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ARTICLE

FIERY1 promotes microRNA accumulation by
suppressing rRNA-derived small interfering RNAs
in Arabidopsis
Chenjiang You1,2,3, Wenrong He3, Runlai Hang 1,3, Cuiju Zhang1, Xiaofeng Cao 4, Hongwei Guo5,

Xuemei Chen 3, Jie Cui 1* & Beixin Mo 1*

Plant microRNAs (miRNAs) associate with ARGONAUTE1 (AGO1) to direct post-

transcriptional gene silencing and regulate numerous biological processes. Although AGO1

predominantly binds miRNAs in vivo, it also associates with endogenous small interfering

RNAs (siRNAs). It is unclear whether the miRNA/siRNA balance affects miRNA activities.

Here we report that FIERY1 (FRY1), which is involved in 5′−3′ RNA degradation, regulates

miRNA abundance and function by suppressing the biogenesis of ribosomal RNA-derived

siRNAs (risiRNAs). In mutants of FRY1 and the nuclear 5′−3′ exonuclease genes XRN2 and

XRN3, we find that a large number of 21-nt risiRNAs are generated through an endogenous

siRNA biogenesis pathway. The production of risiRNAs correlates with pre-rRNA processing

defects in these mutants. We also show that these risiRNAs are loaded into AGO1, causing

reduced loading of miRNAs. This study reveals a previously unknown link between rRNA

processing and miRNA accumulation.
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Small RNAs (sRNAs) serve as sequence determinants in
post-transcriptional gene silencing (PTGS) in plants. The
two major types of PTGS small RNAs are microRNAs

(miRNAs) and small interfering RNAs (siRNAs)1. Like miRNAs,
PTGS siRNAs are usually 21–22 nt long, but unlike miRNAs, they
are derived from double-stranded precursors from transgenes,
viruses, and endogenous loci, such as the TRANS-ACTING
SIRNA (TAS) loci1. The machinery underlying the biogenesis and
function of miRNAs and siRNAs contains shared and distinct
components2,3. miRNA precursors are processed by DICER-
LIKE1 (DCL1) into mature miRNAs4, whereas siRNAs from
transgenes, viruses, and endogenous transcripts are generated by
other DCLs2,3,5,6. Both miRNAs and siRNAs undergo 3′ terminal
methylation by HUA ENHANCER1 (HEN1)7,8. In addition, both
types of sRNAs associate with ARGONAUTE1 (AGO1) to form
the functional RNA-induced silencing complex (RISC)1–3. The
partial sharing of the silencing machinery imply crosstalk and
potential mutual regulation between miRNAs and siRNAs.

RNA quality control (RQC) suppresses siRNA production
from many endogenous transcripts. Among the RQC genes are
those encoding 5′-3′ EXORIBONUCLEASE3 (XRN3) and XRN4;
the decapping complex subunits DECAPPING1 (DCP1), DCP2,
and VARICOSE (VCS); the SUPERKILLER (SKI) complex
components SKI2 and SKI3, which are involved in 3′-5′ exori-
bonucleolytic RNA degradation; Nonsense-mediated decay
components UPFRAMESHIFT1/3 (UPF1/3); the 3′-5′ POLY(A)-
SPECIFIC RIBONUCLEASE (PARN); and exosome subunits
RIBOSOMAL RNA PROCESSING4 (RRP4) and RRP6L11,9–13.
The sRNAs produced when these RQC genes are compromised
are usually 21–22 nt long, phased, and dependent on the PTGS
siRNA pathway10,12. Zhang et al. proposed that aberrant RNAs
accumulated in these mutants are bound by SUPPRESSOR OF
GENE SILENCING3 (SGS3)14 and serve as templates for siRNA
biogenesis15. Interestingly, a study on the decapping complex
demonstrated that DCP1, DCP2, and VCS are required for the
accumulation of some miRNAs16.

Ribosomal RNA (rRNA)-derived sRNAs have been observed in
several organisms. In Schizosaccharomyces pombe, defects in
TRAMP-mediated RNA surveillance trigger the biogenesis of
Ago1-associated, rRNA-derived siRNAs (rr-siRNAs)17. In Neu-
rospora crassa, 20–21 nt qiRNAs are produced from aberrant
rRNAs in an RdRP (RNA-dependent RNA polymerase)-depen-
dent manner, are enriched in 5′ U, and are loaded into the AGO
protein QDE-218. qiRNAs are thought to function in DNA
damage repair. In Caenorhabditis elegans, 22-nt rRNA-derived
siRNAs (risiRNAs) corresponding to both strands of rDNA are
generated under conditions that induce pre-rRNA processing
defects. C. elegans risiRNAs are enriched in 5′ G and are thought
to regulate rRNA abundance19,20. In Arabidopsis, rDNA-derived
24-nt siRNAs were first described in 200621. These siRNAs are
produced in a Pol IV-dependent and DCL3-dependent manner
and guide DNA methylation21,22. Later studies also found 21-nt
small RNAs originating from bidirectional transcripts from the
intergenic spacers (IGS) of rRNA genes23,24. A recent report
found that viral infections trigger the production of siRNAs from
rRNAs, but the molecular or biological impacts of these riboso-
mal small RNAs remain unknown25.

In this study, a mutation in FIERY1 (FRY1) is isolated in a
genetic screen aimed at uncovering new factors in the miRNA
pathway. FRY1 encodes a dephosphorylating enzyme that con-
verts 3′-phosphoadenosine 5′-phosphosulfate (PAPS) into ade-
nosyl 5′-phosphosulfate (APS) in sulfur assimilation26,27. FRY1
also converts 3′-phosphoadenosine 5′-phosphate (PAP) into 5′
AMP and Pi. FRY1 functions in various biological processes, such
as stress signaling27, drought tolerance28, cell elongation, flow-
ering time29, leaf development30, root development31, and plant

immunity32. fry1 mutant phenotypes resemble those of higher-
order xrn mutants, possibly because accumulated PAP suppresses
XRN enzymatic activity, thereby compromising 5′-3′ RNA
degradation31,33,34. Several studies have shown that FRY1 and
XRNs function in RNA degradation and suppress PTGS in
Arabidopsis9,33,35,36. In a fry1 mutant, 21-nt sRNAs from the 5′
external transcribed spacer (ETS) of rRNAs accumulate in a
DCL2/4-dependent manner37. In addition, miRNA processing
intermediates accumulate in fry1, possibly due to compromised
XRN activity9,38.

We find that fry1 mutations lead to the accumulation of 21–22-
nt siRNAs from mRNAs and rRNAs, transcripts that do not
normally undergo siRNA biogenesis. The production of risiRNAs
in fry1, as well as xrn2 xrn3 mutants correlate with pre-rRNA
processing defects in these mutants. We show that the siRNAs
depend on the PTGS siRNA pathway for biogenesis and are
loaded into AGO proteins, AGO1 and AGO2. More importantly,
risiRNAs compete with miRNAs for these AGO proteins,
resulting in the compromised abundance of miRNAs. Removal of
risiRNAs partially rescues both the miRNA abundance defects
and the plant phenotypes of fry1. Collectively, the findings pro-
vide insights into the biogenesis of endogenous siRNAs and the
crosstalk between siRNAs and miRNAs.

