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Abstract 

Children’s understanding of numbers is often assessed using a number-line task, where the child 

is shown a line labeled with 0 at one end, and a higher number (e.g., 100) at the other end. The 

child is then asked where on the line some intermediate number (e.g., 70) should go. 

Performance on this task changes predictably during childhood, and this has often been 

interpreted as evidence of a change in the child’s psychological representation of integer 

quantities. The present paper presents theoretical and empirical evidence that the change in 

number-line performance actually reflects the development of measurement skills used in the 

task. We compare two versions of the number-line task: the bounded version used in the 

literature and a new, unbounded version.  Results indicate that it is only children’s performance 

on the bounded task (which requires subtraction or division) that changes markedly with age.  In 

contrast, children’s performance on the unbounded task (which requires only addition) remains 

fairly constant as they get older.  Thus, developmental changes in performance on the traditional, 

bounded number-line task likely reflect the growth of task-specific measurement skills, rather 

than changes in the child’s understanding of numerical quantities. 
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Children’s Number-Line Estimation Shows Development of Measurement Skills (Not Number 

Representations) 

A central question in the development of numerical cognition is how children’s 

understanding of numerical magnitudes changes with age.  One of the tasks most commonly 

used to study this is the number-line task (e.g., Booth & Siegler, 2006, 2008; Geary, 2004; 

Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Geary, Hoard, Nugent, & Byrd-Craven, 

2008; Opfer & Siegler, 2004, 2007; Siegler & Booth, 2004, Siegler & Opfer, 2003). Here we 

present mathematical, theoretical, and empirical evidence that the developmental changes in 

performance on the traditional number-line task reflect improvements in the mathematical skill 

needed to scale numbers to the line (termed mensuration skills) rather than changes in children’s 

mental representations of numerical quantities.  We argue that children’s understanding of 

numbers should be assessed using a more valid, less mathematically demanding version of the 

number-line task: the unbounded number-line task. Data from this task provide strong evidence 

that children represent numerical quantities in the same way adults do.  

Developmental Changes in Number-Line Estimation 

 In the number-line task, participants must convert a numeral into a line length, or vice versa.  

Most commonly, the participant is given a horizontal line with two labeled endpoints (e.g. 0-100; 

see Figure 1). On each trial, the participant is given a target number and must make a mark on 

the line where the number should go.  This type of task is a bounded number-line task, because 

all the target values fall between the upper and lower bounds (e.g., between 0 and 100).   

Using the bounded number-line task, Siegler and Opfer (2003) showed that younger 

children produced a negatively accelerating error pattern (forming a logarithmic-looking curve), 

whereas older children and adults produced more linear patterns. To explain the data, the authors 



	
   	
   	
   4	
  

argued that within each person, innate, nonverbal numerical cognition includes two separate and 

distinct systems for representing numerical magnitudes.  The earlier, ‘logarithmic’ pattern of 

responding on the number-line task is taken as evidence that the participant is using the 

‘logarithmic’ system; the later, ‘linear’ pattern is taken as evidence of a separate that the subject 

is using a ‘linear’ system. The shift in performance is said to reflect children’s increasing use of 

the linear system to solve the task (Siegler & Opfer, 2003; Siegler, Thompson & Opfer, 2009). 

This ‘logarithmic-to-linear shift’ has been found in participants of many different ages and 

mathematical abilities (e.g., Berteletti, et al., 2010; Booth & Siegler, 2006; Geary, et al., 2008; 

Laski & Siegler, 2007; Siegler & Booth, 2004). 

Recently, it has been argued that ‘linear’ patterns of responses on the bounded number-

line task only appear linear because researchers apply an inappropriate statistical model to the 

data (Barth & Paladino, 2011; Cohen & Blanc-Goldhammer, 2011). Nonetheless, even when 

researchers analyze the number-line data with more appropriate statistical models, (1) adults and 

children still perform quite differently (see Cohen & Blanc-Goldhammer, 2011 for adults; Barth 

& Paladino 2011 for children); (2) there remains a distinct developmental trend in performance, 

with children performing better as they get older (Slusser, Santiago, & Barth, 2012); and (3) the 

youngest children’s performance still forms a logarithmic-like curve (Barth & Paladino, 2011). 

We argue below that all three of these effects arise because children develop the mathematical 

skills needed to scale the numbers to the line (i.e., their mensuration skills improve), not because 

they shift to a different system of nonverbal number representation. Below, we review the 

psychophysics of scaling in order to explain number-line responses from prior studies in terms of 

well-known psychological principles. 
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Mensuration: Scaling Numbers to Lines 

Number-line tasks are cross-modality matching tasks (e.g., Gescheider, 1988; Marks, 

1974; Stevens, 1956) because they require participants to convert a numeral into a line length or 

vice versa.  In a typical cross-modality matching task, a participant is given a standard stimulus 

in one modality, and a corresponding value in the second modality.  This Standard links the scale 

of Mode A to that of Mode B. For example, the Standard may be a tone with an intensity of 80 

DB and the corresponding value may be the number 100.  The experimenter presents a series of 

probes (e.g., tones of different intensities) and asks the participant to scale these tones to that of 

the Standard. The participant might be instructed, “Listen to how loud this tone is. This loudness 

is assigned a value of 100. Now you’re going to hear another tone, and you have to say how loud 

it is. So, if it seems half as loud as the first tone, you say 50. If it seems three times louder than 

the first tone, you say 300.” Perceived loudness is thus scaled to perceived numerical quantities 

through the Standard. 

 Cross-modality matching tasks have been studied for decades (e.g., Algom & Marks, 1984, 

1989; Cohen & Lecci, 2001; Marks, 1974; Stevens, 1956).  Typically, bias1 in the perception of 

the stimulus being measured (e.g., bias in the perception of loudness) is well described by the 

exponent in a power function (see online supplement). Exponents less than 1 mean that 

participants are more sensitive to changes at low stimulus values (e.g., soft tones) than at high 

stimulus values (e.g., loud tones). This can produce a pattern of data that looks similar to a 

logarithmic function. Exponents greater than 1 mean that participants are more sensitive to 

changes at high stimulus values than at low stimulus values. This can produce a pattern of data 

that looks similar to an exponential function.   

 The traditional version of the number-line task described above is a bounded number-line 
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task, because participants’ answers cannot be less than the lower bound (usually 0) or more than 

the upper bound (e.g., 100).  However, Cohen and Blanc-Goldhammer (2011) modified the task 

so that participants’ responses were not restricted on the upper end. The authors called this an 

unbounded number-line task.  In the unbounded task, the participant is given a horizontal line 

denoting the length of a single unit. (See Figure 1). The participant then has to indicate the 

position that a target number should occupy, somewhere to the right of the point labeled “1.”   

 The estimated stimulus bias in a cross-modality matching task is subject to the influence of 

many factors, one of which is the range of responses. The bounded task restricts the range of 

possible responses by requiring them to fall between the upper and lower bounds.  In contrast, 

the unbounded task allows the participant to make any response greater than one.  

