
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Enhanced sampling of ligand binding modes through BLUES and molecular darting

Permalink
https://escholarship.org/uc/item/8nh5h4gh

Author
Gill, Samuel

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8nh5h4gh
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Enhanced sampling of ligand binding modes through BLUES and Molecular Darting

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Chemistry

by

Samuel Charles Gill

Dissertation Committee:
Professor David Mobley, Chair

Professor Ioan Andricioaei
Professor Douglas Tobias

2020



c© 2020 Samuel Charles Gill



DEDICATION

I would like to thank my parents for their unwavering support for everything that I do in
my life–including my pursuit of a doctorate in chemistry.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES xiv

ACKNOWLEDGMENTS xv

VITA xvi

ABSTRACT OF THE DISSERTATION xviii

1 Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid
Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate
Monte Carlo 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Ligand binding modes are important, but difficult to predict . . . . . 2
1.1.2 Other approaches exist to determine binding modes . . . . . . . . . . 5
1.1.3 Efficiently sampling binding modes in a simulation would greatly in-

crease free energy calculation performance . . . . . . . . . . . . . . . 6
1.2 Theory and computational methods . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Various sampling methods can be applied . . . . . . . . . . . . . . . 8
1.2.2 We study a T4 lysozyme cavity mutant which binds simple ligands . 17
1.2.3 System preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4 We built Markov state models of toluene binding to lysozyme . . . . 20
1.2.5 We use Nonequilibrium candidate Monte Carlo (NCMC) to study

toluene binding to lysozyme . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.6 For reference, we compare NCMC with conventional MD and MD/MC 24
1.2.7 We analyze our binding mode sampling using a dihedral angle which

discriminates between the stable binding modes . . . . . . . . . . . . 24
1.2.8 We generated synthetic data to compare MD and NCMC transition

efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.9 We examined rotational distributions and added the case of 3-iodotoluene

as an example of a bulkier ligand . . . . . . . . . . . . . . . . . . . . 26
1.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.1 Kinetics and populations of binding modes through MD and Markov
State Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



1.3.2 BLUES rapidly samples binding modes . . . . . . . . . . . . . . . . . 30
1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.3 BLUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 Supporting Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Sampling Conformations Using Molecular Darting 55
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2 Theory and computational methods . . . . . . . . . . . . . . . . . . . . . . . 58

2.2.1 Smart Darting allows for selective sampling between minima . . . . . 58
2.2.2 Molecular darting moves use internal coordinates as part of move pro-

posals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2.3 We tested Molecular Darting on three different systems . . . . . . . . 65

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.1 System preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4.1 We validated the internal coordinate sampling of our method against

uniform dihedral sampling of the valine-alanine dipeptide. . . . . . . 70
2.4.2 We applied Molecular Darting to a T4 lyosozyme L99A system . . . . 72
2.4.3 Molecular Darting does not accelerate sampling when outside the dart 73
2.4.4 We attempt to use Molecular Darting to explore multiple binding

modes of HIV integrase Ligands . . . . . . . . . . . . . . . . . . . . . 74
2.5 Conclusion/Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5.1 MolDarting allows sampling of specific binding modes . . . . . . . . . 78
2.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.7 Disclosures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.8 Supporting information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 82

Bibliography 82

Appendix A Chapter 2 Supporting Information 93

iv



LIST OF FIGURES

Page

1.1 Potential free energy efficiency gains using binding mode popula-
tions. (A) shows calculations of M different effective binding free energy
values (∆G◦i ) for each different metastable binding mode of a ligand in a re-
ceptor; these effective binding free energies can be rigorously combined to
recover the total binding free energy [78]. However, the total computational
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state simulations (colored circles, top; each circle represents an amount of sim-
ulation time spent in the binding mode, so the populations can be determined
from counting time in each mode, with binding modes separated by clustering
techniques or any reasonable decomposition of state space [83]), then the full
binding free energy can be recovered from the calculation of a single effective
binding free energy (here, ∆G◦3 is selected for convenience) and the popula-
tions of the different binding modes. This approach has a computational cost
(shown in (C)) of Nx+y, where y is the cost of determining the binding mode
populations, which, to be more cost effective than approach (A), requires that
(M − 1)Nx > y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2 NCMC moves for ligand binding modes. The blue circles represent
the atoms in the binding site, black circles represent the fully interacting
ligand, white circles represent the fully non-interacting ligand, and gray circles
indicate intermediate levels of interaction. A) The ligand is fully interacting
in the binding site. B) The ligand’s interactions are partially off, allowing
the protein to modestly relax the binding site. C) The ligand’s interactions
are fully turned off. D) The ligand is randomly rotated around its center of
mass; its interactions remain off. E) The ligand’s interactions are partially
turned on and the propagation steps of NCMC allow relaxation of the rotated
binding mode to resolve clashes. F) At the end of the NCMC protocol the
ligand is again fully interacting in a new orientation. The NCMC move is
then accepted or rejected based on the work performed via Equation 1.4. . . 42
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1.3 Lambda scaling over the course of our NCMC steps. The ligand’s
electrostatic interactions are first turned off, followed by the sterics, until the
halfway point (where n = ntotal/2 ). The interactions are then turned on
in reverse order. This protocol resembles what is typically done for efficient
alchemical free energy calculations, such as binding free energy calculations.
In particular, the electrostatics are the first to turn off and the last to turn on
because having electrostatic interactions present without first turning off the
steric interactions can lead to numerical instabilities [123]. . . . . . . . . . . 43

1.4 Acceptance probability for toluene as a function of the amount of
NCMC relaxation. The acceptance probability—also referred to as the
acceptance rate—is shown on a log scale as a function of the number of NCMC
switching steps per cycle, for toluene in the L99A site of T4 lysozyme. It
increases dramatically up to 10000 NCMC switching steps per cycle, then
increases more slowly, so here we focus on comparing efficiency with other
approaches at 10000 steps per cycle. The red dashed line marks the acceptance
probability of the instantaneous MC rotation. Error bars are the standard
error in the acceptance rate. For trials using 1000 NCMC switching steps and
more, the uncertainty was calculated based on blocking [45, 38]. The number
of blocks used was the amount that maximized the standard deviations of
the acceptance rate across blocks. For trials using fewer than 1000 NCMC
switching steps, accepted moves were rare enough that we took the standard
deviation across four trials and computed the standard error from that. . . 44

1.5 Order parameter used for identifying binding modes of toluene.
Shown is a depiction of the dihedral order parameter used to differentiate
toluene’s binding modes. The dihedral which we monitor is defined by the
alpha carbon of ARG118 and the C1, C5, and C7 toluene atoms, shown in
orange in CPK representation. In the image, the atoms involved in the dihe-
dral are connected by a purple line, and the dihedral angle measures rotation
around the central dashed purple line. The protein is shown in a blue ribbon
representation, and toluene is shown in cyan. . . . . . . . . . . . . . . . . . 45

1.6 Toluene binding modes. Toluene exhibits four binding modes. The toluene
molecule shown in orange corresponds to the crystallographic binding mode,
while toluene in blue corresponds to another binding mode. The other two
binding modes come about from the symmetric equivalents of these two bind-
ing modes, where the molecule is flipped in the plane of the ring. . . . . . . 46
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1.7 Toluene binding mode populations from a long trajectory. (a) Di-
hedral angle (corresponding to binding modes) observed in the initial long
trajectory as a function of simulation time (see Sec ). (b) A histogram plot
of the selected dihedral order parameter computed from the trajectory (as
shown in Figure 1.5). Labels A1 and A2 correspond to the two different, but
symmetry-equivalent populations of the more favorable binding mode. Labels
B1 and B2 correspond to the two different symmetry-equivalent populations
of the less favorable binding mode. The binding mode fraction of the total
population is denoted by the numbers in parentheses in the legend. With
enough simulation time the symmetric binding modes should have equiva-
lent populations, which is not the case after over 800 ns of simulation, partly
because out-of-plane flips between symmetry equivalent modes are so rarely
observed (here, primarily around 350 and 450ns; the A2 and B2 states are
at the top in panel (a)). Thus, A2 and B2 end up underpopulated relative
to their symmetry equivalent partners A1 and B1. The bootstrapped errors
were calculated by breaking the simulation into 5 blocks and calculating the
standard error between the populations in each of the 5 blocks. . . . . . . . 47

1.8 Implied timescales of binding mode transitions. The implied timescales
shown here were calculated from an MSM utilizing all of our MD simulation
data of toluene in T4 lysozyme L99A. The black line denotes when the lag-
time is equal to the implied timescale; timescales below this line have already
relaxed and cannot be estimated accurately; shown here are the 10 slowest
implied timescales. Overall, this shows that the slowest timescale in this sys-
tem (in this case the out-of-plane flip of the ring ) has an implied timescale
of roughly 100 ns. The gray below the black line indicates when the lagtime
is greater than the implied timescale, at which point information about that
implied timescale is lost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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1.9 Binding mode sampling of toluene in T4 lysozyme with various
methods over 5000 iterations. This compares the performance of vari-
ous methods for sampling the four binding modes of toluene in T4 lysozyme
over a comparable number of iterations; each iteration corresponds to the
same number of force evaluations (20000) for each method. The dihedral
angle plotted (on the vertical axis in the left column) discriminates between
binding modes, so rapid transitions in this value denote transitions between
binding modes. (A,C,E ) The trajectories from the simulations, showing the
the dihedral order parameter plotted as a function of iteration number (loosely,
simulation time). The slow out-of-plane flip of toluene results in a transition
between the top two states and the bottom two states; relatively few such
transitions can be seen in (A) and (C), though more can be seen in (E).
(B,D,F ) Histogram plots of dihedral angles observed in the trajectories, col-
ored by binding mode. Each binding mode’s fraction of the total population
is denoted by the numbers in parentheses in the legend. Labels A1 and A2
correspond to the two different, but symmetry-equivalent populations of the
more favorable binding mode. Labels B1 and B2 correspond to the two dif-
ferent symmetry-equivalent populations of the less favorable binding mode.
(A,B) MD sampling of toluene in T4 lysozyme. (C,D) MC with MD sam-
pling of toluene in T4 lysozyme. (E,F ) NCMC with MD sampling of toluene
in T4 lysozyme. Overall, the MD/NCMC approach leads to dramatically
faster transitions between binding modes and apparently better converged
populations; for example, the symmetry-equivalent A1-A2 pair has dramati-
cally different populations in (B), as does the B1-B2 pair. Importantly, the
MD/NCMC generated many samples between the symmetry-equivalent pop-
ulations (E), which were otherwise slow to sample in other methods. . . . . 49

1.10 Convergence of binding mode populations for toluene. Shown is
convergence of the computed binding mode populations over 5000 iterations
(200ns) for toluene in T4 lysozyme L99A. Labels A1 and A2 correspond to
the two different, but symmetry-equivalent populations of the more favor-
able binding mode; each should converge to 0.30, marked by the dashed
blue line. Labels B1 and B2 correspond to the two different symmetry-
equivalent populations of the less favorable binding mode; each should con-
verge to 0.20, marked by the dashed red line. Over the course of the simula-
tion, the MD/NCMC approach much more quickly to the correct equilibrium
distribution of populations than the other approaches. The populations com-
puted by BLUES are within uncertainty of the true result well before 10% of
the total simulation time, whereas with MD and MC the populations are not
until much later if at all. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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1.11 A model of the convergence of binding mode populations for toluene
in T4 lysozyme L99A. The transition matrices from the MSM andMD/NCMC
simulation were used to estimate the convergence of binding mode populations
as a function of time for a hypothetical simulation starting in state A1. We
ran 1000 trials in each case. For each trial we propagated the transition matrix
by selecting a new state to transition to at each timestep with probabilities
given by the transition matrix as described in the text. Heavy lines show
the mean population estimated over the trials, and the lighter shaded regions
give the standard deviation over trials, indicating the region within which a
typical single simulation would usually fall. Vertical bars denote the point at
which the standard deviation of each estimated population first falls below
5%. (a) The statistical model estimated from the MSM which shows that it
takes approximately 12000 ns for the standard deviation in the slowest con-
verging population to get below 5%. (b) The statistical model estimated from
the MD/NCMC simulation which shows that it takes approximately 60 ns
for the standard deviation in the slowest converging population to get below
5%. In both cases, because the transition matrices were estimated from rela-
tively short simulations, the populations converge to a steady state but have
some error due to the underlying transition matrices. Together, (a) and (b)
demonstrate that MD/NCMC results in dramatically faster (more than two
orders of magnitude) convergence of populations as a function of simulation
time compared to MD alone. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.12 Binding mode transitions for toluene. Shown is the transition matrix
counting the number of transitions between binding modes for toluene in T4
lysozyme L99A over 5000 iterations (200ns), for the different sampling meth-
ods. Labels A1 and A2 correspond to the more favorable binding mode.
Labels B1 and B2 correspond to the less favorable binding mode. A1 and
A2 comprise a symmetry-equivalent pair, as do B1 and B2, but to transition
between states in a symmetry-equivalent pair (A1 to A2, or B1 to B2) re-
quires an out-of-plane flip. Transition counts to the same binding mode (the
main diagonal of the matrix) are omitted for clarity. Here, in general, hotter
colors are better as they indicate more transitions between binding modes.
(a) Transitions of the MD simulation. The total number of transitions is 242.
(b) Transitions of the MD/MC simulation. The total number of transitions
is 230. (c) Transitions of the MD/NCMC simulation. The total number of
transitions is 497. Here, it can be seen that in the MD case, only the A2 to
B2 and B2 to A2 cases have more than 30 transitions, because the simula-
tion mostly remained stuck in these two states without flipping out-of-plane
(Figure 1.9) and a similar effect happened in the MD/MC case but for A1 to
B1. In contrast, in the NCMC case, all transitions occur more than 30 times
because out-of-plane transitions are also relatively frequent. . . . . . . . . . 52
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1.13 Acceptance probability for iodotoluene as a function of the amount
of NCMC relaxation. Shown is the acceptance probability for rotational
moves of 3-iodotoluene in the L99A site of T4 lysozyme, as a function of
the number of NCMC switching steps, analogous to Figure 1.4 except that
this test uses a fixed set of MD snapshots as a basis for move proposals, as
described in the text. Here, we observe that overall acceptance (black line)
increases dramatically up to 10000 NCMC switching steps per cycle, then
increases more slowly. The black dashed line marks the acceptance probability
of instantaneous MC rotations, given the same set of MD snapshots as starting
points. The solid blue line denotes the acceptance probability of substantial
rotations, those larger than 45 degrees, and the dashed blue line indicates
the overall acceptance probability of instantaneous MC rotations from the
same set of snapshots. Thus, NCMC does only modestly worse at sampling
substantial rearrangements than sampling all rearrangements, whereas MC
has orders of magnitude lower acceptance of substantial rearrangements. . . 53

1.14 Rotational distribution of accepted moves for toluene and 3-iodotoluene
in T4 lysozyme. Shown are the distribution probabilities of accepted rota-
tional moves, with standard Monte Carlo and with NCMC, for toluene (top)
and the bulkier iodotoluene (bottom). Results come from 10000 MC iterations
of 10 attempts each (a and c) or 10000 NCMC iterations (b and d). With
NCMC and BLUES, we are interested in improving the decorrelation time
of ligand binding modes, so an important metric is not just the acceptance
ratio, but how many substantial rotational moves are accepted. For toluene,
which is relatively small compared to the available volume of the binding site,
standard Monte Carlo (a) and NCMC (b) yield relatively similar numbers of
large moves accepted (though NCMC has better acceptance of intermediate
moves, presumably due to the additional relaxation). However, iodotoluene is
substantially bulkier, and it is difficult to rotate it in the binding site without
at least some amount of relaxation, so the acceptance rate for MC moves is
lower (Section 1.3.2) and the number of significant rotations is dramatically
lower (c), with virtually no rotations larger than 22.5 degrees observed; for
panel (c) we use a log scale to make it apparent that some significant rotations
were observed. Error bars are computed from the standard error over several
trials of each procedure, or bootstrapping, as detailed in Sec 1.2.9). . . . . . 54
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2.1 Dihedrals are uniformly sampled during MolDarting. We illustrate
how we perform our rotational darting moves using a rose plot representation
of a dihedral angle (in degrees) as an example. The dihedral regions are
represented by the blue areas, and the current dihedral angle is represented
by the yellow line/areas. In this example, there are three total darts, each
with an associated region. (A) The Newman projection of a hypothetical
ligand illustrating three different stable conformations. (B) A representation
of the three dihedral regions for the three conformations. (C) When a particle
is within a dihedral region then a darting move can be performed. (D) When
MolDarting the dihedrals, the new dihedral is selected uniformly from a region
the dihedral is not currently in (shown in yellow). The arrows refer to the two
potential outcomes of the MolDarting move in which the ligand is darted to a
new configuration. (E) One of the other dihedral regions are chosen randomly
(with equal probability) to be MolDarted, and then a new dihedral is chosen
randomly from the chosen region, resulting in a new configuration. . . . . . 62

