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Dystonia is a movement disorder characterized by involuntary muscle contractions leading

to abnormal movements and postures. This movement disorder poses significant challenges

to affected individuals. Treating children with dystonia is challenging, as the condition is a

network disorder impacting the brain’s entire signaling system, rather than being localized

to a specific brain region. This involves dystonic signals propagating through the neuronal

network, extending from the cortex to the muscles. This irregular or imbalanced signal trans-

mission is believed to be the root cause of dystonic symptoms. These symptoms manifest

as spasticity, abnormal postures, and involuntary muscle contractions, each contributing to

the nature of this disorder. Although many have studied the pathophysiology of dystonia,

the pattern of neural activity in dystonia still remains unclear.

While dystonic symptoms can be managed or moderated through medication or other meth-

ods a definitive cure remains elusive. Therefore, further investigation on the mechanism of

dystonia and its treatments are required. This dissertation aims to elucidate the complex

mechanisms of dystonia and motor control in pediatric patients, with a primary emphasis

on the effects of deep brain stimulation (DBS) on the deep brain regions, using principles

of control theory and dynamic models. DBS has been widely used as an effective symp-
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tomatic treatment of dystonia. This treatment involves implantation of depth leads inside

deep brain regions which allows us to study the neural behavior and transmission within the

brain networks affected by dystonia. In addition to the focus on dynamic models of neural

signal transmission, this study explores the potential of sensory awareness as a non-invasive

therapeutic option to ameliorate motor symptoms associated with dystonia, included as

additional chapters to this dissertation. Through comprehensive analysis and experimen-

tation, this dissertation research contributes to the advancement of DBS as a treatment of

various neurological disorders and understanding of dystonia’s underlying neurophysiological

mechanisms.

The outcomes presented in this dissertation stem from my efforts in devising strategies to

handle neurophysiological data, eliminate noise, and construct computational models in-

formed by concepts of electrical engineering and my deep understanding of human neuro-

physiology and neuroscience. By employing these methodologies and knowledge, I aspire to

make a small but lasting impact on the understanding of the mechanisms of dystonia and

DBS. I am convinced that my doctoral investigation has advanced our comprehension of the

effects of DBS and abnormal patterns of neural activity associated with dystonia, aiming to

achieve optimal clinical outcomes for patients with dystonia and also other related movement

and neurological disorders.
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INTRODUCTION

Dystonia Definition and Epidemiology. Dystonia is characterized by involuntary, sus-

tained muscle contractions (maintained co-contraction of agonist and antagonist muscles)

leading to abnormal postures, twisting, repetitive movements, or tremor, often exacerbated

by movement attempts [5, 209, 208, 176, 238]. Dystonia is the third most common movement

disorder, after Parkinson’s disease, affecting approximately 500,000 adults and children in

north America [182]. It is a dynamic disorder, with severity fluctuating based on activity and

posture. The condition may manifest in various forms, including, but not limited to, over-

extension or over-flexion of the hand, inversion of the foot, lateral flexion or retro-flection

of the head, spinal torsion with back arching and twisting, forceful eye closure, or a fixed

grimace. These symptoms typically subside during resting state and sleep [182].

Etiology. Dystonia is a condition, exhibiting a wide range of symptoms, causes, and clinical

manifestations. One of the ways to categorize dystonia is based on its etiology: primary

(genetic) and secondary (acquired) dystonia [192, 79, 50].

Primary dystonia, also known as idiopathic dystonia, is characterized by dystonia being the

only neurological sign, apart from tremor, after excluding acquired or neurodegenerative

causes which is further categorized into early-onset (childhood) and adult-onset types [182,

208]. Although the exact cause of primary dystonia is unclear, it is believed to have a

significant genetic component, even in cases without a family history of dystonia, and is

likely influenced by a combination of genetic susceptibility and environmental factors. Early-

onset primary dystonia generally starts in a limb and often progresses to become generalized.

This form is frequently associated with mutations in the DYT1 and DYT6 genes [182]. In

contrast, adult-onset dystonia typically affects the cervical, cranial, or brachial muscles and

usually remains focal or segmental. Notably, cervical dystonia is the most prevalent form of

adult-onset dystonia and is more common than early-onset primary dystonia [182].
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Secondary dystonias arise from environmental factors and have identifiable causes such as

head injuries, side effects of drugs (like tardive dyskinesia), or underlying neurological dis-

eases (such as Cerebral Palsy and Wilson disease) [182, 207].

Pathophysiology. The principal cause of dystonia has been thought to be dysfunction of

the basal ganglia, as the basal ganglia is thought to be responsible for integrating motor

control signals [200]. Secondary dystonia is often due to lesions of the basal ganglia, specifi-

cally the putamen or globus pallidus. However, the absence of neurodegeneration in primary

dystonia, as well as observations that lesions of brain regions other than the basal ganglia

can cause secondary dystonia, has led to the idea that dystonia is a neuro-functional or

network disorder; meaning that it is characterized by abnormal connectivity that may occur

in a structurally normal-appearing brain and it may occur as the transmission of abnormal

signals through the brain network [190, 207, 206, 182]. In other words, dystonia is considered

to be a motor system disorder rather than a disease of a particular motor structure. Studies

have provided evidence of dysfunction in almost every region of the central nervous system

involved in motor control and sensorimotor integration, including cortex, brainstem, cerebel-

lum, and spinal cord [182, 207, 238, 211]. Neurophysiological studies demonstrate a variety

of changes consistent with abnormalities in inhibitory control, sensorimotor integration, and

brain plasticity [182, 200]. The studies on muscle activation in the dystonia show inaccurate

co-contraction of agonist and antagonist muscles with prolonged bursts and overflow to the

muscles [147, 182].

Treatment Methods. Dystonia involves disruptions in the sensorimotor circuit due to

various causes, affecting multiple brain regions including the basal ganglia [207, 182, 237].

Treatment primarily includes medications and botulinum toxin. Physical, occupational, and

speech therapies are also beneficial, and some patients may need ambulatory aids [182].

The most effective medications for treating dystonia include anticholinergics (such as tri-

hexyphenidyl), GABA agonists (like baclofen and benzodiazepines), and dopaminergic agents.
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These drugs work by altering dopaminergic and cholinergic neurotransmission and reducing

GABA-mediated inhibition in the dystonic central nervous system (CNS) [182, 237].

For focal dystonia, botulinum toxin injections are highly effective. These injections block the

release of acetylcholine at the neuromuscular junction, leading to temporary muscle weakness

and decreased activity in the affected dystonic muscles [85, 182, 96, 188]. Botulinum toxin

is the first-line treatment for cervical dystonia and is commonly used for laryngeal dystonia,

and focal limb dystonia. Beside its peripheral effects, botulinum toxin injections may also

alter afferent feedback from affected muscles, potentially normalizing abnormal changes in

the CNS [85, 182, 96].

Dystonia used to be treated with surgical procedures like pallidotomy or thalamotomy (sur-

gically removing parts of pallidum or thalamus). While these surgical procedures were bene-

ficial for some symptoms, they often resulted in permanent and debilitating side effects, such

as dysarthria [86, 225, 34]. These surgeries have largely been replaced by deep brain stim-

ulation (DBS) [233], which offers a reversible and adjustable approach similar to a lesional

effect. Over the past two decades, DBS has emerged as a significant treatment option for

patients with severe primary dystonia [207, 205, 214, 212, 206]. The globus pallidus (GPi)

is the established target for DBS in dystonia cases [207, 92]. This intervention is thought

to work by inducing functional changes within the abnormal motor networks of dystonia,

aiming to normalize pathologically overactive motor responses. Unlike the immediate effects

seen in Parkinson’s disease or essential tremor, the impact of DBS in dystonia is typically

delayed, often taking weeks to months [207, 205, 214, 212, 206]. This aligns with the un-

derstanding of dystonia as a sensorimotor connectivity disorder that requires time to adjust

and adapt to changes across the entire motor circuit following DBS [182].

The response to DBS in dystonia patients varies significantly, with some experiencing dra-

matic improvements, while others see only modest benefits or none at all [207]. Currently,

no single factor, including the status of the DYT1 gene, has been conclusively identified as
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a predictor of DBS efficacy. The mechanism of DBS and determination of which patients

with primary or secondary dystonia will respond best to DBS is still an open question and

needs further research [207, 182].

Despite the above-mentioned advancements, there are instances where such treatments fall

short in effectiveness, leaving patients in need of alternative solutions. This gap underscores

the critical necessity for the development and exploration of additional treatment modal-

ities for secondary dystonia. This dissertation aims to include a comprehensive study on

the mechanism of DBS in dystonia by addressing the following questions: 1) What is the

mechanism of dystonia?; 2) what are the patterns of neural activity in deep brain regions of

children with dystonia, during the rest and voluntary movement?; 3) How does DBS change

these patterns of activation and functional connectivity?; 4) How are these patterns related

to the anatomical connectivity? Additionally, in the last two chapters of this dissertation

the effectiveness of augmented vibrotactile biofeedback device is explored, as a noninvasive

add-on, for improvement of movement in children with dystonia.

Chapter Summaries

Summary of Chapter 1: Increased and correlated activity in globus pallidus and

thalamus during voluntary reaching movement.

In this chapter, I tested the classical rate model of the physiology of dystonia in three pa-

tients who have undergone DBS surgery for the treatment of dystonia. The classical models

of the physiology of dystonia suggest that involuntary muscle contractions are caused by

inappropriate low activity in GPi that fails to adequately inhibit thalamic inputs to cortex.

The deep brain signals were recorded through the implanted externalized depth Stereoelec-

troencephalography (sEEG) leads during a voluntary reaching task. I, then, compared the

corresponding muscle activity with the power in the spectrogram of the local field potential

(LFP) and spike counts in GPi, subthalamic nucleus (STN), and the Ventralis oralis ante-
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rior/posterior (VoaVop) and Ventral Anterior (VA) subnuclei of the thalamus, while subjects

are at rest or attempting to make active voluntary arm or leg reaching movements. In all

subjects, both spectrogram power and spike activity in GPi, STN, VoaVop, and VA are pos-

itively correlated with movement. In particular, GPi and STN, both increase activity during

movement. These results contradict the classical rate model of the patho-physiology of dys-

tonia, and support more recent models that propose abnormalities in the detailed pattern of

activity rather than the overall lumped activity of pallidum and thalamus.

This chapter is published in Dystonia Journal, special issue ”Motor Circuits and Motor

Symptoms in Dystonia: Translational Approaches from Animal Models to Patients”, Volume

2, Pages 11117 in February 2023.

Summary of Chapter 2: Dynamic causal model to study rest-to-active phase

transition in pallidum and thalamus

As mentioned above, the rate model of basal ganglia function predicts that muscle activity

in dystonia is due to disinhibition of the thalamus resulting from decreased inhibitory input

from the pallidum. However, I showed contradictory results in patients with primary dys-

tonia in the previous chapter. In this chapter, we tested this hypothesis in a larger cohort,

including nine children with dyskinetic cerebral palsy (DCP). Here, I analyzed movement-

related activity and phase transition from resting state to active state in motor subnuclei

of pallidum and thalamus. The initial evaluation of patterns of activities in pallidum and

thalamus revealed prominent alpha- and theta-band frequency peaks in the GPi, VoaVop

subnuclei of the thalamus, and STN during movement but not at rest. Connectivity and

phase transition analysis using dynamic causal modeling (DCM) indicated stronger coupling

between STN-VoaVop and STN-GPi compared to GPi-VoaVop. These findings contradict

the hypothesis of decreased thalamic inhibition in dystonia, suggesting that abnormal pat-

terns of inhibition and disinhibition, rather than reduced GPi activity, contribute to the

disorder. Additionally, the study implies that correcting abnormalities in GPi function or it
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projection to thalamus may explain the effectiveness of DBS targeting the STN and GPi in

treating dystonia.

This chapter is published in iScience Journal, Volume 26, Issues 7, Publisher Elsevier, July

2023.

Summary of Chapter 3: Deep brain stimulation in globus pallidus internus trav-

els to thalamus and subthalamic nuclei along physiological pathways

In this chapter, I studied how DBS pulses affect the distant targets in deep brain regions,

specifically from pallidum to thalamus. The traditional belief that DBS primarily affects

the site of stimulation is challenged by recent findings, which demonstrate that DBS can

generate robust evoked potentials (EPs) both locally and in distant brain regions. This

indicates that DBS’s electrical effects may modulate downstream targets, though the exact

therapeutic implications of these EPs remain uncertain. The mechanisms by which DBS

pulses reach these distant areas, and the paths they take, are still not fully understood.

Various scenarios, including orthodromic and antidromic transmission, among others, are

some of the possibilities. The availability of recordings from deep brain regions with DBS

on and off enables us to study how DBS pulses are transmitted. We hypothesized that DBS

pulses travel via the same pathways used by intrinsic neural signals. This was explored

through a transfer function analysis comparing impulse responses in the brain during DBS-

off and DBS-on states. The findings indicate that electrical pulses from DBS partially travel

through the brain’s intrinsic motor pathways, as evidenced by the ability to partially predict

the elicited evoke responses due to pallidal stimultion, using only the intrinsic neural activity.

Summary of Chapter 4: DBS modulates transmission of dystonic signals in pal-

lidothalamic network

In this chapter, I assessed how DBS modulates the transmission of signals in pallidothalamic

network. Based on the clinical efficacy of DBS for children with dystonia, GPi of basal
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ganglia or the STN are the effective stimulation targets, although the specific mechanism

of action is unknown. Based on the results from previous chapter, dystonic patients show

increased low frequency activity in GPi, STN and thalamus. Here we test this hypothesis

that DBS modulates the transmission of abnormal low-frequency oscillations (LFOs), thereby

improving motor symptoms by altering deep brain regions activity and LFO projections onto

thalamic motor subnuclei. Therefore we analyzed intracranial signals from thirteen pediatrics

and young-adults with dystonia, with DBS on and off. We tested the effect of DBS with

various stimulation frequencies on the transfer function gains of pathways within the deep

brain regions and the power spectral density of each region. The results confirmed that GPi

and STN stimulation effectively changes the transfer function gains from pallidum to motor

subnuclei of thalamus in low frequency bands, by jamming the pathways. These results elicit

a better understanding of the mechanism and effects of DBS. This, in turn, may provide

fundamental knowledge for the development of closed-loop DBS, particularly in controlling

the intensity and pattern of stimulation. A better understanding of neuromodulation could

also help to further the design of brain-computer interfaces and neurorehabilitation systems.

Summary of Chapter 5: Local field potential signal transmission is correlated

with the anatomical connectivity measured by diffusion tractography

In this chapter, I explored the relationship between diffusion tensor imaging (DTI) parame-

ters of anatomical connectivity and signal transmission characteristics derived from DBS-off

transfer function models, previously discussed. The focus here is on the connection between

structural and functional connectivity in dystonia patients. For this study, before undergo-

ing DBS, DTI scans were obtained from twelve patients. After performing image analysis

and finding the anatomical tracts, measures of anatomical connectivity were computed. We

then computed measures of functional connectivity from the DBS-off transfer functions, such

as maximum gain of the transfer function and the maximal energy transmission. We then

employed Generalized Linear Model (GLM) analysis to examine the relationships between
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these measures. Results revealed a positive correlation between the fractional anisotropy

(FA) and axial diffusivity (AD) with the intrinsic neural transmission measures from the

transfer function models; But we found no significant correlation between the transmission

and the number of fiber tracts or their length. These results indicate that white matter

integrity, as indicated by FA and AD, may mirror the amplification and propagation of in-

trinsic brain signals across the network. Highlighting the crucial link between structural and

functional connectivity, this study provides insights into the propagation of intrinsic signals

within the brain network.

Summary of Chapter 6: Effect of EMG-activated vibrotactile biofeedback on

skill learning

In this chapter, I assessed whether an augmented vibrotactile biofeedback improves skill

learning in children with dystonia. Based on the theory of failure of motor learning, children

with secondary dystonia have sensory deficit, which could adversely affect learning. Here, we

proposed that this device may improve the skill learning in children with secondary dystonia,

as they have sensory deficit. We evaluated the device’s effect on motor learning by assess-

ing motor performance, using Fitt’s law, in children with both types of dystonia (primary

and secondary), during performing of point-to-point and cyclic trajectory following tasks.

The findings of this study indicate that the vibrotactile feedback device significantly aids

movement improvement in cyclic and smooth tasks, but not in point-to-point movements,

in children with acquired dystonia.

Summary of Chapter 7: Improvement of speed-accuracy trade-off during practice

of a point-to-point task

Based on the results from the previous chapter, we found that children with secondary

dystonia learn the task by practice. In other words, their movement improves following

one week of practice of point-to-point. We used the speed-accuracy trade-off (Fitt’s law)
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principles, to explore if children with secondary dystonia adopt a different strategy during

learning in comparison with healthy children. The results of this study showed that both

healthy children and children with acquired dystonia move more slowly performing the more

difficult tasks, and both groups improve the relationship between speed and task difficulty

after one week of practice. We also showed that healthy children adopt a safer strategy

compared to children with dystonia. These results indicate that both groups compensate

for risk and signal-dependent noise (inherent variability) and that the increased variability

in dystonia can be modified with practice.

This chapter is published in Journal of Neurophysiology, Volume 130, Issue 4, Pages 931-940

in October 2023.
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General methods

0.1 Patient selection

In total, data from 24 pediatric and young adult patients with dystonia (acquired, genetic, or

neurometabolic) are used in this dissertation. Patients with dystonia were selected for DBS

surgery if there existed potential stimulation target(s) identifiable with magnetic resonance

imaging (MRI) and if alternative medical therapies such as botulinum toxin injections and

standard pharmacotherapy had been ineffective [212, 239, 209, 207]. The patients were di-

agnosed with dystonia by a pediatric movement disorder specialist (T.D.S.) using standard

criteria [209]. The patients’ demographics and the temporary leads’ locations are described

in Table 1. All patients or parents of minors provided signed informed consent for surgi-

cal procedures in accordance with standard hospital practice at Children’s Health Orange

County (CHOC) or Children’s Hospital Los Angeles (CHLA). The patients or parents of

minor patients also consented or assented to Health Insurance Portability and Accountabil-

ity Act (HIPAA) authorization for the research use of protected health information and the

recorded electrophysiological data.

0.2 Surgical procedure

As part of our clinical procedure for determining DBS targets, we implanted up to 12 tempo-

rary AdTech MM16C (Adtech Medical Instrment Corp., Oak Creek, WI, USA) externalized

sEEG depth leadds (Fig. 4.1) into potential DBS targets [132]. Based on prior studies of

clinical efficacy in children with dystonia, typical targets for DBS include STN and GPi, in

basal ganglia, ventral intermediate (VIM), VoaVop, and VA thalamic subnuclei [214, 207],

pedunculopontine nucleus (PPN) [145] and substantia nigra reticulata (SNr) [66]. A sample
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Table 1: Patients Demographics; Patients are between 6-25 year-old; CP: Cerebral Palsy,
GA1: Glutaric aciduria type 1, F: female; M: male.

Subject Etiology Gender Implanted Regions
S1 DYT1 F VA, VoaVop, STN, VIM, GPi

S2 KMT2B M VA, VoaVop, VIM, STN, 2 GPi leads

S3 KMT2B M VA, VoaVop, STN, VIM, PPN, 2 GPi leads

S4 CP F VA, VoaVop, VIM, STN, 2 GPi leads

S5 CP (HIE) M VA, VoaVop, VIM, STN, 2 GPi leads

S6 CP F VA, VoaVop, VIM, STN, GPi

S7 CP F VA, VoaVop, VIM, STN, 2 GPi leads

S8 CP M VPL, VoaVop, VIM, STN, GPi

S9 CP F VA, VoaVop, VIM, STN, GPi

S10 CP M VA, VoaVop, VIM, STN, GPi

S11 CP F VA, VoaVop, VIM, STN, GPi

S12 CP F VA, VoaVop, VIM, 2 GPi leads

S13 Metabolic M VA, VoaVop, STN, VIM, PPN, 3 GPi leads

S14 Metabolic M VA, VoaVop, STN, VIM, PPN, 3 GPi leads

S15 Unknown M VA, VoaVop, STN, PPN, 2 GPi leads

S16 CP M VA, VoaVop, STN, VIM, PPN, 2 GPi leads

S17 GA1 M VA, VoaVop, STN, VIM, PPN, 2 GPi leads

S18 H-ABC M STN, VoaVop, VIM, 2 GPi leads

S19 GA1 M VA, VoaVop, STN, VIM, 2 GPi leads

S20 atypical PKAN M VoaVop, STN, SNr, VIM, PPN, 3 GPi leads

S21 CP M VA, VoaVop, STN, SNr, VIM, PPN, 2 GPi leads

S22 MYH2 M VoaVop, STN, SNr, VIM, PPN, 3 GPi leads

S23 CP M VoaVop, STN, SNr, VIM, PPN, 3 GPi leads
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of the externalized leads and the implanted regions in the deep brain is shown in Figure 11.

Depth electrodes were placed using standard stereotactic procedure [133, 132], with the most

distal stimulation contact placed at the target location. Electrode locations were confirmed

by co-registration of the preoperative MRI with postoperative computed tomography (CT)

scan [92] as depicted in Figure 2.

Figure 1: Schematic of externalized Adtech sEEG Leads, containing 6 macro-contacts for
stimulation and recording and 10 high-impedance micro-contacts for recording only.

The patients were then transferred to the neuromodulation monitoring unit (NMU) at the

children’s hospital of Orange County (CHOC) or Children’s Hospital, Los Angeles (CHLA)

for DBS programming and testing different patterns of stimulation and the assessment of

their clinical efficacy. During this phase, which can last up to seven days, we captured local

field potential (LFP) signals via depth electrodes with and without stimulation. Thereafter,

1Created with BioRender.com
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the clinical DBS team and neurologist determine the optimal stimulation target(s), and the

temporary depth leads are then removed [132, 133]. Two weeks after the removal of the

temporary leads, the permanent ones are implanted at the chosen DBS targets, along with

the pulse generator [132, 133].

0.3 Instrumentation and setup

Each implanted lead contains 6 low-impedance (1–2 kΩ) ring macro-contacts, with 2 mm

height and 5 mm on-center spacing, and 10 high-impedance (70–90 kΩ) micro-wire electrodes

(50-µm diameter) referred to as micro-contacts. The micro-contacts are arranged in groups

of 2 or 3, evenly spaced around the circumference of the lead shaft, halfway between adjacent

pairs of the first four macro-contacts. A schematic of the electrode is shown in Figure 1. The

leads were connected to Adtech Cabrio™ connectors with a custom unity-gain preamplifier

for each micro-contact to reduce noise and motion artifacts. Macro-contacts bypassed the

preamplifiers to allow for external electrical stimulation. This setup enables clinicians to

stimulate through macro-contacts while simultaneously recording from all the micro- and

macro-contacts. All data reported here are recorded from the high-impedance electrodes

(micro-contacts). These signals were amplified and sampled at 24 kHz by a system with a

PZ5M 256-channel digitizer and RZ2 processor, and stored in a RS4 high speed data storage

(Tucker-Davis Technologies Inc., Alachua, FL, USA) [92].

In addition to the LFP recordings, we recorded muscle activity from 16 surface electromyog-

raphy (EMG) Trigno™ Avanti (Delsys Incorporated, Natick, MA) sensors, attached to upper

and lower extremities. We recorded EMG signals from biceps, triceps, flexor carpi ulnaris,

extensor carpi radialis, gastrocnemius, tibialis, quadriceps, and hamstrings bilaterally, to

track the changes in muscles activity with the brain activity. All EMG signals were sampled

at 2 kHz and the EMG system was synchronized with the TDT using a pulse generator.
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0.4 DBS electrode localization

2 Preoperative anatomical brain scans were acquired using a MAGNETOM 3T MRI scanner

(SIEMENS Medical System, Erlangen, Germany). A magnetization-prepared rapid gradient-

echo (MP RAGE) sequence was used to achieve precise anatomical mapping, with repetition

time (TR) of 1800 ms, an echo time (TE) of 2.25 ms, a flip angle of 8◦, a voxel size of 1

mm3, and a field of view (FOV) of 240 mm2. After the operation, computed tomography

(CT) scans were acquired with GE (GENERAL ELECTRIC Healthcare, Milwaukee, WI,

USA) CT scanner.

To find and segment the brain regions, first, we used Freesurfer software [62] and localized

deep brain regions. After We manually adjusted this segmentation by FreeView (a view tool

of FreeSurfer), a transformation matrix of deep brain regions (including thalamus, pallidum,

and brainstem) was computed from each individual space region to Montreal Neurological

Institute (MNI) space by FSL FLIRT tool [101]. Thereafter, the transformation matrices

were used to transform the sub-regions from DISTAL atlas (built by LEAD-DBS [61]) to the

”actual” individual space.

For visualization of lead trajectories, we can not use standard softwares [98] because they

do not support the specifications of our sEEG leads and are unable to visualize 10 to 14

leads simultaneously. Therefore, for localization of sEEG leads, we used macro-contacts

metal artifacts in the CT-scans to create a binary mask of spatial coordinates of the macro-

contacts for all Adtech sEEG leads [111]. We aligned the CT and T1-volumes using the

FLIRT tool in FSL (Figure 2 a, b) and projected 3D voxel values onto 2D images [125], to

precisely localize the lead trajectories.

After the lead trajectories were estimated based on the projection coordination (Figure 2b),

2Dr. Sumiko Abe performed all the image processing and electrode localization, and these steps are
included in the methods section for the clarity of dissertation methodology.
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a linear calculation was applied to find the location of micro-contacts which are located

between macro contacts based on the device specification. Finally, we used DSI-studio

package [247] to integrate the sEEG leads coordinates with the atlas images as depicted in

Figure 2c. This method enabled us to localize each micro-contacts row of sEEG leads, as

some leads target multiple regions within the deep brain.

a)

b)

c)

Region:     GPi     VA     VoaVop     STN    VIM      PPN
Lead:         GPi1/GPi2     VA     VoaVop/STN    VIM/ PPN

Figure 2: (a,b) sEEG lead trajectory reconstruction in axial (left), coronal (middle), and
sagittal (right) views in an individual space. (a) The CT scan is marked as a dense structure
and fitted onto the structural images. (b) Projection images in axial, coronal, and sagittal
views are used to reconstruct the positions of the sEEG leads. (c) Anterior (left) and
posterior (right) views of reconstructed lead trajectories and nuclei segments in one patient;
DBS targets were segmented and the spatial coordinates of the leads were calculated. The
figure illustrates GPi (red), VA (green), VoaVop (blue), and VIM (yellow), STN (magenta),
PPN (violet) along with the reconstructed sEEG lead trajectories using DSI studio package.
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0.5 Elecrophysiological recording protocols

Elecrophysiological recordings were conducted at the NMU after localization of the leads’

macro-contacts. We recorded intracranial LFPs from all patients, with and without stimula-

tion, following our standard protocol for testing the efficacy of different stimulation settings

explained below.

