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SUMMARY

Comprehensive multiplatform analysis of 80 uveal melanomas (UM) identifies four molecularly 

distinct, clinically relevant subtypes: two associated with poor-prognosis monosomy 3 (M3) and 

two with better-prognosis disomy 3 (D3). We show that BAP1 loss follows M3 occurrence and 

correlates with a global DNA methylation state that is distinct from D3-UM. Poor-prognosis M3-

UM divide into subsets with divergent genomic aberrations, transcriptional features, and clinical 

outcomes. We report change-of-function SRSF2 mutations. Within D3-UM, EIF1AX- and SRSF2/
SF3B1 -mutant tumors have distinct somatic copy number alterations and DNA methylation 

profiles, providing insight into the biology of these low-versus intermediate-risk clinical mutation 

subtypes.

Graphical abstract

INTRODUCTION

Uveal melanoma (UM), which arises from melanocytes resident in the uveal tract, is the 

second most common melanoma subtype after cutaneous melanoma (CM) (Singh et al., 

2011; Virgili et al., 2007). Although both UM and CM tend to occur in people with light iris 

color and fair skin (Weis et al., 2006), their clinical and molecular characteristics are very 

different (Coupland et al., 2013; Woodman, 2012). While primary UM is treated with either 

surgery or radiation and has a low local recurrence rate, up to 50% of UM patients develop 

distant metastatic disease, often to the liver, after treatment of the primary tumor. At present 

there are no effective therapies for metastatic UM, and most patients survive less than 12 

months after diagnosis of metastases (Blum et al., 2016; Chattopadhyay et al., 2016).
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UM displays chromosome aberrations and gene mutations that correlate strongly with 

clinical outcome and are not present in CM. Loss of one copy of chromosome 3 (monosomy 

3, M3) in UM is associated with an increased risk of metastasis and a poor prognosis 

(Damato et al., 2010; Shields et al., 2010). Loss-of-function mutations in BAP1, which is 

located on 3p21, have been identified in M3-UM (Harbour et al., 2010), and decreased 

BAP1 mRNA and protein expression, indicating BAP1 aberrancy, are highly correlated with 

the development of UM metastases (Kalirai et al., 2014; Koopmans et al., 2014). Currently 

either disomy 3 (D3) versus M3 status or a 12-gene microarray-based gene expression panel 

is used to determine whether a patient is in a low- or a high-risk prognostic group (Harbour, 

2014; Tschentscher et al., 2003). Recent analysis of a large D3-UM cohort showed SF3B1 
mutation to be associated with an intermediate risk of developing later-onset metastatic UM 

(Yavuzyigitoglu et al., 2016).

Despite prognosis being clearly correlated with the expression of a small panel of marker 

genes, with M3, and with BAP1 aberrancy or SF3B1 mutation, the molecular pathways 

involved in the development of metastatic disease have not been elucidated. In this Rare 

Tumor Project of The Cancer Genome Atlas (TCGA), we performed a global and integrated 

molecular characterization of 80 primary UM, seeking to generate insights into biological 

processes that underlie UM tumors that have distinctly different prognoses.

RESULTS

Sample and Data Collection

Eighty primary UM tumors were available for multiplatform analysis (Table S1). Cancer cell 

contents were high based on ABSOLUTE (median purity = 0.95, Figure S1A), DNA 

methylation-derived leukocyte fraction, and histopathological assessment. All cases were 

≥T2 (seventh edition of the AJCCTNM-staging system). As in Diener-West et al. (2005), 

~10% of patients developed another primary malignancy.

Chromosome Copy Number Aberrations

In primary UM, recurrent chromosome aberrations include losses in 1p, 6q, 8p, and 16q; 

gains in 6p and 8q; and M3 (Coupland et al., 2013). We used the ABSOLUTE and FACETS 

algorithms to estimate clonal and subclonal somatic copy number alterations (SCNA) from 

SNP microarray and whole-exome sequencing (WES) data. Unsupervised SCNA clustering 

defined four subtypes that had diverse aneuploid events and divided D3-UM and M3-UM 

into two subgroups each (Figure 1A). In D3-UM, cluster 1 showed the least aneuploidy and 

was enriched for partial or total 6p gain, with no other significant chromosome aberrations; 

cluster 2 showed 6p gain and partial 8q arm gains. In M3-UM, both clusters 3 and 4 showed 

8q whole-arm gain in nearly all samples, with median 8q copy numbers 3 versus 5 (i.e., 1 

versus 3 extra copies) respectively. Evidence for 8q isochromosome (i.e., chromosome 8 

with two q arms) was seen in all 20 samples in cluster 4, but in only 4 of 22 samples in 

cluster 3 (Table S1). Thus, while both M3 and 8q gain co-occurred in clusters 3 and 4, the 8q 

copy number burden and type varied between the two clusters. Finally, one tumor in cluster 

2 and four in cluster 3 showed higher ploidy values, and were predicted to have undergone 

whole-genome doubling (WGD).

Robertson et al. Page 4

Cancer Cell. Author manuscript; available in PMC 2018 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gene Mutations Identified by Standard Algorithms

In WES data for matched tumor-blood pairs, the median somatic mutation density of 1.1 per 

Mb was markedly lower than in CM (Cancer Genome Atlas Research Network, 2015), other 

melanoma subtypes, or other common solid tumors (Tetzlaff et al., 2015). As in (Johansson 

et al., 2016), we observed no evidence of the UV radiation mutational signature seen in 

~80% of CM (Cancer Genome Atlas Research Network, 2015); rather, there were varying 

proportions of three non-UV-associated signatures (Figure S1B).

Nine significantly mutated genes (SMGs) were detected using MutSig2CV or CoMet: 

GNAQ, GNA11, SF3B1, EIF1AX, BAP1, CYSLTR2, SRSF2, MAPKAPK5, and PLCB4 
(Figures S1B and S1C). None of these have been identified as SMGs in CM (Johnson et al., 

2016). We found mutually exclusive somatic mutations in the G-protein pathway-associated 

GNAQ and/or GNA11 (92.5%), CYSLTR2 (4%), and PLCB4 (2.5%) genes, consistent with 

previous findings (Johansson et al., 2016; Moore et al., 2016; Van Raamsdonk et al., 2009, 

2010) (Figure S1C).

EIF1AX and SF3B1 mutations in 27 of the 80 UM (34%) were nearly mutually exclusive, 

consistent with Martin et al. (2013). Nine of ten EIF1AX-mutant cases had their mutations 

in the protein N-terminal region (G6-G15), as in papillary thyroid carcinomas (Cancer 

Genome Atlas Research Network, 2014c). EIF1AX mutations were present only in UM with 

neither M3 nor 8q gain, and were exclusively in SCNA cluster 1 (Figure 1A). SF3B1 
mutations resulted in R625C/H amino acid alterations in 14 of 18 samples, while in four 

UM, mutations resulted in H662R (n = 2), K666T, or T663P, which are frequently altered 

sites in other malignancies (Alsafadi et al., 2016). Only one UM harbored both an EIF1AX 
and a SF3B1 mutation; the latter was an atypical T663P. As was the case for EIF1AX 
mutations, the majority (78%) of UM with SF3B1 mutations were present in D3-UM, 

consistent with Johnson et al. (2017). However, unlike EIF1AX mutations, SF3B1 mutations 

in D3-UM were associated with SCNA cluster 2, most with partial 8q gains. Thus, EIF1AX- 

and SF3B1-mutant D3-UM were each associated with nearly mutually exclusive SCNA 

profiles.

We identified SRSF2 as an SMG that harbored in-frame Y92 deletions (Y92del) in two UM 

and an S174del in a third. Tumors with SRSF2 mutations had neither SF3B1 nor EIF1AX 
mutations, and were found in both D3-UM and M3-UM with 8q gains, suggesting functional 

similarities between SRSF2- and SF3B1-mutant UM.

Mutant Gene-Specific Splicing Events

Missense mutations at K666 and R625 in splicing factor SF3B1 are associated with 

alternative branchpoint usage (Alsafadi et al., 2016), and missense mutations at P95 in 

splicing factor SRSF2 are associated with exon exclusion in myelodysplastic syndrome/

acute myeloid leukemia (Kim et al., 2015; Zhang et al., 2015). Using rMATS to compare 

RNA sequencing (RNA-seq) data for UM with mutations in either gene versus UM with 

wild-type SF3B1 and SRSF2 suggested that such mutations may alter translation initiation 

in a large subset of UM. For example, when SF3B1 has a K666/R625 mutation, EIF4A2 
used a neo-acceptor that resulted in a frameshift in the open reading frame (Figure S1D), 

Robertson et al. Page 5

Cancer Cell. Author manuscript; available in PMC 2018 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and when SRSF2 had a Y92del, EIF4A2 had a skipped exon. In SRSF2 Y92del UM, Src 

kinase FYN had a skipped exon and a larger ratio of FYN-T versus FYN-B isoforms 

(Figures S1E and S1F). Finally, an exon in the C-terminal domain of EIF2S3 had among the 

largest fold changes in expression in all SF3B1-mutant UM, but was absent in all UM with 

wild-type SF3B1/SRSF2.

BAP1 Alterations Identified by DNA-Seq and RNA-Seq Assembly

Both germline and somatic BAP1 alterations have been described in UM (Abdel-Rahman et 

al., 2011; Harbour et al., 2010). While Sanger sequencing initially identified truncating and 

non-trun-cating BAP1 mutations in 81.5% of M3-UM (Harbour et al., 2010), in our cohort 

standard SNP/indel analysis of WES data identified only 40.5% (17/42) of M3-UM as 

having BAP1 mutations. To recover alterations that were inaccessible to our SNP/indel-

calling methods, we applied MuTect2 local reassembly to exome capture DNA sequencing 

(DNA-seq) data, and Trans-ABySS global de novo assembly to RNA-seq data. Combining 

results from both methods and data types identified an additional 18 UM with BAP1 
alterations, often long or complex, raising the percentage of samples with BAP1 alterations 

to 83.3% (Figure S1G). The additional BAP1 genetic alterations were present only in M3-

UM that displayed low levels of BAP1 mRNA expression, consistent with BAP1 loss of 

heterozygosity.

BAP1 mRNA expression was significantly (p = 5.3 × 10−16) higher in SCNA clusters 1 and 

2 (D3) than in SCNA clusters 3 and 4 (M3). However, we found no significant difference in 

BAP1 mRNA expression in M3-UM with versus without BAP1 aberrancy, indicating that 

our approach may not have detected some BAP1 alterations, or that BAP1 regulation may 

involve additional epigenetic mechanisms (Figure 1B).

We used ABSOLUTE to determine the relative timing of chromosome 3 loss and of BAP1 
alterations (Figure 1C). Most BAP1 alterations were predicted to be either subclonal or 

clonally homozygous. Three of the four UM with WGD in SCNA cluster 4 had homozygous 

BAP1 alterations with multiplicity 2, indicating that both M3 and BAP1 alterations occurred 

before WGD. Additionally, with one exception in which M3 was clearly subclonal, the 

cancer cell fractions of M3 were close to 1 (mean = 0.97), suggesting that M3 was an early 

event that propagated through nearly all clones within each tumor. Cancer cell fractions of 

BAP1 alterations were lower (mean = 0.88) and fractions of other putative passenger 

mutations on chromosome 3 were even lower (mean = 0.60). From these results, we infer 

that M3 occurs prior to BAP1 alterations, and that both events occur prior to other mutations 

on the remaining chromosome 3, followed by WGD in some cases (Figure 1D).

BAP1-Aberrant UM Correlates with a Global DNA Methylation Profile

Unsupervised consensus clustering on the most variable 1% of CpG probes yielded a four-

cluster solution (Figure 2). EIF1AX mutant tumors were only present in DNA methylation 

cluster 1, while UM in DNA methylation clusters 2 and 3 were highly enriched (12 of 16 

tumors) in SF3B1/SRFR2 mutations. Thus, D3-UM with EIF1AX versus SF3B1/SRFR2 
mutations possessed distinct DNA methylation patterns. M3/BAP1-aberrant UM tumors 

showed a single global DNA methylation profile.
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Four Transcription-Based UM Subsets

We used RNA-seq data to profile the expression of 20,531 mRNAs and of 8,167 long non-

coding RNAs (lncRNAs) and processed transcripts, and identified four-cluster consensus 

solutions for both mRNA and lncRNA (Figure 3). D3-UM divided into transcription-based 

clusters 1 and 2, M3-UM into clusters 3 and 4, and the 12-gene panel’s two prognostic 

groups were each further separated into two groups. Specific mRNAs and lncRNAs were 

differentially and highly expressed in each subset (Figure S2). We noted that lncRNAs 

LINC00152 (CYTOR) and BANCR, well-established cancer-associated lncRNAs, had 

higher abundance in poor-prognosis clusters 3 and 4 compared with good-prognosis clusters 

1 and 2 (Figure S2A). Other functionally characterized lncRNAs such as NEAT1 and 

MALAT1 were differentially expressed between poor-prognosis clusters 3 and 4. We 

identified mRNAs and lncRNAs whose expression was associated with recurrent SCNAs 

and/or DNA methylation (Table S2 and Figures S2B–S2E). For example, the expression of 

PVT1 (8q24.21) was highly correlated with SCNA 8q (rho = 0.65, false discovery rate 

[FDR] = 6 × 10−8) and this lncRNA was among the most differentially expressed transcripts 

in poor-prognosis lncRNA clusters 3 and 4 versus clusters 1 and 2. Both LINC00152 and 

PVT1 were among a small set of differentially expressed M3-associated lncRNAs that were 

significantly influenced by DNA methylation (Table S2 and Figure S2E). Increased 

LINC00152 expression has been reported in solid tumors and is correlated with cell 

migration, invasion, and proliferation (Pang et al., 2014). PVT1 has been shown to be 

oncogenic through multiple mechanisms, including stabilization of MYC protein levels 

(Colombo et al., 2015).

CYSLTR2, which is recurrently mutated in ~3% of primary UM, showed markedly low 

expression in mRNA cluster 1 versus all other clusters (Figure S2F), suggesting possible 

roles for both CYSLTR2 expression and mutation. Transcripts with the highest fold changes 

in mRNA cluster 4 included immune genes and genes localized to 8q (Figure S2F). 

LncRNAs and mRNAs that were differentially abundant between SCNA- and transcription-

based subtypes are shown in Figures S2A, S2F–S2H.

