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Abstract

Background

In many infectious diseases, a core group of individuals plays a disproportionate role in

transmission. If these individuals were effectively prevented from transmitting infection, for

example with a perfect vaccine, then the disease would disappear in the remainder of the

community. No vaccine has yet proven effective against the ocular strains of chlamydia that

cause trachoma. However, repeated treatment with oral azithromycin may be able to pre-

vent individuals from effectively transmitting trachoma.

Methodology/Principal findings

Here we assess several methods for identifying a core group for trachoma, assuming vary-

ing degrees of knowledge about the transmission process. We determine the minimal core

group from a completely specified model, fitted to results from a large Ethiopian trial. We

compare this benchmark to a core group that could actually be identified from information

available to trachoma programs. For example, determined from the rate of return of infection

in a community after mass treatments, or from the equilibrium prevalence of infection.

Conclusions/Significance

Sufficient groups are relatively easy for programs to identify, but will likely be larger than the

theoretical minimum.

Author summary

Public health programs can in theory target treatment to a core group of individuals

responsible for a disproportionate amount of transmission. The smallest group of individ-

uals who need to be vaccinated to eventually eliminate an infectious disease is easy to find

in theory, but not in practice. While no vaccine has proven effective for trachoma,
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intensive periodic treatment may be able to effectively prevent individuals from transmit-

ting infection. Here we use a variety of methods to find a core group for trachoma trans-

mission, including methods that use information available to trachoma programs. We

show that the rate that infection returns into a community after mass treatment, or the

pre-treatment prevalence of an infectious disease should work, but will include more indi-

viduals than the theoretical minimum core group.

Introduction

Core groups can play a disproportionate role in transmission of an infectious disease [1–3]. If

transmission were terminated in this group, the disease would by definition eventually disap-

pear in the entire community [1]. Important key populations have been proposed for sexually

transmitted infections such as gonorrhea and HIV, as well as non-sexually transmitted diseases

such as trachoma [3–10]. For vaccine-preventable diseases, the group sufficient to vaccinate to

achieve herd immunity constitutes a core group. No vaccine has yet been proven effective for

trachoma. However, intensive drug administration could effectively remove a core group from

transmission, preventing infection from being sustainable in the remainder of the community

[5].

Young age and previous infection are by far the largest risk factors for transmission of ocu-

lar chlamydia, the causative organism of trachoma [11, 12]. Children have a longer duration of

infection and higher load than adults [13, 14]. In one study, repeated targeting of children

reduced infection in untreated adults, suggesting a form of herd protection [15]. In another,

essentially no infection could be found in adults after three years of repeated treatment of chil-

dren [16]. A modeling study suggested that treating children under 10 annually could eventu-

ally eliminate infection, limiting treatment to those under 5 years might require quarterly

treatments to achieve a similar result [5]. Another important risk factor is prior infection.

Those with clinical or laboratory findings of trachoma at one time point are at high risk at sub-

sequent time points, even if cleared from infection in the interim, presumably due to special

vulnerability or critical placement in the transmission network [11, 17].

If all heterogeneities were identified and a mathematical transmission were completely

specified, then a minimum core group could be determined analytically. However, this is

rarely, if ever, feasible in practice. In this report, we hypothesize that a sufficient core group

can be identified knowing very little detail about transmission. We use results from a large

community-randomized trachoma trial to estimate a minimal core group for transmission.

We compare several methods of estimating a sufficient core group, assuming various levels of

information ranging from complete specification of the transmission dynamics to knowledge

of the equilibrium prevalence alone.

Methods

Sufficient core group estimation methods

Method A, Complete specification of transmission. If we assume that the precise model

is known, we can find the minimal proportion of children and adults to remove from the pop-

ulation to prevent a newly introduced infection from spreading. One way to model two strata

would be to estimate the transmission between children and adults in a 2x2 reproduction

matrix. The minimal core group would be the smallest number of children and adults neces-

sary to remove from transmission (S1 File). We use two strata (children and adults) for
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demonstration. The method is applicable to any number of strata as long as the reproduction

matrix is specified. While complete specification of the transmission model may be impossible

in practice, here it serves as a benchmark for other methods.