Baseline recording

Baseline data were recorded through all micro-contacts and all leads while patients were

awake sitting comfortably in bed.

Stimulation protocol

Stimulation pulses of 90 µs width, 3 V amplitude, at five different frequencies (25, 55, 85, 185,

and 250 Hz) were administered through two adjacent macro-contacts (anode and cathode) at

a time, ensuring that the cathode is in the desired DBS target. For stimulation frequencies

above 60 Hz, we setup the stimulation protocol such that to ramp up the voltage, from 0 to

3 V at the rate of .25 volt per second, for the convenience of the patient. We administered

approximately 1200 pulses per stimulation frequency after ramping up the voltage. The LFP

signals were recorded through the micro-contacts simultaneously during the stimulation as

shown in Figure 3).

Voluntary reaching task

Patients were asked to perform voluntary reaching task with their upper or lower limbs

while we recorded LFP and EMG signals from the muscles of the corresponding limb. The
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Figure 3: Sample of raw data recorded over 0.25 seconds during baseline, and during DBS
at 55, 85, 185, and 250 Hz.

experiment is designed for them to perform about 100 seconds of reaching task followed

by thirty seconds of resting period for 4-6 consecutive trials. In all cases, dystonia was

present in the tested limb, as evident by the presence of dystonic postures interfering with

expected performance of the task. Movement and rest onset and offset times were marked

and synchronized automatically with the EMG recordings during the experiment.
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0.6 General data treatment

LFP filtering

The LFP recordings from 10 micro-contacts of each lead were notch filtered at 60 Hz up to

5 harmonics. They were then high pass filtered at 1 Hz to remove the drift. Subtraction of

micro-contact pairs were used to capture the voltage difference between each two adjacent

pairs and to remove the common noise (bipolar montage). For example, instead of using

micro contacts 1 to 3 separately, we used their subtraction (1-2, 1-3, and 2-3). This kind

of filtering removes the common noise from the data and reveals the underlying activity.

The signals recorded from three micro contacts before and after the filtering are shown in

Figure 4.

V

Raw LFP

Micro-contact 1

V

Micro-contact 2

Time (s)

V

Micro-contact 3

Filtered LFP with bipolar montage

Micro-contact 1

Micro-contacts 1+3-

Time (s)

Micro-contacts 2+3-

Figure 4: LFP recordings during the voluntary task for 1 trial. The recordings are from three
micro contacts on the first row of an STN lead (left). The signals were high pass filtered and
transformed into the bipolar montage of each pair of adjacent contacts (right)

EMG filtering

The EMG signals were filtered using a Bayesian nonlinear filter to highlight the changes

in muscle activity, the onset and offset, as well as the activation itself. This filter models
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the EMG signal as a random process and estimates this random process using a Bayesian

estimation. This estimate is proportional to the isometric joint torque and has a higher

signal-to-noise ratio compared to other linear methods of filtering [203]. An EMG signal

before and after the Bayesian nonlinear filter is shown in Figure 5.

0 50 100 150 200 250 300 350 400

-1

-0.5

0

0.5

1

Figure 5: Biceps EMG recording (normalized) during the voluntary reaching task for 4 trials
(black) and the Bayesian filtered signal (red).
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Chapter 1

Increased and correlated activity in

globus pallidus and thalamus during

voluntary reaching movement

1.1 Abstract

Classical models of the physiology of dystonia suggest that involuntary muscle contractions

are caused by inappropriate low activity in Globus Pallidus internus (GPi) that fails to ad-

equately inhibit thalamic inputs to cortex. In this study, we test this hypothesis in three

children with primary dystonia who have undergone DBS surgery for the treatment of dys-

tonia. We recorded their deep brain signals through externalized depth sEEG leads during

a voluntary reaching task. We, then, compared the corresponding muscle activity with the

power in the spectrogram of the local field potential (LFP) and spike counts in GPi, subtha-

lamic nucleus (STN), and the Ventral oralis (VoaVop) and Ventral Anterior (VA) subnuclei

of the thalamus, while subjects are at rest or attempting to make active voluntary arm or
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leg reaching movements. In all three subjects, both spectrogram power and spike activity

in GPi, STN, VoaVop, and VA are positively correlated with movement. In particular, GPi

and STN, both increase activity during attempted movement. These results contradict the

classical rate model of the physiology of dystonia, and support more recent models that pro-

pose abnormalities in the detailed pattern of activity rather than the overall lumped activity

of pallidum and thalamus.

1.2 Introduction

The classical ”rate” model of basal ganglia physiology in dystonia developed by Albin and

others has been built upon the known anatomical connections between striatum, pallidum,

subthalamus, and thalamus [6, 56, 242]. Inhibitory projection neurons originating in striatum

and pallidum will hyperpolarize their targets in pallidum, subthalamus, and thalamus, while

excitatory projection neurons in subthalamus and thalamus will depolarize their targets in

pallidum and cortex. In primates, there is a division into direct and indirect pathways. The

direct pathway includes inhibitory projections from striatum to Globus Pallidus internus

(GPi) and from GPi to thalamus, followed by excitatory projections from thalamus to cor-

tex. The indirect pathway includes inhibitory projections from striatum to Globus Pallidus

externus (GPe), from GPe to subthalamic nucleus (STN), and from GPi to thalamus, with

excitatory projections from STN to GPi. Modifications of this model over the past decades

have recognized the important role of a “hyperdirect” pathway from cortex to STN, as well

as pathways from STN to GPe, GPi to STN, and medial thalamic nuclei to striatum. In all

models, the final common pathway linking basal ganglia to thalamus remains the inhibitory

projection from GPi to thalamus including the ventral oralis anterior and posterior (VoaVop)

and ventral anterior (VA) subnuclei [58, 184].

The patterns of excitatory and inhibitory connections suggest what has been referred to as
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the classical ”rate” model. The simplicity of this model has led to widespread adoption,

and it has proven useful in the prediction of the physiology of Parkinson’s disease, in which

high firing rates in GPi are thought to cause inappropriate inhibition of thalamic outputs

to cortex, thus leading to delayed movement initiation and decreased speed of movement

(bradykinesia) [6]. The finding of relatively lower firing rates in GPi during voluntary move-

ment in some patients with dystonia has led to the suggestion that dystonia is due to the

opposite problem: failure of inhibition of thalamic outputs to cortex [24]; thus, potentially

leading to excessive involuntary muscle contractions (such as overflow, co-contraction, or hy-

perkinetic movements) [241, 242]. This theory has been supported in recordings from healthy

nonhuman primates showing that GPi activity is typically very high. It has also been sup-

ported by the observation that electrical stimulation in GPi can ameliorate symptoms in

patients with dystonia.

However, important discrepancies in the application of the classical model to dystonia have

been noted [241, 177]. Perhaps the most significant is the observation that lesions in GPi also

lead to amelioration of dystonia, whereas the model would predict that lesions would worsen

dystonia. Another discrepancy is that if reduction in GPi activity initiates movement in the

healthy brain, then there is no mechanism for initiation of activity in a brain with low GPi

baseline activity. Another discrepancy is the observation that dystonic muscle activity is

almost always caused by or worsened by active attempts at movement, whereas the classical

model would predict the presence of dystonia at rest. Another important missing element of

some models is the absence of a depolarizing (excitatory) input to thalamus [242]; without

such an input, thalamus will never activate and the hyperpolarizing (inhibitory) inputs from

GPi will have no effect [56].

We examine the predictions of the classical rate model by making simultaneous recordings

from high-impedance electrodes in GPi, STN, VoaVop, and VA in three children with pri-

mary dystonia. Recordings are performed as part of a previously-reported targeting method
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in which temporary externalized stere-electroencephalography (sEEG) depth electrodes are

implanted in potential DBS targets, and children are tested with stimulation and recording

while awake and unrestrained [214, 212]. This method eliminates the effects of restrained

movement (in the operating room with a head-frame) and sedation and partial anesthe-

sia, and permits prolonged testing with children awake, unrestrained, un-medicated, and

performing routine tasks of daily living in a hospital room with parents and clinical staff

present. Clinical outcomes from this targeting method have been reported elsewhere. Here

we utilize recorded data obtained from the sEEG leads during voluntary arm or leg reaching

movements in three children who previously underwent this procedure.

1.3 Materials and methods

1.3.1 Patient selection and data acquisition

In this study, three patients with primary (genetic dystonia) were selected. See S1, S2, and

S3 in Table 1 for patients demographics. We sought to study the pattern of activity of

thalamus subnuclei and GPi in these subjects during voluntary reaching movement versus

rest (baseline). Therefore we only used the DBS-off recordings from VoaVop, VA, STN, and

GPi during the voluntary reaching task. All data analyses were performed in MATLAB

R2020a (The MathWorks, Inc., Natick, MA, USA)1.

1.3.2 Time-frequency analysis

To compute the spectrograms of the recorded nonstationary signals, all signals were divided

into segments with sixty percent overlap using a Kaiser window with time resolution of three

1The experiment protocol and the setup is explained in details in the general methods of this dissertation.
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seconds, and 0.7 leakage factor. Next, signals were transformed into the frequency domain

using a short-time Fourier transform. Finally, the spectra of each segment were computed

to build the spectrograms. The spectrograms were computed in two frequency ranges of

1-13 Hz (delta, theta, and alpha) and 13-35 Hz (beta). This specific frequency ranges are

chosen as they are of standard frequency bands used in frequency analysis of brain activity,

particularly electroencephalogram (EEG) analysis. Additionally, the delta, theta, alpha, and

beta bands are important in other movement disorders such as Parkinson’s disease, which

shows abnormality in alpha and beta band oscillations [241].

1.3.3 Spike analysis of LFP recording

2Spike analysis was performed on the micro-contact LFP recordings, using the bipolar

montage, explained earlier. Signals were band-pass filtered between 350 and 3000 Hz using

an 8th order Butterworth filter. A non-linear energy operator (NEO) [107] was applied to

the data to aid in spike detection by enhancing sharp peaks in bipolar LFP signals:

y(t) = x2(t)− x(t− 1)x(t+ 1) (1.1)

where x(t) is a sample of the waveform at time t and y(t) is the enhanced output. Spikes

are characterized by localized high frequencies and sharp increases in instantaneous energy.

These features are captured in the magnitude of the NEO, which is large only when the

signal is high in power [x2(t) is large] and high in frequency [x(t− 1)x(t+ 1) is small].

Peak detection was performed on the NEO, where the amplitudes of detected peaks were

between three and seventy times the standard deviation of the noise. Following event de-

tection, wavelet decomposition was used to extract features from detected events and a

2The spike analysis in this chapter was done by Sina Javadzadeh No, S. Alireza Seyyed Mousavi, and
Jaya Nataraj. It is included in the chapter for further supporting the results.
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Gaussian Mixture Model (GMM) was used to cluster detected events [227]. Events with

low probability of belonging to any clusters were removed. Events associated with the same

cluster were identified as a “spike” belonging to the same originating neuron(s), and average

spike rates were determined within the relevant intervals (movement or rest).

Because the impedance of the recording contacts is less than 100 kΩ, it is likely that the

identified spikes correspond to multiple neuron clusters rather than to single units that would

be recorded with higher impedance electrodes. Additionally, the spike clusters are identified

by consistent shapes. If there were variability in the cluster, the overall shape would vary

as well. A spike cluster likely represents a stereotyped firing pattern from a group of nearby

neurons. Nevertheless, the spike rates are likely to parallel the neural activity that would be

obtained from higher impedance recordings.

1.3.4 Statistical analysis

To measure the effect of movement on the average power in two frequency bands and the spike

rates a linear mixed effects model with repeated measures was fitted to the power in each band

as well as the spike rates. Repeated measures for the time-frequency analysis are the average

power in each frequency band for every 5 seconds of each period of voluntary reaching and

rest. Repeated measures for the spike analysis are the average firing rates for each voluntary

reaching and rest period. The model for the time frequency analysis consists of condition

(active versus rest), frequency range ([1-13] and [13-35] Hz), and their interactions as fixed

effects. Subject intercept was included as a random effect, and by-subject random slopes

were the frequency range. The model for average spike rate analysis consists of the condition

as the fixed effect, while the random effect was assumed to be the subject intercept. All the

statistical analyses were done using the lme4 [16] and emmeans [223] packages in R-studio

(R core team, 2021).
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1.4 Results

Figure 1.1 shows time-frequency and spike analyses of LFP recordings for one subject. LFP

recordings, spectrograms, and spike rasters are displayed from top to bottom for contralateral

GPi, STN, VoaVop, and VA. Figure 1.1 also includes an example EMG recording from the

left biceps to highlight the reaching and resting periods. Results from the spectrogram

analysis suggest a clear trend in power, where power is increased during the reaching task

in both frequency bands (1-13 Hz and 13-35 Hz) and decreased in rest periods in all target

locations. In particular, power starts to increase as the patient starts one period of voluntary

reaching and subsequently decreases as the patient is in rest. Additionally, raster plots in

all target locations illustrate increased spiking activity in voluntary reaching task periods in

comparison to resting states. The observations are consistent among all the three subjects.

A linear mixed-effects model was fitted on data from each brain region separately for group

analysis. The explained variance of the models are shown in Table 1.1. We performed

a pairwise comparison between the rest versus the active state to test for significance of

change in firing rates and power. Analysis of variance (ANOVA) using type II Wald chi-

square test, with 95% confidence interval was performed on the linear models, and showed

a significant difference between the active versus the resting state (Pr(> chisq) < .01) for

all tested brain regions. We then computed the log of the ratio between active and resting

state powers for each frequency range. This measure is significantly different from zero for

both frequency ranges. The results are shown in Figure 1.2 for each patient. The average

spike rates in both active and resting states for all three patients are shown in Figure 1.3.
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Figure 1.1: From top to bottom: raw LFP recording, spectrogram, and spike raster of GPi,
STN, VoaVop, and VA for subject S1. The bottom plot demonstrates left biceps EMG
recording as an example in order to highlight voluntary reaching task and rest periods.
Spectrogram results show increased power in voluntary reaching task periods compared to
resting periods. Spike rasters show increased neural activity in voluntary reaching task
periods compared to resting periods.

1.5 Discussion

The classical rate model of basal ganglia function predicts that STN and GPi activity will

be low and thalamic activity will be high during movement, and that STN and GPi activity

will be high and thalamic activity will be low at rest [6, 185]. While the predictions for

VoaVop and VA subnuclei of the thalamus are supported by our results, the predictions for
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Figure 1.2: Ratio of active to rest average power in frequency ranges 1-13 Hz and 13–35 Hz
for three patients are shown by different shapes in GPi, STN, VA, and VoaVop. The group
analysis shows that log power ratio is significant for all of them.

Figure 1.3: The average firing rate of resting versus voluntary reaching state for three subjects
and the regression line in GPi, STN, VA, and VoaVop. The group analysis shows a significant
increased firing rate during voluntary reaching period in GPi, STN, VA, and VoaVop

STN and GPi are contradicted. Our results are in agreement with prior results in monkeys

showing increases in GPi activity from rest to movement, with maintained high GPi activity

during movement and voluntary posture [106, 157, 10, 163].

The rate model is known to have significant problems when applied to dystonia [177, 241],

and we suggest several possible ways to address these problems as shown by our data. Most

importantly, the classical model is incomplete because it does not posit a stimulatory (de-

polarizing) input to thalamus, and without excitation of thalamus, GPi inhibition would
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Group analysis results Power analysis Firing rate analysis
R2 R2

GPi 0.49 ** 0.42 **
STN 0.76 ** 0.22 **
VA 0.68 ** 0.53 **

VoaVop 0.88 ** 0.34 **

Table 1.1: Statistical results of the linear mixed-effect model fits for group analysis. All
the explained variances are reported. The intercepts are significantly different from zero
and the pairwise comparison [in both power and spike analysis] revealed that there is a
significant difference between movement and resting state at all recorded brain regions ( **
p− value < 0.01)

have no effect (There is no point in inhibiting a neuron that never fires). Although GPi

and GPe also receive primary inhibitory input from both striatum and pallidum, both struc-

tures also receive excitatory input from STN. The primary excitatory input to thalamus

arises from cerebral cortex, and we suggest that augmenting the model with an excitatory

cortical-thalamic-cortical loop provides an explanation for the increased thalamic firing dur-

ing movement [241]. In this case, the role of the GPi is to selectively inhibit this loop at the

thalamus, effectively “sculpting” the thalamo-cortical loop. This mechanism is supported

by lesion studies showing involuntary antagonist muscle activity resulting from lesions of

GPi [158, 161]. Dystonia could arise, similarly to the classical model, from insufficient inhi-

bition of parts of this loop. In this augmented model, GPi would only need to inhibit the

loop when thalamus is activated, consistent with our results. The deficit in dystonia would

then be either insufficient inhibition (GPi increases rate with movement, but not enough)

or an incorrect pattern of inhibition [241, 159] (GPi increases rate with movement but does

not properly sculpt the thalamic activity). This proposal is consistent with the finding

of abnormal sensory responses in thalamus, consistent with failure of inhibition of cortical

inputs [130].

It is worth noting that the suggested dichotomy in which Parkinsonism represents decreased

activity while dystonia represents increased activity is an oversimplification that may also be

contributing to contradictions with the classical model [24]. Although dystonia was originally
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classified as a hyperkinetic disorder, it shares features common to both hyperkinetic disorders

(dyskinesia, Huntington’s chorea) and hypokinetic disorders (rigidity, bradykinesia) [241]. In

children, a combination of parkinsonism and dystonia is typically present in conditions of

low dopamine (e.g., dopa-responsive dystonia) or diffuse hypoxic injury (e.g., dyskinetic

cerebral palsy) [205]. Electromyographic (EMG) recordings from both Parkinsonism and

dystonia demonstrate slow rates of contraction and change in contraction levels [71, 147]

and both Parkinsonism and dystonia have hyperkinetic components that can include tremor

and dyskinesia. Therefore, while electrophysiological data continue to support increased

activity in GPi in parkinsonism compared with dystonia, both disorders may include a

failure of appropriate inhibition of thalamo-cortical loops that includes both insufficient

inhibition of unwanted movement and insufficient disinhibition of intended movement. Such

similarities would be consistent with the observation that DBS in either GPi or STN as well

as dopaminergic medication can ameliorate symptoms in both disorders.

Our results appear to contradict recordings from human and nonhuman primate models of

dystonia that typically show very high GPi activity at rest [242] , inconsistent with the rate

model. We suggest three hypotheses to explain this discrepancy. First, it is possible that

nonhuman primates and humans have different patterns of activity in basal ganglia. Second,

we only obtain recordings from human patients with severe disease, whereas the nonhuman

primate recordings are typically made in healthy animals. Third, a nonhuman primate

strapped into a recording apparatus with head immobilized may not be truly at rest, and

ongoing isometric force exerted against the seating system and head immobilization system

may not always be evident but could nevertheless lead to baseline activation of deep brain

regions associated with movement or posture.

The results presented here include several important weaknesses. First, we tested only three

children, and although all three have a genetic origin of their dystonia, the specific mutations

are different. This suggests that the phenomena we observed are not confined to a single
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cause of primary dystonia, but whether this is a general feature of all patients (children and

adults) or other forms of dystonia is not known. Second, we tested only reaching movement

and it is possible that patterns seen during other activities such as ambulation, speaking,

eating, or isometric movements would be different. Third, we cannot determine the relation-

ship between GPi firing and dystonic components of movement because it is not possible

to separate dystonic from voluntary components of movement in our paradigm. From a

theoretical point of view, our results do not shed light on the involvement of dopamine [193],

sensory pathways [50, 211, 213, 215], cerebellum [72, 224, 190], or other structures in the

causes of dystonia.

Despite these limitations, our results support an overall increase in GPi firing from rest to

movement in children with primary dystonia. This is an important observation for under-

standing the nature of dystonia and the mechanism of function of interventions including

medications and DBS surgery. This finding is consistent with the hypothesis that it is the pat-

tern of GPi outputs rather than the average firing rate that is abnormal in dystonia [241, 159],

and that this pattern may include both inappropriate inhibition of desired thalamic activity

as well as inappropriate disinhibition of unwanted thalamic activity. Confirmation of this hy-

pothesis in a larger cohort of patients with more varied causes of dystonia will be important

for further understanding and improved treatment of this debilitating disorder. Therefore,

we performed the same analysis in a larger cohort of patients with secondary dystonia and

it is presented in the next chapter.
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Chapter 2

Dynamic causal model to study

rest-to-active phase transition in

pallidum and thalamus

2.1 Abstract

The rate model of basal ganglia function predicts that muscle activity in dystonia is due to

disinhibition of the thalamus resulting from decreased inhibitory input from the pallidum.

We seek to test this hypothesis in children with dyskinetic cerebral palsy undergoing eval-

uation for deep brain stimulation (DBS) to analyze movement-related activity and phase

transition from resting state to active state in different brain regions. The initial evaluation

of patterns of activities in pallidum and thalamus revealed prominent alpha- and beta-band

frequency peaks in the GPi, VoaVop subnuclei of the thalamus, and STN during movement

but not at rest. Connectivity and phase transition analysis indicated stronger coupling be-

tween STN-VoaVop and STN-GPi compared to GPi-VoaVop. These findings contradict the
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hypothesis of decreased thalamic inhibition in dystonia, suggesting that abnormal patterns

of inhibition and disinhibition, rather than reduced GPi activity, contribute to the disorder.

Additionally, the study implies that correcting abnormalities in GPi function may explain

the effectiveness of DBS targeting the STN and GPi in treating dystonia.

2.2 Introduction

The mechanism underlying childhood dystonia is not fully understood but may include an

imbalance between midbrain dopaminergic and striatal cholinergic signaling [17], abnormal

patterns of subcortical activity [114], excessive basal ganglia or peripheral loop gain [205], or

decreased focusing of intended patterns of muscle activity [208, 205, 207, 112]. Dystonia has

been identified as the second most common movement disorder in pediatric patients [183],

impacting motor function, and causing pain and discomfort. CP encompasses a heteroge-

neous group of developmental disorders with a movement disorder pattern that is diagnosed

as dyskinetic CP [165]. Clinical goals for the treatment of dystonia involve maximizing

function [122], with some non-invasive treatment options including enteral medications such

as anticholinergics or muscle relaxants [232]. More recently, an overall improvement in pa-

tient outcomes has been achieved with deep brain stimulation (DBS), a method that uses

implanted electrodes to modulate brain activity and signal transmission. In addition to stim-

ulating, some leads (e.g., stereoelectroencephalography [sEEG] leads) offer the opportunity

to record from human deep brain regions [174].

Several studies have reported low-frequency oscillations (LFO) in the theta and alpha bands

in the globus pallidus internus (GPi) and the subthalamic nucleus (STN) for dystonia and

Parkinson’s disease [114]; moreover, increased beta band activity has been noted in both

disorders [189, 114]. Contrary to previous studies that have focused solely on the basal

ganglia (GPi or STN), we recorded from thalamic subnuclei and basal ganglia simultaneously
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in awake pediatric patients with dystonia, through sEEG depth leads, as it has been recently

informed to ameliorate the dystonic symptoms in adults [207]. While the pallidum (GPi)

has become the main DBS target for the treatment of dystonia in children [254, 115, 52, 53],

the response rates in dyskinetic CP are modest and unpredictable, with almost half of

the children responding poorly [140]. Due to the limitations of pallidal DBS in dystonia,

there is a need to explore alternative brain targets such as thalamic nuclei [139] or the

STN [234], which are rarely targeted and thus underexplored. Selection of targets may

be aided by electrophysiological data recorded from temporary (sEEG) electrodes placed

at target regions. We hence collected recordings from temporary depth leads in a novel

clinical procedure [132, 212, 214], which provided us the opportunity to examine LFOs

across multiple deep brain regions in awake patients.

Multiple deep brain recordings allow us to not only measure the activity patterns associated

with dystonia, but also understand the physiology underlying the disorder. For example,

the classical basal ganglia model explains how the flow of information is regulated by deep

brain regions, and it is separated into ‘direct’ and ‘indirect’ pathways [242, 6, 241, 56]. In

this model, the cortico-striato-GPi path is the ‘direct’ pathway that facilitates movements,

whereas the cortico-striatal-GPe-STN-GPi is the ‘indirect’ pathway that suppresses move-

ments. This classical model has been accepted as a model for normal function and several

movement disorders including parkinsonism and dystonia [56, 84]. A prediction of the model,

confirmed in non-human primates, is that there is normally a high-tonic firing rate of GPi-

output neurons at rest in order to suppress thalamic neurons and inhibit signals to the motor

cortex that would drive movement. The model predicts that GPi output should be paused

or reduced in order to perform movement, allowing activation of the thalamus [6, 172].

For dystonia, a commonly applied model is the ‘rate model’ of basal ganglia, which predicts

that a loss or lowering of excitatory output from the STN to GPi would lower inhibitory

output from GPi to the thalamus and result in excessive involuntary movements [184, 58].
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Several experimental and clinical results have been at odds with this prediction, including the

improvement of dystonia with pallidotomy. These and other results (as discussed in previous

chapter) have led several authors to suggest that the pattern of output from GPi in dystonia

is more important than the overall average firing rate, so that an inappropriate or insufficient

pattern of inhibition is a cause of dystonia. It is not known if these considerations apply to

children with dyskinetic CP [241, 159, 161, 160]. In order to understand the GPi function in

dyskinetic CP patients, the VoaVop of the thalamus, GPi, and STN neural activities were

recorded simultaneously in a group of awake children while either at rest or executing active

voluntary movements with their upper limbs. Here, we aim to study the pattern of activity

in these regions and explore how the connectivity gains in these regions change during a

state transition from ”rest” to ”active”. Therefore, we first performed a time-frequency

analysis to confirm the abnormal activation of GPi during movement but not the resting

state. We, then, fit a dynamic causal model [70] to the recordings of these regions, modeling

the neuronal activity using a mean field model [169], to infer the causal connections between

these regions. Thereafter, the models were evaluated and we analyzed the transfer function

gains and coherence between regions to evaluate the rest-to-active phase transition in these

regions.

2.3 Materials and methods

2.3.1 Patient selection and data acquisition

We selected nine patients with acquired dystonia (due to dyskinetic CP) from the DBS

study cohort (patients S4-S12 in Table 1). In this study, we analyzed data from electrodes in

GPi, VoaVop, and STN (and presented the data from VIM and PPN) during the voluntary
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reaching task (with their upper limb) to explore the patterns of activity in these regions1.

VoaVop is a known motor nucleus, while VIM is a sensory nucleus, and here we are focusing

mainly on the motor pathways within the deep brain regions. Besides, VA (motor thalamic

subnuclei) was not targeted for all patients, therefore, VIM and VA data were not used as

part of this study.