The miRNA Expression Landscape Is Concordant with Transcriptional UM Subsets

MicroRNA sequencing (miRNA-seq) data identified four consensus clusters, with a two-

sample outlier group in which cancer-associated miRNAs were differentially abundant (e.g., 

miR-9, -21, -182/3, -375; Figure S3A). The four main miRNA clusters were clearly 

associated with M3 and its DNA methylation state, and were less concordant with the 

mRNA and lncRNA subtypes than these were with each other (Figures S3B and S3C). 

Consistent with Worley et al. (2008), miR-199a-3p/5p, miR-199b-3p, and let-7b-5p were 

more highly expressed in the M3-enriched miRNA cluster 3 (Figure S3D). In addition, 

miR-486-5p and miR-451a were abundant in miRNA cluster 3, while cluster-4 tumors 

showed higher expression of miR-142, -150, -21, -29b, -146b, and -155. While miRNAs 

localized to Xq27.3 were abundant in subtype 1, the association between gender and 

subtypes was not significant (p = 0.77, Fisher’s exact test).

Many cancer-associated miRNAs (Schoenfield, 2014) were differentially expressed between 

clusters. For example, expression of the oncomiR miR-21-5p was ~4-fold greater in miRNA 
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cluster 4 (Figure S3D), consistent with MIR21 DNA hypomethylation (Figure S3E). 

Expression of 39 other miRNAs was influenced by DNA methylation (Table S2). Expression 

of certain miRNAs was influenced by SCNA; miR-30d and miR-151a expression was 

correlated with 8q SCNA (Figures S3E–S3G), and M3-UM had lower expression of a 

number of chromosome 3 miRNAs, including let-7g, miR-28, and miR-191. Differential 

miRNA-mRNA targeting relationships were inferred between miRNA clusters 3 and 4 

(Figures S3H–S3I).

miRNA cluster 4 corresponded to M3-UM with immune marker enrichment (Figure S3A), 

suggesting that expression of a number of miRNAs may be associated with the promotion of 

an immune environment that plays a significant role in aggressive UM.

Characteristics of Immune-Infiltrated UM

By both DNA methylation and RNA-seq analyses we inferred that a CD8 T cell infiltrate 

was present in ~30% of M3-UM while nearly absent in D3-UM, and found that genes 

involved in interferon-γ signaling (IFNG, IFNGR1, and IRF1), T cell invasion (CXCL9 and 

CXCL13), cytotoxicity (PRF1 and GZMA), and immunosuppression (IDO1, TIGIT, IL6, 
IL10, and FOXP3) were coexpressed with CD8A (Figure 4A).

Consistent with human leukocyte antigen (HLA) gene expression correlating with the 

presence of an inflammatory infiltrate (Maat et al., 2008), we found HLA expression higher 

in M3-UM and correlated with CD8A expression (Figure S4A). Furthermore, in 50 UM with 

low-pass whole-genome sequencing data we identified 11 structural variations in HLA genes 

(Figure S4B) in which differential HLA expression was observed in D3-UM versus M3-UM 

(p = 0.015, Fisher’s exact test).

Pathways and Regulators Are Differentially Active between UM Subsets

We analyzed RNA (PARADIGM and MARINa algorithms) and protein (reverse-phase 

protein array [RPPA]) expression to identify activated signaling pathways and regulators in 

the UM subsets. PARADIGM-inferred pathway levels resolved four major groups of 

samples, with a smaller (n = 7) more heterogeneous group (Figure 5A). In PARADIGM 

cluster-4 cases, 95% of which were also transcription-based cluster 4, DNA damage repair/

response (DDR) was active, as was MYC signaling and HIF1a, consistent with an 

upregulated hypoxia response. Multiple immune-related transcription factors were relatively 

active, including JAK2-STAT1/3 and JUN-FOS, consistent with the elevated levels of 

immune-related genes in these poor-prognosis M3 tumors. PARADIGM cluster-3 cases, 

93% of which were transcription-based cluster 3, showed higher activities of key 

transcription factors FOXA1 and FOXM1, as well as elevated levels of MAPK and AKT, 

indicating high cellular cycling and cell proliferation. Thus, although the two subsets of 

poor-prognosis M3/BAP1-aberrant UM shared the same global DNA methylation profile, 

they had markedly distinct cellular signaling profiles.

Noting that SCNA-based and transcription-based and clusters were largely but incompletely 

concordant (Figures 1, 3, and 5), we compared differential PARADIGM signaling and 

MARINa regulator activities between clusters (Figures S5A–S5C). For both transcription- 

and SCNA-based clusters, DDR, HIF1a, and MYC signaling were more active in cluster 4 
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than in cluster 3. However, the mediators of immune signaling observed in transcription 

cluster 4 were not identified for SCNA clusters (Figures S2F–S2G and S5D), suggesting a 

biological basis for the incomplete concordance between transcription- and SCNA-based 

clustering.

Given the strong correlation between M3 and 8q gain (Figure 1A), the oncogenic 

transcription factor MYC (8q24.21) has been postulated to play a role in UM progression 

(McCarthy et al., 2016; van den Bosch et al., 2012). MYC can either activate or repress its 

gene targets, depending on its complexes (e.g., with MAX and/or MIZ1) (Kress et al., 2015). 

PARADIGM showed highly differential activation of MYC/MAX targets across the cohort 

(Figure 5A). Unexpectedly, both PARADIGM clusters 1 (mostly D3/8q-normal tumors) and 

4 (all poor-prognosis M3/8q-gain tumors) displayed high MYC/MAX complex activity 

levels, despite differing most in 8q levels. In contrast, MYC/MAX/MIZ complex targets 

were most represented in PARADIGM clusters 4 and 5 (88% M3/8q-gain tumors). Thus, 

activities for MYC/MAX/MIZ, but not MYC/MAX, corresponded with M3/8q-gain status.

Sufficient tissue material was available from 11 UM samples, five M3/BAP1-aberrant versus 

six D3/SF3B1 -mutant, to generate RPPA data. As expected, BAP1 protein levels were lower 

in M3/BAP1-aberrant cases. M3/BAP1-aberrant UM had a higher (p = 0.017) DDR pathway 

score than D3/SF3B1 R625-mutant UM (Figure 5B and Table S3). This is consistent with 

PARADIGM pathway results; with in vitro data indicating a role for BAP1 in homologous 

recombination DDR (Eletr et al., 2013; Yu et al., 2014); and with each of the M3/BAP1-

aberrant UM evaluated in the RPPA analysis having evidence of isochromosome 8q gain, 

which can be mediated through inefficient repair of homologous recombination.

All of the samples tested by RPPA harbored an activating GNAQ/11 mutation, and protein 

kinase C (PKC) isoforms are downstream effectors of activated mutant GNAQ/11 (Wu et al., 

2012). Protein levels for both total PKC-α, activated phospho-PKC-α (S657), and phospho-

PKC-δ (S664) were markedly higher in M3/BAP1-aberrant UM compared with D3/SF3B1 
R625 UM, indicating that activated mutant GNAQ/11 signaling may be enhanced in M3/

BAP1-aberrant UM.

Because the roles of lncRNAs (Hon et al., 2017; Nguyen and Carninci, 2016) in UM largely 

remain to be clarified, we compared correlations of lncRNA abundance with PARADIGM 

pathway activities and MARINa regulator activities in the M3/BAP1-abberant lncRNA 

transcriptional clusters 3 and 4 (Figure 6 and Table S4). In cluster 3, LINC00403, RMRP, 

and SNHG11, and uncharacterized lncRNAs such as RP11-14N7.2 and CTB-193M12.5, 

were correlated with activated transcriptional regulators of proliferation (e.g., FOXM1, 

FOXA1, E2F1), low MYC/MAX complex pathway activation, diminished HIF1A/ARNT 

complex activity, and low DDR pathway activity. In cluster 4, lncRNAs LINC00152, 

BANCR, MAGI2-AS3, and CD27-AS1 were positively correlated with immune-associated 

pathway nodes and regulators of JAK-STAT and cytokine mediators, as well as mediators of 

DDR, MYC/MAX, and HIF1α activity.
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Correlation of Distinct Biological Subsets with Clinical Prognosis in UM

As expected, M3-UM patients had a significantly worse prognosis than D3-UM (Figures 7A 

and S6A). While limited by the duration of follow-up, we observed that features known to 

be prognostic (i.e., histological type, closed connective tissue loops, and tumor-associated 

macrophage infiltration) were also prognostic in our cohort (Figure S6B).

As all M3-UM shared the same global DNA methylation profile (Figure 2), M3 and DNA 

methylation cluster 4 had identical Kaplan-Meier curves (Figure 7A). SCNA clusters 3 and 

4, wholly comprising M3-UM cases, had different UM metastasis (i.e., the time interval 

from primary UM diagnosis to development of distant UM metastasis) (p = 0.002). 

Consistent with mRNA and lncRNA clusters 3 and 4 largely overlapping SCNA clusters 3 

and 4 (Figures 1 and 3), differences in UM metastasis for transcriptional clusters trended 

similarly.

We then sought to identify genes whose expression was associated with differential time to 

UM metastasis (Figure S7). We identified 111 mRNAs and 23 lncRNAs in our TCGA cohort 

that were both differentially abundant in M3 SCNA clusters 3 versus 4 (|fold change| > 2 and 

1.5, respectively; FDR < 0.05), and associated with UM metastasis in M3 cases (95% 

confidence interval [CI] on the hazard ratio [HR] either less than or greater than 1.0) 

(Figures S2H, and S7; Tables S5 and S6). For mRNAs and lncRNAs in the TCGA that were 

more abundant in SCNA cluster 4, most HR were above 1.0 (Figures S7A–S7C). Thirty-five 

of the differentially abundant mRNAs and three lncRNAs were also associated with UM 

metastasis in an independent cohort (Laurent et al., 2011) (Figures S7C–S7E, Table S6). 

Eighteen (69%) of the 26 genes with HR 95% CI > 1.0 in both cohorts (i.e., with higher 

gene expression associated with shorter UM metastasis) were on 8q (Figure S7C). Despite 

localizing to 8q, the expression of ENPP2 (8q24.12) was associated with a low HR in both 

cohorts (0.30 and 0.36, respectively), consistent with our unbiased analysis that showed 

ENPP2 DNA methylation to be anti-correlated with its transcript expression (Spearman ρ = 

−0.81) (Table S2). Four of the 12 genes with HR 95% CI < 1.0 were associated with 

recurrent SCNA losses in 3p (PPARG, SYN2), 6q (NEDD9), and 8p (SLC7A2).

DISCUSSION

Our integrated, multidimensional molecular and computational investigation into UM 

provides insights that have mechanistic, prognostic, and therapeutic implications. The 

analysis divided primary UM tumors into four molecular groups, subdividing poor-prognosis 

M3-UM and better-prognosis D3-UM into two subgroups each (Figure 7B). We show that 

poor-prognosis M3-UM is associated with a distinct global DNA methylation pattern that 

differs from the pattern observed in D3-UM, suggesting that BAP1 aberrancy may result in 

metastasis-prone DNA methylation state. M3-UM cases, despite sharing a characteristic 

global DNA methylation profile, were divided by SCNA-based and transcription-based 

analyses into two subgroups that have different biological pathway profiles and clinical 

outcomes.

Prior studies have shown poorer clinical outcomes to be associated with higher chromosome 

8q copy number (Caines et al., 2015; Cassoux et al., 2014; Versluis et al., 2015). Given the 
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proposed role of BAP1 in DDR (Ismail et al., 2014; Yu et al., 2014), and the upregulated 

DDR pathway activity by both transcription- and protein-based pathway analyses, these data 

suggest that loss of BAP1 function may result in inefficient DDR, and may play a role in 

isochromosome 8q formation observed in all SCNA cluster 4 and one-fourth of SCNA 

cluster 3 M3-UM samples; however, studies to confirm this hypothesis are beyond the scope 

of TCGA.

Although expression of the MYC oncogene on 8q24 has been implicated in mediating the 

effect of 8q copy number gain in UM, our analysis reveals a more complicated scenario in 

which MYC/MAX complex targets were highly activated in UM with (SCNA cluster 4) or 

without (SCNA cluster 1) 8q gain. In contrast, the MYC/MAX/MIZ1 complex targets were 

most prominently activated only in samples with 8q gain, suggesting that other processes, in 

addition to copy number gain, e.g., post-transcriptional alterations, may also be relevant to 

MYC signaling in these UM subtypes.

The lncRNA PVT1 locus is adjacent to the MYC locus and is coamplified with MYC in UM 

with elevated 8q copy number. Our data indicate convergent genomic (copy number) and 

epigenetic (DNA methylation) mechanisms of PVT1 regulation in UM. Overall, our 

observations for PVT1 in M3-UM are consistent with it being highly regulated by DNA 

methylation in renal cell carcinoma (Posa et al., 2016), acting as an independent oncogene 

and enhancing MYC protein levels/activity (Tseng et al., 2014). In addition, we identified 

other coding and non-coding genes that are associated with recurrent SCNA in UM and are 

candidates for further functional studies.

Not observed in our cohort, due to relatively short follow-up times, was the association 

between D3-UM with an EIF1AX versus SF3B1 mutation and low versus intermediate risk 

of developing metastatic disease compared with M3-UM (Yavuzyigitoglu et al., 2016). The 

distinct SCNA and DNA methylation profiles we observe in EIF1AX- versus SF3B1-mutant 

D3-UM may contribute to the different prognoses associated with these mutually exclusive 

mutations.

We ultimately identified BAP1 alterations in ~85% of M3-UM, consistent with the initial 

report using Sanger sequencing (Harbour et al., 2010).While next-generation sequencing 

(NGS) has become the standard for detecting germline and somatic BAP1 alterations in both 

research and clinical settings, more than half of the BAP1 alterations were initially missed 

by NGS mutation detection algorithms used in our study, and the identification of additional 

BAP1 alterations required assembly-based methods. These results suggest that longer and 

more complex gene alterations in BAP1, and other genes, may be detectable only by 

methods that include sequence assembly.

Almost all of our UM harbored mutually exclusive hotspot mutations in GNAQ, GNA11, 

CYSLTR2, or PLCB4, suggesting that constitutively activated G-protein signaling plays a 

central role in early UM development. Furthermore, neither CYSLTR2 nor PLCB4 
mutations preferentially localized to a specific subset of UM, consistent with mutations in 

these genes functioning like GNAQ/11 mutations to drive tumorigenesis without initiating 

metastasis. Mutant-activated GNAQ/11 signal through PKC-α, and we show that M3/BAP1-
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aberrant tumors had elevated total and activated PKC-α (and −δ) protein levels. Thus, BAP1 
aberrancy may enhance the effector function of PKC downstream of mutant-activated 

GNAQ/11. These data suggest both an association between early and later genetic events in 

metastasis-prone UM, and that inhibiting activated PKC isoforms may require targeting 

downstream effects of BAP1 aberrancy.