2.2 Translations are handled deterministically during MolDarting. We
illustrate how we perform our translational darting moves using a 2-dimensional
translational region as an example, with a single particle, (that can represent
an atom of a ligand, for example) that will be Moldarted. The translational
regions are represented by the blue circle, with the center of each transla-
tional region represented by a black dot, and simplified molecule represented
by yellow circles. In this example, there are three total darts. (A) A repre-
sentation of the three rotational regions used. (B) When a particle is within
a translational region, the vector from the particle’s center, to the transla-
tional region’s center is calculated (represented by the arrow). (C) When
MolDarting the vector calculated in (B) is applied to the center of each other
translational region to determine the particle’s new position. The dotted ar-
rows refer to the two potential outcomes of the MolDarting move in which the
ligand is darted to a new configuration. (D) One of the new reference regions
are chosen randomly (with equal probability) to be MolDarted, resulting in a
new configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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2.3 Rotations are handled deterministically during MolDarting. We il-
lustrate how we perform our rotational darting moves using a 2-dimensional
rotational region as an example, with a single molecule that will be moved
via MolDarting. The rotational regions are represented by the blue triangle,
with the center of each rotational region (which was defined by some reference
pose) represented by the three black circles connected by black lines, and the
ligand in our simulations represented by the yellow circles connected by yellow
lines. In this example, there are three total darts, each with an associated ro-
tational region. (A) A representation of the three rotational regions used. (B)
When a particle is within a rotational region the rotation matrix is calculated
from the current positions to the reference positions. (C) When MolDarting,
the rotation matrix calculated in (B) is applied to the reference positions of
each other rotational region to determine the molecule’s new position. The
dotted arrows refer to the two potential outcomes of the MolDarting move in
which the ligand is darted to a new configuration. (D) One of the new refer-
ence regions are chosen randomly (with equal probability) to be MolDarted,
resulting in a new configuration. . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4 Restraints are included in the NCMC switching protocol. In order
to keep the ligand in the binding site while the ligand’s interactions
are off, an orientational restraint is used which corresponds to the
dart that the ligand is in at the beginning of an NCMC move pro-
posal. At the middle of the NCMC protocol, a MolDarting move
is performed, and the restraint switches to a new orientational re-
straint corresponding to the new dart, which is subsequently turned
off throughout the rest of the protocol. . . . . . . . . . . . . . . . . . . 65

2.5 Adding restraints with NCMC and MolDarting requires additional
consideration. When restraints are used alongside NCMC andMolDart-
ing, it’s necessary to take into account several additional factors,
which are illustrated by this flowchart and elaborated further in
Section 2.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.6 MolDarting efficiently samples the conformations of valine-alanine.
(a) (top) A trajectory consisting of MD+MC uniform rotations of the valine
sidechain, with the histogram of the data (right). (b) (bottom) A trajectory
consisting of MD+MC MolDarting moves of the valine sidechain. Molecu-
lar darting converges to the same distribution as uniform torsion rotations.
However, MolDarting ends up being about twice as efficient at generating tor-
sion transitions in this system. The red horizontal lines are included to help
visually separate the three binding modes. . . . . . . . . . . . . . . . . . . . 71

2.7 MolDarting generates selective transitions between binding modes
Toluene has four binding modes in the binding site, but only two of the
binding modes are sampled here, due to the targeted nature of MolDart-
ing. MolDarting is able to reproduce the correct relative probabilities of both
binding modes, which are approximately 60% for binding mode A (the crys-
tallographic binding mode), and 40% for the noncrystallographic pose. . . . 73
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2.8 MolDarting does not improve sampling when the simulation moves
outside the darts. Here, the initial binding modes of toluene between 0
and π radians are well sampled (in the first 400 iterations), since these are
covered by the rotational regions from MolDarting. However if the simulation
leaves that region, then a MolDarting move cannot take place, and thus the
simulation becomes just a normal MD simulation. In this particular simu-
lation, around the 400th iteration toluene flips to the symmetric equivalent
binding mode, which is not covered by the rotational regions, greatly reducing
sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.9 MolDarting attempts sample all the defined binding modes. We
looked at the binding modes sampled by MolDarting moves attempts. All 9
binding modes that were used for MolDarting with this ligand (4CGD) were
sampled over the 200 iterations performed. The ligand started in binding
mode 1. The points in blue indicate MolDarting move attempts which were
successful at sampling new binding modes, while the red indicates that the
ligand was outside the defined regions, so no darting move was attempted. . 76

2.10 High protocol work leads to rejection for MolDarting moves. (a)
The protocol work distribution of NCMC with MolDarting move attempts
with 1,000 (a), 10,000 ((b), and 50,000 ((c) NCMC switching steps with the
HIV integrase and the ligand found in 4CGD. The protocol work done over
the course of the NCMC moves generally is highly positive (unfavorable),
leading those moves to be rejected by the acceptance criteria. There are a
small number of cases when the work values approach zero or are negative,
but these were still rejected. In these cases, rejection was due to the ligand
ending up outside the defined regions at one of the checks during the course
of the move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.11 Turning on the steric interactions leads to unfavorable accumula-
tion of protocol work. (a) (left) The instantaneous difference of protocol
work accumulation over 1000 switching steps. (b)The instantaneous difference
of protocol work accumulation over 10,000 switching steps. From 200 itera-
tions of NCMC and MolDarting simulation, we took the average values of the
protocol work at each step for 1000 and 10,000 switching steps. From these
average values, we calculated the instantaneous difference between the work
values, shown by the blue line. The standard deviation of these differences are
shown in red. We can see that there is a large accumulation of protocol work
when the ligand’s interactions are being turned back on (after the halfway
point of the NCMC steps). . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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Free energy perturbation methods serve an important role in drug discovery by providing

accurate predictions of binding affinity, solubility, and other quantities. However, in order for

the free energy estimates to be accurate, the system must be able to sample all the relevant

low energy states during the course of a simulation. This proves to be challenging for binding

affinity calculations in particular, since there can be many different potential binding modes,

and binding modes are slow to interconvert at simulation timescales. It is possible to treat

each binding mode separately, perform a free energy calculation on each binding mode, and

then combine the results into a total free energy prediction, but the computational cost of

free energy calculations does make this parallelization approach feasible. Another alternative

approach would be to use a method that could sample between the different binding modes

efficiently and produce accurate estimates of the populations of each of those binding modes.

This information, along with a binding free energy calculation on one of the binding modes,

would allow the estimation of the overall binding free energy.

In order to sample between binding modes efficiently, I helped develop a new method that

uses nonequilibrium candidate Monte Carlo (NCMC) to remove the ligand and reinsert it in a

new binding site with a center of mass rotation to further improve sampling. I validated this

methodology on T4 lysozyme L99A, a model protein for binding, and was able to show that
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it enhanced the sampling of the binding modes of toluene and 3-iodotolune. Following these

results, I helped create the BLUES (Binding modes of Ligands Using Enhanced Sampling)

software package to facilitate the use of this technique.

Originally BLUES only could further improve binding mode sampling with a center of mass

rotation Monte Carlo (MC) move, which limited it’s applicability to small, rigid ligands. To

further improve binding mode sampling, I also developed a new type of MC move called

molecular Darting (MolDarting) to sample specific binding modes. Through MolDarting

it is possible to sample predefined conformations–obtained by docking, for example–and

reversibly sample them in a MC framework. MolDarting also opens up the ability to even

sample ligand binding modes in separate binding sites. We validated this move on an alanine-

valine dipeptide system, as well the previouly explored T4 lysozyme and attempted to sample

all the potential binding sites in HIV integrase.
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Chapter 1

Binding Modes of Ligands Using

Enhanced Sampling (BLUES): Rapid

Decorrelation of Ligand Binding Modes

via Nonequilibrium Candidate Monte

Carlo

Accurately predicting protein-ligand binding affinities and binding modes is a major goal

in computational chemistry, but even the prediction of ligand binding modes in proteins

poses major challenges. Here, we focus on solving the binding mode prediction problem for

rigid fragments. That is, we focus on computing the dominant placement, conformation, and

orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the

multiple binding modes which may be relevant. This problem is important in its own right,

but is even more timely given the recent success of alchemical free energy calculations [127, 4].

Alchemical calculations are increasingly used to predict binding free energies of ligands to
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receptors. However, the accuracy of these calculations is dependent on proper sampling of the

relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain,

hard to predict, and/or slow to interconvert on simulation timescales, so proper sampling

with current techniques can require prohibitively long simulations. We need new methods

which dramatically improve sampling of ligand binding modes. Here, we develop and apply

a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand

binding modes. In this technique, the ligand is rotated and subsequently allowed to relax in

its new position through alchemical perturbation before accepting or rejecting the rotation

and relaxation as a nonequilibriumMonte Carlo move. When applied to a T4 lysozyme model

binding system, this NCMC method shows over two orders of magnitude improvement in

binding mode sampling efficiency compared to a brute force molecular dynamics simulation.

This is a first step towards applying this methodology to pharmaceutically-relevant binding

of fragments and, eventually, drug-like molecules. We are making this approach available

via our new Binding Modes of Ligands using Enhanced Sampling (BLUES) package which

is freely available on GitHub.

1.1 Introduction

1.1.1 Ligand binding modes are important, but difficult to predict

One of the motivations of computer aided drug design is to understand and predict what

factors increase ligand binding affinity to allow for better design of new ligands for fur-

ther drug development. Successfully predicting binding affinity depends on many factors,

including the determination of the most favorable or relevant binding mode, or modes, of

the ligand. Medicinal chemists often use knowledge of the likely binding mode or binding

modes to attempt rational improvements upon the scaffold, as well as giving insight into the
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important interactions driving binding. The binding mode or binding modes also provide

a fundamental input for many calculations that can predict binding affinities, such as free

energy calculations [83].

As important as binding modes are, actually determining them can be difficult. The stan-

dard experimental techniques for binding mode determination, X-ray crystallography and

nuclear magnetic resonance, can be time-consuming, difficult, or costly, and are not suitable

for all targets (membrane proteins can be particularly challenging, for instance). Addition-

ally, experimental methods do not always clearly resolve the binding mode. For example,

in the case of fragment-based drug discovery, small, relatively rigid ligands can often have

some ambiguity in their binding modes because of internal pseudosymmetry, or other is-

sues [94, 89]. Additionally, methods to make X-ray diffraction data easier to collect—such

as cryocooling crystals—potentially stabilize binding modes that are not observed under the

conditions of interest [37]. Multiple binding modes may also contribute substantially to a

ligand’s affinity [82, 11, 80, 125, 57], therefore knowledge of a single experimental binding

mode may be misleading or provide an incomplete picture.

Computationally determining binding modes is similarly difficult. One of the most widely

used computational methods for binding mode determination is docking, which scores a

variety of ligand poses in the binding site [118, 62]. Docking has been shown to perform well

in generating candidate binding poses from the top scoring poses; however, the top scoring

poses from docking tend not to be the ones found experimentally [130, 84]. This is partly

because docking was designed to have a particularly low computational cost (usually seconds

or less per molecule) in order to allow application to large databases [25, 103]. Thus, docking

necessarily makes many approximations in order to achieve this speed.

In a recent D3R challenge, which consisted of predicting binding modes of HSP90 ligands,

different docking studies had varying levels of accuracy–even within submissions using the

same docking software–but human screening of the structures seemed to help identify the

3



correct binding mode [41]. Four of the 11 top scoring methods used visual inspection of the

computationally predicted poses, while the less successful methods did not, indicating how

it remains extremely challenging to predict binding modes [41]. Another study by Warren

et al. looked at how well different docking programs performed across a variety of different

protein targets [130]. They found that docking methods could explore the conformational

space of the ligand sufficiently, but the top scoring pose often did not correspond to the

observed crystallographic pose [130].

In fact, humans tend to outperform automated methods at predicting binding modes in blind

challenges [112, 120], further showing that there are still many aspects of binding mode pre-

diction that could benefit from improvement. In the SAMPL4 HIV integrase challenge, for

example, determining the binding mode or even binding site of a set of ligands to HIV inte-

grase was shown to be very difficult for many methods [84]. A human expert with more than

10 years working on the target provided the best submission, in large part guided by his ex-

pertise [120]. The best purely computational method in this challenge used docking followed

by free energy calculations to predict whether compounds would bind to HIV integrase. In

this study, the majority of false negative binding results used starting poses vastly dissimilar

from crystallographic observations [39], indicating that many of the failures resulted from

incorrect binding modes.

An alternative to docking which is more rigorous, but computationally expensive, is to apply

free energy calculations based on molecular simulations to predict populations of possible

stable binding modes. For example, the "confine and release" approach allows multiple

binding modes to be treated separately by distinct free energy calculations, and then subse-

quently combining the individual binding free energies to yield a total binding free energy [79]

(Figure 1.1(a)). Specifically, the overall binding free energy of a ligand to a protein can be

decomposed into a particular type of average over the effective binding free energies of differ-

ent metastable binding modes [78]. As long as these metastable binding modes are defined a
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way that they cover the full bound state including all the relevant binding modes, and they

do not overlap in phase space, this approach is rigorous. However, the number of required

binding free energy calculations scales linearly with the number of binding modes for this

already computationally demanding approach, making it unappealing to consider multiple

candidate binding modes separately in this manner [83].

1.1.2 Other approaches exist to determine binding modes

Another option is to sample over the binding modes within a given binding free calcu-

lation, as reviewed elsewhere [83]. Many binding free energy calculations use alchemical

techniques [119, 44, 60] where binding free energies are computed by turning off interactions

between the ligand and receptor (controlled by an alchemical parameter λ), taking the ligand

through a nonphysical pathway that allows it to be moved from the binding site to solution,

yielding the binding free energy. The Binding Energy Distribution Analysis Method [40] (BE-

DAM) is one such alchemical method which includes multiple binding modes by allowing the

non-interacting or weakly-ligand to rearrange and reorient in the binding site before turning

back on interactions, thus allowing relatively easy interchange between binding modes in a

single set of simulations.

A similar approach is taken by Wang et al. in the application of Hamiltonian replica exchange

molecular dynamics to ligand binding [125]. In their work, multiple replicas of a protein-

ligand system were simulated in implicit solvent with varying λ couplings of the steric and

electrostatics between replicas. To enhance conformational sampling, translational and ro-

tational Monte Carlo moves were applied before exchange attempts. This potentially allows

efficient sampling across binding modes in a single binding free energy calculation, though

the use of implicit solvent was critical to the success of their instantaneous Monte Carlo

moves. The POPFEP work of Jayachandran et al. proposed an alternative approach, cor-
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recting for poorly mixing sampling that resulted in highly erroneous binding pose populations

by decomposing the sampled configurations into distinct poses with a Markov state model

and independently computing alchemical binding free energies with respect to a common

noninteracting state [53].

1.1.3 Efficiently sampling binding modes in a simulation would greatly

increase free energy calculation performance

Our goal in this paper is a computational method which can reproduce equilibrium binding

mode populations with much less computational time than treating binding modes sepa-

rately. Specifically, each alchemical binding free energy calculation requires simulation at N

different alchemical intermediate states (where N is typically at least 12-20 [78, 40, 125]),

where each alchemical state is associated with a vector of alchemical parameters λ (which

we will refer to as λ values). If we consider M different binding modes, the total cost of a

binding free energy calculation that covers all binding modes separately is MNx where x

is the cost of a single simulation (Figure 1.1(A) and (C)). This becomes impractical as the

number of potential binding modes grows. Instead, the approach we envision is one where

we calculate an absolute binding free energy for a single, reasonably populated binding mode

and, in a separate calculation that can be run concurrently, efficiently determine the relative

free energies (or equilibrium populations) of all M potential binding modes (Figure 1.1(B)).

Then, we can combine the populations of the individual binding modes and the free energy

estimate for a single binding mode into a binding free energy that includes all of the possible

binding modes [83]. Thus this approach would have a computational cost of Nx+ y, where

y is the simulation time to determine the binding mode populations.

Such an approach could work as outlined in Ref. [83], providing a way to compute interconver-

sion free energies between different metastable binding modes. This would have implications
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for both absolute and relative binding free energy calculations. For absolute calculations,

depending on how many binding modes are being considered, such an approach could drasti-

cally reduce the total amount of simulation time, as long as y � Nx (see Figure 1.1(C)) (and

the wallclock time as long as y � x since the N independent alchemical simulations could be

run in parallel). This is not currently feasible because we have no suitable, general-purpose

method for efficiently sampling binding modes, and thus the cost of these calculations (y) is

far too expensive in terms of both human effort and computational time. Our focus here is

on developing a method for obtaining binding mode populations which has a cost y which

is relatively favorable compared to Nx, or ideally even x so that a parallel calculation could

complete in at most x wall-clock time.

A method that allows efficient sampling of binding modes would have broad uses in free

energy applications, but would also aid in predictions of binding modes for structure-based

design, fragment-based discovery, and other applications [42, 100, 88]. Here, our primary

focus is on different “binding modes”: defined as different metastable conformations of a

fragment-like ligand within a single relatively rigid protein cavity. Metastable binding modes

are thus those which are slow to interconvert on a simulation timescale x. Generally, if

binding modes interconvert at a timescale slower than x/10 then proper sampling is a major

concern; different metastable conformations may have different binding free energies but will

be sampled in incorrect proportions, resulting in highly biased results. Moreover, the concept

of a binding mode can include multiple ligand conformations in the same site, binding to

in multiple sites, or even multiple protein conformations [83], though we do not specifically

address enhanced sampling of protein motion here.
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1.2 Theory and computational methods

1.2.1 Various sampling methods can be applied

There are a number of common sampling methods which can be used so that simulations

sample the equilibrium distribution of populations. The efficiency of these methods can

vary dramatically depending on which particular system or class of problem they are applied

to, and a method that works best for one class of problem not necessarily most suitable

for another class. Thus it is often nontrivial to determine which sampling method is best

suited to a particular problem, or whether there is even a suitable method. Here, our

particular interest is in accelerating sampling across ligand binding modes while still sampling

the correct distribution of populations. Our goal is to develop a general method that can

efficiently determine binding mode populations, in part by reducing the time it takes for

simulations to switch between binding modes relative to other methods. This section will

discuss some common sampling methods and the difficulties they encounter when applied to

the ligand binding mode sampling problem.