2.3.2 Time-frequency analysis

We performed time frequency analysis during the voluntary reaching task in all nine children

with dystonia. The method to calculate the power spectrums is elaborated in the previous

chapter.

2.3.3 Dynamic causal modeling

Dynamic Causal Modeling (DCM) is a Bayesian method of model comparison to learn the

dynamics of a system and infer the causal or effective connectivity between the elements

in that dynamical system [70, 67]. This model is an extension of building a state space

model using the empirical data, but it considers the neuronal models of activation besides

the network dynamics [70, 67, 68, 54]. Additionally, it allows us to study the distribution

of the neuronal population response based on a probabilistic representation of activity. In

other words, it can be used to investigate the response of neural systems by looking at the

neural interactions that generate those responses and it helps us to understand how the

neurobiology and neural interactions generate these responses [186, 169, 168, 118].

In this study, we modeled the neural dynamics of the basal ganglia-thalamus loop using a

dynamic causal model which is implemented in Statistical Parametric Mapping (SPM12, The

1The experiment protocol and the setup is explained in details in the general methods of this dissertation.
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Wellcome Trust Centre for Neuroimaging, University College London) [65]. DCM predicts

the dynamics based on the assumptions about anatomical and functional connectivity and

helps to predict the synaptic properties of each connection (excitatory, inhibitory, or both)

and the connection gains by fitting a neural model to the empirical data. We can employ

different neuronal models to predict various network dynamics within the brain based on the

neurons interactions in that region or the importance of including various receptors in our

model [70, 118, 169]. For this study, we chose the mean-field model (MFM) [29] to implement

the DCM; Mean field models are conductance-based models that estimate the mean activity

of cell population densities by simplifying it [186, 169]. MFM is a fair assumption as it is

a close model to the nature of neural populations dynamics in basal ganglia and thalamus

and it models both inhibitory and excitatory cell populations. It approximates the mean

activity of each population based on the fitted data and estimating the cell populations’

states which include voltage and excitatory and inhibitory conductances. The explanatory

equations (that are derived from Hodgkin-Huxley type neuron model [93, 94]) are elaborated

here.

Mean Field Theory and Model

Mean field theory, a straightforward yet impactful technique in physics, was devised to

explain various phenomena, especially phase transitions [20, 126, 149, 29]. Essentially, it

involves neglecting variations and details in the interactions among the system’s components,

which allows for gaining reasonably accurate understanding with low computational cost.

Moreover, mean field results show a limited reliance on the detailed specifics of the system,

offering the potential to derive universal principles applicable to several apparently distinct

sub-systems [29].

This approach is particularly relevant for analyzing neural circuits in the brain, which consist

of a large number of interconnected neurons, making the mean field analysis an ideal method
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for understanding this complex system [29]. The primary aim here is to identify properties

of neural circuits and their transition between a ”resting” state to an ”active” state. These

types of transitions are associated with network physiological connections within deep brain

regions, and are generally not influenced by the exact [large] number of neurons, the specifics

of the neuron model, or the exact values of synaptic weights [29]. Therefore, the focus often

shifts to properties averaged across the spectrum of possible weights in the infinitely large

networks. Such crucial properties, like the presence of a distinct phase transition, emerge

only in this limitless network size [29].

The goal here is to approximate the input to a neuron with a mean field that is generated

by its afferents [29]. Put simply, the assumption is that neurons in a network are subjected

to an input current that matches the average input produced by their presynaptic neurons

as shown schematically in Fig. 2.1. The reasoning behind this is that the input current is

the aggregate of N random variables. When these variables are independent and N is large,

the central limit theorem indicates that their combined distribution approaches a Gaussian

distribution. Therefore, the input to a neuron i can be expressed as [29]:

Ii(t) =
N∑
j ̸=i

JijXj + Ii,ext ≈ ⟨Ii⟩+ η(t) (2.1)

where N is the number of binary neurons xi ∈
{
0, 1
}
that are mutually connected by synapses

Jij and each of them receive external input Ii,ext from distant neurons, from other brain areas,

and Ii is the input current to unit i. Note that the sum goes over all N neurons but the

neuron i itself. Here the η(t) is a Gaussian variable with stationary statistics that fluctuates

in time and ⟨.⟩ refers to average with respect to distribution [29].

Here, the firing rate can be defined as a nonlinear function of the all the external currents
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Figure 2.1: Schematic Representation of a Mean Field Model; This diagram illustrates the
fundamental principle of mean field theory, showing how components of a system interact
with an averaged field, simplifying complex interactions into a more general framework,
where µe and σe are average and standard deviation of the excitatory population, µi and σi

are the average and standard deviation of the inhibitory population, and ”ext” stands for
the ”external input”.

to a unit, fi(t) = δ(Ii(t)), thereore:

fi = δ

(
N∑
j ̸=i

JijXj + Ii,ext

)
⇒ f = δ(Jf+ Iext) (2.2)

where the vector f is the same on the left and the right hand side of the equation, and J is

the synaptic matrix. The equation holds true because of the assumption of large number of

neurons (N → ∞) and considerations from law of large numbers. Here, if the neurons are

identical and receive identical external current, for large N, the mean input current µi can

be estimated as [29]:

µi = NJ f+ Iext and f = δ(NJ f+ Iext) (2.3)
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and the variance input current can be estimated as:

σ2
i ≈ g2f

N
(2.4)

where g = NJ is a constant, assuming that input current is proportional to N due to the

scaling of J with N [29].

Ultimately, in these series of equations, the mean activity (presynaptic firing or current) is

modeled by the Morris-Lecar-type differential equations (which is a simplified version of the

Hodgkin-Huxley’s squid axon model) [170] as the sum of conductance (C) times the voltage

change V̇ in that neural population or layer:

I = CV̇ = g(Vrev − V ) + Γ (2.5)

In this equation Γ is a unit noise, Vrev is the reversal potential (the membrane potential at

which the current changes direction), V is the membrane potential and g is the conductance

of neurons. The inhibitory or excitatory conductance rate for each layer is the product of

the inverse membrane time constant 1
K

and the sum of input/output conductance. This type

of dynamic allows for nonlinearity in the dynamic model and enables us to evaluate neural

connections [169, 168, 69, 54].

2.3.4 Model setup

We used the intracranial recordings of GPi, VoaVop, and STN during the voluntary reaching

task. We, then, built seven different DCM using SPM to predict the change in the strength

of connectivity and coupling gain between each two pairs of subnuclei, during the transition
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from rest to the active state. Each source (GPi, VoaVop, or STN) was fit to a MFM which

models the inhibitory and excitatory connections within each of the subnuclei. These seven

fitted models are shown in Fig. 2.3 (a). All the models are build based on the known

connections between these three subnuclei. We wanted to confirm if DCM is able to predict

how these connections change during active state versus resting state. We assumed all the

inhibitory and excitatory connections can be modulated during the phase transition from

rest to active movement (red dots in Fig. 2.3 (a)). We then used a Bayesian comparison

method (built-in SPM) to compare which model has the highest probability to be true given

the empirical data [68, 67, 195, 69].

2.4 Results

2.4.1 Time-frequency analysis

We performed time-frequency analysis for all nine patients in this study. The method is

similar to the methods explained in the previous chapter. The time-frequency analysis in

this study, yielded similar results, indicating increased activity of GPi during voluntary

movement. To illustrate our results, the EMGs of the biceps, triceps, wrist flexor, and

extensor during the voluntary reaching task for four trials are shown in the top four plots of

Fig. 2.2 (a), for one subject. On the bottom row of the same subfigure, the sum of the EMGs

are shown, representing a pattern of activation of all muscles during the voluntary reaching

task. This output signal is correlated with the generated muscle torques as the EMGs are

filtered using a nonlinear Bayesian filter (representing envelope of EMGs), highlighting the

changes in muscle activity as well as the activation itself. Our results demonstrate that

there exists higher correlation between the EMG and the motor-subnuclei of the deep brain

regions, including GPi, VoaVop, VA, and STN compared to other regions (VIM and/or
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PPN) as illustrated in Fig. 2.2 (b) and (c). This correlation indicates that the motor nuclei

in the brain regions activate during movement, and they are less active during the rest. The

comparison of all the frequency bands in these subnuclei yielded the same result. As shown

in Fig. 2.2 (c), this correlation of activity with the EMG can be seen more or less in GPi,

especially in theta [4-8 Hz], alpha [8-12 Hz], and beta [12-30 Hz] frequency bands.

We then explored the correlation between the motor subnuclei activation average power in

five frequency bands up to 1000 Hz with either the EMG or derivative of the EMG which is

a measure of movement onset and offset or torque. The results demonstrate that there exists

higher correlation (p − value < 0.05) between the EMG, itself, and the motor-subnuclei of

the deep brain regions (GPi, VoaVop, VA, and STN) compared to other regions (VIM and

PPN), regardless of the frequency band. Comparison of correlation coefficients of the power

in five frequency ranges (color coded) with EMG recordings and the derivative of EMG

recordings, in motor subnuclei is depicted in 2.2 (d). The Pearson correlation coefficients

are computed for all and the ones that are significantly different from zero are marked with

∗∗.

2.4.2 DCM results

Although the cortex-basal ganglia-thalamic anatomic connectivity is widely known, We

sought to test the transmission of information through this loop to determine which path-

ways are having the greatest modulatory influence during the reaching task. To do this, we

tested a total of seven possible connectivity models with inhibitory, excitatory, and mixed

excitatory and inhibitory projections as shown in Fig. 2.3 (a). Models were selected to encom-

pass several plausible connections between structures. Note that connections represent flow

of coherent information, but not necessarily a direct or monosynaptic connection between

regions. For example, there may not be a direct anatomic connection between STN and
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Figure 2.2: a) EMGs of the biceps, triceps, wrist flexor, and extensor and their sum during
the voluntary reaching task during four trials, for one subject; b) Corresponding, contra-
lateral, low frequency spectrogram of GPi, STN, VoaVop, VA, PPN, and VIM during the
same trial. The vertical solid black lines on the spectrograms indicate the onset of the
movement, and the dashed vertical black lines indicate the onset of resting period. All
the motor nuclei (GPi, STN, VoaVop, and VA) have higher activity during the movement
compared to rest, in theta and alpha frequency bands; c) (Top) Raw signal of Gpi recording,
and (Bottom) the spectrograms of Gpi in frequencies from 1 Hz to 1 kHz (5 bands). GPi has
higher activity during the movement compared to rest, in all frequency bands; d) Statistical
results confirming the increased and correlated activity in all motor nuclei.

VoaVop, however, functional connectivity could be mediated through regions connected to

both nuclei such as pallidum and/or cortex. We included modulatory effects (how movement
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affects the connections between structures during phase transition) for all excitatory and in-

hibitory projections. The model’s connectivity structure and parameter values constitute

the system’s transfer functions, which are used to generate predicted cross-spectra between

regions, for comparison with the observed spectra. Conditional expectations are given by

variational Bayesian inference under the Laplace approximation, such that free energy serves

as an approximation for log-model evidence [68, 67, 195, 69]. Based on the assumption that

lowest free energy estimates yielded valid results, the first model was the best model with

the highest log-evidence depicted in Fig. 2.3 (b). Additionally, the a-posteriori probability

of each of the model was computed to confirm the best model. Hence, the first model was

selected with the highest posterior confidence, depicted in Fig. 2.3 (c).

The effects of movement on excitatory and inhibitory connections (known as extrinsic cou-

pling strengths) with their probabilities (0 to 1 values, gray scale) which represent the mod-

ulatory effects of movement are shown in Fig. 2.4. The strongest excitatory connections are

from VoaVop to STN, from STN to GPi, and from STN to VoaVop, while the most prominent

inhibitory connections are from GPi to VoaVop, as expected. The largest effect of movement

is predicted to be on the STN-VoaVop and STN-GPi connections (probability > 0.8). The

modulatory effect on the connections are measured by the transfer function gains between

each two structures. Using the first model, we calculated the gain coefficients (here ranked

from 0 to 5) to determine the change in connection strength due to modulation by movement

(transition from rest to active state). The gains obtained from the active state for all connec-

tions were normalized to resting state gains (defined with the value = 1), showing increase or

decrease from the resting state for each connection as illustrated in Fig. 2.5. The strongest

effects are appear to be from STN to VoaVop, and from STN to GPi, with values up to 4

times higher than those for resting state. The less strong effects are on the connections from

GPi to VoaVop or from VoaVop to STN, with values below or close to the resting state.

The absolute cross-spectra between each regions are shown in Fig. 2.6 (a) and (b). This
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figure represents both the model prediction of cross spectra and the real data in two states:

resting (Fig. 2.6 (a)) and active (Fig. 2.6 (b)). Model predictions of the pairwise coherence

functions between each two regions (ranked from 0-1) are also presented in Fig. 2.6 (c). Brain

recordings from GPi and VoaVop show peak coherences (∼ 15 Hz) in the beta-band, with

significant differences from resting signals. Moreover, STN-VoaVop and STN-GPi show peak

coherence in the beta-band principally, with coherence values of approximately 0.3 and 0.5.

Please note that the coherence is a metric to evaluate the extent of signal transmission and

information flow between two regions at those specific frequencies; while the gain coefficients

are the metrics that show the transfer function gain between these two regions, representing

the extent of signal amplification. Therefore, one cannot be concluded from the other.

2.5 Discussion

The basal ganglia compose a complex system that sends and receives feedback to the cortex

through the thalamus and striatum. The STN and the striatum receive cortical inputs,

while the GPi sends information to the thalamus, which in turn modulates cortical activity.

The ”rate model” of basal ganglia [241] suggests that high activity in the GPi is required to

inhibit movement at rest. In particular, the rate model postulates that increased movement in

dystonia is due to low-firing rates in the GPi. However, the alterations of this circuit resulting

in dystonic muscle contractions are still not fully understood. Our surgical procedure [132]

allows us to simultaneously record from multiple targets in awake patients without the

influence of anesthesia. Therefore, it enables us to record valuable and useful data and

to address some questions such as: 1) which frequency bands are associated with movement

for each targeted deep brain region in dyskinetic CP, and 2) whether the results are consistent

with the predictions of the ’rate model’ of basal ganglia in dyskinetic CP.
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Figure 2.3: a) Schematic of the tested dynamic models to fit the empirical data and perform
the Bayesian comparison on. Seven models were tested in this study. b) All models were
compared using the free energy estimate of model evidence (the first model (model 1) had
the highest log-evidence, p < 0.05); c) Posterior model probability to corroborate the best
model, reveals that the first model has the highest likelihood to represent the empirical data
and causal connections.

2.5.1 Frequency patterns in dyskinetic CP

A characterization of frequency patterns in dyskinetic CP is crucial to understanding the

underlying dysfunction in children with dystonia. Previous studies have focused on frequency

patterns in the pallidum in patients with clinically successful outcome [221, 228, 36, 41], and

have shed light on the pathophysiology of dystonia, observing bursting cells in the GPi

(observed from single-unit recordings during DBS surgery [164]) and theta band activity in

both the GPi [174] and the STN in patients with dystonia [74]. However, the role of the

pallidum in the pathophysiology of dystonia is still unknown. One theory suggests that
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Figure 2.4: The predicted conditional probability of the strongest functional excitations,
VoaVop to STN, STN to GPi, and STN to VoaVop, are shown in the left figure. The
conditional probability of the functional inhibition from the GPi to VoaVop is presented in the
middle figure. The conditional probabilities of the modulation of each of these connections
are shown in the right hand figure with the largest effects on STN to VoaVop,and to GPi
connections (probability > 0.8).

Figure 2.5: Estimation of coupling strength among the three structures analyzed for the first
model, in terms of gain coefficients. Transfer function gain coefficients were normalized to
the resting state (red dashed line) to predict the effect of movement relative to the resting
state. The impact of movement on functional connectivity is shown, with major effects
observed as increased strength (bold black dashed lines) from STN to VoaVop and from
STN to GPi. Movement was observed to decrease the functional inhibition strength between
GPi and VoaVop (gray dashed line).

dystonic muscle contractions may be caused by excessive gain in the cortex-basal ganglia-

thalamic loop, impacting motor network function [200, 151]. Additionally, there is growing
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Figure 2.6: a) Resting state cross spectral density for each connection (solid blue line) and the
model prediction (dashed red line); b) Active state cross spectral density for each connection
(solid blue line) and the model prediction (dashed red line); c) Coherence analysis; Depicts
the relationships between signals as a coherence function on the spectra for GPi-VoaVop,
GPi-STN and STN-VoaVop.

evidence of the involvement of other brain regions, such as the cerebellum [91, 67, 114], and

the sensorimotor cortex [175]. The presence of peaks in theta, alpha and beta bands in

the pallidum could be significant to the pathophysiology of dystonia. In line with previous

findings [174], our results show activity in all these bands; however, across patients, the most

distinct peak during voluntary movement was in the low beta band (maximum peak at ∼13

Hz). Since the STN receives input from the cortex via the hyperdirect pathway, we expected

to see power across a wide frequency range during movement, which our results (Fig. 2.2)
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confirmed. Beta-band peaks were also noted in thalamic subnuclei, though less pronounced

than those in the pallidum, and with detectable differences from those observed at rest.

While the major power in thalamic recordings is in the beta band, there is also power at

higher frequencies (> 30Hz) (Fig. 2.2 (C) and (D)). Similar to observations in the pallidum

and thalamus, the major power in the STN is concentrated in the beta band. These findings

lead us to believe that the signal transmission in the beta band (around 13 Hz) triggered by

movement is maintained across all structures from the STN to the GPi and from the GPi to

VoaVop, with detectable differences in magnitude between areas of connectivity, as shown

in Fig. 2.2 (b).

In conclusion, despite the presence of both excitatory and inhibitory connections between

regions, all regions are active during movement, consistent with modulation of patterns of

activity within each region, rather than modulation of the overall activity of the regions.

This could be a biomarker of dystonia and it requires further study.

2.5.2 Functional connections and rest-to-active state phase tran-

sition

Based on the basal ganglia model, the GPi-VoaVop connection is expected to have the highest

magnitude with a negative (inhibitory) correlation [222]. However, Fig. 2.5 shows that the

strongest connections are between the STN-GPi and STN-VoaVop. On one hand, the basal

ganglia, particularly the GPi-STN, exhibit higher magnitudes than the thalamus during

movement, suggesting that the basal ganglia modulate the thalamic output [131]. On the

other hand, although there is no direct anatomical connection between the STN and VoaVop,

their coherence exhibits a higher magnitude than that of GPi-VoaVop. Therefore, these

results are inconsistent with the theory of thalamo-cortical disinhibition due to decreased

output from the GPi [241].
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Our results, confirm current hypotheses of the classical model of the basal ganglia. In

particular, we have confirmed the inhibitory connection of the pallidum on the thalamus, and

we have also confirmed the expected excitatory effect of STN on pallidum. More surprisingly,

we have shown a strong bidirectional functional excitation between STN and motor thalamus.

This functional excitation is clearly shown by the results from the free energy estimates

(Fig. 2.3 (b) and (c)). Additionally, the results are consistent in explaining how voluntary

movement is associated with changes in the transmission of information through the basal

ganglia and thalamus. This functional excitation is probably mediated through other brain

regions including the cortex, since there is currently no evidence for a direct excitatory

connection from STN to the thalamus in humans.

Assuming that there is not a direct anatomic connection between STN and VoaVop, we

conjecture that there is inappropriate thalamic excitation as a result of an input from the

cortex, which in turn activates downstream STN via the hyperdirect pathway, increasing STN

activity. STN in turn excites GPi, resulting in increased activity in GPi during movement but

not high enough to inhibit the existing thalamus excitation. GPi outputs ‘sculpt’ ongoing

activity in the thalamus, providing a functional increase in both the thalamus and STN

through cortex inputs. Recordings from non-human primates and Parkinson’s disease have

been consistent with the hypothesis of high GPi activity at rest [6, 172, 173]. Our results,

however, differ significantly, as previously reported [91]. One possible explanation is that

the function and connectivity of GPi are significantly different in children with dyskinetic

CP. Another possibility is that the nature of our recordings, performed in pediatric patients

that are unrestrained and comfortable in a hospital bed, allows for true relaxation, whereas

non-human primates are not in fact at rest while restrained in an electrophysiology recording

apparatus. It is also possible that the high levels of activity seen in Parkinson’s disease [131]

represent a significant abnormality that is not present in dystonia. We observed strong

movement-related modulations in both STN and VoaVop, despite the lack of evidence for

direct interactions between these two nuclei from animal models [154]. Excitatory inputs
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from the motor cortex may explain these results and suggest a mechanism for the effectiveness

of deep brain stimulation in STN [64] and GPi [36] to treat dystonia.

The DCM analysis confirmed the inhibitory connection between GPi and motor thalamus. In

addition, our results from frequency analysis clearly show increased activity in both regions

during movement compared to during rest. We reconcile these two apparently contradictory

findings by proposing that GPi inhibits a subpopulation of thalamic neurons, whereas most

of the thalamic target neurons must be excited from other sources (probably cortical inputs).

Therefore, our findings are consistent with the hypothesis that GPi outputs ‘sculpt’ ongoing

activity in the thalamus and thereby perform precision modulation of the signal returning to

motor cortical areas. This hypothesis is consistent with prior models of the control of motor

patterns [241, 159]. Our results provide support for a more complex model of basal ganglia

function that may be helpful to understand the mechanism of dystonia and offer potential

new treatments.

2.6 Conclusion

The presented results from chapters 1 and 2 provide information on the pattern of activity

and functional connectivity between regions in basal ganglia and thalamus in children with

secondary dystonia. Further studies are required to determine which components of the ob-

served activity are responsible for dystonia, which one represents compensation for dystonia,

and which one represents normal patterns. Nevertheless, the importance of these regions

as targets for deep brain stimulation implies that a detailed understanding of the activity

patterns can be helpful to elucidate the mechanism of deep brain stimulation and for the

clinical selection of appropriate targets. In the next chapters, we explore the correlation of

functional connectivity and these patterns with the anatomical measures from tractography,

as well as the effect of stimulation on these patterns of activation.
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Chapter 3

Exogenous brain stimulation pulses

are carried along the motor pathways

from pallidum to distant targets

3.1 Abstract

Deep brain stimulation (DBS) is a neuromodulation method for treatment of various neuro-

logical disorders. It is often assumed that the primary inhibition or excitation effect of DBS

occurs at the site of stimulation. However, recent work has shown that DBS can lead to

robust evoked potentials (EP) not only at the stimulation site, representing the local effect,

but also in multiple distant brain regions, representing the effects on distant targets. While

the significance of these EPs for therapeutic outcomes is not known, it appears that the

electrical effects of DBS have at least a partial modulatory impact on downstream targets.

Nonetheless, it remains unclear through what mechanism DBS pulses travel to the distant

targets or what portion of the pulses travel along the normal pathways from the stimula-
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tion site to the distant target(s). The possible scenarios include, but are not limited to,

orthodromic or antidromic pathways, accessory pathways, normally inhibited pathways, and

direct electromagnetic activation of distant sites. The ability to record signals from brain

regions with DBS on and off provides an opportunity to determine the mechanism of DBS

signal transmission. We hypothesize that the pathways that transmit DBS pulses include

the pathways that transmit intrinsic neural signals. To test this hypothesis, we performed a

transfer function analysis on deep brain recordings during DBS-off condition and compared

its impulse response with the transmission of signals from electrical stimulation during DBS-

on condition. Our results support our claim that the electrical pulses travel partly along

intrinsic motor pathways by showing that the propagation of DBS signals can be partially

predicted by observation of intrinsic neural activity and measurement of DBS-evoked re-

sponses can partially predict normal pathways of neural communication.

3.2 Introduction

DBS is a neuromodulation technique that involves implantation of depth electrodes at po-

tential targets in the brain, through which electrical pulses are administered to modulate

neuronal activity [4]. It has been shown that DBS is an effective treatment of various move-

ment and neurological disorders [127], including Parkinson’s disease [181], dystonia [207],

essential tremor [143], epilepsy [250], and Alzheimer’s disease [152]. Additionally, recent

advancements show that DBS can be used for the treatment of psychological conditions such

as obsessive compulsive disorder [148] and major depressive disorder [55]. Despite recent

advancements in clinical applications of DBS and its widespread adoption, its underlying

mechanism remains poorly understood [207, 38, 206, 187, 233]; however, several models have

been proposed by researchers on the mechanism of DBS, including the ”inhibition hypothe-

sis”, ”excitation hypothesis”, and the ”disruption hypothesis” [38, 39, 166, 156].
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Previous research on the mechanism of DBS indicates that DBS effect is similar to those

produced by micro-lesions in the brain [137, 136, 243, 83], which has led to the replacement

of lesion-therapy by DBS [39]. The observed similarity suggested that DBS might inhibit

local circuits. Although suppression of neuronal activity in the vicinity of the stimulated

region was noted, the ”inhibition hypothesis” has been called into question by the detection

of DBS-evoked responses (EPs) in distant targets [39].

Other studies have confirmed that GPi-DBS directly induces spiking activity in the GPi

neurons, which activates the GABA-ergic (inhibitory) projections onto the thalamic regions.

This results in inhibition of those downstream targets, supporting the ”excitation hypothesis”

of the DBS effect [240, 82, 59, 39]. However, this hypothesis was rejected by more recent

observations of induced multiphasic responses, consisting of both excitation and inhibition,

during GPi-DBS, in the GPi of monkeys with Parkinson’s disease [15, 60, 153].

More recently, it has been shown that GPi-DBS during the cortical stimulation inhibits the

cortical evoked responses by strong GABAergic inhibition. This suggests that GPi-DBS

blocks the information flow through GPi itself, supporting the ”disruption hypothesis” [39,

37]. The presented evidences along with other examples [167, 57, 7] suggest that DBS

essentially blocks the signal transmission from the input to the output of inhibitory or

excitatory pathways, resulting in dissociation of input and output [39], rather than having

a sole excitatory or inhibitory effect on the downstream regions [39, 37]. This indicates

that DBS impact extends beyond its immediate vicinity, with its global influence on distant

targets being demonstrated through the recorded evoked potentials (EPs). DBS pulses

propagate in a specific pattern as evident by the EPs; However, the precise mechanism of

propagation and the pulse transmission pathways are not known. Here, we propose a transfer

function method to identify what portion of the DBS pulses travel along the neural pathways

that carry the intrinsic neural signals.

Identifying the DBS signal pathways is essential for computational modeling and direct mea-
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surement of the effects of DBS on brain networks [155]. While anatomic evidence from non-

invasive technologies such as diffusion tensor imaging (DTI) is available, this provides only

indirect support for anatomical connectivity and is not sufficient for assessing the functional

connectivity [138]. Direct measurement is required to learn about the signal transmission

along these pathways. Noted that, evidence for the presence of a pathway and the presence of

intrinsic signal correlations at either end of that pathway is not sufficient to establish causal-

ity or the direction of signal transmission. One way to map DBS pulse transmission in deep

brain networks is to stimulate in one region and measure its effect on distant targets [229].