Di Lollo and Kirkham (1969) studied the influence of bounds on tasks like the bounded 

number-line task.  Participants were shown a grid of black and white squares, and were asked to 

estimate the proportion of black squares.  Possible responses range from 0% black to 100% 

black, just as possible responses on the bounded number-line task range from one end of the line 

to the other. Di Lollo and Kirkham reported that at lower target probes (few black squares), 

subjects tended to produce estimates that were much too large. When probes were larger (a high 

percentage of black squares), subjects revised their estimates downward to avoid going over 

100%.  This occurred in tasks “where the stimuli [were] unidimensional and where familiarity 

with mensuration techniques [was] low” (p. 525, Ross & Di Lollo, 1971).   

In other words, this pattern of data (overestimation of the lower probe values and 

downward-revision of estimates for the upper probe values) happens whenever (a) there is only 

one dimension on which to judge the stimuli, and (b) participants are not familiar with the 

mathematics of scaling numbers to that dimension. Because the bounded number-line task is 



	
   	
   	
   7	
  

unidimensional, subjects with low mensuration skills (e.g., children) are expected to produce a 

logarithmic-like pattern in the data (i.e., overestimation of low values and underestimation of 

large values). Because the bounded and unbounded number-line tasks require different 

mensuration techniques (i.e., different strategies for scaling numbers to line lengths), the 

influence of mensuration skill on this task is testable within participants. 

 In the bounded task, the simplest way to estimate the line length for any integer is to 

recursively estimate the target number’s distance from the lower and upper bounds until the two 

distances appear consistent. For example, if the participant wants to place the number 70 on a 

line from 0 to 100, he or she chooses a point on the line, and then looks back and forth between 

that point and the ends of the line, adjusting the position until the distances between the point and 

the lower and upper bounds appear to be 70 and 30, respectively.  This is the strategy that Cohen 

and others have argued is used by adults and older children on the bounded number-line task 

(Barth & Paladino, 2011; Cohen & Blanc-Goldhammer, 2011).   

The strategy was first described in detail by Spence (1990) as the way that people estimate 

proportions in a similar cross-modal task. Spence asked participants to estimate proportions 

between 0 and 1, and found a signature ogival (i.e., S-shaped) error pattern. Spence hypothesized 

that participants estimate the magnitude of both proportions (i.e., the distances to the right and 

left of the tick mark on the number line) and revise their estimates until these quantities sum to 

one.  Based on this supposition, Spence derived a model of proportion estimation based on 

Stevens’ Power Law (termed the Power Model, Hollands & Dyre, 2000; Hollands, Tanaka, & 

Dyre, 2002), which states that the psychological representation of proportion, ψp, is a function 

of the presented proportion, Θp, and its inverse, 1 - Θp, summarized by the equation, 

ψp = Θp
β/ [(Θp

β) + (1−Θp)β].                                                (1) 
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When participants estimate proportions this way, their data form a signature ogive (an S-

shaped curve around the accuracy line) or inverse ogive. The exponential term here, β, is the 

same exponent as that in Stevens’ Power Law.  Therefore, a β=1 indicates accurate responding; 

β<1 indicates a negatively accelerating bias; and β>1 indicates a positively accelerating bias. 

Spence’s Power Model fits estimated proportion data well (e.g., Begg, 1974; Brooke & Macrae, 

1977; Shuford, 1961; Varey, Mellers, & Birnbaum, 1990).   

More recently, Hollands and Dyre (2000) developed a more generalized Power Model 

(termed the Cyclic Power Model - CPM) to accommodate data with multiple ogival cycles, 

which occur when participants use one or more additional reference points (such as the halfway 

point of the line).  

 When viewed closely, number-line data exhibit the signature ogival error pattern 

characteristic of Hollands and Dyre’s (2000) CPM and are well fit by the model (e.g., Barth & 

Paladino, 2011; Cohen & Blanc-Goldhammer, 2011).  The fact that the CPM fits better than 

either linear or logarithmic models indicates that older children and adults are using the strategy 

described above. Nevertheless, young children consistently produce negatively accelerating (i.e., 

logarithmic-looking) patterns of responses that are not well fit by the CPM (Barth & Paladino, 

2011).   Furthermore, older children whose bounded number-line performance is well described 

by the CPM for familiar (to them) number ranges (i.e., 1-20), still produce negatively 

accelerating patterns of responses for higher number ranges, which are less familiar to them 

(Slusser et al., 2012).  The source of this negatively accelerating pattern has not yet been 

identified in the literature.    

 We argue that the negatively accelerating pattern is the result of poor mensuration skills. All 

successful strategies for the bounded number-line task require the participant to do some form of 
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subtraction or division. This is why young children (who have mastered neither subtraction nor 

division) are unable to perform the task accurately.  In the terms used by Ross and Di Lollo 

(1971), young children have low familiarity with the required mensuration technique.  

So, how do young children manage the task? According to Ross and Di Lollo (1971), they 

start by implicitly assigning a biased scale that overestimates the relation between line length and 

numerical quantity.  For smaller target values, this results in overestimation. But for larger target 

values, these overestimates would soon stretch beyond the upper boundary of the line. Seeing 

this, the children shift their estimates downward to fit within the bounds.  The resulting pattern of 

data shows overestimation of numbers at the low end, and a decelerating function for numbers at 

the high end—a pattern that can easily be confused for a logarithmic function.   

To distinguish between a true logarithmic function and this ‘poor-mensuration’ function 

requires a formal model of the poor-mensuration function. We developed the Subtraction Bias 

Cyclic Model (SBCM) to formally model poor mensuration in the bounded number-line task.  

The SBCM is based on Holland and Dyre’s (2000) single-cycle Cyclic Power Model (CPM), but 

is modified to incorporate a subtraction bias. As described above, Spence (1990) proposed that 

participants scale a line length (or similar representation) to a proportion by estimating the 

distances from the right and left sides of the line.  To do this, the participant must be able to 

subtract the target number from the value of the upper bound (e.g., to place the number 13 on a 

line stretching from 0 to 20, children must be able to subtract 13 from 20). If children’s estimates 

are poor because they have difficulty with this ‘subtract-and-compare’ process, a distinct 

measurement bias will be introduced.  We modeled this bias with the following formula: 

  ψI = ΘI
β/ [(Θi

β) + ((U−ΘI)s)β],                                                (2) 
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where ΘI is the target integer, the exponent s represents the bias associated with the subtraction, 

and U represents the value of the upper bound. Equation 2 is identical to Equation 1, with the 

addition of an exponent s, which captures the potential bias in subtraction.  This function 

captures the pattern of overestimation for low target values and a shift downward for high target 

values. This model allows us to test whether the data are better fit by a true logarithmic function 

or by the SBCM.  Furthermore, if the data are best fit by the SBCM, we can separate the 

perceptual2 and subtraction biases, giving us a clearer idea of what children actually know about 

the numbers.    