Results
A mutation in FIERY1 was isolated from a suppressor screen.
CTR1 is a negative regulator in the ethylene response pathway39.
ctr1 mutants exhibit constitutive ethylene responses, resulting in
shorter root and hypocotyl, tightened apical hook, and swollen
hypocotyl40. We took advantage of this conspicuous “triple”
response phenotype to construct a visual reporter of miRNA
activity. We designed an artificial miRNA targeting CTR1 (amiR-
CTR1) driven by a β-estradiol-inducible promoter (Fig. 1a). Upon
induction, the transgenic line harboring amiR-CTR1 exhibited
the ctr1 mutant phenotype (Supplementary Fig. 1a), consistent
with amiR-CTR1 accumulation and reduced CTR1 expression
(Supplementary Fig. 1b, c). This reporter line was mutagenized by
EMS, and M2 plants were screened for mutants resembling wild-
type (WT) plants after induction. One mutant, T5520 (Fig. 1b),
with a compromised triple response was isolated. As expected,
analysis of amiR-CTR1 and CTR1 protein levels in T5520
revealed reduced accumulation of amiR-CTR1 (Fig. 1c) and
partial recovery of CTR1 protein levels (Supplementary Fig. 1d)
compared to the amiR-CTR1 parental line after β-estradiol
induction. T5520 also had pleiotropic phenotypes, including
round leaves and delayed flowering (Fig. 1d and Supplementary
Fig. 1e). The leaf phenotypes differed from those of canonical
miRNA biogenesis mutants such as ago1 and hyl141.

To identify the causal mutation in T5520, we conducted whole-
genome re-sequencing using pooled plants with the mutant
phenotypes in the F2 population of the T5520 x Col-0 cross. A
G- > A mutation in AT5G63980 (FIERY1/SAL1, FRY1 hereafter)
was identified and verified by genotyping. The mutation was in
the acceptor site of the second intron and resulted in the skipping
of exon 3 and the creation of an early stop codon (Supplementary
Fig. 1f–h). Thus, T5520 is likely a null mutant of FRY1. The FRY1
coding sequence rescued the developmental abnormalities of
T5520 (Supplementary Fig. 1i).

FRY1 promotes the accumulation of miRNAs. The reduced
accumulation of amiR-CTR1 in T5520 suggested that the fry1
mutation impacted miRNA biogenesis. Unfortunately, the amiR-
CTR1 transgene was silenced in T3 and later generations, which
prevented further studies of amiR-CTR1. To determine whether
FRY1 promotes miRNA accumulation, we examined endogenous
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miRNAs in two FRY1 T-DNA insertion lines, SALK_020882
(previously named fry1-69) and SALK_151367 (designated as
fry1-8 hereafter).

RNA gel blot analysis showed that miR156, miR166, miR390,
and miR398 had reduced abundance in fry1-6 (Fig. 1e). To assess
the global effects of fry1 mutations on endogenous miRNAs, we
performed sRNA sequencing of WT, fry1-6, and fry1-8
(Supplementary Table 1 and Supplementary Fig. 2a). A general
trend of miRNA downregulation was observed in both mutants
(Fig. 2a, Supplementary Fig. 2b, and Supplementary Data 1),
consistent with the initial finding of reduced amiR-CTR1 levels in
T5520. Among the statistically significant differentially expressed

miRNAs, 27 and 29 miRNAs were reduced in fry1-6 and fry1-8,
respectively, which outnumbered upregulated miRNAs (Fig. 2b).
The sRNA-seq data for the abundance changes of miR156,
miR166, miR390, and miR398 were similar to those detected by
RNA gel blot analysis (Figs. 2c and 1e). miR168 was among 8
upregulated miRNAs identified by sRNA-seq, and RNA gel blot
analysis for miR168 showed a similar change in abundance
(Fig. 2d). Other upregulated miRNAs included two miR395
family members targeting APS genes involved in sulfur
metabolism, and the upregulation of miR395 probably might
have occurred in response to the altered sulfonation pathway in
fry129,42. A previous study also reported reduced miRNA levels in
fry1 mutants, but the cause of the defect was not thoroughly
investigated9.

To pinpoint the miRNA biogenesis defects in fry1 mutants, we
first examined the levels of endogenous pri/pre-miRNAs and the
expression of major miRNA biogenesis factors by RT-qPCR and
protein gel blot assays (Supplementary Fig. 2c–e). For six
miRNAs showing reduced levels in fry1-6 and miR168, which
increased in abundance in fry1-6, we quantified the correspond-
ing pri/pre-miRNA levels. Only one (pri/pre-miR156a) had
reduced accumulation, one (pri/pre-miR390b) had increased
accumulation, and pri/pre-miR159b, pri/pre-miR166a, pri/pre-
miR167a, pri/pre-miR168 and pri/pre-miR393b were unaffected
in fry1-6 (Supplementary Fig. 2c). Thus, the changes in pri/pre-
miRNA levels did not correlate with the abundance of the mature
miRNAs, indicating that the global reduction in miRNA
abundance in fry1-6 could not be explained by defects in MIR
gene transcription. No substantial downregulation of the miRNA
biogenesis genes was observed (Supplementary Fig. 2d). Con-
sistent with the increased levels of miR168 and the co-regulation
of miR168 and AGO143, AGO1 protein levels were increased in
both fry1 mutants (Supplementary Fig. 2e), suggesting a
compensation mechanism for reduced accumulation of miRNAs.
Taken together, these results suggest that the global reduction in
miRNA levels in the fry1 mutants was not due to a general defect
in MIR gene transcription or pri/pre-miRNA processing.

FRY1 prevents the production of ectopic siRNA. To further
evaluate the changes of sRNAs in fry1 at a global level, all sRNA
reads in the three genotypes were mapped to the genome, and
their length distribution was examined. As expected, the WT
distribution was characterized by a smaller 21-nt peak and a
larger 24-nt peak. In both fry1 mutants, however, the 21-nt peak
was enhanced with a concomitant reduction in the 24-nt peak
(Fig. 3a), indicating an unexpected increase in 21-nt endogenous
sRNAs.