Molecular dynamics (MD) is limited by the metastability of ligand binding modes

MD is typically used to simulate the dynamics of biomolecular systems by application of

a force field which gives the forces between the atoms in the system as a function of their

positions. With enough simulation time, MD should sample different metastable states

with populations that are correct for a given choice of force field and ensemble, assuming

that other simulation details—such as the integrator used to propagate dynamics—do not

introduce errors. However, in practice sampling transitions between binding modes using MD

is typically inefficient because of large energy barriers (and hence slow timescales) separating

binding modes [78, 83, 24, 49].

8



Some free energy calculations attempt to get around this problem by assuming that similar

ligands will have similar binding modes, so if a bound structure of a related ligand is available,

it is assumed that new related ligands will share the same binding mode. However, this is

not necessarily the case – even closely related ligands can have disparate binding modes that

are slow to interconvert [49, 80, 83] Perhaps this is one reason why the accuracy of relative

free energy calculations based on MD still falls short of what is desired for pharmaceuti-

cal applications [110], therefore, adequate binding mode sampling via direct MD simulation

requires considerable computational expense and can necessitate specialized simulation hard-

ware [109]. This inefficiency is compounded further in free energy calculations, as detailed

above, where it is often necessary to adequately sample all relevant binding modes at each

λ value to obtain correct binding free energies. In some cases, it is possible to sample long

enough at the physical end states to cover all binding modes and then apply restraints to

restrict the space treated at intermediate λ values, then compute the free energy of imposing

and removing the restraints at the end states. This can improve efficiency modestly [78],

but still requires simulations on timescales substantially longer than the timescales of the

relevant motions.

Markov State Models (MSMs) can predict long timescale behavior efficiently,

but are not ideally suited to our problem

The MSM approach assumes that a trajectory is generated from a Markov process. This as-

sumption allows a statistical interpretation of MD trajectories. Specifically, a Markov State

Model (MSM) is a matrix containing the transition probabilities between defined microstates,

which can be used to predict the long timescale behavior of a system. The resulting model

approximates the temporally coarse-grained dynamics with a Markovian surrogate model,

which has certain properties that can used to predict the kinetics and equilibrium popu-

lations of each state [99]. Because a MSM is concerned only with the transitions between
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states, multiple simulations can be used to generate the model, leading to more efficient

use of computational resources. Specifically, rather than running a single very long simu-

lation to adequately sample all binding modes, many shorter simulations can be used with

substantially less wallclock time, at least if parallel resources are available [91].

The MSM framework also works to predict the long-timescale behavior of a system even

before global equilibrium is reached, as long as local equilibrium is achieved, allowing a

smaller total amount of simulation time to be used to estimate the equilibrium populations

of of all states rather than having to fully converge to the global equilibrium [93]. Sampling

at different thermodynamic states can also be employed with MSMs to improve transition

estimates and sampling [53, 132].

However, the mathematics and assumptions behind MSMs unfortunately make this method

difficult to use without expert knowledge and considerable care, and a maximum increase

in efficiency is obtained only with prior knowledge of all potential binding modes. A suf-

ficient number of transitions between states is necessary to properly estimate equilibrium

populations from the MSM robustly. It is difficult to know a priori how much simulation

data will be required to reach this stage, and it can require careful checking to know when

this has been achieved [22]. There are also many parameter choices (order parameters, lag-

times, clustering methods) which make constructing MSMs difficult to generalize, although

recent developments such as GMRQ [73] and tICA [96, 108] help to reduce dependence on

parameter choices.

Effective Monte Carlo proposals can accelerate sampling, but are difficult to

construct for condensed-phase systems

In some cases, sampling can be dramatically accelerated by introducing Monte Carlo pro-

posals informed by prior information, but this becomes increasingly difficult in condensed

10



phase systems. As a running example, consider a bistable dimer [65]. If we know approxi-

mately the relative locations of free energy minima (i.e. how far apart are the minima of the

bond-length term), we might construct proposals that instantaneously hop from the vicinity

of one minimum to the vicinity of the other. In a vacuum, this will dramatically accel-

erate mixing between the two metastable states of the dimer [90]. However, in a densely

solvated environment it can be difficult to construct nontrivial proposals that avoid hav-

ing near-universal rejection since instantaneously perturbing the coordinate of interest is

likely to introduce clashes with solvent. While high acceptance rates could be achieved with

extremely small perturbations, the long correlation times resulting from these small pertur-

bations leads to highly inefficient sampling. Thus, while MC techniques have seen substantial

use for biomolecular systems [54, 76], much of the field has moved towards using MD as a

more general sampling engine and MC has to some extent fallen out of favor, partly because

naïve MC moves in densely packed systems tend to overwhelmingly be rejected.

However, there have been some successes at combining MC and MD. For example the com-

mon replica [70] and Hamiltonian replica [117] exchange approaches use MC moves (involving

swaps between replica simulations run under different conditions) to allow increased sam-

pling in a variety of systems. MD itself can also be used as a MCMC proposal move as

in hybrid Monte Carlo [30]. Additionally, in prior work in the YANK package, MC rota-

tional and translational moves have been combined with MD to help with rapid ligand po-

sitional/orientational decorrelation while doing binding free energy calculations in implicit

solvent [20, 125]. In general, however, designing MC moves that fully exploit available knowl-

edge (to make nonlocal proposals) while retaining reasonable acceptance rates is difficult in

the condensed-phase.
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Nonequilibrium Candidate Monte Carlo (NCMC) couples MD with the benefits

of MC and yields more efficient sampling

Nonequilibrium Candidate Monte Carlo (NCMC) provides a framework for translating in-

sight about the system (in the form of a naïve Monte Carlo proposals) into practical algo-

rithms [90] that retain some of the advantages of Monte Carlo while providing dramatically

higher acceptance. The motivation is that it can be easier to construct a finite-time proposal

process (a nonequilibrium “protocol”) that achieves high acceptance rates with short correla-

tion times than to construct a successful instantaneous proposal. In the dimer example above,

instead of instantaneously proposing a single large dimer extension move, we may construct

a nonequilibrium process including a sequence of small dimer extension increments. If, after

every incremental “perturbation,” the rest of the system is allowed to “relax”/“propagate,”

then we might end up with an acceptable proposal that has crossed a free energy barrier.

NCMC was originally presented in a very general setting, where (1) the target distribution

is an expanded ensemble of configurations and thermodynamic states, (2) the protocols may

mix arbitrary sequences of steps, and (3) each proposal is drawn from a distribution over

protocols. Here, we consider a special case where we have only a single thermodynamic

state, a single time-symmetric protocol, and a simple “perturbation kernel,” so many of

these terms cancel out and leave a simpler exact expression for the acceptance criterion. We

make a further approximation in the acceptance criterion to improve performance, as we

discuss further below.

NCMC permits nonequilibrium relaxation of most of the system while part of the system is

being driven over (or around) kinetic or energetic barriers prior to acceptance or rejection

of the NCMC move. Instead of proposing large instantaneous perturbations to the system,

NCMC divides a target large perturbation into a series of steps consisting of smaller instan-

taneous perturbations, where each perturbation is followed by propagated dynamics. After
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this series of perturbation and propagation steps, the whole sequence is accepted or rejected

as an NCMC move. The intermediate states are always discarded and do not count towards

any equilibrium averages or other properties as they are transiently out of equilibrium.

The NCMC procedure is performed via a protocol Λ, which utilizes a sequence of perturbation

kernels at(,y) and propagation kernels Kt(,y). By “kernels” we mean conditional probability

distributions, p, that we can evaluate pointwise and draw samples from. Furthermore, each

kernel p must satisfy the requirement that if p(,y) > 0 then p(y, ) > 0, for all pairs ,y.

Here, we use a symmetric protocol consisting of T steps, where the perturbation and prop-

agation steps are alternated with either a or K appearing at both the beginning and the

end, so that Λ = (a1, K1, a2, K2, . . . , KT , aT+1) = Λ̃, where Λ̃ is the reverse protocol. This

protocol produces a trajectory X ≡ (0,1 , . . . ,T ). To generate the appropriate acceptance

for an NCMC move to maintain detailed balance, we also have to consider the proba-

bility of observing a time-reversed trajectory X̃ ≡ (̃T , ...̃1 ,̃ 0) under the reverse protocol

Λ̃ ≡ (KT , aT , KT−1, aT−1..., K1, a1), where t̃ is the microstate t with reversed momenta. Be-

cause we are considering a symmetric protocol, however, the forward and reverse protocol

are identical, thus simplifying the acceptance criterion.

The protocol used in BLUES is thus a symmetric sequence of perturbation and propaga-

tion events, starting and ending with perturbation. The perturbation typically consists

“thermodynamic perturbation” — modifying the potential energy function to change inter-

actions between the ligand and the protein. However, the central perturbation step in each

NCMC cycle is an instantaneous perturbation of the ligand coordinates. These perturbation

(thermodynamic or instantaneous) events are interspersed with propagation via Langevin

dynamics.

For perturbation, we alchemically modify the potential energy function (described in detail

below) to slowly annihilate and then restore ligand interactions with the environment, result-
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ing in a sequence of reduced potentials ut that incorporate the time-dependent interactions of

the ligand with its environment. In the middle of the protocol, when the ligand is no longer

interacting with the environment, we rotate the ligand into a new orientation in an operation

that does not change the potential energy of the system. This is done by translating the

center of mass of the ligand to the origin, applying a rotation matrix to its coordinates,

and reversing the translation to restore the ligand’s original center of mass. The rotation

matrix is drawn uniformly over the space of all rotations using a quaternion approach, in

which a random quaternion is generated uniformly over a 4D hypersphere and converted to

a rotation matrix. This ensures the probabilities of generating a particular rotation matrix

and its inverse are equal so that the overall proposals are time-symmetric.

For propagation, we use a Langevin integrator with specific properties (described below).

A variety of acceptance criteria A[X] applied at this point would restore the system to

equilibrium. For the case of symmetric protocols Λ = Λ̃ where all perturbation operations

are symplectic (preserve phase space volume), the acceptance probabilities for a proposed

NCMC trajectory X given protocol Λ must satisfy

A[X]

A[X̃]
≡ e−∆S[X] = e−w[X], (1.1)

where ∆S(X) is the conditional path action difference, which is equivalent to the total work

w[X]. The total work includes both protocol work and “shadow work” [111],

w[X] ≡ wprotocol[X] + wshadow[X] (1.2)

where the protocol work depends on the changes in reduced potential energy during each of
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the perturbation steps,

wprotocol[X] ≡
T∑

t=1

[ut(
∗
t )− ut−1(t∗)] (1.3)

By contrast, the wshadow(X) depends on internal details of the propagation scheme used [111].

While neglect of the shadow work can lead to large errors in general [111], we select a specific

Langevin integrator that preserves the configurational distribution to very high accuracy,

the BAOAB integrator of Matthews and Leimkuhler [63, 64], allowing us to neglect this

contribution without introducing large error. We justify this approximation by observing

that the sequence of Langevin propagation kernels are nearly exact Markov kernels, each

preserving the distribution πt() ∝ e−ut() with high fidelity. Recall that, due to discretization

error, the invariant distribution ρt() sampled by a numerical algorithm for Langevin dynamics

will differ slightly from the target (i.e. ρt ≈ πt), and the magnitude of this difference

increases with the integrator step size. This may introduce bias. We neglect this bias, since

the specific integrator employed here is thought to preserve the configurational distribution

to very high accuracy [63, 64]. This conclusion is based on analytical results showing

that the integrator approximates configurational averages to fourth-order in the timestep

(as opposed to second-order for competing integrators), and extensive numerical evidence

examining particular biomolecular observables [63, 64]. Note that we would also use this

criterion if each propagation step were a reversible MCMC move.

In practice, using an exact MCMC kernel (such as Generalized Hamiltonian Monte Carlo)

for propagation would substantially increase the computational expense of a protocol by (a)

introducing costly energy evaluations during accept-reject steps, (b) reducing the feasible

integration timestep, and (c) dramatically increasing correlation times if the acceptance

rate is even slightly less than 1 [121]. Including the shadow work contribution would also
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substantially reduce the acceptance rate of long protocols. In future work, we will examine

the bias vs. efficiency trade-offs of this approximation, and the extent to which these can be

mitigated by choice of Langevin integrator, or by using reduced-momentum-flipping variants

of Hamiltonian Monte Carlo [121, 115, 14]. While it has been argued more generically that

the contribution of “shadow work” in nonequilibrium simulations can be neglected without

introducing much bias [19], this is likely highly dependent on the specific choice of integrator

used, so we recommend caution if other integrators are considered.

We combine NCMC with random ligand rotational moves

Here, we provide details of our NCMC move proposals for ligand binding mode sampling. We

combine thermodynamic perturbation of the ligand (alchemically changing its interactions

with the protein) with uniform random rotation around the ligand center of mass (COM).

Specifically, we scale λ over a series of n NCMC steps until the ligand no longer interacts

with the protein (removing its steric and electrostatic interactions). λ scales the interactions

between the ligand and the rest of the system; to elaborate further, λ controls the strength

of interactions between the ligand and its environment, with λ = 1 corresponding to the

fully interacting state, and λ = 0 corresponding to the non-interacting state (as discussed in

1.2.5. The ligand is then randomly rotated to a new orientation in the binding site around

it’s center of mass. Then its interactions are turned back on by scaling λ over a series of

another n NCMC steps, as conceptually shown in Figure 1.2. Finally, we use the analogue

of the Metropolis-Hastings acceptance criteria [47] that satisfies Eq. 1.4 to accept or reject

the resulting move.

A[X] = min
{

1, e−wprotocol(X)
}

(1.4)
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Ligand rotation does not strictly need to be around the COM; it could be around a randomly

selected heavy atom, or a point chosen within a Gaussian distribution around the COM, or

various other options; we use the COM here for simplicity.

Figure 1.2 shows a cartoon of how these NCMC moves can work for exploring ligand binding

modes. The ligand starts fully interacting (Figure 1.2(A)) and its interactions with the rest

of the system are slowly turned off through alchemical λ coupling over a series of NCMC

steps (Figure 1.2(B,C)). When the ligand is fully non-interacting, a random rotation (see

Section 1.2.1) around the ligand’s center of mass is performed (Figure 1.2(D)). Then the

ligand’s interactions are subsequently turned back on until it is once again fully interact-

ing, potentially allowing it to find an alternate favorable orientation in the binding site

(Figure 1.2(E,F)). We then accept or reject the move based on the acceptance criteria in

Equation 1.4. In order to preserve detailed balance, the momenta of the system must be

reversed after acceptance or rejection of proposed moves, or the momenta must be reassigned

randomly from a Boltzmann distribution after the move [51, 59, 121]; in this work, we take

the latter approach.

1.2.2 We study a T4 lysozyme cavity mutant which binds simple

ligands

Here, we test several methods, including our new NCMC rotational method, on a T4

lysozyme cavity mutant which binds simple ligands. The T4 lysozyme L99A cavity mu-

tant studied here has a buried binding site which readily binds non-polar molecules, making

it a common model system for free energy calculations [81].

Toluene, a T4 lysozyme L99A binder, was chosen as the initial ligand for testing this method

for a number of reasons. One is that toluene’s symmetry allows for a convenient check of

correctness; symmetric binding modes should have equivalent populations with adequate
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sampling. Also, the different potential binding modes for toluene differ primarily based on

rigid body rotation of the ligand in the binding site, so rotational moves should increase

sampling of the relevant binding mode(s). In addition, previous conventional MD simula-

tions we ran of toluene bound to T4 lysozyme suggest two distinct stable binding modes

are present. Adequate sampling of even these two simple binding modes poses significant

challenges for conventional MD [78]. After testing our NCMC rotational method on toluene,

we also explored its capacities on 3-iodotoluene, a more bulky ligand. 3-iodotoluene does not

have the same symmetry as toluene, meaning that we cannot take advantage of symmetry

as a convenient check for convergence of populations. However, it is still valuable as a test

for efficiency on bulkier molecules.

1.2.3 System preparation

Generic T4 lysozyme/toluene system setup

The T4 lysozyme L99A structure with toluene bound was taken from the 4W53 protein

structure from the Protein Data Bank. Hydrogens were added to the protein using tleap

from AmberTools14 [17, 15]. Hydrogens were added to toluene using Maestro and parame-

terized using GAFF version 1.7 [124] and AM1-BCC charges [52]. Hydrogens and missing

atoms of the protein were added using tleap in AmberTools14, and parameterized using

ff99sbildn [67]. A TIP3P rectangular box was added with 10Å padding from the protein

to the nearest box edge, and Cl− atoms were added to neutralize the charge of the sys-

tem. The resulting .prmtop and .inpcrd files were converted to the equivalent GROMACS

formats using ACPYPE [28].