We identified the splicing factor gene SRSF2 as an SMG in 4% of our UM cohort, 

expanding the landscape of functional spliceosome alterations in UM. We showed that UM 

with SRSF2 or SF3B1 mutations have mutation-specific mis-splicing that affects elongation 

initiation factors and signaling gene transcripts that are known to play a role in 

tumorigenesis. Previous genetic studies had identified nearly mutually exclusive mutations 

in SF3B1 and EIF1AX in UM (Alsafadi et al., 2016; Harbour et al., 2013; Martin et al., 

2013). In our cohort, UM with SF3B1 mutations were enriched in SCNA clusters 2 and 3, 

while virtually absent in UM with the lowest and highest levels of aneuploidy (clusters 1 and 

4 respectively). UM with SRSF2 mutations harbored neither EIF1AX nor SF3B1 mutations, 

and, like all but one SF3B1-mutated case, were observed only in SCNA clusters 2 and 3.

In many cancers an immune infiltrate within the tumor is typically associated with a better 

prognosis and with response to immunotherapy (Lee et al., 2016). In primary UM, in 

contrast, marker-specific immunohistochemistry has demonstrated that a dense infiltrate of 

leukocytes (Bronkhorst et al., 2012; Ksander et al., 1998) or macrophages (Bronkhorst et al., 

2011; Maat et al., 2008) is associated with M3 and a poor prognosis. In our cohort, immune 

infiltrates were highly correlated with upregulation of chemotactic signals (e.g., CXCL9 and 

CXCL13) and of stimulators and targets (e.g., IFNG and HLA) that are essential in T cell-

mediated immune therapies. Also in contrast with other cancers, an increased HLA class I 

expression has been associated with a worse prognosis in UM (de Lange et al., 2015), and is 

considered a tumor-escape mechanism from natural killer cell-mediated cytotoxicity in 

blood (Jager et al., 2002). The increased HLA class I expression in poor-prognosis UM is 

likely induced by infiltrating cytotoxic T cells (van Essen et al., 2016); however, the 

molecular immune profile of these tumors is consistent with a chronically inflamed milieu in 

which either T cells are more immunosuppressive (regulatory T cells) and/or cytotoxic T 

cells have been rendered dysfunctional (Bronkhorst et al., 2012). Notably, the immune 

checkpoint inhibitors IDO1 and TIGIT, which can limit the efficacy of T cell killing of 

cancer cells, were among the most highly expressed mRNAs in CD8-enriched M3-UM. 

These findings may, in part, explain the clinical observations suggesting that single-agent 

anti-CTLA-4 or anti-PD1 immune checkpoint inhibitors have low efficacy in patients with 

metastatic UM (Kelderman et al., 2013), and that agents targeting IDO1 and/or TIGIT, 

which are currently in clinical trials, may help overcome immune suppression in UM 

(Dougall et al., 2017; Manieri et al., 2017).

Pathway profiling showed that relative activity of cellular processes such as DDR, hypoxia, 

MYC signaling, and MAPK/AKT programs differentiated subgroups within both M3-UM 

and D3-UM. These results suggest that different UM subsets may require specific targeted 

strategies to achieve efficacy. DDR-modulating agents, anti-hypoxia drugs, direct or indirect 

anti-MYC therapeutics, and compounds that target these pathways are currently being 

investigated in human clinical trials.
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This retrospective study suggests that probe-based or NGS-based copy number data should 

support a DNA-based clinical assay that assigns a high-risk M3-UM sample to one of two 

groups (SCNA subtypes 3 versus 4), which have different median times to UM metastasis. 

Such an approach would have the advantage of also identifying isodisomy 3 tumors, which 

are not detected by fluorescence in situ hybridization or array comparative genomic 

hybridization, and which have a similar prognosis to M3-UM tumors. In addition, we 

identified coding and non-coding genes that were differentially expressed between M3-UM 

SCNA subtypes 3 versus 4 and associated with UM metastasis. We showed that a number of 

these transcripts, particularly certain 8q transcripts, are associated with M3-UM metastasis 

in an independent cohort.

Developing a clinically relevant classifier will require prospective evaluation of copy number 

and/or gene expression data in tumors with similar clinical-pathological features to identify 

patients with higher-versus lower-risk M3-UM, and to validate the differential UM 

metastasis intervals observed in this study. Such a classifier could influence the frequency of 

metastatic surveillance, prioritize high-risk patients for more aggressive/earlier adjuvant 

clinical trials, provide more precise UM metastasis data for the design of clinical trials and 

use of historical controls, and offer information to patients that may assist them in medical 

and personal choices. As no effective adjuvant therapy has yet been developed for UM, a 

prospective analysis of characterizing these two molecular subtypes relative to UM 

metastasis is especially timely and important.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPPA antibodies RPPA Core Facility, MD 
Anderson Cancer Center; 
Gonzalez-Angulo et al., 
2011

https://www.mdanderson.org/research/research-resources/core-facilities/functional-proteomics-rppa-core.html
See Table S3.

Biological Samples

Primary tumour samples Multiple tissue source 
sites, processed through 
the Biospecimen Core 
Resource

See Methods: Experimental Model and Subject Details

Critical Commercial Assays

Genome-Wide Human SNP 
Array 6.0

ThermoFisher Scientific Cat: 901153

Infinium 
HumanMethylation450 
BeadChip Kit

Illumina Cat: WG-314-1002

EZ-96 DNA Methylation Kit Zymo Research Cat: D5004

Illumina Barcoded Paired-
End Library Preparation Kit

Illumina https://www.illumina.com/techniques/sequencing/ngs-library-prep.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

TruSeq RNA Library Prep 
Kit

Illumina Cat: RS-122-2001

TruSeq PE Cluster 
Generation Kit

Illumina Cat: PE-401-3001

Phusion High-Fidelity PCR 
Master Mix with HF Buffer

New England Biolabs Cat: M0531L

VECTASTAIN Elite ABC 
HRP Kit (Peroxidase, 
Standard)

Vector Lab Catalog: PK-6100

Deposited Data

Raw and processed clinical, 
array and sequence data.

Genomic Data Commons https://portal.gdc.cancer.gov/legacy-archive

Digital pathology images Genomic Data Commons
Cancer Digital Slide 
Archive

https://gdc-portal.nci.nih.gov/legacy-archive/
http://cancer.digitalslidearchive.net/

Software and Algorithms

ABSOLUTE Carter et al., 2012 http://archive.broadinstitute.org/cancer/cga/absolute

ABySS Simpson et al., 2009 http://www.bcgsc.ca/platform/bioinfo/software/abyss/

Array-Pro Analyzer Media Cybernetics, 
Washington DC

Atlas-SNP, Atlas2 Suite Challis et al., 2012 https://sourceforge.net/p/atlas2

BioBloomTools (BBT) Chu et al., 2013 http://www.bcgsc.ca/platform/bioinfo/software/biobloomtools/

Birdseed Korn et al., 2008 http://archive.broadinstitute.org/mpg/birdsuite/birdseed.html

BreakDancer Chen et al., 2009 http://breakdancer.sourceforge.net/

BWA, BWA-backtrack Li and Durbin, 2010 http://bio-bwa.sourceforge.net/

Circular Binary Segmentation Olshen et al., 2004

ClaNC Dabney, 2006 http://www.stat.tamu.edu/~adabney/clanc/

CoMEt Leiserson et al., 2015 http://compbio.cs.brown.edu/projects/comet/

ConsensusClusterPlus Wilkerson and Hayes, 
2010

http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html

ContEst Cibulskis et al., 2011 http://archive.broadinstitute.org/cancer/cga/contest

Cufflinks Trapnell et al., 2013 https://cole-trapnell-lab.github.io/cufflinks/

Cytoscape http://www.cytoscape.org/

DEXSeq Anders et al., 2012 http://www.bioconductor.org/packages/release/bioc/html/DEXSeq.html

deFuse McPherson et al., 2011 http://compbio.bccrc.ca/software/defuse/

EGC.tools (v1.4.11) NA https://github.com/uscepigenomecenter/EGC.tools

FACETS Shen and Seshan, 2016 https://github.com/mskcc/facets

DNA methylation 
background correction

Triche et al., 2013

Genome Analysis Toolkit Van der Auwera et al., 
2013

https://software.broadinstitute.org/gatk/

GISTIC, GISTIC2 Mermel et al., 2011 http://archive.broadinstitute.org/cancer/cga/gistic

GMAP Wu and Watanabe, 2005 http://research-pub.gene.com/gmap/

Heatmap.plus NA https://CRAN.R-project.org/package=heatmap.plus

ImageMagick www.imagemagick.org
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REAGENT or RESOURCE SOURCE IDENTIFIER

In Silico Admixture Removal 
(ISAR)

Zack et al., 2013

Integrative Genomics Viewer 
(IGV)

Thorvaldsdottir et al., 
2013

http://software.broadinstitute.org/software/igv/

Maftools Mayakonda and 
Koeffler, 2016

https://bioconductor.org/packages/release/bioc/html/maftools.html

MapSplice Wang et al., 2010 http://www.netlab.uky.edu/p/bioinfo/MapSplice/

MARINa (MAster Regulator 
INference Algorithm), 
ssMARINa

Lefebvre et al., 2010 
Aytes et al., 2014

http://califano.c2b2.columbia.edu/marina

MatrixEQTL Shabalin, 2012 https://cran.r-project.org/web/packages/MatrixEQTL

Meerkat Yang et al., 2013 http://compbio.med.harvard.edu/Meerkat/

methylumi (v2.10.0) NA https://www.bioconductor.org/packages/release/bioc/html/methylumi.html

MuTect Cibulskis et al., 2013 http://archive.broadinstitute.org/cancer/cga/mutect

MuTect2 Van der Auwera et al., 
2013

https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_gatk_tools_walkers_cancer_m2_MuTect2.php

Mutex Babur et al., 2015

MutSig2CV Lawrence et al., 2014 http://archive.broadinstitute.org/cancer/cga/mutsig

NMF Gaujoux and Seoighe, 
2010

https://cran.r-project.org/web/packages/NMF/

NovoAlign NA http://www.novocraft.com/

PARADIGM Sedgewick et al., 2013 http://sbenz.github.io/Paradigm/

Picard https://broadinstitute.github.io/picard/

RADIA Radenbaugh et al., 2014 https://github.com/aradenbaugh/radia/

Strelka Saunders et al., 2012 https://sites.google.com/site/strelkasomaticvariantcaller/

SnpEff Cingolani et al., 2012 http://snpeff.sourceforge.net/

PRADA Torres-Garcia et al., 
2014

https://sourceforge.net/projects/prada/

pheatmap NA https://cran.r-project.org/web/packages/pheatmap/

rMATS Shen et al., 2014 http://rnaseq-mats.sourceforge.net/

RSEM Li and Dewey, 2011 https://deweylab.github.io/RSEM/

Samr Li and Tibshirani, 2013 https://cran.r-project.org/web/packages/samr

Samtools Li et al., 2009 http://samtools.sourceforge.net/

SigClust Huang et al., 2015 https://cran.r-project.org/web/packages/sigclust

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

SuperCurve Ju et al., 2015, Zhang et 
al., 2009

http://bioinformatics.mdanderson.org/Software/supercurve/

Tran-ABySS Robertson et al., 2010 http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss

VIPER Alvarez et al., 2016 http://califano.c2b2.columbia.edu/viper

Ziggurat Deconstruction Mermel et al., 2011

Other

ChEA database Lachmann et al., 2010

Firehose, FireBrowse The Broad Institute, 
Cambridge MA

https://gdac.broadinstitute.org/
http://firebrowse.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Laurent microarray 
expression data, GEO: 
GSE22138

Laurent et al., 2011 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22138

Literome Poon et al., 2014

Multinet Khurana et al., 2013

PhosphositePlus Hornbeck et al., 2014 http://www.phosphosite.org

Regulome Explorer Institute for Systems 
Biology, Seattle WA

http://explorer.cancerregulome.org/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Scott E. Woodman (swoodman@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tumor and whole blood samples were obtained from patients at contributing centers, with 

informed consent from their local Institutional Review Boards (IRBs, see below). 

Biospecimens were processed centrally, and DNA and RNA were distributed to TCGA 

analysis centers. In total, 80 evaluable primary tumors with associated clinicopathologic data 

were assayed on at least one molecular-profiling platform.

TCGA Project Management has collected necessary human subjects documentation to 

ensure the project complies with 45-CFR-46 (the “Common Rule”). The program has 

obtained documentation from every contributing clinical site to verify that IRB approval has 

been obtained to participate in TCGA. Such documented approval may include one or more 

of the following:

• An IRB-approved protocol with Informed Consent specific to TCGA or a 

substantially similar program. In the latter case, if the protocol was not TCGA-

specific, the clinical site PI provided a further finding from the IRB that the 

already-approved protocol is sufficient to participate in TCGA.

• A TCGA-specific IRB waiver has been granted.

• A TCGA-specific letter that the IRB considers one of the exemptions in 45-

CFR-46 applicable. The two most common exemptions cited were that the 

research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for 

informed consent, because the received data and material do not contain directly 

identifiable private information.

• A TCGA-specific letter that the IRB does not consider the use of these data and 

materials to be human subjects research. This was most common for collections 

in which the donors were deceased.
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METHOD DETAILS

BAP1 Terminology—In our cohort, BAP1 mRNA levels were lower in M3 tumors than in 

D3 tumors. We used the terms “BAP1 -aberrant” and “BAP1 aberrancy” to refer to cases in 

which we detect BAP1 sequence alterations (i.e. DNA-seq or RNA-seq variants, which may 

be short, long, or complex), and/or decreased mRNA expression. We say “and/or” because, 

while BAP1 alterations in the setting of M3 typically result in decreased BAP1 mRNA 

expression, we detected no BAP1 alterations in 7 of 42 M3 tumors in our cohort. It is 

possible that BAP1 alterations were present in these cases, but our approaches failed to 

detect them; alternatively, BAP1 with unaltered sequence may be epigenetically modulated 

in these cases.