a

amiR-CTR1 CTR1

amiR-CTR1 CTR1

c

d amiR-CTR1 T5520

b WT amiR-CTR1
+ – +β-estradiol – +–

T5520

WT amiR-CTR1

– + + +–

T5520

β-estradiol

amiR-CTR1

U6

miR390

U6

1 0.7

miR398

U6

1 0.4

WT fry1-6

miR156

U6

1 0.7

miR166

U6

1 0.5

e WT fry1-6

Fig. 1 FRY1 promotes miRNA accumulation. a A diagram of the amiR-CTR1
reporter system. Mutations that disrupt miRNA biogenesis and/or function
are expected to impair the regulation of CTR1 by amiR-CTR1 and,
consequently, the “triple response” phenotype. b Phenotypes of 5-day-old
Arabidopsis seedlings. Upon induction, amiR-CTR1 plants exhibited the ctr1
phenotype, whereas T5520 seedlings failed to show the ctr1 phenotype.
Scale bar= 5mm. c Detection of amiR-CTR1 in T5520. Upon β-estradiol
induction, amiR-CTR1 strongly accumulated in amiR-CTR1 plants. However,
the accumulation was compromised in T5520 (two biological replicates
separated by the red dashed line). d Phenotype of T5520 without β-
estradiol induction. T5520 plants were smaller than WT and had abnormal
leaves. Scale bar= 5mm. e RNA gel blot assay for endogenous miRNAs. All
four miRNAs showed reduced accumulation in fry1-6. The U6 snRNA was
used to determine the relative miRNA levels (as indicated by the numbers
below the blots) between the two genotypes. Source data are provided as a
Source Data file
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As the global reduction in miRNA accumulation in the fry1
mutants could not explain the increase in the 21-nt sRNA peak,
we investigated changes in other categories of sRNAs. First, we
examined the composition of 21-nt sRNAs. In WT, miRNAs
constituted the largest category of 21-nt sRNAs in terms of
abundance, with rRNA fragments being the second most
abundant, followed by sRNAs from genes, TAS loci, and
transposable elements (TEs). In the fry1 mutants, miRNA
abundance decreased, while the abundance of sRNAs from
coding genes and rRNAs increased (Fig. 3b). Notably, rRNA
fragments constituted the most abundant category of sRNAs in
the mutants. To identify the sources of the differentially
accumulating sRNAs, we compared sRNA abundance in 100-bp
bins across the genome between fry1 and WT. Bins with higher
and lower sRNA accumulation in fry1 were referred to as hyper
and hypo DSRs (differential sRNA regions), respectively. We
found that 21-nt hyper DSRs greatly outnumbered hyper DSRs of
other lengths and hypo DSRs of all lengths in both mutants
(Fig. 3c). Many miRNA loci were among the 21-nt hypo DSRs
(Supplementary Data 2), and the large number of 21-nt hyper
DSRs was consistent with the observed increase in total 21-nt
sRNAs. Genomic classification of these 21-nt hyper DSRs
revealed that most of them corresponded to rRNA regions and
non-miRNA genic regions, consistent with the changes in 21-nt
sRNA composition (Fig. 3d).

Aberrant sRNA accumulation from coding genes. Many 21-nt
hyper DSRs overlapped with coding genes (Fig. 3d). To investi-
gate the changes in genic sRNAs, we used annotated genes as
units and identified genes with differential sRNA accumulation,
which we referred to as DSGs, between WT and the fry1 mutants.
Hyper DSGs, i.e., genes with higher levels of sRNAs in the fry1
mutants, constituted the vast majority of DSGs (Fig. 3e). The
significant overlap in these hyper DSGs between fry1-6 and fry1-8
(Fig. 3f and Supplementary Data 3, super exact test P value= 0)
indicated that FRY1 suppresses sRNA production from these
genes. There were 228 21-nt hyper DSGs in both mutants com-
bined, and although sRNAs derived from these DSGs constituted
only ~4% of the total 21-nt sRNAs (Fig. 3g, Supplementary
Fig. 3a), they represented over 10% of the total rRNA-depleted
21-nt sRNAs (Supplementary Fig. 3b). It should be noted that
most sRNA analyses in the literature ignore rRNA-derived
sRNAs, which were included in this study. We selected two hyper
DSGs with highly abundant sRNAs to perform RNA gel blot
validation of the sRNA-seq results, and the accumulation of 21-nt
sRNAs from these two genes was indeed higher in fry1-6 relative
to WT (Fig. 3h).

We next investigated the possible mechanisms of sRNA
accumulation from these coding genes. The accumulation of
genic sRNAs was previously reported in RNA decay-deficient
mutants such as ein5-1 ski2-3, dcp2-1, vcs, and xrn3-812,16,33.
We re-analyzed the published sRNA-seq data for these mutants
using our own pipeline for comparison to fry1 (fry1-6 and fry1-
8 combined). First, we examined the 21-nt hyper DSRs in these
mutants and confirmed the accumulation of aberrant 21-nt
sRNAs from coding genes reported in the original studies
(Supplementary Fig. 3c, d). Next, we compared 21-nt hyper
DSGs between fry1 and these mutants (Fig. 3i). The overlap
between fry1 and all of the analyzed mutants was statistically
significant, except for the overlap between fry1 and xrn3-8
(Supplementary Data 4). As XRN3 is a nuclear exonuclease
while the other proteins are thought to act in cytoplasmic RNA
decay, the results indicated that the aberrant genic sRNA
accumulation in the fry1 mutants likely occurred in the
cytoplasm. It was previously reported that in the ein5-1 ski2-3

double mutant, 21-nt sRNAs were generated from the 3′
fragments of miRNA target transcripts resulting from miRNA-
guided cleavage, due to insufficient exoribonucleolytic degrada-
tion of these fragments in the cytoplasm12. We examined
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as a Source Data file
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several of these experimentally validated miRNA targets with
aberrant 21-nt sRNA accumulation in ein5-1 ski2-3, but we
found no accumulation of 21-nt sRNAs from these genes in fry1
(Supplementary Fig. 3e). In contrast, NIA1 and NIA2, which are
not targeted by miRNAs, generated aberrant sRNAs in fry1
(Supplementary Fig. 3e). Moreover, only 17 of the 228 hyper

DSGs in fry1 are predicted miRNA targets (Supplementary
Data 5). We tried to identify common features of the genes that
produced 21-nt sRNAs in fry1 and found that they tended to
have fewer exons (Supplementary Fig. 3f) and longer gene
length, transcript length, and UTR length (Supplementary
Fig. 3g–j).
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Aberrant sRNA accumulation from rRNAs. Besides the large
number of 21-nt hyper DSRs from coding genes, over half of the
21-nt hyper DSRs were from rRNA regions. rRNA-derived
sRNAs are usually considered degradation remnants of rRNAs
and have typically been ignored in previous studies of sRNAs in
plants. To confirm that the accumulated sRNAs arose from
rRNAs and not from other overlapping features, we used the
genome browser IGV44 to visualize the detailed changes in 21-nt
sRNAs at rDNA loci in all genotypes. At an rDNA locus on
chromosome 3, it was obvious that regions with abundant sRNAs
expanded from mature rRNA regions found in WT to the ETS/
ITS (external/internal transcribed spacer) regions in fry1 (Fig. 4a).
Moreover, sRNAs were largely from the sense strand in WT, but
antisense sRNAs were present in fry1 (Fig. 4a). To verify the
sRNA-seq data, we designed two probes to detect the antisense
sRNAs by RNA gel blot analysis, which confirmed the accumu-
lation of these antisense sRNAs from the rDNA locus (Fig. 4b).
This finding suggested that the sRNAs were unlikely to be rRNA
degradation products. We also wondered whether rRNA-derived
sRNAs similarly accumulated in the aforementioned RNA decay
mutants. However, in ein5-1 ski2-3, dcp2-1, vcs, and xrn3-8, no
over-accumulation of sRNAs from rDNA loci (Supplementary
Figs. 3d and 4a), particularly from the ETS/ITS regions and the
antisense strand (Supplementary Fig. 4b), was observed. Although
the sRNA library construction for ein5-1 ski2-3 and xrn3-8
included an rRNA removal step, rRNA fragments were still
detectable due to incomplete removal. In addition, antisense
rRNA fragments were not expected to have been removed by the
filtering steps. Thus, the lack of ETS/ITS-derived and antisense
strand-derived sRNAs suggested that the mutations in these RNA
decay genes did not lead to the production of rRNA-derived
sRNAs.