The system was then minimized using steepest descent running for 2500 steps. The system

was then equilibrated in GROMACS 5.1 for 25000 2 fs steps with constant volume, then

equilibrated under constant pressure for the same number of steps using a Parrinello-Rahman
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barostat to maintain a pressure of 1 atm. Long range dispersion corrections were used for

calculating the energy and pressure. These preparatory simulations were performed at 300

K and v-rescale with tau_t set to 0.1 ps was used to perform temperature coupling.

Full details of the simulation setup can be found in the .mdp files in the Supporting Infor-

mation (SI).

T4 lysozyme/3-iodotoluene system setup

The T4 lysozyme L99A structure was taken from the 4W53 protein structure from the

Protein Data Bank, with the toluene ligand removed. 3-iodotoluene was then docked using

OpenEye’s FRED (ver 3.2.0.2) and we retained the top scoring generated pose. Preparation

of the system using tleap was done the same as in 1.2.3. The system’s energy was then

locally minimized with a tolerance of 10 kJ/mol. The system was subsequently equilibrated

in OpenMM under constant pressure at 1 bar with and 300 K using a Monte Carlo barostat

for 25 ns using a Langevin integrator with a 1 ps timestep and 1/ps collision rate.

Setup for OpenMM NCMC simulations

OpenMM 7.1.0 was used [31]. The OpenMM simulations used the same systems loaded

from the .prmtop and .inpcrd files as prepared in Section 1.2.3. For the MD portions of the

protocol a Langevin integrator was used with a 2fs timestep and 1/picosecond collision rate.

No barostat was used for these simulations after equilibration (and thus simulations were

done in the NVT ensemble).
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1.2.4 We built Markov state models of toluene binding to lysozyme

The T4 lysozyme system with toluene bound (as described in 1.2.3) was minimized in

GROMACS 5.1 [7, 2] via steepest-descent, followed by 1 ns of NVT simulation and then 5

ns of NPT simulation at 1 atm and 300 K for equilibration. The leapfrog integrator was

used with a 2 fs timestep and the bonds involving hydrogen constrained with LINCS [50].

The system was then simulated for a total of 806 ns under the same NPT conditions, saving

configurations to a trajectory file every 30ps. tICA was performed on the pairwise-distances

of the toluene heavy-atoms and the alpha carbons of the binding site of the trajectory

with a lagtime of 0.6ns to generate order parameters for MSM construction. Of the 210

initial dimensions, 22 dimensions were retained—enough to account for 95% of the kinetic

variance in the data, and were scaled by the kinetic map scheme. These large number of

initial dimensions were used to help ensure all relevant binding modes were separated. An

initial MSM was estimated from the order parameters computed from the trajectory using

PyEMMA [106], using 1000 microstates generated from k-means clustering and a lagtime

of 6 ns. The MSM was coarse-grained into four macrostates using Perron-Cluster Cluster

Analysis ++(PCCA+) [13, 29, 101]; full details are available in scripts deposited in the

SI. Two random trajectory frames from each of the four macrostates were then used as

the starting point for new simulations to further sample each identified binding mode and

potentially generate additional transitions. These eight additional simulations were each run

for 60 ns and combined with the longer run above to re-estimate a MSM, following the same

sequence of steps, with these additional simulations added to better explore transitions out

of each macrostate. The total amount of aggregated simulation time used for the final MSM

was 1.286 µs spread across nine trajectories. Additional simulation details can be found in

the SI.
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1.2.5 We use Nonequilibrium candidate Monte Carlo (NCMC) to

study toluene binding to lysozyme

Our NCMC procedure uses random rotational moves to enhance binding mode

sampling

Here we use NCMC to enhance sampling of ligand binding modes in the T4 lysozyme binding

site. As discussed in Section 1.2.1, coupling thermodynamic perturbation with rotational

move proposals can allow the ligand to cross energy barriers between binding modes while

allowing some amount of relaxation to improve the acceptance of proposed moves. In our

procedure (Figure 1.2) interactions between the protein and ligand are on at the beginning

of a move proposal. Then the interactions are turned off by scaling λ from 1 to 0 (where 1

corresponds to full interactions and 0 corresponds to no interactions) over a series of n steps,

following the scheme shown in Figure 2.4. Soft core potentials were used to avoid numerical

instabilities related to scaling the steric and electrostatic interactions, with a 1-1-6 potential

with α = 0.5 [9]. As the NCMC protocol progresses, we first turn off the electrostatics

of the ligand by scaling its potential energy contribution linearly with lambda so that the

electrostatics are completely removed as we go from λ = 0 to λ = 0.2. Then we decouple

the Lennard-Jones interactions using soft core potentials from λ = 0.2 to λ = 0.5 so that

the ligand is now fully non-interacting.

Then a random rotation of the ligand is performed (as described in Sec 1.2.1), with the

random quaterion generated using mdtraj [71]. Finally, the interactions are subsequently

turned back on via a reverse of the original procedure.

The work done during this process is accumulated and used to accept or reject the move

(consisting of the full decoupling, rotation, and recoupling procedure) via Equation 1.4.

After the NCMC move is accepted or rejected, velocities are randomized by drawing from the
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Maxwell-Boltzmann distribution appropriate for the temperature and then a phase of con-

ventional MD is performed to better sample the other (protein/solvent) degrees of freedom.

This full procedure consisting of NCMC moves plus MD steps is then repeated many times

until convergence, and the populations can be then estimated from clustering the resulting

trajectory and computing the time spent in each state.

We implemented this approach via our BLUES package for binding mode sam-

pling

We constructed a package called Binding modes of Ligands Using Enhanced Sampling

(BLUES) to facilitate the use of NCMC to enhance ligand sampling. BLUES implements the

approach outlined in Section 1.2.5 and switches between sampling the system via normal MD

and NCMC alchemical perturbation. The BLUES package allows straightforward control of

the number of MD steps between each NCMC move, the number of alchemical steps used

within each NCMC move, and the total simulation time and number of MD/NCMC cycles.

In BLUES the alchemicalfactory module of openmmtools [23] version 0.11.2 was used to

allow annihilation and restoration of toluene’s steric and electrostatic interactions. The MD

portions of these simulations used OpenMM’s Langevin integrator. The NCMC portion of the

OpenMM simulations used an implementation of the BAOAB integrator of Langevin dynamics

[64] During the NCMC propagation steps we also froze the positions of protein residues

outside of 5Å from the ligand, and the solvent molecules. The selection of the frozen water

and protein residues was not updated during the simulation; this was appropriate in this case

as the binding site is a buried, non-polar binding site with no water nearby and the ligands

remain stably in the binding site, so no updates were needed. The long range dispersion

correction was turned off during the NCMC integration steps due to computational costs

recalculating the correction while scaling λ, but was accounted for by taking into account

the differences in energy between the alchemical and normal systems at the initial and final
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states.

Full details of the implementation and a class diagram are available on GitHub at the link

below.

BLUES is also an extensible framework in that it allows general MC moves to be performed

during the NCMC portion. Here we consider only random rigid-body rotations around the

ligand center of mass as described in Section 1.2.5. However, other moves which might be

of interest to explore later could include translations of subsets of a given system, moves

involving ligand internal coordinates, or sidechain MC moves.

BLUES is freely available on GitHub under the MIT license at https://github.com/MobleyLab/

blues. We used BLUES version 0.1.0 to obtain the data found in this paper. The same sys-

tems from Sections 1.2.3-1.2.3 were used.

Variations in the NCMC protocol dramatically impact move acceptance

With NCMC in BLUES, we can vary the number of perturbation and propagation steps

relative to the amount of standard MD in order to allow an adequate amount of relaxation

in order to ensure reasonable acceptance without using so much relaxation that the approach

becomes tremendously inefficient. Here, we tested this by measuring the acceptance ratio as a

function of the amount of relaxation (Figure 1.4), and found that the acceptance probability

increases rapidly from around 100 NCMC switching steps up to 10000 NCMC switching steps,

then begins increasing more slowly with further relaxation. Thus, here, we selected 10000

NCMC steps per cycle as a reasonable choice in order to determine how much enhancement

in sampling (and therefore efficiency) NCMC can provide relative to standard MD or MD

with MC. Corresponding work distributions and standard deviations of work distributions

are shown in SI Figures 1–2.
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1.2.6 For reference, we compare NCMC with conventional MD and

MD/MC

To compare the efficiency in sampling with NCMC versus more traditional forms of sampling,

we also ran normal MD and MD with MC rotational moves on toluene with the same T4

lysozyme/toluene system. In order to make a fair comparison between methods we kept the

number of force evaluations consistent across methods.

For MD, we ran 20000 integration steps of MD during one iteration to mimic the number

of NCMC force evaluations per iteration. For MD with MC we ran 20000 integration steps

followed by 10 MC random rigid body ligand rotations using the Metropolis criteria for

each iteration. We ran each of these methods for 5000 iterations and then compared the

trajectories and binding mode populations found in our NCMC simulation (Figure 1.9). The

code used to perform these calculations can be found in the SI.

We observed very few transitions between binding modes in both the normal MD and MC

with MD simulations. Because there are so few transitions in these cases we cannot ex-

pect the binding mode populations in these simulations to be converged to the equilibrium

populations.

1.2.7 We analyze our binding mode sampling using a dihedral angle

which discriminates between the stable binding modes

Originally, we used many pairwise-distances as an order parameter when constructing the

MSM to identify toluene’s binding modes (Sec 1.2.4). Once those binding modes were iden-

tified however, further analysis found that a simple 1-dimensional progress coordinate could

separate and identify them. To monitor the binding mode of toluene in the cavity, we picked

a dihedral angle which clearly discriminates between toluene’s four distinct binding modes.
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Specifically, toluene’s binding mode was monitored via calculation of the dihedral formed by

the alpha carbon of ARG118 and the C1, C5, and C7 atoms of toluene (Figure 1.5).

These angles were then used for construction of histograms to monitor populations of the

observed binding modes and the number of transitions between binding modes (Figure 1.9).

The populations of the different binding modes were monitored by using the following dif-

ferent bin boundaries [-π, -1.5), [-1.5, 0), [0, 1.5), [1.5, π). We assigned the following state

labels according to the bin locations: [-π, -1.5) is B1, [-1.5, 0) is A1 [-1.5, 0) is B2, and

[1.5, π) is A2, where the A labels correspond to the crystallographic binding mode and B

labels correspond to an in-plane rotated binding mode. To determine the uncertainty in the

computed population as a function of simulation time, the populations of each binding mode

were determined using fractions of the total simulation data in a blocking approach [45, 38].

The uncertainty in the computed populations were determined based on breaking each 10%

of the simulation into a set of smaller blocks. The number of blocks used was the amount

that maximized the standard deviations of the populations between blocks. For NCMC/MD

this was 8 blocks. For MD and MC/MD, the standard deviation in the mean across blocks

via bootstrapping failed to reach a maximum even with only one block per 10% of the sim-

ulation. The error bars in the plots of the MD and MC/MD simulations are shown based

on one block per 10% of the data, but are likely to severely underestimate the true error.

1.2.8 We generated synthetic data to compare MD and NCMC

transition efficiency

To get a better sense of the efficiency gains of NCMC compared to standard MD we con-

structed statistical models from the data of the MSM and the NCMC simulations. For the

MSM we took the estimated MSM transition matrix directly after clustering the 1.286 µs

into four clusters corresponding to the four binding modes. For the NCMC simulation, we
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assigned each iteration to a particular macrostate using the dihedral order parameter as

defined in Sec 1.2.7. We used those state assignments from those 5000 iterations to gen-

erate a transition matrix. To generate the synthetic data, we started from state A2 and

iteratively applied the transition matrices to get trajectories of states. A new state could

be the same as the previous, depending on the transition probabilities given by that partic-

ular transition matrix. This process was repeated, and the total state populations at each

iteration were recorded. We performed 5000 propogation iterations for the MD and NCMC

transition matrices with 1000 trials each. This allowed us to cheaply estimate uncertainties

in the populations of each state at each time point by taking the standard deviation in the

estimated population across all trials. Overall, this analysis facilitated an assessment of the

rate of convergence of the populations.

1.2.9 We examined rotational distributions and added the case of

3-iodotoluene as an example of a bulkier ligand

To better compare the performance of NCMC and standard MC move proposals (as dis-

cussed in Results 1.3.2), we chose the bulky lysozyme ligand 3-iodotoluene and compared

the efficiency of running a large number of standard MC move proposals with the efficiency of

running many NCMC move proposals. Because our BLUES tool is not designed for efficient

MC performance (since it has additional overhead to facilitate relaxation with NCMC) we

did this test outside of BLUES, instead running standard MD simulations and then selecting

snapshots from these to compare acceptance of MC and NCMC move proposals. Thus this

test is not a benchmark of NCMC against MC, but an assessment of the performance of

NCMC and MC move proposals starting from the same ensemble of MD snapshots.

As preparation, we simulated the T4 lysozyme system with 3-iodotoluene for 90 ns, saving

the positions every 0.2 ns, thereby saving a total of 450 trajectory snapshots. We used these
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snapshots to facilitate our comparison of the acceptance of MC moves and NCMC moves. For

3-iodotoluene, our goal is to assess overall acceptance, and see whether substantial rotational

moves are being accepted with reasonable frequency – in contrast to our work on toluene

(Section 1.2.6) where we were interested in estimating populations in order to ensure that

our approach converges to the correct populations. Thus at the start of each MC or NCMC

move attempt we randomly pick a starting trajectory snapshot to use as a starting point

for a new move proposal. This allowed us to have a variety of starting points for our move

proposals, while also ensuring that we were assessing the performance of move proposals

with equivalent environments. For MC we performed 10 trials, each consisting of 2,000,000

move attempts where each move is instantaneous. For NCMC we performed 7 trials, each

consisting of 2000 move attempts; each move consisted of 6500 NCMC switching steps.

Since we were interested in comparing not just acceptance rate but how these moves fared

at substantially decorrelating ligand orientation within the binding site by sampling across

different binding modes, we also monitored the angle by which each move rotated the ligand.

Specifically, when a move was accepted, we calculated the angle of rotation by first calculating

the rotation matrix needed to generate the final ligand positions from the initial ligand

positions [8], then calculating the angle of rotation θ by Eq 2.1, where R is the rotation

matrix.

θ = arccos(
Tr(R)− 1

2
) (1.5)

We also performed a similar routine to determine the rotation distributions in the toluene

case, except we performed MD/MC or MD/NCMC sampling as previously described in

Sec 1.2.6. For toluene, we ran 5 MD/MC trials consisting of 10000 iterations, with each

iteration consisting of 10 MC moves attempts followed by 1000 steps of MD. For MD/NCMC

we ran one trial consisting of 10000 iterations, with each iteration consisting of a NCMC
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move of 10000 NCMC switching steps and 1000 steps of MD.

In all cases, the resulting rotational distributions were histogrammed using 8 bins of 22.5

degrees; the error for each bin was determined using the standard error in the mean estimated

across trials, except for the MD/NCMC T4 lysozyme/3-iodotoluene simulation, in which we

estimated the error by dividing up the accepted frames of the trajectory into 8 blocks,

which maximized the standard deviation, then computing the standard error in the mean

by bootstrapping over the accepted blocks.

To monitor the binding mode, we found a dihedral order parameter that separated the 3-

iodotoluene binding modes observed during the simulations (see SI); this involved the C1,

C5, and I8 atoms of 3-iodotoluene and the alpha carbon of VAL111 of T4 lysozyme. This

was used to monitor the overall orientation of the ligand in the binding site, e.g. in SI Figure

3.

Results are given in Section 1.3.2.

1.3 Results and Discussion

1.3.1 Kinetics and populations of binding modes through MD and

Markov State Modeling

We constructed a MSM from approximately 1 µs of simulation data on the T4 lyszosyme/toluene

system (see Sec 1.2.4) to estimate equilibrium populations of the binding modes and timescales

of interconversion. From the implied timescales of the MSM (Figure 1.8) we identified 4 ki-

netically separated binding modes of toluene as expected from the gaps between the third

and fourth timescales.
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Perron cluster cluster analysis+ (PCCA+) was then used to separate the trajectory frames of

the MSM into 4 clusters. Visual inspection of the resulting macrostate clusters from PCCA+

revealed that there were two clusters, each with a symmetry equivalent partner (Figure 1.6).

The populations estimated from the MSM show the populations of the symmetric states to be

roughly equal, with 32±8% and 26±6% for the two symmetric binding modes corresponding

to the crystallographic binding mode. The other binding mode showed 18±5% and 23±6%

populations for the symmetric equivalents (SI Figure 4).

We find that timescales for binding mode interconversion are extremely slow, both from

analyzing our long conventional MD simulation directly, and from the implied timescales

of the MSM. Direct analysis of our long single 806 ns trajectory (Figure 1.7) showed that

certain binding mode transitions are quite rare.

Additionally, the slow kinetics involved in sampling are highlighted by the implied timescales

of the MSM (Figure 1.8). The slowest transition–switching between symmetric binding

modes–occurs on a timescale of 100 ns, while the faster transitions occur approximately

every 4ns.

It is important to note that even with the simplicity of both this binding site and toluene

(which is a rather small ligand compared to the size of the site), slow transitions are still

observed, consistent with earlier observations that binding mode interconversion is quite slow

in the buried lysozyme binding site[11].

