representing S−2E0 and the embedded self-intersection −4 spheres
F ′

i representing F − 2Ei, i = 1, 2. These three spheres meet transversely in a pair
of positive double points which can be locally smoothed to obtain an embedded
sphere R of self-intersection −9 and which represents the class

u0 = S + F1 + F2 − 2(E0 + E1 + E2) = S + 2T − 2(E0 + E1 + E2).
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As Park points out in [P], the classes of the spheres Si in Ẽ6 are:

[S1] = ε4 − ε7,

[S2] = ε1 − ε4,

[S3] = η − ε1 − ε2 − ε3,

[S4] = ε2 − ε5,

[S5] = ε5 − ε9,

[S6] = ε3 − ε6,

[S7] = ε6 − ε8.

Furthermore, R intersects S5 in a single positive point; so we obtain the configura-
tion C7 ⊂ Zn whose homology classes are:

u0 = [R] = [S + 2T − 2(E0 + E1 + E2)],
u1 = [S5] = ε5 − ε9,

u2 = [S4] = ε2 − ε5,

u3 = [S3] = η − ε1 − ε2 − ε3,

u4 = [S2] = ε1 − ε4,

u5 = [S1] = ε4 − ε7.

Recall that while in Zn the notation εi is meaningless, the classes which we have
listed, such as ε5 − ε9, make perfect sense, since they are represented by embedded
spheres in Yn \ DK = E(1) \ D.

Let Xn = (Zn \ C7) ∪ B7 denote the manifold obtained by rationally blowing
down the configuration C7. The boundary of C7 is the lens space L(49,−6) and
π1(L(49,−6)) = Z49 maps onto π1(B7) = Z7. A normal circle to S3 is a loop
representing a generator of π1(∂C7), and this loop is the boundary of the disk
S6 \C7. Hence Xn is simply connected. It is clear that b+

Xn
= 1 and b−Xn

= 6. Thus

Proposition 4.1. For each n, the manifold Xn is homeomorphic to CP2#6CP
2
.

�

5. The Seiberg-Witten invariants of Xn

In this section we shall compute the Seiberg-Witten invariants of the manifolds
Xn, n > 0, and see that they are mutually nondiffeomorphic. We first recall the
result of [S] and [FS3] concerning the manifolds Yn, n > 0. Recall that since
b−Yn

= 9, the manifold Yn has a well-defined Seiberg-Witten invariant.

Lemma 5.1 ([S, FS3]). The Seiberg-Witten invariants of Yn, n > 0, are given by
|SWYn

(±T )| = n and for every other class L, SWYn
(L) = 0. �

In E(1) the sphere Sη representing η intersects the fiber F in 3 points. After
knot surgery, η gives rise to a class h in Yn of genus 3 that has h2 = 1 and h ·T = 3.
(The three normal disks to F that lie in Sη are replaced by genus one Seifert
surfaces of K = T (n).) Since the Seiberg-Witten invariant of Yn is well-defined,
SWYn,h(L) = SWYn

(L) for all characteristic L ∈ H2(Yn;Z).
The homology H2(Yn;R) embeds naturally in H2(Zn;R), and the blowup for-

mula of [FS2] implies that in Zn, the only classes L for which the Seiberg-Witten
invariants SWZn,h(L) can be nonzero are L = ±T − δ1E1 − δ2E2 − δ3E3 where
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the δi are odd integers (since L is characteristic). If d(L) is the dimension of the
moduli space of solutions to the Seiberg-Witten equations corresponding to L (and
h), then 4 d(L) = L2 − (3 sign(Zn) + 2 e(Zn)) = −(δ2

1 + δ2
2 + δ2

3) + 3. Hence the
blowup formula, and the fact that SWZn,h(L) = 0 if d(L) < 0, implies:

Lemma 5.2. For n > 0, |SWZn,h(±T ± E0 ± E1 ± E2)| = n, and SWZn,h(L) = 0
for all other classes L. �

The wall-crossing formula then implies:

Proposition 5.3. For any class H ∈ H2(Zn;R) satisfying H · h > 0 and H2 > 0,
and for any characteristic L ∈ H2(Zn;R) with L2 ≥ −3, if L = ±T ±E1±E2±E3

we have

SWZn,H(L) =

{
±n if the signs of H · L and h · L agree.
±n ± 1 if the signs of H · L and h · L do not agree

and if L �= ±T ± E1 ± E2 ± E3 we have

SWZn,H(L) =

{
0 if the signs of H · L and h · L agree
±1 if the signs of H · L and h · L do not agree. �

