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ABSTRACT OF THE DISSERTATION

The imaging of nanostructures with novel x-ray methods

by

Sebastian Dietze

Doctor of Philosophy in Physics

University of California, San Diego, 2015

Professor Oleg G. Shpyrko, Chair

The use of x-rays to probe matter is an ever increasing popular technique

due to their short wavelength that can achieve better than atomic resolution; chem-

ical selectivity that permit the separation of material contributions; and tunable

interaction strength allowing a wide class of materials to be probed including in-

terfaced and bulk structures. As more powerful sources of x-rays have become

available in the form of synchrotrons and linear accelerators, new and inventive

experimental method have emerged to access the unknown. In this dissertation,

three novel uses of x-rays are advanced to study a wide class materials.

Since the next generation of x-ray sources will feature highly brilliant x-ray

beams, they will enable the imaging of local nanoscale structures with unprece-

dented resolution. A general formalism to predict the achievable spatial resolution

x



in coherent diffractive imaging (CDI), based solely on diffracted intensities, is pro-

vided. The coherent dose necessary to reach atomic resolution depends significantly

on the atomic scale structure, where amorphous materials or disordered materials

require less dose than crystalline materials. A reduction in dose can be larger than

three-orders of magnitude as compared to the expected scaling for uniform density

materials. Additionally, dose reduction for crystalline materials are predicted at

certain resolutions based only on their unit cell dimensions and structure factors.

An extension of dichroic coherent diffractive imaging of thin films with per-

pendicular magnetic anisotropy is made from a uniform case to one that contains

charge contributions. With the use of linear polarized x-rays near resonant edges,

the charge and magnetic scattering can be reconstructed. First, an approximate

manual separation is made before reconstruction to obtain the magnetic domains

of a Au patterned GdFe multilayer thin film. This is then compared to a direct

reconstruction using the two coherent modes contributed by the right-hand and

left-hand circular polarization. These methods lead to very similar results for the

magnetic domain reconstruction, proving the viability of this technique. Thus,

dichroic CDI may be applied to a much wider class of materials than was previ-

ously possible.

Finally, persistent photocoductivity was induced during nano-diffraction.

The resistivity of vanadium dioxide (VO2) decreased by over one-order of magni-

tude upon localized illumination with x-rays at room temperature. Despite this

reduction, the structure remained in the monoclinic phase and had no signature

of the high-temperature tetragonal phase that is usually associated with the lower

resistance. Once illumination ceased, relaxation to the insulating state took tens of

hours near room temperature. However, a full recovery of the insulating state was

achieved within minutes by thermal cycling. This behavior is consistent with ran-

dom local-potential fluctuations and random distribution of discrete recombination

sites used to model residual photoconductivity.

xi



Chapter 1

Mathematical Formalisms

1.1 Table of constants, variables, and operators

Table 1.1: Frequently used constants

π the irrational constant 3.14159 . . .

i the imaginary constant +
√
−1

re classical electron radius, 1.6022× 10−19 C

e Coulomb of electric charge, 2.8179× 10−15 m

c speed of light, 2.9979× 108 m s−1

~ reduced Planck constant, 6.5821× 10−16 eV s

Table 1.2: Frequently used variables

E energy

λ wavelength

ω angular frequency

k wavenumber

n index of refraction

r real space dimension, length

q Fourier space dimension, inverse length

1
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Table 1.3: Frequently used operators

F Fourier Transform or general wave propagator

PZ wave propagator along z-direction∑
j sum over index j∏
j product over index j

< real component

= imaginary component

r tensor, usually a vector

r̂ `2 normalized vector

r> transpose of tensor

r⊥ perpendicular component

r‖ parallel component

〈f〉 mean

|f | absolute value or square root of `2-norm

f ∗ complex conjugate

O order of magnitude

∇ partial derivatives over all dimensions, operator

∇2 Laplacian operator

⊗ convolution operator

? cross correlation operator

1.2 Fourier transform and properties

A significant portion of this thesis makes use of the Fourier transform op-

erator and its properties. For clarity, the necessary background is described here.

The Fourier transform is defined as follows,

F (q) = F {f(r)} ≡
∫
dr f(r)e−iq·r, (1.1)

where f(r) is a signal in real space and F (q) is its corresponding frequency spec-

trum in Fourier space. The adjoint or inverse operator is given by,

f(r) = F−1 {F (q)} ≡ 1
2π

∫
dqF (q)eiq·r. (1.2)
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Fourier transforms are linear operators such that,

aF (q) + bG(q) = F {af(r) + bg(r)} , (1.3)

where a and b are complex constants. This has the consequence that, a constant

phase factor, a = eiφ, may be multiplied to the signal without changing the spec-

trum’s amplitude, |F |. As is clear from eq. (1.1), if the signal is multiplied by a

constant phase ramp, eiq0·r, the Fourier space coordinates are shifted by q0,

F (q− q0) = F
{
f(r)eiq0·r

}
. (1.4)

An equivalent translation of the signal can be obtained by multiplying a phase ramp

to the spectrum, without changing its modulus. One additional trivial property

can be obtained by taking the complex conjugate of eq. (1.1) and replacing q→ −q

then

F ∗(−q) = F {f ∗(r)} . (1.5)

In other words, the spectrum is mirrored when appropriate complex conjugates

are taken. Notice, that this has the consequence that if f(r) is real, then |F (q)| =
|F (−q)| must be centrosymmetric. Finally, another straightforward property can

be obtained using eq. (1.1) and integration by parts,

(iqj)
nF (q) = F

{
dnf(r)

dqnj

}
, (1.6)

where qj represents a Cartesian component of q. Extending the Fourier transform

operator to vectors thus leads to iqF (q) = F {∇f(r)}.
Some additional useful properties are stated here without proof. Firstly, we

note Parseval’s theorem, ∫
dq |F (q)|2 =

∫
dr |f(r)|2. (1.7)

This is a normalization conditional and as will be seen later implies conservation

of photons for diffraction. Secondly, A very useful property is the convolution

theorem, given by

F {f(r)g(r)} = F (q)⊗G(q) ≡
∫
dq′ F (q′)G(q− q′). (1.8)



4

A very similar expression can be obtained for the cross-correlation, to give another

useful property, namely the Wiener-Khintchine theorem,

F {f ∗(r)g(r)} = F (q) ? G(q) ≡
∫
dq′ F ∗(q′)G(q + q′). (1.9)

This immediately implies that when only the intensity of the frequency spectrum

is known, the autocorrelation of the original function instead of function itself is

directly known. Finally, Babinet’s principle is noted, which can be seen from the

linearity principle eq. (1.3) and noting that the Fourier transform of constant is,

by definition, a scaled delta function, aδ(q) = F {a}. Therefore, it is clear that

the Fourier intensity of a signal and its complimentary signal, 1 − F (q), are the

same except for at q = 0,

|F {1− f(r)}|2 = |δ(q)− F (q)|2 = |F (q)|2 +G(q = 0). (1.10)

To make use of the Fourier transform algorithmically, it is necessary to

define the discrete version. Given
∏M

m=1Nm samples in real space, fj1,...,jM , on

an M -dimensional evenly spaced Cartesian grid with coordinates xjm = jmδxm,

it is sufficient to describe these points using the Fourier coefficients Fk1,...,kM , on

an M -dimensional evenly spaced Cartesian grid with coordinates qkm = kmδqm,

where δqm = 2π/Nmδxm (see section 3.2). Using the Fourier transform definition

(eqs. (1.1) and (1.2)), the discrete Fourier transforms (DFT) are given by,

Fk1,...,kM =
M∏
m=1

δxm

Nm∑
jm=0

fj1,...,jM e
−2πikmjm/Nm (1.11a)

fj1,...,jM =
M∏
m=1

1
Nmδxm

Nm∑
jm=0

Fk1,...,kM e
2πikmjm/Nm . (1.11b)

Although, these are often simplified further, this form is used here to emphasize

appropriate units. The previously described properties of Fourier transforms still

hold using the discrete version.
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1.3 Vector identities

Some well known useful vector calculus identities are given here without

proof, which will be used in later chapters.

∇×∇×A = ∇(∇ ·A)−∇2(A) (1.12)

∇ · (cA) = A · ∇c+ c∇ ·A (1.13)

∇× (cA) = A×∇c+ c∇×A (1.14)

1.4 Representing complex images

Complex images in this thesis are represented by the hsv-color space

(fig. 1.1), where any complex number, Aeiφ, is expressed by an amplitude and

phase. The value or intensity of the image is the amplitude, where low values are

dark (center of fig. 1.1) and high values are bright. The hue of the image is the

phase, such that any arbitrary color is φ = 0 = 2π and its complimentary color is

π shifted.
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Figure 1.1: Color space to display complex images where amplitudes are given
by the value or intensity and phase is given by the hue or color.



Chapter 2

Electromagnetic Interaction

2.1 Scalar wave equation

The most complete description of how electric fields E and magnetic fields

H exist within matter containing free charge and magnetism is given by Maxwell’s

equation [2, 3]. In differential form in the International System of Units, these

equations are written as

∇ ·B = 0, (2.1a)

∇ ·D = ρ, (2.1b)

∇×H = j +
∂D

∂t
, (2.1c)

∇× E = −∂B

∂t
(2.1d)

The derivation of the wave equation from Maxwell’s equations can be found in

almost any book on electrodynamics or optics [4, 5], which is reproduced here to

emphasize the necessary assumptions. To proceed, consider what solutions exist

in neutral materials, with no free charge, such that ρ = 0 and j = 0. In addition,

assume that the electric and magnetic fields are weak enough in magnitude to

induce a linear response of the material. Then, D = εE, where ε is the electric

permittivity which in general is a matrix to account for effects such as birefringence.

Similarly, B = µH, where µ is the magnetic permeability and again could be a

matrix to account for Faraday rotation. For now, let this further be restricted to

7
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isotropic materials, then Maxwell’s equations simplify to a very symmetric form

∇ · (µH) = 0, (2.2a)

∇ · (εE) = 0, (2.2b)

∇×H = +
∂εE

∂t
, (2.2c)

∇× E = −∂µH

∂t
. (2.2d)

Thus far, the spatial and time dependence of these variables has not been specified.

Let the material variables ε and µ vary slowly in space and time compared to the

electric and magnetic field solution. In other words, it is required that∣∣∣∣∂ε∂tE
∣∣∣∣� ∣∣∣∣ε∂E

∂t

∣∣∣∣ (2.3a)

|∇ε · E| � |ε∇ · E| (2.3b)

|∇ε× E| � |ε∇× E| (2.3c)

and similarly for the magnetic permeability and magnetic field. Taking the curl of

eq. (2.2d), using the vector calculus identities eqs. (1.12) to (1.14), and eqs. (2.2b)

and (2.2c) this becomes the wave equation,

∇2E− n2

c2

∂2E

∂t2
= 0, (2.4)

where n = (µε/µ0ε0)1/2 is the refractive index and c = (µ0ε0)−1/2 is the speed of

light. An identical equation can be derived for H by starting with the curl of

eq. (2.2c). Since these equations are true for any component of the electric and

magnetic field independently, it is enough to consider a single component to obtain

a scalar form. More commonly, this is written by looking at Fourier components

in frequency space. Using ψ̃(r, ω) = F {ψ(r, t)} and eq. (1.6), the Helmholtz

equation is derived,

∇2ψ̃ + k2ψ̃ = 0, (2.5)

where the wavenumber k = nω/c and the refractive index is frequency dependent

n = n(r, ω). Notice, that this is identical to the time-independent Schrödinger

equation, from which scattering can also be derived in a semiclassical perspective.
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Although, the solution that exist for eq. (2.5) have not yet been found,

suffice it to say the wave equation, as the name implies, has solutions that are

wave-like. For instance, it is easy to see that a plane wave travelling along the z-

direction, ψ ∝ ei(kz−ωt), is one solution when the refractive index is constant. More

precisely, it is an exact solution in uniform, neutral, isotropic media without free

charges and is approximately true when the wavelength, λ = 2π/k, is much smaller

than variation in the electric permittivity and magnetic permeability. Similarly,

the material should not change in time compared to 2π/ω = 2π/k0c.

2.2 Scalar diffraction

Many attempts have been made to find simple solutions to the Helmholtz

equation for various boundary conditions, including monochromatic [6, 7, 8, 9] and

a generalization to multichromatic using angular spectrum approach. The basis

of these works starts by converting eq. (2.5) to it’s integral form using Green’s

theorem such that the solution at any point r can be written in terms of solution

on a given surface,

ψ̃(r) =

∫
S

ds (G
∂ψ̃

∂η
− ψ̃ ∂G

∂η
). (2.6)

Selecting an appropriate Green’s function, G, that also satisfies the homogeneous

wave equation and making use of boundary conditions and special surfaces allows

for a simple solution. Generally, the Green’s function takes the form of a spherical

wave, since it goes to zero at large distances allowing simple boundary conditions.

It is necessary to assume that the field distribution, ψ̃, and/or its derivative, ∂ψ̃
∂η

,

are zero at any material boundaries and that the field distribution is unchanged in

free space compared to no boundaries being present. This is of course not strictly

true, as EM radiation will interact with materials, but it is a good approximation

when not looking too closely at the solution near boundaries. The first Rayleigh-

Sommerfeld solutions reproduces Huygens-Fresnel principle,

ψ̃(r⊥, z) =
−iz
λ

∫
S

dr′⊥ ψ̃(r′⊥)
exp (ik|r− r′⊥|)
|r− r′⊥|

2 , (2.7)
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where |r− r′⊥| =
√

(x− x′)2 + (y − y′)2 + z2. This expression can be thought of

as each point in a wave-front creating a new spherical wave and coherently adding

with appropriate phase factor.

This may also be written in terms of a convolution. Letting PZ(r′⊥) =

−iz
λ

exp (ik|r′⊥+zẑ|)
|r′⊥+zẑ|2 be a propagator that adjusts phase and amplitude to a wave start-

ing at r′ = r′⊥ + zẑ = 0, then eq. (2.7) becomes

ψ̃(r⊥, z) = ψ̃(r′⊥)⊗PZ(r′⊥). (2.8)

eqs. (2.7) and (2.8) describes the propagation of a field distribution, a wave created

by a virtual source, due to boundaries such as apertures.

2.3 Modification by thin films

The propagation of a field is described by eq. (2.7) and can be considered

as a weighted sum of the original field. It is obvious that the sum is dominated

by regions where z/|r− r′⊥| ≈ 1. In other words, a significant contribution of the

new field distribution is determined only by the original field distribution within

a neighborhood of |r⊥ − r′⊥| ≈ 2z. In addition, the exponential term will reduce

this, as it fluctuates rapidly for |r⊥ − r′⊥| > z. Thus, if a field propagates through a

thin film of thickness, z, the mixing of waves only occurs within this neighborhood

and the exiting distribution is determined up to resolution of the order of the film

thickness by a modification of the field at each location independently.

The previous considers a monochromatic wave propagating approximately

in the ẑ direction. In this case, the field distribution may be written in the form

ψ̃ = A(r)eik0z, where A(r), is a slowly varying function. The Helmholtz equation

(eq. (2.5)) can then be rewritten as,

∇2A+ 2ik0
∂A

∂z
+ k2

0(n2 − 1)A = 0. (2.9)

Since A is slowly varying, ∇2A ≈ 0. Thus an analytic solution exists, which

determines how the thin film modifies the field distribution. In the case of x-rays,

n = 1− δn, such that n2 − 1 ≈ −2δn. Accounting for free space propagation, the
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exiting field distribution is given by.

A(r⊥, z) = A(r⊥, z = 0) exp (ik0

∫ z

0

dz n(r))). (2.10)

In this case, the entering field is modified by a projection or accumulation of

the refractive index of the thin film. This description is most accurate when the

variation in the projected refractive index is small,
∣∣∫ dz∇n(r)

∣∣� 1. Or roughly

speaking, it could be said that |∇n(r)| � k, which is the same condition as the

wave equation to be valid. In practical terms, since x-ray are weakly interacting,

eq. (2.10) is valid when the film is thinner than roughly 1 µm when not interacting

resonantly.

2.4 Small angle propagation to near and far field

Although, eqs. (2.7) and (2.8) are quite general when considering wave

propagation, a much simpler form can be arrived at when considering propagation

distances much larger than the characteristic size of the field distribution, z >>

r′max. In this case, |r− r′⊥|
2 ≈ r2 and |r− r′⊥| ≈ r + r′2⊥/2r − (xx′ + yy′)/r. Then,

eq. (2.7) can be written as,

ψ̃(r⊥, z) =
−iz
λr2

eikr
∫
dr′⊥ ψ̃(r′⊥)eikr

′2
⊥/2re−i(z/r)q⊥·r

′
⊥ , (2.11)

where q⊥ = k
z
r⊥. This is considered the Fresnel approximation which calculates

wave propagation to the near field. eq. (2.8) has no equivalent in this limit since

a convolution cannot be restricted in this manner. However, a very useful approx-

imation is the small angle limit, r′ ≈ z, since forward propagating waves are of

interest here. Thus, this is directly applicable for low divergence beams and the

propagation of waves cut by apertures. Then eq. (2.11) further reduces to

ψ̃(r⊥, z) = Fr′⊥→q⊥

{
ψ̃(r′⊥)

}
⊗ P̃Z(q⊥), (2.12)

with P̃Z(q⊥) = F {PZ(r′⊥)} = −i exp (ikz[1− q2⊥
2k2

]). This is equivalent to

eq. (2.8) with the Fresnel propagator PZ(r′⊥) = −i
λz

exp (ikz[1 +
r′2⊥
2z2

]). Numeri-

cal propagation of fields are based off of eqs. (2.8) and (2.12) and called angular
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spectrum method and direct method, respectively [10, 11, 12]. It is noteworthy

that the quadratic phase term in the propagator may also be interpreted as part

of the fractional Fourier transform [13].