Given the timescale of the slowest binding mode transitions observed here, obtaining accurate

ligand binding mode populations from brute force MD or even MSMs seems particularly

costly in this case. Specifically, to generate an accurate representation of the populations

either approach will need to observe multiple transitions between binding modes. Especially

in the MD case, this would require simulations which are at least 10 times longer than the

100ns timescale for the slower binding mode interconversion events—equivalent to at least 1µs
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of simulation. While toluene’s symmetry could be used to obtain correct populations without

adequately sampling the symmetric ring flip, any new ligand differing by a substitution

breaking this symmetry (and there are many such ligands which bind in this site, such as

the 3-iodotoluene case considered later in this work [82]) would require adequate sampling

of these previously symmetry-equivalent binding modes. In other words, adequate binding

mode population estimates would likely require multiple microseconds of simulation time.

1.3.2 BLUES rapidly samples binding modes

Initial simulations indicate BLUES samples more rapidly than MD

Here, to compare the efficiency of our NCMC approach, BLUES, to that of brute force

molecular dynamics and MSMs, we applied BLUES to the T4 lysozyme/toluene system. We

applied the NCMC protocol of thermodynamic perturbation with random rigid-body ligand

rotations (as described in Section 1.2.1) to observe the protocol’s efficiency in sampling

binding mode interconversions. The NCMC protocol was applied over 5000 iterations, each

consisting of 10000 MD steps separated by NCMC move proposals consisting of turning off

and restoring ligand interactions over 10000 steps, with random rotations while the ligand

is noninteracting.

For reference, we also performed standard MD and MD/MC simulations using the same total

number of force evaluations. In the MD case, this meant 5000 iterations of 20000 MD steps.

And in the MD/MC case, this meant 5000 iterations of 20000 MD steps interspersed by 10

conventional MC move proposals involving random ligand rotation. The number of force

evaluations at each iteration was kept constant between methods. Thus, with a 2fs timestep

we simulated for an equivalent of 200ns total with each method.

Figure 1.9 shows the dihedral angle (indicating the binding mode) sampled versus time over
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each method’s iterations, along with the resulting histogram of the binding mode populations.

Compared to MD or MD coupled with traditional MC moves, this NCMC method allows

rapid interconversion between all four binding modes.

This allows BLUES to reproduce the correct equilibrium populations (Figure 1.9(C), right),

and on a force evaluation basis, NCMC was approximately 17 times more efficient than brute

force MD with Markov State Modeling.

This is also evidenced by the fact that over the same number of iterations, BLUES converges

rapidly to the correct equilibrium populations within 2000 iterations (Figure 1.10), whereas

MD and MD/MC still have significant errors. For MD after 5000 iterations the major binding

mode populations differ from the equilibrium populations by as much as 45%; for MC they

differs by as much as 26%.

Although this NCMC implementation is more efficient on a force evaluation basis compared

to MD, there is some computational overhead for alchemically modifying the sterics and

electrostatics during integration in OpenMM for GPU simulations, causing the wall-clock

time per NCMC iteration to be about three times longer than a MD iteration. Specifically,

our calculations shown in Figure 1.10 took 2249 minutes for MD, 2189 minutes for MD/MC,

and 5413 minutes MD/NCMC. Convergence to within uncertainty of the correct population,

and to within 5% of the correct population, appears to occur for this system (Figure 1.10)

well before 40% of the total simulation time (80ns); with a factor of three in additional cost,

this takes about as long to run as 240ns of conventional MD simulation. Thus the savings of

NCMC in terms overall wall-clock time is still about a factor of five compared to the MSM

approach for this system, which required roughly 1.3µs of aggregate simulation data.
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Statistical analysis confirms the efficiency of BLUES compared to MD

To validate and further assess the relative efficiency of BLUES compared to MD, we built a

statistical model of convergence of populations in these two cases. Specifically, we wanted to

use transition matrices between the four states (in both cases) to propagate the populations

over a long time in order to analyze convergence properties. We obtained the MSM transi-

tion matrix for the MD case. For the NCMC case we constructed a transition matrix from

our BLUES simulation (as described in Section 1.2.8). We then built a model of conver-

gence using these two matrices as a starting point. In each case, we started a hypothetical

simulation from binding mode A1 and used the transition matrix to propagate the popula-

tions, at each timestep choosing a new state to transition to based on the probabilities in

the transition matrix. In the MD case the transition matrix was constructed using a lagtime

of 6 ns so our simulation timesteps corresponded to 6 ns, whereas in the BLUES case the

transition matrix was constructed for a 40 ps MD/NCMC iteration so timesteps were 40 ps.

We then repeated 1000 such simulations for each case and examined the mean population as

a function of time and the standard deviation over trials. These are shown in Figure 1.11. In

this case we find that NCMC converges much more quickly than MD, specifically, for MD it

takes approximately 12000 nanoseconds for the standard deviation in the slowest converging

population to drop below 5%, indicating that typical simulations would have a population

error of no more than 5%. In contrast, for NCMC the standard deviation drops below 5%

for the slowest converging population by 60 nanoseconds, a factor of 200 reduction in total

simulation time compared to MD.

It is important to note that in this model the transition matrices are only estimates of the

true transition matrices, so populations will eventually converge to a stationary distribution

as seen in Figure 1.11, but the final populations will have some amount of error. Here we

are more interested in examining the rate of convergence than the populations as our goal

is to measure the relative efficiency of both techniques.
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Ultimately, the difference in performance between MD/NCMC and the benchmark MD and

MD/MC approaches is fairly simple to understand. Conventional MD cannot cross kinetic

barriers any faster than their inherent timescales, so, since timescales for interconversion

between the slowest binding modes here are around 100ns (Section 1.3.1), convergence in

conventional MD will necessarily take many times longer than 100ns. The MD/MC ap-

proach here couples conventional MD with occasional random ligand rotational moves which

are accepted or rejected via conventional Monte Carlo, but because the binding site is rel-

atively densely packed—even though it is not solvent exposed—the vast majority of these

are rejected for toluene (giving an acceptance rates of 0.091±0.004%). Thus, this approach

performs almost equivalently to standard MD. Our NCMC approach implemented in BLUES

converges much more rapidly because ligand rotational move proposals can relax before being

accepted or rejected, thus dramatically enhancing the acceptance rate to approximately 11%.

These acceptance rates are reflected in the transitions between states, (Figure 1.12), which

show that MD/NCMC produced 497 transitions. This is more than twice as many transi-

tions than the other methods employed; during the same number of iterations MD produced

242 transitions and MD/MC produced 230 transitions. Also, MD/NCMC produced high

transition counts from any given binding mode to any other binding mode, while the other

methods primarily produced transitions from a given binding mode to a subset of all the

binding modes. Specifically, the other methods had the most transitions between in-plane

binding modes (A1-B1 or A2-B2 transitions, Figure 1.12(a) and (b)) which are relatively fast

to interconvert in normal dynamics, where BLUES had significant numbers of transitions

between all binding modes, even the out-of-plane flip, which has a characteristic timescale

of roughly 100 ns for conventional MD (Section 1.3.1). For example, the A1 to A2 transition

occurred only twice in standard MD, and once in MD/MC, but 48 times in BLUES. This is

also clearly apparent from Figure 1.9 (left panels), where the MD and MD/MC approaches

have few transitions between the top pair of states and the bottom pair of states, but BLUES

has a very large number.
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NCMC does not compare as favorably to MC for toluene, but NCMC moves

have clear advantages for bulkier iodotoluene

While BLUES compares favorably to standard MD in the case of toluene bound to lysozyme,

and has a better acceptance ratio (10 ± 1 %) than standard MC (0.091 ± 0.004 %), the

difference in acceptance ratio between BLUES and standard MC is not actually enough to

justify the additional computational expense of the NCMC relaxation. Specifically, instead

of doing 10000 NCMC steps (as in BLUES) to achieve a reasonable acceptance rate, we

could simply do a very large number of MC trials (e.g. 10000, for a similar computational

expense) with the low acceptance rate and still see a reasonable number of moves accepted.

We believe this relative advantage of standard MC may be a peculiarity of toluene in this

particular binding site (which is relatively large compared to the size of toluene, and known

to be especially rigid [126, 82, 86, 81]), and not representative of typical MC performance in

condensed phase systems [90].

To further test the relative performance of MC and NCMC, we examined performance

of NCMC versus MC move proposals for a larger ligand in the lysozyme binding site, 3-

iodotoluene; we find that the presence of the bulky iodo substituent dramatically impairs

acceptance of MC moves, presumably due to the larger size of the ligand relative to the size

of the binding site (see Section 1.2.9 for methods). 3-iodotoluene is another known binder

in the lysozyme L99A site; however, due to its lack of symmetry, we are unable to take

advantage of ligand symmetry to provide a simple metric for convergence of binding mode

populations. It is nevertheless useful here as a good example of a larger ligand which should

have several different metastable binding modes in this site.

For 3-iodotoluene, our comparison focuses just on acceptance of MC and NCMC move pro-

posals given a fixed ensemble of MD snapshots as a starting point, and we find that the

acceptance rate of standard MC is (1.2 ± 0.2) × 10−2 % while for NCMC, it is 0.8 ± 0.1%.
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Thus, standard MC results in an order of magnitude lower acceptance for 3-iodotoluene

than toluene, meaning that standard MC is closer to NCMC’s performance on 3-iodotoluene

rather than outperforming it (in terms of acceptance rate) as in the case of toluene.

However, the overall acceptance probability is not the only consideration – we are also inter-

ested in how each technique improves the acceptance of substantial moves that significantly

alter the ligand binding mode. After all, when proposing random ligand rotational moves,

a rotation of zero, or of very nearly zero, is a valid move proposal, so potentially many of

the moves being accepted are in fact very small ligand rearrangements. To examine this,

we determined the fraction of rotational moves accepted as a function of amount of rotation

(Figure 1.14), both for toluene and for 3-iodotoluene.

For toluene, due to its relatively small size, MC and NCMC result in relatively similar

acceptance profiles as a function of the amount of rotation (Figure 1.14(a) and (b)), except

perhaps that NCMC yields improved acceptance of intermediate amounts of rotation between

0 and 180 degrees. However, for 3-iodotoluene (Figure 1.14(b) and (c)), standard MC results

in virtually no acceptance of moves larger than 20 degrees ((5 ± 2) × 10−5 %), whereas

NCMC retains good acceptance of such moves (0.68± 0.07 %). (For the MC case on the 3-

iodotoluene system, we performed a total of ten trials of 2,000,000 MC attempts and in each

trial, typically saw at most one or two accepted moves consisting of significant rotations.)

Accounting for the 6500 relaxation steps used in NCMC, MC would have a (3 ± 1) × 10−1

% acceptance of significant rotations indicating that NCMC is still approximately twice as

efficient than MC in this case.

This is further supported by SI Figure 5, where we examine how effective MC versus NCMC

moves are at sampling new binding modes not represented in the MD trajectory providing

the starting points for our move attempts. For MC, only very few moves outside the start-

ing region are accepted, whereas NCMC is quite effective at sampling new binding modes.

Additionally, MC gives the apparently false impression that the initial set of binding modes
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is by far the most favorable (because it is so difficult to find a combination of ligand orien-

tation and protein conformation which can allow a rotational move to be accepted with no

relaxation), whereas NCMC suggests that there are alternate binding modes that may be

considerably more favorable.

Thus, the acceptance ratio only gives a small part of the overall picture; NCMC does dra-

matically better than MC at sampling significant binding mode transitions, enough so that

even in this relatively simple 3-iodotoluene test system, NCMC outperforms simply perform-

ing a very large number of MC trials (with an equivalent number of energy evaluations) by

roughly a factor of 2.

We also examined the performance of NCMC move proposals for 3-iodotoluene as a function

of the amount of relaxation, as shown in Figure 1.13. In keeping with the analysis just prior,

we find that NCMC move proposals perform nearly as well for substantial rotations as for

all rotations, whereas MC move proposals do not.

Overall, our tests on 3-iodotoluene indicate that for larger ligands and/or more confined

environments, standard MC move proposals perform dramatically worse than for toluene,

in keeping with what might be expected for large moves in condensed-phase systems [90].

This, combined with the overall flexibility of the NCMC approach in combining some of the

advantages of MD with those of MC, indicates that this approach may be a good general

strategy for ligand binding mode sampling. Additionally, this work highlights how important

it is not just to monitor the overall acceptance rate of moves, but how the acceptance rate

of moves is coupled to the size of moves; here, NCMC results in high acceptance of large

moves, while MC does not.
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1.4 Conclusions

1.4.1 Summary

Overall, we find that NCMC with random ligand rotational moves dramatically enhances

sampling of ligand binding modes compared to the other more conventional methods em-

ployed here.

Particularly, we have shown that NCMC can greatly enhance move acceptance for exploring

ligand binding modes by allowing for relaxation during attempts. NCMC also allows dra-

matically faster sampling than standard MD because of its ability to cross steric barriers;

advantages over standard MC are less clear but grow with the size of the ligand relative to

the amount of space it has in the binding site. The generality of this method is particularly

appealing. We did not use any prior information about the binding modes in generating our

move proposals, which involve random rigid-body rotations, thus this type of move shows

promise in broadly sampling different potential binding modes without any prior knowledge.

Extensions of this approach however, could potentially make use of other information–for

instance from docking–to perform guided rotations targeting specific binding modes. Al-

though NCMC rotational moves can help sample potentially slow binding mode transitions,

there are some factors which can pose challenges for this approach. The acceptance rate will

likely decrease as the ligand size grows, since a larger percentage of possible random rotations

will lead to particularly significant clashes that cannot relax in the span of the move, and

favorable binding modes will become correspondingly harder to find by random exploration.

Additionally, rotational moves alone will not cover all binding mode possibilities in some

cases, but the addition of other Monte Carlo moves (such as translation) could perhaps help

address this. Also, rigid body random rotations of a ligand will likely not be as effective for

flexible ligands, whose binding modes can be dependent on changes to the internal degrees

of freedom such as torsional rotations.
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While toluene and iodotoluene binding to T4 lysozyme might not seem to be particularly

relevant to drug discovery problems, the problem confronted here actually has considerable

similarity to problems encountered in fragment based drug discovery (FBDD). FBDD at-

tempts to find promising leads for early stage drug discovery by studying the binding of very

small, often relatively rigid, ligands[46, 87, 33]. These ligands can in fact be of relatively

similar size and rigidity to toluene in some cases [89]. Thus, prediction of binding modes of

small rigid fragments is in fact of considerable interest. Additionally, even when structural

data is available for the binding of fragments, the X-ray crystal structures obtained from

FBDD campaigns sometimes have ambiguous electron density for the ligand, making the

binding mode difficult to determine [42]. Applying this NCMC method to cases involving

rigid ligands could help determine the major binding mode(s) and/or resolve ambiguity in

experimental structural data.

1.4.2 Future Work

Future work will focus on exploring other degrees of freedom not just of the ligand, but

also the protein. For example, previous studies of T4 lysozyme with p-xylene have shown

the VAL101 sidechain orientation greatly impacts which of p-xylene’s binding modes are

favorable. That valine sidechain is, however, slow to sample and thus would make an excellent

test case for NCMC sidechain rotational sampling.

We are also interested in exploring the internal degrees of freedom of the ligand. Performing

random rotations of ligand rotatable bonds might be one way to explore the internal degrees

of freedom. T4 lysozyme with n-propylbenzene might be suitable for such a test, as the

crystal structure shows multiple binding modes due to rotations of the ligand’s alkyl tail.

Also, rings within a molecule can often be pseudosymmetric, thus necessitating sampling of

each ring conformation. These ring flips can be similarly treated by rotating the internal
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bonds of the molecule.

The NCMC framework in BLUES has been written to allow straightforward extension to

other types of move proposals, such as protein sidechain or ligand torsion rotations as noted

above. Even more ambitious move types may be of interest as well. For example, tech-

niques like smart darting [5] could potentially be used to allow ligand hops between different

candidate binding sites or binding modes that have been determined in advance.

1.4.3 BLUES

The BLUES package introduced in this work as available free and open-source at https:

//github.com/MobleyLab/blues. We believe this approach shows considerable promise for

enhanced sampling of protein and ligand motion and will be useful for a wide range of

applications.