Biospecimen and Clinical Data Processing

Patient and Sample Characteristics: Eight academic medical centers provided primary 

UM tumor samples, matched blood for germline DNA, and clinicopathologic data from 121 

enucleated UM patients under IRB-approved protocols. 80 primary UM from six centers 

passed all quality-control measures and had data from all molecular analytic platforms 

except reverse phase protein array (RPPA), for which data were derived from 12 primary 

UM. Eleven of these 12 cases had BAP1, SF3B1 or EIF1AX mutations; V4-A9EH did not, 

and was removed from further analysis (Table S1). Patients who had been treated prior to 

tissue procurement with systemic chemotherapy or focal radiotherapy were excluded. 

Enrollment criteria required tumors to consist of at least 200 mg of fresh frozen tissue, and 

DNA-matched normal (blood) controls to be available. A top-slide of the frozen tumor was 

cut to confirm the pathology characteristics, including adequate cellularity and percentage of 

necrosis. The presence of adequate amounts and quality of DNA and RNA isolated from the 

specimens was confirmed, resulting in 80 patients enrolled. The clinical data collected 

included patient age, sex, race, ethnicity, height, weight, tumor anatomic location (choroid, 

ciliary body, iris), iris color, tumor clinical dimensions, tumor pathology dimensions, clinical 

and pathologic AJCC staging, history of prior and synchronous malignancies, new 

malignancies including development of local and systemic metastases, date of UM 

treatment, date of diagnosis with metastasis, date of death, cause of death and date of last 

contact.

Histologic Evaluation of Uveal Melanoma: A panel of five histopathologists with 

expertise in ocular pathology and melanoma evaluated digital slides via Biopathology 

Center’s Virtual Imaging for Pathology, Education & Research application (VIPER) for the 

80 UM. Slides consisted of hematoxylin- and eosin-stained sections from the formalin-fixed 

paraffin embedded tumors scanned at 200× or 400× magnification. Histomorphologic 

features evaluated included tumor extent (ciliary body involvement and extrascleral 

extension), cytologic features including cell morphology (percent spindle and percent 

epithelioid cells) and degree of pigmentation, and the presence of associated inflammatory 

components for both tumor-infiltrating lymphocytes and tumor-infiltrating macrophages. 

Inflammation was characterized as focal vs. diffuse or mild vs. moderate vs. heavy, 

according to the distribution and density of inflammatory infiltrate within the tumor. The 

number of mitoses was determined within a 2 mm2 area, with the mitotic index grouped as 
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low (0–5 mitoses), intermediate (6–10 mitoses), and high (>10 mitoses). Group discussions 

and slide reviews resulted in consensus determinations for the above features.

Clinical Outcome Analysis: All clinical outcome events were calculated using the time 

interval in days from the date of the pathologic diagnosis of primary tumor to either the date 

of documented metastatic disease (UM metastasis) or death (UM survival) or last follow-up, 

censored to 5 years. Kaplan-Meier (KM) analysis for UM-specific death (n=77), UM-

specific metastasis (n=70), and UM-specific metastasis or death (n=77) was performed using 

the survival R package, and log-rank testing was used to compare curves. For genes, sample 

groups with low vs. high expression were generated by thresholding at the median 

expression level.

Whole Exome Sequencing (WES)

Library Construction: Libraries were constructed using the protocol described in (Fisher et 

al., 2011) with several modifications. First, initial genomic DNA input into shearing was 

reduced from 3 μg to 100 ng in 50 μL of solution. Second, for adapter ligation, Illumina 

paired end adapters were replaced with palindromic forked adapters with unique 8 base 

index sequences embedded within the adapter. These index sequences enable pooling of 

libraries prior to sequencing. Third, custom sample preparation kits from Kapa Biosciences 

were used for all enzymatic steps of the library construction process.

Following sample preparation, libraries were quantified using PicoGreen, normalized to 

equal concentration, and pooled by equal volume. Library pools were then quantified using a 

Sybr Green-based qPCR assay, using PCR primers complementary to the P5/P7 ends of the 

adapters (kit from Kapa Biosciences). After qPCR quantification, library pools were 

normalized to 2 nM, denatured using 0.2 N NaOH, and diluted to 20 pM, the working 

concentration for cluster amplification and sequencing. Denatured library pools were spread 

across the number of sequencing lanes required to achieve target coverage for all samples.

Sequencing: Cluster amplification and sequencing of denatured templates were performed 

according to Illumina protocols using HiSeq 2000 v3 cluster amplification kits, v3 flow 

cells, v3 Sequencing-by-Synthesis kits, Multiplexing Sequencing Primer kits, and the latest 

version of Illumina’s RTA software. 76bp paired end reads, with additional cycles added to 

read molecular index sequences, were performed on Illumina HiSeq 2000 sequencers.

Alignment and QC: Reads were aligned using BWA-backtrack (Li and Durbin, 2010) to 

assembly hg19/GRCh37; alignments were processed through the Picard pipeline, which 

finds and excludes PCR and optical duplicate reads, identifies sites likely harboring strand-

specific 8-oxoguanine lesions (Costello et al., 2013), and provides overall library QC metrics 

to identify problematic samples (none were excluded). Sample contamination levels were 

estimated using ContEst (Cibulskis et al., 2011), which estimates cross-sample 

contamination by looking at the distribution of common germline SNP sites. No samples 

exceeded the maximum contamination threshold of 4%.

Somatic Mutation Calling and Filtering: At the Broad Institute, somatic single nucleotide 

variants (sSNVs) were identified from tumor-normal paired alignments using MuTect 
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(Cibulskis et al., 2013), which identifies variants unique to the tumor sample by contrasting 

alignment pileups at each genomic position. Somatic insertions or deletions (sINDELs) were 

identified using Indelocator, which similarly uses pileups to identify tumor-specific variants. 

In addition, regions hypothesized to harbor longer sINDEL events (on the order of 50–100 

bases, as in BAP1) were called using MuTect2 (Van der Auwera et al., 2013). This performs 

local reassembly according to haplotype structure to better call events that are not trivially 

associated with pileups, and dramatically reduces the number of false positives due to 

alignment errors. This resulted in 2,699 sSNV calls and 2,636 sINDEL calls, for 5,335 total 

calls.

At the Baylor College of Medicine (BCM), mutations in BAM files were detected as 

follows: Atlas-SNP (Shen et al., 2010) of the Atlas2 Suite (Challis et al., 2012) was run to 

list all sSNVs. This list was further filtered by removing variant alleles observed in fewer 

than 4 reads, or present at a variant allele fraction (VAF) of less than 4%. The VAF in the 

normal had to be less than 1% of the VAF in the tumor. At least one read had to have a 

mapping quality of Q20 or better, and the variant had to lie in the central portion of the read. 

In addition, reads had to support the variant allele in both forward and reverse orientations. 

COSMIC variants were exempted from the above filters. sINDELs were discovered by 

similar processing except that the initial list was generated by Atlas-lndel of the Atlas2 Suite 

(https://sourceforge.net/p/atlas2), and indels must have been observed in at least 10 reads, 

with a VAF of 15% or more. All variants were compared to a panel of normal genomes and 

matching variants removed because they were likely germline alleles or recurrent artifacts. 

Further filtering was done by removing variants with fewer than 2 reads in the normal, tumor 

VAF 5% or less, or genes with greater than 2 variants for the same sample.

At the University of California Santa Cruz (UCSC), sSNVs were identified by RADIA 

(RNA AND DNA Integrated Analysis), a method that combines the patient matched normal 

and tumor DNA whole exome sequencing (WES) data with the tumor RNA-seq data for 

somatic mutation detection (Radenbaugh et al., 2014). The inclusion of the RNA-seq data in 

RADIA increases the power to detect somatic mutations, especially at low DNA allelic 

frequencies. RADIA classifies somatic mutations into 3 categories depending on the read 

support from the DNA and RNA: 1) DNA calls – mutations with high support in the DNA, 

2) RNA Confirmation calls – mutations with high support in both the DNA and RNA, 3) 

RNA Rescue calls – mutations with high support in the RNA but weak support in the DNA. 

In the UM cohort, RADIA made 1,955 DNA calls, 399 RNA Confirmation calls, and 59 

RNA Rescue calls.

At the BC Cancer Agency’s Genome Sciences Centre (BCGSC), Strelka (v1.0.6) (Saunders 

et al., 2012) was used to identify sSNVs and sINDELs (up to ~22 bp long) from the exome 

sequencing data for tumors and blood normals. All parameters were set to defaults, with the 

exception of “isSkipDepthFilters”, which was set to 1 in order to skip depth filtration, given 

the higher coverage in exome datasets. The variants were subsequently annotated using 

SnpEff (Cingolani et al., 2012), and the COSMIC (v61) (Forbes et al., 2010) and dbSNP 

(v137) (Smigielski et al., 2000) databases.
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Calls generated at the Broad Institute were merged with the calls from BCM, UCSC, and 

BCGSC. Calls were included in a consensus set if they were called by either the Broad or by 

two or more of the four participating centers. This resulted in an additional 215 variants not 

called by the Broad. Consensus calls were filtered through a panel-of-normals, which 

encodes the distribution of allelic coverage at each genomic position across thousands of 

normal exomes. This filters out both recurrent sequencing/alignment artifacts and rare 

germline variants missed during paired tumor-normal calling. By filtering sites exhibiting 

recurrently high nonreference read counts, we dramatically reduced the number of calls to 

2,699, mostly by reducing sINDELs called by Indelocator, which are often false positives 

due to recurrent alignment artifacts.

Significantly Mutated Genes: This filtered set of calls was analyzed for significantly 

mutated genes using the MutSig2CV suite (Lawrence et al., 2014). This uses three tests to 

infer significantly mutated genes: abundance, which classifies whether a gene’s observed 

mutation rate is significantly elevated relative to its expected background mutation rate; 

clustering, which looks for genes harboring recurrently mutated loci; and conservation, 

which looks for genes whose mutations are significantly enriched in evolutionarily 

conserved sites. Each of these tests returns a p-value for every gene, which are Fisher-

combined and false discovery rate (FDR)-corrected via Benjamini-Hochberg. Genes were 

considered “significant” if their FDR value was below 0.1.

Validation Analysis: Calls in significantly mutated genes were subject to Fluidigm 

validation. Samples were initially aligned with BWA-backtrack, but an inability to properly 

align reads spanning long deletions led to realigning all samples with NovoAlign 

(www.novocraft.com), which properly gapped these reads. Mutations were validated by 

comparing allelic fractions in the whole exome alignments with allelic fractions in the 

validation alignments; mutations that fell outside of the expected beta-binomial distribution 

of deviation were rejected. In addition, recurrent sites found in the deep coverage validation 

data but not present in the lower coverage exomes were added to the final set of calls.

Mutual Exclusivity and Concurrence of Mutations: To generate the alteration matrix, we 

first ranked all genes based on their MutSig p-value (M), GISTIC p-value (G) and 

expression verification p-value of copy number changes (E). We aggregated these scores 

using Gene score = Min(M, Max(G, E)), which uses either a mutation frequency score or a 

copy number alteration score, whichever is more significant, and tempers G with E when the 

latter is less significant.

The top 500 genes on this ranked list were selected in an alteration matrix for the Mutex 

algorithm (Babur et al., 2015), after filtering out genes that had only a single alteration in the 

cohort. We used gene copy number alterations only if they were also verified with gene 

expression change compared to other samples. As Mutex parameters, we used 10,000 

iterations for first-level randomized runs, and 5 as the maximum exclusive set size. We 

selected result groups with scores smaller than 0.05. This identified the groups CYSLTR2, 
GNAQ, and GNA11; ABR, GNAQ, and GNA11; SF3B1, BAP1, and EIF1AX; and several 

genes amplified at 8q: E2F5, MYLB1, GGH, LYN, LRRCC1, UBE2V2, CEBPD, and 

CSPP1.
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Limiting Mutex to the recurrent Q209 hotspots in GNAQ and GNA11 led to the detection of 

new groups PLCB4, GNAQ, GNA11, and CYSLTR2; DEPDC5, GNAQ, GNA11, and 

CYSLTR2; UTRN, GNAQ, GNA11, and CYSLTR2; ABR, GNAQ, GNA11, and PLCB4; 
and the same prior group of genes amplified at 8q. PLCB4 and DEPDC5 were recovered 

here because they were co-occurrent with the rarer GNAQ/GNA11 hotspot at position 183 in 

1 and 2 samples respectively.

The CoMEt algorithm (Leiserson et al., 2015) was used to detected groups of mutually 

exclusively mutated genes, by running it on the UM mutation list using arguments -t4 -k4 -

N1000000 -np 100.

Identifying Mutation Signatures: Using maftools 0.99.34 (Mayakonda and Koeffler, 2016) 

and NMF 0.20.6, somatic nucleotide substitutions across the cohort and their trinucleotide 

sequence contexts, were decomposed into three distinct mutation signatures, that each 

correlate to three validated signatures (15, 19 and 1A) (Alexandrov et al., 2013). 

Correlations to the validated signatures were weak (r = 0.61, 0.57, and 0.76), and none of 

these three signatures is described as UV-mediated.

SNP-based Copy Number Analysis—DNA from each of the 80 tumor and 80 normal 

samples were hybridized to Affymetrix SNP 6.0 arrays using protocols at the Genome 

Analysis Platform of the Broad Institute, as previously described (McCarroll et al., 2008). 

Briefly, from raw CEL files, Birdseed was used to infer a preliminary copy number at each 

probe locus (Korn et al., 2008). For each tumor, genome-wide copy number estimates were 

refined using tangent normalization, in which tumor signal intensities are divided by signal 

intensities from the linear combination of all normal samples that are most similar to the 

tumor. This linear combination of normal samples tends to match the noise profile of the 

tumor better than any set of individual normal samples, thereby reducing the contribution of 

noise to the final copy number profile. Individual copy number estimates then were 

segmented using Circular Binary Segmentation (Olshen et al., 2004). As part of this process 

of copy number assessment and segmentation, regions corresponding to germline copy 

number alterations were removed by applying filters generated from either the 80 UM blood 

normals, or the larger cohort of blood normals in the TCGA ovarian cancer analysis. 