When the propagation of the wave is extremely far, such that the Fres-

nel number r′2max/zλ � 1 then the diffraction is considered to be in the Fraun-

hofer regime or far field. In this case kr′2⊥/2r � 2π such that this exponential

term in eq. (2.11) becomes approximately unity. The propagation is then a single

Fourier transform. As an example a plane wave with wavelength 1 nm is propa-

gated through an aperture. At z = 0 or Fresnel number F = ∞, immediately

after the aperture, the wave simply takes the shape of the aperture (fig. 2.1 (a)).

At a distance of z = 100 µm, 105 times the wavelength, the distribution of the

wave strongly resembles the original (fig. 2.1 (b)). At a distance of z = 2 mm, the

wave distribution is still recognizable to have come from the aperture, but there

is significant cross interference (fig. 2.1 (c)). In the far-field limit, the wave is

represented by its Fourier spectrum (fig. 2.1 (d)).

2.5 Born approximation

The solution to the Helmholtz equation (eq. (2.5)) and it’s equivalent semi-

classical description, the time-independent Schrödinger equation, can also be solve

by using the method of Green’s functions when a wave interacts with a localized

materials, instead of propagating through an aperture (section 2.2). Thus, the in-

tegral form of the Helmholtz equation is the Lippmann-Schwinger equation. Since

the most general Green’s function that are appropriate here are spherical and plane

waves, the solution is given by

ψ(r) = ψ0(r)− k0

4π~c

∫
d3r′

eik0|r−r
′|

|r− r′|
V (r′)ψ(r′), (2.13)

where ψ0 = Aeik0z is the free space solution and the potential can be equated with

the index of refraction, V (r) = ~ck0(n2(r) − 1). Since, this is a transcendental

equation, this cannot be solved directly. However, for small potentials, it can

be solved iteratively, by starting with the free space solution on the right-hand
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Figure 2.1: Propagation of a plane wave with wavelength 1 nm through an aper-
ture, where amplitude is on square root scale and the complex image is displayed
using hsv colorscale. (a) The wavefield just after the aperture z = 0 with Fresnel
number F = ∞; (b) propagated a distance z = 100 µm, F = 640; (c) z = 2 mm,
F = 32; and (d) in the far field limit z =∞, F = 0
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side. In the context of a scattering experiment, eq. (2.13) represents a plane wave

that is illuminating a target, which produces a set of spherical waves. When the

scattering far from the target is desired, such that the far-field condition holds, the

translated spherical waves can be approximately express by spherical waves with

an additional phase offset. Thus, eq. (2.13) can be written as

ψ(r) ≈ Aeik0z − Ak0

4π~c
eik0r

r

∫
d3r′ e−iq·r

′
V (r′). (2.14)

This is the first Born approximation [14, 5]. Thus the scattering is a sum of

spherical waves, the same as given by Huygens-Fresnel. It represents the limit

of a very weakly interacting material, such that the incoming beam is neither

significantly attenuated nor do the photons scatter more than once.

2.6 Thomson and Rayleigh scattering

The scattering of electromagnetic radiation can be directly linked to a clas-

sical explanation. Any charged particle in the presence of an electromagnetic field

will accelerate, due to the Lorentz force. The resulting electric dipole moment of

the charged particle will in turn radiate itself such that some of the power from the

incoming radiation is redirected [15]. When the particle is in free space and much

smaller than the wavelength of radiation, the Thomson differential scattering cross

section is
dσ

dΩ
=

(
−e2

mc2

)2

P, (2.15)

where P =
∣∣ε̂∗f · ε̂i∣∣2. There are two important points to note about this formula.

First, this has a polarization term that was previously ignored in the scalar diffrac-

tion theory, where ε̂i and ε̂f are the incoming and outgoing radiation polarizations,

respectively. Secondly, the cross section is inversely proportional to the particles

rest mass. Although protons and electrons have the same charge magnitude, since

the proton is roughly one thousand times heavier, the scattering from a material

can then be considered to be exclusively from electrons.

Electrons are, however, generally not free and are instead bound to nuclei

in the form of atoms. This has several consequences. First, the illumination of
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bound electrons can be most simply be described as a driven harmonic oscillator

system. Such a system has a well known solution, such that the Thomson cross

section is modified by a resonant term,

ω4

(ω2
0 − ω2)2 + (γω)2

, (2.16)

where ω0 are characteristic oscillation frequencies and γ is the damping rate of

the oscillator. In the limit of strong binding as compared to the photon energy,

Rayleigh scattering is reproduced, which is most famous for explaining the color

of our sky. A more complete description of resonant (anomalous) scattering is

derived by treating the atom as a quantum mechanical system. Such a system will

have discrete energy level (shells) for electrons to exist, such that absorbed energy

can excite electrons to a higher shell or into the continuum at certain thresholds.

Finally, since atoms have finite size, the scattered radiation from each electron

will become increasingly out of phase with increasing scattering angle compared

to the incoming radiation. It is thus convenient to considered scattering from

atoms instead of individual electrons. Using the first Born approximation, the

“kinematic” scattering is given by a sum over all atoms in the system,

F (q, E) = −re
R

atoms∑
m

fm(q, E)e−iq·rm , (2.17)

where re = e
mec2

is the classic electron radius and q = kf − ki is the wavevector

transfer. The scattered intensity is I(q) = I0|F (q)|2P (q). The factor, f(q, E) =

f 0(q) + f ′(E) + if ′′(E), contains all the information of the atomic structure and

resonances. The first term is the atomic form factor, which in the limit of forward

scattering goes to Z, the atomic number. The primed terms are the dispersive

corrections, where f ′ and f ′′ describe refraction and absorption in the system.

Since the resonant features of f(q, E) are specific to each atom, this gives x-

ray scattering a unique capability of separating contributions from different atom

types.

When considering transmission through a material (eq. (2.10)) and forward

projection of the Born approximation (eq. (2.14)), the scattering factors can be

related to the complex index of refraction, such that

n(ω) = 1− δ + iβ = 1− reλ2N
2π

f(q = 0, E = ~ω), (2.18)
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where N is the atomic density of the material. Thus the scattering factors can

be measured by measuring the absorption through a material and by use of the

Kramers-Kronig relation [16].

2.7 Scattering from crystals

The kinematic scattering equation (eq. (2.17)), is sufficient to describe scat-

tering from any collection of atoms, where the radiation interaction is weak. How-

ever, an even simpler form can be given when atoms are arranged in a periodic

fashion such as crystalline materials. In this case, the positions can be given as

rm = Rn + Sj, where Rn =
∑3

k nkak is the Bravais lattice vector given in terms

of the primitive vectors that describes the location of a unit cell and S is the basis

vector which describes the location of atoms within a unit cell [17]. The kinematic

scattering is then written as

F (q, E) = −re
R

primitive∑
j

fj(q, E)e−iq·Sj

cells∑
n

e−iq·Rn . (2.19)

When the crystal has infinite size, the sum over all of the cells is only non-zero

at very specific locations, Qhkl = hb1 + kb2 + lb3. In other words, the scattering

consists of sharp peaks, known as Bragg peaks, at locations of the reciprocal lattice,

whose cell is described by the vectors bi = 2π
aj×ak

aj ·(aj×ak)
. The sum over the primitive

cell is known as the structure factor, S(q), and gives the amplitude at each Bragg

peak. Thus, by measuring the location and intensities of the Bragg peaks, the

periodic structure can in principle be recovered, which is the aim of crystallography.

When the crystal is of finite size, the crystal can be described by an infinite

periodic structure multiplied by a shape function, C(r), which is one inside the

crystal region and zero outsize. The scattering is then given by

F (q, E) = −re
R

∑
hkl

S(Qhkl)C̃(q−Qhkl), (2.20)

where C̃(q) = F {C(r)}, which falls off rapidly away from q = 0 with approximate

width given by the inverse size of the crystal. Since the inverse size of the crystal is



17

almost always much smaller than the Bragg peak separations, the Bragg intensities

contain very little interference between each other.

2.8 Coherence

Diffraction implies that there is a specific phase relationship between dif-

ferent regions, from which scattering occurs. The free space waveform is ψ(r, t) =

A(r, t)e−iωt, where A(r, t) is the envelope, a slowly varying complex amplitude.

The coordinates here represent the surface of all amplitudes that are produced

from a single sources at a given time. It is equivalent to describe the envelope with

volume coordinates and to remember that some coordinates are connected by the

propagation of the wave through time and space. The scattered intensity from a

collection of scatterers can be expressed as

I(q) =
∑
j

I(rj) +
∑
j 6=k

Γ(rj, rk). (2.21)

The first part is an incoherent sum of average intensities from each scatterer, with

I(rj) = 〈|A(rj)|2〉. The average is in general an ensemble average, but can be taken

as a time average for ergodic systems. The second sum contains information due

to correlations, where Γ(rj, rk) = 〈A∗(rj)A(rk)〉eiq·(rj−rk) is the mutual coherence

function. Although a complete description of coherence is not derived here, it is

noted that the complex degree of coherence, γ(rj, rk) =
Γ(rj ,rk)√
I(rj)I(rk)

, is a measure

of how the complex amplitudes are synced in space and time [18]. When rj = rk,

this is equal to one, otherwise it is between zero and one, by Schwarz’s inequality.

The complex degree of coherence is a useful measure, as it gives the coherence

length, the separation over which interference is possible. It is also related to

the interference fringe visibility, a measure of coherent scattering compared to an

incoherent background.

It is useful to consider the coherence far away from a narrowband, finite

sized source, as is the case for x-ray radiation used for diffraction. Using the Van

Citteret-Zernike theorem [19, 20], the transverse, or spatial, coherence length can
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be given as

l⊥ ≈
λ0

∆θ
, (2.22)

where λ0 is the mean wavelength of the radiation and ∆θ is the apparent angular

size of the source. This can alternatively be obtaining from the smallest source

that can be resolved from Heisenberg’s uncertainty principle and can be measured

by Young’s double slit experiment. Below approximately 15 keV, third generation

synchrotron sources can obtain coherence lengths on the order of 100 µm and 5 µm

in the vertical and horizontal directions, respectively [21].

Similarly, given the statistical nature of the bandwidth, the longitudinal, or

temporal, coherence length can be found

l‖ = w
λ2

0

∆λ
, (2.23)

where ∆λ is the full-width at half maximum of the wavelength distribution and w is

a constant determined by the distribution type. For a Gaussian line, w =
√

2 ln 2
π

,

while for a Lorentzian line, w = 1
π
, thus it is usually sufficient to approximate

this constant as one half. This is equivalent to the length where two waves, with

a difference in wavelength, become phase shifted by π, as given by a Michelson

interferometer. Hard x-ray beams use Bragg diffraction as a monochromator, such

that the Darwin width determines the energy resolution, typically near ∆E =

10−4E. The longitudinal coherence length is then roughly 1 µm.

For crystallography, it is unnecessary to have such a large coherence length.

For instance, in a highly ordered crystals, the coherence length only needs to be

larger than a few unit cell dimensions, easily achievable by rotating anode tube

sources, which have coherence lengths on the order of 50 nm. When illuminating

a large crystal, the scattering between different coherence volumes is incoherent.

Thus, the effect is akin to illuminating a large number of independent crystals of

size equal to the coherence volume, which will determine the Bragg peak widths.

Due, to the large number of coherence volumes, the fringe visibility of each peak

is greatly reduced. On the other hand, there are several techniques (coherent

diffractive imaging, holography, photon correlation spectroscopy) where the coher-

ence needs to be very high, such that the correlation between points in the entire

illuminated volume can be determined.
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(b) (a)

Figure 2.2: Examples of Carbon and Gold (reproduced from [23]) (a) the inco-
herent scattering function which account for binding of electrons in atoms and (b)
showing the coherent and incoherent cross sections for photons.

2.9 Compton scattering

When considering the scattering of photons, it is also important to consider

the process of energy transfer. It is well known that a photon can inelastically

scatter from a particle such that the scattered photon energy is

E ′ =
E0

[1 + ε(1− cos θ)]
, (2.24)

where θ is the scattering angle and ε = E0

mc2
. This is known as Compton scattering,

which is an incoherent process. For electrons, the rest mass energy is mc2 =

511 keV and thus the energy transfer is very low when considering photon energies

well below 100 keV. The Klein-Nishina differential cross-section [22], calculated for

free electron Compton scattering is given by,

dσKN
dΩ

=
re

2[1 + ε(1− cos θ)]2

[
1 + cos2 θ +

ε2(1− cos θ)2

1 + ε(1− cos θ)

]
. (2.25)

When taking electron binding into account in atoms [23], the atomic incoherent

cross-section can be written as

σKN =

∫
dσKN(θ)S(θ, E), (2.26)
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where S is the incoherent scattering function, which corrects binding at low photon

energies. In the limit q → 0, S → 0 and for q → ∞, S → Z, the atomic number.

Two examples have been show (fig. 2.2a) for carbon and gold, a light and heavy

element receptively. A comparison of the coherent and incoherent total scattering

cross sections (fig. 2.2b) shows that for heavy elements, incoherent scattering is

minimal below 20 keV. On the other hand, for light elements, incoherent scattering,

may become significant at as low as 2 keV and should be subtract for quantitative

analysis, particularly when resolution better than 1 nm is desired.

2.10 Absorption

In section 2.6, it was noted that the scattering factor is complex due to

binding of electrons in atomic shells. This leads to absorption of photons by the

atomic system. The energy of this absorbed radiation goes into the excitation of

an electron, either into the continuum or to a higher shell, if a very specific photon

energy is used. The absorption cross section is quite large, dominating all other

cross sections below roughly 50 keV. However, this is usually not a problem as it

leads to characteristic fluorescence emission, which has lower energy than the inci-

dent radiation. Since fluorescence is of lower energy, it can easily be absorbed and

only the surface contributes to this emission, which radiates evenly into the entire

4π solid angle. Although, the fluorescence can be measured and is extremely use-

ful in determining local material structure, it generally does not spoil the coherent

scattering signal as it is either too weak, can be further reduced with absorption,

or subtracted during analysis.

2.11 Thermal diffuse scattering

Thus far, the assumption of scattering has been that the object is com-

pletely static. This is of course not true, since atoms are in constant motion, even

at absolute zero temperature. The total intensity measured will be an incoherent

sum of each instantaneous time snap shot, which is proportional to a time averaged
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intensity. This type of analysis is relevant for any type of motion; however, here

the motion in solids is considered, where the time averaged atomic positions are

fixed, such that rm(t) = Rm + um(t) and 〈rm〉 = Rm. The displacement ampli-

tude of atoms is temperature dependent and roughly less than ten percent of the

interatomic distance, when the material is in solid form. The scattered intensity

is then [24, 25]

I =

∣∣∣∣∣∑
m

fm(q, E)e−Mme−iq·Rm

∣∣∣∣∣
2

+
∑
m,n

[fm(q, E)e−Mme−iq·Rm ][f ∗n(q, E)e−Mneiq·Rn ](1− eq2〈um‖un‖〉). (2.27)

The first term is the coherent scattering from a static collection of atoms, attenu-

ated by the Debye-Waller (DW) factor, Mm = q2〈u2
m‖〉/2, where um‖(t) = q̂ ·um(t)

is the change in atomic position projected along the scattering wavevector direc-

tion. The DW factor is a Gaussian smearing of the electron density of each atom

due to thermal motion. It is frequently combined with the atomic form factor to

create a temperature dependent form factor.

Since the total number of atoms in the system does not change, the total

Fourier intensity is also conserved by Parseval’s theorem (eq. (1.7)). Thus, the

missing photons due to the DW factor in the coherent scattering, are scattered

elsewhere. This is given by the second term in eq. (2.27), which is considered the

thermal diffuse scattering (TDS). The term 〈um‖un‖〉 represents a correlation of

the atomic motions, which encodes information about phonons. As an example,

the scattering from a one dimensional periodic structure made of point atoms is

show in fig. 2.3. When the atoms are static (fig. 2.3 black line), the scattering is

given by strong Bragg peaks, whose width are proportional to the inverse particle

size, without additional TDS. When the atoms have uncorrelated random motion

(fig. 2.3 blue dashed line), the speckle visibility is reduced, where higher order

Bragg peaks are attenuated by the DW factor. When phonons are present (fig. 2.3

red dashed line), correlations exist. A phonon is a periodic modification of the

atomic lattice and will produce satellite peaks near the Bragg peaks, much like in

the static deformation of charge density waves. Since many phonon modes exist,
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Figure 2.3: Thermal diffuse scattering. The scattering from a static one dimen-
sional periodic atomic structure (black line) gives strong Bragg peaks. When the
atoms have uncorrelated random motion (blue dashed line), the speckle visibility is
reduced, where higher order Bragg peaks are attenuated by the DW factor. When
phonons are present (red dashed line), correlations exist and additional intensity
appears between Bragg peaks.

over time they produce additional broad incoherent intensity near the Bragg peaks.

Roughly speaking, the ratio of maximum intensity from TDS to coherent

scattering is Ep
Eµ

, the ratio of phonon energy to the rest mass energy of the atoms.

This is quite small for wavevector transfers below the inverse interatomic distance,

in the range of 10−7 to 10−5. However, given sufficient flux, TDS can easily be

measured between Bragg peaks of crystalline materials, and can be used to fit

theoretical phonon modes given by dispersion curves [26, 27].



Chapter 3

Phase Retrieval

3.1 Phase problem

Traditional microscopes use optics to create an image from the illumination

of an object. For x-rays, particularly “hard” x-rays with energy greater than 4 keV,

matter has a refractive index near one and x-rays can penetrate easily. Thus,

aberration free optics are difficult to manufacture at desired resolutions and can

quickly degrade with exposure. Coherent diffractive imaging (CDI) is a type of

microscopy that makes use of coherent radiation to image an object by diffraction.