However, electrical stimulation is an un-natural and non-physiological input to the brain. It

non-selectively activates and depolarizes a wide group of neurons that would be much more

selectively activated in physiology, therefore, essentially, its mechanism of transmission can

be very different from that of the intrinsic neural signals. DBS pulses can travel from the

source to the target through many pathways, including ”normal” (orthodromic) pathways,

antidromic pathways, accessory pathways that would not normally be active [206], and di-

rect electromagnetic activation of distant sites (as supported by measuring the volume of

tissue activated [VTA] which is partially predictive of the widespread neural effects of stim-

ulation) [11]. Alternative mechanisms also include activation of pathways that are normally

inhibited [39], those with high threshold, or those that are not accessible to stimulation,

including polysynaptic pathways [39].

Considering everything mentioned, it has not been studied if the intrinsic motor signals and

the DBS pulses are carried to distant targets through the same mechanism. If they do, what

portion of the pathway is directly affected by the DBS pulse, whether it is an orthodromic

or antidromic pathway. To distinguish various possibilities, we compared the transmission

of DBS pulses to a transfer function representation of intrinsic neural signals (DBS-off local

field potentials [LFPs]), at two ends of a known anatomical pathway. The estimated transfer

function does not indicate causality, because empirical transfer functions are bi-directional

in nature and the causation flow is not clear [35, 78]. Nevertheless, we can set the input and
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output of the system based on the evidence of physiological connections [123, 39] and extract

useful information based on those presumptions. The study methodology was designed to

determine whether the normal pathways carry the DBS pulses or the DBS pulses are affecting

the distant targets through other mechanisms. We hypothesize that the distant effects of DBS

are most likely due to direct transmission of the DBS pulse, perhaps through depolarization

of local axons) rather than propagation of locally-evoked activity to distant sites.

To test our hypothesis, we made use of intracranial brain recordings (LFP) from Stere-

oelectroencephalography (sEEG) leads [116], which are used in surgeries for treatment of

various neurological disorders, including epilepsy [246, 250], Parkinson’s disease [152], and

dystonia [207, 212, 132]. The sEEG leads were implanted into potential DBS targets, as

part of the clinical evaluation for implantation of permanent DBS electrodes in deep brain

regions of 7 children and young adults with dystonia [206, 212, 207]. This was followed by

one week of extensive tests and recordings in an inpatient neuromodulation monitoring unit

(NMU) with the clinical goal of finding the ideal target region(s) for each patient’s perma-

nent DBS lead(s) [212, 132]. Clinical evaluation focused on capturing evoked responses in

ventral oralis anterior/posterior (VoaVop) and ventral anterior (VA) subnuclei of thalamus,

and subthalamic nucleus (STN) during stimulation in globus pallidus internus (GPi), as well

as the responses in GPi due to stimulations in VoaVop, VA, and STN [in separate trials].

Clinical data also included recordings of the LFPs during a voluntary reaching task, while

stimulation was off (DBS-off).

If a significant fraction of the variance of the evoked response from the DBS pulses can be

explained by a transfer function computed using the intrinsic neural signals, we can claim

that DBS pulses travel primarily by the physiologically used intrinsic neural signal pathways,

most likely through the same mechanism. Additionally, if that is the case, we hypothesize

that the fraction of variance in EP explained by the response of the estimated transfer

function should be significantly higher in the orthodromic direction than in the antidromic
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direction, as there intrinsic signals do not travel antidromically. This further supports our

hypothesis that the stimulation pulses are primarily transmitted by a mechanism similar to

that of intrinsic neural signals.

3.3 Materials and methods

3.3.1 Data

The data from seven patients (S2, S3, S13-s17 in Table 1) were analyzed in this study. The

activity in GPi, STN, VO, and VA were simultaneously recorded within 24 to 96 hours after

surgery in two modes: 1) While the stimulation was off, and the patient was performing a

voluntary reaching task with the upper limb contralateral to LFP recordings (intrinsic neural

signals; DBS-off condition). 2) while the patient was at rest and unilateral stimulation was

on (DBS-on condition). Approximately 1200 DBS pulses were administered through two ad-

jacent macro-contacts (anode and cathode) at a time, with 90-µs bandwidth and 3-V voltage

at 25 Hz, to each nuclei separately, eliciting DBS evoked potentials [EPs]. Figure 3.1b depicts

a simplified schematic of the stimulation target (input) and the recording target (output)

for each of the EP recordings in this study. Please note that the stimulation at each of these

targets elicit EPs in other areas of the brain, not shown in the here. For example, STN-DBS

activates the lenticular fasciculus through activation of hyper direct pathway and provides

direct inputs to the thalamic nuclei [39, 162]. However, in this study we are only consid-

ering the efferent and afferent pathways to GPi due to its proven efficacy and importance

in improvement of dystonic symptoms in our patient cohort [207]. Moreover, in order to

reduce the stimulation artifacts, we stimulated through each contact pair in two trials, with

the cathode and anode switched, both of which are located in the same subnuclei; therefore,

stimulating the similar population of neurons. When the resulting signals are added, the
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opposite artifact polarities cancel out while the evoked response polarity is augmented. The

experimental protocol, movement-LFP synchronization, and the stimualation protocol are

detailed in the general methods of this dissertation and previously published works [239].

Figure 3.1: a) Frontal view of the DBS leads and the segmented regions in one patient;
b) Schematic of all recording and stimulation targets when stimulation is administered in
one target, separately. Please note that this is a simplified illustration of the pathways and
EPs that we used for our analysis and does not imply the precise pattern of EPs due to
stimualtion; c) Highlights the pipeline of transfer functions computations and comparisons
for one pathway connecting the GPi and VoaVop electrodes. Note that GPi to VoaVop is
orthodromic and VoaVop to GPi is antidromic and we computed three transfer functions,
H(ωi), G1(ωi), and G2(ωi), for each direction and performed pairwise comparison between
their responses, y(t), y1(t), and y2(t).

3.3.2 Data analysis

All data preprocessing and analysis were done in MATLAB R2021a (The MathWorks, Inc.,

Natick, MA, USA).
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Data Preprocessing:

After applying the preprocessing steps (explained in general methods) the DBS-off LFPs

signals that were recorded during the DBS-off condition were then split into ∼50 two-second

segments. On the other hand, LFPs obtained during stimulation underwent another pro-

cessing step to eliminate stimulation artifacts, which subsequently leads to detection of EPs.

DBS artifact removal. After upsampling the DBS-on bipolar recordings to 120 kHz, the

accurate stimulus artifacts peaks were located using the ’findpeaks’ function in MATLAB.

The signals were then split into 11-ms segments starting from 1 ms prior to stimulus on-

set (stimulus artifact). Outlier segments were labeled and removed from the data if the

artifact amplitude was not within their ±3 standard deviations. All the remaining seg-

ments were subsequently aligned through cross-correlation of time-0 artifacts. This resulted

in approximately 1000 segments per stimulus location, which were finally averaged to in-

crease signal-to-noise ratio [226]. The stimulus-triggered averaging methodology presented

by Nicholas C. Sinclair et al 2019 [226] was repeated for both sets of polarity reversed

stimulation settings, which were finally aligned to produce a polarity-reversed average with

smaller stimulus and decay artifacts [239, 90, 216], as shown in Figure 3.2.

Transfer Function Computation:

In order to determine whether DBS pulses travel via the same pathways that carry intrinsic

neural signals, we compared the DBS EPs with the impulse response of a system defined

during DBS-off condition, between the same two points in the brain. In other words, we

compared the response at a distant region elicited by DBS at the stimulation site with

the impulse response of a transfer function between the stimulation site and the distant

region in the absence of DBS (DBS-off condition). Transfer functions are specified in the

frequency domain, while evoked potentials are specified in the time domain; therefore, we
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Figure 3.2: The mean responses of anodic and cathodic stimulation segments are shown in
blue and red lines. Their average (black line) cancels out the artifact resulting in smaller
decay and stimulus and increasing the signal to noise ratio. The figure is zoomed in in
voltage axis and time axis and reveals the actual EP at time ∼ 1ms.

inter-converted the time and frequency domains using Fourier transform (FFT) analysis and

performed comparisons in time domain [150]. The method pipeline is depicted in Figure

3.1c.

Intrinsic neural signals transfer function computation. We computed the empirical

transfer function estimate (ETFE), H̃(ωi), from one end of a pathway (input X) to the

other end of a pathway (output Y), for each 2-second segment of preprocessed DBS-off

intrinsic neural recordings, resulting in 50 distinct DBS-off transfer functions per patient.

See Figure 3.3a for a schematic representation of the system. In this linear time invariant

(LTI) system , H̃(ωi) is given by

H̃(ωi) =
Y (ωi)

X(ωi)
. (3.1)
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In this equation, Y (ωi) is the FFTof the output signal and X(ωi) is FFT of the input signal

at frequency ωi and H(ωi) is the transfer function at that frequency [150]. This transfer

function is a vector of complex numbers that indicates the gain (amplification) and the

phase shift of the input at each frequency, ωi [150].

DBS EPs transfer function computation. Using the DBS EPs, we computed two

additional transfer functions to investigate whether the target EPs result directly from the

DBS signal, or from transmission of local responses of neural tissue near the stimulating

electrode. The first case would correspond to DBS depolarization of nearby efferent axons,

while the second case would correspond to DBS depolarization of nearby neural cell bodies

with subsequent propagation of EP from the stimulation site to the distant target [39, 7,

252, 11]. Therefore, we considered these two cases, in which (a) G1 is a transfer function

with the stimulation itself as the system input, u1(t), as shown in Figure 3.3b, and (b) G2 is

a transfer function with the stimulation-site’s EP as its input, u2(t), as shown in Figure 3.3c.

In both cases, the output is considered to be the distant target’s EP, y1(t) and y2(t). Thus,

G1 is calculated as the ratio of distant target’s EP FFT and the stimulation signal’s FFT;

and G2 is calculated as the ratio of the distant target’s EP FFT and the stimulation site’s

EP FFT.

It is worth noting that although the window sizes for DBS EP and intrinsic LFP signals differ

(10 ms versus 2 s), this disparity does not influence the final results. The EP window size

represents an average of 1000 segments, resulting in enhanced signal smoothness. We selected

a window size of 2 seconds for the intrinsic LFP signals to achieve higher frequency domain

resolution and greater clarity when calculating the impulse responses and ETFEs. We then

compared the EPs and impulse responses solely for the duration of the response, which is

5 ms. The computed spectral estimates of the intrinsic neural signals (DBS-off condition)

transfer functions alter drastically in higher frequencies because the ETFE variance does not

diminish with large numbers of samples (Figure 3.4 top). Therefore, we utilized a smoothing
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method to smooth out the ETFE [78, 22].

Stimulation
Target

Stimulation

Stimulation

Distant Target

Distant Target

(b)

(c)

(a) Input Output

Figure 3.3: Schematic for the pathways system transfer function: a) Intrinsic neural signal
pathway system schematic, where one end of the pathways is the system input and the other
end is the system output. b) Direct stimulation of efferent axons by DBS stimulation.; and
c) Stimulation of local neurons by DBS, with propagation of the subsequent signal to the
target. In case (b), we expect the shape of the DBS signal to be the best predictor of the
target response. In case (c), we expect the shape of the local EP at the stimulation site to
be the best predictor of the target response.

Transfer function smoothing:

Local linear kernel smoothing regression was used to smooth the ETFEs in the frequency

domain by solving a weighted least-squares (WLS) problem. The local linear estimator can

be obtained by [78, 22, 42, 230]:

H(ω0) =
1

N

∑N
i=1(S2 − (ω0 − ωi)

TS1)K(ω0−ωi

h
)H̃(ωi)

S2S0 − S2
1

. (3.2)
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Here, H(ω0) is the smoothed transfer function, H̃(ωi) is the non-smoothed transfer function

estimate at ωi, N is the number of samples, K(ω0−ωi

h
) is the Gaussian kernel function,

K(z) = exp(− z2√
2π
), with the bandwidth of h = 50 Hz, and Si is given by:

Si =
1

N

N∑
i=1

(ω0 − ωi)
iK(

ω0 − ωi

h
). (3.3)

The smoothed ETFE serves as an asymptotically unbiased estimator of the frequency re-

sponse function [78]. Figure 3.4 shows an example of Bode magnitude plot of the estimated

and the smoothed intrinsic neural signals’ transfer function (top) and an example of G1 DBS

EPs transfer function (bottom).
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Figure 3.4: (Top) Bode magnitude plot of a raw and smoothed ETFE from the intrinsic
neural signal recordings. (Bottom) Bode magnitude of a stimulation evoked potential transfer
function. Note that the smoothing method has no effect on the stimulation evoked potential
transfer function, as the response duration is brief (∼5 ms) with low number of samples
(∼ 100); confirming that the smoothing method does not introduce distortions to the system.
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Simulation and Comparison Method:

Let u(t) be a pulse with similar specification to the true stimulation (90-µs pulse width

and 3-V amplitude). Let h(t) be the inverse Fourier transform (iFFT) or impulse response

of the H(ω). Thus, the output of the system in time, y(t), is given by the convolution of

h(t) with u(t): y(t) = h(t) ∗ u(t). We estimated the output of the intrinsic neural signal

transfer function (y(t)) by taking the average of the 50 responses to u(t) computed for all

50 segments.

Now, let g1 and g2 be the iFFT of G1 and G2, and let y1 and y2 be their outputs, respectively.

Thus, similarly, y1(t) = g1(t) ∗ u(t) and y2(t) = g2(t) ∗ u(t). Once the responses to u(t) were

estimated, we matched the sampling rates and synchronized all outputs with the respective

EPs using cross-correlation. Then, we compared y(t), G1, and G2 responses (y1 and y2) with

their corresponding EP, in order to first, discover whether y1(t) or y2(t) better replicates the

EP, and second, to determine if y(t) can explain a significant fraction of variance in the EP.

Statistical Analysis:

First, we compared y1 and y2 with the actual EP to determine if the stimulation is trans-

mitted through activation of nearby axons (G1) or by activation of nearby cell bodies (G2).

Therefore, we computed the fraction of variance explained in EP by y1 and y2, and estimated

which one is more likely. Then, we computed the fraction of variance explained in EP by the

average response of all 50 DBS-off transfer functions computed from the 2-second segments

(y(t)), R2. This allowed us to verify whether the estimated transfer function from DBS-off

intrinsic neural signal data (H(ω)) estimates the direct EP. We used ∼50 repeated measures

of R2s for each pathway and each direction per subject to perform the statistical analysis.

Among these 50 predictions, we marked the ones that were greater than 3 standard deviation

from the mean as outliers (limiting to a maximum of 5 outliers for every 50 segments). Once
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the outliers were removed, a linear mixed effect model with repeated measure was employed

using lme4 [16] package in R-studio (R core team, 2021), with the distant targets as the

fixed effect and random intercepts for all subjects. Thereafter, we performed a pairwise

multiple comparison using Kenward-Roger’s F-test with the emmeans [223] package to find

the differences between each pathway (GPi-VoaVop, GPi-VA, and GPi-STN) by comparison

of estimated marginal means, and to discover which pathway response is more likely to be

predicted by a linear transfer function representation of that pathway. We adjusted the

p-values using the Bonferroni method. The analyses were done with outliers included and

outliers removed to confirm that the removal of outliers does not significantly affect the final

results.

3.4 Results

3.4.1 Stimulation effect on distant targets: Activation of efferent

axons or cell bodies?

For all subjects and all regions, the results showed that y1 is highly correlated (R2 = 0.99)

with the actual recorded EP. This was expected since y1 is the result of the convolving the

actual EP with an impulse similar to the actual stimulation pulse. On the other hand the

y2 does not have a significan correlation with the actual EP as shown in Figure 3.5 by the

red lines. This provides evidence that the stimulation itself is more likely to cause the EP

at the distant target, perhaps by direct excitation of efferent axons near the stimulation

site, as opposed to an indirect response due to local cell body excitation. This shows the

similarity of y1 and the actual EP and the inability of y2 to replicate the EP. Therefore, for

the remainder of this paper, EP and y1 will be used interchangeably, depicted with blue lines

in Figure 3.5.
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Figure 3.5: The plots show the true responses in VO, VA, and STN, evoked by stimulation
in GPi (y1(t), blue lines). They also illustrate the estimated output of the transfer function
G2 (y2(t), red lines) as well as the response of the intrinsic neural signal transfer function
H (y(t), black lines, averaged over ∼50 segments) and its standard deviation with 95%
confidence interval (gray shade). In all cases, the impulse response of the ETFE explains a
high variance of direct EP or y1(t), and not the y2(t).

3.4.2 Do DBS Pulses propagate through pathways that transmit

intrinsic neural signals?

In order to determine whether the DBS pulses are reaching the distant targets through

pathways similar to the intrinsic neural signals or not, we tested the reliability and accuracy

of the ETFE impulse responses and compared the predictions for all three pathways in both

directions (forward and backward). In order to do so, we only compared our predictions

with the EP (y1(t)) for each pathway in each direction by computing the fraction of variance

explained in EP by y(t) (R2
1).

The results from comparison of y(t) with y1(t) (EP) and y2(t) for one subject are shown

in Figure 3.5. As illustrated, the fraction of variance explained in y(t) by y2(t) (R
2
2) is not
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significant in any of the models. However, the fraction of variance explained in y(t) (EP)

by y1(t) (R
2
1) is significant in all the models. This result was consistent among all subjects

and pathways (GPi-VoaVop, GPi-VA, and GPi-STN), supporting that the EP of the distant

target is predicted by an impulse response of the ETFE at the stimulation site, consistent

with depolarization of efferent neurons.

We used the linear mixed effect model (R2 = 0.25) fitted to the R2
1 (as repeated measures)

to compare the quality of prediction in all three pathways, forward and backward. The

results of multiple comparison between the pathways, shown in Figure 3.6, demonstrate that

the predicted system outputs have stronger correlation with the DBS EPs in VoaVop and

STN compared to the DBS EPs in VA (p − value ≺ .01). The high fraction of variance of

EP explained by the output of the transfer function H(ω) (y(t)) reveals that the pathways

that transmit external electrical stimulation mostly include pathways that transmit intrinsic

neural signals (GPi to VoaVop, GPi to VA, and GPi to STN). In other words, the pathways

that transmit external electrical stimulation (DBS pulse) overlap with the pathways that

transmit intrinsic neural signals.

3.4.3 Direction of Signal Transmission

Furthermore, we were able to predict the VA, VO, and STN responses to simulation in

GPi significantly better than the GPi response to stimulation in VA, VoaVop, and STN

(p− value ≺ .01), respectively. This observation may be explained by underlying anatomi-

cal and physiological differences in the fibers connecting two targets (fiber size, anisotropy,

and diffusivity or direction of intrinsic neural signal transmission; orthodromic versus an-

tidromic). This also indicates that GPi-thalamus connection is more likely orthodromic,

whereas thalamus-GPi is more likely antidromic, or carried by pathways that differ from the

normal intrinsic transmission pathways.
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Figure 3.6: The fraction of variance (R2) of DBS EP explained by the intrinsic neural signal
transfer functions of each pathway (black: pathways from GPi; gray: pathways to GPi) for
the seven subjects (each shape represents one subject). The variance explained is greater for
STN and VoaVop (p− value ≺ .01) compared to VA, suggesting that the DBS pulses from
GPi to STN and VoaVop are more likely to use the same pathways as intrinsic neural signals,
compared to the GPi-VA pathway between the electrode locations. However, the fraction of
variance explained in EP by the intrinsic transfer functions of GPi-VoaVop and GPi-STN
are not significantly different from each other. Moreover, the results also demonstrate that
the ETFEs were able to make better predictions of EP in one direction (from GPi to other
targets) compared to the reverse direction (from other nuclei to GPi) (p− value ≺ .01).

3.5 Discussion

In this study we focused on understanding the DBS mechanism of action; as it is significantly

important to elucidate the propagation pathways of DBS pulses and to confirm whether

these pathways are the same as those utilized by intrinsic neural signals [252, 100]. Previous

studies indicate a wide range of potential scenarios for DBS propagation, supported by

various models and hypotheses. For example, Zhao et al. [252] demonstrated that STN-

DBS in parkinsonian rats activates both motor and non-motor pathways and suggests that
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this modulation is probably through orthodromic and antidromic pathways. In addition,

through an fMRI study on the PD patients, Jet et al. [100] showed that the STN-DBS

and VIM-DBS are transmitted to non-stimulated regions through the anatomical pathways,

orthodromically and antidromically. However, systematic studies with computational models

to explore these scenarios have been rarely conducted. The access to electrophysiological

signals and advancements in engineering tools now enable detailed analyses to improve our

understanding of the DBS mechanism of action, allowing for a more precise interpretation of

how DBS activity propagates, facilitating the development of more optimized and effective

approaches for DBS. Here, by using a transfer function analyses, we confirmed that DBS

pulses travel at least in part along physiological motor pathways.

3.5.1 DBS affects distant targets through activation of afferent

and efferent axons

In the first part of this study, we tested whether DBS pulses directly excite afferent or efferent

cell axons near the stimulation site or they excite the efferent cell bodies, through evaluation

of EPs due monosynaptic transmission. To achieve this, we compared the EP at a distant

target with the empirical impulse response of two transfer functions obtained from DBS-

on neurophysiological recordings; one indicating that the DBS affects the distant targets

through the direct activation of efferent or afferent axons (y1) and the other indicating that

the DBS effect is through the activation of the nearby cell body, evoking a local response,

and its subsequent transmission to distant targets (y2). Our results indicate that y1 is nearly

identical to the actual EP, which was expected, while y2 does not explain any variability in

the actual EP at all. This result suggests that the DBS pulses are more likely to affect the

distant targets through direct activation of the distant area as opposed to the transmission

of the stimulation site’s EP to the downstream areas, consequently evoking a response. Here,

we are not rejecting other scenarios, but we are providing evidence that the effect of DBS

69



is significantly less probable through the transmission of local EP at the stimulation site to

the distant target.

3.5.2 DBS pulse are more likely to travel along the normal anatom-

ical pathways

Next, we compared the DBS EPs with the impulse responses obtained from intrinsic neural

signals recorded during DBS-off condition, while patients were performing voluntary reaching

movement (y(t)). If a significant portion of the EP or y1(t) can be explained by the y(t)

we can claim that the DBS pulse and the natural neural activity during movement are

transferred to the output through the same mechanism. Our results showed that the fraction

of variance predicted in STN, VoaVop, and VA EPs from stimulation in GPi was significantly

different from zero, consistent with the hypothesis that DBS stimulation travels at least

partly through normal physiological pathways. This provides evidence that the pathways

that carry DBS pulses overlap with those that transmit intrinsic neural signals, indicating a

similarity in their transmission mechanism.

3.5.3 Orthodromic versus Antidromic Signal Transmission

Previous studies on the mechanism of DBS in Parkinson’s disease demonstrate the complex

interaction of DBS and neural fibers in orthodromic and antidromic activation during the

stimulation process [88, 162, 110, 81, 252, 245]. For example, Kang et al. [110] showed that

STN-DBS induced both orthodromic and antidromic activation through afferent and efferent

axonal activation [39] and explored relative contribution of antidromic versus orthodromic

effects of STN-DBS in Parkinson’s disease [110].

Here, after we confirmed that the DBS pulses and neural signals pathways overlap, we must
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validate our method. One way to do it is to perform the same analysis in the direction of

antidromic pathways. In this case, we expected to see significantly lower correlation between

the DBS-off impulse responses (y(t)) with the antidromic DBS EPs, since, naturally, intrinsic

neural signals do not travel antidromically.

To achieve this goal, we first stimulated in GPi and recorded in thalamus and STN, which

makes it reasonable to expect that external evoked responses were primarily carried by

orthodromic pathways (specially in VoaVop and VA nuclei of thalamus). Second, we included

GPi responses to the thalamic nuclei and STN stimulation in our analyses to compare the

ETFE response accuracy in one direction versus the opposite direction. Our results showed

that the ETFEs could possibly be a good estimate of direction of pathways in GPi to

thalamic subnuclei (VoaVop and VA) projections; orthodromic versus antidromic. The higher

correlations of ETFE responses with the thalamic DBS EPs in orthodromic (GPi to VA or

VoaVop) versus antidromic (VoaVop or VA to GPi) pathways supports our hypothesis and is

a confirmation for use of this method. This suggests that physiological pathways from VA,

VoaVop, and STN to GPi are less robust than in the opposite direction, and that a greater

fraction of the DBS signal may travel through non-physiological pathways in this direction.

However, the higher correlation of GPi-STN impulse responses with the EP versus that of

STN-GPi does not reflect the bidirectional connectivity between GPi and STN.

We showed that the GPi-VoaVop and GPi-STN responses have higher correlation with their

respective impulse response predictions. The higher correlation of the ETFE responses in

GPi-VoaVop, and GPi-STN, (in both directions) with the EPs compared to GPi-VA could

be due to the fact that there are fewer projections or fibers connecting GPi to VA, leading

to less flow of intrinsic neural signals.
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3.6 Limitations

An important weakness of this method is that while the estimated transfer function has an

implicit direction, it does not provide evidence of causality, since it is essentially a correlation

method [78]. Therefore, the presence of a transfer function from GPi to thalamus does not

indicate that activity in GPi is responsible for activity in thalamus. On the other hand, the

stimulation results (EPs) do indicate causality, but may only partially correspond to normal

physiological transmission pathways. Several other scenarios, including reverse transmission

or common drive to both sites, remain possible.

Second potential limitation of this study is that subjects were performing voluntary move-

ment during the recording of intrinsic brain activity, whereas they were at rest during the

recording of electrical evoked responses. This element of study design was intentional, in

order to evaluate whether signals associated with voluntary (but potentially abnormal) move-

ment flow along the same pathways as DBS responses and whether connectivity in the rest-

ing state determines signal flow in the active state. Since we assume that a higher flow

of movement-related information in the motor pathways could lead to stronger correlation

between two ends of a motor pathway and therefore the obtained transfer function from

the intrinsic neural signal is a better representation of that pathway. Moreover, by using

this method, we ensure that the correlation between the DBS-off impulse responses and the

evoked potential are not related to voluntary movements.

Finally, it is crucial to acknowledge the limitations associated with LTI models [129, 251]. LTI

models, chosen for their simplicity and interpretability, may not fully capture the dynamic

and nonlinear nature of brain function and neural transmission. The brain’s complex and

adaptive nature might involve time-varying dynamics that cannot be adequately addressed

by LTI models [128, 28]. However, LTI models are powerful tools for explaining the linear

behavior of the systems. For example, here, despite the nonlinear nature of the neural
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activity within the brain, we were able to explain potentially a nonlinear phenomena using

a linear method.