Segmented copy number profiles for tumor and matched control DNAs were analyzed using 

Ziggurat Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to 

the set of inferred copy number changes underlying each segmented copy number profile 

(Mermel et al., 2011). Allelic copy number, whole genome doubling, subclonality, and 

purity and ploidy estimates were calculated using the ABSOLUTE and FACET algorithms 

(Carter et al., 2012; Shen and Seshan, 2016). For samples with ABSOLUTE-corrected copy 

number, CBS-derived segmented copy number values were re-centered using the In Silico 

Admixture Removal (ISAR) procedure (Zack et al., 2013). Significant focal copy number 

alterations were identified from ISAR-corrected segmented data using GISTIC 2.0.225. For 

copy number based clustering, tumors were clustered based on thresholded copy number at 

reoccurring alteration peaks from GISTIC analysis (all_lesions.conf_99.txt file). Clustering 

was done in R based on Manhattan distance using Ward’s method. Isochromosome status 

(e.g. for isochromosome 8q) was inferred from allelic copy number profiles from the 
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ABSOLUTE algorithm. Specifically, for any metacentric chromosome, a potential 

isochromosome was reported if the modal integer copy number of the major allele for one 

arm (e.g. q, or long arm) was at least two greater than the modal integer copy number of the 

minor allele of the opposite arm (e.g. p, or short arm).

RNA Sequencing

RNA Library Construction, Sequencing, and Analysis: One μg of total RNA was 

converted to mRNA libraries using the lllumina mRNA TruSeq kit (RS-122-2001 or 

RS-122-2002) following the manufacturer’s directions. Libraries were sequenced 

48×7×48bp on the Illumina HiSeq 2000 as previously described (Cancer Genome Atlas 

Research Network, 2012). FASTQ files were generated by CASAVA. RNA reads were 

aligned to the hg19 genome assembly using MapSplice 0.7.4 (Wang et al., 2010). Gene 

expression was quantified for the transcript models corresponding to the TCGA GAF 2.1, 

using RSEM (Li and Dewey, 2011), and were normalized within each sample to a fixed 

upper quartile. For further details on this processing, refer to Description file at the NCI 

GDC data portal under the V2_MapSpliceRSEM workflow (https://gdc-portal.nci.nih.gov/). 

Quantification of genes, transcripts, exons and junctions can also be found at the GDC Data 

Portal.

Unsupervised Clustering: For clustering, a set of 1,981 genes that were both highly 

expressed and had highly variable expression values were identified. The 0.75 quantile of 

mean(RSEM) values was used as a threshold for highly expressed genes, while the 0.9 

quantile of variance(RSEM) values was used as a threshold to identify genes with highly 

variable expression values. After median centering the log10(RSEM+1) values by gene, 

consensus clustering was applied using the ConsensusClusterPlus R package (Wilkerson and 

Hayes, 2010) with partitioning around medoids (PAM), a Spearman correlation-based 

distance, and 10,000 subsamples with a 0.85 random gene fraction. Output from 

ConsensusClusterPlus along with gene expression heatmaps, principal component analysis, 

and silhouette plots suggested four expression subtypes: Cluster 1 (n = 22), Cluster 2 (n = 

21), Cluster 3 (n = 15), and Cluster 4 (n = 22) (Figure 3A). ClaNC (Dabney, 2006) was used 

to identify genes whose expression patterns characterized the subtypes. The statistical 

significance of the differences in gene expression patterns present in the subtypes was 

assessed with the SigClust R package (Huang et al., 2015) using 1,000 permutations, the 

default covariance estimation method, and the 1,981 clustering genes.

Differential Expression Analysis: The samr R package (Li and Tibshirani, 2013) was used 

to identify genes that were differentially expressed in the RNA subtypes using 1,000 

permutations and a q-value threshold of 0.05. We then used the DAVID annotation database 

(Huang da et al., 2009) to identify pathways that were enriched for differentially expressed 

genes.

Structural Rearrangements, Emphasizing BAP1: To identify structural rearrangements, 

including longer indels, we assembled the 48-bp paired-end read RNA-seq data for each 

sample using the de novo assembler ABySS v.1.3.4 (Simpson et al., 2009), and analyzed the 

resulting assembly with Tran-ABySS v.1.4.8 (Robertson et al., 2010). To address how 
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variations in transcript abundance influence assembly, for each library we generated sets of 

assemblies using every second k-mer length between 24 and 48 bp, then generated a 

working contig set by merging the contigs from all of the library’s k-mer assemblies. Each 

merged assembly was used as input into Trans-ABySS, which identifies indels and 

alternative splicing events by using GMAP (Wu and Watanabe, 2005) to compare the de 

novo contigs to the human reference genome and to multiple sets of transcript models. 

Structural contig variant events that do not match the reference but fulfill specific alignment 

and filtering criteria are reported in the analysis results. Events identified in BAP1 were 

manually reviewed in RNA-seq data in the Integrative Genomics Viewer (IGV) 

(Thorvaldsdottir et al., 2013) and were compared in IGV with the sample’s exome data to 

help verify Trans-ABySS rearrangement calls. M3 samples that did not have BAP1 
rearrangements called by the above RNA-seq analysis were individually reviewed in IGV to 

identify potential events. In VD-AA8O, when a homozygous deletion within BAP1 was 

reported from DNA data but not by our analysis of RNA-seq data, we used deFuse 

(McPherson et al., 2011) on the RNA-seq data to confirm the deletion.

Gene Fusion Detection: RNA-seq data supports detecting structural variants, including 

alternate splicing, intra-chromosomal fusions, and inter-chromosomal fusions. We used two 

algorithms to identify gene fusions: MapSplice (Wang et al., 2010) and PRADA (Torres-

Garcia et al., 2014). PRADA uses BWA (Li and Durbin, 2010) to extract all best alignments 

per read from a dual (genome and transcriptome) reference file. After this initial mapping, 

the alignment coordinates of reads that mapped to the transcriptome are transformed into 

coordinates on the genome. Mapped reads whose best alignments have multiple genomic 

coordinates are removed. Quality scores are recalibrated using the Genome Analysis Toolkit 

(Van der Auwera et al., 2013). Index files are generated using Samtools (Li et al., 2009) and 

duplicate reads are flagged using Picard. The PRADA fusion module detects fusion 

transcripts by identifying discordant read pairs and junction-spanning reads. Discordant read 

pairs are paired read ends that map uniquely to different protein-coding genes with 

orientations consistent with formation of a sense-sense chimera. Junction-spanning reads are 

detected by constructing a sequence database that holds all possible exon-exon junctions that 

match the 3′ end of one gene fused to 5′ end of a second gene. Unmapped reads aligned to 

the database of all hypothetical exon junctions created by using the Ensembl transcriptome 

reference. Only reads for which the mate pair maps to either of the two fusion partner genes 

are considered as fusion transcripts. In this study, we extracted fusions with (1) at least two 

discordant read pairs, (2) at least one junction spanning read and (3) without high gene 

homology between each fusion gene partner (BLAST E-value > 0.001). Next, we applied the 

concept of mutation allele fraction to RNA sequencing data, and calculated the ratio of 

junction-spanning reads to the total number of reads crossing over the junction point in the 

reference transcript. We used the transcript allele fraction (TAF) to exclude artifacts that 

depend on highly expressed transcripts. We included fusion transcripts showing TAF > 0.01 

of both genes in our fusion list. In addition, we filtered out fusions that are found in normal 

TCGA samples.

Briefly, MapSplice_2_0_beta_7_21 identifies fusion candidates as any two segments of a 

read alignment that were (1) separated by a gap longer than 200,000 nt, or (2) were on 
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different chromosomes, or (3) were on different strands, or (4) mapped to discordant 

locations (i.e. the apparent direction of transcription changes between the segments). To 

decrease false positives, these candidates were further filtered by manual review and visually 

examining predicted fusion events of special interest utilizing a novel realignment and 

visualization utility. For each predicted fusion, this visualization tool generates a contiguous 

synthetic genomic reference sequence across the fusion junction. This region includes the 

sequence from both the donor and acceptor sides of a putative fused transcript, plus flanking 

genome sequence immediately adjacent to the predicted genomic fusion loci. An attempt is 

then made to (re) align all reads from the RNA-seq experiment that predicted the fusion, to 

the synthetic fusion reference sequences. All the reads that map to one of the synthetic 

fusion loci (including flanking regions) are collected into one BAM file, those reads that 

support the fusion are also copied into a second more exclusive BAM file. This second file 

contains only reads directly supporting the fusion junction, either by spanning it or 

comprising a mate pair that bridges the junction even though neither read spans it. These 

BAM files together with the synthetic fusion sequences can be loaded into IGV 

(Thorvaldsdottir et al., 2013) for the purposes of visualizing the predicted fusion events as 

well as its read alignments. Visualizing predicted fusions in this way provides an opportunity 

for the application of human pattern recognition skills to the task of filtering fusions through 

direct qualitative inspection of the predicted variant and its bridging and spanning 

supporting reads, within the context of its surrounding genomic sequence and transcript 

models.

Splicing Factor Mutants: All tumor RNA-seq data was realigned using STAR 2.4.1d 

(Dobin et al., 2013) in multi-sample two-pass mode, removing splice junctions covered by 

less than 10 unique reads across all samples. After realignment, splice junctions for which 

neither splice site was present in Gencode v19 and those connecting two genes were 

removed. Differentially-used splice junctions were identified with DEXSeq 1.17.6 (Anders 

et al., 2012) using all samples.

Splicing defects associated with mutations in splicing factors SRSF2 or SF3B1 were 

identified with rMATS 3.0.9 (Shen et al., 2014). Two samples with in-frame deletions in the 

SRSF2 linker sequence between the functional RRM and RS domains were compared with 

five randomly chosen control samples that had no somatic mutations in spliceosomal genes. 

Eighteen samples with SF3B1 missense mutations in HEAT domains were compared to 20 

control samples. To increase sensitivity to novel splice junctions in the SF3B1 comparison, a 

custom annotation was created from mutant and control samples with Cufflinks 2.2.1 using 

default parameters (Trapnell et al., 2013).

We used Sashimi plots (Katz et al., 2015) to visualize splicing changes in RNA-seq data, 

across sets of samples that had, or lacked, particular mutations.

Effect of Immune Marker Genes on mRNA Consensus Clustering: We used a 

subtraction approach to determine the effect of immune marker genes on the mRNA four-

cluster solution. We removed the expression data from 513 genes that define different 

immune cell types (Newman et al., 2015) from the RSEM data and repeated the clustering 

analysis using the same parameters that were applied in the original analysis. Manual review 
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of PCA plots, gene expression heatmaps, and silhouette plots strongly suggested a stable 

four-class solution that was highly concordant with the original four-class solution. Only one 

sample had different class labels after subtraction, and the sample that changed clusters was 

a strongly atypical cluster member in its initial cluster, based on silhouette widths calculated 

from the consensus memberships.

Non-Coding RNA Sequencing

RNA-seq Read Mapping for lncRNAs: RNA-seq reads were aligned to the human 

reference genome (GRCh38/hg38) and transcriptome (Ensembl v82) using STAR 2.4.2a 

(Dobin et al., 2013). STAR was run with the following parameters: minimum/maximum 

intron sizes were set to 30 and 500,000, respectively; noncanonical, unannotated junctions 

were removed; maximum tolerated mismatches was set to 10; and the outSAMstrandField 

intron motif option was enabled. The Cuffquant command included with Cufflinks 2.2.1 

(Trapnell et al., 2013) was used to quantify the read abundances per sample, with fragment 

bias correction and multiread correction enabled, and all other options set to default. To 

calculate normalized abundance as fragments per kilobase of exon per million fragments 

mapped (FPKM), the Cuffnorm command was used with default parameters. From the 

FPKM matrix for the 80 tumor samples, we extracted 8,167 genes with “lincRNA” and 

“processed_transcript” Ensembl biotypes.

miRNA Sequencing: We generated miRNA sequencing data using methods described 

previously (Chu et al., 2016), except that 1ug of total RNA (at 250ng/uL) was used as input 

instead of messenger RNA-depleted RNA. Briefly, we aligned reads to the GRCh37/hg19 

reference human genome, assigned read count abundances to miRBase v16 stem-loops and 

mature strands, and assigned miRBase v20 5p and 3p mature strand names to MIMAT 

accession IDs. While we used only reads with exact-match alignments in calculating miRNA 

abundances, BAM files available from the Genomics Data Commons (https://

gdc.cancer.gov/) include all sequence reads.

Unsupervised Clustering: We extracted 356 lncRNAs that were robustly expressed (mean 

FPKM ≥ 1) and highly variable across the n = 80 tumor cohort (≥ 95th FPKM variance 

percentile) from the matrix of 8,167 lncRNAs (above). Groups of samples with similar 

abundance profiles were identified by unsupervised consensus clustering with 

ConsensusClusterPlus (CCP) 1.20.0. Calculations were performed using Spearman 

correlations, partitioning around medoids (PAM) and 10,000 iterations. From solutions with 

2, 3, 4 and 5 clusters we selected a four-cluster solution after assessing consensus 

membership heatmaps and dendrograms, CCP clustering metrics, KM plots, and clustering 

results from other platforms. To visualize typical vs. atypical cluster members, we calculated 

a profile of silhouette widths (Wcm) from the consensus membership matrix. To generate a 

heatmap we used a SAM (Li and Tibshirani, 2013) (samr v2.0) multiclass analysis with an 

FPKM input matrix and an FDR threshold of 0.05 to identify lncRNAs whose abundance 

varied across the clusters. For lncRNAs with larger SAM scores, a q-value of ≤ 0.01, and a 

mean FPKM ≥ 5, we set the columns of the FPKM data matrix to the heatmap order, 

transformed each row of the matrix by log10(FPKM + 1), then used the pheatmap R package 
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(v1.0.2) to scale and cluster only the rows, using a Pearson distance metric and Ward 

clustering.

For miRNA sequencing data we used unsupervised non-negative matrix factorization (NMF) 

consensus clustering (v0.20.5) in R 3.1.2, with default settings (Gaujoux and Seoighe, 

2010). The input was a reads-per-million (RPM) data matrix for the 303 (25% of 1212 

miRBase v16) most-variant 5p or 3p mature strands. After running a rank survey for 

between 2 and 15 clusters with 50 iterations per solution, we identified a clustering solution 

for more detailed work by assessing profiles of the cophenetic correlation coefficient and the 

average Wcm, KM plots, and clinical covariate associations, then performed a 500-iteration 

run to generate the final clustering result. To visualize typical vs. atypical cluster members, 

we calculated a Wcm from the final NMF consensus membership matrix. To generate a 

clustering heatmap .we used a SAM (Li and Tibshirani, 2013) (samr v2.0) multiclass 

analysis with an RPM input matrix and an FDR threshold of 0.05 to identify mature strands 

whose abundance varied across the clusters. For mature strands with larger SAM scores and 

a mean RPM ≥ 25, we set the columns of the RPM data matrix to the heatmap order, 

transformed each row of the matrix by log10(RPKM + 1), then used the pheatmap R package 

(v0.7.7 or v1.0.2) to scale and cluster only the rows, using a Pearson distance metric and 

Ward clustering. The RPM filtering acknowledged that more abundant miRNAs are more 

likely to be influential (Mullokandov et al., 2012).