Sequence features, such as length and 5′ nucleotide identity,
are highly related to Dicer processing5 and AGO sorting45. We
therefore examined these two features of the sRNAs that mapped
to rDNA loci to determine whether they are siRNAs. As
expected, sRNAs of every length (18–30 nt) arising from the
sense strand were nearly equally abundant, suggesting that they
correspond to rRNA degradation products. However, only 21-nt
sRNAs from both strands dramatically accumulated in fry1
(Supplementary Fig. 4c), consistent with the finding that the
“rRNA” feature was enriched in 21-nt hyper DSRs but not in
other size classes (Fig. 3b, c). These findings suggested that these
sRNAs might be produced by DCL1 or DCL4, which generate
21-nt sRNAs5. In terms of the 5′ nucleotide preference among
the 21-nt sRNAs in the mutants, U was the most common 5′
nucleotide among sense sRNAs, while C was the preferred 5′
nucleotide among antisense sRNAs (Supplementary Fig. 4d). The
5′ nucleotide preferences therefore suggested that the aberrantly

accumulated sRNAs were siRNAs that loaded into AGO
proteins.

Defects in 5′-3′ rRNA processing lead to sRNA accumulation.
rRNA-derived sRNAs were observed when Arabidopsis plants
were infected with viruses25. The production of these siRNAs
depends on RDR1, which is induced by viral infection25. We
sought to determine the source and biogenesis requirements of
rRNA-derived sRNAs in fry1 mutants. XRN2, XRN3, and FRY1
are known to be involved in rRNA processing; in xrn2, xrn2 xrn3,
and fry1 mutants, various forms of aberrant rRNAs
accumulate37,46. We therefore investigated the integrity of the
rRNA processing pathway in the fry1 mutants and the relation-
ship between aberrant rRNAs and the biogenesis of 21-nt sRNAs.
For the analysis, we included the rRNA processing mutants xrn2-
1 and atprmt3-2 as positive controls46,47 and xrn3-2, which
exhibits normal rRNA processing, as the negative control37,46. In
all of the genotypes, the abundance of mature 25S and 18S rRNAs
was similar (Supplementary Fig. 5a). Next, we used well-
established probes to examine the ITS regions by RNA gel blot
analysis. Consistent with previous reports, both xrn2-1 and
atprmt3-2 showed changes in rRNA intermediates containing ITS
sequences, while xrn3-2 did not have obvious differences com-
pared to WT (Supplementary Fig. 5b). Interestingly, both fry1-6
and fry1-8 had greater accumulation of 35S, 27S, and pre-5.8S
rRNAs compared to xrn2-1 (Supplementary Fig. 5b). These dif-
ferences may be the consequence of defects in both XRN2 and
XRN3 function in fry1, as the accumulation of aberrant rRNAs in
the xrn2 xrn3 double mutant was similar to that of fry1
mutants37.

We also analyzed the accumulation of miRNAs and rRNA-
derived sRNAs in the xrn2, xrn3, and xrn2 xrn3 mutants. rRNA-
derived sRNAs only accumulated in fry1-6 and xrn2 xrn3
(Fig. 4c). In addition, the abundance of miR166 and miR398
was only reduced in fry1-6 and xrn2 xrn3 (Fig. 4d), suggesting a
negative correlation between the levels of miRNAs and rRNA-
derived sRNAs. Intriguingly, changes in the abundance of
miRNAs and rRNA-derived sRNAs correlated with the pheno-
typic severity of the mutants (Supplementary Fig. 5c). However,
miR168 showed similar changes in fry1-6 and xrn4 and was not
affected by mutations in XRN2 or XRN3, suggesting that low
XRN4 activity caused the increase of miR168 in fry1 (Fig. 4e).

A recent study demonstrated that defects in 3′-5′ rRNA
processing induced the accumulation of antisense siRNAs from
rRNA loci in C. elegans19. We examined the accumulation of
rRNA-derived sRNAs in the Arabidopsis exosome mutant mtr4,
which exhibits defects in 3′-5′ rRNA processing and has marginal
effects on PTGS37,48. Using the same probes, however, we could

Fig. 3 Accumulation of 21-nt sRNAs from coding gene loci in fry1. a Length distribution of mapped sRNA-seq reads from WT, fry1-6, and fry1-8 seedlings.
The 24-nt peak in WT nearly disappeared in both fry1 mutants. The Y axis indicates the percentage of reads of different lengths among the total mapped
sRNA reads (18–42 nt). b Genomic classification of 21-nt sRNAs in WT and both fry1 mutants. See d for legends. Read counts for miRNAs decreased, and
those for sRNAs from rRNAs increased dramatically in fry1-6 and fry1-8. The annotation was adopted from known genome features. The Y axis shows the
cumulative RPM values for sRNAs corresponding to different features. c Number of DSRs in fry1 mutants compared to WT. Only 21-nt and 24-nt data are
shown. The 21-nt hyper DSRs greatly outnumber the other DSRs in both fry1 mutants. d Genomic classification of 21-nt hyper DSRs in both fry1 mutants.
Most 21-nt hyper DSRs in fry1 corresponded to rRNA and coding genes. e Number of DSGs in fry1 mutants compared to WT. The 21-nt hyper DSGs greatly
outnumber other DSGs in both fry1mutants. f Venn diagram for genes with rogue 21-nt sRNAs in fry1-6 and fry1-8. The overlap between the two sets is 193,
which is significant based on a super exact test (P value= 0). g Proportion of 21-nt sRNAs from 21-nt hyper DSGs among all mapped sRNA reads. The Y
axis indicates the proportion of 21-nt sRNAs from the combined 21-nt hyper DSGs in both mutants (228 DSGs) among the total mapped sRNA reads.
h RNA gel blot validation of rogue 21-nt sRNAs from coding genes. Two genes with abundant 21-nt siRNAs, AT1G74100 and AT3G59940, were selected.
Though there are bands in WT, the signals increase in fry1-6. i Venn diagrams for genes with rogue 21-nt sRNAs in fry1 and previously reported mutants.
Except for xrn3-8, there was a significant overlap in genes between fry1 and the analyzed mutants. See Supplementary Data 3 for details. Source data are
provided as a Source Data file
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not detect any sRNAs from the analyzed rDNA locus in the mtr4
mutant (Supplementary Fig. 5d). These findings indicated that
the biogenesis of 21-nt sRNAs from aberrant rRNAs in
Arabidopsis resulted specifically from defects in 5′-3′ exonuclease
activity.