3.7 Conclusion and Future Direction

In conclusion, our novel transfer function approach has the potential to describe DBS signal

propagation mechanism and possibly, pave the way toward prediction of DBS signal trans-

mission and the causal direction of intrinsic neural signals. Our results imply that electrical

stimulation in GPi travels at least in part along pathways that are part of the usual commu-

nication between GPi-VoaVop and GPi-STN, and to a lesser extent between GPi-VA. These

findings build on what is already established regarding GPi projections to the thalamus

nuclei, VoaVop and VA within the motor pathway circuit. This suggests that the natural

oscillations dynamics (DBS-off neurophysiological signals) contain useful information about

the network responses to DBS pulses, which can be further explored. The results presented

here are a first step toward understanding how patterns of therapeutic stimulation interact

with the ”connectome” to achieve therapeutic benefit. Future work will focus on determin-

ing if there are notable differences between anatomical and non-anatomical pathways and

studying the impact of DBS on distant brain network underlying activity.
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Chapter 4

DBS modulates transmission of

dystonic signals in pallidothalamic

networks and the local and global

oscillations in deep brain regions

4.1 Abstract

Deep brain stimulation (DBS) is a neuromodulation technique commonly used for treatment

of movement disorders, including dystonia. Stimulation of the internal globus pallidus (GPi)

of basal ganglia or the subthalamic nucleus (STN) typically confers clinical benefit, although

the specific mechanism of action is unknown. Previous studies of dystonic patients show

abnormalities in low frequency activity in GPi and other motor sensory regions such as STN,

Ventral Oralis Anterior/Posterior (VoaVop), and Ventral Anterior (VA) nuclei of thalamus.

We hypothesize that the DBS works in part by altering transmission of abnormal signals in
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low frequency bands between different brain regions, both at the stimulation site (e.g. GPi)

and distant deep brain regions.

In other words, GPi stimulation reduces the transmission of abnormal signals along the

projections to thalamic motor subnuclei and modulates low frequency activity on those

regions, resulting in improvement of motor symptoms. To test this hypothesis, we used

a novel transfer function analysis that has not previously been utilized to study neural

signal transmission. We recorded intracranial signals from thirteen pediatric and young

adult patients with dystonia, with and without stimulation. We then performed a transfer

function analysis, which allowed us to make comparisons between the mean transfer function

gains (a measure for amplification of signals from an input to the output of a system) in low

frequencies for each deep brain network pathway for the DBS-on and DBS-off conditions.

Our results show that DBS modulates the transmission of information between different brain

regions. Specifically, we confirmed that GPi stimulation effectively modulates the transfer

function gains from pallidum to motor subnuclei of thalamus by increasing the transmission

of signals in beta and gamma frequency bands. These results elicit a better understanding

of the mechanism and effects of DBS. This, in turn, may provide fundamental knowledge

for the development of closed-loop DBS, particularly in controlling the intensity and pattern

of stimulation. A better understanding of neuromodulation could also help to further the

design of brain-computer interfaces and neurorehabilitation systems.

4.2 Introduction

Deep brain stimulation (DBS) is commonly thought to act by modulating or blocking activity

within specific brain regions. Here, we explore the possibility that DBS may also act by mod-

ulating the transmission of signals between different brain regions. In particular, we examine

whether DBS reduces the transmission of abnormal low frequency oscillations between basal
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ganglia and thalamus in children with primary and secondary dystonia [214, 207, 212, 206].

”Dystonia is defined as a movement disorder in which involuntary sustained or intermit-

tent muscle contractions cause twisting and repetitive movements, abnormal postures, or

both” [5, 209]. The underlying mechanism of dystonia is not known [5, 207]. However,

previous studies have shown that the motor symptoms of dystonia could have several origins

including: decreased focus on intended patterns of muscle activity [112], imbalances between

midbrain and striatal excitatory/inhibitory signaling [17], abnormal patterns of subcortical

activity [114, 92], excessive basal ganglia or peripheral loop gain [114, 113, 200]. Further-

more, mathematical models of dystonia propose that motor features of dystonia may arise

from an imbalance in neural circuitry, specifically, an increased gain in the indirect pathway

relative to the direct pathway which could lead to unstable and uncontrolled synchronous

oscillations within the cortex and basal ganglia [200]. Such oscillatory behavior is assumed to

contribute to dystonia, as effective motor control necessitates a controlled balance between

these two pathways as depicted in Fig. 4.1 (a). Moreover, microelectrode recordings from our

previous works suggest that these abnormal patterns are associated with increased activity

in the internal globus pallidus (GPi) of basal ganglia [200] during voluntary movement, par-

ticularly at low frequencies in theta (4-8 Hz) and alpha (8-13 Hz) frequency bands [114, 92],

providing support for these mathematical models. GPi is essentially an inhibitory nuclei.

Therefore, the propagation of excessive activation from basal ganglia to thalamo-cortical

loops leads to failure of appropriate inhibition of the thalamo-cortical network. This re-

sults in both insufficient inhibition of undesired movement and insufficient disinhibition of

intended movement [114]. DBS of the GPi and subthalamic nucleus (STN) at clinically effec-

tive frequencies, 120-190 Hz for GPi [73] and 130-185 Hz in STN [30], shows marked clinical

benefit, though the exact mechanism of effect is unknown [207, 212, 206]. Moreover, we have

shown in a separate study that DBS stimulation pulses are more likely to be transferred

through the same pathways as the intrinsic signals [113] by predicting the high frequency

evoked responses from DBS using a transfer function model. However, the low frequency con-
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tents of these transfer functions, which represents the underlying neural transmission, were

not studied. Therefore, how these pulses influence the intrinsic signals is still unclear. Three

possible explanations are facilitating, blocking, or changing the power and transmission de-

lay in several frequency bands, or some combination of these effects. [113]. Understanding

how DBS signals flow through deep brain networks and influence motor circuitry, especially

pathways from pallidum to thalamic motor nuclei, would enhance our understanding of the

pathophysiology of dystonia and the mechanism of DBS in treatment of dystonia.

Transfer Functions are commonly used in engineering to analyze transmission of band-limited

information between a source and destination. Here, we apply this type of analysis to

examine the magnitude of transmission in multiple frequency bands between different brain

regions, and how this transmission changes in the presence of DBS. We hypothesized that

GPi and STN stimulation alter the transmission of abnormal low frequency activity within

the indirect pathway, specifically transmission from STN to GPi. We also explored if GPi and

STN stimulation impact the transmission of low frequency activity via outputs of the direct

and indirect pathway, from GPi to thalamic nuclei. Our analysis considers the standard low

frequency bands: delta, theta, alpha, beta, and low gamma. We further explored the effect

of stimulation frequency on the pattern of signal transmission exhibited by three known

anatomical pathways in pallidothalamic network: STN to GPi and GPi to VoaVop, and GPi

to VA.

To study the effects of stimulation on deep brain network signal transmission, signals were

acquired using externalized stereoelectroencephalography (sEEG) leads implanted in basal

ganglia and thalamic nuclei in thirteen children and young adults with childhood-onset

dystonia of various underlying etiologies (genetic, acquired, or metabolic). Recordings of

both the DBS-on and DBS-off conditions were acquired. Empirical transfer functions and

their magnitude responses, up to 50 Hz, were then estimated for pathways connecting each

pair of these motor regions, in both DBS-on and DBS-off conditions. When multiple electrode
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brain recordings are available, transfer function analysis may be an important technique for

analysis of the transmission of information between different regions. This method allows for

estimation of the flow of information in low frequencies (underlying intrinsic neural activity)

during stimulation regardless of the stimulation artifacts, as DBS targets are only stimulated

at frequencies above 50 Hz. To our knowledge, this method has not been utilized in the field

of brain stimulation and neuromodulation before. This provides an analytical framework that

can be used to better understand the effects of DBS on the information flow in deep brain

circuitry. Additionally, it sheds light on the mechanism of deep brain stimulation, which

could lead to improvement of DBS programming protocols and closed-loop DBS designs.
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Figure 4.1: a) Schematic representation of the direct and indirect pathways in the cortico-
basal ganglia-thalamo-cortical loop. This diagram illustrates the neural pathways within the
basal ganglia, thalamus, and cortex, emphasizing their roles in the facilitation and inhibition
of movement. The direct pathway (shown in green) promotes the activation of motor cortex
through a series of disinhibitory signals. Conversely, the indirect pathway (depicted in red)
inhibits movement by suppressing motor cortex activity via inhibitory signalling through
thalamic nuclei. The co-activation of these two pathways could be essential for movement
initiation and accurate motor control. b) Schematic of an externalized sEEG lead in a
deep brain region. This figure illustrates the positioning of the lead within a specific deep
brain area, connected to a monitoring unit capable of stimulating and recording simultane-
ously [21].
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4.3 Materials and Methods

4.3.1 Subjects

The stimulation data and baseline recordings from thirteen pediatric and young adult pa-

tients undergoing deep brain stimulation (DBS) surgery for the treatment of dystonia were

selected for this study (S1-S3, S12-S14, S16, S17, S19-S23 in Table 1).

Data treatment and filtering

All the data, including the baseline LFPs and the stimulation LFPs, were notch filtered at 60

Hz and its two harmonics. A 4th order butterworth highpass filter was applied with a cutoff

frequency of 1 Hz to remove drift. The monopolar recordings from the micro-contacts on each

row of the lead (total of 10 per lead) were re-referenced to a bipolar montage by computing

the voltage difference for each pair of adjacent micro-contacts. Re-referencing produced 8

channel recordings per lead, as shown in Figure. 4.2 (b). This process removes the common

mode noise and uncovers the underlying neural activity [114]. It is important to note that

a post-processing step to remove stimulation artifacts is not necessary in this case, because

all stimulation artifacts will occur at multiples of the stimulation frequency and therefore

are effectively removed by low pass filtering below 50Hz. For consistency throughout our

analyses, we used a maximum of 10 seconds of signals per stimulation setting and/or baseline

recording.

4.3.2 Computation of transfer function

An empirical transfer function can be computed using several different methods. The mag-

nitude of the transfer function is a linear measure of the amount of information transferred
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Figure 4.2: a) Sample of raw data recorded over 0.25 seconds during baseline, and during
DBS at 55, 85, 185, and 250 Hz,demonstrating contamination from artifacts during the
stimulation; b) Baseline LFP recordings from three micro contacts on the first row of STN
lead (left). We high pass filtered the signals and transformed them into the bipolar montage
(computed the voltage difference) for each adjacent pair on one row (right); c) Raw Power
Spectral Density (PSD; blue), the fitted pink noise (black dashed line), and the PSD after
removal of the pink noise component (red); d) This figure depicts samples of GPi to VoaVop
transfer function magnitudes during baseline and during GPi-DBS at 55, 85, 185, 250 Hz
stimulation frequencies, highlighting a significant increase in magnitude response across all
bands (delta, theta, alpha, beta, and gamma) during the stimulation.
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between two points at each individual frequency. In this study, in particular, we wanted to

evaluate the changes in the magnitude response of transfer function representation of each

pathway connecting two points between two electrodes. The transfer function between each

two points is computed as the ratio of the output Fourier transform to the input Fourier

transform [22, 113, 78]. The power spectral density (PSD) can be estimated as the value

of the Fourier transform to the power of two, divided by 2 times the frequency spacing.

Therefore we can estimate the transfer function magnitude by:

|H| =
|FT (Y )|
|FT (X)|

≈ PSD(Y )
1
2

PSD(X)
1
2

=
PSD(Y )

1
2PSD(X)

1
2

PSD(X)
=

|CPSD(X, Y )|
PSD(X)

(4.1)

Where PSD(X) is the power spectral density of the input and CPSD(X, Y ) is the cross

power spectral density between input and output. This single-input-single-output (SISO)

transfer function model is a linear representation of each pathway, all of which can be com-

bined to comprise a multiple-input-multiple-output (MIMO) system. However, here, we

analyze each pathway individually, therefore H represents the pathway transfer function

(H(ω)) itself [108]. This model can characterize how each region affects the signal trans-

mission within the whole network and how that network responds to exogenous stimulation

(DBS) [108].

It is worthy to note that transfer functions that relate two signals are essentially different

from their coherence. The coherence in a linear time-invariant (LTI) system is one and

in that case the transfer function is a good estimator of relationship between two signals.

Here, we assume that two signals have a unit coherence and we compensate for it by adding a

regularization parameter that accounts for all the inputs to the system beside the actual input

node. In addition, in the process of deriving transfer functions from PSDs, the incorporation

of a regularization constant, ϵ, in the denominator is a critical step to ensure numerical
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stability and accuracy. This need arises particularly at frequencies where the PSD of the

input approaches zero, leading to potential numerical instability due to division by values

close to zero. To mitigate this, a small value (ϵ) is added to the denominator, effectively

ensuring that the transfer function remains well-defined across all frequencies. The value

of ϵ was determined to be 5e − 11 through a trial-and-error approach, aiming to find the

smallest constant that prevents numerical issues while minimally impacting the fidelity of

the transfer function. The rationale behind adding a constant to the denominator is due

to the assumption that any other inputs contributing to the output of the system follow a

constant distribution, implying that the system’s response at frequencies where the input

PSD is very low is dominated by these other inputs. Consequently, the introduction of ϵ can

be viewed as a representation of the baseline level of these other contributions, providing

a more realistic and stable characterization of the system’s behavior. This approach, while

empirical, aligns with common practices in system identification and signal processing, where

balancing the fidelity of the model with the practical limitations of real-world data is often

necessary. Thus, the new transfer function equation is:

H =
CPSD(X, Y )

PSD(X) + ϵ
, (4.2)

where ϵ is the regularization constant.

For each subject, the PSD for each channel and the pairwise cross spectral density (CPSD)

between the channels were computed in the DBS-on (separately for different frequencies) and

DBS-off conditions using Welch’s method with a ∼ 3 s hamming window, 30% overlap, and

over a frequency range of 1 to 50 Hz. The computed PSDs and CPSDs are contaminated with

pink noise which is characterized by a fractional ( 1
F
) decay. Therefore, we fitted a function,

a
b+F

, to all computed spectra and then subtracted that fractional trend from the data, as
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illustrated in Figure 4.2 (c). Once pink noise was removed, the transfer function model of

each pathway was constructed using Equation 4.2, for baseline and also all stimulating pairs.

The aim of this study is to assess the effect of different frequencies of stimulation on the

transmission of low frequency oscillations (LFO) within deep brain networks. Due to the

wide usage of low frequency bands in neurology, we analyze these effects in EEG standard

frequency bands (delta [0.5-4 Hz], theta [4-8 Hz], alpha [8-13 Hz], beta [13-30 Hz], and low

gamma [30-50 Hz]), as depicted in Figure. 4.2 (d). Therefore, the mean transfer function

gain was computed at each of these frequency bands and the effect of stimulation at different

frequencies was compared within each frequency band. Note that the frequencies analyzed

for the transfer function analysis (0.5-50 Hz) are considerably lower than the stimulation

frequencies (55-250 Hz), so the changes we analyze are likely to represent neural effects of

stimulation rather than a direct electrical stimulation or blocking effect.

4.4 Results

We fitted linear mixed-effects models to the mean transfer function gain at each frequency

band to estimate the effects of stimulation, including the impact of various stimulation

frequencies, on these gains. After careful analysis and visualization of the data, we realized

that the effect of stimulation frequency on these gains is not linear. Therefore, we treated

the stimulation frequency as a discrete variable and we performed pairwise comparisons to

assess the significance of the observed changes relative to the baseline transfer function gains,

across all standard EEG frequency bands, and compared how they differ from each other.

All reported p-values are Bonferroni-corrected for increased reliability of the results. The

fitted nested linear mixed effect model in R to assess the effect of DBS frequency on different

pathways’ signal transmission was defined as:
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TF Gains ∼ Frequency∗Pathway+(1|Subject : Frequency)+(1|Subject : Pathway) (4.3)

where subjects are the random effects, which would account for individual variations. The

stimulation frequency and the pathways served as both fixed effect and random effect nested

within each subject in the models, contributing to the overall variance in the data and the

within-subject intercept variability. We then performed a pairwise comparison between the

changes of transfer function gains for all standard frequency bands during STN stimulation

(N = 12, R2
theta = 0.44, R2

alpha = 0.48, R2
beta = 0.49, R2

gamma = 0.49 ) and during GPi

Stimulation (N = 13, R2
theta = 0.48, R2

alpha = 0.49, R2
beta = 0.52, R2

gamma = 0.52 ). We

excluded delta band due to contamination at the low frequency filter cutoff. Also one subject

is excluded from STN Stimulation analysis as they did not have STN lead implanted. The

significance of the estimated coefficients were tested by type III Analysis of Variance Table

with Satterthwaite’s method and the p-values were computed from the test statistic based

on chi-squared distribution with threshold of 0.05. The results from the model show that

stimulation in both STN and GPi increased transfer function gains significantly in all routes

for all patients, regardless of the frequency bands as depicted in Figure 4.3.

We then performed a pairwise multiple comparison using Kenward-Roger’s F-test with the

emmeans [223] package to find the differences between each pathway (GPi-VoaVop, GPi-VA,

and STN-GPi) and their interaction (conditional effect) with stimulation frequencies (0, 55,

85, 185, and 250 Hz). This method compares the estimated marginal means to discover the

effect of stimulation frequency on the patterns of transmission.
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Figure 4.3: Transfer function gains of theta, alpha, beta, and gamma bands at the baseline
activity and during 55, 85, 185, 250 Hz GPi-DBS and STN-DBS. All the transfer function
gains during DBS are significantly larger than the gains during the baseline (DBS-off),
illustraded with *.

4.4.1 GPi stimulation

Theta and Alpha bands: The results of pairwise comparison showed no significant changes

within pathways at frequencies of stimulation.

Beta band: The results of pairwise comparison with respect to baseline showed that during

all stimulation frequencies 55, 85, 185, and 250 Hz GPi-DBS, GPi-VoaVop beta band gains

are significantly higher than that of STN-GPi (Estimates Beta = 2.59, 2.42, 2.38, 3.14

respectively: p − value < 0.01) 1 and GPi-VA (Estimates Beta = 1.99, 1.82, 1.92, 3.70:

p− value < 0.01), while this gains are not significantly different at baseline activity.

Gamma band: Similar to the results at Beta band, the results of pairwise comparison with

respect to baseline showed that during all stimulation frequencies 55, 85, 185, and 250 Hz

GPi-DBS, GPi-VoaVop gamma band gains are significantly higher than that of STN-GPi

(Estimates Gamma = 2.58,= 2.37, 2.25, 2.88 respectively: p − value < 0.01) and GPi-VA

(Estimates Gamma = 2.11, 1.59, 1.72, 3.70: p − value < 0.01), while this gains are not

1”Estimates” are the estimates of the effect sizes.

85



significantly different at baseline activity.

Figure 4.4: Statistical results: Effect of GPi-DBS on the transfer function gains within
the pathways, with respect to the baseline transfer function gains. The lines indicate the
significance within pathways and the *s indicate the significance of each bar with respect to
baseline gains (DBS-off).

In summary, as shown in Figure 4.4, the the transfer function gains did not differ within the

stimulation frequencies, specially the clinical effective stimulation frequency, 185 Hz. How-

ever, the results show that during all stimulation frequencies, GPi-VoaVop gains increased

significantly compared to the GPi-STN and GPi-VA gains at beta and gamma bands, but

not the theta and alpha bands. Moreover, the statistical analysis on the effect of GPi-DBS

on the transfer function gains at each frequency band is shown in Figure 4.5. These results

illustrate that the GPi-DBS has the lowest effect size (least increase) on the theta band

transmission and the highest at beta and gamma band transmission. Meaning that the DBS

facilitates transmission of beta and gamma more than the transmission of theta activity in
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Figure 4.5: Statistical results: Effect of GPi-DBS on the transfer function gains within the
frequency bands for each pathway.

pallido-thalamic network.

Clinically optimal versus non-optimal GPi-DBS setting:

We marked the optimal stimulation settings (stimulation macro-contacts, leads, and stimu-

lation frequencies) for those patients that responded to GPi-DBS and performed the same

statistical analysis. All thirteen patients responded to GPi DBS either at 185 or 55 Hz. We

fitted a linear mixed effect model as:

TF Gains ∼ Setting ∗ Pathway + (1|Subject : Pathway) (4.4)

where ”setting” stands for the DBS setting regardless of the stimulation frequency and has

three levels: 1. DBS-off, 2. non-optimal setting, 3. optimal setting. After we fitted the

models for each frequency band gain (N = 13, R2
theta = 0.57, R2

alpha = 0.62, R2
beta = 0.64,

R2
gamma = 0.65 ), we performed a pairwise comparison to determine whether the ”optimal”

and ”non-optimal” settings had different effects on the transmission of signals within deep
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brain regions. Figure 4.6 shows all the transfer function gains in for frequency bands (theta,

alpha, beta, gamma) for all pathways. Each color represents one patient with their mean

gain and standard deviation.

Figure 4.6: Effect of optimal versus non-optimal GPi-DBS setting of transfer function gains,
shown for each pathway and frequency band, for all patients. Here, GPi DBS was effective
clinically for all patients.

The results showed that there is no difference between the effect of optimal versus non-

optimal DBS on the STN to GPi transfer transfer function gains, as shown in Figure 4.6.

However, anova test revealed that the GPi-VO gain during the optimal DBS is significantly

larger than that of non-optimal DBS, in alpha (Estimte = 2.37; p − value < 0.01), beta

(Estimte = 2.69; p− value < 0.01), and gamma (Estimte = 2.95; p− value < 0.01) bands.

Similar effect was seen in the GPi to VA transfer function gains in only beta (Estimte =

1.28; p−value < 0.05) and gamma (Estimte = 1.32; p−value < 0.05) bands. For simplicity

of the figure we are not showing the significance between the DBS-off versus optimal and

non-optimal stimulation setting.
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4.4.2 STN stimulation

Theta band: The results of pairwise comparison showed no significant changes within

pathways at frequencies of stimulation (Figure 4.7).

Alpha band: The results of pairwise comparison with respect to baseline showed that

during 85 Hz STN stimulation, GPi-VoaVop alpha band gain is significantly higher than

that of STN-GPi (Estimate = 4.01: p − value < 0.01) and GPi-VA (Estimate = 3,36:

p − value < 0.01). In addition, during 185 Hz STN stimulation, GPi-VoaVop alpha band

gain is significantly higher than that of STN-GPi (Estimate = 3.37: p−value < 0.01) but not

GPi-VA, which could mean that it does not interfere with GPi-VA transmission. STN-DBS

at 250 Hz imposed an increased GPi-VoaVop versus GPi-VA transmission (Figure 4.7).

Beta band: The results of pairwise comparison with respect to baseline showed that, similar

to alpha band, during 85 Hz STN stimulation, GPi-VoaVop alpha band gain is significantly

higher than that of STN-GPi (Estimate = 3.75: p − value < 0.01) and GPi-VA (Estimate

= 2.79: p− value < 0.01). In addition, during 185 Hz STN stimulation, GPi-VoaVop alpha

band gain is significantly higher than that of STN-GPi (Estimate = 3.40: p− value < 0.01)

but not GPi-VA. However there was no significant change were observed within pathways

due to 250 Hz STN-DBS (Figure 4.7).

Gamma band: The results of pairwise comparison with respect to baseline showed that,

similar to alpha and beta band, during 85 Hz STN stimulation, GPi-VoaVop alpha band

gain is significantly higher than that of STN-GPi (Estimate = 3.83: p− value < 0.01) and

GPi-VA (Estimate = 2.85: p− value < 0.01). In addition, during 185 Hz STN stimulation,

GPi-VoaVop alpha band gain is significantly higher than that of STN-GPi (Estimate = 3.41:

p− value < 0.01) but not GPi-VA (Figure 4.7).

In summary, as shown in Figure 4.7, the GPi-VoaVop gains at the commonly used clinical
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Figure 4.7: Statistical results: Effect of STN-DBS on the transfer function gains within the
pathways.

stimulation frequencies for STN-DBS (85 and 185 Hz) are significantly larger than those of

STN-GPi in alpha, beta, and gamma bands, but not the theta band. Moreover, the statistical

analysis on the effect of STN-DBS on the transfer function gains at each frequency band is

shown in Figure 4.8. These results illustrate that the STN-DBS has the lowest effect size

(least increase) on the theta band transmission and the highest at beta and gamma band

transmission. Meaning that the DBS facilitates transmission of beta and gamma more than

the transmission of theta activity in pallido-thalamic network.

Clinically optimal versus non-optimal STN-DBS setting:

Similarly, we marked the optimal stimulation setting for those patients that responded to

STN-DBS, and this time, instead of using stimulation frequency as a predictor we tested
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Figure 4.8: Statistical results: Effect of STN-DBS on the transfer function gains within the
frequency bands for each pathway.

whether the ”optimal” and ”non-optimal” stimulation settings are different from each other

and baseline. We only had 3 patients who responded to STN DBS. We used the same linear

mixed effects model equation (Eq. 4.4) to fit the models. After the models were fit for each

frequency band gain (N = 3, R2
theta = 0.15, R2

alpha = 0.17, R2
beta = 0.18, R2

gamma = 0.17 ), we

performed a pairwise comparison to determine whether the ”optimal” and ”non-optimal”

settings had different effects on the transmission of signals within deep brain regions. Fig-

ure 4.9 shows all the transfer function gains in four frequency bands (theta, alpha, beta,

gamma), for all pathways. Each color represents one patient with their mean gain and stan-

dard deviation. No significant effect associated with the best clinical setting was observed

due to STN-DBS; however, We cannot draw a definitive conclusion from these observations

due to the small effect size and limited number of patients responsive to STN-DBS. For sim-

plicity of the figure we are not showing the significance between the DBS-off versus optimal

and non-optimal stimulation setting.
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Figure 4.9: Effect of optimal versus non-optimal STN-DBS setting of transfer function gains,
shown for each pathway and frequency band, for all patients.

Additional analysis: DBS modulates the oscillations associated with dystonic

signals in deep brain regions

Previous studie of dystonic patients show abnormalities in low frequency activity in GPi

and other motor sensory regions, such as STN, VoaVop and VA nuclei of thalamus. In this

chapter we showed that DBS works in part by altering transmission of abnormal signals

in low frequency bands between different brain regions. Here we want to examine and

show that this effect can be both at the stimulation site (locally) and across deep brain

regions (distant regions). In other words, we hypothesize that DBS modulates the abnormal

projections onto thalamic motor subnuclei by changing the pattern of transmission in pallido-

thalamic network, as a result of local and global changes in deep brain regions low frequency
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oscillations. To test this hypothesis, we performed a similar analysis on the power spectra

of each region with and without the DBS. Furthermore, to evaluate the differences between

the optimal versus non-optimal DBS settings for our patients, we analyzed the effect of

clinically effective DBS on the PSDs and compared that with the effect of non-optimal DBS.