 The true logarithmic pattern and the pattern resulting from poor mensuration techniques also 

differ in residuals around the prediction curve.  Poor mensuration produces a pattern in which the 

upper bound interferes with the participant’s intended responses.  Thus, responses should be 

close to or at the upper bound even for numbers somewhat below the largest target number.  

These responses at or near the upper bound should also occur over several target numbers.  The 

net effect is that the participant’s responses cluster near the upper bound, resulting in 

heteroskedaticity when the data are fit with a logarithmic function.  In contrast, a true 

logarithmic pattern is homoscedastic across the entire function.   

In contrast to the bounded number-line task, scaling numbers to line lengths in the 

unbounded number-line task requires only addition. The participant merely needs to repeat the 

single line length, as many times as the target number.  (For example, to estimate the position of 

the number 5, the participant must add five single-unit lengths together, or multiply the single 

unit by 5.) Cohen and Blanc-Goldhammer (2011) developed the Scalloped Power Model (SPM) 

to describe adults’ performance in the unbounded number-line task. The Scalloped Power Model 

is a simple variant of Stevens’ Power Law, describing the scalloped pattern that is created when 



	
   	
   	
   11	
  

participants reach large numbers by repeatedly counting to a smaller number (termed the 

working window, e.g., to get to 20, viewers may estimate a line length of 5, and then repeat that 

length four times).  

Because the implicit addition needed for the unbounded task is less mathematically 

sophisticated than the implicit subtraction needed for the bounded task, children should perform 

better on the unbounded task at a younger age. Indeed, because of the reduced mathematical 

constraints on the task, any child who knows the order of the numbers, and knows that numbers 

coming later in the list represent greater quantities, can perform quite well on the unbounded 

task.  A failure of mensuration on the unbounded task would indicate a failure to understand this 

basic ordinality of numbers, resulting in random performance.  

The present study examines young children’s integer estimation using both the bounded 

and unbounded number-line tasks.  For the bounded task, we compare the Cyclic Power Model 

(CPM), Subtraction Bias Cyclic Model (SBCM), linear and logarithmic models as predictors of  

children’s performance. For the unbounded task, we compare the Scallop Power Model (SPM), 

linear and logarithmic models. By comparing data from the two different tasks, we see how the 

demands of each task influence children’s responses. We hypothesize that younger children will 

complete the unbounded number-line task more accurately than the bounded number-line task, 

because the former requires lower mensuration skills than the latter. 

Method 

Participants 

Sixty-two children (25 girls, 38 boys, Mage = 5 years, 11 months, age range 3;6–8;0) were 

recruited from preschool and after-school programs located on a campus of the University of 

California. Children received a small toy (e.g., a stuffed animal or a ball) worth approximately 
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$5 when they signed up to participate. No compensation was given at the time of testing.  

Families were not asked about their income, race or ethnicity. Because the parents served by 

these centers are almost all university faculty or graduate students, parent education levels were 

high. 

Apparatus and Stimuli 

All stimuli were presented on a 17-inch MacBook Pro laptop computer. The resolution of 

the monitor was 1920 by 1200 pixels. Participants sat approximately 30 inches away from the 

screen.	
  	
  

On each trial, participants were presented with a number line and target number (see 

Figure 1). The number line was centered on the y-axis of the screen. The target number was 

placed half an inch below the left boundary of the number line (in the position marked “X” on 

Fig. 1). The number line was constructed from 3-pixel-thick red lines. A 20-pixel-high vertical 

mark showed the start of the number line. This left boundary was labeled with the number "0." A 

similar vertical mark indicated the right end of the number line and was labeled with the number 

"20" in the bounded task, and with the number “1” in the unbounded task. The two vertical 

marks were connected at the bottom by a red horizontal line (i.e., the number line). The target 

numbers ranged from 2 to 19 and were chosen randomly from a uniform distribution from trial to 

trial. 

	
  To prevent participants from using reference points external to the number line (e.g., the 

left edge of the monitor, center of the monitor, etc.), we varied the location and physical length 

of the number line. For each trial the number line was randomly placed between 100 and 200 

pixels from the left side of the screen. The length of the bounded number line was randomly 

varied from 200 to 600 pixels, in 20-pixel steps. The length of the unbounded number line was 
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randomly varied from 10 to 30 pixels, in 1-pixel steps.  This equated the unit size of the two 

number-line conditions.   

To keep children interested in the task, the experiment was programmed with visual 

reinforcement.  After every trial, a cartoon image appeared in a random place on the screen for 

1.5 seconds.  On a variable ratio schedule (about every 5 trials), a unique fractal image gradually 

appeared on the screen and then gradually disappeared.  Finally, on a slightly longer variable 

ratio schedule (about every 8 trials) an animation played. This combination of reinforcements 

was effective at maintaining most children’s interest in the task. The reinforcement was given 

regardless of the values input by the child. 

Procedure 

 Children were tested individually, in a quiet room at their child-care center. Each child 

completed two sessions: one for the bounded task, another for the unbounded task. Because the 

children’s performance on the bounded number-line task is relatively well understood, we had all 

participants complete the unbounded number-line task first. This ensured that children’s 

unbounded-task performance was not influenced by prior experience with the bounded task3. 

Unbounded number-line task. The experimenter introduced the task by saying, “This is a 

little number line, see? Here’s zero, and here’s one. And all the other numbers go after one, 

right? So they’ll go over here . . .  (experimenter traces an imaginary line back and forth on the 

screen, extending rightward from the 1) . . . In this game, a number will show up there 

(experimenter points to the location on the screen where the target number will appear), and you 

have to drag this little mark (experimenter demonstrates how to move the cursor) to where the 

number should go.” 

To move the mark, the child pressed and held the button on the track pad (some of the 
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younger children needed the experimenter to hold the button down for them, so they could just 

move the mark) and then dragged the cursor over the right boundary (labeled “1”). At this point, 

a gray mark appeared over this boundary (see Figure 1), and a horizontal line connecting the 

grey mark to this boundary appeared.	
  

Children could freely move the gray mark, dragging it back and forth, releasing it and 

dragging it again, without submitting a response. When the child was satisfied with the 

placement of the mark, he or she pressed the space bar to submit the response. (If the 

experimenter was helping to hold the track pad button down, he or she waited to release the 

button until after the child had pressed the space bar.) Children’s reaction times and accuracy (to 

the pixel) were recorded.	
  Each child was presented with three practice trials and 40 experimental 

trials. Each session typically lasted less than 20 minutes.  

Bounded number-line task. This task was the same as the unbounded task, except that 

the experimenter introduced it by saying, “This is a number line, see? Here’s zero, and over here 

is twenty. In this game, a number will show up there (experimenter points to the location on the 

screen where the target number will appear) and you have to drag this little mark (experimenter 

demonstrates how to move the cursor) to where the number should go.”  

In the bounded task, the gray mark appeared when the child moved the cursor over the 

left boundary (labeled “0”). The child then moved the gray mark to the estimated target location, 

somewhere on the line between the lower and upper boundaries. 