Methods B and C, Linear Programming. If an infectious case in a homogeneous popula-

tion on average causes less than one new infectious case, then infection cannot be sustained (in

the absence of any positive feedback for infections). Here, we divide individuals into two

homogenous groups of children and adults, and we remove enough individuals from transmis-

sion that an infected child on average infects less than one other individual (child or adult),

and similarly for an adult. This would ensure that those removed form a sufficient core group,

and that the overall R for the community is less than one [1]. The goal is always feasible, as

long as enough individuals are removed from transmission. Knowledge of the reproduction

matrix allows this to be formulated as a linear programming problem, maximizing a linear

function given a set of linear inequality constraints. A linear program has a dual solution,

which is also core group (C) (see S1 File) [18]. If both the primal and the dual have solutions

that include both children and adults, they necessarily sum to the same total number of indi-

viduals (Duality Theorem) [18]. These methods require that we know that no individual is

expected to successfully transmit infection to more than one other person, which would be dif-

ficult to determine in practice. In general, neither of the solutions is optimal.

Method D. Rate of return of infection into a community following mass treatment. In

practice, we typically know little about the heterogeneities in transmission, and certainly not

enough to accurately estimate components of a next generation R matrix. However, studies

have estimated the rate that infection returns into a community after mass antibiotic distribu-

tion [5, 19]. If combined with knowledge of the average duration of infection, we can estimate

a growth rate per generation of infection, which is closely related to the maximum eigenvalue

(λ) of the R matrix, and suggests a method for ensuring a sufficient core group. If we remove

from transmission at least the proportion 1-1/λ of each stratum, then infection can no longer

be sustained in the community (see S1 File) [5, 13, 19, 20]. Note that for a given rate of return,

a longer duration of infection would increase the estimate of the size of the core group.

Method E. Equilibrium. In trachoma programs a pre-treatment survey is often per-

formed before programmatic activity. If conditions are relatively stable, then this prevalence

represents an estimate of the equilibrium. By definition, at equilibrium each infectious case

causes on average a single new infectious case. If we were to remove from transmission at least

the equilibrium proportion for each stratum of the population, then infection would no longer

be sustainable. Here we implement with two strata, although this approach applies in general

to any number of strata.

In some areas of Ethiopia, up to 10 years of annual mass drug administrations have failed to

completely eliminate infection [21]. The prevalence of clinical signs has been reduced but over

the past several years remained relatively stable, suggesting a new, reduced equilibrium. This

new restricted equilibrium could also represent a sufficient core group, although only if annual

mass distributions continued.

Three scenarios modeled

To explore the 5 different methods for determining a sufficient core group under different

conditions, we modeled 3 possible scenarios:

Scenario I. To mimic a region hyperendemic for trachoma before any programmatic

activity, we used a simple susceptible-infectious-susceptible (SIS) model that had previously

been fitted to results from a cluster-randomized trial in Amhara, Ethiopia (TANA, NEI U10

EY016214) [15, 16, 22]. Infection was monitored in 0–10 year olds (“children”) and in those

Identifying a sufficient core group for trachoma transmission
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older than 10 years (“adults”). Estimates of the transmission between children and adults had

previously been made, defining estimated reproduction matrix for children and adults. This

model can be used to compare 5 methods (A-E) of determining a sufficient core group (see S1

File) [15, 16, 22].

Scenario II. In some areas hyperendemic for trachoma, a decade of annual mass treat-

ment has failed to eliminate infection, resulting in a new reduced equilibrium [21]. We have

constructed a reproduction matrix which is reduced from Scenario I due to the continued

annual mass treatment, assuming annual antibiotic coverage for 5 years.

Scenario III. To demonstrate how the possible core groups would change if both children

and adults were substantial contributors to transmission, we constructed a hypothetical com-

munity in which members of both the children and adult segments of the population could

themselves sustain infection. Note that members from each stratum would need to be included

in any core group.

Results

The total proportion of children and adults that form a core group was determined using each

of the 5 methods, for each of the three scenarios (Table 1). For explanatory purposes, the total

proportion in the population was estimated assuming that children and adults were each one

half of the population, although it is not difficult to adjust this ratio. Note that approximately

half the population in these areas may be 18 years and under, one third 10 years and under,

and one-sixth under the age of 5 years.

Table 1. Results for 3 scenarios modeled.