Rogue 21-nt sRNAs are products of the PTGS pathway. To
further investigate whether the coding-gene-derived and rRNA-
derived sRNAs were siRNAs, we examined whether their biogenesis
required RDR and/or DCL proteins. We crossed fry1-6 with known
siRNA biogenesis mutants, including rdr1-1, rdr2-1, rdr6-11, dcl2-1,
dcl3-1, and dcl4-249–51. Intriguingly, the biogenesis of coding-gene-

derived sRNAs and rRNA-derived sRNAs was different. The
accumulation of rRNA-derived antisense sRNAs in fry1-6 was
completely suppressed by rdr6-11, weakly affected by rdr2-1 and
unaffected by rdr1-1 (Fig. 5a). Meanwhile, although 21-nt rRNA-
derived sRNAs were eliminated in fry1-6 dcl4-2, sRNAs of pre-
dominantly 22 nt accumulated from the same loci (Fig. 5a). This
was due to DCL2, as in the fry1-6 dcl2-1 dcl4-2 triple mutant,
21–22-nt sRNAs were almost gone (Fig. 5a). However, for coding-
gene-derived sRNAs, RDR1 was crucial for their biogenesis as rdr1-
1 suppressed the enhanced sRNA accumulation in fry1-6 (Fig. 5b).
Moreover, these sRNAs accumulated even more in the fry1-6 rdr6-
11 mutant than in fry1-6, which might be the consequence of the
slightly upregulated RDR1 expression in the absence of RDR6
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function (Supplementary Fig. 6a). Similar to rRNA-derived sRNAs,
dcl2-1 and dcl4-2 together completely suppressed the over accu-
mulation of coding-gene-derived sRNAs (Fig. 5b).

As the biogenesis of these 21-nt rogue sRNAs required RDR1/6
and DCL2/4, we concluded that these sRNAs were siRNAs and,

more specifically, ribosomal siRNAs (risiRNAs) for the rRNA-
derived ones. The biogenesis requirements of these rogue siRNAs
are similar to those of another class of endogenous siRNAs,
namely phasiRNAs, which exhibit a head-to-tail phasing
signature3. Hence, we next investigated the phasing of rogue
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siRNAs using established methods52. Surprisingly, the phasing
scores at TAS and genes known to generate phasiRNAs were
slightly reduced in the two fry1 mutants, while those at the rDNA
locus and many 21-nt hyper DSGs were drastically increased
(Fig. 5b–d, Supplementary Fig. 6b). These findings reinforced the
conclusion that rogue siRNAs, including risiRNAs, were
produced from double-stranded RNAs by processive DCL
activity.

21-nt risiRNAs are loaded into AGO1. To address whether the
21-nt risiRNAs had any biological impacts in vivo, we first
examined whether these siRNAs are loaded into AGO1 by
immunoprecipitation (IP) of AGO1 in WT and fry1-6 (Supple-
mentary Fig. 7a), followed by sequencing of the sRNAs from the
IP products (Supplementary Data 6). Three independent experi-
ments were performed. As expected, 21-nt sRNAs were enriched
and 24-nt sRNAs were depleted in the AGO1 IP sRNA-seq
(Fig. 6a). In addition, 5′ U was a predominant feature of sRNAs
in both IP products (Supplementary Fig. 7b). This indicated that
AGO1 IP sRNA-seq was successful.

As a preliminary analysis, we used the genome browser to
examine AGO1 binding of risiRNAs. At the rDNA locus on
chromosome 3, 21-nt sRNAs were depleted in AGO1 IP from
WT but enriched on both strands, including the ETS/ITS regions,
in AGO1 IP from fry1-6 (Supplementary Fig. 7c). We then
conducted IP enrichment analysis in WT and fry1-6: IP-enriched
bins were defined as 100-bp bins with a statistically significant
increase in sRNA abundance in IP versus input. In WT, most
enriched bins were from miRNA and other genes, including TAS
genes, and there were only 7 enriched bins from rRNA regions
(Fig. 6b). Compared to WT, the numbers of enriched bins from
miRNA and TAS genes were similar, but the number of enriched
bins from rRNA regions increased in fry1-6 (Fig. 6b). We also
examined the 5′ nucleotides of these risiRNAs (Fig. 6c). In WT,
5′-U sRNAs constituted about 40% of sense and over 80% of
antisense 21-nt sRNAs associated with AGO1. In fry1-6, the 5′-U
percentages were over 90 and 80% for sense and antisense 21-nt
sRNAs, respectively. These findings suggested that in WT, many
of these sense sRNAs might not be loaded into AGO1 despite
their association with it, whereas rogue rRNA-derived sRNAs
from both strands in fry1-6 could be loaded.

Notably, there were also more 21-nt sRNAs and more enriched
21-nt bins from coding genes in fry1-6 (Fig. 6b). Therefore, we
conducted a similar IP enrichment analysis for genes and
identified 193 and 1224 genes as those enriched for AGO1-
associated 21-nt sRNAs in WT and fry1-6, respectively (Fig. 6d).
As expected, the 1224 genes in fry1-6 included most of the 193
genes identified in WT. The 1224 genes also included most of the
228 hyper DSGs identified in fry1. Interestingly, the low overlap
between the 228 hyper DSGs (i.e., genes with rogue 21-nt sRNAs
in fry1-6 and fry1-8) and the 193 genes with AGO1-bound 21-nt
sRNAs in WT suggested that the genes suppressed by FRY1 for
sRNA production were distinct from those that generated sRNAs
in WT. We also analyzed the sequence features of the 1224 IP-
enriched genes in fry1-6, and the results supported the hypothesis

that longer genes with fewer exons tended to generate 21-nt
siRNAs in fry1 (Supplementary Fig. 7d–h).

The loading of miRNAs into AGO1 is compromised in fry1-6.
Because most miRNAs associate with AGO1 under normal
conditions, the miRNA-binding capacity of AGO1 might be
compromised by the excessive accumulation of risiRNAs and
siRNAs from other coding genes in fry1. To support the
hypothesis that rogue siRNAs compete with miRNAs for loading
into AGO1, we conducted small RNA-seq following AGO1 IP in
fry1-6 rdr6-11, in which risiRNAs were barely detectable (Fig. 5a)
(Supplementary Table 1 and Supplementary Data 6). As expected,
around 50% of the 21-nt sRNAs associated with AGO1 were
derived from rRNA in fry1-6, while the corresponding proportion
in WT was less than 5%, according to the genomic classification
of AGO1-associated 21-nt sRNAs (Fig. 7a). Consistent with
results from the RNA gel blot assay (Fig. 5a), the proportion of
risiRNAs in AGO1 was substantially reduced in fry1-6 rdr6-11
(Fig. 7a and Supplementary Fig. 8a). In addition, the fraction of
AGO1-associated miRNAs decreased to less than 30% in fry1-6,
and was restored to over 50% by the rdr6-11 mutation (Fig. 7a).
Although the numbers of enriched miRNAs in AGO1 IP were
similar in WT, fry1-6 (Fig. 6b), and fry1-6 rdr6-11 (Supplemen-
tary Fig. 8b), the loading efficiency of miRNAs, as represented by
the ratio of miRNA levels in IP and input, was slightly decreased
in fry1-6 and restored in fry1-6 rdr6-11 (Supplementary Fig. 8c, d
and Supplementary Data 7). Specifically, for the 20 most abun-
dant miRNAs in WT, the IP/input ratios were significantly
reduced in fry1-6 (Fig. 7b and Supplementary Fig. 8e, paired
Wilcoxon test P value= 0.001718) and recovered in fry1-6 rdr6-
11 (paired Wilcoxon test P value= 0.003654 between fry1-6 rdr6-
11 and fry1-6). These results indicated that in fry1-6 AGO1′s
binding to miRNAs declined, and AGO1 associated with risiR-
NAs. The reduced miRNA abundance in fry1 mutants was likely
due to the compromised loading of miRNAs into AGO1.