The objective lens is removed and a diffraction pattern is collected, instead of a real

space image. For coherent radiation, the relationship between the wavefield at the

sample and detector is straight forward and described by diffraction theory. If the

full wavefield is known at the detector, a back propagation to the object is trivial.

However, since detectors can only measure the intensity of the field at the detector

plane and not the phase information, an immediate propagation to the object

plane cannot be made. In fact, the phase information is at least as important as

the intensity information since it encodes the curvature of the wave, and thus the

direction it came from. To illustrate this, two images representing the projection

of an object, are propagated to the far field. Their phases are then switched and

an inverse propagation is done (fig. 3.1). It is clear that the two images appear

mostly switched. This is because the phase information contains the wavefront

distortion or in which direction the photons are traveling. To accurately determine

23
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Figure 3.1: Two images, in this case Homer Simpson from The Simpsons and
Peter Griffin from Family Guy, are propagated to the far field via Fourier transform
where the wavefield is complex, containing amplitude and phase. If the phases are
switched and the complex wavefield is propagated back, the two images appear
mostly switched showing the phase is very important in order to know the object
from which scattering occurred.

the object, the complementary phase information to the measured intensity must

be determined. This type of nonlinear and non-convex problem is considered to be

of great difficulty, as it requires the recovery of a vary large number of variables.

3.2 Sampling and uniqueness

It is well known that in order to maintain fidelity of a signal, a sufficient

sample-rate must be used to accurately describe a bandlimited frequency spectrum

without artifacts [28, 29]. In other words, if the frequency spectrum of a signal

contains no amplitude beyond a frequency ωm, the signal is adequately represented

when sampled at a rate of π
ωm

. This statement is equally valid when considering
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a localized signal of finite size, ∆t, which is fully described by the full complex

frequency spectrum with the Nyquist sampling rate of 2π
∆t

. When only the intensity

for a frequency spectrum of a signal is measured, it is not the signal itself that is

measured, instead it is its autocorrelation [30, 31]. For a strictly localized signal,

it’s autocorrelation is twice as large [32]. Thus, in order to accurately represent

a signal it is expected that the intensity of the frequency spectrum be sampled

at half the Nyquist sampling rate [33]. Although, an oversampling rate of two is

generally required for phase retrieval, higher oversampling does not give additional

information. In fact, for special cases, oversampling of less than two can be used

for phase retrieval [34].

Even when a signal is adequately oversampled to describe the signals au-

tocorrelation, a unique solution is not guaranteed during phase retrieval. For

instance, the minimum ambiguity present for all far-field diffraction intensities are

a constant phase offset (eq. (1.3)), a translational shift of the signal represented

by a phase ramp in the frequency spectrum (eq. (1.4)), and a complex conjugated

mirror image known as a twin (eq. (1.5)). These can be considered trivial ambi-

guities, as they do no alter the shape of the signal in any way. In one dimension,

non-trival ambiguities have been shown to exists. Since the Fourier spectrum is

sampled at discrete points, which can be expressed as a polynomial expansion,

it is possible to factorize the m samples of the frequency spectrum into m prime

factors. More importantly, the autocorrelation of the signal can be factored into

2m factors, where half of the roots are the inverse of the other half. This leading to

a maximum of 2m possible solutions [35]. In general, such a case can not be made

for more than one dimension, where the solution is almost always unique. This

is true either when the signal is known to be positive or when signal is known to

be the most compact solution [36]. Counter examples have been found when the

signal has certain symmetries, such as the first order Bessel function which can be

factorized [37], however, such cases would be rare in actual measurements.
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3.3 Projections onto constraint sets

There are many algorithms that attempt to solve the phase problem by min-

imizing an error between recovered and measured intensities, such as the steepest

descent or conjugate gradient method. Although, such algorithms have had some

success for CDI, they tend to stagnate in local minima. Another class of algorithms,

termed projections onto constraint sets, attempt to solve the missing phase by a

guided search in a constrained subset of possible solution. In the case of CDI,

an object, O(r), representing the signal in real space is desired to be recovered

from the the diffraction intensity, I(q) = |F {O(r)}|2, of the frequency spectrum.

Thus, the subset of possible solutions to the full complex diffraction pattern at the

detector is any frequency spectrum constrained by the measured intensities,

F {Oj+1(r)} =
√
I(q)

F {Oj(r)}
|F {Oj(r)}|

=
√
I(q)eiθj(q). (3.1)

In the far-field, this is referred to the Fourier constraint. In addition, the subset of

possible solutions to the object, is any pattern constrained by physical limitations.

To meet the oversampling condition, a support must exist, such that all amplitudes

outside a finite region are zero. The more area that can accurately be set to zero,

the fewer possible solutions exist, thus it is desired to obtain a tight support. There

are a number of ways this can be obtained.

First, a poor resolution image may be obtained from another technique

to obtain a starting point for the reconstruction and define a tight support. A

tight support can also be obtained by an autocorrelation [38] or locator set [39].

However, this method produces a twin that must be discriminated, which does

not work well for the case of many isolated objects. As an alternative, a loose

support may be used as a starting point and updated during reconstruction to

exist only in regions where a smoothed version of the object is above a particular

threshold. Thus, the support will effectively shrinkwrap a well defined object [40].

It is common for the the support to shrink too much when appropriate parameters

are not use, particularly when the object contains a large variation in amplitude. A

tight support can usually be accurately obtained by using the shrinkwrap method

during a reconstruction of a poor resolution object from low-q diffraction data.
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Since this data generally has very good SNR, this objects reconstructs with little

possibility of stagnating and with little noise at the given resolution.

Additional constraints may be used when they are self consistent. When

they are not, a convergence is likely not achieved. However, when they are, the

reconstruction converges quicker since it’s searchable subspace has been reduced.

Other constraints may include limiting phase in real space. For instance, away

from absorption resonances, the scattering from materials can often be considered

to be nearly real and positive. Likewise, under special cases, magnetic scattering

can also be considered to consist of only 0 and π phase information. There may

also be amplitude constraints that can be implemented. For instance, in trans-

mission geometry, the object can only attenuate and not increase the amplitude.

Thus the object must have amplitude less then or equal to one. Similarly, when

reconstructing an electron density, the value should not exceed that of the heaviest

atom known to be in the material. Finally, a very useful constraint in transmis-

sion geometry is the so called complex constraint [41]. For a single material, the

unwrapped phase and amplitude must have a specific relationship due to the refrac-

tion and absorption of that material. Although the objects amplitude and phase

may certainly vary due to thickness variations, their ratio should be maintained.

The objective is then to find the solution in one subset that when propa-

gated also exists as part of the other subset. The iterative process of propagation

between object and diffraction pattern and applying constraints is represented

in fig. 3.2. In practice, an initial guess is made for the object (top left of fig. 3.2),

such as random values inside the finite support, and propagated to the detec-

tor plane. The intensity of the frequency spectrum is then compared to the the

measured intensity to establish an error metric. The amplitude of the spectrum

is then replaced by the square root of the measured intensity, while keeping the

current recovered phases (bottom right of fig. 3.2). The full complex field is then

propagated back to the object plane, where the object is updated and constrained

by real space limits. The details of each step are determined by the particular

algorithm used, the most famous of these being the Hybrid input-output (HIO)

algorithm [42] and the Difference Map (DM) algorithm [43]. Both of these are
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Figure 3.2: Iterative phase retrieval algorithm. The current guess of phases at the
detector are combined with the measured amplitudes (top right) to obtain the full
complex field. This field is propagated the object, where constraints are applied
such as a support (bottom left) to obtain the full complex field at the object. This
is then propagated to the detector once more and a new iteration begins.

high performance algorithms that avoid stagnation, as they are generalization to

the aptly termed error reduction (ER) method, which is equivalent to the steepest

descent method [44].

3.4 Ptychographic coherent diffractive imaging

The principle of CDI thus far relies on a localized object being illuminated

with a known wavefield, usually a plane-wave within the object’s oversampled

region. If however, a sample of interest is not localized, the illumination must be

made localized in order to maintain the oversampling condition of CDI. In principle,

if the localized illumination wavefield is known, then CDI is once again directly

applicable. Experimentally, such a condition may be achieved if a well known

pinhole can be directly place in contact with a sample surface. However, obtaining
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the exact pinhole shape can be difficult in itself, particularly since over time x-rays

tend to slowly erode materials, changing the pinhole shape. In addition, with this

geometry only a single location can be imaged at a time, without much control

over the location a priori.

Ptychographic coherent diffractive imaging (PCDI), is a method that ex-

tends CDI to unknown localized illumination functions, by taking diffraction pat-

terns from many overlapping regions of the sample. Thus, an arbitrarily large

region can be imaged, by simply illuminating more regions. The phase retrieval

is accomplished by constraining the real space solution to be the same in the

overlapping regions, thereby simultaneously recovering both the object and the

illumination function.

Although, ptychography can in principle be used in reflection geometry, it’s

most common application is for small angle transmission geometry. Recall that the

transmission of x-rays through a sample can be described as the propagation of a

field through that material, as shown in section 2.3. Thus, to good approximation,

the wavefield just after the sample is simply a modification of the incoming illu-

mination wavefield due to absorption and refraction, without any cross interaction

of the wavefield itself. In other words, the exiting wavefield just after the sample,

termed the view, is given by a simple multiplication of the illumination function

(probe) and the modification made by the sample projection (object),

ψj(r⊥) = P (r⊥ − r⊥,j)O(r⊥). (3.2)

The probe is in general a non-trivial full complex wave, defined at the sample plane,

which is propagating along the z-direction. As indicated, the probe may be shifted

relative to the object to produce multiple views, as is necessary for ptychography.

The exiting wavefield then propagates to a detector with spatial resolution where

the intensity (photons) can be measured,

Ij(q⊥) = |F {ψj(r⊥)}|2. (3.3)

Here, F stands for a general propagation operation. For instance in traditional

microscopy, this operator will be the result of passing through various optical

elements to produce a real space image. For diffraction techniques, there are no
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optical elements and the operator could be the Fresnel integral for diffraction to

the near field or a Fourier transform for far-field scattering, which will be the case

considered here.

It is the objective of PCDI to take a series of measured intensities, Ij, and

reconstruct the object and probe. Similarly to CDI (eq. (3.1)), the constraint on

the frequency spectrum at the detector is any wavefield that satisfies the measured

intensities,

F {ψj(r⊥)} =
√
Ije

iθv (3.4a)

F {P (r⊥)} =
√
IWFe

iθp , (3.4b)

where IWF = |F {P (r⊥)}|2 is the measured diffraction intensity without the

sample in place. During the reconstruction of the object and probe, the view is

updated according to whatever algorithm is used. The most successful algorithms

are the ptychographic iterative engine (PIE) and it’s extended version, ePIE [45,

46], which are considered projections onto constraint sets.

3.5 Optimize contrast

When scattering from extended objects, an optimal experimental condition

exists that leads to the highest number of photons scattered. A balance exists

between allowing a large number of transmitted photons while having a sufficient

variation in the sample to allow scattering. The object modifies the incoming

illumination due to absorption and refraction, O(r⊥) = e−k0(βl+iδl)zl(r⊥), where the

index indicates an Einstein sum over all elements present. For the following, a

single element is used as an example; however, it can be extended to any material.

Let the material have an average thickness, 〈z〉, where each position in the object

varies from this by ∆z. The fraction of transmitted photons will be given by∫
w(∆z)|O(z)|2, (3.5)

where w represents the normalized distribution of material thickness variation.

Even though, some photons can be considered to have scattered in the forward
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Figure 3.3: Optimal Scattering. (a) The ideal absorption power, from which the
optimal average thickness can be determined. (b) The fractional photons scattered
for the ideal thickness given in (a).

direction, they are not useful since a beamstop is generally used to block the

bright direct beam. Thus, the intensity that is not at the zero frequency can be

considered scattered photons. Then, by Parseval’s theorem and the definition of

the Fourier transform at zero frequency, the non-scattered fraction is given by∣∣∣∣∫ w(∆z)O(z)

∣∣∣∣2. (3.6)

Although, the scattering and absorption will depend on the exact distribution of

thickness in the material, here it is assumed that the variations in thickness have

a flat distribution between −∆z and ∆z. An analytic solution then exists to the

number of scattered photons,

I

I0

= e−2βk0〈z〉
[

sinh(2βk0∆z)

2βk0∆z
− cosh(2βk0∆z)− cos(2δk0∆z)

2(k0∆z)2(β2 + δ2)

]
. (3.7)

In general, scattering is increased when the variation in thickness is large and when

absorption is small compared to refraction. To some degree, these parameters may

be tunable. The optimal thickness of a thin film (fig. 3.3 (a)) and fractional photons

scattered (fig. 3.3 (b)) is shown for a most parameters likely to occur.
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3.6 Weak objects

When an object has low contrast, the number of scattered photons are

expected to be low. This leads to difficulty in reconstruction either due to poor

photon statistics in plane-wave CDI or due to insufficient real space constraint

in PCDI. For transmission geometry, consider an almost uniform object, such

that zl(r) = 〈z〉l + δzl(r). Using the Helmholtz propagation through a thin film

(eq. (2.10)), the object is then,

O(r) = 〈O〉[1 + δO(r)], (3.8)

where 〈O〉 =
∏

l exp (−ialfl〈z〉l), such that |〈O〉|2 is the constant attenuation fac-

tor. The variation in the object is expressed as δO(r) ≈
∑

l ialflδzl, which must

have amplitude significantly smaller than one to be valid. The scattering factor of

material l is fl and al = λNlre. The measured intensities (eq. (3.3)) are

Ij(q) = |〈O〉|2
[
IWF(q) + 2<{F {P (r− rj)}∗F {δψj(r)}}+ |F {dψj(r)}|2

]
(3.9)

where dψj(r) = P (r− rj)δO(r) and IWF = |F {P (r)}|2 is the diffraction intensity

of the illumination function, which can easily be measured by removing the object.

Through the relationship between δψj and ψj in eq. (3.8) and using the Fourier

constraints eq. (3.4), eq. (3.9) can be written as

cos (∆θj(q)− θc) =
Ij(q) + |〈o〉|2[IWF(q)− δIj(q)]

2|〈o〉|
√
IWF(q)

√
Ij(q)

, (3.10)

where ∆θj = θv − θp is the phase difference between the desired solutions of the

view and probe diffraction patterns, θc =
∑

l al〈z〉l<{fl} is a constant phase factor,

and δIj = |F {dψj}|2 is small but not insignificant. Thus, eq. (3.10) gives the

magnitude between the phase difference and thus could be used as a constraint

when δIj can be reasonably estimated.

The most problematic part of weak scattering is the simultaneous recon-

struction of the probe. As an extreme example, for a completely uniform object,

each projection contains no new information. Thus, the plane of the object be-

comes ambiguous and any Fresnel propagated probe will have the same far-field
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Figure 3.4: Weak scattering. (a) A section of a low contrast object. (b) Nor-
malized scattering and (c) phase difference between white field and diffraction
from a view. (d) same section as (a) recovered using known probe and measured
intensities without additional phase difference.
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diffraction pattern. As will be shown in section 3.8, when information is missing

in the diffraction intensities, this ambiguity persists for weakly scattering objects.

The most effective way of overcoming weak scattering is to start with a probe func-

tion that is very close to the actual probe function. This can be done in a number

of ways. First, a strongly scattering sample can be put in place of the weakly

scattering sample. A reconstruction of this sample will give a good approximation

to the probe used for the weakly scattering sample (up to changes in beam char-

acteristics and difference in placements of the sample). Second, the pinhole shape

and size can be determined and a propagated to the object plane. The simplest

method is to assume a circular pinhole where the size can be approximated from

measuring the fringes produced by scattering from the pinhole alone. Secondly, the

pinhole can be measured in a microscope. This however has several problems as

sufficient resolution requires significant effort. Since the measurements are made

ex situ, possibly with a technique that sees the pinhole edge differently due to

absorption differences, this is not ideal. This is particularly true since pinholes are

known to change over time scales of a day with x-ray illuminated due to residue

and damage. If the complete coherent diffraction intensity is measured, it is a

simple task to reconstruct the pinhole with the constraint of a real object.

Once the illumination function is known, a very good starting guess of the

object can be obtained by using the constraint of eq. (3.10). To demonstrate this,

a weakly scattering object, with a few percent contrast (a portion of which is

shown in fig. 3.4 (a)), is illuminated with a probe. It’s scattering is very similar

to the scattering without the object, where the normalized differential scattering,

δIj/IWF (fig. 3.4 (b)) is small for many frequencies and thus the difference in phase

between the probe scattering and view scattering is also small (fig. 3.4 (c)). In fact,

if the phase difference is set to zero, such that the view scattering is given by its

measured amplitude and the probe scattering phase, an approximate object can

be recovered immediately (fig. 3.4 (d)).
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Figure 3.5: Illustration of a reconstruction with noise in the measured diffraction
intensity. (a) a portion of the exact solution, (b) a single reconstruction from a
noisy diffraction pattern, (c) several reconstructions of the same diffraction pattern
averaged together.

3.7 Noise

When noise, whether detector noise or photon shot noise, is present in the

diffraction pattern, the exact solution can no longer be obtained. A solution that

strictly satisfies the Fourier constraint (eq. (3.1)) of a noisy diffraction pattern, will

not strictly satisfy the real space constraint of being fully confined within a finite

support. As a consequence a true minima does not exist during phase retrieval

and several solutions can be obtained with comparable error between the measured

and recovered Fourier amplitudes. The number of solutions possible depends on

the number of local minima and thus the amount of noise present in the diffraction

pattern. As will be discussed in the next chapter in detail, due to the distribution

of photon scattering in a diffraction pattern, high spatial frequencies are more

susceptible to noise, effectively resulting in loss of spatial resolution.