1.5 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at

(details) and includes a PDF file containing SI Figure 1 (showing work distributions for

rotating toluene in lysozyme as a function of the amount of NCMC relaxation), Figure 2

(showing the work standard deviation for toluene in lysozyme as a function of the amount

of switching), Figure 3 (showing the dihedral progress coordinate used for 3-iodotoluene),

Figure 4 (showing the estimated MSM transition matrix for toluene in lysozyme), and Figure

5 (showing acceptance of NCMC vs standard MC move proposals as a function of dihedral

angle/binding mode, given a fixed ensemble of MD snapshots); a .tar.gz file containing a

set of scripts for running MD and MD/MC and MD/NCMC, simulation run input files for the

GROMACS simulations described here, scripts for the OpenMM simulations described, input
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topology and coordinate files for all simulations, a README.md file detailing organization,

and scripts for MSM construction and PCCA analysis as noted in Methods, as well as a

copy of the BLUES code used to generate the data presented here. These figures can also

be found in Appendix A
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Figure 1.1: Potential free energy efficiency gains using binding mode populations.
(A) shows calculations of M different effective binding free energy values (∆G◦i ) for each
different metastable binding mode of a ligand in a receptor; these effective binding free
energies can be rigorously combined to recover the total binding free energy [78]. However,
the total computational cost (C) will be MNx where M is the number of binding modes
considered, N is the number of intermediate alchemical states used, and x is the length of the
simulation used at each alchemical state (assuming each alchemical state uses an equally long
simulation). Alternatively, (B) shows how if relative populations (pi) of different metastable
binding modes can be recovered from end state simulations (colored circles, top; each circle
represents an amount of simulation time spent in the binding mode, so the populations
can be determined from counting time in each mode, with binding modes separated by
clustering techniques or any reasonable decomposition of state space [83]), then the full
binding free energy can be recovered from the calculation of a single effective binding free
energy (here, ∆G◦3 is selected for convenience) and the populations of the different binding
modes. This approach has a computational cost (shown in (C)) of Nx + y, where y is the
cost of determining the binding mode populations, which, to be more cost effective than
approach (A), requires that (M − 1)Nx > y.
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Figure 1.2: NCMC moves for ligand binding modes. The blue circles represent the
atoms in the binding site, black circles represent the fully interacting ligand, white circles
represent the fully non-interacting ligand, and gray circles indicate intermediate levels of
interaction. A) The ligand is fully interacting in the binding site. B) The ligand’s interactions
are partially off, allowing the protein to modestly relax the binding site. C) The ligand’s
interactions are fully turned off. D) The ligand is randomly rotated around its center of
mass; its interactions remain off. E) The ligand’s interactions are partially turned on and
the propagation steps of NCMC allow relaxation of the rotated binding mode to resolve
clashes. F) At the end of the NCMC protocol the ligand is again fully interacting in a new
orientation. The NCMC move is then accepted or rejected based on the work performed via
Equation 1.4.
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Figure 1.3: Lambda scaling over the course of our NCMC steps. The ligand’s
electrostatic interactions are first turned off, followed by the sterics, until the halfway point
(where n = ntotal/2 ). The interactions are then turned on in reverse order. This protocol
resembles what is typically done for efficient alchemical free energy calculations, such as
binding free energy calculations. In particular, the electrostatics are the first to turn off and
the last to turn on because having electrostatic interactions present without first turning off
the steric interactions can lead to numerical instabilities [123].
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Figure 1.4: Acceptance probability for toluene as a function of the amount of
NCMC relaxation. The acceptance probability—also referred to as the acceptance rate—
is shown on a log scale as a function of the number of NCMC switching steps per cycle,
for toluene in the L99A site of T4 lysozyme. It increases dramatically up to 10000 NCMC
switching steps per cycle, then increases more slowly, so here we focus on comparing efficiency
with other approaches at 10000 steps per cycle. The red dashed line marks the acceptance
probability of the instantaneous MC rotation. Error bars are the standard error in the
acceptance rate. For trials using 1000 NCMC switching steps and more, the uncertainty
was calculated based on blocking [45, 38]. The number of blocks used was the amount that
maximized the standard deviations of the acceptance rate across blocks. For trials using
fewer than 1000 NCMC switching steps, accepted moves were rare enough that we took the
standard deviation across four trials and computed the standard error from that.
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Figure 1.5: Order parameter used for identifying binding modes of toluene. Shown
is a depiction of the dihedral order parameter used to differentiate toluene’s binding modes.
The dihedral which we monitor is defined by the alpha carbon of ARG118 and the C1, C5,
and C7 toluene atoms, shown in orange in CPK representation. In the image, the atoms
involved in the dihedral are connected by a purple line, and the dihedral angle measures
rotation around the central dashed purple line. The protein is shown in a blue ribbon
representation, and toluene is shown in cyan.
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Figure 1.6: Toluene binding modes. Toluene exhibits four binding modes. The toluene
molecule shown in orange corresponds to the crystallographic binding mode, while toluene
in blue corresponds to another binding mode. The other two binding modes come about
from the symmetric equivalents of these two binding modes, where the molecule is flipped
in the plane of the ring.
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(a) Dihedral angle versus time (b) Population histogram

Figure 1.7: Toluene binding mode populations from a long trajectory. (a) Dihedral
angle (corresponding to binding modes) observed in the initial long trajectory as a function
of simulation time (see Sec ). (b) A histogram plot of the selected dihedral order parameter
computed from the trajectory (as shown in Figure 1.5). Labels A1 and A2 correspond to
the two different, but symmetry-equivalent populations of the more favorable binding mode.
Labels B1 and B2 correspond to the two different symmetry-equivalent populations of the
less favorable binding mode. The binding mode fraction of the total population is denoted
by the numbers in parentheses in the legend. With enough simulation time the symmetric
binding modes should have equivalent populations, which is not the case after over 800 ns
of simulation, partly because out-of-plane flips between symmetry equivalent modes are so
rarely observed (here, primarily around 350 and 450ns; the A2 and B2 states are at the top
in panel (a)). Thus, A2 and B2 end up underpopulated relative to their symmetry equivalent
partners A1 and B1. The bootstrapped errors were calculated by breaking the simulation
into 5 blocks and calculating the standard error between the populations in each of the 5
blocks.
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Figure 1.8: Implied timescales of binding mode transitions. The implied timescales
shown here were calculated from an MSM utilizing all of our MD simulation data of toluene in
T4 lysozyme L99A. The black line denotes when the lagtime is equal to the implied timescale;
timescales below this line have already relaxed and cannot be estimated accurately; shown
here are the 10 slowest implied timescales. Overall, this shows that the slowest timescale
in this system (in this case the out-of-plane flip of the ring ) has an implied timescale of
roughly 100 ns. The gray below the black line indicates when the lagtime is greater than
the implied timescale, at which point information about that implied timescale is lost.
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Figure 1.9: Binding mode sampling of toluene in T4 lysozyme with various meth-
ods over 5000 iterations. This compares the performance of various methods for sampling
the four binding modes of toluene in T4 lysozyme over a comparable number of iterations;
each iteration corresponds to the same number of force evaluations (20000) for each method.
The dihedral angle plotted (on the vertical axis in the left column) discriminates between
binding modes, so rapid transitions in this value denote transitions between binding modes.
(A,C,E ) The trajectories from the simulations, showing the the dihedral order parameter
plotted as a function of iteration number (loosely, simulation time). The slow out-of-plane
flip of toluene results in a transition between the top two states and the bottom two states;
relatively few such transitions can be seen in (A) and (C), though more can be seen in (E).
(B,D,F ) Histogram plots of dihedral angles observed in the trajectories, colored by binding
mode. Each binding mode’s fraction of the total population is denoted by the numbers in
parentheses in the legend. Labels A1 and A2 correspond to the two different, but symmetry-
equivalent populations of the more favorable binding mode. Labels B1 and B2 correspond
to the two different symmetry-equivalent populations of the less favorable binding mode.
(A,B) MD sampling of toluene in T4 lysozyme. (C,D) MC with MD sampling of toluene
in T4 lysozyme. (E,F ) NCMC with MD sampling of toluene in T4 lysozyme. Overall, the
MD/NCMC approach leads to dramatically faster transitions between binding modes and
apparently better converged populations; for example, the symmetry-equivalent A1-A2 pair
has dramatically different populations in (B), as does the B1-B2 pair. Importantly, the
MD/NCMC generated many samples between the symmetry-equivalent populations (E),
which were otherwise slow to sample in other methods.
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(b) MD/MC
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Figure 1.10: Convergence of binding mode populations for toluene. Shown is con-
vergence of the computed binding mode populations over 5000 iterations (200ns) for toluene
in T4 lysozyme L99A. Labels A1 and A2 correspond to the two different, but symmetry-
equivalent populations of the more favorable binding mode; each should converge to 0.30,
marked by the dashed blue line. Labels B1 and B2 correspond to the two different symmetry-
equivalent populations of the less favorable binding mode; each should converge to 0.20,
marked by the dashed red line. Over the course of the simulation, the MD/NCMC approach
much more quickly to the correct equilibrium distribution of populations than the other
approaches. The populations computed by BLUES are within uncertainty of the true result
well before 10% of the total simulation time, whereas with MD and MC the populations are
not until much later if at all.
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Figure 1.11: A model of the convergence of binding mode populations for toluene
in T4 lysozyme L99A. The transition matrices from the MSM and MD/NCMC simulation
were used to estimate the convergence of binding mode populations as a function of time for
a hypothetical simulation starting in state A1. We ran 1000 trials in each case. For each
trial we propagated the transition matrix by selecting a new state to transition to at each
timestep with probabilities given by the transition matrix as described in the text. Heavy
lines show the mean population estimated over the trials, and the lighter shaded regions
give the standard deviation over trials, indicating the region within which a typical single
simulation would usually fall. Vertical bars denote the point at which the standard deviation
of each estimated population first falls below 5%. (a) The statistical model estimated from
the MSM which shows that it takes approximately 12000 ns for the standard deviation in
the slowest converging population to get below 5%. (b) The statistical model estimated from
the MD/NCMC simulation which shows that it takes approximately 60 ns for the standard
deviation in the slowest converging population to get below 5%. In both cases, because
the transition matrices were estimated from relatively short simulations, the populations
converge to a steady state but have some error due to the underlying transition matrices.
Together, (a) and (b) demonstrate that MD/NCMC results in dramatically faster (more
than two orders of magnitude) convergence of populations as a function of simulation time
compared to MD alone.
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Figure 1.12: Binding mode transitions for toluene. Shown is the transition matrix
counting the number of transitions between binding modes for toluene in T4 lysozyme L99A
over 5000 iterations (200ns), for the different sampling methods. Labels A1 and A2 corre-
spond to the more favorable binding mode. Labels B1 and B2 correspond to the less favorable
binding mode. A1 and A2 comprise a symmetry-equivalent pair, as do B1 and B2, but to
transition between states in a symmetry-equivalent pair (A1 to A2, or B1 to B2) requires
an out-of-plane flip. Transition counts to the same binding mode (the main diagonal of the
matrix) are omitted for clarity. Here, in general, hotter colors are better as they indicate
more transitions between binding modes. (a) Transitions of the MD simulation. The total
number of transitions is 242. (b) Transitions of the MD/MC simulation. The total number
of transitions is 230. (c) Transitions of the MD/NCMC simulation. The total number of
transitions is 497. Here, it can be seen that in the MD case, only the A2 to B2 and B2 to
A2 cases have more than 30 transitions, because the simulation mostly remained stuck in
these two states without flipping out-of-plane (Figure 1.9) and a similar effect happened in
the MD/MC case but for A1 to B1. In contrast, in the NCMC case, all transitions occur
more than 30 times because out-of-plane transitions are also relatively frequent.
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Figure 1.13: Acceptance probability for iodotoluene as a function of the amount
of NCMC relaxation. Shown is the acceptance probability for rotational moves of 3-
iodotoluene in the L99A site of T4 lysozyme, as a function of the number of NCMC switch-
ing steps, analogous to Figure 1.4 except that this test uses a fixed set of MD snapshots as
a basis for move proposals, as described in the text. Here, we observe that overall accep-
tance (black line) increases dramatically up to 10000 NCMC switching steps per cycle, then
increases more slowly. The black dashed line marks the acceptance probability of instanta-
neous MC rotations, given the same set of MD snapshots as starting points. The solid blue
line denotes the acceptance probability of substantial rotations, those larger than 45 degrees,
and the dashed blue line indicates the overall acceptance probability of instantaneous MC
rotations from the same set of snapshots. Thus, NCMC does only modestly worse at sam-
pling substantial rearrangements than sampling all rearrangements, whereas MC has orders
of magnitude lower acceptance of substantial rearrangements.
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Figure 1.14: Rotational distribution of accepted moves for toluene and 3-
iodotoluene in T4 lysozyme. Shown are the distribution probabilities of accepted ro-
tational moves, with standard Monte Carlo and with NCMC, for toluene (top) and the
bulkier iodotoluene (bottom). Results come from 10000 MC iterations of 10 attempts each
(a and c) or 10000 NCMC iterations (b and d). With NCMC and BLUES, we are inter-
ested in improving the decorrelation time of ligand binding modes, so an important metric
is not just the acceptance ratio, but how many substantial rotational moves are accepted.
For toluene, which is relatively small compared to the available volume of the binding site,
standard Monte Carlo (a) and NCMC (b) yield relatively similar numbers of large moves
accepted (though NCMC has better acceptance of intermediate moves, presumably due to
the additional relaxation). However, iodotoluene is substantially bulkier, and it is difficult
to rotate it in the binding site without at least some amount of relaxation, so the acceptance
rate for MC moves is lower (Section 1.3.2) and the number of significant rotations is dra-
matically lower (c), with virtually no rotations larger than 22.5 degrees observed; for panel
(c) we use a log scale to make it apparent that some significant rotations were observed.
Error bars are computed from the standard error over several trials of each procedure, or
bootstrapping, as detailed in Sec 1.2.9).
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Chapter 2

Sampling Conformations Using

Molecular Darting

Sampling multiple binding modes of a ligand in a single molecular dynamics simulation

is difficult. A given ligand may have many internal degrees of freedom, along with many

different ways it might orient itself a binding site or across several binding sites, all of

which might be separated by large energy barriers. We have developed a novel Monte Carlo

move called Molecular Darting (MolDarting) to reversibly sample between predefined binding

modes of a ligand. Here, we couple this with nonequilibrium candidate Monte Carlo (NCMC)

to improve acceptance of moves. We apply this technique to a simple dipeptide system, a

ligand binding to T4 Lysozyme L99A, and ligand binding to HIV integrase in order to test

this new method. We observe significant increases in acceptance compared to uniformly

sampling the internal, and rotational/translational degrees of freedom in these systems.
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2.1 Introduction

Structure-based drug design allows for rational design of ligands, as computational methods

can help predict desired qualities of a potential ligand prior to its synthesis [36, 55, 113, 68].

However, an understanding of ligand binding modes is often viewed as critical for structure-

based design [133, 74, 56] yet binding modes are not necessarily well known before compounds

are made and tested [85, 129, 27].

Thus, many computational methods seek to predict ligand binding modes. Several such

methods for binding mode prediction are available, but overall computational prediction of

binding modes is a difficult problem [61, 85]. One of the most commonly used methods for

binding mode prediction, docking, is able to sift through millions of compounds efficiently,

however, docking does not tend to do well at predicting the true binding mode [129]. On the

other end of the spectrum of computational cost are free energy simulation-based methods,

which are very promising for structure-based design and are attracting tremendous interest

from industry [75, 26, 107, 122].

However, computational methods for studying binding have their limitations. Free energy

methods for predicting binding affinity need to start close to, or sample the correct binding

mode in order to offer accurate free energy predictions [3, 77, 26, 58]. This reliance on the

starting position can cause issues; since the binding mode of a novel ligand has to be predicted

and is typically slow to sample in a simulation [109], adequate sampling of the ligand’s motion

in the binding site can be challenging. Even in the case of a congeneric series of molecules

binding to the same target, the binding mode of the ligands can differ [85, 66].

In order to circumvent some of these shortcomings of MD-based methods, we previously

developed a mixed MD/nonequilibrium candidate Monte Carlo (NCMC) based method, and

implemented it in a package called Binding modes of Ligands Using Enhanced Sampling

(BLUES) [43]. Typically, Monte Carlo (MC) moves have difficulty achieving high accep-
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tance rates in condensed-phase systems because of tight packing, allowing for only small

perturbations to be performed on a system. NCMC provides a framework where a larger,

instantaneous MC move can be broken up into a series of smaller perturbations. Between

each perturbation the system is allowed to relax by applying dynamics. This process is

repeated a number of times and the whole move is accepted or rejected based on the total

work done during the perturbation steps. In BLUES we use NCMC moves to alchemically

remove the interactions of a ligand and then reinstate them over the course of some number

of steps (N). At the start of reinserting the ligand, a MC move can also be performed to

further improve binding mode sampling. By slowly removing and regrowing the ligand, we

can insert the ligand into a new binding mode and allow the rest of the system to slowly

relax in response to the ligand’s motion, potentially leading to higher rates of acceptance

compared to instantaneous MC moves.

As noted, an MC move can be performed at the midpoint of the NCMC protocol. In our

original paper describing the BLUES method, the only such move offered was a center of mass

rotation of the ligand. In subsequent work, the MC moves available were further expanded

to include protein side-chain torsions [12] as well as selected torsions of the ligand. [12, 105]

These types of moves are helpful in generating small perturbations of the ligand’s binding

mode, but ideally we would like to be able to generate binding mode predictions and sam-

ple between those directly. Generally, proposing reasonable candidate binding modes is a

relatively easy task, since docking methods tend to do a good job at generating plausible

binding modes, but are poor at ranking these binding modes [18, 129, 128]. In many cases,

such poses can be equilibrated via MD simulations to find a variety of different stable or

metastable binding mode candidates. [66, 35, 104, 69].

While some methods can improve sampling of a ligand’s internal degrees of freedom, we are

not aware of any current MC method which can efficiently hop between potentially disparate

predefined ligand binding modes in a way that preserves detailed balance.
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Techniques such as Rosenbluth sampling [102], or configurational bias Monte Carlo [34] are

sampling methods originally applied to flexible molecules to grow and arrange polymers

favorably, but these methods do not offer a way to directly sample between two specific

conformations of a molecule.