We are interested in the Seiberg-Witten invariants SWXn
(K). The homology

H2(Xn;Z) of Xn is naturally identified with the orthogonal complement to {ui|i =
0, . . . , 5} in H2(Zn;Z). It is proved in [FS1] that for each characteristic element
K ∈ H2(Xn;Z) there is a lift K̃ which is a characteristic element of H2(Zn;Z)
satisfying

dXn
(K) =

1
4
(K2 − (3 sign(Xn) + 2 e(Xn)))

=
1
4
(K̃2 − (3 sign(Zn) + 2 e(Zn))) = dZn

(K̃).

The lift K̃ is obtained by extending the restriction of K to ∂B7 = ∂C7 over C7 as a
characteristic vector whose self-intersection with respect to the relative intersection
form on C7 is −6. It is then shown in [FS1] that

SWXn
(K) = SWZn,H(K̃)

where H ∈ H2(Zn;R) is any class satisfying H · h > 0, H2 > 0, and H · ui = 0 for
i = 0, . . . , 5.

Such a class H is given by

H = 7h − 2(
9∑

i=1

ei) − e3 − E0 − E1 − E2.

Analogously to the situation for h, the classes ei ∈ H2(Yn;Z) ⊂ H2(Zn;Z) are
obtained from the exceptional curves in E(1) after knot surgery. Each is represented
by a torus of self-intersection −1, and the intersection properties of h, e1, . . . , e9 in
Yn are the same as those of η, ε1, . . . , εn in E(1) (and note e9 = [S]). It follows
that H · h = 7 and H2 = 5. Furthermore, H · ui = 0 for i = 0, . . . , 5. So the class
H may be used to determine the Seiberg-Witten invariants of Xn.

The intersection matrix of C7 in terms of the basis of H2(C7, ∂;Z) given by
the dual classes γi to the ui is the inverse of the plumbing matrix of C7 (see
[FS1]). Using this, one easily checks that of the classes T ± E0 ± E1 ± E2, only
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K̃0 = T +E0+E1+E2 restricts to C7 with self-intersection equal to −6. In fact, K̃0

restricts to H2(C7, ∂;Z) as 7γ0. The induced class K0 ∈ H2(Xn;Z) is characteristic,
and SWXn

(K0) = SWZn,H(T + E0 + E1 + E2). Calculating intersections, we have
H · (T + E0 + E1 + E2) = 5 and h · (T + E0 + E1 + E2) = 3. It then follows from
Proposition 5.3 that

|SWXn
(±K0)| = |SWZn,H(T + E0 + E1 + E2)| = |SWZn,h(T + E0 + E1 + E2)| = n.

Proposition 5.4. For n ≥ 2, there is (up to sign) a unique class K0 ∈ H2(Xn;Z)
whose Seiberg-Witten invariant has absolute value unequal to 0 or 1, and we have
|SWXn

(±K0)| = n. �

As a consequence, we have the family of smooth manifolds promised in the
introduction:

Theorem 5.5. The manifolds Xn (n > 0) are all homeomorphic to CP2#6CP
2
,

and no two of these manifolds are diffeomorphic. Furthermore, for n ≥ 2, the Xn

are all minimal.

Proof. Any diffeomorphism Xn → Xm must take K0 to a class in H2(Xm;Z) whose
Seiberg-Witten invariant has absolute value n. It then follows from Proposition 5.4
that n = m. Since CP2#6CP

2
admits a metric of positive scalar curvature, its

Seiberg-Witten invariant is identically 0. Hence it is not diffeomorphic to any Xn,
n > 0.

According to the blowup formula [FS2], if Xn were diffeomorphic to X ′#CP
2
,

the basic classes of Xn would come in pairs k ±E where E is the exceptional class
coming from the blowup, k ∈ H2(X ′;Z), and SWXn

(k ± E) = SWX′(k). Then,
if n ≥ 2, we would have K0 = k ± E and −K0 = k ∓ E for some k since these
are the only two classes in H2(Xn;Z) whose Seiberg-Witten invariants are not 0
or ±1. Thus (2K0)2 = (K0 − (−K0))2 = (2E)2 = −4. But K2

0 = 3; so this is not
possible. �

Note that the manifolds Xn have no underlying symplectic structure for n ≥ 2.
They provide the first examples of nonsymplectic 4-manifolds homeomorphic to
CP2#mCP

2
with m < 9.