Results 

Below, we present analyses at both the group and individual levels. We first present an 

analysis of grouped data.  This analysis is comparable to those in the literature that describe 

children’s performance as either logarithmic or linear, including the studies that posit a 
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logarithmic-to-linear shift (e.g.,Barth & Paladino, 2011; Opfer & Siegler, 2007; Siegler & Opfer, 

2003).  We ran the group analysis to check that our bounded number-line data were comparable 

to data in the extant literature (i.e., revealing a logarithmic-looking pattern for young children 

and a more linear-looking, CPM pattern for older children).  If the developmental trend in 

bounded number-line performance is, as we hypothesize, a result of changes in mensuration 

skills, then the same developmental trend should not be found on the unbounded number-line 

task.  

All children's data were included in the group analyses, but only data from children who 

completed at least 20 trials were included in the individual analyses. Three children did not 

complete 20 trials in either of the two sessions.  Another 15 children (5 in the bounded number 

line task; 10 children in the unbounded number line task) completed more than 20 trials, but did 

not complete the full session. Finally, six children dropped out between the first (unbounded 

task) and second (bounded task) sessions. 

Group-level Analyses 

Data from all the children (including those who failed to complete one or both sessions) 

were included in the group analysis. Prior to analyzing the group data, we removed individual 

data points (i.e., individual observations) that were under 10 percent or over 600 percent of the 

target number (i.e., outliers)4.  These constraints eliminated 7.6 percent of the data. We 

conducted separate analyses of the data from younger children (ages 3-6 years, N=48) and older 

children (ages 7-8 years, N=14). We separated children into these age groups because past 

research has shown a shift in response patterns between the ages of six and seven for familiar 

ranges in number line tasks (e.g., Barth & Paladino, 2011; Opfer & Siegler, 2007; Slusser et al., 

2012).  We calculated the mean estimate of each target number from all trials for each condition 
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(bounded and unbounded) by age group.  

 Bounded Number Line. Using generalized non-linear least squares (gnls) methods, we 

compared five models: (1) the linear Cyclic Power Model (CPM) with two reference points (the 

bounds of the number line); (2) the CPM with three reference points (the bounds and the 

midpoint of the number line); (3) the Subtraction Bias Cyclic Model (SBCM) with two reference 

points (the bounds of the number line); (4) the linear model; and (5) the logarithmic model. We 

included the CPMs because prior research has shown that participants use the subtraction 

strategy to complete the bounded number line task (Barth & Paladino, 2011; Cohen & Blanc-

Goldhammer, 2011).  We included the linear and logarithmic models because these have been 

the models used most often in the number-line literature (e.g., Siegler & Opfer, 2003, Siegler, et 

al., 2009). Finally, we included the SBCM in order to test our hypothesis that poor mensuration 

skills account for the negatively accelerating pattern of data produced by younger children on the 

bounded task.  Because the models have different numbers of parameters, we compare the 

relative fit of models using the BIC.  The BIC is a measure of model fit that corrects for the 

number of parameters present (a lower BIC indicates a better fit). The model that had the lowest 

BIC was judged to fit the data best.   

 Data from the younger children as a group were best fit by the logarithmic model (see Figure 

2), indicating that these children did not use the subtraction/division strategy captured by the 

CPM.  The logarithmic model is a negatively accelerating function (slope = 4.78, SE = 0.25; 

Intercept = 1.5, SE = 0.57). Overall, the average error variance was rather low (about 4.8).  There 

was a significant negative linear relation (slope = -0.08, SE = 0.03) between target number and -

SD, F(1,16)=6.6, p=.02, r2=.29. This negative relation indicates that the participants’ error 

decreases as target number increases.  This is exactly the pattern one would predict if upper 
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bound interfered with the participants’ responses.  Figure 2 shows participants’ responses for 

each target number.  The figure reveals that participants’ estimates hit the upper bound for all 

target numbers 3 and higher.  This pattern strongly suggests that the logarithmic pattern reported 

in the literature is an artifact of the bounded nature of the task, rather than an indicator of how 

participants’ underlying quantity representations are organized.  The individual analyses (below) 

revealed more about this pattern.   

 Data from the older children were best fit by the two-reference-point CPM (see Figure 2), 

indicating that these children did employ a subtraction/division strategy, and used only the two, 

labeled endpoints of the line for reference.  The estimated bias was negatively accelerating (β = 

0.76, SE = 0.05). The bias was significantly less than 1 (T > 4.0). Figure 2 plots participants' 

responses as a function of target number.  Overall, the average error variance was rather low 

(about 2.7).  There is no linear relation between target number and SD, F(1,16)=1.2, ns.  

Note that if only the logarithmic and linear models are compared, the linear model does 

fit these data better than the logarithmic one. In other words, our data replicate the well-known 

‘logarithmic-to-linear shift.’ However as noted above, the logarithmic function results at least in 

part because participants’ responses are inhibited by the upper bound, and the ‘linear’ pattern is 

not actually linear—it is better fit by the CPM (replicating the findings of Barth & Paladino, 

2011, and Cohen & Blanc-Goldhammer, 2011)  

Unbounded Number Line. Using generalized non-linear least squares methods, we 

assessed the fit of the linear model, the logarithmic model, and three Scalloped Power Models 

(SPMs). We included the SPMs because Cohen and Blanc-Goldhammer (2011) showed that 

participants use an addition strategy to complete the unbounded number line task.  We included 

the linear and logarithmic models because these have been the models used most often in the 
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number-line literature (e.g., Siegler & Opfer, 2003; Siegler, et al., 2009.).  The model that had 

the lowest BIC was judged to fit the data best.   

 Data from the younger children were best fit by the Multi-Scalloped Model (see Figure 3), 

indicating that these children used an addition strategy.  The estimated bias was positively 

accelerating (β = 1.52, SE = 0.01).  The bias was significantly greater than 1 (T > 40.0) and 

resulted in substantial overestimation of the quantities associated with the target integers.  The 

estimated size of the working window of numbers (d) was 7.0 (SE=0.29), meaning that these 

children estimated the distance to about 7 before starting from one again. Figure 3 plots 

participants' responses as a function of target number.  Overall the average error variance was 

rather large (about 14.5).  Variance in the data was scalar, meaning that there was a significant 

linear relation between target number and SD, F(1,16)=813, p<.0001, r2=.98.  

 Data from the older children were also best fit by the Multi-Scalloped Model (see Figure 3), 

again indicating that these children too used an addition strategy.  The estimated bias was 

positively accelerating (β = 1.42, SE = 0.01).  The bias was significantly greater than 1 (T > 

40.0) and resulted in substantial overestimation of the quantities associated with the target 

integers. The older children’s’ bias was significantly smaller than the younger children’s bias (t > 

5.0), meaning that the older children estimated the positions of numbers more accurately than the 

younger children did. The estimated size of the working window of numbers (d) was 6.3 

(SE=0.63), meaning that the older children estimated the distance to about 6 or 7 before starting 

from one again. Figure 3 plots participants' responses as a function of target number.  Overall the 

average error variance was rather large (about 13.0).  There was a significant linear relation 

between target number and SD, F(1,16)=134, p<.0001, r2=.89, meaning that variance was scalar.  