Differentially Abundant mRNAs, lncRNAs and miRNAs: We identified mRNAs, 

lncRNAs and miRNAs that were differentially abundant unsupervised clusters using 

unpaired two-class SAM analyses (samr v2.0), with an RSEM, FPKM and RPM input 

matrix and an FDR threshold of 0.05. For miRNA figures we retained miRNAs with a mean 

RPM > 50 in at least one of the two groups being compared. Unfiltered results are available 

in supplemental files (https://tcga-data.nci.nih.gov/docs/publications/uvm_2016).

LncRNAs/miRNAs Influenced by Copy Number: To determine lncRNAs whose 

abundance was influenced by somatic copy number alterations (SCNA), we used 

MatrixEQTL v2.1.1 (Shabalin, 2012) to calculate Spearman correlations (FDR <0.05) 

between a) FPKM for the 713 noncoding genes that had an FPKM of at least 1.0 in at least 

10 of the tumor samples and b) Gencode v20-based GISTIC2 real-valued (i.e. 

unthresholded) ‘all_data_by_gene’ SCNA. We used IGV v2.3.60 with ‘seg’ data to generate 

a global heatmap of SCNA with samples ordered by the four-cluster unsupervised clustering 

solution, and to generate whole-chromosome graphics of SCNA at a gene, sorting the 

heatmap by copy number amplification at the gene. Similarly, for miRNAs, we used 

MatrixEQTL v2.1.1 to calculate FDR-thresholded Spearman correlations between a) 

normalized (RPM) abundance for the subset of pre-miRNAs (i.e. stem-loops) that had an 

RPM of at least 1.0 in at least 10 of the tumor samples, and b) GISTIC2 ‘all_data_by_gene’ 

SCNA data.

Covariates Associated with Unsupervised Clusters: We compared unsupervised clusters 

to clinical and molecular covariates by calculating contingency table association p-values 

using R, with a Chi-square or Fisher exact test for categorical data, and a Kruskal-Wallis test 

for real-valued data.
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Differential miRNA Targeting: To identify potential differential miRNA-mRNA targeting 

effects between miRNA clusters 3 and 4, we used SAM 2-class unpaired analyses (Li and 

Tibshirani, 2013) to identify gene-level mRNAs and miRNAs that were differentially 

abundant between these clusters (FDR < 0.05). From these, we then identified miRNA-

mRNA pairs that were inversely differential between the clusters and had functional 

validation publications (using evidence types like luciferase reporter, qPCR, and Western 

blots) that indicated direct miRNA targeting, as reported by miRTarBase v6.0 (Chou et al., 

2016). We displayed the resulting network with Cytoscape 3.4.0, coloring nodes to reflect 

positive and negative fold changes between the two miRNA-based clusters. Boxplots were 

generated in R using default settings. Each box spans the 25th to 75th percentile range in the 

data, i.e. the interquartile range (IQR), and shows a line at the median value. Whiskers 

extend 1.5 times the IQR from the box extent.

Testing the Influence of Gender on miRNA Subtyping: Given the strong differential 

expression of Xq27.3 miRNAs between miRNA subtypes, we assessed whether gender may 

have influenced the miRNA subtypes. Patient gender was statistically unassociated with 

subtypes on all molecular platforms. While some of the ~300 miRNAs used for 

unsupervised clustering were differentially abundant between genders in our cohort, most of 

the 20 that had the largest gender-based fold changes localized to non-sex chromosomes, 

and none were in Xq27.3.

DNA Methylation

Sample Preparation and Hybridization: The Illumina Infinium HM450 array (Bibikova et 

al., 2011) was used with standard protocols. Briefly, genomic DNA (1,000 ng) for each 

sample was treated with sodium bisulfite, recovered using the Zymo EZ DNA methylation 

kit (Zymo Research, Irvine, CA) according to the manufacturer’s specifications and eluted in 

18 ul volume. After passing quality control, bisulfite-converted DNA samples were whole-

genome amplified followed by enzymatic fragmentation and hybridized overnight to 

BeadChips followed by a locus-specific base extension with labeled nucleotides (cy3 and 

cy5). BeadArrays are scanned and the raw data are imported into custom R programs for 

pre-processing and calculation of DNA methylation beta value for each probe and sample. 

Quality control and probe exclusions were done using standard protocols, as previously 

described (Cancer Genome Atlas Research Network, 2014b).

Analytical Methods: We carried out unsupervised consensus clustering on the most variable 

1% of CpG probes (3,859 of 385,857 probes), using the ConsensusClusterPlus (Wilkerson 

and Hayes, 2010) R package, with Euclidean distance and PAM. Solutions with between 2 

and 7 clusters were evaluated for cluster stability, and for associations with clinical and 

molecular covariates.

To identify epigenetically silenced genes, we applied a method previously described (Cancer 

Genome Atlas Research Network, 2014c). Specifically, we first identified promoter CpG 

sites that meet several criteria: (a) at least 90% of normal samples should be clearly 

unmethylated (β ≤ 0.1) at that site, (b) at least 5% of tumor samples should be clearly 

methylated (β ≥ 0.3) and (c) a t-test comparing expression levels in methylated (β ≥ 0.3) 
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and unmethylated tumor samples (β < 0.1) should be significant at an FDR < 0.01. A gene 

was defined as epigenetically silenced if at least 25% of the promotor CpG sites met all of 

these criteria. A total of 120 normal samples were used for this analysis, including 10 drawn 

at random from each of the 12 TCGA projects that include normal samples, such lung 

adenocarcinoma, breast invasive carcinoma, colon adenocarcinoma, endometrial carcinoma, 

and others (https://tcga-data.nci.nih.gov/docs/publications/).

We estimated leukocyte fraction using an approach described in (Carter et al., 2012). As a 

source of leukocyte DNA methylation levels, we used data for peripheral blood mononuclear 

cells (PBMC) from six healthy donors (Reinius et al., 2012) (GEO: GSE35069).

We identified 36 mRNAs, 65 lncRNAs and 94 miRNAs that were statistically associated 

with local DNA methylation. We required an ‘epigenetically-controlled pattern’, which 

consisted of a) BH-corrected p-values less than 0.05 for a Spearman correlation of miRNA/

IncRNA abundance to beta for probes in promoter regions associated with the miRNAs 

(Marsico et al., 2013) and lncRNAs, and b) BH-corrected p-values less than 0.01 for a t-test 

of RPM between unmethylated (β < 0.1) and methylated (β > 0.3) samples.

Fisher’s exact test was used to test for associations of DNA methylation clusters with 

clusters for SCNA, mRNA, lncRNA and miRNA, as well as with significantly mutation 

genes.

The analyses described above were done with R, using standard methods and custom scripts.

Low-Pass Whole Genome Sequencing

Library Construction: Approximately 500–700 ng of genomic DNA from fifty randomly 

selected tumor and matched normal pair samples were individually sheared into fragments 

of approximately 300 bp using an E220 Focused-ultrasonicator (Covaris). These fragments 

were made into paired-end libraries using KAPA Bios kits in a Sciclone NGS Workstation 

(Caliper/Perkin Elmer) according to manufacturers’ protocols. Libraries were sequenced 

using an Illumina HiSeq 2000, one sample per lane, with a paired-end 2× 51 bp setup. The 

average depth of coverage was approximately 4.9X, with a minimum of 1.56X and 

maximum at 8.17X. The average genome coverage was 89.05%, with a minimum of 71.87% 

and maximum of 92.12%. Raw data was converted to FASTA format, and the Burrows-

Wheeler Aligner used to generate BAM files.

Structural Rearrangements Detected using BreakDancer and Meerkat: BreakDancer 

(Chen et al., 2009) and Meerkat (Yang et al., 2013) algorithms were used to detect structural 

variations. BreakDancer configuration files were created for each tumor/normal pair from 

BAM files using bam2cfg.pl. Insertions, deletions, inversions, inter and intra chromosomal 

translocations were predicted on the basis of read pairs with unexpected separation distances 

or orientations. The variants between tumor and normal configuration files were filtered to 

remove germline alterations. Data was then re-examined using the Meerkat algorithm, which 

required identifying at least two discordant read pairs, with one read covering the actual 

breakpoint junction. Variants from tumor genomes were filtered by those in normal 

genomes, and germline events were removed. Alterations found in simple or satellite repeats 
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were also excluded from the output. The final Meerkat calls met one of two criteria: (i) the 

read identified to span the breakpoint junction hit the predicted breakpoint region uniquely, 

according to a BLAT (BLAST-like alignment tool) search, or (ii) the mate of the read 

spanning the breakpoint junction was mapped near the predicted breakpoint. BIC-seq was 

used to determine CN alterations in the tumor genomes (Xi et al., 2011).

Exon Expression Graphs: RNA-seq-derived exon expression levels for genes with somatic 

structural alterations were visualized. The input file “UVM. 

rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__exon_quantification__data.data.t

xt” was obtained from Broad GDAC Firehose (2016_01_28 stddata Run, https://

confluence.broadinstitute.org/display/GDAC/Dashboard-Stddata). Normal expression levels 

were quantified with “TCGA.hg19.June2011.gaf” (https://gdc.cancer.gov/about-data/data-

harmonization-and-generation/gdc-reference-files). A standard Z-score was calculated for 

each exon of each gene on either side of a fusion by mean-centering the log2-transformed 

RPKM values and dividing by the standard deviation, visualizing high (red) and low (blue) 

relative to the tumor cohort average. Exons that had expression levels below one RPKM 

(reads per kilobase of transcript per million reads mapped) across 70% of the patient 

samples, were flagged as not expressed (gray). Exon expression graphs were built stepwise, 

initially taking the fusion coordinates and the reference genome to create an “exon/start/

stop” table that was used to parse the RNA-seq input file. After verification and error 

checking, a final file was loaded in to R where the graphs were assembled. ImageMagick 

6.9.1 (www.imagemagick.org) was used to visualize the results.

Reverse Phase Protein Arrays (RPPA)

RPPA Experiments and Data Processing: Protein was extracted using RPPA lysis buffer 

(1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150 mmol/L NaCl, 1.5 mmol/L MgCl2, 1 

mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 mmol/L 

phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and aprotinin 10 ug/mL) from human 

tumors and RPPA was performed as described previously, using the SuperCurve v1.4.1 R 

package (Hu et al., 2007; Ju et al., 2015; Zhang et al., 2009). Lysis buffer was used to lyse 

frozen tumors by Precellys homogenization. Tumor lysates were adjusted to 1 μg/μL 

concentration as assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS. 

Tumor lysates were manually serial diluted in two-fold of 5 dilutions with lysis buffer. An 

Aushon Biosystems 2470 arrayer (Burlington, MA) printed 1,056 samples on nitrocellulose-

coated slides (Grace Bio-Labs). Slides were probed with 220 validated primary antibodies 

(Table S3) followed by corresponding secondary antibodies. Signal was captured using a 

DakoCytomation-catalyzed system and DAB colorimetric reaction. Slides were scanned in a 

CanoScan 9000F. Spot intensities were analyzed and quantified using Array-Pro Analyzer 

(Media Cybernetics, Washington DC) to generate spot signal intensities (Level 1 data). The 

software SuperCurveGUI (Hu et al., 2007), available at http://

bioinformatics.mdanderson.org/Software/supercurve, was used to estimate the EC50 values 

of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve (“supercurve”) 

was plotted with the signal intensities on the Y-axis and the relative log2 concentration of 

each protein on the X-axis using the non-parametric, monotone increasing B-spline model 

(Tibes et al., 2006). During the process, the raw spot intensity data were adjusted to correct 
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spatial bias before model fitting. A QC score was calculated for each slide to help determine 

the quality of the slide: if the score was less than 0.8 on a 0-to-1 scale, the slide was 

dropped. In most cases, the staining was repeated to obtain a high quality score. If more than 

one slide was stained for an antibody, the slide with the highest QC score was used for 

analysis (Level 2 data). Protein measurements were corrected for loading as described 

(Gonzalez-Angulo et al., 2011; Hu et al., 2007) using median centering across antibodies 

(level 3 data, described later). In total, 220 antibodies and 12 UM samples were processed 

on the RPPA platform. Final selection of antibodies was also driven by the availability of 

high quality antibodies that consistently pass a strict validation process. These antibodies are 

assessed for specificity, quantification and sensitivity (dynamic range) in their application 

for protein extracts from cultured cells or tumor tissue. Antibodies are labeled as validated 

and use with caution based on degree of validation (Gonzalez-Angulo et al., 2011).

RPPAs were quantitated and processed (including normalization and load controlling) as 

described previously, using ArrayPro Analyzer software (Media Cybernetics, Washington 

DC) and SuperCurve v1.3, available at http://bioinformatics.mdanderson.org/OOMPA. Raw 

data (level 1), SuperCurve nonparameteric model fitting on a single array (level 2), and 

loading-corrected data (level 3) (Ju et al., 2015; Zhang et al., 2009) were deposited at the 

TCGA Data Coordinating Center (DCC).

Data Normalization: We performed median centering across all the antibodies for each 

sample to correct for sample loading differences. Those differences arise because protein 

concentrations are not uniformly distributed per unit volume. By observing the expression 

levels across many different proteins in a sample, we can estimate differences in the total 

amount of protein in that sample vs. other samples. Subtracting the median protein 

expression level forces the median value to become zero, allowing us to compare protein 

expressions across samples. Those median-centered “level 3” RPPA data have been 

uploaded to the TCGA portal.

Antibodies that Were Differentially Abundant between the D3 and M3 Samples: Of the 

12 samples that had RPPA data available, 6 were D3/SF3B1 mutants and 5 were M3/BAP1-

aberrant in a mutually exclusive manner. V4-A9EH was a D3 sample with no aberrations in 

either of the above genes, and was not analyzed further. We identified antibodies that were 

differentially abundant between the retained D3 and M3 samples using a Wilcoxon test in R 

v3.3.3, applying a Benjamini-Hochberg correction for multiple testing to the p values. 

Boxplots were generated in R using default settings. Each box spans the 25th to 75th 

percentile range in the data, i.e. the interquartile range (IQR), and shows a line at the median 

value. Whiskers extend 1.5 times the IQR from the box extent.

Antibody-Based Pathway Scores: Pathway scores were calculated with the method 

described in (Akbani et al., 2014).