The results from the PSD analysis confirms an increase and decrease in power that are both

local and global in all regions. We confirmed the presented results (increased transmission

from GPi to VoaVop) by showing that while stimulating in GPi, the GPi power effectively

decreases and the VoaVop and VA powers increase significantly from baseline, resulting in

increased transfer function gains from GPi to thalamic subnuclei. This also can be confirmed

by the known fact that GPi projections onto thalamic nuclei is inhibitory, therefore decreased

GPi activity essentially leads to increased VoaVop activity and increased transfer function

gain. The group analysis on the clinically effective setting showed that the clinical DBS

decreases the oscillations in all regions. The optimal GPi DBS showed significantly smaller

VA, VoaVop, and STN activity in all bands versus non-optimal setting. However, GPi-DBS

in optimal setting led to a significantly higher GPi power in theta and alpha bands compared

to the non-optimal setting, which again confirms our results from the transfer function study.

These results elicit a better understanding of the mechanism and effects of DBS.

effect of stimulation frequency

4.4.3 optimal versus non-optimal stimulation setting effect on power

4.5 Discussion

DBS is commonly used as a neuromodulatory intervention for a various movement and neu-

rological disorders [127], including Parkinson’s disease, dystonia [207], essential tremor [143],

epilepsy [250], and Alzheimer’s disease [152], as well as psychiatric disorders such as obses-
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Figure 4.10: GPi stimulation: stimulation frequency effect on theta, alpha, beta, and gamma
band powers in STN, GPi, VoaVop, and VA

sive compulsive disorder [148] and major depression disorder [55]. However, it is important

to know that the mechanism of DBS remains largely unknown. The work done in this study

suggests that GPi-DBS and STN-DBS affect the physiological connectivity and transmis-

sion patterns between deep brain areas in the motor circuitry, similar with the patterns of

evoked responses across deep brain regions [220, 117, 103]. As such, a possible mechanism

of DBS could be to restore balance in direct and indirect pathway gains through suppres-

sion or facilitation of indirect or direct pathway activity propagating between pallidum and

thalamus.
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Figure 4.11: STN stimulation: stimulation frequency effect on theta, alpha, beta, and gamma
band powers in STN, GPi, VoaVop, and VA

GPi-DBS affects the neural transmission from STN to GPi, GPi to VoaVoa, and GPi to

VA, such that the transfer function gains during during all DBS settings, presented in this

work, increase significantly from baseline. Our results supports that GPi-DBS increases

the GPi-VoaVop gain more that it affects the other two pathways (STN to GPi and GPi

to VA) in beta and gamma bands, but not in theta and alpha bands. This observations

supports this hypothesis that GPi-DBS perhaps works by jamming the pallido-thalamic

projection (GPi-VoaVop) by facilitating the transmission of higher frequency and blocking

the transmission of lower frequencies, as supported by Figure 4.5. However, no significant

effects of the stimulation frequencies were observed on these gains during GPi-DBS. To
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Figure 4.12: GPi stimulation: DBS-off, non-optimal, and optimal stimulation setting (stim-
ulation frequency, stimulation lead contact and location): in theta, alpha, beta, and gamma
bands (N=13)

summarize, during GPi-DBS, due to the excitatory output of STN and inhibitory output of

GPi, the significant decreased STN-GPi gain with respect to the GPi-VoaVop could imply: 1)
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Figure 4.13: STN stimulation: DBS-off, non-optimal, and optimal stimulation setting (stim-
ulation frequency, stimulation lead contact and location): in theta, alpha, beta, and gamma
bands (N=3)

the GPi-DBS, potentially, reduces the excitability of GPi compared to other regions, resulting

in disinhibition of thalamic subnuclei (VoaVop and VA). 2) GPi-DBS blocks the projections
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of neural activity from GPi to thalamic nuclei by adding noise and decreasing the signal-to-

noise ratio, rather than decreasing the abnormal signal projections in dystonia (theta band

activity). 3) Decreased GPi activity or antidromically induced STN inhibtion, could lead to

lower inhibition of thalamic nuclei, and subsequent increase in thalamic activity [39].

In addition, results from STN-DBS at 85 and 185 Hz, which are usually the chosen clinical

stimulation frequencies for STN, showed significant increase of GPi-VoaVop gains in higher

frequency bands, which means increased amplification of alpha, beta, and gamma signals

from GPi to VoaVop. This means that perhaps STN DBS have more significant effect on

downstream targets, decreasing GPi excitability, and as a result increasing the VoaVop ac-

tivity in those specific bands. The group analysis and the analysis of the optimal clinical

setting did not reveal any significant effect of STN-DBS on theta band. In addition, the

fact that we did not observe significant changes in LFO transmission within pallido-thalamic

network due to 55 and 250 Hz STN-DBS provides support for their therapeutic ineffective-

ness. Another important feature of the STN-DBS results is facilitation of increased alpha,

beta, and gamma transmission within all nuclei compared to the theta transmission. This

may suggest that increasing the transmission of disorder-irrelevant activities (alpha, beta,

and gamma) could lead to jamming the pathway to not allow for transmission of dystonic

signals (theta band activity).

The limitations of this study includes the heterogeneity of the patients in terms of their

symptomatology, underlying disease etiology, and their treatment approach (e.g. not every-

one had VA lead or not all had VoaVop recording), leading to diverse effect of DBS across

regions. However, the heterogeneity of subjects also provides justification for use of this

technique in a wide range of patients. Moreover, we should consider that the methodology

contains assumptions of linearity of the system which may not be true. The transmitted

information between two regions in the control system model do not indicate that neural

signals are actually transmitted through a direct pathway between those regions. For exam-
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ple transmitted information, presented by the transfer function gains, could even be due to a

common input to both nuclei. However, the regularization parameter used in the calculation

of the transfer function accounts for other inputs to the output nuclei of the transfer func-

tion and correct for such errors, allowing us to infer valuable information from the computed

transfer functions.

Another limitation is the presence of noise in low frequency bands especially close to the

filter cutoff frequency (1 Hz), therefore the results of the delta band was not as reliable as

results from higher frequency bands. In addition, important information may not be limited

to the analyzed frequency bands (1-50 Hz).

In our method for calculation of the transfer functions we only calculate the signal amplifica-

tion by computing the spectrum and magnitude of cross-spectrum of two signals; therefore,

we do not take phase information into account. This is appropriate to our hypothesis which

seeks to predict total information transmission and amplification between regions which is

most affected by the transfer function gains. However, we acknowledge that the transfer

function phase is important and contain very useful information about how the stimulation

affects the phase; since it is highly possible that DBS introduces not only amplitude changes

but also phase shifts that could affect the pattern of neural transmission. This will be an

important topic for future analysis.

The use of data from micro-contacts is unique in this study, as most recorded information

from DBS is either available from intraoperative microelectrode recordings, or postoperative

macro-contact LFPs. Micro-contacts are likely to sample from a smaller target region than

macro contacts and thus may provide more specificity to the analysis of information trans-

mission, at the cost of sampling from a smaller target region. Comparison of this technique

between micro-contacts and macro-contacts is an additional important topic for future work.
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Chapter 5

Local field potential signal

transmission is correlated with the

anatomical connectivity measured by

diffusion tractography

5.1 Abstract

In this chapter, we examine the correlation between diffusion tensor imaging (DTI) param-

eters of anatomical connectivity and characteristics of signal transmission obtained from

patient-specific transfer function models. Here, we focused on elucidating the correlation

between structural and functional neural connectivity within a cohort of patients diagnosed

with dystonia. DTI images were obtained from twelve patients with dystonia prior to the

deep brain stimulation (DBS) surgery. For each patient we processed the imaging data to

estimate anatomical measures including fractional anisotropy (FA), axial diffusivity (AD),
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number of fiber tracts per unit area (N), and fiber tract length (L). After the implantation

of temporary depth leads for each patient as part of their treatment plan, intracranial sig-

nals were recorded. Transfer function models and the corresponding measures of functional

connectivity were computed for each patient using local field potential (LFP) recordings.

Generalized Linear Model (GLM) was then employed to determine the relationship between

transfer function measures and DTI parameters. Our results illustrate a positive correlation

between FA, AD, and intrinsic neural transmission measures, representing amplification and

spread of intrinsic neural oscillations, obtained from the transfer functions models. How-

ever, no significant correlation was found between the functional connectivity and number

of fiber tracts or fiber lengths. Our findings suggest that white matter integrity, as mea-

sured by FA and AD, can potentially reflect the amplification and spread of intrinsic brain

signals throughout the network. This study underscores the significant relationship between

structural and functional connectivity, offering valuable insights into propagation of neural

activity in the brain network and potential implications for optimizing noninvasive treat-

ments and planning for neurological disorders. The preprint of this chapter is available on

MedRxiv (doi: https://doi.org/10.1101/2024.04.14.24305803 ).

5.2 Introduction

Advancements in neuroimaging techniques have fundamentally changed our understand-

ing of brain functional and anatomical connectivity [248, 121]. Diffusion Tensor Imaging

(DTI), as an advanced magnetic resonance imaging (MRI) modality, enables us to visu-

alize white matter tracts that connect cortical and subcortical structures by measuring

the motion of water molecules and provide us with valuable insights into the structural

connectivity of the brain. With its capacity to reveal complex details of brain micro-

structure, DTI plays a significant role in optimizing procedures like deep brain stimula-
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tion (DBS) [89, 47, 179, 146, 45, 2, 180, 46, 9, 48, 44, 43, 217, 8, 19, 26]. DBS procedure

can be finely tuned by utilizing DTI to precisely map neural pathways and understand mi-

crostructural connections, promising improved treatment protocols and outcomes for patients

suffering from neurological disorders [179].

Studying the relationship between structural and functional connectivity is an important

domain of research for understanding the brain as a complex network of interconnected

regions [124, 198, 197, 31, 77]. Previous studies have explored the complex relationships

and communication patterns between different brain areas in various neurological disorders.

For example such analysis in epilepsy helps to map the seizure network by exploring the

relationships between the structural and functional networks responsible for conduction of

epileptic activity [31]. Moreover, such studies have been conducted on healthy subjects to

find the correlation between DTI measures and resting state functional MRI (fMRI). fMRI

has lower spatial resolution than electrophysiology data and it does not capture the deep

brain activity. On the other hand, it clearly reveals the cortical functional connectivity. This

study showed that functional connectivity reflects structural connectivity to a large degree in

cortical regions, although there is not a definite one-to-one mapping [80]. Despite all the re-

search endeavors that provide invaluable insights into the interaction between structural and

functional connectivity, the relationship between the two for transmission of non-epileptic

brain signals remains unclear.

Transfer functions have been widely used to study the signal transmission and physiological

connectivity within brain regions [196, 109]. For example, Kamali et al. [109] utilized char-

acteristics of patient specific transfer function models of pathways in order to localize the

seizure onset zones. In our previous studies, we have shown that transfer function models of

deep brain regions can be used to replicate the evoked responses from DBS, informing us of

existence of some relationship between the transmission of DBS pulses through neural path-

ways and the functional connectivity [113]. Moreover, we have shown that the DBS changes
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the transfer function gains of deep brain regions meaning that DBS pulses have some effects

on the functional connectivity. Building upon these fundamental studies that use transfer

function methods, we aim to compute measures of signal transmission using patient specific

transfer function models and find their relationship with structural characteristics provided

by DTI measures, including fractional anisotropy (FA), axial diffusivity (AD), fiber length

(L), and number of fibers per unit area (N), in basal ganglia and thalamic subnuclei. We hy-

pothesize that the measures of signal amplification and transmission computed from transfer

functions are positively correlated with the FA and AD. In other words, we hypothesise that

the white matter integrity of the fibers and the diffusivity of neural pathways are reflected

in functional connectivity represented by the transfer function measures.

In order to do so, we recorded signals from deep brain regions in twelve patients with dystonia,

who underwent DBS procedure as part of their clinical evaluation. MRI, CT and DTI

images were acquired and the DTI anatomical measures were calculated. Transfer functions

representing each pathway for all patients were computed. We then compared the DTI

measures and the transfer function signal transmission quantities using generalized linear

model (GLM). Understanding the correlation and mapping between DTI parameters that

can be calculated noninvasively and characteristics of transfer function models, which require

invasive measurements from deep brain regions, offers invaluable insights into the relationship

of brain structure and function and results in improvement of treatment protocols, planning,

and outcomes.
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5.3 Materials and Methods

5.3.1 Subjects and data

LFP recordings and imaging data from 12 patients (S2-3, S6-8, S12, s17-19, and s21-23 in

Table 1) are used in this study.

5.3.2 Structural Connectivity

Structural image acquisition and processing

Preoperative MRI T1-weighted (structural MRI), DTI, and postoperative CT scans were ob-

tained. Subsequently, the following steps were taken: 1) Pre-processing to correct distortions

and motion artifacts of the DTI scans based on TOPUP and Eddy Current Correction algo-

rithms [236]; 2) Co-registration of the DTI and postoperative CT images to the T1 anatomic

volume; 3) Segmentation of all the subregions of the thalamus and pallidum; 4) Localization

of sEEG leads using the attenuation in CT images; and 5) Estimation of micro-contacts’

coordinates based on a linear model of the sEEG lead and assigning 3 mm diameter to the

effective area [3].

Fiber tracking and DTI parameter estimation

In this study, DTI was employed to explore fiber orientations and measure diffusion prop-

erties. Micro-contact regions within each nucleus served as both origin and target regions

for fiber tracking, enabling visualization of the anatomic pathways connecting the origin and

the target. Using the diffusion tensor we computed several metrics to further characterize

the fiber tracts linking these regions: 1) AD, calculated as the first eigenvalue (λ1) of the
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diffusion tensor, reflects water molecule diffusion along the principal axis of fiber tracts,

indicating axonal integrity. Changes in AD can indicate axonal degeneration or demyelina-

tion [244]. 2) FA, a measure derived from the variance of eigenvalues (λ1, λ2, λ3), quantifies

the degree of anisotropy in water diffusion, offering insights into the coherence and density

of fiber tracts. The calculation of FA is given by Equation 5.1, which is scaled between 0

(isotropic diffusion) and 1 (highly anisotropic diffusion). This provides direct insight into the

structural integrity of axonal fibers [1]. 3) Number of fiber tracts per unit area (N) estimates

the count of individual fiber bundles connecting two regions of interest and offers information

about the density of fibers within that area [105]. 4) Fiber tract length indicates the total

length of individual fiber tracts connecting two regions of interest and provides insights into

the spatial extent or reach of neural pathways [51].

FA =

√
1

2
·

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

λ2
1 + λ2

2 + λ2
3

(5.1)

5.3.3 Functional Connectivity

Electrophisological data processing

The general data collection, protocols, and preprocessing are explained earlier in general

methods.

Transfer Function Computation

The empirical transfer function of a system is computed as the ratio of the system’s output

Fourier transform (FT(Y)) to the system’s input Fourier transform (FT(X)) which can be

estimated as:
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H(ω) =
FT (Y )

FT (X)
≈ CPSD(X, Y )

PSD(X) + ϵ
(5.2)

Similar to the transfer functions computed in chapter 4, PSD(X) is the power spectral

density of the input, CPSD(X,Y) is the cross power spectral density between input signal and

output signal, with complex numbers, and ϵ is a regularization constant. We computed the

single input-single output (SISO) transfer function model between each two bipolar recording

channels. After constructing the SISO transfer function models for each pair of channels, we

want to investigate whether properties of magnitude of these transfer functions correlate with

the anatomical features derived from DTI data. In other words, we want to evaluate how the

characteristics of these transfer functions, representing functional connectivity, are related

to the anatomical connectivity in the brain and to confirm whether they contain useful

information about the anatomical features of the neural fibers. Note that the computed

transfer functions are complex functions, which includes information about the phase and

magnitude. Here, we only use the magnitude of these transfer function, and not the phase

shifts and delays [113].

We computed two parameters representing the characteristics of intrinsic signal transmission

from transfer function models as depicted in Figure 5.1. First parameter is the peak gain or

the maximum transfer function gain (P1 in Figure 5.1), which represents the maximum level

of amplification of the transmitted input signal. In other words, it is a metric that quantifies

how much input signals can be amplified and spread in the network at the maximum gain

frequency. The larger the gain, the more propagation and amplification of neural activity

throughout the network at that frequency. The second parameter is the peak-to-floor (PF)

ratio which represents the large system responses and its fast magnitude drop-off [109]. PF

ratio is calculated as the ratio between peak of the frequency response and its magnitude
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at the roll-off frequency (P2 in Figure.5.1). The roll-off frequency is the boundary where

the energy flowing through a system begins to drop, defined as the frequency at which the

dB magnitude is 3dB below the gain at frequency 0 ω = 0 (DC gain) or where the power

drops to half the power at ω = 0, as P2 in Fig.5.1. For a given pathway, we calculated

the frequency response magnitude of all the SISO transfer functions as quantified by the

magnitude of H(ω). Thereafter, we computed the PF ratio as:

PF ratio = log10
|H(ωp)|
|H(ωf)|

(5.3)

where ωp represents the frequency at which maximum gain (H(ωp) ) is achieved and ωf is

roll-off frequency and H(ωf) is the transfer function gain at the roll-off frequency. All these

measure were computed for each pair of electrodes, per hemisphere.
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Figure 5.1: This figure illustrates the magnitude plot of a sample transfer function, show-
casing key parameters including maximum gain, floor gain, and roll-off frequency. The PF
ratio is determined by calculating the ratio between P1 and P2.
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5.4 Results

In order to evaluate the relationship between the DTI and transfer function measures, first,

all the variables were standardized. For each patient, we removed the outliers and kept the

samples within 3 standard deviation from the mean. We removed the samples for which

the max gain occurs below 2Hz as the data could be distorted in vicinity of 1 Hz cutoff

frequency. We employed a GLM from the Gaussian family to model the PF ratio and the

maximum gain in relation to FA, AD, N, and L for group analysis. Each predictor variable

was chosen based on theoretical considerations and previous empirical findings suggesting

their relevance to the functional connectivity. In addition, GLM allowed us to accommodate

the normal distribution of our response variables, providing a robust framework for examining

and assessing the strength and significance of the linear relationships between our predictors

(FA, AD, N, and L) and our outcomes of interest (maximum gain and PF ratio). Our

analysis aimed to elucidate the complex relationship between these variables with the PF

ratio and maximum gain. Figure 5.2 shows a visualization of three distinct pathways from

the GPi to VoaVop in a single patient, exemplifying such relationship. The significance of

the estimated coefficients were then tested by Wald statistic and the p-values were computed

from the test statistic based on chi-squared distribution with threshold of 0.05. We adjusted

all the p-values using Bonferroni method after. In addition, the Variance Inflation Factors

(VIF) were calculated to ensure that collinearity is negligible in the models, affirming the

robustness and reliability of our statistical results. All the statistical analysis were done in

R-studio.

Evaluation of the relationship between the PF ratio (R2 = 0.018) and maximum gain (R2 =

0.019) with FA, AD, N, and L indicated a significant positive correlation between both the PF

ratio and maximum gain with FA and AD, as illustrated in Fig. 5.3 and Fig. 5.4. Conversely,

the analysis showed no statistically significant correlation between PF ratio and maximum

gain with either fiber length (L) or the number of fibers per unit area (N) (Figures 5.3
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Figure 5.2: This figure illustrates a sample of three unique neural pathways from GPi to
VoaVop for one patient, each characterized by varying fiber sizes and integrity levels. Accom-
panying each pathway is its respective transfer function magnitude plot. Maximum gain and
the PF ratio are annotated on each plot for clarity. The larger fibers represented in the left
(FA = 0.40, AD = 1.35, L = 16.5, total N = 3) and middle (FA = 0.42, AD = 1.38, L =
18.8, total N = 132) plots exhibit higher maximum gain and PF ratio values. Conversely,
the pathway depicted in the right (FA = 0.38, AD = 1.2, L = 20.07, total N = 45) plot,
characterized by smaller FA and AD has lower maximum gain and PF ratio, underscoring
the relationship between the structural characteristics and functional connectivity.

Table 5.1: Statistical outcomes from the Generalized Linear Model (GLM) fitting for PF
ratio and maximum gain in relation to FA, AD, N, and L.

DTI measures Intercept [CI] FA [CI] AD [CI] N [CI] L [CI] R2

PF ratio -0.07 0.07 0.11 -0.07 -0.06 .018
[-0.12, -0.03] [0.02, 0.13] [0.04, 0.17] [-0.14, 0] [-0.12, 0.01]

Maximum -0.07 0.11 0.08 -0.03 -0.02 .019
gain [-0.12, -0.02] [0.05, 0.16] [0.02, 0.15 ] [-0.10, 0.05] [-0.09, 0.04]

and 5.4). The results of this GLM analysis are presented in Table 5.1, where we detail the

estimated effects, confidence intervals, and statistical significance of each predictor.

5.5 Discussion

Several research studies to date focused on integrating structural and functional connectivity

in order to understand how they correlate and the mutual information they share with one

another [134, 12, 75, 194, 97, 218, 120, 135]. These investigations predominantly depend on
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Figure 5.3: Illustration of the GLM fits and the statistical significance between the PF
ratio and DTI measures. Individual subject PF ratios are depicted by dashed black lines
and the solid red lines represent the GLM fit for group analysis. The figure highlights the
significant correlation (p − value < 0.05) of PF ratio with Functional Anisotropy (FA) and
Axial Diffusivity (AD) and the absence of significant correlation (NS) between PF ratio with
number of tracts per unit area (N) and fiber length (L).
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Figure 5.4: Illustration of the GLM fits and the statistical significance between the maximum
gains and DTI measures. Individual subject maximum gains are depicted by dashed black
lines and the solid red lines represent the GLM fit for group analysis. The figure highlights
the significant correlation (p− value < 0.05) of maximum gain with Functional Anisotropy
(FA) and Axial Diffusivity (AD) and the absence of a correlation between maximum gain
with number of tracts per unit area (N) and fiber length (L).

modalities such as electro-encephalography (EEG) and fMRI for assessing functional connec-

tivity, while employing DTI to assess structural connectivity. However, despite significant

insights offered by these studies, this relationship is still poorly understood. Notably, limita-

tions such as the relatively low spatial resolution of EEG and the low temporal resolution of

fMRI prevents us from conducting precise localization and capturing of rapid neural dynam-

110



ics while assessing functional connectivity [76, 25]. Thus, it seems necessary to employ other

modalities to fully address the relationship between structural and functional connectivity

in the brain.

Here in this paper, we aimed to study the relationship between DTI parameters and char-

acteristics of patient-specific transfer function models obtained from brain intrinsic neural

activity. Thus, we investigated the correlation between FA, AD, Number of fiber tracts per

unit area (N), and fiber tract length (L) as DTI parameters with maximum transfer function

gain and PF ratio. Our results, consistent with previous works done on the relationship

between the functional and anatomical connectivity [134, 12, 75, 194, 97, 218, 120, 135],

provide further evidence of the relationship between anatomical and functional connectivity.

In particular, our results highlight positive correlation between FA and AD with both char-

acteristic of transfer function models (i.e., PF ratio and maximum gain). Significant positive

correlation between FA and maximum transfer function gain shows that axonal fibers with

higher integrity can better amplify and spread an intrinsic brain signal throughout the brain

network. FA significant positive correlation with PF ratio suggests that axonal fibers with

higher integrity have the capacity to provide larger system response and signal transmission.

Significant positive correlation of maximum transfer function gain and PF ratio with AD

suggests that the maximum level of signal amplification and fast magnitude drop-offs happen

with higher magnitudes of diffusion parallel to fiber tracts.

In addition, Abe et al. previously provided evidence on the correlation between DTI parame-

ters (i.e., FA, tract length, and tract diameter) and characteristics of DBS evoked potentials

(EPs) [3]. Their results suggest that the integrity of white matter tracts plays a crucial

role in determining the efficiency, strength, and transmission speed of DBS-induced signals.

Moreover, Kasiri et al. [113] demonstrated through a patient-specific transfer function ap-

proach that DBS pulses travel along normal pathways from the stimulation site to distant

targets in the brain. These studies collectively highlight the varied role of DTI parameters,

111



such as FA and AD, not only in providing insights into anatomical connectivity, but also in

explaining information about neural signal transmission in the brain.

5.6 Limitation

As a non-invasive imaging technique, DTI provides valuable information about the white

matter micro-structure which enables their visualization in 3D and facilitates studies on

brain injures. However, similar to any imaging technique it has certain limitations. First,

such computations of anatomical connectivity relies on the orientation of fibers which might

result in inaccuracies in regions where the fibers interactions are complex [104]. Second,

DTI has low image resolution, limiting its ability to identify single nerve fibers or small

fiber bundles. Moreover, it is sensitive to noise and artifacts; therefore we require precise

motion control and post-processing approaches. To better utilize DTI, integration with

other imaging techniques and clinical data is necessary [104]. This is why we, previously,

used DBS measurements to validate and confirm the effectiveness and accuracy of our DTI

measurements for clinical applications [3].

In addition, it is crucial to acknowledge the limitations associated with Linear Time-Invariant

(LTI) models, including transfer function analysis, which we employed to model the signal

transmission between different nuclei in the deep brain regions. LTI models may not fully

and accurately capture the dynamic and nonlinear nature of brain function. The brain’s

complex and adaptive nature might involve time-varying dynamics that cannot be adequately

addressed by LTI models.

Moreover, the transfer function gains here do not indicate that the information is trans-

mitted through a direct pathway from input to the output of the pathway’s system. Such

measure can also indicate a common input to both system’s input and output (two ends of
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a pathway), whether there is a fiber between them or not. However, in this study, since we

are investigating the correlation of anatomical connectivity with the functional connectivity,

there always exists a tract between the input and output. Therefore, this concern in not

valid here, although it is a valid concern in general.

5.7 Conclusion

In conclusion, our study into the relationship between DTI parameters and characteristics of

patient-specific transfer function models provides further evidence for the existence of signif-

icant relationship between structural and functional connectivity, offering valuable insights

into how white matter integrity affects intrinsic neural activity propagation in the brain

network.
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Chapter 6

Additional chapter: Effect of

EMG-activated vibrotactile

biofeedback on skill learning

6.1 Abstract

Dystonia is a movement disorder characterized by repeated and sustained muscle contractions

causing abnormal movements. Dystonia distorts the voluntary pattern of muscle activity

during movement and can interfere with performance of tasks. Furthermore, practice of

movements does not lead to improved performance. Theoretical results suggest that sensory

deficits may be a contributor to lack of improvement with practice. Prior results showing

the presence of sensory deficits in children with secondary dystonia suggests that this may

contribute to their impairment; thereforeimprovement of sensory function might improve

motor performance. In this work, we propose that an augmented vibrotactile biofeedback

may improve the motor learning in children with secondary dystonia by sensory awareness,
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but not in children with primary dystonia, who do not have associated sensory deficits. We

tested this hypothesis by measuring performance and examining the effects of a vibrotactile

biofeedback, applied on a task-relevant muscle, on motor learning in children with both

primary (genetic) and secondary (acquired) dystonia and healthy children during a point-

to-point reaching movement as well as a cyclic trajectory-following task. The results from

this study shows that the vibrotactile device can become an effective method of movement

improvement only for cyclic and smooth tasks but not for point-to-point task in children

with sensory dystonia.