 In sum, children from both age groups used the same strategy (addition) to complete the 



	
   	
   	
   19	
  

unbounded number-line task, and they showed similar biases. However, older children produced 

more accurate estimates than younger children did. 

Individual-level Analyses 

 To investigate whether these patterns held true for individual children, we conducted the 

same model fits on individual participants’ data as we had on the grouped data. Only data from 

children who completed at least 20 trials in a session were analyzed, because this was the 

minimum number of trials required to get a robust estimate of performance from an individual 

child. Below we summarize the results by age group: 4-year-olds (n=9), 5-year olds (n=27), 6-

year-olds (n=11), and 7-year-olds (n=10). Because there was only one 3-year-old and one 8-year-

old, we did not include them in these reports.   The online supplement contains examples of data 

from individual children in each age group that were best fit by each of the assessed models.   

 Bounded Number Line. First, the overall fit of all the models was better for older children 

(r=0.87, p<.001; see Figure 4).  Four-year-olds averaged an r2= 0.17, whereas seven-year-olds 

averaged an r2=0.75.  This indicates that younger participants produced noisier data than older 

participants, and that the model estimates were therefore more reliable for older children. 

 Figure 5 presents the proportion of children best fit by each model for each age group. Note 

that the results contradict some well-known findings from the extant literature. Developmental 

change on the bounded task has been described as a logarithmic-to-linear shift (e.g., Siegler et 

al., 2009). In contrast, we found that the proportion of children best fit by the linear model 

actually decreased with age.  Moreover, the linear model fit the fewest children overall.  

Conversely, the proportion of children best fit by the logarithmic model actually increased with 

age.   

These findings are undoubtedly driven by the inclusion of variations of the Cyclic Power 
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Model in the analysis.  When it comes to describing the performance of children who are skilled 

at the mensuration techniques for the bounded task, the standard Cyclic Power Model (CPM) 

usually fits better than a simple linear function. Thus, many children whose performance would 

be described as ‘linear’ in the earlier studies are actually better described (and thus are described 

here) by the CPM.  

Similarly, the Subtraction Bias Cyclic Model (SBCM) does a good job of describing the 

performance of children who are unskilled at the mensuration techniques needed for the bounded 

number-line task.  In previous studies, these data would have been classified as ‘logarithmic,’ 

because a log function fits them better than a linear function.  

In the present analysis, the proportion of children best fit by the standard CPM was 

relatively high across age groups.  And although the fit of the CPM to the youngest children’s 

data was not as good as the fit for the older children, the CPM still fit better than the other 

models. The proportion of children best fit by the SBCM decreased with age. This is to be 

expected, because the SBCM describes the performance of children who have poor mensuration 

skills.  As mensuration skills improve with age, the proportion of children who are best fit by this 

model gets smaller. 

 Figure 6 shows the estimated bias by age group for the children fit by the CPM.  With the 

CPM model, a bias estimate of 1 indicates accurate performance.  As can be seen in the figure, 

the estimates of children’s bias get closer to one (reflecting more accurate performance) as the 

children get older. 

 Unbounded Number Line. The unbounded tasks reveal a very different pattern than the 

bounded task.  First, the overall fits of all the models were constant across ages (r=0.02, ns; see 

Figure 4).  The average r2=0.5.  In other words, in the unbounded task, younger participants did 
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not produce noisier data than older participants; the reliability of the model estimates was equally 

good for both age groups.  This is remarkable given that there is more inherent variability in the 

unbounded number-line data than in the bounded number-line data, due to scalar variance in the 

approximate number system. Despite this inherent variability, our models fit well to unbounded 

number-line data from individual children as young as four years old.  Figure 4 reveals that r2 

varied as a function of model fit.  Specifically, of the best-fit models, the Log model accounted 

for the least variance and the SPM accounted for the most variance.   

 Figure 5 shows the proportion of children in each age group who were best fit by each model. 

Just as in the bounded task, the linear model failed to explain much. In fact, for all age groups 

except six-year-olds, the linear model explained the fewest children’s data. The SPM model, on 

the other hand, explained the most children’s data for all age groups except six-year-olds. 

Finally, unlike in the bounded task, the proportion of children best fit by the Log model 

decreased with age.  This is important, because it shows that the logarithmic pattern of 

performance seen in the older children on the bounded task is not a reflection of their underlying 

integer representations (or else it would show up on the unbounded task too); the pattern is 

caused by the demands of the bounded task itself.   

 Figure 6 shows the results by age group for the children fit by the SPM.  In contrast to the 

bounded task, estimation performance on the unbounded task remains constant as a function of 

age (M=1.47).  These results suggest that even the youngest children have the mensuration skills 

to complete the unbounded number-line task. 

 Within-Subjects Comparison. Forty-eight of our participants completed at least 20 trials in 

both the bounded and unbounded number-line tasks.  This allowed us to look at within-child 

performance across tasks. We found that even for the same child, performance differed markedly 
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on the two tasks. Of the 48 children, only four produced a logarithmic pattern in both tasks; no 

child produced a linear pattern in both tasks; and 10 children who produced a CPM pattern in the 

bounded task produced a parallel SPM pattern in the unbounded task.  

 To explore these differences, we ordered the models in terms of the sophistication required 

(of the child) to implement each strategy: SBCM=0; Log=1; CPM=2; SPM=2; Linear=3. The 

SBCM represents the least sophisticated strategy for scaling line length to quantity; the linear 

model represents the most sophisticated strategy; the log and the power models fall in between. 

Such an ordering is not perfect, but it gives us a way of asking whether one task requires more 

sophisticated scaling than the other. And indeed, a paired-sample t-test reveals that children 

demonstrated more sophisticated scaling in the unbounded task than the bounded task (mean 

change = 0.67, SD=1.1, t(47)=4.3, p<0.001).  This means that many children who failed at 

scaling the bounded number line still succeeded at scaling the unbounded number line.  

The responses of the 4-year-olds demonstrate this effect.  There were six 4-year-olds who 

completed at least 20 trials in both tasks.  Figure 7 presents the data from each of these children 

in the bounded and unbounded number-line tasks.  Note that even children who produced very 

noisy and non-ordinal responses in the bounded number-line task produced ordinally correct and 

often precise responses in the unbounded number-line task.  This reflects the fact that the 

unbounded task requires less mathematical sophistication than the bounded task.  

Discussion 

We propose that age-related changes in bounded number-line performance (including the 

purported ‘logarithmic-to-linear shift’) reflect changes in the participants’ mensuration skills, not 

their integer representations. 