As an example, a complex two dimensional object (a portion of which is

shown in fig. 3.5 (a), using the HSV-color space in section 1.4), is propagated to

the far-field and Poisson statistics applied, such that the signal-to-noise ratio falls

below one at roughly one half of the inverse pixel size. When a single phase retrieval

is performed to a solution with a minimized error, significant noise is present in

the reconstruction (fig. 3.5 (b)). Although significantly small features can be seen
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in the reconstruction, it is yet unknown which features are present in all possible

solution and which are simply noise. When many phase retrievals are performed

and averaged together (fig. 3.5 (c)), the distinction becomes clear. Effectively,

the recovered phase will have larger variations between reconstructions at spatial

frequencies with low SNR. Thus, when many reconstructions are averaged together,

the recovered Fourier signal intensity is reduced in these regions. The recovered

intensity normalized by the true solution intensity is then the Fourier transform of

the point spread function, smearing out features on the order of 2π
qc

in size, where

qc is the cut off frequency where the SNR falls below one.

3.8 Missing information

When an incomplete diffraction pattern is measured, where some intensity

information is missing, it is possible not only to obtain a set of solutions that

nearly satisfy the constraints, it is possible for several solutions to exactly satisfy

the constraints. The simplest of these examples is when high spatial frequencies

are not measured. This case is very similar to the effect of noise in the diffraction

pattern, where uncertainty in the recovered diffraction pattern exists at high spatial

frequencies. As a consequence, features smaller than the inverse of this frequency

can not reliably recovered.

The more troubling case is when low spatial frequencies are not measured,

as is the case when a beamstop is necessary to block the direct beam in transmission

experiments. As a very simple example, when a plane wave is used to illuminated

an object, the direct beam is only present at the zero frequency. If only this

information were lost, a simple ambiguity between a signal and its complimentary

signal exists in the reconstruction, by Babinet’s principle (eq. (1.10)). However,

when the beamstop is of finite size, additional ambiguities arise. Roughly speaking,

the number of low frequency modes that could be present in the solution is given by∏ qm∆X
π

where the product is over all dimensions, ∆X is the size of the object, and

qm is the spatial frequency below which no measurement was made. Sometimes,

the modes can be constrained with additional information about the real space
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Figure 3.6: Reconstruction with central beamstop for a high contrast object. (a)
The diffraction intensity with no beamstop and (e) its corresponding reconstruc-
tion. (b) The diffraction intensity with a beamstop 47 pixels wide and (e) its cor-
responding reconstruction showing some low frequency modes. (c) The diffraction
intensity with a maximum possible beamstop 53 pixels wide and (e) its correspond-
ing reconstruction showing some erroneous features.

object, such as known symmetry or a low spatial resolution image of the object

from another technique [47].

For PCDI, the situation is somewhat different since an additional contraint

already exists, namely the overlap of neighboring view. As an example, the recon-

structions of a high contrast (fig. 3.6) and low contrast (fig. 3.7) object is shown.

Diffraction patterns were simulated with 109 scattered photons at 1080 eV from

gold squares with thickness of 10 µm (high contrast) and 10 nm (low contrast). As

the beamstop size grows, additional low frequency features appear in the recon-

struction. Since sharp edges produce scattering at high spatial frequencies, these

features tend to survive the longest. The high contrast object, can tolerate a much

larger beamstop due to the weak scattering problem discussed in section 3.6. In
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Figure 3.7: Reconstruction with central beamstop for a low contrast object. (a)
The diffraction intensity with no beamstop and (e) its corresponding reconstruc-
tion. (b) The diffraction intensity with a beamstop 11 pixels wide and (e) its cor-
responding reconstruction showing some low frequency modes. (c) The diffraction
intensity with a maximum possible beamstop 17 pixels wide and (e) its correspond-
ing reconstruction showing some erroneous features.
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short, although the diffraction patterns of the high and low contrast objects have

the same signal-to-noise ratio, the high contrast diffraction contains more unique

information compared to the low contrast diffraction with the same beamstop size.

3.9 Coherent modes

There are a number of cases where the observed scattering can be described

as a sum of orthogonal coherent modes. By orthogonal, it is meant that the

modes do not interfere with each other, such that the total scattering is a sum

of their respective intensities. For instance, a nearly coherent illumination of a

sample can be expressed as a linear combination of coherent modes [48, 49, 50, 51].

This is frequently used to improve reconstruction of objects, since the coherence

length can be comparable to the object size for synchrotron radiation [21]. It is

mathematically equivalent, if the role of the object and probe are switched. Thus,

this is directly applicable to situations where the sample switches between states

within the time of exposure. In the most general case, the measured intensity can

be expressed as a total of n modes, which is any combination of probe and object

mode,

I =
n∑
k=1

∣∣∣ψ̃k∣∣∣2, (3.11)

where ψ̃k = F {ψk}, is the wavefield at detector from the k-th mode. This idea

has been extended to ptychography [52]. Later, in section 5.7, it will be shown

that this is directly applicable to the case of certain magnetic scattering and how

it can be used to reconstruct the charge and magnetic components of a sample

simultaneously.

3.10 Mixed modes

There is an additional ambiguity that arises from using modes. Namely,

the entire special unitary group, SU(n), is equivalent in this case. The unitary

operator applied to the set of modes, ψ̃
′
= Uψ̃ with ψ̃ = [ψ̃1, . . . , ψ̃n]>, conserves
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the `2-norm of eq. (3.11). In the most general case,

U(φ, α, θ) = I(φ)R(α)I(θ) (3.12)

where R represents an operator that takes a normalized linear combination of

modes and I represents an operator that takes phase shifts of the individual modes.

This is equivalent to a generalized rotation.

It is instructive to look at a two mode example to see the properties of this

operation. Since in CDI a constant phase shift are of no importance, the two mode

example can be written as,[
ψ̃′1

ψ̃′2

]
= U(ε)

[
ψ̃1

ψ̃2

]
=

1√
1 + |ε|2

[
1 ε

−ε∗ 1

][
ψ̃1

ψ̃2

]
, (3.13)

where ε is any complex constant. If two consecutive operations are done in this

manner using ε1 and ε2, the transformation can be written in an equivalent manner,

U(ε2)U(ε1) = I(θ/2)U(ε′)I(θ/2), where

I(θ/2) =

[
eiθ/2 0

0 e−iθ/2

]
(3.14)

eiθ =
1−ε∗1ε2
|1−ε∗1ε2|

, and ε′ = ε1+ε1
1−ε∗1ε2

. This has two consequences, namely any single

operation is easily reversible simply by using ε2 = −ε1. Secondly, the entire SU(2)

group cannot be access from any arbitrary other point in the same group with a

single unitary operator described by eq. (3.13). That said, the operator U(ε′e−iθ)

is equivalent to U(ε2)U(ε1), with the exception of a constant phase shift. Since

constant phase shifts are unimportant for CDI, any two modes can be fully unmixed

by a single operator of the form in eq. (3.13).

The mixing of modes during phase retrieval is generally not a problem.

When there are multiple modes in the probe, these can be left mixed, since it is

usually not desired to obtain the probe modes. However, when multiple object

modes are present, it is desirable to obtain the pure, unmixed results. Constraints

on the mode’s real space solution generally results in a convergence to the correct

pure modes.
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Atomic Resolution

4.1 Introduction

X-rays have been used to successfully determine the atomic structure of

crystalline materials of increasing complexity for over 100 years. Obtaining the

unit cells of simple crystals was one of the first great achievements of x-rays [53].

This method routinely allows the refinement of atomic positions in highly ordered

crystals with better than 1 pm precision [54, 55]. Furthermore, protein crystallog-

raphy has obtained the structure of extremely important organic molecules such

as DNA [56] and penicillin [57], which have greatly impacted our understanding of

life and medicine. However, crystallography only determines the average atomic

positions in perfectly periodic crystalline structures. Thus, these methods have

not been able to address the materials that cannot be crystallized, the location of

defects in crystals, or the atomic positions in disordered materials.

Atomic resolution has been achieved for surfaces using scanning probes [58]

and for very thin films using transmission electron microscopy [59]; however, inter-

faces can differ significantly from the bulk. Since x-rays penetrate bulk materials,

have sufficiently short wavelength, and have chemical sensitivity, they are ideal for

atomic-scale three-dimensional microscopy. Both x-ray full field imaging and scan-

ning transmission microscopy have had great success [60, 61]. Although they can

still be improved, these techniques can never reach atomic resolution due to their

reliance on optical elements [62]. Instead of using incoherent radiation to image

41
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only ordered materials, it is possible to image any material, up to the diffraction

limited resolution, using coherent x-ray diffractive imaging (CXDI). In order to

accomplish this, one must solve for missing phase information in the measured

diffraction intensity and back propagate the full complex field to the sample [63].

Since the interaction between particles and fields are well understood at the atomic

level, a quantitative image of the atomic structure can be formed. The iterative

phase retrieval method has rapidly improved and CXDI is now widely used to

obtain the local distribution of electron densities and lattice strain of nanocrys-

tals [64, 65, 66]. In addition, CXDI has achieved great success in imaging non-

periodic structures [67, 68, 69].

The necessary dose to image a sample at a particular resolution, δx, has

previously been suggested to scale as δx−n, where n = 4 or 5 [70, 71, 72]. This im-

plies that a very large increase in x-ray flux, compared to current available sources,

is necessary to reach atomic resolution. We will show that with increasing disor-

der, atomic resolution can be achieved at doses well before the power-law scaling

predicts. In section 4.2 we will discuss a method to predict the number of photons

required to image a particle at a desired resolution. As an example, we generate

the atomic positions of two materials, simulate their diffraction pattern at various

photon doses and use phase retrieval algorithms to obtain a reconstructed image

of the atomic positions. In section 4.4, we show the results of the reconstructions,

which validate the predictions made. Finally, in section 4.5 we discuss the per-

formance of currently available x-ray sources and anticipate what next-generation

sources in the near future will be able to achieve.

4.2 Image quality

It is important to understand image quality for any microscope and to

predict what can be achieved under various conditions in order to find limiting

factors. In this case, we restrict ourselves to images formed from far-field diffraction

patterns, such as in CXDI. The far-field Kinematic scattering is proportional to

the Fourier transform of the electron density, F (q) = − r0
R

∑
m

fme
−iq·rm , where fm
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is the atomic scattering factor of atom m. The expected image resolution can be

estimated from the spatial frequency, qc, where the average signal-to-noise ratio

(SNR) drops below some threshold (see Appendix 4.6 for a detailed derivation

of this condition). For direct-space imaging, a threshold of five is common [73],

while for CXDI this threshold is usually set to one [68], which is also used here.

This condition may be written in terms of the number of photons scattered and

collected, I(qc)ηat ≈ 0.5(1 +
√

1 + 4ς2) ≡ Σ, where I(q) = I0〈P (q)|F (q)|2〉 is the

azimuthally averaged scattered flux, t is the exposure time, a is the area of the

detector pixels, η is the detector efficiency, ς is the noise level of the detector,

and P is a geometric factor due to polarization of the incoming x-rays. Although

this relation is strictly valid only for isotropically scattering samples, it also holds

true for scattering from crystalline materials, which have strong Bragg diffraction

peaks. This is because the cutoff spatial frequency is limited by regions with low

SNR (i.e. regions between Bragg peaks), which are relatively uniform.

Let us assume we have a curved detector that evenly samples the Ewald

sphere. To meet the oversampling condition needed for CXDI, the area of each

detector pixel should be a = R2( λ
s∆x

)2, where R is the distance from the sample

to the pixel, λ ≤ 4δx is the photon wavelength, ∆x is the maximum size of the

sample, and s is the minimum 1D oversampling ratio. Thus, the exposure time

needed to adequately measure a single slice of the Ewald sphere at the desired

resolution, δx = π/qc, is

t =
s2Σ

I0ηλ2υ〈P (qc)|f(qc)|
2〉∆x

, (4.1)

where f(q) = λ
2π

R√
V
F (q) is the normalized scattering factor and υ ≡ V

∆x3
is the

percent volume fraction of the particle. For unpolarized x-rays, P (φ) = 1
2
(1 +

cos2 φ), which can equivalently be achieved with linear polarization and sufficient

rotational freedom of the sample.

By using the normalized scattering factor, it is easier to see the general trend

in Eqn. 4.1. The λ factor is necessary due to the transformation from frequency

space, q, where the scattering factor is well defined to the scattering angle, (R, θ, φ),

where the detector is well defined. The factor
√
V , is necessary to normalize
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the intensity by the size of the particle. When the correlation length is much

smaller than the total size of the particle, such as in amorphous materials or

highly disordered crystals, then the scattered intensity scales with the number of

uncorrelated volumes. Thus, apart from fluctuations in the coherent speckle which

encode the location of each atom, the normalized scattering factor is independent

of particle size, in this limit. However, perfect single crystals will not exhibit

this simple behavior. Instead, increasing the amount of material redistributes the

scattering by narrowing the Bragg peaks, which includes the (000) peak present for

all materials. As will be seen later, the required exposure time to reach a particular

resolution is then directly proportional to the particle size.

When the scattering angle is small, such that the measured Fourier slice

is roughly planar, the data represents a projection of the sample and Eqn. 4.1

represents the imaging time necessary to distinguish a two dimensional (2D) pixel

of size δx2 in the projection with statistical significance. In order to extend this

to three dimensions, the contribution of a three-dimensional voxel in the sample

must provide statistically significant information in the projection. If the sample

is roughly uniform, the scattering from a single slice of thickness δx/∆x, gives the

appropriate voxel contribution. Thus, dividing Eqn. 4.1 by this factor gives the

necessary condition to obtain the three dimensional (3D) resolution, δx3. By ex-

tension, it would also be the condition to obtain the same voxel resolution from the

set of tomographic projections necessary to obtain the full 3D spatial information,

using dose fractionation [74, 75].

It is possible to obtain a similar, more general result by considering tak-

ing a series of two-dimensional slices, each satisfying Eqn. 4.1. To sample the

three-dimensional Fourier space, the sample must be rotated perpendicular to the

incoming radiation direction while oversampling all voxels up to the largest spatial

frequency needed for a particular resolution. Thus, the rotation angle step size is

given by δα = δq
qc

= 2
s
δx
∆x

. Due to the curvature of the sampling, to measure the

full 3D diffraction pattern the other orthogonal direction should be rotated as well

through an angle ±φm = ± arcsin ( λ
4δx

). The necessary number of slices is then
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N = s∆x
δx

(π + φm), such that the total exposure time is,

Nt =
s3(π + φm)Σ

I0ηλ2υ〈P (q)|f(q)|2〉δx
. (4.2)

Up to a prefactor, this is the same result as expected from dose fractionation.

The total exposure time needed can be reduced by increasing the available flux

or by making use of scattering resonances. Additionally, it is only weakly de-

pendent on the sample size because any gain in scattered intensity due to more

material is negated by the additional sampling required. In practice, however, it

will be easier to image smaller samples with the use of focusing to achieve a higher

x-ray flux. Furthermore, using a wavelength nearly four times the resolution de-

sired and obtaining scattering in the full 4π solid angle can reduce the required

sampling time, as long as the atomic scattering factors do not drastically reduce

with lower energies. However, in reality, the detector cannot be changed for each

experiment. Since the detector will have a specific pixel size and radius of cur-

vature, the value ( s
λ
)2 is fixed in the measured data. The data may be binned

post-measurement to obtain a different oversampling ratio. The necessary sam-

pling time (Eqns. 4.1 and 4.2) will still be correct, with the new oversampling

ratio and the detector noise adjusted for the number of pixels binned together,

ς ′ =
√∑

ς2. Although we have considered ∆x as the maximum length of the sam-

ple and s the minimum 1D oversampling, for highly asymmetrical samples where

the percent volume fraction, υ, is small, it is possible to bin data along only one

or two dimensions, as appropriate, to reduce the necessary sampling time.

In real experiments, limits in the sample rotation and a necessity to block

the direct beam will result in missing data in Fourier space. This tends to reduce

image quality by allowing a set of possible solutions. In some cases, this can be

overcome by additional information such as constraints on the set [47] or redun-

dancy from overlapping projections such as in ptychography [69]. In addition,

since the scattering factors away from resonances are primarily real, the scattered

intensity is centrosymmetric, which can be used to fill in missing information or

to increase SNR [76].

To consider the general trend of Eqn. 4.2, take for instance a uniform spher-

ical particle whose scattering factor is proportional to j1(q∆x)(q∆x)−1, where



46

j1(q∆x) is the spherical Bessel function of the first kind. Since we are interested

in resolutions much smaller than the particle itself, we can consider the limiting

case q∆x� 1. In this case, the scattering intensity due to the particle form factor

decays as q−4. Using Eqn. 4.2, we see that for a uniform density particle, the total

time needed to image a particle would be, Nt ∝ δx−5. This assessment is discour-

aging, since reaching atomic resolution for even high-Z materials would require on

the order of 105 improvement in average flux, which will not be feasible for any

x-ray source within the next few decades. Fortunately, as we will see in section 4.4,

this is not the case because the particle is in fact made of discrete objects, resulting

in order at the atomic scale.

4.3 Method

We created the atomic positions of three particle types. First, a crystalline

Au particle (fig. 4.1(a)) was created using the known face-centered cubic unit cell

parameters [77]. Several defects were introduced, including one screw dislocation of

nominal width 5 Å with slip plane (111) and Burger’s vector [110]a/2. Additionally,

two vacancies and two interstitials, with local distortion size of 5 Å were added.