Distance Geometry is another technique used to perform conformational analysis of ligands.

methods [116]. In this technique the atoms of a molecule are randomly placed and then

minimized to generate a new structure. Like configurational bias MC, however, distance

geometry methods do not satisfy detailed balance since they depend on a minimization step.

To more efficiently sample binding moves, we have developed a new Monte Carlo based

method to directly sample transitions between candidate poses–which may even be in differ-

ent binding sites. Furthermore, we have implemented this method in the BLUES package in

connection with our previous BLUES NCMC-based method in an attempt to directly sample

multiple binding modes in protein systems.

2.2 Theory and computational methods

Here, we first describe the background and motivation of the method we implement here,

then move on to discuss technical details of its implementation and how it was tested.

2.2.1 Smart Darting allows for selective sampling between minima

Our novel Monte Carlo method is a logical descendant of another Monte Carlo sampling

method called Smart Darting Monte Carlo [6]. The general process of Smart Darting involves

defining two key pieces of information. The first piece we need to specify is a set of "darts",

which represent different configurations of the system that are of interest. The second piece
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we need to specify is a set of parameters (and their ranges), which correspond to and define

each of those darts, in order to specify the boundaries associated with each conformation.

To explain Smart Darting in more technical terms, a set of darts d0, d1...dj are first specified.

Each of those darts corresponds to a particular set of microstates (i.e. a metastable binding

mode which was given as input) each of which is defined by a set of parameters k0, k1,...kn,

with each parameter ki having an associated range rki . Each parameter refers to a quantity

that defines that microstate–such as a torsion angle, or some distance measurement, such as

the distance between two atoms. The range should be the same for each parameter ki, (which

is necessary to preserve detailed balance, or the acceptance criterion needs to be altered).

When a given parameter is within its associated range, we refer to it as being within that

parameter region. These parameters (and the size of the parameter range) are user-defined

input and should be designed to cover the typical value ranges of those parameters, which can

be determined by example by running short exploratory/equilibration simulations. When

attempting to make a Smart Darting Monte Carlo move, the parameters are evaluated (the

current value of that parameter is checked) for each dart. When the parameter is evaluated, if

the current configuration is within the parameter regions rki for all rk of a given dart—which

we refer to as being within the dart—then the system can jump to another set of parameters

with equal probability. In the process of jumping to the new configuration, a new k0, k1,...kn

are each generated–either uniformly between the ranges for a given rki or deterministically

through some one-to-one mapping from the old k0 to the new k0. Additionally, to maintain

detailed balance, no Smart Darting move can be performed on a system if the system is

within the range of multiple darts.
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2.2.2 Molecular darting moves use internal coordinates as part of

move proposals

In our novel Smart Darting-inspired methodology, called Molecular Darting (MolDarting),

the parameters that define a dart are defined by the internal torsions of the molecule, as well

as a translational and rotational distance to a given configuration. The internal coordinates

are described by a Z-matrix, which describes the molecule’s configuration in terms of internal

bond distances, angles, and dihedrals. For this case of MolDarting, we assume the bond and

angle internal coordinates are invariant between ligand conformations, and that the dihedral

internal coordinates are independent of one another. The translational distance is defined by

the Euclidean distance between the first atom of the Z-matrix of the current configuration

and the corresponding atomic positions of the given dart. The translational distance is

defined by the Euclidean distance of a given configuration to each reference position of the

first atom in the Z-matrix. We used Chemcoords [131] to generate the internal coordinates

for our molecules of interest. The rotation matrix of the first three Z-matrix atoms of the

ligand is calculated to each of the first three Z-matrix atoms of the references. The rotational

distance is calculated by Eq 2.1, where R is the rotation matrix.

θ = arccos(
Tr(R)− 1

2
) (2.1)

When using MolDarting on a protein-ligand system, it’s necessary to first account for the

overall rotation and translational changes for the protein-ligand complex in regards to the

reference darts. To account for those rotational and translational changes, heavy atoms of

the residues around the binding site are chosen. When checking if the current configuration

is within the rotational and translational regions, the chosen binding site residues of the

selected dart are superposed to the same binding site residues of the current pose, then the

rotational and translational distances are calculated.
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When MolDarting between binding modes, the proposed internal coordinates from MolDart-

ing are uniformly chosen anywhere inside the newly selected internal coordinate region (Fig-

ure 2.1). The rotational and translational motions are deterministically updated by assessing

the displacement from the starting pose to the center of each of their respective regions and

then applying those same displacements again after it is MolDarted (Figure 2.2, Figure 2.3).

When combining MolDarting with BLUES, an additional step is added to the MolDarting

procedure. We found that these restraints were needed because when the ligand steric

interactions are diminished, it is more labile inside the binding pocket and can frequently

end up outside the darts. To reduce the lability of the ligand, an orientational restraint, also

known as a Boresch-style restraint [10] is applied to the first three ligand Z-matrix atoms,

relative to three reference atoms in the protein. This restraint restricts the orientation

relative to the binding site via restricting one distance, two angles and three torsions, and

involves three reference atoms in the ligand and three in the receptor. Here, we scale this

restraint with the lambda parameter that controls the electrostatics and sterics; when the

ligand is fully non-interacting, the restraints are in full effect (Figure 2.4). To maintain

detailed balance when applying restraints, before the NCMC move occurs the we check if

the ligand is currently within a dart; if it is then the orientational restraints associated with

that pose will be turned on over the first half of the NCMC move. If the ligand is not within

the same dart as at the start of the move, then the move is rejected.

Subsequently, after the MolDarting move is performed, the restraints corresponding the new

pose are turned on, and the previous pose’s restraints are turned off. Finally, after the NCMC

move occurs, the parameters are evaluated again to see if they are within any dart. The

modulation of steric, electrostatic and restraint interactions over the course of the NCMC

move are illustrated in Figure 2.4, and the overall procedure is illustrated in Figure 2.5.

If the ligand is in a different pose than the pose the ending restraints were associated with,

then the move is automatically rejected, since such a move would not be reversible. Otherwise
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Figure 2.1: Dihedrals are uniformly sampled during MolDarting. We illustrate how
we perform our rotational darting moves using a rose plot representation of a dihedral angle
(in degrees) as an example. The dihedral regions are represented by the blue areas, and
the current dihedral angle is represented by the yellow line/areas. In this example, there
are three total darts, each with an associated region. (A) The Newman projection of a
hypothetical ligand illustrating three different stable conformations. (B) A representation
of the three dihedral regions for the three conformations. (C) When a particle is within a
dihedral region then a darting move can be performed. (D) When MolDarting the dihedrals,
the new dihedral is selected uniformly from a region the dihedral is not currently in (shown
in yellow). The arrows refer to the two potential outcomes of the MolDarting move in which
the ligand is darted to a new configuration. (E) One of the other dihedral regions are chosen
randomly (with equal probability) to be MolDarted, and then a new dihedral is chosen
randomly from the chosen region, resulting in a new configuration.62



Figure 2.2: Translations are handled deterministically during MolDarting. We
illustrate how we perform our translational darting moves using a 2-dimensional translational
region as an example, with a single particle, (that can represent an atom of a ligand, for
example) that will be Moldarted. The translational regions are represented by the blue
circle, with the center of each translational region represented by a black dot, and simplified
molecule represented by yellow circles. In this example, there are three total darts. (A)
A representation of the three rotational regions used. (B) When a particle is within a
translational region, the vector from the particle’s center, to the translational region’s center
is calculated (represented by the arrow). (C) When MolDarting the vector calculated in (B)
is applied to the center of each other translational region to determine the particle’s new
position. The dotted arrows refer to the two potential outcomes of the MolDarting move in
which the ligand is darted to a new configuration. (D) One of the new reference regions are
chosen randomly (with equal probability) to be MolDarted, resulting in a new configuration.
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Figure 2.3: Rotations are handled deterministically during MolDarting. We illus-
trate how we perform our rotational darting moves using a 2-dimensional rotational region
as an example, with a single molecule that will be moved via MolDarting. The rotational
regions are represented by the blue triangle, with the center of each rotational region (which
was defined by some reference pose) represented by the three black circles connected by black
lines, and the ligand in our simulations represented by the yellow circles connected by yellow
lines. In this example, there are three total darts, each with an associated rotational region.
(A) A representation of the three rotational regions used. (B) When a particle is within a
rotational region the rotation matrix is calculated from the current positions to the reference
positions. (C) When MolDarting, the rotation matrix calculated in (B) is applied to the
reference positions of each other rotational region to determine the molecule’s new position.
The dotted arrows refer to the two potential outcomes of the MolDarting move in which the
ligand is darted to a new configuration. (D) One of the new reference regions are chosen
randomly (with equal probability) to be MolDarted, resulting in a new configuration.

64



0.00 0.25 0.50 0.75 1.00
Fraction of total NCMC steps

0.0

0.2

0.4

0.6

0.8

1.0
molDarting

sterics
electro-
statics
restraints

Figure 2.4: Restraints are included in the NCMC switching protocol. In order
to keep the ligand in the binding site while the ligand’s interactions are off, an
orientational restraint is used which corresponds to the dart that the ligand is
in at the beginning of an NCMC move proposal. At the middle of the NCMC
protocol, a MolDarting move is performed, and the restraint switches to a new
orientational restraint corresponding to the new dart, which is subsequently
turned off throughout the rest of the protocol.

the protocol work (the work that is done over the course of the NCMC move) determines

whether the NCMC move is accepted or rejected. The application of the restraint is taken

into account in the work done during the course of the NCMC move.

Taking into account the major degrees of freedom of the molecule allows reversible MolDart-

ing moves between different potential ligand binding modes, not only with different ligand

conformations, but potentially even in separate binding pockets.

2.2.3 We tested Molecular Darting on three different systems

To validate and explore the potential of MolDarting, we look at three different system with

different requirements needed to sample binding modes. The first system explored is an

alanine-valine dipeptide. While not typically considered a ligand, this peptide is a simple

model system which exhibits three different stable conformations that vary by an internal
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Figure 2.5: Adding restraints with NCMC and MolDarting requires additional
consideration. When restraints are used alongside NCMC and MolDarting, it’s
necessary to take into account several additional factors, which are illustrated
by this flowchart and elaborated further in Section 2.2.2.
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torsion and can be slow to sample through plain MD [12]. It also is a good test system for

the darting approach we develop here, as MolDarting can be applied to any selected object in

our system, not just a ligand. Here, since sidechains play an important role in ligand binding

it is also important to be able to sample the rotamers in a binding site. The second system

we look at with MolDarting is T4 lysozyme L99A with toluene bound, where the binding

modes varies by rotation and translation. The final system we look at is HIV integrase with a

variety of ligands bound. HIV integrase is an interesting test system because it has multiple

binding sites where ligands can bind, and has proven difficult for binding mode predictions

in a previous blind challenge [85], and we would like to test whether MolDarting can directly

sample the binding modes in each binding site.

2.3 Methodology

2.3.1 System preparation

Alanine-valine dipeptide system setup

An alanine-valine dipeptide system was created using tleap from AmberTools 16 [16]. The

amber99SBILDN forcefield was used for the protein parameters. Simulations were carried

out at 300K with a Langevin integrator using a 0.002ps step size in implict OBC2 solvent [92]

using OpenMM version 7.3 [32]. Nonperiodic cutoffs were used, with the hydrogen bonds

constrained and a 1/ps friction applied. The peptide’s CA, N, and O backbone atoms were

restrained using a restraint of 25 kcal/(mol·angstrom2) based on their starting conformation.

To prepare for MolDarting between the different stable rotameric states for this dipeptide,

we initially ran a 100 ns simulation to identify the dihedral minima of the system. From this

simulation, we found three stable valine rotamers, with dihedral maxima at approximately
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-170, -65, and 53 degrees. These dihedrals was calculated by measuring the dihedral angle

between the CA, CB and CG1 atoms of valine on the alanine-valine dipeptide atom using

MDTraj 1.9.3 [72].

From the three maxima, regions were chosen so that the region size encompassed 95% of the

probability density associated with that dihedral maximum, estimated from a kernel density

approximation with a 0.2 bandwidth and a Gaussian kernel.

Simulations of the alanine-valine system were performed using BLUES for 150000 iterations,

with each iteration consisting of 1000 steps of MD and an instantaneous MC move consisting

of either a sidechain rotation using the SideChainMove class or a MolDarting move using

the MolDartMove class. The code used to run these simulations can be found in the SI.

Populations of the three dihedral maximums were separated based on the following bin

definitions: from (-120,-40] defined one bin (with a maximum at 68 degrees), from [20,100]

defined another bin (with a maximum at 68 degrees) and a third bin is discontinuous and is

defined between [-180, -120] and [115,180] (with a maximum at 180 degrees).

T4 lysozyme/toluene system and simulation setup

Here, we used the same T4 lysozyme and toluene system and parameters for NCMC from our

previous work [43]. The only difference in our simulation protocol was that now a MolDart-

ing move was performed instead a random center of mass rotation. For the MolDarting

move, a rotational dart of 40 degrees was defined, using two poses of the non-symmetrically

equivalent binding poses as a reference. A Boresch restraint with a force constant of

3kcal/(mol ∗ angstrom2) for the radial component and 3kcal/(mol ∗ rad ∗ ∗2) for the an-

gular and dihedral components was used with the first three internal coordinate atoms of

toluene as chosen by ChemCoords (being the C6, C4, and C5 atoms respectively of the

toluene molecule) and the CA atoms of PRO85, ALA98, and LEU117 using the Yank’s
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BoreschRestraint class to implement the restraints with the provided atoms from the recep-

tor as the restrained_receptor_atoms and the ligand atoms as the restrained_ligand_atoms

arguments for the class [21].

HIV integrase system setup

We used the 4CHY pdb file as the basis structure for our study to serve as a uniform

starting point for docking and equilibration. Omega from Openeye [48] was used to generate

the conformers for the 4 ligands from the pdb files of 4CHY, 4CGD, 4CHZ, and 4CJV [95],

and Fred was used to dock the compounds in the three different binding sites [1]. The

highest scoring poses from docking was used, and to generate a diverse set of structures,

root-mean-square deviation (RMSD) centroid clustering was performed on the poses, and

the most diverse poses retained, to promote pose diversity. To further elaborate on the

clustering procedure, the first centroid was defined using the top-scoring docking pose, and

the subsequent centroids were chosen which were the greatest RMSD distance away from

the other existing centroids for that binding site. Clustering of poses were done separately

for each binding site, and the two poses with the centroids furthest from the top scoring

pose were used as reference poses for use with MolDarting, for a total of three poses per

binding site. Antechamber was then used with the AM1-BCC method [52, 16] to assign

partial charges to the molecules.

Finally, Amber was used to add missing sidechains, heavy atoms, and hydrogens to the

protein, with the parameter set from ff14SB used for the protein [16]. Because the binding

sites of HIV integrase are solvent exposed, we chose to use OBC2 implicit solvent model [92]

to reduce the amount the system has to respond to solvating and desolvating the binding

sites in response to the ligand being removed and inserted when MolDarting the ligand.

Equilibration MD simulations were performed at 300K for 1 ns for each binding pose. The

positions of this equilibration trajectory were saved every 10,000 steps.
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Unless otherwise noted, the simulation settings were the same as alanine-valine dipeptide

system. The equilibration simulation trajectories were also used to define the dihedral re-

gions. Kernel density estimation (KDE) was performed on the dihedral internal coordinates

from the trajectory with a bandwidth of 0.5. From this, the maxima in the dihedral KDEs

were identified. The maxima that the dihedral was closest to at the end of equilibration was

used to determine the start of the region for that dihedral. The width of the dihedral regions

were determined were made account for 95% of the probability density estimated by KDE.

The width was calculated by first finding the total probability density contained within a

maximum, and then expanding the width of the region starting at the maximum until 95% of

that maximum’s probability density was covered by the region. During MolDarting simula-

tions, restraint atoms were automatically chosen from the heavy atoms within 10 angstroms

of the ligand using Yank [21].

2.4 Results

2.4.1 We validated the internal coordinate sampling of our method

against uniform dihedral sampling of the valine-alanine dipep-

tide.

Molecular Darting samples the three dihedrals of valine-alanine dipeptide effi-

ciently

We assessed the ability of MolDarting to sample the sidechain torsion of the valine-alanine

dipeptide in implicit solvent. We also the compare the sampling efficiency of Moldarting to

that of uniform sampling of the torsion. We applied the MolDarting procedure described in

Section 2.3.1 to validate this MC move correctly samples the correct population distributions,
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(a) Uniform sidechain sampling

(b) Moldarting

Figure 2.6: MolDarting efficiently samples the conformations of valine-alanine. (a)
(top) A trajectory consisting of MD+MC uniform rotations of the valine sidechain, with the
histogram of the data (right). (b) (bottom) A trajectory consisting of MD+MC MolDarting
moves of the valine sidechain. Molecular darting converges to the same distribution as
uniform torsion rotations. However, MolDarting ends up being about twice as efficient at
generating torsion transitions in this system. The red horizontal lines are included to help
visually separate the three binding modes.

and to compare the sampling efficiency of MolDarting to a traditional MC method. Both

methods converged to the same values for the three dihedral populations (Figure 2.6). Across

seven simulations replicates using MolDarting, the acceptance rate of MolDarting moves was

only 2.23%± 0.6%, compared to the acceptance rate of uniform sampling at 8.04%± 0.5%.