The bounded and unbounded number-line tasks are both cross-modal matching tasks in 
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which the participant must equate line length and quantity.  But this is more difficult to do in the 

bounded task (where subtraction or division is required) than in the unbounded task (where 

addition or multiplication is required). We propose that the shift in performance long seen on the 

bounded task (logarithmic-like performance in less skilled participants; linear-like performance 

in more skilled participants) is evidence not of a change in integer representations, but of 

improvements in participants’ ability to scale numbers to line lengths using subtraction or 

division. 

We find evidence for this when we look closely at the data. Participants’ use of 

subtraction or division on the bounded task produces an ogival (i.e., S-shaped) pattern of data—a 

pattern that is well described by the Cyclic Power Model, or CPM. (Hollands & Dyre, 2000). 

The majority of participants in our bounded number-line task were well fit either by the CPM  

(showing that they used subtraction or division to complete the task successfully), or by a 

variation of the CPM that we developed for this study, called the Subtraction Bias Cyclic Model, 

or SBCM.  The SBCM is a model of how participants perform on the task when they try to use 

the appropriate mensuration techniques (involving subtraction or division) to scale the numbers 

to line lengths, but lack the mathematical skill to do so successfully.  

When we model poor mensuration techniques on the bounded task using the SBCM, we 

find that this model describes the performance of younger children as a group better than the 

logarithmic model that has been used in the past. Furthermore, the fit of the SBCM gets worse as  

children get older-- as it should, because the SBCM is a model of unskilled performance.  

For individual children whose bounded number-line data are best fit by the CPM or SBCM, 

our cross-sectional data suggest that estimation bias (the systematic inaccuracy of their number-

to-line placement) changes with age. As has often been reported, very young children show a 
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negatively-accelerating pattern of bounded number-line estimation. But as children get older, 

their data begin to form a positively accelerating pattern (Barth & Paladino, 2011; Slusser et al., 

2012). Similarly, Cohen and Blanc-Goldhammer (2011) showed that adults also display a 

positively accelerating pattern in the bounded number-line task.  

A second line of evidence for our argument comes from another task that we gave to 

children—the unbounded number-line task.  This task is similar to the bounded task in many 

ways (i.e., it requires children to scale numbers to line lengths), but does not require subtraction 

or division. We believe that the early, negatively accelerating pattern of data found on the 

bounded task reflects children’s poor subtraction and division skills. If this correct, then children 

should exhibit the more mature, positively accelerating pattern from the outset in the less-

demanding, unbounded task.  

 Instead of giving children a Standard that is larger than any probe (i.e., a number line 20 units 

long, when the probe values range from 2 to 19), the unbounded number-line task gives children 

a Standard that is smaller than any probe: a number line 1 unit long. This forces participants to 

use addition or multiplication to convert between numbers and line lengths in the unbounded 

task. When participants use a strategy of addition or multiplication to do this, their data show up 

as a scalloped function that is well fit by the Scalloped Power Model, or SPM (Cohen & Blanc-

Goldhammer, 2011).  In the unbounded task, most of our participants’ data were best fit by the 

SPM, confirming that they did use addition or multiplication to complete this task.   

For individual children whose unbounded number-line data were best fit by the SPM, the 

shape of their estimation bias (a positively or negatively accelerating curve) was unrelated to 

their age.  In other words, there was no evidence of a shift (logarithmic-to-linear or otherwise), in 

how numbers are mentally represented. Such a shift, if it existed, should show up on any task 



	
   	
   	
   25	
  

where children estimated numerical magnitudes, including the unbounded number-line task. But 

it did not. Instead, on the unbounded task, very young children showed the same positively 

accelerating (i.e., exponential-like) pattern of data as older children and adults (see Cohen & 

Blanc-Goldhammer, 2011 for data from adults).  

We believe that young children perform like older children and adults in the unbounded 

task because they have the mathematical skill needed (addition or multiplication) to scale 

numbers on the unbounded number line. In this sense, data from the unbounded task data are a 

more accurate reflection of children’s underlying quantity representations than are data from the 

bounded task.  

Young children, older children and adults (see Cohen & Blanc-Goldhammer, 2011 for data 

from adults) all produce a positively accelerating pattern on the unbounded number-line task, but 

only older children and adults do so on the bounded task. Moreover, when we compared the 

same children’s performance across tasks, we found that children performed better (i.e., 

estimated integer quantities more accurately) on the unbounded task than on the bounded task.  

 Given these facts, it seems clear that young children’s early, negatively accelerating (i.e., 

logarithmic-like) pattern on the bounded task reflects their difficulty with the scaling required by 

the task itself, rather than the use of a different system of quantity representations. Our analysis 

of logarithmic performance found that about 40% of our participants were best fit by a true 

logarithmic function.  However, this proportion was not related to age. In other words (in 

contrast to previous accounts), we found no evidence that young children are more likely to 

produce logarithmic patterns of data than older children.  

There are several reasons why we might find only 40% of children producing a logarithmic 

pattern, whereas previous studies have found that virtually all young children do. First, previous 
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researchers (e.g., Booth & Siegler, 2006, 2008; Opfer & Siegler, 2007; Siegler & Booth, 2004) 

grouped participants’ data, and this grouping itself results in a logarithmic pattern (see Figure 1).  

Second, unlike previous studies, we included the SBCM to capture the pattern caused by a biased 

subtraction strategy—a pattern that can easily be confused for a logarithmic function.  Many 

children whose data would in previous studies have been called logarithmic were actually better 

fit by our SBCM. When these children’s data are removed, the relation between age and 

logarithmic patterns (i.e., the trend for younger children to produce more-logarithmic patterns) 

disappears. 

 For those children whose data are best fit by the logarithmic function, we are skeptical that 

this reflects a ‘logarithmically-organized’ quantity representation. If it did, we should expect to 

see the same pattern on the unbounded task, but we do not. In fact, the logarithmic pattern of 

responses was relatively rare in the unbounded task. Furthermore, analyses converged on the 

logarithmic model only for the noisiest data in the unbounded task, meaning that we cannot be as 

confident in describing these patterns as ‘logarithmic’ as we are in describing other patterns 

found in the data. 

 In spite of our hesitation to describe these patterns as truly logarithmic, they are intriguing in 

their own right. For example, the endpoints of the bounded number line may actually bias the 

errors of participants who are not using an implicit subtraction strategy, pushing them toward a 

negatively accelerating (i.e., logarithmic-like) function. Di Lollo and Kirkham (1969) showed 

that in a bounded cross-modal task, participants with poor mensuration skills exhibit a negatively 

accelerating pattern similar to the logarithmic pattern. (Di Lollo and Kirkham did not look 

specifically for the logarithmic pattern.)  The authors hypothesized that this negatively 

accelerating pattern results when participants overestimate smaller values, but recognize that 
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they are running out of room at the high end.  This recognition results in a shift to 

underestimation at larger values.   