The particle was shaped into an asymmetric spheroid with nominal diameter of

20 nm, containing 2× 105 atoms. Secondly, an amorphous Au particle (fig. 4.1(a))

was created using the ideal amorphous solid model with hard spheres [78]. First,

a single atom is generated and 4 ≤ l ≤ 12 atoms distributed randomly around it,

such that they are all “touching” the central atom. This cluster forms a seed, upon

which further atoms are added without violating minimum interatomic distances.

The number of atoms in the seed strongly influences the final packing ratio of the

particle generated. Here we use l = 9 resulting in a packing ratio of 0.60. The

amorphous Au particle, like the crystalline particle, consists of 2×105 atoms and is

the same size and shape. The simulated x-ray diffraction shows the clear distinction

between the two Au particles (fig. 4.1 (c)). The crystalline particle displays sharp

Bragg peaks, which result in regions of very high and very low scattered photons.

The amorphous particle displays the expected liquid structure factor, with more
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Figure 4.1: Normalized and azimuthally averaged scattered intensity for a crys-
talline particle (a) and an amorphous particle (b) with equal size and electron
density. The high degree of order in crystalline materials results in sharp bragg
peaks [(c) black line] leaving regions of Fourier space with very little scattered
photons. On the other hand, the disorder in amorphous materials spreads out
the scattering in Fourier space [(c) red line], which will result in better SNR near
atomic resolution.
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evenly scattered photons as compared the crystalline particle. Finally, a G-Actin

protein is obtained from crystallography measurements, which is the best refined

average G-Actin protein without hydrogen. It contains 3965 carbon, nitrogen and

oxygen atoms in addition to 31 sulfur, 3 phosphorus, and 1 strontium atom.

Once we had the positions of all atoms [Fig. 4.2(a)], we simulated diffraction

data by doing an explicit Fourier transform (FT) onto a regular Cartesian 3D grid

[Fig. 4.2(b)]. For each atom type in the particle, the FT is done separately and

scaled using an estimated q-dependent scattering factor and Debye-Waller factor at

10 keV photon energy near room temperature [79, 80]. Although we have ignored

higher order thermal diffuse scattering (TDS) beyond the Debye-Waller factor, it’s

contribution can be significant for low-Z materials when approaching the Debye

temperature [24]. TDS will contribute an incoherent background to the scattering

intensity due to phonons in the material. This can become a significant problem in

regions of low coherent scattering, such as between Bragg peaks in highly-ordered

crystalline materials. Since CXDI is optimal for relatively small particles, on the

order of a few hundred nanometres or less, the error introduced by TDS is expected

to be minimal for materials like Au at room temperature. However, there will be

many cases where TDS will need to be subtracted by using other measurements,

theoretical predictions, or approximately by observing loss in coherent speckle

visibility [26, 27].

Since the grid oversamples the diffraction pattern, it is smoothly varying

between neighboring voxels on the grid and the diffraction intensity was calculated

only for the center of each voxel and not integrated over the entire voxel volume.

Actual measured data will be a recombined series of 2D slices. To achieve ap-

propriate oversampling at large spatial frequencies during rotation of the sample,

small spatial frequencies will be oversampled much more. We simply counted the

number of times each voxel on the 3D grid would be sampled and multiply it to

our simulated 3D diffraction pattern before applying Poisson statistics. This cir-

cumvents the extremely costly technique of simulating a series of 2D diffraction

patterns and then mapping those pixels to the 3D Cartesian grid. Since mapping

the data is done by methods of interpolation [81], additional errors will be intro-
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Figure 4.2: Method of simulation. (a) Atomic positions are generated, where
color is used to better indicate depth, which are (b) Fourier transformed to a
regular Cartesian 3D grid (scattered photons shown on log scale). (c) An inverse
Fast Fourier transform of the full complex scattered wave gives the electron density
from which (d) the atomic positions and atomic number can be recovered.
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duced in measurements. Alternatively, a cylindrical grid can be used, which more

accurately represents the measured sampling, in conjunction with the fast polar-

FT [82, 83] for phase retrieval. However, this is significantly more computationally

costly due to the ill-defined inverse polar transform and very memory intensive

due to the storage of the highly over-sampled data near the origin.

To illustrate the minimum error that is introduced by discretizing the

diffraction data, the electron density is obtained by performing the inverse fast

Fourier transform (FFT) of the simulated full complex diffraction data [Fig. 4.2(c)].

Since no effort was made to match voxel positions with atom positions, the recov-

ered electron density for each atom location extends beyond a single pixel. The

approximate location of the atoms and their atomic number [Fig. 4.2 (d)] can be

recovered from the discrete electron density map, when atoms are sufficiently sep-

arated compared to the pixel size. First, local maxima in the map are obtained.

For each maxima, surrounding pixels are used to calculate a center of mass and

the map is subpixel shifted in an attempt to center the atom in the nearest pixel.

This process is done iteratively several times, until the shift becomes negligible. At

this point, the atom is contained within a single pixel whose position and atomic

number can easily be identified. The recovered locations have a mean absolute

error (MAE) and maximal error (ME) of 0.12 Å and 0.22 Å, respectively, which is

far below the voxel size used of 0.78 Å.

Reconstruction of the electron density from simulated diffraction intensi-

ties is done using the Hybrid input-output (HIO) algorithm [42] and Difference

Map (DM) algorithm [43]. The only real space constraint used is a support that

is allowed to change through the shrinkwrap method [40]. Although it is possi-

ble to start the recovery from a completely random guess, recovering a set of dis-

crete objects is notoriously time consuming. The reconstruction process essentially

traverses randomly through a very large phase space until it comes close to the

solution [43]. To reduce the number of total iterations needed for many reconstruc-

tions, we start most of the reconstructions with a linear combination of a uniform

density within a support that defines the particle’s edge and the actual solution

convolved with a point spread function and randomly sub-pixel shifted. In addi-
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tion, a random complex value is added to each voxel with variations on the order of

the maximum electron density. An average reconstruction is formed by combining

the best 11 of 15 total reconstructions after adjusting for any complex conjugated

mirror image, constant phase offset, and relative particle translation [84, 85]. From

this, the mean absolute error (MAE) between the recovered and actual phase of

the diffraction pattern is calculated and averaged azimuthally along shells of con-

stant |q|. Here, an MAE of 0 would be perfect correlation between measured and

recovered, 2 is a perfect anti-correlation (i.e. π phase shift), and 1 is equal cor-

relation and anti-correlation or no correlation at all. We defined the resolution

of the recovered electron density as π/qc, where qc is the lowest spatial frequency

where the MAE becomes greater than 0.5. This is equivalent to the phase retrieval

transfer function (PRTF) commonly used to define resolution when the solution is

not known, except that the PRTF measures how well the set of solutions compare

to each other instead of a known solution [68, 69]. Thus, if the recovered solutions

always stall in the same local minima during phase retrieval, the PRTF will indi-

cate a better resolution than actually achieved. We use the PRTF to check that

we have not biased our solutions with the given starting guess.

4.4 Results and discussion

To test the predictions of Eqn. 4.2, we have simulated the diffraction data

for several materials and used CXDI to reconstruct their atomic position. For this,

we assume a photon energy E = 10 KeV, a perfect photon capture efficiency of

the detector η = 1, and no detector noise ς = 0. Here we use a 1D oversampling

s = 2, which is sufficient to achieve high probability of reconstruction success, but

in some cases can be lower [34].

The crystalline Au diffraction intensity was simulated with a wide

range of time-integrated photon flux (TIPF) between 6× 1014 ph/µm2 and

1× 1019 ph/µm2. The resolution obtained using CXDI of these simulations

matches extremely well to the predictions from Eqn. 4.2 until the expected res-

olution becomes lower than the pixel size. The resolution versus TIPF initially
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Figure 4.3: Crystalline Au particle. (a) Achievable resolution, where the solid line
is the theoretical model described by eq. (4.2) which follows much of the expected
δx−5 fall off for a uniform particle. The circles are reconstructions using CXDI from
simulated photon statistics, where the horizontal dashed line indicates the pixel
size. a subset of recovered atomic positions near a vacancy (b)-(e) and near a screw
dislocation (f)-(k) are shown, where atomic position ME and MAE (a) are also
given. (b) For the actual atomic position near a vacancy, there is an atom missing
at the center surrounded by an inward distortion of neighboring atoms within 5 Å.
(c) This is fully recovered by 2× 1018 ph/µm2. (d) With 1.5× 1018 ph/µm2, the
vacancy and distortion can still be identified. (e) By 1018 ph/µm2, the vacancy
is no longer present and only a slight distortion of neighboring atoms is seen.
(f) For the actual atomic position near a screw dislocation, a continuous shift of
atoms occurs as seen from the [111] direction with characteristic width of 5 Å. (g)
This is effectively recovered by 2× 1018 ph/µm2 within the expected resolution.
(h) With 4× 1017 ph/µm2, the dislocation can still be recognized. (k) Finally, at
1017 ph/µm2, only a periodic atomic structure is recovered.
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follows a power law decay proportional to δx−5 [Fig. 4.3(a)], as expected. This

power law decay would continue forever for scattering from a sample with uni-

form electron density. However, for a sample with correlations, in this case long-

range order producing Bragg peaks, the cutoff frequency that determines resolution

will jump across the regions of increased SNR, as indicated by the sharp drop at

1× 1018 ph/µm2 in Fig. 4.3(a), for instance. The resolution at which this curve

becomes discontinuous is directly tied to the spatial frequencies of the Bragg peaks.

Additionally, the size of the jumps will depend primarily on the relative intensity

of the Bragg peaks. From the expected q−4 fall off of the intensity away from Bragg

peaks, we can estimate the start of the jump by the spatial frequencies where the

azimuthally averaged intensity between two Bragg peaks is at its minima. The

start of the first jump (derived in Appendix 4.7) is

q1 ≈
qb
2

(
40ρ+ 1

30ρ+ 1

)
, (4.3)

where ρ =
|F(000)|2
mb|Fb|2

is the ratio of intensity from the (000) Bragg peak and the

lowest non-forbidden reflections at qb, with multiplicity of mb due to symmetry.

Since, the intensities can be obtained from the structure and atomic form factor

this can be calculated a priori for known structures. The end of the jump will be

given by

q2 ≈
18

11
qb −

5

8
q1. (4.4)

Although the Bragg peaks become more narrow with larger particle size, it does

not modify the start and end location of the jump. The reduction in TIPF to

reach atomic resolution is thus always the same, albeit the absolute TIPF needed

changes.

For crystalline Au, the first jump is due to the {111} Bragg peaks at

q111 = 2.67 Å−1 with ρ ≈ 0.177. Thus, q1 ≈ 1.7 Å−1 and q2 ≈ 3.3 Å−1. In other-

words, we expect a jump once we reach approximately 1.9 Å resolution and jump

to approximately 0.95 Å resolution. As also observed in [Fig. 4.3(a)], this jump

results in a factor of 30 reduction in TIPF to reach atomic resolution as compared

to the power law decay.
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Since achievable resolution from Eqn. 4.2 and from simulated results are

a measure of average resolution, we show local resolution of a recovered vacancy

and screw dislocation compared to known atomic positions. The known vacancy,

as viewed nearly from the [110] direction, is missing a central atom and distorts

a small neighborhood of atoms around it [Fig. 4.3(b)]. At 2× 1018 ph/µm2, the

vacancy is fully recovered, including the full neighboring distortion [Fig. 4.3(c)].

The MAE and ME are within recoverable atom position limits [Fig. 4.3(a)]. At

1.5× 1018 ph/µm2, the vacancy is questionable [Fig. 4.3(d)]. A low atomic num-

ber atom is present at the center where the vacancy should be and only a slight

distortion of the neighboring atoms is observed. This may be misinterpreted as

a substitution without additional information. Finally, the vacancy is not recov-

ered for 1018 ph/µm2 [Fig. 4.3(e)]. Only a very slight distortion from the perfectly

periodic lattice is recovered. The screw dislocation when viewed from the [111]

direction appears as a continuous shift of atoms from one unit cell to the next

[Fig. 4.3(f)]. At 2× 1018 ph/µm2, this distortion is fully recovered within the pixel

resolution [Fig. 4.3(g)]. At 4× 1017 ph/µm2, the distortion can be recognized due

to its spatial extent, but the atomic position are not correct [Fig. 4.3(h)]. In fact,

the distortion is partly in the incorrect direction. Finally, at 1× 1017 ph/µm2, the

distortion can not be seen any more and a nearly perfectly periodic structure is

recovered [Fig. 4.3(k)].

Similarly, the amorphous Au diffraction intensity was simulated with a wide

range of TIPF between 3× 1014 ph/µm2 and 1× 1018 ph/µm2. Again, the resolu-

tion obtained using CXDI of these simulations matches very well to the predicted

resolution from Eqn. 4.2 until the expected resolution becomes lower than the pixel

size. Below approximately 1× 1016 ph/µm2 the result is identical to crystalline Au,

following the δx−5 power law decay, since the average electron density is the same

for both above 5 Å resolution [Fig. 4.4(a)]. Similar to crystalline Au, amorphous

Au exhibits a discontinuity in resolution compared to TIPF because of short-range

atomic order resulting in a broad peak in the liquid structure factor. Although

the exact discontinuity cannot be determined theoretically, the first jump will be

in the vicinity of the closest interatomic distance and will be significantly larger
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Figure 4.4: Amorphous Au particle. (a) Achievable resolution at various photon
statistics, where the solid line is the theoretical model described by Eqn. 4.2 and
circles are reconstructions using CXDI from simulated photon statistics. The hor-
izontal dashed line indicated the pixel size, below which the current simulations
cannot reach and the dashed line which follows much of the theoretical curve in-
dicates the expected δx−5 fall off for a uniform particle. To show local resolution,
a subset of recovered atomic positions at the center (b)-(e) and edge (f)-(k) of the
particle are shown, where atomic position ME and MAE (a) are also given. The
actual atomic position at the center (b) and edge (f) of the particle are fully re-
covered by 1.5× 1017 ph/µm2 (c) and (g). At 1017 ph/µm2 (d) and (h), all but one
atom matches the known solution for the center and edge, respectively. Finally at
6× 1016 ph/µm2 (e) and (k), a large number of atomic positions are incorrect.
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compared to the crystalline case. For amorphous Au, a jump from 3 Å to the

resolution limit of 0.78 Å occurred at 1× 1017 ph/µm2. The jump results in three

orders of magnitude reduction in TIPF to reach atomic resolution as compared to

the power law decay.

Again, we show local resolution of the recovered particle, this time at its cen-

ter and at the top edge. The actual atomic positions [Fig. 4.4(b) and (f)] are fully

recovered by 1.5× 1017 ph/µm2 [Fig. 4.4(c) and (g)]. At 1017 ph/µm2 [Fig. 4.4(d)

and (h)], all but one atom matches the known solution in both the center and

edge region. Finally, at 6× 1016 ph/µm2 [Fig. 4.4(e) and (k)] a large number of

atomic positions are incorrect.The ME [Fig. 4.4(a)] shows a clear discontinuity at

1× 1017 ph/µm2, just as predicted by Eqn. 4.2.

Finally, the G-Actin protein diffraction intensity was simulated with a wide

range of TIPF between 1× 1016 ph/µm2 and 1× 1021 ph/µm2. The resolution ob-

tained using CXDI of these simulations [Fig. 4.5(a)] matches well to the predicted

resolution from Eqn. 4.2. The actual atomic positions are shown in Fig. 4.4(b).

Color is again used to indicate depth while size of the spheres indicated the atomic

number. Although the electron density is fully recovered by 1× 1021 ph/µm2, the

atomic positions cannot be entirely recovered [Fig. 4.5(c)]. Since the closest inter-

atomic distances for G-Actin are approximately 1.5 Å, less than the size of two

pixels, many atoms are grouped together when identified using the local maxima

technique.

Although the exact expected resolution is depended on the material used,

some generalizations can be made since inter-atomic distances are similar for all

solids. First, the major difference between different materials will be the overall

electron density. The two primary examples given thus far are Au with an electron

density of 4.18 nm−3 within the smallest sphere enclosing the particle and G-Actin

with an electron density of 6.89× 10−2 nm−3 within the smallest sphere enclos-

ing the particle. Since, the x-ray scattering per sampling condition is effectively

proportional to the electron density, G-Actin will require roughly three orders of

magnitude more dose than Au. Other examples, such as aluminium (Al), which

have very similar crystal structure to Au, will simply be shifted in dose by their
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Figure 4.5: G-Actin particle. (a) Achievable resolution at various photon statis-
tics, where the solid line is the theoretical model described by Eqn. 4.2 and circles
are reconstructions using CXDI from simulated photon statistics. The horizontal
dashed line indicated the pixel size, below which the current simulations cannot
reach and the dashed line which follows much of the theoretical curve indicates the
expected δx−5 fall off for a uniform particle. The actual atomic position at the of
the particle (b) are not recovered at the resolution limit of 1.5× 1017 ph/µm2 (c)
due to inter-atomic distance separation being smaller than twice the pixel size.
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Figure 4.6: (a) Theoretical attainable resolution for amorphous Au particles (top
panel) and crystalline Au particles (bottom panel) of different sizes; 20 nm (green),
10 nm (blue), 5 nm (purple), and 2.5 nm (black). Amorphous and crystalline Au are
identical for resolutions greater than approximately 5 Å. (b) at large resolutions,
both amorphous and crystalline particles require TIPF that is linearly proportional
to particle size. At atomic resolution, the required TIPF becomes independent of
size for amorphous particles.
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ratio of electron density squared, in this case a factor of approximately 40. A very

important, less obvious change in the scattering is due to the arrangement of atoms

themselves. As has already been discussed, the disorder of amorphous materials

spreads scattering in Fourier space, allowing a distinct advantage in achieving suf-

ficient SNR for all required spatial frequencies. Real materials will fall between

the case of a perfect crystal and ideal amorphous solid, which have been used as

examples to illustrate their difference. The next most important change in scatter-

ing will occur due the finite size of the particle. Although the additional scattering

due to more material will be exactly cancelled due to additional sampling required

for larger particles, the scattering distribution is also slightly modified with par-

ticle size (fig. 4.6 (a)). As the particle size increases, Bragg peaks including the

(000) become more narrow, assuming coherence length is given by the particle size.