This work was supported by the US National Institutes of Health (grant 1R01HD081346-01A

and Subaward USC-POLIMI: 61430868) and by the Italian Ministry of Health (Ricerca Cor-

rente 2015/2022 to E. Biffi). This was a joint research collaboration between multiple cites

including Politecnicno de Milano, ISTITUTO CARLO BESTA, Milan, Italy; University of

Southern California, Children’s hospital, Los Angeles, California, USA; and IRCCS Eugenio

Medea, Bosisio Parini, Italy.

6.2 Introduction

In the past decades, sensory awareness has shown to be an effective way to improve the motor

performance [171, 14, 99, 33]. Previous studies suggest that we need to further investigate

the artificial sensory feedback mechanism of action as a noninvasive option for improvement

of skill learning [211]. On the other hand, to better understand the effect of brain network

disorders on motor learning, it is important to first, identify the effect of sensory deficits

on motor learning. It is evident from previous works that artificial augmentation of sensory

function is effective in some adults’ rehabilitation [211, 13], however, its effectiveness has

not been explored in children with dystonia. Dystonia is a movement disorder that can

be primary (genetic) or secondary (acquired, due to another underlying disorder such as
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Cerebral Palsy) [5, 208, 209]. While medication and in some cases surgery can be effective

at ameliorating motor symptoms, noninvasive non-medical treatments would be a welcome

adjunct. Physical therapy is often ineffective at improving motor function in children with

dystonia and one reason for this has been postulated as the “failure of motor learning”

theory [201, 27]. This theory predicts that in the absence of sufficient sensory feedback during

the performance of movement, practice will fail to improve performance despite adequate

repetition.

Sensory deficits have been shown in several forms of dystonia, including adult-onset focal

hand dystonia and in children with dystonia due to dyskinetic cerebral palsy (CP) [211],

but not in primary generalized dystonia. Therefore, we conjecture that failure to improve

function with practice in some children with dystonia may be due to the associated sensory

deficits. If this is the case, then biofeedback would be predicted to enhance the sensory

perception of movement and improve motor learning in children with dyskinetic CP, who

have been shown to have sensory deficits [211]. Conversely, biofeedback would be predicted to

have little or no effect when sensory deficits are not present. Here, we explore the possibility

that an EMG-activated vibrotactile biofeedback device could improve symptoms in children

with secondary dystonia [5], by measuring their motor performance and compare them with

a group of healthy children and a group with genetic dystonia.

The speed-accuracy trade-off of Fitts’ law explains the relationship between the speed of

movement and the endpoint accuracy during a “fast” movement to a target [63, 144]. One

of the explanations for this phenomenon is that the trade-off represents compensation for

signal-dependent noise, so that moving more slowly reduces noise and therefore, increases

accuracy [63, 144, 231, 210, 141]. In previous studies, it has been shown that speed-accuracy

trade-off, which is a constraint for human movement, can be modified by practice and the

quantitative relationship between speed and accuracy may be an indicator of skill in some

tasks [141, 112, 202, 18, 40]. Moreover, in earlier work, we showed that children with ac-
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quired dystonia are aware of their limitations and adjust their movements based on the large

signal-dependent noise in their movement [210, 112, 87]; Because of the increased motor

variability in children with dystonia, Fitts law is a good measure of the effect of dystonia

on performance [141, 112, 18, 40, 142]. This, too, would be particularly relevant to children

with dystonia, because improvement in the speed-accuracy relationship would represent a

reduction in a deficit associated with dystonia.

We employed the principles of speed-accuracy trade-off, known as Fitt’s law [63], to investi-

gate whether augmented sensory feedback on a muscle can, potentially, be helpful to improve

the movement of children with dystonia in performing two different tasks. In particular, we

ask whether, in the presence of biofeedback, subjects can improve their maximum speed for

a given accuracy or can improve their accuracy for a given speed. Furthermore, we evaluated

their performance by looking into various measures related to kinematic data, governed by

quantified speed-accuracy relationship, and muscle recruitment to discover whether there is

a significant improvement associated with the vibrotactile biofeedback.

In this study, two sets of experiment protocols were designed; one of which is a point-to-point

task, constrained by trajectory. In this task, the subject must carry a reflective marble with

a spoon between two targets without dropping it, which forces trajectories with a smooth

velocity profile. In addition, the vertical placement of the targets limits forward and lateral

acceleration [141, 112] . The other experiment is a cyclic task, constrained by the speed of

movement [142]. In the cyclic task, the participant must follow a figure-8 trajectory with

their index finger while the speed of movement is controlled by a metronome [142]. By

varying the task difficulty (parameters of the task constraints), the participants were free to

choose their velocity profile in the first task [112] and choose their accuracy in the second

task. Both cases will show improved performance if subjects are able to learn an improved

speed-accuracy relationship; thus, we compared the learning and performance in children

with acquired and genetic dystonia with healthy children, with and without the sensory
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vibrotactile device.

6.3 Materials and methods

6.3.1 Patient selection

Total of forty-six children and young adults (ages 15.5± 4.4) were recruited to perform the

experiments with their preferred (dominant or less dystonic) arm. Twenty-two of which

were healthy subjects, thirteen were diagnosed with acquired dystonia due to cerebral palsy

and eleven were diagnosed with genetic dystonia. Subjects were diagnosed by a pediatric

movement disorder specialist using standard criteria [102] in Children’s hospital, Los Angeles

(CHLA), in California, USA, Istituto Carlo Besta in Milan Italy, and IRCCS Medea in

Ponte Lambro, Italy. They were selected for the study if they were able to perform the

experimental tasks with either of their upper limbs. All patients provided signed informed

consent for Health Insurance Portability and Accountability Act (HIPAA) authorization for

the research use of protected health information if they were recruited in CHLA. Parents

of participants recruited at IRCCS Medea signed a written informed consent. The protocol

of the study was approved by the IRB of CHLA (reference number: CCI-11-00002) and

the Ethical Committees of the Scientific Institute E. Medea (reference number: 054/14-CE;

Date: 01-04-2015) and Istituto Carlo Besta. The experiments took place in three locations,

University of Southern California (USC), and IRCCS Medea, and NearLab in Politecnico di

Milano.
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6.3.2 Experiment design and data recording

Subjects were asked to perform two tasks that are different in nature: In the spoon task,

there is a smoothness constraint (“do not drop the marble”) and subjects are asked to

move as fast as possible [141]. In the figure-8 task, there is a time constraint indicated by a

metronome, and subjects are asked to follow the trajectory as accurately as possible [142]. We

executed testing and training blocks in five consecutive days with or without the vibrotactile

device. After four weeks, they were asked to return and perform the same tasks for another 5

consecutive days. Those who performed the first week with the device, performed the second

week without the device [32] and vice versa. The choice of the week to use the device was

random to account for the learning effect. On each week (block of five days), they performed

a testing trial on the beginning of the first day and ending of the fifth day in three different

conditions (difficulties) for each task. They practiced the task after the testing trial on the

first day, on days two, three, and four, and before the testing trial on day five [32]. See

Figure 6.1 for a schematic of the experiment protocol.

Four Vicon Nexus 1.8.5 motion capture cameras (© Vicon Motion Systems Ltd, UK) at

USC and eight optoelectronic cameras by BTS Bioengineering at Medea were placed around

the subject to track the upper body kinematic data during both tasks, while the subjects

were executing the tasks. The cameras were calibrated with a calibration wand and sampled

at 100 Hz (USC) and 60 Hz (Medea). The cameras tracked 13-15 NDI Vicra Polaris passive

reflective markers placed on the upper extremity muscles and joints. In addition, total of

8 surface electromyography (EMG) sensors were also placed on flexor carpi radialis (FCR),

extensor carpi ulnaris (ECU), biceps, triceps, supraspinatus, anterior, posterior, and lateral

deltoids. The EMGs were recorded using the Biometrics 8-channel wireless EMG system,

sampled at 1000 Hz. In addition, we recorded the subjects’ maximum voluntary contraction

(MVC) for all 8 muscles, every day, prior to the onset of experiments. To record the MVC

for each individual muscle, we positioned the subject in a way that facilitates the isolation of
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Figure 6.1: Experiment protocol sequences for week with or without intervention (biofeed-
back device). On each day they performed both spoon and figure-8 task. On the training
days, they only practiced with the medium task difficulty (medium sized spoon and the
middle metronome speed). On the testing days, they were tested with two additional easier
and harder task difficulties.

that muscle. Initially, we recorded the baseline EMG, followed by instructing the participants

to contract the isolated and stabilized muscle against resistance, maintaining an isometric

contraction, for 5 seconds. The EMGs and motion capture system were synchronized by a

trigger at the start of the movement. More accurate synchronization was done with signal

processing and cross correlation of the signals. The EMG and motion capture sensors setup

and placement are shown in Figure 6.2 A.
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Figure 6.2: A. Kinematic reflective markers and EMG sensors placement. Total of 12 re-
flective markers were attached to the joints and limb to record the kinematic data. One
additional marker was attached to the index finger in the figure 8 task to capture the finger
trajectory. For the spoon task, one additional marker was attached to the spoon and one
sphere marker was used as the marble in the spoon (total of 14); B. Spoon task setup: A
board with two plastic blocks attached to it was placed on the table. The distance between
blocks is 20 cm along the vertical axis. The participants started the task at the upper target
while fully extending their arm; C. Figure-8 task setup and the iPad application: The scores
are shown on the left side of the iPad app GUI. The subjects started the task at the blue dot
above the figure-8, while fully extending their arm, and followed the red figure-8 trajectory
line. They had to adjust their speed in a way to be on the top blue dot at each beep of the
metronome; D. The vibrotactile biofeedback device; the terminal head contains the filtering
circuit and the vibrating motor, and it would be attached to the target muscle. The control
unit consists of the microcontroller and the circuit for battery recharging [32].

6.3.3 Spoon task

The subjects were seated upright on an adjustable chair and the severely affected dystonic

subjects used their own wheelchair. A board with two targets was placed on a desk in front

of them. The board’s position was adjusted in a way that the subjects had to extend their

arm fully to reach the more distant target. Each target was bounded by two plastic blocks

and the distance between the center lines of these blocks was 20 cm along the direction

of movement. A passive reflective marker was attached to the spoon, and an additional

untethered spherical reflective marker was used as the marble carried by the spoon. The
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Depth (mm) 3 6 9 12 15 18 30 33 66
IoD 6.33 3.16 2.11 1.58 1.26 1.05 0.63 0.57 0.28

Table 6.1: Details of spoon depths and their computed index of difficulty. The inner diameter
of each spoon is 19mm. The index of difficulty is then computed as the ratio of diameter to
depth of each spoon.

subjects were instructed to hold the reflective marble in the spoon and move the spoon back

and forth between the two targets as fast as they could without dropping the marble. The

experiment setup is shown in Figure 6.2 B [141, 112].

Nine different circular spoons of varying depth were designed in SolidWorks 2016 (Dassault

Systems SOLIDWORKS Corporation) and were 3D printed. The index of difficulty for

each trial was calculated based on the spoon dimensions [63, 141, 112]. For each spoon,

we calculate the ”index of difficulty (IoD)” as the ratio of the spoon diameter to its depth,

noting that the marble size and the spoon diameter is constant. Therefore, the IoD is only

dependent to the depth of each spoon. In other words, the index of difficulty is greater for

shallower spoons, because stabilization of the marble in the spoon without dropping requires

more precise attention to smoothness of the trajectory. The details of the spoon sizes and

IoDs are reported in 6.1.

Each subject participated for 5 days on each week. On days one and five, both practice

and performance testing occurred to determine baseline and improvement with practice.

On days 2, 3, and 4, only practice occurred, as shown in Figure 6.1. Prior to initiating the

experiment for each subject, performance was tested on a range of different spoon difficulties.

Easy, medium, and difficult spoons sizes were chosen for each subject. The difficult spoon

was chosen as the largest IoD for which the subject could successfully transport the marble

dropping it on fewer than 30% of trials. The medium and easy spoons were the next 1 and

2 spoon difficulties below. Testing was performed on all three spoon sizes. Training took

place only with the medium spoon size for each participant. Note that no specific cost was

associated with dropping the marble, however if they dropped the marble three times or
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more out of ten repetitions, they would be asked to redo the trial [141, 112].

We also asked the subjects to perform the task without the marble which allowed us to

measure the maximum unconstrained speed and represents the true Fitt’s law, based only

on accuracy at the target endpoint without a constraint during the experiment. Note that

unlike the standard Fitts’ law formulations [63], the IoD used here reflects a property of the

spoon, not a property of the target and target distance, and we have shown in previous work

that this task follows the Fitt’s law [141]. Furthermore, while increasing index of difficulty

reflects the task difficulty at a given speed, there is no simple relationship between IoD and

performance across all subjects, in part because there is a ceiling effect for the easiest spoons,

and some subjects are unable to perform the task at all for the hardest spoons. Therefore,

while there is a speed accuracy relationship, we do not expect this relationship to be linear.

6.3.4 Figure-8 task

The subjects were seated in a position similar to that of the spoon experiment. An iPad

was placed in front of them, and they were instructed to follow a figure-8 trajectory on the

iPad with their index finger, as depicted in Figure 6.2 C. The iPad’s position was adjusted

in a way that the subjects had to extend their arm fully to reach top point of the figure-8

trajectory with their index finger, maintaining the finger in contact with the surface of the

screen. The figure-8’s borders were of width 1 cm and they had to follow the trajectory

clockwise or counter clockwise depending on the arm that they were performing the task

with. In addition to the upper extremity markers, one extra marker was attached to the tip

of their index finger to capture the finger movement trajectory [142, 32].

The experiment setup and protocol of testing and training was similar to that of the spoon

task experiment. Similarly, prior to initiating the experiment for each subject, performance

was tested on a range of different speeds (10 to 45 bmp), controlled by a metronome. The
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fastest tempo was chosen as the most difficult task for which the subject could successfully

follow the figure-8 with fewer than 30% failure of following the trajectory line. The medium

and easy levels were the next lower 5 and 10 bpm. The figure-8 application on the iPad

could detect if they are moving out of the allowed borders of the figure-8 and would mark

that repetition as a failed one. It also saved the finger trajectory during the figure-8 task

performance. Testing is performed on all three speeds, but training was performed only with

the medium speed, and they were asked do the figure-8 for 10 repetitions on each trial. The

first 5 repetitions were done with the metronome on and the next 5 repetitions we turned off

the metronome and they had to remember the speed of movement. This was done so that

subjects would move smoothly and continuously at several different speeds without stopping

and waiting for the metronome pulse between each cycle. In addition, they were encouraged

to make continuous movements, not stopping at any point on the iPad.

6.3.5 Vibrotactile biofeedback device

The vibrotactile biofeedback device, shown in Figure 6.2 D, contains a vibration motor and

active differential electrode head that records the activity of the target muscle [32]. The

vibration motor is at the head of the device so that the feedback is applied directly at

the site of muscle-electrode contact for a clear and relevant stimulus. This electrode head

is connected to a control unit that computes the amplitude of the recorded EMG signal

through Bayesian estimation and controls the silent vibration motor with a rotation speed

and amplitude proportional to the magnitude of the EMG. The processor and the nonlinear

filter in the device are designed to allow for proportional biofeedback [203, 32]. In this study,

we randomly selected the target muscle (the muscle that received the vibrotactile feedback),

for each participant. The muscles were either the lateral or anterior deltoid. The selection of

these two muscles was based on two consideration. First, they both play a role in performing

both tasks, meaning that they are task relevant muscles. Second, it allowed us to confirm or
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reject whether the choice target muscle is important in the effectiveness of the treatment.

6.3.6 Data processing and outcome measures

The data processing was performed in MATLAB R2020a (The MathWorks, Inc., Natick,

MA, USA). All EMG signals were band-pass filtered at 2-200 Hz and normalized to the

MVC. The kinematic data were reconstructed and interpolated using the Cortex 5.5 software

(Motion analysis corp., Rohnert Park, CA, USA). After applying a low-pass filter at 5 Hz

on the kinematic data, 2D joint coordinates were extracted from the 3D joint coordinates by

applying principal component analysis (PCA) and using the first two principal components.

The kinematic data and EMG were synchronized using the “xcorr” function in MATLAB,

resampled to 1000 Hz, and divided into the repetitions of figure-8 or spoon task movement

using the position of index finger or spoon. The segments of the spoon task where they

dropped the marble and those segments of the figure-8 task where they removed their finger

from the iPad were marked as outliers and removed from the dataset for the statistical

analysis. Samples of a preprocessed EMG and kinematic data for for a healthy and a dystonic

subject in one trial of spoon task are shown in Figure 6.3. Finally, The average movement

time in two directions (x and y) were computed for every repetition. We then computed the

following outcome measures derived from these segments and performed statistical analysis.

Spoon task outcome measures

Index of Performance (IP): We fitted a regression line to the movement time (MT) and

the IoD and calculated the index of performance as the inverse of the MT-IoD linear equation

slope for each subject [112]. The index of performance is used as a measure to evaluate if

their improvement was significantly higher on the “biofeedback week (BF on)” compared to

the “no-biofeedback week (BF off)” [63, 144, 231, 210, 141].
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Figure 6.3: Samples of kinematic data and EMGs for a full trial of spoon task for a healthy
(left) and a dystonic subject (right); (top) 3D kinematics data recorded during performance
of the spoon task, in X, Y, and Z directions. (middle) First two principal components of X,
Y, Z recordings. These two PCs were used throughout the alanysis. (bottom) Corresponding
EMG recordings of anterior and lateral deltoid.

Co-contraction index (CCI): Co-contraction index is a useful parameter to evaluate the

muscles’ performance, especially in point-to-point tasks. Muscles co-activation plays an

important role performing these tasks as sudden change of direction requires accurate and

in-time activation of agonist and antagonist muscles [158]. This measure for a pair of agonist

muscle and antagonist muscle at each repetition is computed as [199]:

CCI = mean
(min(EMGi, EMGj)

max(EMGi, EMGj)

)
∗
(
min(EMGi, EMGj)+max(EMGi, EMGj)

)
(6.1)

in which, CCI is the co-contraction index, “min” is the minimum and “max” is the maxi-

mum of an EMG pair (EMGi and EMGj) at an instant in time.

In Figure 6.4 spectrums of X and Y for the healthy subject show peaks at 0.48 and 0.24

126



Hz, one exactly twice the other. The spectrums of the AD EMG only peaks at 0.24 Hz

contributing the the movement only in X direction, while the LD EMG peaks at both task

frequencies, contributing to movement in both X and Y directions. Although the spectrum

of X and Y for dystonic subjects show two distinct peaks, the identified peaks are not as

sharp as thos of healthy subjects and their frequency of occurrence are not exactly twice

each other. The PSD of the LD and AD show two peaks only 0.51 and 0.21 Hz, contributing

to the movements in both directions. Some overflow of activity in the LD is also observable

at around 0.7 Hz.

Figure-8 task outcome measures

Time ∗ Error: This measure was computed as time ∗ error based on the Schmidt’s law,

a variation of Fitt’s law, which studied how movement changes with speed in open-loop

motions within thin lines (negligible trajectory width) [219]. It is computed by assuming

that the movement is cyclic and is controlled with a metronome. Time in this formula

and our experiment is the time required to complete a single figure-8 repetition, even if the

subject goes outside the track. In this experiment the error is computed as [219, 253]:

Error =

√√√√ 1

N
∗

N∑
t=1

d(t)2 (6.2)

Here, N is the number of samples, and d(t) is given by:

d(t) =
min(dU , dL)− radius

radius
(6.3)
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in which dU and dL are the distances between the position and the upper and lower circles,

respectively. The smaller the time ∗ error, the better the performance. Therefore, it should

decrease with skill learning [219]. We compared this measure in figure-8 task with index of

performance (IP) in the spoon task for the final evaluations.

Task correlation index (TCI): The figure-8 task is designed to capture both the task-

relevant and task-irrelevant frequencies in the kinematic and EMG signals, as depicted in

Figure 6.4. Since the task trajectory is symmetric, the frequency of the X component should

be double that of the Y component, where for every four crossings in the x-direction, the

subject makes two crossings in the y-direction. The significance of this is that it allows for

the separation of the dystonic (task-irrelevant) frequencies from the task-relevant frequencies

in the EMG or kinematic signals. This index is computed as:

TCIi =
(PSDEMGi|fx + PSDEMGi|fy

PSDEMGi

)
(6.4)

in which PSDEMGi is the total power of the muscle i’s EMG signal. PSDEMGi|fx and

PSDEMGi|fy are the peak powers in X and Y directions, as marked in Figure 6.4. In other

words, they are peak powers at the task frequencies. This index is bounded within 0 and 1

and the increased movement-muscle correlation means that the performance is better [142].

6.3.7 Statistical analyses

The statistical analyses on all the outcome measures were performed using lme4 [16] and

emmeans [223] packages in R-studio (R core team, 2021). A Linear mixed effect model with

repeated measures was employed to test the effect of practice on motor learning, with and

without the vibrotactile biofeedback, for all outcome measures. For the spoon task outcome
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A)

B)

Figure 6.4: Recorded data during performance of the figure-8 task for a (A) healthy and
a (B) dystonic subject. For each subject (top) 2D kinematics data in X and Y directions
and their normalized spectrum, (bottom) the corresponding EMG recordings of anterior and
lateral deltoid and their spectrum, and (right) their corresponding movement trajectory are
depicted.

measures, we assessed the effect of biofeedback device (week 1 versus week 2), group (i.e.,

primary dystonia, secondary dystonia or healthy), testing day (i.e., day 1 or day 5), index

of difficulty (IoD) and their interactions, as independent variables (fixed effects), on all the

outcome measure by fitting a linear mixed effect model to the data. In this model, random

effects are assumed to be intercepts for subjects and by-subject random slopes for the effect
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of index of difficulty (equation 6.5). We, then, performed analysis of variance test (anova)

and pairwise comparison to obtain the significance of each effect.

Outcome measure ∼ Testing day ∗Group ∗Week ∗ IoD + (IoD | Subject) (6.5)

All the figure-8 task measures were normalized based on the speed of movement to remove the

effect of task difficulty on our measures. Thereafter, we built the linear mixed effect model

with the fixed and random effects chosen similar to that of the spoon task(Equation 6.6). We

then performed anova and pairwise comparison to obtain the significance of each independent

variables.

Outcome measure ∼ Testing day ∗Group ∗Week + (1 | Subject) (6.6)

6.4 Results

Spoon task:

The regression lines of movement time versus the index of difficulty (R2 = 0.96) showed a

significant p-value for all healthy children and children with acquired dystonia when there

was no intervention during the practice (BF off week), which indicates learning. However,

it seems that the children with secondary dystonia have not benefited from the sensory

biofeedback in the spoon task experiment as shown in Figure 6.5a.

Due to the ineffectiveness of the biofeedback device on the spoon task performance, we then

130



****

a) b)

c) d)
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Figure 6.5: Statistical results of motor learning during the spoon task (a and b) and the
figure-8 task (c,d); a) Average movement time, b) Biceps-triceps (top) and anterior-posterior
(bottom) deltoid co-contraction indices for the acquired dystonic responder (left) and non-
responder (right) groups, c) time ∗ error measurement, d) Anterior deltoid task correlation
index, over three task difficulties before (day 1) and after (day 5) training with the biofeed-
back device (BF on) and without the biofeedback device (BF off) for healthy children,
children with genetic (primary) and acquired (secondary) dystonia.
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evaluated the change in co-contraction index (CCI) of FCR-ECU (R2 = 0.72), biceps-triceps

(R2 = 0.64), and anterior-posterior deltoid (R2 = 0.72), for a reponder group and a non-

responder group of children with acquired dystonia. In order to do so, we separated those

subjects who responded to the biofeedback (N=2) and those who did not (N=11). The

pairwise comparison for each group revealed that the sensory biofeedback did not affect the

CCIs in the non-responder group; however a significant pattern of change was observed in the

responder group in both biceps-triceps and anterior-posterior deltoid CCIs (p−vallue < 0.01)

as shown in Figure 6.5 (b).

In both tasks, the effect of the outcome measure calculated on the target muscle (vibrated

muscle) was not significantly different from other muscles.

Figure-8 task

The linear fit (R2 = 0.88) and the pairwise comparison for time∗error revealed that the this

outcome measure decreased significantly (p − value < .01) for the children with acquired

dystonia with the biofeedback device on, compared to the week that they practiced without

the biofeedback ( mean BF off vs BF on = 0.13 , SE = 0.02 ). Two other groups (healthy

and primary dystonia) did not show sensitivity to the biofeedback device, however learning

occurred on the BF-off week. The task correlation index for the anterior deltoid muscle

(R2 = 0.57) increased significantly (p− value < .01) for the children with acquired dystonia

while performing the figure-8 task with the biofeedback device ( mean Day 1 vs Day 5, BF on =

0.11 , SE = 0.02 ; mean BF off vs BF on = 0.05 , SE = 0.01) as shown in Figure 6.5. However,

this measure did not change significantly in other muscles.
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6.5 Discussion

In this study, we hypothesized that the vibrotactile device would be an effective device to

improve skill learning in children with acquired dystonia because of their sensory deficit. But

our results suggest that this hypothesis is only partially correct. In other words, our results

show that the vibrotactile biofeedback device improved the motor learning in figure-8 task

(continuous task), but not the spoon task (point-to-point task), meaning that children with

acquired dystonia learned the figure-8 task significantly better, practicing with the biofeed-

back device. This device seemed to decrease the time or movement variation in children

with acquired dystonia, which could possibly be the reason why we observed increased task

correlation index of the anterior deltoid (task relevant muscle) in this group. On the other

hand, this device does not seem to be very effective in improvement of learning the spoon

task. There was no significant change in the smoothness or movement variation following

the practice with the biofeedback device in children with dystonia as reported in the supple-

mentary material. Nonetheless, it is observed that learning took place in the week without

any intervention (BF off), as also shown in our previous study [112]. These results could be

explained by the different nature of the two experimental tasks. The figure-8 task is a cyclic

and continuous task which does not require very accurate muscle control and co-contraction,

while the spoon experiment is a point-to-point task which requires more accurate muscle

control, timing, and controlled agonist-antagonist co-contraction in order to change the di-

rection of movement at each end of a forward or backward movements. Previous studies

have shown that children with dystonia have failure in the timing of co-contraction, which is

due to the involuntary activation of an antagonist muscle during the movement [249, 160],

leading to increased co-contraction during the movement.