The data from our unbounded task give a picture of mental number representations that is 

consistent with the existing literature on nonverbal number representations in children and 

adults. (In the developmental literature, this is often called the approximate number system or 

ANS). But it is unwise to assume that responses on a number-line task provide a direct window 

onto participants’ underlying quantity representations.  Instead, the responses are a function of  

the participant’s underlying quantity representation, their perception of the line length, their 

strategy for equating line length to quantity, and their mensuration skills.   

In our data, most participants’ mensuration skills were adequate to scale numbers to line 

lengths in the unbounded task.  Therefore, if appropriate models are applied to the data, the 

estimated bias parameter (β) will capture the biases resulting from (a) the underlying quantity 

representation and (b) the perception of line length.  If we set aside the bias associated with line-

length perception for a moment, we can interpret β as providing information about the 

psychological quantity representation.   

Treating our data in this way, we find that children’s perception of integer quantities 

shows scalar variance (a common signature of ANS representations across tasks and species, 

e.g., Cantlon, Cordes, Libertus, & Brannon, 2009; Cohen & Blanc-Goldhammer, 2011; Gallistel 

& Gelman, 2000; Gibbon, Church, & Meck, 1984). Furthermore, the positively accelerating bias 

indicates that the distance between the mean perceived quantity of integers increases as the 

quantity denoted by the integer increases. This combination of positively accelerating means and 

scalar variance is consistent with the signatures of the ANS as reported in the literature. 

 In sum, the bounded and unbounded number-line tasks are both cross-modal matching tasks.  
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However, the bounded number-line task requires more advanced mensuration skills. When these 

mensuration skills are lacking, participants produce a negatively accelerating pattern of data. In 

contrast, the unbounded number-line task requires less advanced mensuration skills, allowing it 

to reveal participants’ quantity representations more accurately. This is especially important 

when the participants are children, who often lack the subtraction skills needed to do well on the 

bounded task.  

In general, research using number-line estimation tasks must recognize that these, like all 

cross-modal matching tasks, are influenced by both stimulus and response biases. Analyses that 

ignore these biases and treat the tasks as direct measures of observers’ quantity representations 

are flawed. 

In particular, number-line estimation data (when properly analyzed) actually provide no 

support for the idea that children’s representations of integer magnitude shift from a 

logarithmically-organized system to a linearly-organized system during development. Instead, 

children’s performance-- on the bounded task only-- shifts from a negatively-accelerating pattern 

to a positively-accelerating pattern as children master the subtraction skills necessary to make the 

line lengths to the right and left of the tick mark sum to one.   

When these same children are tested on the unbounded number-line task (where scaling 

numbers to lines requires only addition), they produce a positively accelerating pattern, just as 

older children and adults do. Together, data from both versions of the number-line task indicate 

that changes in performance come from children’s growing ability to scale numbers to line 

lengths on the bounded task-- not a shift in the underlying quantity representations themselves. 
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Figure Captions 

Figure 1: Illustration of the bounded and unbounded number-line tasks.  The X shows where the 

target number (e.g., 13) appears on each trial. The dashed arrow indicates the movement of the 

tick mark (when dragged by the participant) from its starting position to the target position 

chosen as a response.   

Figure 2: Children’s average bounded number-line estimates by target number (left) and raw 

responses by target number (right).  Top row shows data from four- to six-year-olds; bottom row 

shows data from seven- and eight-year-olds. Note that the left-hand figures replicate the ‘log-to-

linear shift’—the developmental change in performance, about which much has been written. 

Figure 3: Children’s average unbounded number-line estimates by target number (left) and raw 

responses by target number (right).  Top row shows data from four- to six-year-olds; bottom row 

shows data from seven- and eight-year-olds. Note that the general shape of the response curve is 

the same for both groups. 

Figure 4: Average R2 by model fit by age for the bounded (top) and unbounded (bottom) 

number-line task.  

Figure 5: The proportion of children in each age group who are best fit by each model in the 

bounded (top) and unbounded (bottom) number-line task 

Figure 6: Average response bias for each age group (4-7) by Task (bounded and unbounded).  A 

response bias of β=1 represents accurate responding. Note that older children responded more 

accurately than younger children on the bounded task, but no such age-related difference was 

seen on the unbounded task. 

Figure 7:  Within-child comparison of data from 6 four-year-olds who completed both the 

bounded (left) and unbounded (right) task. 



	
   	
   	
   34	
  

	
  
	
  

	
  

 

 

Figure 1 

	
  
	
   	
  

!

!"#$#

%#

!"

#"

"#$%&'&!($)*'+!,-%'! .%*#$%&'&!($)*'+!,-%'!

20#



	
   	
   	
   35	
  

	
  

	
  
	
  

	
  

	
   	
  
	
  

	
  
Figure	
  2	
   	
  

Probe	
   Probe	
  

Probe	
  Probe	
  

Es
tim

at
e	
  

Es
tim

at
e	
  



	
   	
   	
   36	
  

	
  

	
   	
  

	
   	
  

	
  
Figure	
  3	
   	
  

Probe	
  

Es
tim

at
e	
  

Probe	
  

Es
tim

at
e	
  

Probe	
  

Probe	
  



	
   	
   	
   37	
  

	
  

	
  

	
  
	
  

	
  
Figure	
  4	
   	
  

0"

0.2"

0.4"

0.6"

0.8"

1"

3" 4" 5" 6" 7" 8"

r2#

Age#

Linear"

CPM"

SBCM"

Log"

0"

0.2"

0.4"

0.6"

0.8"

1"

3" 4" 5" 6" 7" 8"

r2#

Age#

Linear"
SPM"

Log"



	
   	
   	
   38	
  

	
  

	
  
	
  

Figure	
  5	
  
	
   	
  

0.00%$

20.00%$

40.00%$

60.00%$

80.00%$

3$ 4$ 5$ 6$ 7$ 8$

Percent'
of'Age'Group'
Fit'Model'

Age'

CPM$

Linear$

SBCM$

Log$

0.00%$

20.00%$

40.00%$

60.00%$

80.00%$

3$ 4$ 5$ 6$ 7$ 8$

Percent'
of'Age'Group'
Fit'Model'

Age'

SPM$

Linear$

Log$



	
   	
   	
   39	
  

	
  
	
  
	
  

Figure	
  6	
  
	
   	
  

0"

0.5"

1"

1.5"

2"

3" 4" 5" 6" 7" 8"

β"

Age$

Bounded"
CPM"

Unbounded"
SPM"



	
   	
   	
   40	
  

	
  
Bounded	
   Unbounded	
  

	
   	
  

	
   	
  

	
   	
  

	
   	
  

	
   	
  

	
   	
  
Figure	
  7	
  

	
   	
  

Log	
  

Linear	
  

CPM	
  

Linear	
  

SPM	
  

Log	
  

CPM	
  

SPM	
  

Log	
  

SPM	
  

SBCM	
  

Log	
  



	
   	
   	
   41	
  

Online	
  Supplement	
  
	
  

	
  

	
  
Bounded	
  

	
   SBCM	
   Log	
   CPM	
   Linear	
  

4	
  

	
   	