6. Families with b− = 7 and 8

One can easily modify the construction of Section 4 to obtain infinite families of
simply connected minimal 4-manifolds with b+ = 1 and b− = 7 or 8. In the first
case simply blow up twice rather than three times, using only one nodal fiber to
construct a sphere of self-intersection −7 in Yn#2CP

2
, and add on enough spheres

in Ẽ6 to form the configuration C5. To obtain families with b+ = 8, only blow
up the double point on the pseudo-section in Yn to get a sphere of self-intersection
−5 in Yn#CP

2
, then add a sphere to get the configuration C3. Calculations of

Seiberg-Witten invariants are analogous to those of Section 5.

7. Families with b− = 5

Park, Stipsicz, and Szabo [PSS] have recently shown how to utilize the techniques
of this paper to produce infinite families of mutually nondiffeomorphic 4-manifolds,
all homeomorphic to CP2#5CP

2
. In this section, we outline one such family. This
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construction was also discovered by Park, Stipsicz, and Szabo. The construction
begins by noting (as in [PSS]) that the standard elliptic fibration on E(1) has mon-
odromy (ab)6, where a and b, as in Section 4, correspond to Dehn twists around stan-
dard generators of π1(T 2). Using the braid relation, aba = bab, one sees that (a3b)3

defines an elliptic fibration on E(1), and then so does a6(a−3ba3)(bab−1)2b2(b−1ab).
This means that there is an elliptic fibration on E(1) whose singular fibers are an
I6 fiber (whose monodromy is a6 [BPV]), and 6 nodal fibers, whose monodromies
are a−3ba3, two with bab−1, two with b, and one with b−1ab.

Since we have two pairs of nodal fibers with parallel vanishing cycles, we can
form a double node neighborhood containing each pair. Perform a knot surgery in
each double node neighborhood, say using the twist knot T (1) in one neighborhood
and T (n) in the other. In each neighborhood we need to be careful to perform
the knot surgery so that the meridian of the knot is identified with the vanishing
cycle. Let Vn be the resultant manifold. Note that Vn is simply connected: for if
F1, F2 are the fibers on which we perform knot surgery, then π1(E(1) \ (F1 ∪ F2))
is normally generated by normal circles to the removed fibers, and these are iden-
tified with longitudes of T (1) and T (n). Thus π1(Vn) is normally generated by the
images of π1(S1 × (S3 \ T (i))), for i = 1, n. These, in turn, are normally generated
by the images of S1 × {pt} and the meridians. However, because of the singular
fibers, π1(fiber) → π1(E(1)\(F1∪F2)) is the trivial map. So the classes in question
die in π1(E(1) \ (F1 ∪ F2)), and we see that π1(Vn) = 1. Using [FS3], one com-
putes the Seiberg-Witten invariants of Vn: up to sign the only classes in H2(Vn;Z)
with nontrivial Seiberg-Witten invariants are T and 3T , and |SWVn

(±3T )| = n,
|SWVn

(±T )| = 2n − 1.
To construct the examples of manifolds with b− = 5, use the two double node

neighborhoods to get a representative of the pseudo-section of Vn which is an im-
mersed sphere with two positive double points. If we blow up these two points we
get an embedded sphere S of self-intersection −9 in Wn = Vn#2CP

2
. By remov-

ing one of the spheres in the I6 configuration, we get 5 spheres which, along with
S, form the configuration C7. As in Section 5, we can see that the only classes
L ∈ H2(Wn;Z) which have SWWn,h(L) �= 0 and whose restriction to C7 has self-
intersection −6 are L = ±(3T +E0+E1). If we let Qn denote the result of rationally
blowing down C7 in Wn, then an argument exactly as in Section 5 shows:

Theorem 7.1 (cf. Park, Stipsicz, and Szabo [PSS]). The manifolds Qn (n > 0) are
all homeomorphic to CP2#5CP

2
, and no two of these manifolds are diffeomorphic.

Furthermore, for n ≥ 2, the Qn are all minimal.

(Note that to see that Qn is simply connected, we use either of the two nodal
fibers which do not live in the double node neighborhoods.)
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