Thus, larger particles will require more TIPF to achieve the same resolution. the

required TIPF to reach a particular resolution is proportional to ∆xn, where n is

the proportionality exponent to the particle size (fig. 4.6 (b)). The arrangement

of atoms is unimportant for resolution significantly greater than the atomic scale,

where the TIPF is observed to be directly proportional to particle size. Below

atomic resolution, the TIPF becomes independent on particle size for amorphous

materials, while for crystalline materials remains approximately linearly depen-

dent. As was predicted (section 4.7), the TIPF reduction at atomic resolution is

independent of particle size for crystalline materials. In the limit of small particles,

the the crystalline and amorphous case become identical.

As mentioned previously, in real experiments a 3D Fourier data set will be

created by mapping a series of 2D Fourier slices. Since the slices naturally form

cylindrical sampling, a polar or pseudo-polar grid is a natural alternative to the

Cartesian grid. In this case a 5 nm amorphous Au particle is reconstructed using

the pseudo-polar fast Fourier transform (PPFFT) on a cylindrical grid and for

comparison using the FFT on a Cartesian grid. A smaller sized particle is necessary

here due to the speed reduction of the PPFFT compared to the FFT, even with

highly optimized GPU-accelerated PPFFT code. The reconstructions are almost

identical for the Cartesian and cylindrical coordinates, both resolutions are close
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Figure 4.7: A 5 nm amorphous Au particle is reconstructed using fast Fourier
transform on a Cartesian grid (red circles) and using the pseudo-polar fast Fourier
transform on a cylindrical grid (blue squares). Both are close to the theoretical
prediction (black solid line)

to the theoretical prediction (fig. 4.7). Although, the use of cylindrical coordinates

may mitigate additional errors when mapping the 2D slices, computationally it is

not recommended to use the PPFFT over the FFT for CXDI.

4.5 Conclusion

The realization of true atomic resolution using CXDI will require a number

of technical problems to be resolved, including high dynamic range detectors with

high quantum efficiency and low dead time to reduce waste of illuminating pho-

tons. Possibly the most challenging and costly requirement is to obtain sufficiently

brilliant x-ray sources to perform experiments within reasonable time periods. Cur-

rent third-generation sources such as APS, Spring-8, NSLS II, and Petra III have

a Brilliance of (5× 1013 to 2× 1015) ph/s µm2 mrad2 0.1% near 10 keV [86]. Esti-

mates of usable coherent flux suggests these sources require on the order of one

year of measuring to reach atomic resolution for materials with high electron den-

sity. As an example, one of the best 2D resolutions achieved thus far is 3 nm for a
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silver cube using 1× 1013 ph/µm2 [76]. Adjusting for oversampling, electron den-

sity, photon energy, and volume fraction a similar measurement on a gold sphere

could have achieved a 3D resolution of 2.1 nm using the same TIPF. This falls

in line with predictions made by Eqn. 4.2 seen on [Fig. 4.3(a)]. Next generation

sources, such as the proposed multi-bend achromat synchrotron and energy recov-

ery linac will provide roughly two orders of magnitude increase in brilliance [87].

This makes achieving atomic resolution a real possibility under ideal conditions

for radiation hard-samples. The necessity to increase brilliance of x-ray sources

can be alleviated by using partially incoherent radiation for CXDI to increase the

usable photons [52, 88]. Even when full atomic resolution cannot be achieved,

any order will lower the flux requirement compared to the simple expected power

law decay of an equivalent uniform sample. For instance, crystals with large unit

cells produce Bragg peaks at low spatial frequencies [89], which can help to image

defects on the length scale of the unit cell. We remark that this method of analysis

is valid for any material, including organic samples that cannot be crystallized,

which may one day be imaged using fast probes [90].

4.6 Condition of adequate signal-to-noise

We make use of the Shannon sampling theorem, which states that a band

limited signal can be accurately described when sampled at the Nyquist rate [28,

29]. In other words, if a power spectrum is measured only up to some maximum

frequency, qc, the best expected average image resolution is δx = π/qc. Strictly

speaking, with the use of a discrete Fourier transform, this will be the pixel size.

In order to separate two nearby objects, it is required that they are separated

by at least two pixels, so the true image resolution may be thought of as twice

the pixel resolution. Resolution numbers in this paper refer to the pixel size that

adequately describes the signal of a band limited Fourier spectrum. Although the

diffraction of real objects is never truly band limited, the power spectrum rapidly

decreases for larger frequencies and a frequency cutoff can be defined for which

higher frequencies can no longer be measured reliably within some noise.
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In this case, we are not interested in an observer’s ability to discern between

a signal and noise and thus do not use signal detection theory [91] or the useful

simplification of the Rose model [92]. Instead, we are only interested in the spatial

frequency where noise significantly alters the power spectrum. In that respect, we

look at the signal-to-noise ratio (SNR) averaged over shells of constant q,

〈SNR(q)〉 = 〈µ(q)

σ(q)
〉 =

1

4π

∫
dΩ

µ(q)

σ(q)
. (4.5)

Although, most materials are sufficiently isotropic to consider the azimuthal aver-

age only, it is possible to define the SNR and spatial resolution along any direction

independently. By signal we mean the expected photons scattered from the object

of interest captured by a detector of size a with quantum efficiency η during time

t, µ(q) = I(q)ηat. This signal, sometimes referred to as contrast, excludes pho-

tons directly from the illumination function, sometimes referred to as unscattered

photons in the language of the Born approximation. For CXDI, the object is illu-

minated approximately by a plane wave, which leads to unscattered photons only

near q=0. This is different from traditional microscopy, where the measured pho-

tons across the entire image can have significant contribution from photons that do

not contribute to the image signal contrast. The total noise, σ(q) =
√
µ(q) + ς2, is

due to the Poisson statistics of photon shot noise and additional noise introduced

by the detector, ς. In the limiting case that ς2 � µ(q) then 〈SNR(q)〉 ≈ 〈
√
µ(q)〉,

the average scattered photon amplitude. In the other case, when ς2 � µ(q),

〈SNR(q)〉 ≈ 〈µ(q)〉
ς

. To continue further, we must assume that the sample scatters

photons relatively isotropically, such that variations in µ(q) are small for constant

q. Later, we will see that this is not strictly necessary.

〈SNR(q)〉 ≈ 〈µ(q)〉
〈σ(q)〉

=

〈µ(q)〉√
〈µ(q)〉+ ς2

〈

√
1 +

µ(q)− 〈µ(q)〉
〈µ(q)〉+ ς2

〉−1. (4.6)

As we have already assumed, the variations in µ(q) are small; thus, µ(q)−〈µ(q)〉
〈µ(q)〉 is
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also small and we may expand this term to first order to find,

〈SNR(q)〉 ≈ 〈µ(q)〉√
〈µ(q)〉+ ς2

[
1− 1

2
〈µ(q)− 〈µ(q)〉
〈µ(q)〉+ ς2

〉
]−1

=
〈µ(q)〉√
〈µ(q)〉+ ς2

. (4.7)

We are interested in the maximum spatial frequency, qc, for which the average SNR

is above some threshold, γ, for all q ≤ qc. Using Eqn. 4.7, we find that

〈I(q ≤ qc)〉ηat ≥
γ2

2

[
1 +

√
1 + 4

ς2

γ2

]
(4.8)

Since we are interested in the smallest spatial frequency where the average SNR

falls below some threshold, we are primarily concerned with regions of Fourier

space to which few photons scatter. For non-isotropically scattering samples, such

as crystals, it is the signal between Bragg peaks that will define qc. Thus, Eqn. 4.8

holds even for scattering from crystals.

4.7 Crystalline discontinuities

For crystalline materials, it is possible to determine when the expected res-

olution will become discontinuous as a function of dose. Since, it is the regions of

low SNR that determine the resolution, the cutoff frequency (Eqn. 4.8) will jump

across regions of high SNR, such as Bragg peaks. Far from a Bragg peak, the

asymptotic form of the scattered intensity can be used. Thus, the (000) contribu-

tion to the azimuthally averaged intensity is then,

〈I0〉 ∝
Z2

q4
, (4.9)

where the atomic scattering factor, f(q = 0) = Z, is the atomic number. It is

not important to know the absolute intensity, since only the ratio of two Bragg

peak intensities will later be used. The contribution from any other Bragg peak

at qb 6= 0 to the azimuthally averaged intensity has the asymptotic form

〈Ib〉 ∝
mb|f(qb)|2

4qqb(q − qb)2
, (4.10)
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where mb is the peak multiplicity, given by the number of symmetry-equivalent re-

flections. The first discontinuity will be due to a jump across the first non-forbidden

Bragg peak, scaled by an additional factor of inverse wavevector due to rotation in

three dimensions as seen in Eqn. 4.2. The start of this jump is determined by the

minima in inter-peak intensity and is given by d
dq

[
1
q

(〈I0〉+ 〈Ib〉)
]
|q1 = 0. Using

Eqns. 4.9 and 4.10 a quadratic expression is obtained,

10ρ0,b(qb − q1)3qb = q3
1(2q1 − qb), (4.11)

where ρ0,b = Z2

mb|f(qb)|2
. This has four roots, one of which is the correct turnover

point between q = 0 and qb. Although the analytic roots can be written, they

are generally far too complicated to be used directly. The recommendation is to

find the numeric root. Nonetheless, an approximate analytic root can be found

by looking near qb/2, half way between the two Bragg peaks. Using a first-order

Taylor series expansion, the approximate turn over point is given by

q1 ≈
qb
2

(
40ρ0,b + 1

30ρ0,b + 1

)
, (4.12)

which is valid when ρ0,b ∼ 10−1. The jump ends when the same intensity is reached

on the other side of the first Bragg peak. Thus, if this Bragg peak is sufficiently

separated from others, such that a low intensity region exists directly after the

peak at qb, then the end point is given by

q2
2(q2 − qb)2 = q2

1(qb − q1)2/α, (4.13)

where α = 1 + 4ρ0,b
qb(qb−q1)2

q31
. This quadratic equation has analytic roots, but once

again, it is simpler to calculated the solution numerically. It is also possible to

estimate the end point by looking for a root near 2qb − q1, which has the same

separation as the start point to the Bragg center. By doing a first-order Taylor

series expansion, the end point is given be

q2 ≈ 2qb − q1 −
(qb − q1)[(2qb − q1)2 − q2

1/α]

2(2qb − q1)(3qb − 2q1)

≈ 18

11
qb −

5

8
q1, (4.14)

where the second approximations assumes the intensity at q1 is dominated by 〈Ib〉.
By following the same method, the jumps across higher Bragg peaks can also be

determined, but are not derived here.
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Chapter 5

Magnetic Materials

5.1 Introduction

Understanding the electronic structure at the nanoscale is crucial to un-

tangling fundamental physics puzzles, including emergent behaviour in 3d and 4f

orbital systems. Such systems often display interesting magnetic order over various

length scales. The magnetic domain formation and propagation is strongly influ-

enced by defects and interfaces in the material, which are critical in influencing the

design of magnetic memory [93] and use of giant magnetoresistance in spintronic

technology [94].

Multilayer thin films are made of alternating magnetic layers, such as a rare-

earths and a transition metals. Although each material is ferromagnetic, the two

materials couple through a negative exchange and thus prefer to have their mag-

netic moments be anti-parallel. Since the magnetic moments are at least partially

compensated, a lower demagnetization field can exist with the moments orientation

out of the thin film plane, which gives rise to a perpendicular magnetic anisotropy

(PMA). These films break up into a domain configuration with alternating up and

down magnetization, whose characteristic width is determined by the strength of

the intra-material exchange energy and demagnetization field energy. For instance,

GdFe with nominal thickness of 100 nm will have domain widths on the order of

300 nm. Since the film thickness is still quite large, reducing the thickness will

give smaller domains, until the dipolar length is reached [95, 96, 97]. The domains

66
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are separated by domain walls, where magnetic moments smoothly rotate from

one configuration at an edge to the opposite configuration at the other edge. The

domain wall width is determined mostly by the intra-material exchange energy and

magnetic anisotropy. Once, again for GdFe, the domain walls are approximately

30 nm thick.

The imaging of such nanoscale domain structures has been one of the driving

forces to developing techniques such as magnetic force microscopy (MFM) and x-

ray microscopy. Although MFM has a much higher availability, it suffers in many

ways that x-rays do not. For instance, MFMs rely on stray magnetic fields near

a surface that is scanned. Thus, magnetically compensated, buried structures, or

materials with large thickness variations cannot be accessed, whereas x-rays can

penetrate bulk materials to obtain a projected image with chemical sensitivity by

using x-ray resonant edges. In addition, since magnetic domains can be “soft,”

the magnetic tip of an MFM can drag domain walls during scanning, altering the

domain configuration.

Up until recently, the x-ray community has had a single tool—Scanning

transmission x-ray microscopy (STXM)—to image magnetic domain configura-

tions [98]. Even though it has had great success, it has several experimental

limitations. STXM requires a high degree of circular polarization with the ability

to switch helicity. In addition, it’s biggest drawback is that it’s resolution is due to

the precise scanning of a highly focused beam. Therefore, it suffers from the usual

problems in resolution, namely errors in alignment, motor position, field of view,

and focal plane. These errors are virtually eliminated with the use of CDI. In sec-

tion 5.2, the magnetic scattering contrast will be reviewed. Then, in section 5.3, it

will be shown how CDI can be used to image magnetic thin films using only linear

polarization.

5.2 X-ray resonant exchange scattering

As was briefly discussed in section 2.6, the scattering cross-section greatly

increases near energies characteristic of the atomic electron energy levels, such that
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a photon can be absorbed and an electron excited from a core shell to a higher level

with a vacancy. An atom that is magnetized, has a net electron spin polarization

and thus a difference in the available vacancies. The difference in occupancy results

in a different cross section for various photon polarizations.

Although both the electric and magnetic multipole transitions contribute to

the resonant exchange scattering, the electric dipole transition dominates the M4,5

absorption edges. The resonant scattering factor can be written in the form [99],

fXRESE1 = (ε̂∗0 · ε̂f )F (0) − i(ε̂∗0 × ε̂f ) · m̂F (1) + (ε̂∗0 · m̂)(ε̂f · m̂)F (2), (5.1)

where ε̂0 and ε̂f are the incoming and outgoing photon polarization, respectively.

The scattering factors, F (1,2,3), are linear combinations of the atomic oscillator

strengths, which depend on the probability for a transition between two states at

a particular energy, as given by Fermi’s Golden rule. When relating these scatter-

ing factors to the complex index of refraction (eq. (2.18)), it becomes clear that

F (1) and F (2) are the x-ray circular and linear dichroism, respectively. When the

photon propagation is aligned with the magnetization moment, the good photon

eigenstates are circularly polarized and the circular dichroism gives the Faraday

effect in bulk material. Similarly, when the photon propagation is perpendicular

to the magnetization moment, the good photon eigenstates are linearly polarized

and the linear dichroism results in the Voigt effect.

5.3 Magnetic thin films

Since for thin films with PMA, most of the magnetic moments are oriented

out of plane, the linear dichroism contribution from magnetization parallel to the

film will be negligible for small angle scattering, normal to the surface. Thus, the

non-zero contributions to the resonant scattering are(
fπ→πE1

fπ→σE1

)
=

(
1

0

)
F (0) − i

(
0

1

)
m̂⊥F

(1) +O
(
m̂2
‖
)
F (2). (5.2)

It has been written in this way only to illustrate that charge scattering results in no

polarization change when using linear polarized light, while magnetically scattered
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photons due to circular dichroism become orthogonally polarized. This gives the

possibility of separating these contributions when using linearly polarized light,

given a detector that is sensitive to polarization. Since the good eigenstates are

circularly polarized photons, the non-zero contributions to the resonant scattering

can also be written as(
f+→+
E1

f−→−E1

)
=

(
1

1

)
F (0) +

(
1

−1

)
m̂⊥F

(1) +O
(
m̂2
‖
)
F (2). (5.3)

The contribution of circular dichroism is opposite for left-handed (indicated by the

plus sign) and right-handed (indicated by the minus sign) circularly polarized light,

as must be the case to maintain symmetry. Since the linear dichroism is generally

weaker than the circular dichroism and since the scattering strength depends on the

in-plane magnetization squared, only a small portion of domain walls and closure

domains will contribute. Thus, the contribution from this can be safely ignored

for thin films with PMA.