Microbial Detection—The microbial detection pipeline is based on BioBloomTools 

(BBT, v1.2.4.b1), which is a Bloom filter-based method for rapidly classifying RNA-seq or 

DNA-seq read sequences (Chu et al., 2013). We generated 43 filters from ‘complete’ NCBI 

genome reference sequences of bacteria, viruses, fungi and protozoa, using 25-bp k-mers 
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and a false positive rate of 0.02. We ran BBT in paired-end mode with a sliding window to 

screen FASTQ files from 80 tumor RNA-seq libraries (48-bp PE reads), 160 whole exome 

libraries (80 tumor and 80 blood normal libraries with 76-bp PE reads) and 102 whole 

genome libraries (51 tumor and 51 blood normal libraries with 51-bp PE reads). In a single-

pass scan for each library, BBT categorized each read pair as matching the human filter, 

matching a unique microbial filter, matching more than one filter (multi-match), or matching 

neither human nor microbe (no-match). For each filter, we then calculated a RPM abundance 

metric as:

Given the BBT read screening results, we elected not to test for viral genomic integration, 

using methods previously described (Cancer Genome Atlas Research Network, 2014a).

Regulome Explorer—To gain greater insight into the development and progression of 

uveal melanoma, we have integrated all of the data types produced by TCGA and described 

in this paper into a single “feature matrix”. From this single heterogeneous dataset, 

significant pairwise associations have been inferred using statistical analysis and can be 

visually explored in a genomic context using Regulome Explorer, an interactive web 

application (http://explorer.cancerregulome.org).

In addition to associations that are inferred directly from the TCGA data, additional sources 

of information and tools are integrated into the visualization for more extensive exploration 

(e.g., NCBI Gene, miRBase, the UCSC Genome Browser, etc).

Feature Matrix Construction: A feature matrix was constructed using all available clinical, 

sample, and molecular data for 80 unique patient/tumor samples. The clinical information 

includes features such as age and gender; while the sample information includes features 

derived from molecular data such as single-platform cluster assignments. The molecular data 

includes mRNA and miRNA expression levels (Illumina HiSeq data), protein levels (RPPA 

data), SCNA (derived from segmented Affymetrix SNP data as well as GISTIC regions of 

interest and arm-level values), DNA methylation levels (Illumina Infinium Methylation 450k 

array), and somatic mutations. For mRNA expression data, gene level RSEM values from 

RNA-seq were log2 transformed, and filtered to remove low-variability genes (bottom 25% 

removed, based on interdecile range). For miRNA expression data, the summed and 

normalized miRNA quantification files were log2 transformed, and filtered to remove low-

variability miRNAs (bottom 25% removed, based on interdecile range). For methylation 

data, probes were filtered to remove the bottom 25% based on interdecile range. For somatic 

mutations, several binary mutation features indicating the presence or absence of a mutation 

in each sample were generated. Mutation types considered were synonymous, missense, 

nonsense and frameshift. Protein domains (InterPro) including any of these mutation types 

were annotated as such, with nonsense and frameshift annotations being propagated to all 

subsequent protein domains.
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Pairwise Statistical Significance: Statistical association among the diverse data types in 

this study was evaluated by comparing pairs of features in the feature matrix. Hypothesis 

testing was performed by testing against null models for absence of association, yielding a 

p-value. P-values for the association between and among clinical and molecular data types 

were computed according to the nature of the data levels for each pair: categorical vs. 

categorical (Chi-square test or Fisher’s exact test in the case of a 2 × 2 table); categorical vs. 

continuous (Kruskal-Wallis test) or continuous vs. continuous (probability of a given 

Spearman correlation value). Ranked data values were used in each case. To account for 

multiple-testing bias, p-values were adjusted using the Bonferroni correction.

Exploring Significant Associations Between Features: Regulome Explorer allows the user 

to interactively explore significant associations between various types of features: 

associations between molecular features (e.g. miRNA expression and gene expression), 

associations between molecular features and derived numeric features (e.g. purity scores), 

and associations between molecular features and categorical features such as clinical 

features or clusters derived from prior analysis (e.g. mRNA clusters).

cBioPortal Visualization—sSNV, sINDEL, SCNA, and mRNA expression data was 

imported into cBioPortal at Memorial Sloan Kettering Cancer Center, and made available for 

explorative analyses at http://www.cbioportal.org/study?id=uvm_tcga.

PARADIGM Integrated Pathway Analysis

Integrated Pathway Levels (IPLs): mRNA expression, SCNA, and pathway interaction 

data for 80 UM samples were integrated using the PARADIGM software (Sedgewick et al., 

2013). Briefly, this procedure infers integrated pathway levels (IPLs) for genes, complexes, 

and processes, using pathway interactions, and genomic and functional genomic data from 

each patient sample.

Normalized gene-level RSEM RNA-seq expression data and thresholded SCNA data 

(GISTIC2 all_thresholded.by_genes.txt) were obtained from Firehose. One was added to all 

expression values, which were then log2 transformed and median-centered across samples 

for each gene. The log2 transformed, median-centered mRNA data were rank-transformed 

based on the global ranking across all samples and all genes and discretized (+1 for values 

with ranks in the highest tertile, −1 for values with ranks in the lowest tertile, and 0 

otherwise) prior to PARADIGM analysis.

Pathways were obtained in BioPax Level 3 format, and included the NCIPID and BioCarta 

databases from http://pid.nci.nih.gov and the Reactome database from http://reactome.org. 

Gene identifiers were unified by UniProt ID then converted to Human Genome 

Nomenclature Committee’s HUGO symbols using mappings provided by HGNC (http://

www.genenames.org). Altogether, 1,524 pathways were obtained. Interactions from all of 

these sources were then combined into a merged Superimposed Pathway (Super-Pathway). 

Genes, complexes, and abstract processes (e.g. “cell cycle” and “apoptosis”) were retained 

and are henceforth referred to collectively as pathway “features”. The resulting pathway 

structure contained a total of 19,504 features, representing 7,369 proteins, 9,354 complexes, 

2,092 families, 82 RNAs, 15 miRNAs and 592 abstract processes.
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The PARADIGM algorithm infers an IPL for each feature that reflects the log likelihood of 

the probability that it is activated (vs. inactivated). PARADIGM IPLs of the 19,504 features 

within the SuperPathway are available on Synapse (syn4556715). An initial minimum 

variation filter (at least 1 sample with absolute activity > 0.05) was applied, resulting in 

15,502 concepts (5,898 proteins, 7,307 complexes, 1,916 families, 12 mRNAs, 15 miRNAs 

and 354 abstract processes) with relative activities showing distinguishable variation across 

tumors (syn4556729) for use in our differential pathway regulator analysis.

Consensus Clustering of Inferred Pathway Activation: Consensus clustering based on the 

3,852 most varying features (i.e. IPLs with variance within the highest quartile) was used to 

identify UM subtypes implicated from shared patterns of pathway inference. Consensus 

clustering was implemented with the ConsensusClusterPlus package in R (Wilkerson and 

Hayes, 2010). Specifically, median-centered IPLs were used to compute the squared 

Euclidean distance between samples, and this distance matrix was used as the input. 

Hierarchical clustering using the Ward’s minimum variance method (i.e. ward inner linkage 

option) with 80% subsampling was performed over 1,000 iterations, and the final consensus 

matrix was clustered using average linkage. The number of clusters was selected by 

considering the relative change in the area under the empirical cumulative distribution 

function (CDF) curve as well as the average pairwise item-consensus within consensus 

clusters. We selected a 5-cluster solution, given that solutions with more clusters provided 

minimal change and decreased the within-cluster consensus.

Differential pathway regulators of each PARADIGM clusters were identified by comparing 

one cluster vs. all others using the t-test and Wilcoxon Rank sum test with a BH FDR 

correction. All 15,502 features passing the minimum variation feature were considered in 

this analysis; features deemed significant (FDR corrected p < 0.05) by both tests and 

showing an absolute difference in group means > 0.05 were selected. Interconnectivity 

between the selected pathway regulators within the PARADIGM SuperPathway was 

assessed, and regulatory hubs with ≥ 10 differentially activated downstream targets were 

identified and displayed in a heatmap using the heatmap.plus R package.

Pathway Features Differentiating lncRNA Clusters: Differential pathway regulators of 

each lncRNA cluster were identified using the t-test and Wilcoxon Rank Sum test with BH 

FDR correction in a one cluster vs. all others comparison. Only features deemed significant 

(FDR p < 0.05) by both tests and showing an absolute difference in group means > 0.05 

were selected. Interconnectivity between these pathway regulators within the PARADIGM 

SuperPathway was assessed, and regulatory hubs with ≥ 10 differentially activated 

downstream targets were selected. There were a total of 49 PARADIGM differential 

pathway regulators identified across the four lncRNA clusters. The mean IPL of the selected 

regulatory hubs was computed within each cluster and scaled across clusters to a mean of 0 

and a standard deviation of 1. The resulting scaled mean IPLs are shown in Figure S5B.

MARINa/hMARINa Analysis of Regulator Activity—MARINa (MAster Regulator 

INference Algorithm) (Lefebvre et al., 2010) and Hierarchical MARINa (hMARINa) were 

used to evaluate the activity of transcription factors (TFs) and kinases in 80 UM samples.
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Creating a Curated Transcription Factor (TF) Regulome: A compendium of TFs and 

their targets (TF regulons) were created by combining information from four databases:

i. SuperPathway (Sedgewick et al., 2013): This is the same interaction network 

used in the PARADIGM analysis (above). Only links that correspond to 

regulation at the transcriptional level were retained for MARINa and hMARINa 

use.

ii. Literome (Poon et al., 2014): The network was filtered to include only 

transcription links in which the regulator is a known TF.

iii. Multinet (Khurana et al., 2013): The network was reduced to links that 

correspond to regulation on transcriptional level.

iv. ChEA (Lachmann et al., 2010): Data from the Gene Expression Atlas (Petryszak 

et al., 2014) was used to filter the inferred links in the ChEA database. 

Specifically, the context likelihood of relatedness (CLR) method (Faith et al., 

2007) was used to compute a measure of association between every pair of 

genes. The top 10% of gene pairs based on the CLR score were intersected with 

the ChEA network and the overlapping pairs were added to the final combined 

network.

The combined network includes 72,915 transcriptional regulatory links between 6,735 

regulators and their targets. Only regulators with at least 15 targets were considered in the 

final analysis, which resulted in a final network consisting of 419 TFs with 58,363 total 

targets (covering a set of 12,754 unique targets).

Creating a Curated Kinase Regulome: Proteins identified as kinases in Manning 

(Manning et al., 2002) or Uniprot (UniProt Consortium, 2014) were aggregated into a list of 

546 kinases. Protein substrates were extracted from PhosphositePlus (Hornbeck et al., 2014) 

on March 7, 2015. Kinase-substrate interactions were retained if the kinase appeared in the 

Manning-Uniprot kinase list and the kinase was identified as a human protein in the 

PhosphositePlus database. The final compendium consisted of 5,388 links between 342 

kinases and 2,260 unique substrates.

MARINa Estimate of TF Activity: MARINa regulator activity scores predict each TF’s 

relative activity as a contrast between two cohorts of interest. The activity score is derived 

from a combined view of the expression levels of each TF’s transcriptional targets (the TF 

regulon), based on the following steps:

i. The TF regulon is split into positively- and negatively-regulated sets by 

measuring the Spearman correlation between the expression of the TF and that of 

each of its targets.

ii. A t-statistic derived from the difference in gene expression between the two 

classes of interest is computed for each gene. All genes are ranked based on their 

t-statistics to produce a gene signature.
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iii. Each TF’s activation and inhibition regulons are examined for enrichment in the 

high or low end of the ranked gene list. The rankings of the positively- and 

negatively-regulated genes are then combined and examined simultaneously.

A TF whose two target sets show consistent enrichment (i.e. the activated set is enriched for 

highly ranked genes and the inhibited set is enriched for lowly ranked ones, or vice versa) 

receives the highest/lowest activity scores respectively.

Hierarchical MARINa (hMARINa) Estimate of Kinase Activity: MARINa is well suited 

for the analysis of TF activity, because TF proteins are directly involved in changes in 

expression of their targets. Kinases, on the other hand, regulate their targets post-

translationally. Since the expression levels of genes are often poorly correlated with the 

activity of the proteins they encode, mRNA represents a poor proxy to protein 

phosphorylation data. In the absence of the latter, the differential activity of a kinase can be 

estimated using a hierarchical approach (see schematic below) in which activities are 

computed at two successive levels:

i. Level 1 activities are inferred for any regulator (TF or kinase) using single-

sample MARINa (ssMARINa) (Aytes et al., 2014). ssMARINa infers these 

activities based on the expression of the regulator’s targets within individual 

samples. Note that the kinase activity score from level 1 analysis is interpreted as 

an inference about whether kinase targets are “poised” to be regulated, assuming 

that increased protein levels would often require an increase in mRNA 

production as a prerequisite.

ii. Level 2 activities for kinases are inferred by performing a MARINa analysis on 

the level 1 activities computed in the previous step, rather than the usual gene 

expression levels. For level 2, the kinase regulome is used in place of the TF 

regulome, and the targets of each kinase are restricted to those members that are 

themselves kinases or TFs, i.e. proteins with level 1 imputed activities.

Identifying Pathway Features Differentiating lncRNA Clusters—The lncRNA 

clusters were dichotomized into one-vs-rest binary comparisons. For each comparison, 

MARINa was run via the VIPER R package (http://www.bioconductor.org/packages/release/

bioc/html/viper.html) (Alvarez et al., 2016); and hMARINa was performed by extending the 

functionality of the package. Level 3 mRNA data and the curated TF and kinase regulomes 

were used as inputs. Analysis was limited to TFs with at least 15 targets present in the 

expression data. Because the kinase regulome is much smaller than the TF regulome, cutoffs 

for minimum number of kinase substrates were reduced to 10 in the Level 1 analysis and 5 

in the Level 2 one. All other settings were identical to those used for inferring TF activity.

Background models were computed by generating 1,000 label permutations. Significance 

was evaluated by computing p-values against the background distribution and applying a BH 

FDR correction. The final results provided activity estimates for 393 TFs and 62 kinases in 

each dichotomy of interest. MARINa features (TFs) with an FDR ≤ 0.10 were retained. 

Since the kinase regulome is significantly sparser than the TF one, the FDR cutoff for 

hMARINa features was relaxed to 0.15. A total of 113 MARINa and (h)MARINa 
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differential pathway regulators were identified across the four lncRNA clusters. The 

differential activity for each of these regulators in each lncRNA cluster is shown in Figure 

S5C.