The analysis of co-contraction in acquired dystonic responder and non-responder group, in

the spoon task, revealed that the biofeedback device affected the co-contraction of biceps-

triceps and anterior-posterior deltoid pairs significantly in the responder group (whether
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increased or decreased), while this effect was not significant in the non-responder group. We

further hypothesize that in order for the treatment to be effective, the muscle co-contractions

pattern have to change, and this change may be inconsistent among the subjects, as each has

a different baseline, adopt a different approach, and their dystonia manifests onto different

muscles. However, this must be tested as we only observed this in two participants (N-

responder =2).

Another possibility is that the marble is effectively a biofeedback signal for movement, and

this may have been more important in performance (drawing the attention to perform the

task without dropping the marble) than the muscle EMG biofeedback, effectively drowning

out any possible effect.

In this study, biofeedback enhanced performance in the figure-8 task but exhibited no im-

provement in the spoon task, indicating that mere practice is not adequate for achieving peak

performance. The results in primary dystonia showed lack of improvement in either task.

While this could occur due to multiple mechanisms, it is consistent with the hypothesis that

biofeedback will improve movement only when a sensory deficit is at least partly responsible

for poor movement and skill learning. This supports our initial hypothesis that secondary

dystonia deficits might be partially due to learning failures stemming from sensory deficits.

This proposition raises the potential for noninvasive treatments for secondary dystonia that

center on augmenting sensation.
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Chapter 7

Additional chapter: Improvement of

speed-accuracy trade-off during

practice of a point-to-point task

7.1 Abstract

The trade-off between speed and accuracy is a well-known constraint for human movement,

but previous work has shown that this trade-off can be modified by practice, and the quan-

titative relationship between speed and accuracy may be an indicator of skill in some tasks.

We have previously shown that children with dystonia are able to adapt their movement

strategy in a ballistic throwing game to compensate for increased variability of movement.

Here, we test whether children with dystonia can adapt and improve skills learned on a

trajectory task. We use a novel task in which children move a spoon with a marble between

two targets. Difficulty is modified by changing the depth of the spoon. Our results show

that both healthy children and children with acquired dystonia move more slowly with the
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more difficult spoons, and both groups improve the relationship between speed and spoon

difficulty following 1 week of practice. By tracking the marble position in the spoon, we

show that children with dystonia use a larger fraction of the available variability, whereas

healthy children adopt a much safer strategy and remain farther from the margins, as well

as learning to adapt and have more control over the marble’s utilized area by practice.

Together, our results show that both healthy children and children with dystonia choose

trajectories that compensate for risk and inherent variability, and that the increased vari-

ability in dystonia can be modified with continued practice. This research was funded by

NIH (1R01HD081346-01A1; 2013-2019; Subaward: 61430868) and it is a joint project and

collaboration between multiple cites including Politecnicno de Milano, ISTITUTO CARLO

BESTA, Milan, Italy; University of Southern California, Children’s hospital, Los Angeles,

California, USA; and IRCCS Eugenio Medea, Bosisio Parini, Italy. This chapter is published

in Journal of Neurophysiology, Volume 130, Issue 4, Pages 931-940 in October 2023.

7.2 Introduction

The speed-accuracy trade-off known as Fitts’law is ubiquitous in human movement [63]. This

law is typically formulated as a relationship between the speed of movement and the endpoint

accuracy following a rapid or ballistic movement to the target [63, 40, 49, 87]. Although

many possible explanations have been proposed, one of the more enduring possibilities is

that the trade-off represents compensation for activity-dependent noise (signal-dependent

noise), so moving more slowly may reduce noise and permit increased accuracy [40, 49, 87,

210, 141, 119]. More recently, it has been shown that Fitts’law also applies in tasks where

the accuracy of the trajectory matters rather than only the accuracy at the final target [141].

Moreover, the quantitative relationship between speed and accuracy for any individual may

be modifiable by practice, suggesting that this relationship may be related to the skill of

136



performance in trajectory-following tasks. A trajectory-following task involves a pre-specified

movement and may not fully capture the subject’s ability to plan a trajectory [49, 141].

Therefore, we have developed a novel task in which subjects must transport a marble in

a spoon from one target to another [141]. By varying the depth of the spoon, the task

can be made difficult, and subjects are free to choose not only the speed of movement but

the complete velocity profile of the trajectory to reach the target as rapidly as possible.

The size of the target is not varied, so the choice of trajectory is entirely determined by

the spoon’s difficulty. We have previously shown that this task exhibits a robust speed-

accuracy trade-off [141], that is, the participants slow down in performing the more difficult

tasks to not drop the marble. Previous work has shown that the speed-accuracy trade-off

for a trajectory-following task can be modified with practice [49, 141, 202, 231]. Here, we

test whether this trade-off can also be modified by practice for the marble-spoon task by

analyzing the marble trajectory in the spoon area. We test this in both healthy children and

children with acquired dystonia [235, 23, 5]. Dystonia is a disorder characterized by increased

variability of movement and increased signal-dependent noise [202, 141, 235, 23]. Children

with dystonia are aware of their increased noise and compensate appropriately in a ballistic

target task [49, 87, 202, 141]. Here, we test how children in these two groups with different

levels of signal-dependent noise adapt to the trajectory-following task by investigating if

they adapt their strategy to lower the risk of movement [204, 178]. We also compared how

performance in the two groups is affected by learning during practice over a period of 5 days.
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Subjects Diagnosis Tested Arm

BAD Score

Sb1* Generalized dystonia due to hypoxic ischemic event L3
Sb2 Chorea with underlying dystonia R2
Sb3 Generalized dystonia s/p selective dorsal rhizotomy L3
Sb4 Left-side dystonia due to mild periventricular leukomalacia (PVL) L1
Sb5 Generalized dystonia; cerebral palsy R3
Sb6 Generalized dystonia due to delayed C-section for maternal eclampsia R3
Sb7 Encephalitis R3
Sb8 Dyskinetic tetraplegic cerebral palsy due to ischemic injury R3
Sb9 Generalized dystonia; ADEM R3
Sb10 Emergency C-section; generalized dystonia L3
Sb11 Generalized dystonia; cerebral palsy R3
Sb12 Generalized dystonia; cerebral palsy R2
Sb13 Encephalitis L3

Table 7.1: Subjects’ demographics: Participants are 8–20 yr old, including 12 males and 1
female subject. BAD, Barry–Albright Dystonia scale; L, left arm; R, right arm. *Subject 1
had deep brain stimulation electrodes in place; however, it was off during the experiment.

7.3 Materials and methods

7.3.1 Subjects

In this study, the data from 21 children and adolescents out of the 46 participants (aged 15.5

± 3.4 yr) were used. We only included the participants for whom we had the recordings of

the marble trajectory within the spoon (the marble kinematic recordings were not available

for all the participants.). Eight (5 females and 3 males) were healthy subjects, while 13 (1

female and 12 males) were diagnosed with acquired dystonia. Details of the participants

with secondary dystonia are provided in Table 7.1.

We only used the recordings of the spoon task, during the week without any intervention

(no biofeedback). We proved that learning occurred on the week without the intervention,

practicing the spoon task in both healthy children and those with acquired dystonia, in

previous chapter. Here, we assess what measures change in these two groups to improve
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motor learning. Therefore, we analyzed the kinematics of the marble inside the spoon as

well as speed coefficient of variation and smoothness.

7.3.2 Speed-accuracy trade-off (Fitt’s law)

We first tested the effect of IoD on speed and determined how this effect changed following

practice [63]. We fitted a regression line to the movement time (MT) and the IoD and

calculated the index of performance (IP) as the inverse of the MT-IoD linear equation slope

for each subject. The index of performance [63, 210] is used as a measure to evaluate if

their performance improved in day 5 compared with day 1. Statistical analyses were done by

lme4 [16], emmeans [223] packages in R-studio (R core team, 2021). A Linear mixed effects

model with repeated measures was used to analyze the effect of practice on performance. We

assessed the effect of IoD, group (i.e., dystonia or healthy), and testing day (i.e., pre [day

1] or post [day2]), and their interactions as independent variables (fixed effects) on MT and

speed of movement (dependent variables) by fitting a linear mixed effect model [16] to the

data. In our model, random effects are assumed to be intercepts for subjects and by-subject

random slopes for the effect of IoD. In the MT model, we assumed uncorrelated slopes and

intercepts (Eq 7.1); however,we assumed correlated slopes and intercepts for the speed of

movement linear model due to the singularity of fit (Eq. 7.2). We then performed an analysis

of variance test (ANOVA) and pairwise comparison to obtain the significance of each effect.

MT ∼ Testing day ∗ group ∗ IoD + (IoD || subject) (7.1)
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Speed of movement ∼ Testing day ∗ group ∗ IoD + (IoD | subject) (7.2)

7.3.3 Marble kinematic analysis

If movement speed is limited by the risk of dropping the marble, then speed can be maximized

by allowing the marble to move as much as possible within the spoon. We thus analyzed

the marble position within the spoon during movement to determine whether maximal areas

were used, or whether other considerations such as reduction of risk or physical constraints

on movement speed were affecting the performance. The position of the marble inside

the spoon lies approximately within an ellipse; thus, an ellipse was fitted to the marble

trajectory for each repetition (one forward and one backward movement). This method

enabled us to estimate how much of the spoon area is used to achieve the desired accuracy

or speed.The eigenvalues of the movement trajectory (the ellipse diameter along the semi-

major and the semi-minor axes) were then computed. We computed a safety margin with

the two main eigenvalues, “a” and “b”, as a measure to investigate the variability along

the first eigenvector of the movement trajectory (e1), and along the second eigenvector of

the movement trajectory (e2), respectively. This safety margin is computed based on Eqs.

7.3 and 7.4 to determine how sensitive each subject is to the risk of movement, before and

after practice. Therefore, a smaller safety margin means that the subject is risk-seeking and

therefore they use more of the available variability. Similarly, a larger safety margin means

that the subject is risk-averse, and they use less of the available variability [178].

e1 safety margin = 100 ∗ (1− a

spoon diameter
) (7.3)
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e2 safety margin = 100 ∗ (1− b

spoon diameter
) (7.4)

We explored how these ratios change with respect to speed of movement, IoD, and practice,

for each subject. We used a repeated measure analysis with a linear mixed effect model

to derive the statistical results of the change in these ratios with respect to the speed and

IoDwith practice. In the mixed effect model, IoD, testing day, speed, and their interactions

are the fixed effects. Similar to previous models, random effects are the intercepts for subjects

and by-subject random slopes for the effect of the index of difficulty (Eq. 7.5). An analysis of

variance test (ANOVA) and pairwise comparison were performed to obtain the significance

of each effect.

Safety margin ∼ Testing day ∗ group ∗ IoD + (IoD | subject) (7.5)

7.3.4 Smoothness and coefficient of variation

In addition to analyzing the marble trajectory and movement time, we assessed the effect

of practice on change in smoothness and variability. Dimensionless jerk score is a useful

measure to investigate movement smoothness which was computed based on Eq. 7.6

Jerk score =

(∫ t2

t1

...
x (t)2 dt

)
D5

A2
, (7.6)

in which D = t2–t1 is the duration and A is the amplitude of movement (distance) [95]. In
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addition, the coefficient of variation (CV) was derived as the ratio of the speed standard

deviation (SD) to its mean for each repetition (CV% = SD(v)
v

) [191]. Similarly, a linear

mixed effect model with repeated measures analysis was used to compare the smoothness

and the coefficient of variation (CV) with respect to the groups, IoD, testing day, and their

interactions.

 

Figure 7.1: A: the movement time with respect to spoon sizes (easy, medium, and difficult)
for a subject with dystonia (right) and a healthy subject (left) is shown with red dots for
each repetition. The blue dot shows the average movement time for all repetitions in one
trial and the dashed black regression line shows the increasing trend of movement time with
respect to the spoon difficulty. B: the marble trajectory (black line) within the spoon border
(dashed red line) and the fitted ellipse (solid red line) to that trajectory is shown for each
spoon difficulty for one healthy subject (left) and one subject with dystonia (right) in one
trial.
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Figure 7.2: Normalized speed of movement versus the index of difficulty (IoD) (higher
IoDindicates the more difficult task and zero IoD indicates the no-marble condition) for
the healthy control and dystonia group is shown in dots. Each dot represents the speed for
one repetition of task with the corresponding IoD, before the training (day 1). Regression
lines for the speed of movement vs. the IoDfor each subject (p− value < 0.01 for all except
two children with dystonia) are shown for both groups.The decreasing trend of movement
with respect to the IoDindicates that all the subjects follow Fitts’law and adjust their speed
based on the task difficulty.

7.4 Results

We fitted a linear mixed effect model to assess the effect of task difficulty on MT and speed

of movement (Figure 7.1 a). The marble trajectory and the fitted ellipse for a patient

with dystonia and a healthy subject is shown in Figure 7.1 b. This figure illustrates how

they adjust the trajectory with respect to the movement time and index of difficulty. As

illustrated in Figure 7.2 and consonant with earlier results on this task [141], the movement

speed decreases in all subjects with the increase in task difficulty. Task difficulty is not

a limiting factor for the speed of movement as the movement speeds without the marble

(IoD= 0 in Figure 7.2) are faster than the other task difficulties. Within group comparison

of movement speed showed that the subjects with dystonia (R2
IoD = 0.88, p−value < 0.001)

had a significant increase in their speed of movement in all three spoons with practice (day 1

vs. day 5, Figure 7.3). There was no significant change in the speed of movement of healthy
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children with the easier spoon, however, the model predicted an increase in speed with

practice in higher task difficulties (medium and difficult) [(R2
spoon = 0.88, p − valueeasy =

0.48, p − valuemedium = 0.02, p − valuedifficult = 0.04), (R2
IoD = 0.77, p − value < 0.05)].

Figure 7.3 shows the average speed and the standard deviation on day 1 versus day 5 for

the healthy children and those with acquired dystonia in all three task difficulties. Similar

results were obtained by performing ANOVA using type II Wald χ2 test for dystonia group

[Pr(> χ2) < 0.01] and for the healthy group [Pr(> χ2) < 0.01], showing the significant effect

of the index of difficulty and the testing day on the speed of movement. The regression lines

of the movement time versus the index of difficulty for day 1 and day 5 is shown for in

each group in Figure 7.6 (only three subjects are shown for clarity). All the regression

lines except two patients with acquired dystonia had a slope significantly different from zero

(p− value < 0.05), meaning the MT changed significantly with the difficulty (they followed

the Fitts’law of speed-accuracy trade-off). The pairwise comparison to estimate the marginal

means for the fitted model on the movement time revealed a significant improvement in the

index of performance (inverse of the slopes) in healthy group (R2
IoD = 0.73, p−value < 0.01)

and the dystonia group (R2
IoD = 0.89, p− value < 0.01) with practice (Figure 6). Analysis

of variance (ANOVA) using type II Wald chi-square test performed on the linear models

revealed a significant effect [Pr(> χ2) < 0.01] of testing day and IoDbut not their interaction

(testing day IoD).Based on the protocol, the spoon sizes that each subject practiced with are

consistent throughout the whole experiment from day 1 to day 5; therefore, changes in IP are

entirely due to changes in the speed of movement. Movement speed improved significantly

for each of the spoon sizes individually in the children with dystonia, but the change in speed

for the healthy children was only significant when combining performance across multiple

spoon sizes.
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Figure 7.3: Statistical result of the improvement in the speed of movement in each group
with three different task difficulties. The figure depicts the averaged normalized speed of
movement and the standard deviation versus the testing day for three spoon sizes in the
healthy (left) and dystonia (right) groups, predicted by the linear mixed effect model.

7.4.1 Marble Kinematics Analysis

The safety margin in the direction of first eigenvector (e1 safety margin):

The statistical tests performed on thee1safety margin reveal that there was a significant

decrease of e1 safety margin with practice in the healthy control group. The linear model

explains 76 percent of variance in the data (R2 = 0.76)and the ANOVA test revealed that all

the variables and their interactions except day movement speed have a significant effect on

thee1safety margin [Pr(> χ2) < 0.01]. On the other hand, the effects of these parameters on

the e1 safety margin were shown to be negligible in children with dystonia. The fitted linear

mixed effect model (R2 = 0.57) and the performed ANOVA test showed that there is no

significant change in e1 safety margin with practice and with the change of movement speed

or IoD, in children with dystonia. These results are illustrated in Figure 7 with respect to

spoon difficulty for each group. Figure 8 shows the regression lines for three subjects in each

group with respect to IoDand speed of movement, respectively.
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Figure 7.4: Change in movement time (MT) for three participants in each group (healthy
control and dystonia) with respect to the index of difficulty (IoD) for day 1 (solid line) and
day 5 (dashed line). Please note that the IoD axis scale is different for healthy children and
children with dystonia due to their different capabilities. The slope of each line indicates
the inverse of the index of performance for the corresponding subject on either day 1 (solid
line) or day 5 (dashed line).

The safety margin in the direction of second eigenvector (e2 safety margin):

We fitted linear mixed effect models and performed pairwise comparisons on them for the

healthy control group (R2 = 0.49, p−value = 0.50) and the dystonia group (R2 = 0.77, p−

value = 0.43). The analysis of variance showed only a significant effect of IoDspeed [Pr(>

χ2) < 0.01] for the healthy control group (Figure 9). No other significant effects were

observed on e2 safety margin as illustrated in Figure 9.

Smoothness and Coefficient of Variation Analysis

Smoothness and Coefficient of Variation Analysis We performed the same analysis on the

jerk scores in both groups. The models explained 79 percent and 53 percent or variance of

jerk scores in healthy control and the dystonia group, respectively. The analysis of variance
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Figure 7.5: Statistical result of the normalized index of performance (IP) comparison before
and after training in each group. An increase in the IP measures the effect of practice on
learning.

showed a significant decrease of jerkiness (increased smoothness) with practice in children

with dystonia [Pr(> χ2) < .01] for the easy task difficulty (7.9a). The result is consistent

with the pairwise comparison of means that revealed a significant decrease of jerkiness with

practice (p − value = 0.01) in children with acquired dystonia with the easy task (day 1

mean = 0.4; day 5 mean = 0.14). A similar analysis was done on the coefficient of variation

of movement in both groups. The models explained 30% and 51% or variance of CV in

healthy control and the dystonia group, respectively. The pairwise comparison of mean in

group analysis showed there is only a significant change of CV in difficult task (highest

IoD) in children with dystonia (p − value = 0.003), however this slope is only significant

(Pvalue < 0.05) for six participants of 13 as shown in Figure 10B (day 1 mean= 56.5, day

5 mean = 53).
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Figure 7.6: e1 safety margin group analysis for healthy control group and dystonia group.
This ratio does not change with respect to the index of difficulty; however, pairwise compar-
ison revealed that the healthy control group showed a significant decrease in this ratio with
practice, performing with easy and medium spoon difficulty; and this ratio only decreased
in children with dystonia performing with easy spoon difficulty.

7.5 Discussion

In this study, we found that children with acquired dystonia and healthy children were able

to improve their performance with practice on a trajectory task constrained only by the risk

of dropping the marble. This constraint imposes a limitation on the maximum variability

during the task performance, without specifying a particular desired trajectory or endpoint

accuracy. It may therefore more closely reflect some aspects of normal movement behavior

when tracking or tracing is not the purpose. For example, it may represent some of the chal-

lenges faced by children as they attempt to feed themselves with a spoon. Improvement in

performance is reflected in the improvement in the speed-accuracy trade-off, as measured by

increased speed for each level of difficulty, as well as IP. To increase speed without dropping

the marble, it is necessary to reduce the movement variability within each trajectory or to

decrease the maximum acceleration and jerk of the spoon that would lead to the marble ex-

ceeding the bounds of the spoon edge. We found that smoothness (evaluated by jerk-score)
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Figure 7.7: Fitted linear model. A: this figure shows the fitted lines for three subjects (three
shades of gray) from each group with respect to index of difficulty (IoD). The fitted lines
are consistent with earlier data shown in Figure 7.6; we see a higher decrease in this ratio
in smaller indices of difficulty in the healthy control group [Pr(> χ2) < 0.01]. B: this figure
shows the same fitted lines for those subjects with respect to the speed of movement. It
clearly shows that the slopes are significant [Pr(> χ2) < 0.01] for the healthy control group,
as well as the extent of the drop in this ratio.

in the lowest task difficulty and speed coefficient of variation in the highest task difficulty

improved significantly in children with dystonia but not in healthy children. Although we

would have expected a decrease in healthy children, in fact, some of their improvement in

performance may have occurred due to a decrease in their initial large e1 safety margin.

In other words, healthy children tended to maintain the marble closer to the center of the

spoon, thus perhaps not achieving the maximum speed that could be achieved; therefore,

with practice, greater confidence in performance may have allowed them to reduce the safety

margin and allow higher levels of variability without exceeding the bounds of the spoon. In

contrast, children with dystonia had much less of a safety margin at baseline to begin with,
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Figure 7.8: e2 safety margin group analysis for the healthy control group and dystonia group.
There was no change in this measure associated with the practice; however, in the healthy
control group there is a significant decay of this measure with respect to spoon difficulty,
consistent with the results of ANOVA on the effect of index of difficulty (IoD) * speed of
movement [Pr(> χ2) < 0.01]; The e2 safety margin decreases as the IoDincreases in the
healthy control group.

perhaps due to their higher intrinsic variability. The only way that children with dystonia

could thus improve performance would be to improve the smoothness and movement vari-

ability itself (reflected in either speed coefficient of variation and e2 safety margin) because

thee1safety margin could not be safely reduced without dropping the marble.In conclusion,

we have shown that both healthy children and children with acquired dystonia improve skill

as measured by the speed-accuracy trade-off on a trajectory task where variability is con-

strained by the physics of the task rather than adherence to a target trajectory. Although

improvement of performance with practice is not surprising in healthy children, it is never-

theless interesting to note that this is reflected in a change in the speed-accuracy trade-off,

indicating that Fitts’law is not immutable but rather represents the current level of skill

and task performance [63, 40, 119]. Improvement of performance in children with acquired

dystonia is interesting because this suggests that the higher level of signal-dependent noise

can be controlled through repetition and learned strategies, and this provides an avenue for
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Figure 7.9: a) practicing decreased the lowest task difficulty jerk score in the dystonia group
(p − value = 0.01) but the jerk score did not change significantly with practice in healthy
children. b) practicing decreased the highest task difficulty coefficient of variation (CV) in
the dystonia group (p − value = 0.03) but the variability did not change significantly with
practice in healthy children.

the quantitative evaluation of rehabilitation strategies in this otherwise highly challenging

group [49, 87, 210, 231].The significant increase in the index of performance arises from

different approaches in the two different subject groups. Healthy children improved by re-

ducing the safety margin, and perhaps maintaining the same level of signal-dependent noise,

whereas the children with dystonia maintained the same safety margin but reduced their

noise and movement variability. Children with dystonia appropriately adjust their speed to

compensate for the level of variability, consistent with prior results [40]. Prior research has

shown that the origins of signal-dependent noise may be different in these two groups, and

perhaps only the noise in the children with dystonia is amenable to reduction with prac-

tice [40, 210]. Further study of modifications of the speed-accuracy trade-off in this and

other tasks are warranted to evaluate the potential for improvement in skill with practice
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in children with acquired dystonia.The limitations of this work include the random choice

of task difficulties for each subject, however we confirmed that this variable did not have

a significant effect on the final results by comparing the outcome variables with respect to

both spoon number (task difficulties; easy, medium, and difficult) and IoD. In addition, due

to the different capabilities of participants, we observed a ceiling effect in the speed of move-

ment in some subjects, however, this was only limited to some repetitions, and the effect

was canceled out by fitting linear models.
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ulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation
for tremor: a diffusion tensor imaging study. Neurosurgery, 75(6):657–670, 2014.
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M. Biermann, T. Bäumer, S. Zittel, M. Westphal, C. Gerloff, W. Hamel, A. Münchau,
and A. K. Engel. Asymmetric pallidal neuronal activity in patients with cervical
dystonia. Frontiers in Systems Neuroscience, 8(FEB), 2014. Cited by: 60; All Open
Access, Gold Open Access, Green Open Access.

[165] E. Monbaliu, K. Himmelmann, J.-P. Lin, E. Ortibus, L. Bonouvrié, H. Feys, R. J.
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Appendix A

ABBREVIATIONS

AD Axial Diffusivity

ANOVA Analysis of Variance

BF Biofeedback

CCI Co-contraction Index

CHLA Children’s Hospital Los Angeles

CHOC Children’s Health Orange County

CNS Central Nervous System

CP Cerebral Palsy

CPSD Cross Spectral Density

CT Computed Tomography

CV coefficient of variation
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DBS Deep Brain Stimulation

DTI Diffusion Tensor Imaging

DWI Diffusion Weighted Imaging

ECU Extensor Carpi Radialis

EEG Electroencephalography

EMG Electromyography

EP Evoked Potential

EPI Echo Planar Imaging

FA Fractional Anisotropy

FCR Flexor Carpi Radialis

FFT Fast Fourier Transform

FOV Field of View

GA1 Glutaric Aciduria Type 1

GLM Generalized Linear Model

GMM Gaussian Mixture Model

GPe Globus Pallidus Externus

GPi Globus Pallidus Internus

GUI Graphical User Interface
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HFO High-Frequency Oscillation

IoD Index of Difficulty

IP Index of Performance

LFO Low-Frequency Oscillation

LFP Local Field Potential

LMER Linear Mixed Effects Model

LTI Linear Time Invariant

MP RAGE Magnetization-Prepared Rapid Gradient-Echo

MRI Magnetic Resonance Imaging

MT Movement Time

MVC Maximum Voluntary Contraction

NEO Non-linear Energy Operator

NMU Neuromodulation Monitoring Unit

P2P Peak-to-Peak Amplitude

PCA Principal Component Analysis

PD Parkinson’s disease

PFR Peak to Floor Ratio

PPN Pedunculopontine Nucleus
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PSD Power Spectral Density

SATO Speed-Accuracy Trade-off

sEEG Stereo-Electroencephalography

SISO Single Input Single Output

SNr Substantia Nigra Reticulata

SNR Signal to Noise Ratio

STN Subthalamic Nucleus

T2P Time to (first-)Peak Delay

TCI Task-Correlation Index

TE Echo Time

TR Repetition Time

UCI University of California, Irvine

USC University of Southern California

VA Ventral Anterior Nucleus

VIM Ventral Intermediate Nucleus

VO Ventral Oralis Anterior/Posterior

VoaVop Ventral Oralis Anterior/Posterior

VPL Ventral Posterolateral Nucleus
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