   	
   	
  

5	
  

	
   	
   	
   	
  

6	
  

	
   	
   	
  

	
  

7	
  

	
   	
   	
  

	
  

Unbounded	
  
	
   	
   Log	
   SPM	
   Linear	
  

4	
   	
  

	
   	
   	
  

5	
   	
  

	
   	
   	
  



	
   	
   	
   42	
  

6	
   	
  

	
   	
   	
  

7	
   	
  

	
   	
   	
  
	
  

	
  
Figure	
  1:	
  	
  Data	
  from	
  example	
  children	
  in	
  each	
  age	
  group	
  (ages	
  4,	
  5,	
  6	
  and	
  7)	
  who	
  were	
  best	
  

fit	
  by	
  each	
  of	
  the	
  models	
  in	
  the	
  bounded	
  and	
  unbounded	
  task.	
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Appendix	
  
	
  

Cross-modality matching tasks require the participant to translate perceived variation in 

one stimulus class (e.g., numbers, specifically integer magnitudes) into variation in another 

stimulus class (e.g., line lengths). In the case of the number-line task, the participant must 

convert an integer, I, into a psychological representation of quantity, ψq.  Assuming this 

conversion is not perfect, there is a stimulus transformation function (SI) that describes the 

conversion bias. This can be described by the following formula, 

ψq = SI(I) + eI,         (1) 

where eI is trial-by-trial variation or error. Note that the participant’s line-length response is 

based on ψq.  

Any response that requires the participant to convert a psychological representation into a 

physical response (in this case, to convert an integer magnitude into line length) also undergoes a 

conversion, termed a response transformation.  Because this transformation converts the 

psychological quantity (ψq) into a line, it is the inverse of the stimulus transformation function of 

a line (which converts line length into a psychological quantity), or 

YL=SL(ψq)-1 + eL,          (2) 

where YL is the line length response. Using Equation 1 and replacing ψq with SI(I), this results in 

the following formula, which relates an integer to the line-length produced by a subject,  

YL=(SL(SI(I) + eI) + eL)-1.         (3) 

Although many previous studies have tried to describe SI (i.e., the subject’s 

representation of integer magnitudes) most have ignored SL (the response transformation 

associated with changing a mental magnitude into a line length). In other words number-line 
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studies have typically assumed that people’s estimates of line length are direct and unbiased 

measures of their mental representations of integer magnitudes. This is a mistake. 

It has been reported in the literature that when the bounded number-line task is reversed 

(i.e., when a participant is shown a position on a number line and asked what number should go 

there), the resulting response curve is exponential rather than logarithmic (Siegler & Opfer, 

2003).  Equation 3 explains why this occurs. On the reversed (position-to-numeral) task, the 

participant converts the line length into a psychological quantity, and then converts that 

psychological quantity into a number. This is described by the reverse of Equation 4, or  

YL=(SI(SL(L) + eL) + eI)-1.         (4) 

Typically, stimulus biases (SI and SL) revealed through cross-modality matching tasks (SL 

in the equations above) follow Stevens’ Power Law (Stevens, 1956). Stevens’ Power Law states 

that the psychological representation of a stimulus (Ψ) is a function of the physical stimulus (φ) 

taken to a power, β, 

Ψ = kφβ,                                                                 (7)  

where k is a function of the units of measurement and β is the characteristic exponent that 

describes the perceptual bias (Stevens, 1956). A β > 1 indicates a positively accelerating (i.e., 

exponential) bias; β < 1 indicates a negatively accelerating (i.e., logarithmic) bias. Equation 1 in 

the text is derived directly from this Equation 7 in the Appendix (see Spence (1990).   
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Footnotes	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Here,	
  we	
  use	
  the	
  term	
  bias	
  in	
  the	
  psychophysical	
  sense.	
  	
  Specifically,	
  bias	
  is	
  the	
  difference	
  
between	
  an	
  observer’s	
  perception	
  of	
  a	
  stimulus	
  (or	
  concept)	
  and	
  the	
  objectively	
  accurate	
  
description	
  of	
  the	
  stimulus	
  (or	
  concept).	
  	
  
2	
  Here,	
  we	
  use	
  the	
  term	
  Perceptual	
  bias	
  to	
  mean	
  both	
  the	
  bias	
  associated	
  with	
  matching	
  a	
  
quantity	
  to	
  a	
  number	
  (often	
  called	
  the	
  numerical	
  bias)	
  and	
  the	
  bias	
  associated	
  with	
  
perceiving	
  the	
  length	
  of	
  a	
  line.	
  	
  
3Although	
  we	
  can	
  never	
  completely	
  rule	
  out	
  that	
  performance	
  on	
  the	
  unbounded	
  task	
  may	
  
influence	
  performance	
  on	
  the	
  bounded	
  task	
  our	
  data	
  strongly	
  suggest	
  this	
  is	
  not	
  the	
  case.	
  	
  
First,	
  our	
  participants	
  perform	
  the	
  same	
  on	
  the	
  unbounded	
  task	
  as	
  participants	
  in	
  the	
  
extant	
  literature	
  (who	
  had	
  no	
  experience	
  with	
  the	
  unbounded	
  task).	
  	
  Furthermore,	
  we	
  
found	
  far	
  less	
  within	
  participant	
  similarity	
  in	
  biases	
  across	
  tasks	
  than	
  we	
  anticipated.	
  	
  If	
  
performance	
  in	
  the	
  unbounded	
  task	
  influenced	
  performance	
  in	
  the	
  bounded	
  task,	
  we	
  would	
  
expect	
  much	
  more	
  within	
  participant	
  similarity.	
  	
  	
  
4	
  The	
  removal	
  of	
  outliers	
  is	
  beneficial	
  when	
  individual	
  data	
  points	
  have	
  large	
  leverage	
  on	
  a	
  
fitted	
  function	
  (Osborne	
  &	
  Overbay,	
  2004).	
  	
  In	
  the	
  present	
  dataset,	
  we	
  fit	
  multiple	
  non-­‐
linear	
  models	
  to	
  each	
  individual	
  participant’s	
  data.	
  	
  Because	
  there	
  were	
  relatively	
  few	
  data	
  
points	
  per	
  participant	
  (as	
  few	
  as	
  20	
  in	
  some	
  cases),	
  the	
  removal	
  of	
  outliers	
  facilitated	
  the	
  
convergence	
  of	
  the	
  statistical	
  models	
  for	
  a	
  subset	
  of	
  participants.	
  	
  Rather	
  than	
  remove	
  
these	
  participant’s	
  entire	
  dataset,	
  we	
  created	
  an	
  a	
  priori	
  formula	
  for	
  the	
  removal	
  of	
  outlier	
  
data	
  points	
  that	
  we	
  applied	
  to	
  all	
  participants.	
  Removal	
  of	
  these	
  outliers	
  does	
  not	
  favor	
  one	
  
model	
  over	
  another.	
  	
  	
  	
  	
  
	
  