To further support the above hypothesis, we examined the
abundance of miRNAs in mutants whose risiRNAs were
suppressed or partially suppressed, including fry1-6 rdr2-1, fry1-
6 rdr6-11, and fry1-6 dcl4-2. In all these mutants, the down-
regulation of miR166 and miR398 was partially suppressed
(Fig. 7c). However, the upregulation of miR168 was not affected
in any of these double mutants compared to fry1-6 (Fig. 7d).
Furthermore, the rdr6-11 mutation partially restored the fry1
mutant phenotype, especially the leaf shape phenotype (Fig. 7e).
However, dcl4-2 did not rescue the fry1 phenotype, and the fry1-6
dcl4-2 double mutants were extremely small and died at about
22 days after germination (DAG) (Fig. 7e). This was similar to the
phenotype of the ein5-1 ski2-3 dcl4 triple mutant, in which
enhanced biogenesis of 22-nt siRNAs from endogenous genes by
DCL2 led to further production of secondary siRNAs12. However,
while dcl2 dcl4 can fully rescue the ein5-1 ski2-3 mutant
phenotype12, the phenotype of the fry1-6 dcl2-1 dcl4-2 triple
mutant was similar to that of fry1-6 but not WT (Fig. 7e). This
also suggested that the developmental phenotypes of fry1 were
not fully attributable to rogue siRNAs.

Fig. 5 Rogue 21-nt sRNAs are dependent on RDRs and DCLs for biogenesis. a Accumulation of rRNA-derived sRNAs in rdr and dclmutants as determined by
RNA gel blot assays. For the antisense sRNAs corresponding to the rDNA locus, rdr6-11 has a suppressive effect, while rdr2-1 has only a minor suppressive
effect. dcl4-2 enhances the accumulation of longer sRNAs from these two loci, while in fry1-6 dcl2-1 dcl4-2, no accumulation of 21-nt or 22-nt siRNAs was
detected. This indicated the antagonistic roles of DCL2 and DCL4 in siRNA biogenesis at these loci. b RNA gel blot assays to determine the abundance of
coding-gene-derived sRNAs in rdr and dcl mutants. Unlike rRNA-derived sRNAs, these sRNAs largely depend on RDR1 for biogenesis. Besides, both DCL2
and DCL4 are required for the accumulation of coding-gene-derived sRNAs. Black arrows indicate the 21-nt sRNAs. c, d Regions generating phased siRNAs
in WT and fry1. At TAS genes TAS1A and TAS3 (c), phasing scores were slightly reduced in fry1. However, there are many phased regions from rDNA
detected only in fry1 (d). Source data are provided as a Source Data file
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Because rogue siRNAs were loaded into AGO1, we sequenced
the transcriptome of WT, fry1-6, fry1-6 rdr6-11, and fry1-6 rdr1-1 to
understand if the siRNAs affected gene expression. Despite the large
numbers of upregulated and downregulated genes (Supplementary
Fig. 8f, g), we focused on known miRNA targets and the 200 genes
generating siRNAs in fry1-6 (Fig. 3f). Among 10 representatives of
known miRNA targets, 7 of them showed upregulated expression in

fry1-6, and this upregulation was reduced in at least one of the fry1-
6 rdr6-11 and fry1-6 rdr1-1 mutants (Supplementary Fig. 8h). This
suggested that mutations in either RDR6 or RDR1 can partially
restore miRNA activity in the fry1 mutant. 186 genes accumulating
siRNAs in fry1-6 were detectably expressed by the RNA-seq and
they showed different expression patterns in fry1-6 rdr1-1 and fry1-
6 rdr6-11. In fry1-6 rdr1-1, where siRNA biogenesis from these
genes was compromised, the expression of these genes was
upregulated significantly as compared to WT. Congruously, their
expression decreased in fry1-6 rdr6-11, in which siRNA biogenesis
from these genes was enhanced (Supplementary Fig. 8i). This
indicated that either siRNA biogenesis would eliminate transcripts
from these genes or accumulated siRNAs would target the
corresponding transcripts for cleavage.

The loading of miRNAs into AGO2 is compromised in fry1-6.
We noticed that miR390, which is predominantly bound by
AGO7 and AGO253, also decreased in abundance in fry1-6
(Fig. 1e and Fig. 2c). This may also be attributed to compromised
loading of miR390 into AGO2/7 due to competition from rogue
siRNAs. Thus, we tested the loading of AGO2-associated miR-
NAs by AGO2 IP followed by sRNA sequencing in WT, fry1-6,
and fry1-6 rdr6-11 (Supplementary Data 6). The composition of
21-nt reads, the most abundant length in AGO2 IP samples
(Supplementary Fig. 9a), was very different among the three
genotypes. In WT, AGO2 mainly associated with miRNAs and
trans-acting siRNAs (ta-siRNAs), while in fry1-6 risiRNAs and
coding-gene-derived siRNAs constituted the majority of AGO2-
associated sRNAs (Supplementary Fig. 9b). Meanwhile, as rdr6-11
removed ta-siRNAs and a portion of risiRNAs, the proportion of
AGO2-associated miRNAs increased in fry1-6 rdr6-11 compared
to the fry1-6 single mutant (Supplementary Fig. 9b).

Next, we conducted analyses to identify genomic regions
showing statistically higher levels of sRNAs in AGO2 IP relative
to input. In fry1-6, the number of enriched bins corresponding to
coding genes and Pol IV-dependent siRNA regions drastically
decreased while that of rRNA bins increased as compared to WT
(Supplementary Fig. 9c). Consistent with the findings from
AGO1 IP (Fig. 6b and Supplementary Fig. 8b), the fry1-6 rdr6-11
mutant also showed a partial restoration of AGO2′s sRNA
binding profile in terms of the numbers of enriched bins
(Supplementary Fig. 9c). We specifically examined known
AGO2-bound miRNAs53, including miR159, miR390, and
miR408 (Supplementary Data 8). The levels of the miRNAs in
AGO2 IP decreased in fry1-6 but were slightly restored in fry1-6
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rdr6-11 (Supplementary Fig. 9d). We then examined the coding
gene-derived siRNAs and risiRNAs. AGO2 bound siRNAs from
154 of the 228 genes with rogue siRNAs in fry1 (Supplementary
Fig. 9e). Also, 5′ A, which is preferred by AGO245, was enriched
in risiRNAs from both strands (Supplementary Fig. 9f). We
noticed that, although rdr6-11 suppressed the loading of risiRNAs
into AGO2, there were still 80 bins of risiRNAs in fry1-6 rdr6-11
(Supplementary Fig. 9c, g), and most of them were from the 5′
ETS (Supplementary Fig. 9g). These results suggested that the
loading of sRNAs into AGO2 was affected in fry1-6.