Although the acceptance rate for molecular darting was lower, the number of transitions

generated between dihedral populations was nearly doubled compared to uniform dihedral

sampling, with an average of approximately 3400 transitions generated with MolDarting

compared to approximately 1400 transitions on average with uniform dihedral sampling.
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Thus, because of the targeted nature of MolDarting, the number of transitions between

conformations is higher than the uniform sampling case, despite the lower number of accepted

moves.

2.4.2 We applied Molecular Darting to a T4 lyosozyme L99A sys-

tem

Molecular Darting selectively the rotational and translational degrees of freedom

in a binding site

We further evaluated our method to sample rotational and translational degrees of freedom

by applying MolDarting to sampling the binding modes of toluene bound to T4 lysozme

L99A. The are four binding modes of toluene when bound to T4 Lysozyme L99A. These

binding modes vary by rotational and translational degrees of freedom; two are distinct

and vary by a rotation, and the other two binding modes are symmetry-equivalent to the

first pair [43]. We applied MolDarting sampling with BLUES to the non-symmetric binding

modes of toluene. The populations of the two binding modes were selectively sampled using

MolDarting, without sampling the non-symmetric binding modes (Figure 2.7). MolDarting

also was able to recover the correct populations of the binding modes, with the correct

population split being 60:40, and our triplicate runs giving 58%±3% for the dominant binding

mode and 42% ± 3% for the less populated binding mode. The acceptance rate for these

moves over these trials was approximately 22%, which is roughly two times the acceptance

rate for random center of mass moves we explored in the original BLUES paper [43], which

further shows the benefit of targeted moves.
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Figure 2.7: MolDarting generates selective transitions between binding modes
Toluene has four binding modes in the binding site, but only two of the binding modes are
sampled here, due to the targeted nature of MolDarting. MolDarting is able to reproduce
the correct relative probabilities of both binding modes, which are approximately 60% for
binding mode A (the crystallographic binding mode), and 40% for the noncrystallographic
pose.

2.4.3 Molecular Darting does not accelerate sampling when outside

the dart

Sometimes, running longer simulations on the T4 lysozyme/toluene system resulted in toluene

switching to the symmetry-equivalent binding mode (Figure 2.8). When this occurs, the lig-

and ends up being outside the pre-specified darts we defined in this test, and thus MolDarting

moves cannot be attempted. We could have instead included all four ligand binding modes

(two symmetry-equivalent pairs) as darts, but we elected not to here as we wanted to focus

on non-redundant sampling. This issue highlights a key point: while MolDarting can be used

to accelerate sampling, it is only effective when the system is within the selected darts; when

outside the darts, we are effectively running plain MD. Thus, to maximize the applicability

of MolDarting moves, care should be taken when defining the regions used for MolDarting.

Essentially, MolDarting attempts to trade bias for efficiency. More random procedures,

like our initial translational moves in BLUES, allow enhanced exploration of binding mode
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Figure 2.8: MolDarting does not improve sampling when the simulation moves
outside the darts. Here, the initial binding modes of toluene between 0 and π radians are
well sampled (in the first 400 iterations), since these are covered by the rotational regions
from MolDarting. However if the simulation leaves that region, then a MolDarting move
cannot take place, and thus the simulation becomes just a normal MD simulation. In this
particular simulation, around the 400th iteration toluene flips to the symmetric equivalent
binding mode, which is not covered by the rotational regions, greatly reducing sampling.

transitions regardless of what pose the ligand is in, but do so rather inefficiently since so

many proposed moves are to unfavorable binding modes. MolDarting requires more advance

input or bias – selection of a set of potential binding modes to focus sampling on – and thus

is able to ensure that proposed moves focus near those binding modes, potentially enhancing

efficiency, but when the simulation strays from pre-defined binding modes, no enhanced

sampling is possible.

2.4.4 We attempt to use Molecular Darting to explore multiple

binding modes of HIV integrase Ligands

We applied Molecular Darting to an HIV integrase system with a set of diverse ligands. We

chose HIV integrase in this study since this protein has three distinct binding sites ligands

potentially bind to, leading to a plethora of potential binding modes which were hard for

methods to discriminate between in a previous blind challenge [85]. By using MolDarting we
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aimed to sample the various binding modes in the three binding sites in a single simulation.

The ligands we tested were chosen from the SAMPL4 dataset to include a diverse set of

ligands as well as a diverse set of three poses in each binding site, for a total of 9 different

binding modes (Section 2.3.1).

We attempted to use MolDarting to sample between binding sites. However, in all the cases

with the ligands we studied, the acceptance rate for the moves was 0, thus no moves were

accepted.

We looked at two possible sources that could lead to these MolDarting moves being rejected.

One possible source of rejection is that the ligand falls outside the regions when MolDarting

is being attempted, leading to these moves being rejected.

Another possible source of rejection is the protocol work produced during the move is high,

so these moves are rejected by the acceptance criteria.

We first looked at the distribution of attempted MolDarting moves for the ligands (Fig-

ure 2.9). We found that although some moves did end up outside the defined regions (indi-

cated by the ligand staying in the initial binding mode, shown in red), the majority of times,

the ligand is being proposed to a new binding mode. While our handling of the regions could

be improved, it does not appear to be the major cause of MolDarting moves being rejected.

We then looked at the protocol work distributions that are accumulated throughout the

NCMC MolDarting move attempts (Figure 2.10).

From the work distributions, we can see that there is that the protocol work accumulation

is very large. Even for 50,000 NCMC switching steps, most of the moves attempted aren’t

close to being favorable (near 0). To investigate further into these high protocol work values,

we looked at the instantaneous derivative throughout the NCMC switching protocol (Fig-

ure 2.11). If there were infinite switching steps, then we would expect to see the instantaneous
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Figure 2.9: MolDarting attempts sample all the defined binding modes. We looked
at the binding modes sampled by MolDarting moves attempts. All 9 binding modes that
were used for MolDarting with this ligand (4CGD) were sampled over the 200 iterations
performed. The ligand started in binding mode 1. The points in blue indicate MolDarting
move attempts which were successful at sampling new binding modes, while the red indicates
that the ligand was outside the defined regions, so no darting move was attempted.

derivative being roughly inversely symmetric around the middle of the protocol. Instead,

what we see is that when the ligand’s steric interactions are being turned back on, there is

a huge spike of protocol work being accumulated. On the other hand, the electrostatics for

the system are well-behaved when both turning off and turning on those interactions. These

pieces of data suggest that the moves we propose introduce the steric interactions too quickly

or in a way which causes clashes that are too severe. We therefore could potentially improve

MolDarting move acceptance rates by altering our NCMC switching protocol. Specifically,

one route we can take to improve the switching protocol is to increase the proportion of steric

NCMC switching steps to the electrostatic NCMC switching steps. Another potential way

to increase the acceptance rates is to minimize the variance of the protocol work [98]. As

seen in Figure 2.11, the protocol work variance is not constant and changes over the course of

the switching steps, so modification of how we change the sterics and, to a lesser extent, the

electrostatics (Figure 2.4) during our NCMC protocol could improve our acceptance rates of

these MolDarting moves–and NCMC moves in general.
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Figure 2.10: High protocol work leads to rejection for MolDarting moves. (a) The
protocol work distribution of NCMC with MolDarting move attempts with 1,000 (a), 10,000
((b), and 50,000 ((c) NCMC switching steps with the HIV integrase and the ligand found
in 4CGD. The protocol work done over the course of the NCMC moves generally is highly
positive (unfavorable), leading those moves to be rejected by the acceptance criteria. There
are a small number of cases when the work values approach zero or are negative, but these
were still rejected. In these cases, rejection was due to the ligand ending up outside the
defined regions at one of the checks during the course of the move.
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Figure 2.11: Turning on the steric interactions leads to unfavorable accumulation
of protocol work. (a) (left) The instantaneous difference of protocol work accumulation
over 1000 switching steps. (b)The instantaneous difference of protocol work accumulation
over 10,000 switching steps. From 200 iterations of NCMC and MolDarting simulation, we
took the average values of the protocol work at each step for 1000 and 10,000 switching
steps. From these average values, we calculated the instantaneous difference between the
work values, shown by the blue line. The standard deviation of these differences are shown
in red. We can see that there is a large accumulation of protocol work when the ligand’s
interactions are being turned back on (after the halfway point of the NCMC steps).

2.5 Conclusion/Discussion

2.5.1 MolDarting allows sampling of specific binding modes

We have shown that our newly developed Monte Carlo method — Molecular Darting —

allows reversible sampling of specific binding modes/conformations by constructing dart-

ing moves based on the internal and external degrees of freedom of a ligand. This allows

reversible hops between pre-defined metastable binding modes or conformations, opening

up exciting new possibilities. Molecular Darting worked well in improving sampling of the

different binding modes/conformations in the simpler model systems we considered, and no-

tably showed marked improvements in sampling compared to uniform Monte Carlo sampling
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methods and plain Molecular Dynamics.

We did experience challenges, however, in getting acceptance of MolDarting moves in com-

bination with NCMC in the HIV integrase system. Even though the NCMC/MolDarting

moves were not accepted, we did find that the attempted MolDarting move proposals were

into the intended binding sites/binding modes.

More work can be done in regards to improving move acceptance with NCMC. Potential

areas to be explored could be to look into more efficient paths of turning off and on the

electrostatics and sterics of the system. Different soft-core potentials could potentially be

used as well, to further decrease the accumulated protocol work while turning on the ligand’s

interactions by minimize the variance of this process [98, 97].

Molecular Darting also has potential applications in combination with other methods, which

can be further explored. For instance, MolDarting could find use in equilibrium or expanded

ensemble simulations to improve sampling. In the non-interacting states, MolDarting moves

should have significant acceptance rates; since there are no clashes with the surrounding

atoms of the ligand acceptance will just depend on the ligand’s internal degrees of freedom.

Further work can be also be done on generalizing Molecular Darting. One aspect of MolDart-

ing to improve would be allowing regions of arbitrary sizes. While our original implementa-

tion of MolDarting only handles regions of the same size, different sized regions can be used

instead if they are factored into the acceptance criterion [114]. Similarly, instead of uniform

sampling the dihedral regions, we could sample using a Gaussian distribution centered at

the maximum of the dihedral, which would favor lower energy conformations of the ligand

and thus potentially yield higher acceptance.

Overall, we are excited of the potential applications of Molecular Darting, and its ability to

sample phase space in combination with other sampling techniques.
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• Set of scripts for running BLUES simulations with MolDarting,

• Parameter and coordinate files for the systems used
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• Analysis scripts for interpreting the output

• A copy of the BLUES version used

• A README.md file detailing the layout of these files

BLUES is also available at https://github.com/mobleylab/BLUES.
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Appendix A

Supporting Information: Binding Modes

of Ligands Using Enhanced Sampling

(BLUES): Rapid Decorrelation of Ligand

Binding Modes via Nonequilibrium

Candidate Monte Carlo

This is the supporting information for Chapter 1 (SI Figures 1–5) Specifically, Figure S1

shows work distributions for rotating toluene in lysozyme as a function of the amount of

NCMC relaxation. Figure S2 shows the work standard deviation for toluene in lysozyme as

a function of the amount of switching. Figure S3 shows the dihedral progress coordinate

used for 3-iodotoluene. Figure S4 shows the estimated MSM transition matrix for toluene

in lysozyme. Figure S5 shows acceptance of NCMC vs standard MC move proposals as a

function of dihedral angle/binding mode, given a fixed ensemble of MD snapshots.
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A separate supporting .tar.gz file is available, containing an extensive set of input files,

scripts, and code which can be used to reproduce the calculations described in this work.
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Figure A.1: Work distributions from increasing NCMC relaxation for rotation of
toluene in T4 lysozyme. The work distributions from 5000 NCMC+MD iterations of
varying NCMC relaxation steps are plotted as a histogram over the range [-10,30]. A
given histogram is over all the counts from that protocol. (A) Work distribution from 1000
NCMC steps. (B) Work distribution from 5000 NCMC steps. (C ) Work distribution from
10000 NCMC steps. (D) Work distribution from 20000 NCMC steps. (E ) Work distribution
from 30000 NCMC steps. Increasing the number of relaxation steps increases the likelihood
that a move will be accepted.
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(a) MD/MC

Figure A.2: Work standard deviations from increasing NCMC relaxation for rota-
tion of toluene in T4 lysozyme. The standard deviation of the work distributions from
1000 NCMC+MD iterations of varying NCMC relaxation steps. As the number of relaxation
steps increase the standard deviation also decreases, which is correlated with the probability
of NCMC move acceptance.
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Figure A.3: Order parameters used for identifying binding modes for 3-iodotoluene
in T4 lysozyme. Shown is a depiction of the dihedral order parameter used to differentiate
toluene’s binding modes. The dihedral which we monitor is defined by the C1, C5, and I8
atoms of 3-iodotoluene and the alpha carbon of VAL111, shown in orange in CPK represen-
tation in orange. In the image, the atoms involved in the dihedral are connected by a purple
line, and the dihedral angle measures rotation around the central dashed purple line. The
protein is shown in a blue cartoon representation, and 3-iodotoluene is shown in cyan.
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18±5%

23±6%

32±8%

26±8%

Figure A.4: Populations and transitions between MSM macrostates for toluene in
lysozyme. Visual representation of the MSM transition matrix and populations generated
from Section 2.4 of the main text. The circles labeled with numbers represent separate
macrostates, with the populations of each state given by the percentages above and below
each circle. The arrows between them represent transition probabilities. Representative
binding modes from a macrostate are pictured next to that macrostate.
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(a) 3-iodotoluene rotations via MC
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(b) 3-iodotoluene rotations via NCMC

Figure A.5: Acceptance of conventional MC move proposals versus NCMC move
proposals proposed from a fixed set of configurations of 3-iodotoluene in T4
lysozyme L99A. Shown is a comparison of the probability of accepting moves sampling
a given ligand binding mode (monitored by a dihedral angle progress coordinate) for 3-
iodotoluene in T4 lysozyme L99A for MC move proposals (left plot) and NCMC move pro-
posals (right plot), giving the same ensemble of MD snapshots as a starting point for move
proposals. Starting MD snapshots have the ligand in a binding mode in the blue region,
but accepted moves involve random rotations of the ligand and thus can be to any binding
mode/dihedral angle. In other words, each MC or NCMC trial starts from a selected MD
snapshot from within the blue region and, if the move is accepted, the final dihedral angle
is computed and a counter is incremented which is used to compute the probabilities on
the vertical axis. The MC panel (a) shows data from ten trials of 2,000,000 MC attempts
with an overall acceptance rate of (1.2 ± 0.2) × 10−2 %, but significant moves (larger than
20 degrees) accepted at a rate of only ((5 ± 2) × 10−5 %). The NCMC panel (b) shows
data from seven trials (denoted by dashed vertical lines) of 2000 move attempts, with each
move attempt consisting of 6500 NCMC switching steps. Here, the overall acceptance rate
is 0.8 ± 0.1%, with moves larger than 20 degrees accepted at a rate of 0.68 ± 0.07 %. In
(a), for MC, we observed a total of 13 significant rotations, whereas in (b), in the equivalent
number of force evaluations we observed 24 (though the data shown here represents a much
larger number of force evaluations for better statistics). In the MC case, because moves
are instantaneous, very few significant moves outside the blue region are accepted, giving
an (apparently false) impression that the binding mode in the initial green region is by far
the more favorable binding mode. In contrast, in the NCMC case, because NCMC allows
relaxation of the environment, most of the accepted moves are significant and outside the
green region, indicating that the alternate binding mode is in fact likely to be more favorable.
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Figure A.6: 3-iodotoluene trajectory comparisons between NCMC and MC as
a function of a dihedral progress coordinate. (a,b,c) Dihedral angle (corresponding
to binding modes) observed with NCMC as a function of simulation time. (d,e,f ) Dihedral
angle (corresponding to binding modes) observed in the MC as a function of simulation time.
Each iteration consists of the same number of energy evaluations, with either 6500 NCMC
switching steps or 6500 MC attempts, followed by 10,000 steps of MD. For MC we simulated
for 2500 iterations, while for NCMC we simulated for 5000 iterations The periodic dihedral
plotted here spans from [0,2π]. The NCMC simulations show more consistent behavior
between simulations compared with MC; each NCMC simulation transitions to another stable
binding mode (around 1 rad) within 1000 iterations, while the MC simulations sometimes
fail to transition to this binding mode at all within 2500 iterations. The overall success
rate (per energy evaluation) for transitioning to alternate binding modes appears roughly
comparable between the two cases.
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Figure A.7: Acceptance probability for toluene in solution as a function of the
amount of NCMC relaxation. The acceptance probability of turning toluene’s steric and
electrostatics off, followed by a random rotation and turning back on toluene’s interactions
is shown here as a function of the NCMC switching steps. At 1000 switching steps these
moves show no acceptance, but the acceptance rates increase with increasing switching steps,
up to 32%±2% for 100,000 steps. For each switching step, the uncertainty was calculated
based on blocking of 500 BLUES iterations, consisting of the number of switching steps and
100 steps of MD. The number of blocks used was the amount that maximized the standard
deviations of the acceptance rate across blocks.
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