Scenario R Matrix Total proportion of

population

I

Hyperendemic for trachoma, Pretreatment

1.39 0.67 A 0.32

B 0.47

1.48 0.28 C 0.64

D 0.49

E 0.48

II Hyperendemic for trachoma, Postreatment 0.95 0.38 A 0.15

B 0.19

0.83 0.33 C n/a

D 0.22

E 0.21

III

Children and Adults

1.45 0.25 A 0.45

B 0.46

0.48 1.52 C 0.46

D 0.45

E 0.45

For each of three scenarios I-III modeled, the R matrix is given in the center column. The 4 cells of each R matrix

reveal the average number of secondary infectious cases caused by a single infectious case in a totally susceptible

population. The upper left is the number of child cases caused by a single child case, the upper right child cases

caused by an adult case, lower left adult cases caused by a child case, and lower right adult cases caused by an adult

case. Within each scenario, the total proportion of the population for the 5 models A-E is also presented (A.

Complete specification of transmission, B. Primal Linear Programming, C. Dual Linear Programming, D. Largest

Perron eigenvalue, E. Equilibrium).

https://doi.org/10.1371/journal.pntd.0006478.t001
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Scenario I

Given a transmission model estimated from the TANA study, the theoretical minimum core

group includes 64% of the children and none of the adults for a total of 32% of the total popula-

tion (Fig 1 and Table 1). Sufficient core groups using linear programming, the maximum

eigenvalue, or the equilibrium prevalence included more than twice the total number of

individuals.

Fig 1. An area hyperendemic for trachoma (Scenario I). The x-axis is the proportion of children that are in a potential core group, and the y-

axis is the proportion of adults. The black curve represents those proportions where the resulting reproduction number (R) of transmission in

the entire population equals unity. If the proportion of children and adults represented by any combination above and to the right of this

curve (the white, non-shaded area) were removed from transmission, infection could not be sustained in the rest of the population. Thus, all

combinations in the white area represent sufficient core groups. Point A represents the minimal core group whose removal would result in

eventual elimination of infection. Point B and C represent sufficient core groups determined by linear programming, point D from the

maximum eigenvalue of the transmission matrix (estimated directly from the return of infection into a community and the average duration

of infection), and point E from the equilibrium, pre-treatment prevalence of infection.

https://doi.org/10.1371/journal.pntd.0006478.g001
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Scenario II

In the presence of years of mass annual treatment, a new equilibrium may be reached. Here,

21% of children and adults remain affected. A residual core group remains, in the presence of

the annual treatments (Fig 2, Table 1). The sufficient core groups obtained from the rate of

return of infection and from the residual equilibrium are still larger as the theoretical mini-

mum of 15%, including 21–22% of the population.

Fig 2. After a decade of annual mass antibiotic distributions (Scenario II). Infection has still not been eliminated in some areas of Ethiopia.

The prevalence of infection has reached a new, residual equilibrium in the presence of the continued treatments. The residual core group is

smaller than the core group in Scenario I. If this group were targeted and mass treatments were continued, we would expect infection to

eventually disappear. The minimal core group (A) includes only children, but the strategies based on the rate of return of infection (D) and the

residual equilibrium (E) may offer practical, reasonably efficient strategies. The dual linear programming solution is not feasible here, and is

not represented.

https://doi.org/10.1371/journal.pntd.0006478.g002
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Scenario III

In the most severely affected areas, transmission can be sustained in either the children alone

or the adults alone. Therefore, all sufficient core groups would necessarily include both chil-

dren and adults. Here, the more practical methods approach the theoretical minimum (Fig 3,

Table 1). In this scenario, both the primal (B) and dual (C) linear programs have identified

core groups that contain both children and adults. Although the combinations are different,

they contain the same number of individuals as demonstrated by the second (higher) grey iso-

population line, as guaranteed by the Duality Theorem [18]. Note that transmission in adults

in this scenario is likely unrealistically high, although we have included it as an illustrative

example.

Fig 3. A hyper-endemic community where transmission can be sustained in either the children alone or the adults alone (Scenario III).