Using the Helmholtz propagation through a thin film (eq. (2.10)), the exit

wavefield for each polarization is given by

ψ±(r⊥) = P (r⊥)e−ial[f
0
l +F

(0)
l ]zl(r⊥)e∓ialF

(1)
l mẑ,l(r⊥), (5.4)

where P (r⊥) is the illumination function, al = λNlre and mẑ,l(r⊥) =
∫ z

0
m̂ẑ,l(r) dz

is the projection of the magnetization along the propagation direction. The con-

stant phase factor due to free space propagation has been ignored, as it will be lost

in the measured intensity regardless. The index represents the Einstein summation

over all materials. Although, the resonant contributions can in general be from

multiple materials at once, it is common for only a single contribution to be sig-

nificant at any particular energy. The far-field intensity using linear polarization

is

I(q⊥) = 1
2
|F {ψ+(r⊥)}|2 + 1

2
|F {ψ−(r⊥)}|2. (5.5)

In the next section, special cases are explored, which can be used to more easily

separate the contribution from charge and magnetic scattering.
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5.4 Special cases of magnetic thin films

The scattering intensity from a thin film with PMA using linear polarization

can in general be written as,

I(q⊥) = |F {P (r⊥)C(r⊥) cosh [iM(r⊥)]}|2

+ |F {P (r⊥)C(r⊥) sinh [iM(r⊥)]}|2
, (5.6)

where C(r⊥) = e−ial[f
0
l +F

(0)
l ]zl(r⊥) can be considered the charge contribution and

M(r⊥) = alF
(1)
l mẑ,l(r⊥) can be considered the magnetic contribution. If the mag-

netic contribution is weak, M(r⊥)� 1, the intensity simplifies to

I(q⊥) = |F {P (r⊥)C(r⊥)}|2 + |F {P (r⊥)C(r⊥)M(r⊥)}|2. (5.7)

As an example, rare-earth metals typically need to be significantly less than 20 nm

for the maximum resonant contribution to be in this regime. This further simplifies

when the thin film is of uniform thickness,

I(q⊥) = |C|2
(
IWF + |F {P (r⊥)M(r⊥)}|2

]
, (5.8)

where |C|2 is a constant attenuation factor and IWF = |F {P (r⊥)}|2 is the far

field diffraction intensity from the illumination function without a sample, termed

the white field. In this case, it is easy to separate the two contributions since the

white field can easily be measured very accurately, allowing the magnetic domain

structure to be directly reconstructed.

However, even if the film is not sufficiently thin, yet the magnetization

is fully aligned in either of the directions parallel to the wavefield propagation,

then mẑ,l = m̂ẑ,lzl = ±zl. In this case, (mẑ,l)
n = m̂ẑ,l(zl)

n when n is odd and

(mẑ,l)
n = (zl)

n when n is even. Therefore when the film is of uniform thickness

and only a single resonant contribution exists

I(q⊥) = |C|2
(
c+IWF + c−|F {P (r⊥)m̂z(r⊥)}|2

]
, (5.9)

where c± = 1
2

cosh (2a=
{
F (1)

}
z) ± 1

2
cos (2a<

{
F (1)

}
z). Up to some scaling fac-

tors, this is identical to the weak scattering uniform thickness case. An approxi-

mate subtraction can also be made when the charge scattering is not completely
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uniform. Consider the case where zl = 〈z〉l + δzl, then

I(q⊥) ≈ |〈C〉|2
[
IWF + |F {P (r⊥)M(r⊥)}|2

+2<{F {P (r⊥)}∗F {P (r⊥)δC(r⊥)}}+O (δC2,MδC)] ,
(5.10)

where |〈C〉|2 =
∏

l exp
(

2al=
{
F

(0)
l

}
〈z〉l
)

is the mean attenuation factor and

δC(r) ≈ −
∑

l ial[f
0
l + F

(0)
l ]δzl(r⊥) is the variation in charge contribution. The

error is expected to be small when the variations in thickness are truly small and

the magnetic scattering is reasonably small. The charge variation and magnetic

cross term is expected to be very small, as the magnetic scattering tends to occur

at higher spatial frequencies due to finite domain width, where as charge scattering

tends to be larger towards very low spatial frequencies. It is assumed that only a

single element contributes to the magnetic scattering at any given energy. Then

two measurements (eq. (5.10)) can be made at different energies near a resonant

edge in order to make an approximate separation of the magnetic scattering,

I(E1)

|〈O〉(E1)|2
− SI(E2)

|〈O〉(E2)|2
+(S−1)IWF ≈ |aF {Pmẑ}|2

[∣∣F (1)(E1)
∣∣2 − ∣∣F (1)(E2)

∣∣2] ,
(5.11)

where S ≈ <
{∑

l

f0l +F
(0)
l (E1)

f0l +F
(0)
l (E2)

}
. Ideally, the magnetic scattering should be as

different as possible for the two energies. In addition, the separation is most

accurate when the ratio of the charge scattering is primarily real.

5.5 CDI of uniform thickness GdFe

GdFe multilayer, consisting of approximately 200 alternating layers of atom-

ically thick Gd and Fe layers, was deposited uniformly onto a SiN window to allow

transmission of x-rays through the sample. The sample is illuminated, normal

to the thin film, with linearly polarized coherent x-rays several millimeters down-

stream from a 10 µm circular pinhole. The sample is illuminated in a 4 by 4 grid,

with 3 µm steps, giving a field of view of 19 µm by 19 µm. When the photon en-

ergy is on the Gd M5 resonant edge at 1189 eV, the scattering contains magnetic

contribution as given by eq. (5.5) (fig. 5.1 (a)). Since the sample is uniform, the

scattering simplifies to the special case such that the magnetic scattering can be
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Figure 5.1: Scattering from uniform GdFe, where all patterns are diffraction
amplitudes on log scale. (a) On resonance scattering at 1189 eV. Off resonance
scattering at 1180 eV. (c) Magnetic scattering obtained by subtracting the scaled
off resonance scattering from the on resonance scattering. (d) Diffraction amplitude
with recovered part behind beamstop after phase retrieval.
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Figure 5.2: Reconstruction of the full complex field from a charge uniform sam-
ple of GdFe thin film. (a) The field is equated with scattering due to magnetic
domains. The yellow and blue indicate magnetization in and out of the image
plane. (b) Reconstructed probe at the sample plane (bottom right), that when
propagated back 2 mm (top: slice through side view) gives a reasonable circular
pinhole (bottom left).

separated (eq. (5.7)). When the sample is illuminated with photons just off the

resonant edge at 1180 eV (fig. 5.1 (b)), there is no charge scattering contribution

from the sample. The scattering is identical to the scattering from the pinhole

without the sample in place, with uniform attenuation. The magnetic scattering

(fig. 5.1 (c)) is obtained by subtracting a scaled version of the pinhole scattering

from the sample scattering. In this case, the magnetic scattering is primarily real,

as observed by the centrosymmetry in the diffraction pattern. Thus, some of the

data behind the beamstop is filled in and used as a guide during the initial iter-

ations of phase retrieval. Phase retrieval is performed on the set of 16 magnetic

diffraction data. During this process, all of the data behind the beam stop is

recovered (fig. 5.1 (d)).

An average of thirty reconstructions is shown in fig. 5.2. The object (fig. 5.2

(a)) shows essentially a two state system, with nearly constant amplitude and two

phases, arbitrarily identified as 0 and π. Since any constant phase shifted solution

is also correct, it is not possible to identify which of the two domains are along the
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direction of the photon propagation versus opposite, until external magnetic field is

applied to break the symmetry. The domain pattern shows labyrinth or maze order.

This type of pattern is commonly found in a wide class of uniaxially modulated

systems, including Langmuir monolayers, diblock copolymers, liquid crystals, and

magnetic thin films [100]. The characteristic length scale corresponding to the

width of the stripe is defined by the energetic balance between short range exchange

interaction and long range dipolar field interaction. The majority phase domain

width is (200 to 300) nm wide, while the minority phase is extremely consistent

at 200 nm wide. The pattern shows only a few disclination, or Y-shaped branches

leading to a “cul-de-sac.” These tend to occur in the minority phase, as the

sample is brought from magnetic saturation toward the remanence point, when

the domain walls cannot collectively propagate quickly enough, due to pinning.

Indeed, the magnetic domain pattern of this uniform GdFe is consistent with that

from samples with very few defects [101, 102], even giving nematic order. Since

the applied magnetic field evolution is always slow here, the domain configuration

shows no “comb” structure that are typical during quenching [103, 104].

The probe used to illuminate the sample is simultaneously recovered (fig. 5.2

(b) bottom right). It shows a high degree of circular symmetry. The probe can be

propagated (section 2.4), to find the wavefield in an arbitrary plane (slice seen in

fig. 5.2 (b) top). When the probe is propagated backwards approximately 2 mm

to the pinhole plane, it reveals a nearly uniform circular pinhole, as expected.

5.6 CDI of GdFe with patterned Au

Au:GdFe multilayer, consisting of Au patterns 10 nm tick of various lateral

size deposited onto a SiN window to allow x-ray transmission through the sample.

On top of the Au patterns is approximately 200 uniform alternating layers of

atomically thick Gd and Fe layers. The sample is illuminated, normal to the thin

film, with linearly polarized coherent x-rays several millimeters downstream from

a 13 µm circular pinhole. The sample is illuminated in a 4 by 4 grid, with 3 µm

steps, giving a field of view of 22 µm by 22 µm. When the photon energy is on
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Figure 5.3: Scattering from GdFe with pattern Au, where all patterns are diffrac-
tion amplitudes on log scale. (a) On resonance scattering at 1189 eV. Off resonance
scattering at 1180 eV. (c) Scattering from the pinhole without the sample in place.
(d) Magnetic scattering obtained by subtracting the scaled off resonance and pin-
hole scattering from the on resonance scattering.
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Figure 5.4: Partial reconstruction of the full complex field from a thin film sample
of GdFe with Au structures. (a) Visible light microscope reveals the Au structure
in the region of ptychography. (b) The recovered full complex field at the sam-
ple plane due to scattering from magnetic domains. The yellow and blue indicate
magnetization in and out of the image plane. Variation in amplitude could struc-
ture variations and matches well the expected Au structure. (c) Reconstructed
illumination function.

the Gd M5 resonant edge at 1189 eV, the scattering contains magnetic and charge

contribution as given by eq. (5.5) (fig. 5.3 (a)). When the sample is illuminated

with photons just off the resonant edge at 1180 eV (fig. 5.3 (b)), there is a small

contribution from the sample to charge scattering as compared to the scattering

from the pinhole along (fig. 5.3 (c)). Since the sample charge scattering is so weak,

an approximate magnetic scattering (fig. 5.3 (d)) can be obtained using eq. (5.11),

where S = 1.3 was used. In this case, the magnetic scattering is primarily real, as

observed by the centrosymmetry in the diffraction pattern. Thus, some of the data

behind the beamstop is filled in and used as a guide during the initial iterations of

phase retrieval. Since the primary error of the magnetic scattering occurs at low

spatial frequencies due to strong charge scattering signal in this region, a high pass

filter is used to dampen these spatial frequencies. This would not work in the case

where the magnetic scattering is not contained within such a nice ring (i.e. with

large degree of disorder). Phase retrieval is performed on the set of 16 magnetic

diffraction data.

The large charge structure can be seen optically due to the high reflectivity

of Au (fig. 5.4 (a)). In the region of the performed ptychography, the charge struc-
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ture consists of squares in varying size from (1 to 5) µm, evenly distributed across

the sample. The recovered magnetic object is an average of twenty reconstruc-

tions (fig. 5.4 (b)). The charge structure of squares can immediately be identified,

seemingly as additional absorption or less projected magnetization in the region

of magnetic squares. The addition of Au, however, only accounts for a maximum

of 7 % absorption, significantly less than the amplitude variation observed. The

magnetic reconstruction should also be entirely absent of the Au structure, if the

subtraction of diffraction patterns was done appropriately. A second observation

of the reconstruction is that the domain width within the region of Au structure

is only approximately 75 nm, significantly smaller that outside of the Au structure

where the domain width is approximately 125 nm. In fact, these smaller domains

are at the limit of the pixel size and their repeatability between reconstructions is

slightly lower than that for the larger domains. This in itself results in a slightly

lower amplitude within the Au structure when an average is taken, yet still not

sufficient to account for the observed amplitude change. This indicates that the

projected Gd magnetic moment is lower, either due to partial misalignment of the

moment or due to an overall less thickness of the GdFe layer. The lower thick-

ness is consistent with a smaller domain size within the Au structure, however,

the expected change in domains size should not be by a factor of two. Although

bulk Au is diamagnetic, nanostructures of Au are known to become ferromag-

netic [105, 106]. To account for the smaller domain width, it is possible that a

significant portion of the Au moments are aligned with the Gd-Fe combined mag-

netic moment. Overall, the magnetic domains are far less consistent in width and

have far more disclinations as compared to the uniform GdFe, suggesting that the

patterning of Au structures results in variations in the sample for nucleation of

domains and pinning of domain walls to occur.

The probe used to illuminate the sample is simultaneously recovered (fig. 5.4

(c)). Although it appears quite circular, it contains significant variation that break

symmetry. When the probe is propagated backwards to the pinhole plane, it does

not quite reveal a uniform circular pinhole. It is possible, the illumination function

contains more than one coherent mode.
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Figure 5.5: Reconstructions of simulated charge (a)-(c) and magnetic (d)-(f)
contribution. The actual solution (a) and (d) are recovered up to constant phase
shift, but mixed (b) and (e) when using no constraints on the solution. When the
solution is periodically unmixed using the complex constraint, the final solution
(c) and (f) are nearly separated completely.

5.7 Two mode: charge and magnetic

It is not necessary to use such special cases for PMA thin films, where

the magnetic scattering can be subtracted and reconstructed on its own. Recall

the scattering for linear polarization from magnetic thin film (eq. (5.5)) is the

result of two views, namely from right hand polarization and left hand polarization

components of the illumination function (eq. (5.4)). In fact, the two coherent

modes from any elliptically polarized illumination is an ideal candidate for use

with the multi-mode method (section 3.9).

As an example, consider a sample with charge and magnetic contribution

(fig. 5.5), such that the object as seen by left-handed and right-handed circu-

larly polarized photons can be written as, O±(r⊥) = eC(r⊥)e±M(r⊥). The charge
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contribution, different from previous definition, is proportional to the object thick-

ness, z(r⊥), represented by two kittens (fig. 5.5 (a)). As before, the magnetic

contribution is proportional to the projected magnetization, represented by the

magnetization that is recovered from the uniform GdFe sample in section 5.5. The

simultaneous reconstruction of these two modes will lead to an arbitrary mixing

(section 3.10), when no addition constraints are used. In general, the reconstructed

charge and magnetism are mixed and related to the actual by

2C ′(r⊥) = 2C(r⊥) + ln

[
(1 + εe−2M(r⊥))(1− ε∗e2M(r⊥))

1 + |ε|2

]
, (5.12a)

2M ′(r⊥) = 2M(r⊥) + ln

[
1 + εe−2M(r⊥)

1− ε∗e2M(r⊥)

]
. (5.12b)

The reconstructed charge (fig. 5.5 (b)) is contaminated with the magnetism. How-

ever, the reconstructed magnetism is recognizable. It is possible to separate the

solution by minimizing an error related to physical constraints on the solution. As

a possibility, the complex constraint [41] can be used, where the error is the varia-

tion in ratio between the real and imaginary parts of the charge and/or magnetism

as a function of the mixing parameter. When this is used, the reconstructed charge

(fig. 5.5 (c)) and magnetism (fig. 5.5 (f)) are nearly separated. An exact separation

requires a stronger constraint or manual separation.

5.8 Two mode: GdFe with patterned Au

The Au:GdFe can also be reconstructed directly from the total scattering

(fig. 5.3 (a)) using the two mode method. As in section 5.7, the reconstruction

is unmixed using the complex constraint and an average of fifteen reconstructions

is taken. The charge contribution (fig. 5.6 (a)) is almost entirely uniform. It’s

only variations are those from the magnetic contribution that have not been com-

pletely unmixed and low frequency modes that can arise in the recovered intensity

behind the beamstop due to the periodic step taken in the ptychographic scan.

It is expected that the Au charge structure is not recovered, as it’s contribution

to the scattering is very weak in comparison to the magnetic scattering on the

resonant edge. Similarly, the magnetic contribution contains low frequency modes
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Figure 5.6: Au:GdFe reconstruction using the two mode method. (a) Recovered
charge contribution, (b) recovered magnetic contribution, (c) recovered illumina-
tion function.

(fig. 5.3 (b)), however, the overall domains are almost identical to the magnetic

reconstruction of section 5.6. The illumination function (fig. 5.3 (c)) is also very

similar to the one recovered in section 5.6.

This shows that the two mode method is a viable technique for imaging

the charge and magnetic structure of PMA thin films simultaneously using linear

polarization. Thus, a much wider range of interesting samples can be images, such

as pattern induced confinement and interaction between boundaries and layers.



Chapter 6

X-ray induced persistent

photoconductivity in vanadium

dioxide

6.1 Introduction

Metal oxides exhibit diverse ground states and phenomena including high-

temperature superconductivity [107], colossal magnetoresistance [108], charge den-

sity waves [109], Verwey transitions [110], and metal-insulator transitions (MIT)

[111]. Significant attention has been given to the deceptively simple MIT, which

has to date been driven with temperature, electric field [112], pressure [113], chem-

ical doping [114], ultrafast laser excitation [115], and ionizing radiation [116]. The

MIT in VO2 occurs above room temperature (340 K) with a simultaneous struc-

tural phase transition (SPT), changing from a semiconductor with a monoclinic

lattice to a metal with a tetragonal lattice [111, 117, 118]. There is a variation of

MIT temperatures between VO2 grains, even for high quality samples [119]. Thus,

metallic inclusions exist well below the bulk MIT temperature. The band bend-

ing at these metal-insulator interfaces can extend the lifetime of photogenerated

electron-hole pairs, which contribute to conductivity [120].

Persistent photoconductivity (PPC) has been intensely studied in semi-

81
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conductors [121, 122], superconductors [123], and metal oxides [116]. PPC is

an increase in carrier concentration or mobility that is induced by electromag-

netic radiation and remains for an extended period of time after illumination has

ceased [124]. A long-lived photoinduced conversion to the metallic phase was pre-

viously observed in tungsten doped vanadium dioxide, but only below 50 K [125].