Discussion
Because sRNAs from rDNA regions are usually considered
degradation products of mature rRNAs, many previous sRNA-

seq analyses have often excluded these sequences by removing
them during library construction or after read mapping during
data analysis. Still, some studies have reported the existence of
rRNA-derived siRNAs and implicated their functions. In S.
pombe, because rr-siRNAs preferentially begin with 5′ U and
associate with Ago1, they may sequester Ago1 and interfere with
its function17. Recent studies in C. elegans have described similar
phenomena: under conditions such as 3′-5′ exonuclease impair-
ment, cold stress, and deficient rRNA processing, 22-nt siRNAs
with a 5′-G preference accumulated from both strands of rDNA.
These risiRNAs can be loaded into NRDE-3, a nuclear Ago
protein, and potentially target rRNA precursors19,20. In Arabi-
dopsis, 24-nt siRNAs from rDNA involved in the RNA-directed
DNA methylation pathway was first identified21,22. These siRNAs
are not derived from rRNA precursors or mature rRNAs as they
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are generated in a Pol IV-dependent manner. Small RNAs gen-
erated from rRNAs or their precursors have also been found in
plants. Some vasiRNAs in virus-infected Arabidopsis are from
rRNAs, are 21-nt long, and are dependent on DCL4 and RDR1
for biogenesis25. Similarly, rRNA-derived 21-nt siRNAs accu-
mulate in xrn2 xrn3 and fry1 mutants37. But neither of these
reports provided evidence for the AGO association of these
rRNA-derived small RNAs. In this study, we report the extreme
accumulation of AGO1-associated and AGO2-associated risiR-
NAs in plants. We showed that sRNAs arose from both strands
and from the EST/IST regions of the rDNA loci in fry1 (Fig. 4b)
and that they competed with miRNAs for loading into AGO1 and
AGO2. Since the accumulation of risiRNAs was dependent on
XRN2/3 (Fig. 4c), it is reasonable to assume that their biogenesis
occurs in the nucleus. Nuclear risiRNAs would pose a threat to
miRNAs, which are loaded into AGO1 in the nucleus54. On the
other hand, the present findings indicate that risiRNA biogenesis
is also dependent on RDR6 and DCL4 (Fig. 5a), which localize to
both the cytoplasm and the nucleus55–57, complicating predictions
about the site of risiRNA biogenesis.

Based on the present findings, we propose a competition model
as shown in Fig. 8. In WT plants, FRY1 degrades PAP to ensure
the activities of XRN4 in the cytoplasm and XRN2/3 in the
nucleus. XRN4 and XRN2/3 efficiently degrade aberrant RNAs in
the cytoplasm and nucleus, respectively, which prevents the
biogenesis of siRNAs. Thus, most AGO1 proteins are occupied by
miRNAs. In the fry1 mutants, PAP accumulates and inhibits the
activity of XRNs. Aberrant mRNAs and rRNAs accumulate and
are captured by the siRNA pathway, which consequently gen-
erates rogue siRNAs that compete with miRNAs to occupy AGO1
and AGO2 proteins. Perhaps as an attempt to reach miRNA
homeostasis, AGO1 levels were increased in fry1 (Supplementary
Fig. 2e)43. However, excessive risiRNAs and siRNAs from coding
genes still outcompeted miRNAs, resulting in their low loading
efficiency and reduced abundance. Thus, the proper partitioning
of AGO1 for miRNA and siRNA binding requires RQC.

Consistent with previous findings in cytoplasmic RNA decay
mutants12, the fry1-6 dcl4-2 double mutant was not viable but

viability could be restored by the dcl2-1 mutation (Fig. 7e).
Nevertheless, the fry1-6 dcl4-2 dcl2-1 triple mutant, like fry1-6
rdr2-1 and fry1-6 rdr6-11, still exhibited abnormal phenotypes
compared to WT plants (Fig. 7e), indicating only a partial rescue
of fry1 by mutations in the siRNA pathway. Indeed, the abun-
dance of miR166 and miR398 was only partially restored in fry1-6
rdr6-11 that lacked rogue siRNAs (Fig. 7c). FRY1 and XRN2/3
facilitate the turnover of excised pre-miRNA loops in Arabi-
dopsis9. This defect in miRNA processing may also affect the
abundance of mature miRNAs. The partial rescue of fry1 by rdr6-
11 or dcl2-1 dcl4-2 differs from the full phenotypic rescue of ein5-
1 ski2-3 by the same mutations12, but resembles the minimal
rescue of dcp2-1 and vcs-6 by rdr6sgs2-110. We also noticed that
there were still abundant risiRNAs from the 5′ ETS in all rdr6
samples (Supplementary Fig. S8a and 9g); the biogenesis of these
risiRNAs was RDR6-independent. These 21-nt risiRNAs may
have originated from the bidirectional transcription of rDNA, as
previously reported23 and may account for the partial rescue of
fry1 phenotypes by rdr6. Despite this, the fry1 mutant phenotypes
may not be entirely attributable to the accumulation of risiRNAs
and 21-nt siRNAs from coding genes. Other processes affected in
fry1, such as RNA processing, RNA decay, and sulfur metabolism,
may also contribute to the phenotypes.

In summary, we show that RNA silencing activity is impacted
by competition between miRNAs and siRNAs for AGO1 in
Arabidopsis, and RNA quality control maintains small RNA
homeostasis to ensure proper miRNA activities.

Methods
Plant materials and growth. Arabidopsis thaliana wild-type (accession Columbia-
0) and T-DNA insertion lines of FRY1 (AT5G63980, fry1-6: SALK_020882, fry1-8:
SALK_151367), XRN2 (AT5G42540, xrn2-1: SALK_041148), XRN3 (AT1G75660,
xrn3-2: SAIL_762H09), XRN4 (AT1G54490, xrn4-5: SAIL_681E01), PRMT3
(AT3G12270, atprmt3-2: WISCDSLOX391A01), RDR1 (AT1G14790, rdr1-1:
SAIL_672F11), RDR2 (AT4G11130, rdr2-1: SAIL_1277H08), RDR6 (AT3G49500,
rdr6-11: CS24285), DCL2 (AT3G03300, dcl2-1: SALK_064627), DCL3
(AT3G43920, dcl3-1: SALK_005512), and DCL4 (AT5G20320, dcl4-2:
GABI_160G05) were used in this study. Seeds were germinated on 1/2 MS medium
under short-day conditions (8 h light and 16 h dark) at 22 °C, and seedlings were
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either collected for analyses or transferred to soil for phenotypic observation on
day 12.

EMS mutagenesis and mutant identification. amiR-CTR1 (CGGGUUGG-
GAAUAAUAUGUAU) was designed using WMD tools (http://wmd3.weigelworld.
org/cgi-bin/webapp.cgi) then inserted into the MIR319a backbone58. The amiR-
CTR1 fragment was recombined into the plasmid pER10 containing a β-estradiol-
induction cassette using the Xho1 and Spe1 restriction sites (Supplementary
Data 9). The construct was transformed into WT Arabidopsis by Agrobacterium
transformation. To locate the T-DNA insertion site, we re-sequenced the amiR-
CTR1 transgenic plants on the HiSeq 2000 platform at the genomics core facility at
UCR. By mapping the resulting reads to the Araport11 Arabidopsis thaliana
genome (https://www.araport.org), we determined that the insertion was between
nucleotides 18214427 and 18214448 on chromosome 5. We also confirmed that
there was only a single T-DNA insertion in the genome, as no chimeric reads from
two T-DNA borders (LB/RB) were found. About 2 mL freshly collected amiR-
CTR1 seeds were used for ethyl methanesulfonate (EMS) mutagenesis. Seeds were
washed in 0.1% Tween-20 for 15 min then treated with 50 mL 0.1% EMS overnight
on a rotator in a fume hood. The seeds were transferred to 0.5 M NaOH and
incubated overnight, rinsed with ddH2O several times, then washed in ddH2O for
4 h. Finally, the seeds were sown in soil.