Here, all solutions are similar to the theoretical minimum core group (A). The primal and dual linear programming solutions contain

different combinations of children and adults, but contain the same overall total [18].

https://doi.org/10.1371/journal.pntd.0006478.g003
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Discussion

A group of individuals who play a disproportionate role in the transmission of an infectious

disease has been described by a number of terms, including key population, hyper-spreaders,

and core group [10, 23]. A stricter definition of a core group would be those individuals whose

removal from transmission would be sufficient to prevent infectious trachoma from sustaining

itself in the entire community [1, 24]. Here, we have assumed that the process can be described

by a mathematical transmission model in which individuals can be divided into a number of

compartments, each one of which is homogeneous. From such a model, a sufficient core

group can be estimated in a number of ways. As a relatively simple case, we divide a trachoma-

endemic population into children and adults, and fit a simple model to data from a commu-

nity-randomized trial in Ethiopia [15]. The fitted model allows a sufficient core group to be

estimated using a number of methods. The smallest group whose removal from transmission

results in the remainder of the population producing on average less than one case per infec-

tious case. Under certain circumstances, the dual of this linear programming problem also

may be a sufficient core group. If the dominant eigenvalue of a next generation matrix of the

transmission model and the average duration of infectious cases in each of the groups are

defined, then a sufficient core group can easily be determined. If the entire model is specified,

then the absolute minimum sized core group can be found.

Even when the precise details of the transmission model are not understood, a sufficient

core group can still be estimated from epidemiological data. If we limit analysis to diseases that

do not confer lifelong immunity and where current infection is a risk factor for future reinfec-

tion, then removal of those currently infected from future transmission would control the dis-

ease, leading to eventual elimination. For example, if infection is reduced by repeated mass

antibiotic distributions given to the entire community, then it should return at a rate depen-

dent on the maximum eigenvalue of the next generation matrix. If the average duration of

infection is known, then the dominant eigenvalue of this matrix can be estimated. If all but the

proportion equal to the reciprical of this eigenvalue were removed from each compartment,

then infection would eventually disappear.

A more practical method for determining a sufficient core group requires knowledge of

who was infected prior to treatment. If we assume that current infection is a risk factor for

future reinfection. This allows determination of a core group in two settings: at the beginning

of a program when transmission may have reached an equilibrium, and after years of annual

MDA with a new equilibrium. In the former, the goal would be to find the group of people

whose effective removal from transmission would lead to eventual elimination in everyone.

Community-randomized trials have found that if a core group of children are effectively

removed from transmission by quarterly antibiotic treatments, infection decreases in the

remainder of the community [15]. If mass antibiotics are repeated, elimination can be achieved

even though not everyone was actually treated. In the setting where years of annual mass treat-

ment have not eliminated infection, then the goal might be to find a residual core group whose

removal from transmission would result in elimination if future annual mass treatment were

also continued. In several areas, more than 5 years of mass azithromycin distributions have left

a small amount of persistent infection [25, 26]. This group could represent a residual core

group.

The equilibrium approach to finding a sufficient core group is dependent on a number of

assumptions. For the equilibrium to form a core group, currently infected cases must be at

least as likely to participate in future transmission as uninfected cases. This would not be true

for an infection where acquired immunity outweighs other risk factors. Note that removing

those infected at equilibrium from transmission would be expected to work regardless of

Identifying a sufficient core group for trachoma transmission
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whether we understand the heterogeneity in the community. Underestimates of prevalence

would lead to models underestimating the size of the core group. We modeled 3 scenarios of

different endemicity, reflecting different transmission. Future study could explore scenarios

with an even broader spectrum of heterogeneity. While method 1 assumed an SIS model struc-

ture, that is not necessary for the other methods. However, we have assumed that current

infection is a risk factor for future infection, or at least does not offer protection. If this

assumption were violated, more analysis would be necessary.

Sufficient core groups can be estimated from information available to trachoma control

programs. The use of WHO simplified grades rather than infection data would result in a

larger, more conservative estimate of the core group. In moderately affected areas, information

taken from baseline surveys could be used to reduce the proportion of the population treated.

In the few severely affected areas where residual core group indicates that annual MDA is inad-

equate, enhanced targeting of a core group might be necessary for elimination. Enhanced

intervention targeted to core groups would require additional resources, but may be the final

key for successful trachoma control. Resources can be directed towards core groups at the

beginning of a program, or towards a residual core groups resistant to elimination in the pres-

ence of standard annual mass azithromycin distribution [21]. Precise transmission models are

not absolutely necessary to estimate sufficient core groups. These models are hypothesis gener-

ating. While strategies based on core groups have been tested in community-randomized tri-

als, the efficacy of a strategy based on residual core groups will need to be tested in current and

future trials (U10 EY023939 and UG1 EY028088) [15, 16, 27].

Supporting information

S1 File. Methods A-E. Additional details are provided for Methods A-E.

(PDF)
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