Additionally, a short-lived photoconductivity, decaying within tens of seconds, has

been observed in vanadium oxide nano-devices [126, 127, 128]. However, long-lived

photoconductivity has not been induced in pure VO2 at room temperature until

now. In addition, it was unclear if photoconductivity in VO2 is coupled with the

MIT and SPT. To better understand the driving mechanism of PPC in VO2, we

explored the relationship between crystal structure and PPC using localized x-ray

radiation at room temperature. In this article, we show that photoillumination

produced a large increase in conductance lasting for hours after illumination had

ceased. Furthermore, we demonstrate that this dramatic change in conductance

did not modify the metal-insulator transition temperature or change the crystal

structure at the current resolution. Finally, to explain this effect we discuss and

refute several possibilities, suggesting two well established models as candidates

for PPC in VO2.

6.2 Setup and sample

The vanadium dioxide (VO2) thin film was prepared on an r-plane sapphire

substrate by reactive RF magnetron sputtering. The target used in the deposition

was a V2O3 pressed and sintered powder ceramic (1.5” diameter, >99.7%, ACI

Alloys, Inc.). The sample was prepared in a high vacuum deposition system with

a base pressure of 10−7 torr. A mixture of ultra high purity Ar and O2 gases

were used for sputtering. The total pressure during deposition was 4.0 mtorr, and

the oxygen partial pressure was optimized to 3.4× 10−4 torr (8.5% of the total

pressure). The substrate temperature was 600 ◦C and the RF magnetron power

was 100 W. The film reported here is 80 nm and was deposited at a rate of 0.17 Å/s.

Due to the substrate interaction, the thin film grows polycrystalline, with grains
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randomly oriented in-plane, but with the (100) monoclinic direction out-of-plane.

The sample was cooled at a rate of 13◦C/min in the same Ar/O2 background

gas of the deposition. On top of the VO2 film, rectangular metallic electrodes were

deposited with 10 µm separation and 7 µm width using electron-beam lithography.

A set of leads, for electrical connections, were patterned on top of the small elec-

trodes using photolithography. The leads and electrodes were made by sputtering

50 nm vanadium, which acts as an adhesion layer, and 100 nm of gold to assure

that the electrode resistance is lower than that of the metallic VO2.

This sample exhibited three-orders magnitude resistance change when going

through the metal-insulator transition (MIT), reaching a high-temperature resis-

tance of approximately 25 Ω. Below 325 K, the resistance followed Mott insulating

behaviour with an activation energy of (330± 10) meV. With an expected band

gap of 600 meV [129], this is a good indication that our sample was only weakly

doped with impurities.

The sample was mounted on a stage with a heater able to reach 400 K and

a Pt100 RTD to measure temperature immediately adjacent to the sample. The

stage is mounted to a Newport 6-circle Kappa diffractometer. A Princeton Quad-

RO CCD is used to measure the (200) x-ray diffraction peak in the low-temperature

monoclinic phase and the (101) peak in the high-temperature tetragonal phase.

Both of these reflections are near the substrate normal direction and thus accessible

for all grains in the film. A Vortex-EX x-ray fluorescence detector is used to locate

the VO2 device regions between the gold contacts. These gold contacts are used

to measure resistance across the device by applying a voltage (V) referenced to

ground and measuring the current (I). To ensure that no significant distortion of

the electronic density of states occurred, we applied a small 50 V/cm electric field

for our measurements [130]. We approximate the device resistance as V/I from

this two-terminal measurement.

Primary measurements were performed at Sector 2-ID-D insertion device

(micro-diffraction) beamline of the Advanced Photon Source. X-rays were pro-

duced via an undulator tuned to 10.3 keV and monochromatized by a Si (111)

double-Bragg crystal. A pinhole was used in series with a zone plate to select only
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Figure 6.1: Top Left: Structure of VO2 devices showing arrangement of gold
contacts on VO2 film and two-terminal probe to measure resistance. Bottom:
Experimental setup at Sector 2-ID-D beamline of Advanced Photon Source. X-
rays are generated by electrons from the Synchrotron Storage Ring (SR) in an
Undulator (U), monochromatized by Si (111) double Bragg Crystal (BC), and
focused by a Fresnel zone plate (ZP). The first-order is select by a 15 µm pinhole
(OSA), giving a 250 nm by 950 nm beam spot on the sample (S). X-rays are
measured via Fluorescence (XRF) detector and a charge coupled device (CCD).
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the first order focus. The focusing and incident angle gives a 250 nm× 950 nm x-ray

footprint on the sample that determines the horizontal and vertical spatial reso-

lution, respectively. The total photon flux is approximately 109 photons/second.

All measurements were made in air at atmospheric pressure.

6.3 Results

We probed a VO2 device at room temperature (300 K) using focused x-rays.

The illumination induced a photoconductance, which we define here as the mea-

sured conductance minus the conductance before x-ray illumination. The observed

increases in photoconductance correlate with x-ray illumination of the device (Fig-

ure 6.2). After the x-ray illumination ceased, the photoconductance gradually

decreased and returned to zero within a week at room temperature. In addition,

the x-ray exposure did not alter the MIT temperature. Heating the device through

the MIT showed a sharp drop in resistance at the same temperature as before x-

ray illumination (Fig. 6.3 (a)). This is in contrast to high-Tc cuprates, where

illumination induces photoconductivity in the semiconducting state and modifies

the superconducting transition temperature [122].

In a separate experiment, we illuminated the same device with a 650 nm

(1.9 eV) laser focused to 100 µm× 100 µm. We estimate the device region was

irradiated with 1014 ph/s or 30 µW power, which is over three orders of magnitude

more power compared to the total x-ray power absorbed into the VO2 film. The

laser did not elicit a conductance change, indicating that any deep level impurities

within the 0.6 eV band gap are not the cause for PPC in VO2 [129]. This is in

contrast with usual photoconductance in semiconductors, where a donor-complex

model is often used [121].

A change in conductance due to the MIT is directly associated with the

SPT and results in a change of the lattice parameters, which shows up as a shift in

the location of the Bragg diffraction peaks. We have mapped the structural phase

of the device, define by the gold contact pads (Fig. 6.3(b)), with and without pho-

toconductance (Fig. 6.3(1c) to (3c)). We present these maps as the difference in
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Figure 6.2: Photoconductance (black circles) of the VO2 device at 300 K, showing
rapid increase during x-ray illumination (dashed red region) as well as slow decrease
after the x-ray illumination was turned off.
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Figure 6.3: (a) The resistance is reduced by over one-order of magnitude at room
temperature (point 1 to 2) by illuminating the device with x-rays at the indicated
location in (1d) by the black ellipse. The resistance versus temperature hystere-
sis shows that the thermal component of the insulator-metal transition occurs at
the same temperature for post-illumination (red diamonds) as no x-ray exposure
(black down-pointing triangles). The original state is recovered by annealing the
sample at 400 K and returning to room temperature. The device maps (b) to (d)
are generated by scanning x-rays starting from the bottom-left corner proceed-
ing in a series of horizontal lines. (b) Gold fluorescence intensity indicates the
electrodes that define the device area. (c) Change in out-of-plane Bragg peak as
compared to monoclinic phase and (d) normalized change in conductance induced
by x-ray exposure for (1) 300 K and 40 kΩ resistance before significant x-ray expo-
sure in the monoclinic phase with 〈Q〉M = 2.590 Å−1 and 〈∆I/I∆t〉M = +0.3 h−1;
(2) 300 K and 2 kΩ resistance after x-ray exposure with 〈Q〉PPC = 2.589 Å−1 and
〈∆I/I∆t〉PPC = −0.3 h−1; (3) 354 K and 25 Ω resistance in the tetragonal phase
with 〈Q〉R = 2.594 Å−1 and 〈∆I/I∆t〉R = 0.0 h−1.



88

the location of the measured Bragg peak and the mean Bragg peak of the low-

temperature monoclinic phase, ∆Q = Q−〈Q〉M. These maps show local variation

due to strain of individual grains, common of thin films. At 300 K and 40 kΩ resis-

tance, before significant x-ray exposure (Fig. 6.3(1c)), the out-of-plane Bragg peak

was found in the monoclinic phase with 〈Q〉M = 2.590 Å−1. For comparison, at

354 K and 25 Ω resistance (Fig. 6.3(3c)), the out-of-plane Bragg peak was found at

〈Q〉R = 2.594 Å−1. This is the expected 4× 10−3 Å−1 shift between the monoclinic

phase at 300 K and the tetragonal phase at 354 K [131]. Near the MIT, a coexis-

tence of the high- and low-temperature phases is known to occur [132, 133, 119].

After approximately 45 minutes of x-ray exposure at the location indicated by

the black ellipse in Fig. 6.3(1d), the room temperature resistance dropped from

40 kΩ to 2 kΩ (point 1 to 2 on Fig. 6.3(a)). However, the sample was not modified

toward the high-temperature (tetragonal) structure, having a mean out-of-plane

Bragg peak of 〈Q〉PPC = 2.589 Å−1.

Although, a change in conductance can be induced by x-ray illumination

of a single location and did not require any scanning of the device, the photore-

sponse varied across the device (Fig. 6.3(1d) to (3d)). By photoresponse we mean

a change in conductance during a short eight second period of localized illumina-

tion. We scanned the device using continuous illumination. Thus, it is possible to

observe a negative photoresponse due to relaxation of photoconductance induced

at previously scanned locations. The relaxation is approximately −1.3 h−1, shown

in Fig. 6.2, during no illumination, matching well to the minimum observed of

−1.4 h−1 for some regions, suggesting there is no actual negative photoresponse

but only decay of previously generated photoconductance. Initially, the photore-

sponse was very strong in two large regions of the device, with a maximum of

+2.5 h−1 and mean of +0.3 h−1 (Fig. 6.3 (1d)). Although these variations in pho-

toresponse to some extent agree with the variations in high-temperature structural

phase, the correlation is weak. There is no statistically significant difference in the

crystal structure for regions exhibiting strong and weak photoresponse. After sig-

nificant illumination, the strong photoresponse regions shrank in size, now with

maximum of +1.3 h−1 (Fig. 6.3 (2d)). Most of the region can no longer sustain
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the immediate photoconductance giving a mean photoresponse of −0.3 h−1. For

comparison, at 354 K in the metallic state (25 Ω), the conductance is stable and

no photoresponse is observed (Fig. 6.3 (3d)).

At 330 K, just below the MIT temperature, we observed a slow decay of

photoconductance after x-ray illumination is stopped (Fig. 6.4). Given that the

photoconductance decays continuously to zero, an accurate fit was made by using

a stretched exponential of the form,

G0 exp
[
−(t/τ)β

]
. (6.1)

This function is commonly used to describe relaxation toward equilibrium in a

wide variety of systems including those exhibiting PPC due to random local-

potential fluctuations [124, 134] and discrete random traps [135]. The stretched

exponential fit agrees with the observed photoconductance decay over the entire

range. We extract a time constant of τ = (54± 1) h and a stretching exponent of

β = 0.69± 0.01. This gives a mean relaxation time of (69± 1) h.

The PPC relaxation time was significantly reduced by thermal cycling the

VO2 well above the MIT temperature. After annealing the device at 400 K for

20 minutes without illumination, it recovered the original resistance upon cooling

(red diamond curve of Fig. 6.3(a)).

6.4 Discussion

The persistent nature of the photoconductance is not consistent with a

thermally induced MIT. The x-ray power used was 1.6 µW, only 1.5% of which is

absorbed into the 80 nm thick sample, calculated from the attenuation coefficient

and the illumination angle. The Al2O3 substrate has a much smaller attenuation

coefficient and a much larger thermal conductivity compared to VO2 and thus acts

as a thermal sink. From the heat transport equation and known thermal proper-

ties of VO2 at room temperature, we calculate that at equilibrium the x-ray heat

loading of the entire device was less than 0.1 mK. This does not account for fur-

ther losses due to atmosphere, which would further reduce this number. Since, the

sample temperature is stabilized approximately 35 K below the MIT temperature,



90

Figure 6.4: Decay of photoconductance at 330 K post-illumination. The green
line is a fit using a stretched exponential with the additional information that
the photoconductance eventually returns to zero. The mean relaxation time is
69 hours.
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the x-ray power is insufficient to raise the temperature of the device to cause a

significant change in the measured resistance. Since the x-ray beam was highly

focused, a thermoelectric current could result from localized heating near the gold

contacts that are used for electrical transport measurements. However, a positive

thermoelectric current due to heating near one contact would mean a negative ther-

moelectric current at the opposite contact [136]. We did not see this asymmetric

response during localized illumination across the device (Fig. 6.3 (1d) and (2d)).

A previous observation of x-ray induced conductance increase in tungsten

doped VO2 was due to the formation of metallic puddles that exhibit the high-

temperature (tetragonal) crystal structure [125]. It is suggested that each ionizing

photon causes the dissociation of many V-V dimers, effectively converting the in-

sulating phase to metal. A conversion to the metallic phase via the above process

is expected to nucleate near the illuminated volume and spread isotropically, pos-

sibly in a random-resistor network fashion due to variations in the sample. To

account for the one-order magnitude decrease in resistance that we have observed,

our VO2 device would need to be at least 37% volume metal fraction. Since we have

observed no appreciable shift in the Bragg diffraction peak towards the tetrago-

nal structure post-illumination (Fig. 6.3 (2c)), the generation of metallic puddles

cannot be the cause for PPC in our VO2 device.

It is noteworthy, that a metallic surface or filaments could also lead to

the observed increase in conductance. In this case, the metal fraction would be a

minimum of 1.2% of the device volume, if they extend uniformly from one electrode

to the other. The diffraction signal would then mostly be indistinguishable from

the insulating phase. However, a metallic surface created by a change in vanadium

oxidation state, similar to PPC in ZnO [137, 138], is not likely. To observe an

increase in conductance, VO2 would need to be reduced [139]. Since the beam

is well localized, yet a large portion of the surface must participate to account

for the photoconductance, a significant oxygen mobility would be required, which

is only seen for layered or amorphous materials [140]. Therefore, if the observed

PPC is associated with a structural transition, it must come in the form of a

large number of narrow metallic filaments, since a single filament of the minimum
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required 85 nm width would still be detected. For instance, it is possible that a

change in conductance is primarily confined to grain boundaries or other extended

defects, however at the current resolution this cannot be determined.

An estimated total of 1010 photons were absorbed into the VO2 film when

we observed a one-order magnitude decrease in resistance at room temperature

(300 K). If one photocarrier is generated per photon, such carriers would need

a mobility of 0.1 cm2/(V s) to account for the resistance change. This is within

the known range of electron mobility in the insulating phase for VO2 [141] of

(0.1 to 1) cm2/(V s). This indicates that an increase in carrier concentration is the

cause for the change in conductance.

The long recombination time of photoinduced carriers is generally explained

by phonon-assisted hopping or tunneling of potential barriers [142]. Using the

simple Arrhenius model, the time for hopping of a potential barrier is given by,

t = t0 exp ( E
kBT

), (6.2)

where t0 is the inverse of the electron-hole recombination attempt rate, E is the

activation energy (potential barrier), kB is the Boltzmann constant and T is the

temperature of the system. Since, systems exhibiting local-potential fluctuations

do not strictly follow the expected temperature dependent decay time [126], we

shall estimate the potential barrier by using the standard attempt rate of 1 THz

induced by phonons [143]. We thus calculate the average effective activation en-

ergy as (1.1± 0.2) eV, where the error is given by using a three order magnitude

deviation of the attempt rate (i.e. 1 GHz to 1 PHz). This is almost twice as large as

the 0.6 eV VO2 band gap [129]. Other oxides, such as ZnO, also show an activation

energy of roughly 1 eV [137]. This is in contrast to the donor-complex model used

for semiconductors, as the barrier is always less than the band gap. For example,

both Al0.3Ga0.7As and Zn0.3Cd0.7Se have approximately 0.1 eV barriers with a di-

rect band gap of 1.9 eV and 2.0 eV, respectively [144, 121, 134, 145, 146, 147]. The

large energy barrier observed could be due to a number of things including VOx

phase boundaries, where the conduction bands can change significantly or due to a

much smaller variation in VO2+δ, but requiring a collective electron/hole hopping.

A number of models have been developed to describe persistent photocon-
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ductivity in various materials. It is known that even high quality VO2 thin films

exhibit inhomogeneities, such as nonstoichiometry and grain boundaries, which are

responsible for the microscopic phase coexistence far below the bulk MIT temper-

ature [132, 133, 119]. Photogenerated electron-hole pairs can be separated due to

band bending at these metal-insulator phase boundaries. The long recombination

time is likely the result of random local-potential fluctuations and/or a random dis-

tribution of discrete recombination sites, due to these inhomogeneities [134, 135].

With discrete sites, the relaxation becomes stretched [148]. However, our observed

value of β = 0.69 is slightly larger than the expected value of 3
5

for 3-dimensional

systems [149]. This increase is often observed near and above the MIT temperature

where electron correlations are reduced and simple (Debye) exponential relaxation

is recovered [150].

6.5 Conclusion

Although we have reported on only one VO2 device, we have carefully mea-

sured and consistently found residual photoconduction in five samples, prepared

by various growers from different laboratories. Focused x-ray radiation reversibly

altered the device conductance without modifying the MIT transition temperature

or high-temperature resistance. In addition, the structural transition was not in-

duced for any sizable convex region as compared to the imaging resolution. Two

distinct geometric possibilities exist to explain this. In the first case, a relatively

weak additional conductance channel is created over a large portion of the device.

This channel would be completely decoupled from the MIT and SPT. In the sec-

ond case, illumination causes a stable transition to the metallic state along narrow

filaments, likely along grain boundaries. These two cases could be distinguished

by using local conductance measurements.

The mechanism for long-term stability of photoconductivity is still open for

discussion. To further the understanding of PPC in VO2, it should be confirmed

that the photoconductivity is indeed an increase in carrier concentration. This

could be done by obtaining the mobility of carriers from Hall measurements pre-
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and post-illumination [151].
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