Statistically significant findings from the PARADIGM and (h)MARINa differential pathway 

regulator analyses were examined for consistency. For each cluster, pathway regulators with 

similar findings across the two methods were identified as “consistent pathway features.” An 

expanded definition also included protein complexes orfamilies with components identified 

by both methods, genes within the same pathway showing complementary inferred 

activation patterns, as well as abstract processes linked to any of these consistent findings.

lncRNA Pathway Regulator Correlation Networks—The FPKM expression of every 

lncRNA was correlated with PARADIGM per-sample IPL levels, and with the TF and kinase 

activities produced by (h)MARINa, using per-sample ssMARINa activity scores. For each 

lncRNA cluster, correlations between differentially active regulators and lncRNAs were 

retained if all four of the following criteria were satisfied:

i. The TF/kinase was identified as a differentially active pathway feature by 

PARADIGM or (h)MARINa for that cluster, as described above

ii. The lncRNA had a mean FPKM ≥ 5

iii. The lncRNA had a SAM multiclass FDR q-value ≤ 0.05 and the absolute value 

of its SAM contrast for the cluster was the largest compared to the absolute 

contrast values for all other clusters

iv. The absolute value of the Spearman correlation coefficient between the lncRNA 

and the regulator in question was ≥ 0.5

The filtered lncRNA-pathway regulator network for lncRNA cluster 3 contains 188 

correlations between 10 lncRNAs with 24 PARADIGM features and 21 (h)MARINa 

features. Similarly, the filtered lncRNA-pathway regulator network for lncRNA cluster 4 

contains 709 correlations between 26 lncRNAs, 29 PARADIGM features and 70 

(h)MARINa features. Figure 6 shows the correlation networks of selected regulators and 

their associated lncRNAs. For the full list of links, respectively, see (https://tcga-

data.nci.nih.gov/docs/publications/uvm_2016).

The networks in Figure 6 are augmented by protein-protein interaction and transcriptional 

regulation links extracted from PhosphositePlus and the SuperPathway (see Curated TF 

Regulome and Curated Kinase Regulome sections). In addition, regulators that were 

identified as consistent pathway features by both methods were displayed using the shape of 

the method that showed higher differential activity. Both the lncRNA cluster 3 network and 

lncRNA cluster 4 network contain network nodes identified as a MARINa feature, but retain 

significant correlation links from both lncRNA-MARINa and lncRNA-PARADIGM 

comparisons.

Relationship of Fold Change between TCGA SCNA Clusters 3 vs. 4, and 
Association with Time to Metastasis in TCGA and Laurent Monosomy 3 Cases
—We processed Laurent microarray expression data (GEO: GSE22138) (Laurent et al., 
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2011) to 23,520 expression records, using the probe with the highest cohort variance when a 

gene symbol had data for more than one microarray probe (e.g. for CD44, given 13 probes 

we used 229221_at; for MALAT1, given 12 probes we used 224559_at). We then used 

Ensembl v82 gene symbols and bio-types for 20,425 protein-coding genes and 8,167 

lncRNAs or processed transcripts (‘lncRNAs’) to identify 17,525 expression records for 

coding genes and 1,227 records for lncRNAs in Laurent data.

Of the 63 Laurent cases with clinical data, we retained the 32 monosomy 3 cases. These 

included 22 with metastasis and 10 without, and had a median event time of 20.4 months. 

We identified genes that were variably expressed in these 32 samples, finding 13,142 coding 

gene records above a mean abundance of 2.0 and above the 25th percentile in variance, and 

736 lncRNA records with a mean abundance above 1.5 and a variance above the 40th 

percentile.

Similarly, for 33 TCGA cases had metastasis data, thresholding 20,531 RSEM genes on the 

40th percentile (50.3) and 50th variance percentile retained 12,319 variably expressed 

mRNAs. For 8,167 Ensembl v82 lncRNAs and processed transcripts (‘lncRNA’), FPKMs 

for which we calculated from the mRNA sequence data, thresholding on the 80th mean 

FPKM percentile (0.087) and 75th variance percentile retained 1,634 variably expressed non-

coding genes.

To identify genes that were associated with time to metastasis in M3 cases, we censored time 

and status to 5 years for the 32 Laurent and 33 TCGA records. Then, for each of the above 

expressed Laurent and TCGA coding genes and lncRNAs, we used the median expression to 

separate cases into high- and low-expressed groups, and used the R survival v2.41-3 to 

calculate a univariate KM log-rank p-value, and univariate Cox hazard ratios (HRs) with 

95% confidence intervals.

We used SAM 2-class unpaired analyses (FDR < 0.05) to identify TCGA mRNAs and 

lncRNAs that were differentially abundant between TCGA unsupervised SCNA clusters 3 

vs. 4, which were M3 cases.

We integrated results separately for RSEM/coding genes and IncRNAs, as follows. For 

TCGA data we merged M3 metastasis-association results with differentially abundant genes 

in SCNA 3 vs. 4, and assessed the relationship of fold change vs. HR. We then merged these 

results with Laurent M3 metastasis-association results, and identified genes that had 

concordant HRs and HR 95% confidence intervals in both cohorts.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative and statistical methods are noted above according to their respective technology 

and analytic approach.

DATA AND SOFTWARE AVAILABILITY

The data and analysis results can be explored through the Genomic Data Commons (https://

gdc.cancer.gov), the Broad Institute GDAC FireBrowse portal (http://

gdac.broadinstitute.org), the Memorial Sloan Kettering Cancer Center cBioPortal (http://
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www.cbioportal.org), the Institute for Systems Biology Regulome Explorer (http://

explorer.cancerregulome.org), and the UVM publication page (https://tcga-data.nci.nih.gov/

docs/publications). Software tools used in this project are listed in the Key Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Both D3 and M3-UM divide into molecularly distinct subsets with different 

outcomes

• Poor-prognosis M3-UM are characterized by a global DNA methylation 

pattern

• Poor-prognosis M3-UM subsets have distinct genomic, signaling, and 

immune profiles

• EIF1AX and SRSF2/SF3B1 mutant D3-UM have different genomic/DNA 

methylation profiles

Robertson et al. Page 46

Cancer Cell. Author manuscript; available in PMC 2018 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Significance

Using sequence assembly approaches, we identified complex alterations in BAP1 in 

multiple UM that were not revealed by applying standard SNP/indel algorithms to next-

generation sequencing data, suggesting that many BAP1 alterations are undetected using 

current techniques. We show that poor-prognosis UM initially develop monosomy 3 

(M3), followed by BAP1 alterations that are associated with a unique global DNA 

methylation profile. Despite this shared methylation state, poor-prognosis M3-UM 

separated into two subsets by copy number alterations, RNA (mRNA/IncRNA/miRNA) 

expression, and cellular pathway activity profiles. Our integrated analysis reveals that the 

somatic copy number and associated gene expression subtypes correlate with differential 

clinical outcomes. Our findings reveal four distinct molecular and clinical UM profiles, 

emphasizing the need for stratified UM patient management.
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Figure 1. Genomic Landscape of Primary UM
(A) Unsupervised clustering of somatic copy numberalterations(SCNAs) separated 80 

primary UM into four clusters: 1 (n = 15),2(n = 23), 3(n = 22), and 4(n = 20), ordered by 

increasing chromosomal instability. The upper covariate tracks show SCNA clusters (1–4), 

chromosome 3 and 8q copy number, and ploidy level. The heatmap shows somatic copy 

number ratio (diploid = 0, white). Lower covariate tracks show (i) clinical outcome; (ii) 

BAP1 mRNA expression; (iii) unsupervised clusters for DNA methylation, mRNA, lncRNA, 

and miRNA; (iv) mutations in G-protein-signaling genes, splicing factors, and EIF1AX; (v) 

BAP1 alterations that include alternate splicing and rearrangements detected by assembly of 

DNA-seq and RNA-seq data.

(B) BAP1 mRNA expression, grouped by SCNA clusters, with BAP1 alteration status 

determined by at least one method in (A). Dots show all data values. Box plots show median 

values, and the 25th to 75th percentile range in the data, i.e., the interquartile range (IQR). 

Whiskers extend 1.5 times the IQR.

(C) Cancer cell fractions for chromosome 3 loss, BAP1 alterations, and other somatic 

mutations on chromosome 3, for tumors with BAP1 alterations detected either by standard 

SNP-indel algorithms or by local reassembly of WES data. Lines connect events that 

occurred in the same tumor.

(D) Schematic depicting a probable sequence of somatic events resulting in those detected in 

the cluster 3 case V4-A9EO (M3, BAP1 mutation, WGD, then isochromosome 8q).
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See also Figure S1 and Table S1.
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Figure 2. DNA Methylation Landscape in Primary UM
Unsupervised clustering of DNA methylation data, with the heatmap showing beta values 

ordered by DNA methylation clusters. CpG locus types (island, shore, and shelf) are 

indicated at the left border. Covariate tracks show unsupervised clusters for four other 

genomic data types, clinical outcomes, chromosome 3 and 8q copy number status, specific 

gene alterations, and gender. SF3B1 and EIF1AX mutations were statistically associated 

with the clusters (*p < 0.01, Fisher’s exact test). LOH, loss of heterozygosity.
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Figure 3. Gene Expression Patterns in UM
The upper heatmap shows unsupervised consensus clustering for RNA-seq data of mRNA 

(left) or lncRNA (right) expression. Covariate annotation tracks show selected genomic and 

clinical features. The lower heatmap displays the expression profiles of 12 genes used in a 

prognostic test for the risk of developing metastasis (Harbour, 2014), with blue text 

highlighting genes that are on chromosome 3. High-risk primary tumors show low 

expression of eight of these genes and high expression of four genes (yellow versus green 

panels at the left). BAP1 structural alterations that include alternative splicing and 

rearrangements were detected by assembly of RNA-seq and DNA-seq data. Leukocyte 

fraction was estimated from DNA methylation data. LOH, loss of heterozygosity.
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See also Figures S2 and S3; Table S2. *, **, *** p value < 0.1, 0.01, 10-10, Fisher’s Exact 

or Chi-square test.
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Figure 4. Immune Gene Expression in M3-versus D3-UM
Heatmap for 80 primary UM, highlighting mRNA expression levels of key immunological 

genes that represent the interferon-γ pathway, T cell cytolytic enzymes, chemokine factors, 

immunosuppressive factors, and macrophage markers, as well as individual immune 

checkpoint blockade genes (CD274, PDCD1LG2, PDCD1, CTLA4, IDO1, and TIGIT). 
Samples were separated by D3 versus M3 status, and sorted from lowest (left) to highest 

(right) CD8A expression level. Covariate tracks show mRNA, lncRNA, miRNA, 

PARADIGM, DNA methylation, and SCNA clusters. Leukocyte fraction was estimated from 

DNA methylation data. See also Figure S4.
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Figure 5. Integrative Pathway Analysis of UM
(A) Heatmap of hierarchically clustered PARADIGM inferred pathway levels (IPLs) for 80 

primary UMs. Samples are clustered into five groups (top horizontal track). Below this are 

cluster memberships for other platforms, and for chromosome 3 and 8q copy number, then 

IPL profiles for the MYC/MAX and MYC/MAX/MIZ1 complexes. The main heatmap 

shows PARADIGM features or nodes that have at least ten downstream regulatory targets 

and are differentially active in one-cluster-versus-othercomparisons; the annotation panel to 

the left indicates the cluster(s) in which a node satisfies these conditions. The vertical 
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colored bars on the right highlight sets of pathway nodes that belong to common biological 

processes: MAPK/PI3K-AKT (purple), hypoxia (magenta), DNA damage repair/response 

(green), and immune response (blue). LOH, loss of heterozygosity.

(B) Distributions of DDR pathway score and abundance for selected proteins, from RPPA 

data for M3/BAP1-aberrant versus D3/SF3B1-mutant UM(n = 11). PKC-α_pS657 denotes 

PKC-α phosphorylated at S657. Box plots show median values and the 25th to 75th 

percentile range in the data, i.e., the IQR. Whiskers extend 1.5 times the IQR. Dots show all 

data values.

See also Figure S5 and Table S3.
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Figure 6. Pathway and Regulators that were Differentially Active in Transcriptional Subtypes 3 
and 4
Correlation network for transcriptional (lncRNA) subtype 3 (top) and subtype 4 (bottom), 

showing PARADIGM pathway features, (hierarchical) MARINa regulators, and lncRNAs. 

Red and blue lines indicate Spearman correlations (|rho| > 0.5) between the expression of a 

differentially expressed lncRNA and inferred activity of a differentially active PARADIGM 

or MARINa feature. The color of each node reflects differential expression for a lncRNA, 

and relative activity for a PARADIGM/MARINa feature (red for overexpressed/active, blue 

for underexpressed/inactive). See also Table S4.
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Figure 7. Good-Prognosis D3-UM and Poor-Prognosis M3-UM Separate into Distinct Biological 
Subsets
(A) Kaplan-Meier plots and log-rank p values for the clinical event of UM metastasis for 

M3-versus D3-UM, then for unsupervised clusters for DNA methylation, SCNA, lncRNA, 

and mRNA. The number of cases and events in a cluster are shown on the plots. Median 

event times for clusters 3 and 4 were 10.8 versus 42.6 months for SCNA (p = 0.002, p = 0.01 

with a Bonferroni correction [BC]); 13.0 versus >30 months for lncRNA (p = 0.19, p = 1.0 

with BC); and 13.5 versus 30.0 months for mRNA (p = 0.43, p = 1.0 with BC).

(B) Schematicof D3-UM and M3-UM molecularprognosissubtypes. D3-UM tumorswith 

EIF1AX versus SF3B1 mutations, which are known to be associated with low and 

intermediate risk of developing UM metastasis, respectively, correlated with distinct DNA 

methylation and SCNA profiles. D3-UM tumors also separated into two groups by 

transcription (mRNA, lncRNA, and miRNA) profile analysis. Loss of chromosome 3, 

followed by BAP1 alteration, results in bilallelic BAP1 loss. M3/BAP1 aberrancy is 

associated with a global DNA methylation profile that is not observed in D3-UM. Despite all 

M3/BAP1-aberrant UM sharing this common DNA methylation pattern, these tumors divide 

into two groups by SCNA and transcription profiles, with distinct pathway features 

indicative of hypoxia, DDR, MYC/MAX signaling, and proliferation.

See also Figures S6 and S7; Tables S5 and S6.
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