To find the causal mutation in T5520, the CTABmethod was used to extract DNA
from ~50 plants with the T5520 phenotype from the F2 population of the T5520 x
Col-0 cross. A DNA library was constructed with the NEBNext Ultra™ II DNA
Library Prep Kit for Illumina (E7645S, NEB) according to the manual. The library was
sequenced on the HiSeq 2000 platform at the genomics core facility at UCR, and the
PE150 reads were mapped to the Arabidopsis genome. SNPs were called using
SAMtools v1.959 then analyzed to identify the causal mutation using an online
software NGM (http://bar.utoronto.ca/ngm/index.html). From the NGM result, we
narrowed the location of the mutation to a region consisting of 10 candidate genes
(AT5G49770, AT5G52170, AT5G54330, AT5G55330, AT5G57060, AT5G62770,
AT5G63450, AT5G63980, AT5G64390, and AT5G64430) that contained SNPs with
discordant chastity scores over 0.95. We designed dCAPS primers for all of the
candidate genes and analyzed another batch of F2 plants with the mutant
phenotype60. This analysis pinpointed the mutation to AT5G64390 (FRY1).

RNA extraction and northern blotting. Total RNA was extracted from 12-day-old
WT and mutant seedlings using TRI reagent (MRC, TR118) according to the
manufacturer’s instructions. For each sample, 10 μg total RNA was run on a 15%
urea-PAGE gel and transferred to a Hybond NX membrane. The RNA was cross-
linked to the membrane with the EDC cross linking buffer (0.16 M EDC, 0.13 M 1-
methylimidazole at pH 8.0) at 65 °C for 90 min. Biotin-labeled probes were added
to the hybridization buffer (5X SSC, 20 mM Na2HPO4 at pH 7.2, 7% SDS, 2×
Denhardt’s solution) and incubated with the membrane at 55 °C overnight. After
two wash steps (2X SSC, 0.1%SDS, 55 °C, 20 min each time) to remove excess
probe, the membrane was processed using the Chemiluminescent Nucleic Acid
Detection Module Kit (ThermoFisher, 89880) according to the instruction manual
with probes described in Supplementary Data 9. The relative expression level in the
RNA gel blots was calculated against the internal control U6 using Fiji61.

Protein detection. Aerial tissues (25 mg) of 12-day-old seedlings were harvested
for protein extraction using 1× SDS buffer (100 mM Tris at pH6.8, 4% SDS, 20%
Glycerol, 0.2% Bromophenol blue). The samples were loaded onto a 10% SDS-
PAGE gel and proteins were then transferred to a nitrocellulose membrane after
electrophoresis. Anti-AGO1 antibody (1:3,000, Agrisera, AS09 527) was used to
detect the AGO1 protein, and the 60S ribosomal protein L13 was detected with its
antibody (1:2,500, Agrisera, AS13 2650) and served as the internal control.

sRNA library construction and sequencing. Total RNA (20 μg) from WT (Col-
0), fry1-6, and fry1-8 was resolved on a 15% urea-PAGE gel, and the sRNA fraction
(15–40 nt) was excised. sRNAs in the excised gel were recovered in 0.4 M NaCl,
followed by ethanol precipitation. sRNA libraries were constructed using the
NEBNext Small RNA Library Prep Set for Illumina (NEB, E7300S) according to the
manufacturer’s instructions. The libraries were pooled and sequenced to generate
75-bp single-end reads on an Illumina NextSeq CN500 platform at Berry Genomics
(Beijing, China).

Analysis of sRNA-seq data. Our sRNA-seq data and published datasets
(GSE57936, GSE65056, GSE95473) were analyzed using a publicly available pipe-
line, pRNASeqTools v0.6. The sRNA-seq raw reads were trimmed to remove the 3′
adapter sequences (AGATCGGAAGAGC) then size-selected (18–42 nt) using
cutadapt v1.9.162. The trimmed reads were mapped to the Araport11 genome using
ShortStack v3.463 with parameters ‘-bowtie_m 1000-ranmax 50-mmap u-
mismatches 0′. To calculate and compare sRNA abundance in the WT and mutant
libraries, the Arabidopsis genome was tiled into 100-bp bins (or bins based on
specific features, e.g., miRNAs, TEs, genes, and 1000-bp gene-upstream sequences),
and reads whose 5′ end nucleotides mapped to a given bin were assigned to that
particular bin. Normalization was conducted by calculating the RPM value (reads
per million mapped reads) for each bin, and comparison was performed for each

category of bins using the R package DESeq264. The significance of overlap was
calculated using the R package SuperExactTest65. sRNA target prediction was
performed by psRNATarget66 using the 2017 scheme with expectation ≤2.

AGO IP and sRNA-seq. Total protein was extracted from WT, fry1-6, and fry1-6
rdr6-11 seedlings using IP buffer (50 mM Tris 7.5, 150 mM NaCl, 10% glycerol,
0.1% NP-40, and 1× proteinase inhibitor cocktail). AGO1 antibody (8 μL/g) or
AGO2 antibody (16 μL/g, Agrisera, AS13 2682) and protein A Dynabeads (Invi-
trogen, 10002D) were sequentially added to the supernatant to obtain the AGO
protein complex. For WT, fry1-6, and fry1-6 rdr6-11, the immunoprecipitation,
RNA extraction, library construction, sequencing, and data analysis were per-
formed in three independent experiments as described above for total sRNAs.

mRNA-seq and data analysis. RNA-seq libraries were constructed using NEB-
Next® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) following manu-
facturer’s recommendations, and pooled and sequenced on the Illumina NovaSeq
6000 system (paired-end, 150 bp) at Berry Genomics (Beijing, China). The RNA-
seq data were analyzed using the pRNASeqTools. Briefly, raw reads were mapped
to the Araport11 genome using STAR v2.667 with the parameters “--alignIn-
tronMax 5000 --outSAMmultNmax 1 --outFilterMultimapNmax 50 --out-
FilterMismatchNoverLmax 0.1”. Mapped reads were counted by featureCounts
v1.6.468 and comparison was performed using the R package DESeq264.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw sequence data generated during this study were deposited into the NCBI GEO
database under the accession code GSE133461. The source data for Figs. 1b, c, 2a, c, d,
3a–c, e, g, h, 4b–e, 5a, b, 6a, c, 7a–e, and Supplementary Figs. 1b–d, g, 2b–e, 3a–d, f–j, 4a,
c, d, 5a–d, 6a, 7a, b, d–h, 8d, e, h, i, and 9a, b, d, f are provided as a Source Data file. The
authors declare that any other supporting data is available from the corresponding
author(s) upon request.

Code availability
All bioinformatic analyses in this study were performed by an integrated pipeline for
next-generation sequencing analysis, pRNASeqTools v0.6 [https://github.com/
grubbybio/pRNASeqTools/]. This pipeline can be used freely under the MIT license.
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