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ABSTRACT OF THE DISSERTATION

AdS Opacity, Soft Bombs, and Exotic Forces

by

Alexandria Nicole Costantino

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2022

Dr. Philip Tanedo, Chairperson

Effective field theory is arguably one of the most powerful theoretical tools that

we have at our disposal as physicists. It enables us to describe the low-energy physics

of a wide range of models with relatively few operators. In this thesis, we show how

so-called “irrelevant” (higher-dimension) EFT operators lead to a number of novel, yet

under-appreciated properties, both in flat and negatively-curved Anti de-Sitter spacetime.

In flat space, higher-dimension EFT operators give rise to spin-dependent quantum

forces which arise at loop level. We determine these forces and show how they can be

used to probe specific models of dark matter. We point out that the oft-discussed spin-

dependent Yukawa forces have specific properties and are not representative of the behavior

of generic potentials. Quantum forces from irrelevant EFT operators can and should serve

as complimentary benchmark cases when discussing potential bounds from various fifth-

force experiments. We discuss how the neutrino force, a famous example of a quantum

force, can be used to determine the Dirac/Majorana origin of the neutrino mass.
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In (4+1)-dimensional Anti de-Sitter spacetime, we show how the presence of

higher-dimension EFT operators implies a number of novel properties for bulk particles.

These include soft, high multiplicity cascade decays known as soft bombs and the merging

of spectral resonances into a continuum at high energies. The negative curvature of AdS

warps momentum scales, leading to a puzzle where particles created in one part of the space

can appear to be outside the region of EFT invalidity in another part of the space. We

provide the resolution to this puzzle and demonstrate the self-consistency of the EFT.

vii



Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 AdS and CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Dressed Propagators and AdS Opacity . . . . . . . . . . . . . . . . . 3
1.1.2 Soft Bombs and IR Emergence . . . . . . . . . . . . . . . . . . . . . 6

1.2 Exotic Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Exotic Spin-Dependent Forces from A Hidden Sector . . . . . . . . . 8
1.2.2 The Neutrino Casimir Force . . . . . . . . . . . . . . . . . . . . . . . 10

2 Dressed Propagators and AdS Opacity 14
2.1 Chapter Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Preliminary Observations . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 A Scalar Field in AdSd+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Free and Dressed Propagator . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Three Representations in Poincaré Coordinates . . . . . . . . . . . . 23
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Chapter 1

Introduction

The Standard Model of particle physics and general relativity have been immensely

successful, each providing accurate predictions of experimental observables over many length

scales. However there remain a number of puzzles and anomalies which prompt us to

consider the possibility that the Standard Model is not all that there is. The existence

of dark matter, dark energy, and the hierarchy problem are just a few of the puzzles that

motivate high energy physicists to theorize possible new physics.

In this thesis, two distinct extensions of the Standard Model paradigm will be

discussed. In the first extension, we introduce an extra spatial dimension such that the

Standard Model fields live on a 3-brane in a greater (4+1)-dimensional Anti-de Sitter (AdS)

spacetime. Later, we present “exotic” (i.e. non-Yukawa) potentials that can arise from

generic effective field theories (EFTs). We discuss applications such as Casimir-Polder

forces from neutrinos as well as how exotic forces offer a possible probe of certain dark

sector models.
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1.1 AdS and CFT

Why might one study quantum field theory in anti-de Sitter space in the first place?

AdS is a maximally symmetric background; it is a laboratory to understand Quantum

Field Theory (QFT) in more general curved spacetime. In AdS the negative curvature

regulates infrared divergences, which can teach us about flat space QFTs [8]. The AdS

metric is conformally flat, such that boundary conformal theories in flat space can be

studied by placing a conformal field theory (CFT) in the AdS bulk [9, 10]. But, perhaps

more importantly, AdS turns out to be a unique window into strongly coupled gauge theories

and into quantum gravity as a consequence of the AdS/CFT correspondence (for initial

works see [11–18], for some reviews see [19–22]), which identifies a dual CFT living on the

boundary of AdS.

QFT in AdS is also interesting for phenomenological reasons. Models in AdS

can solve the electroweak hierarchy problem [23] and can also be used to model strongly

coupled dark sectors [24–27] (via the AdS/CFT duality), both with reasonable modifications

to 4d gravity [28, 29]. Quantum fields in AdS also offer some novel predictions not found

in the Standard Model or particle extensions thereof. All quantum field theories exist on

a renormalization group “flow” between ultraviolet and infrared conformal field theories.

Thus, by better understanding CFTs (and by extension, QFT in AdS5), we gain a deeper

understanding of all QFTs.

The principal question we want to answer is: How do quantum dynamics affect

the propagation of a field in AdS spacetime? Here we lay down preliminary observations to

set the stage and sharpen the scope of our study.

2



1.1.1 Dressed Propagators and AdS Opacity

In Lorentzian flat space, propagators of perturbative quantum field theory are

proportional to

i

p2 −m2 +Π(p)
. (1.1)

Π is the self-energy, i.e. the bilinear operator arising from quantum loops. This self-energy

dresses the free propagator, yielding a Born series which sums to Eq. (1.1). Unitarity cuts

relate the imaginary part of Π to processes ending in asymptotic states. ImΠ resolves singu-

larities occurring in the timelike region p2 > 0, making leading loop effects an unavoidable

ingredient of QFT in the timelike region.

The presence of interactions results in a non-trivial self-energy operator Π dress-

ing the propagating field, as shown in Eq. (1.1) above. One representation of a dressed

propagator is as a Born series—a term of the series is pictured in Fig. 1.1. Another rep-

resentation of dressing is via the equation of motion following from the quantum effective

action, schematically √
|γ|DG−G ∗Π = −iδ . (1.2)

Here D is the differential operator giving rise to the free equation of motion, γ the back-

ground metric on which the field propagates, δ a Dirac delta and G is the propagator. A

perturbative treatment of the self-energy operator in Eq. (1.2) generates the Born series

representation.

The qualitative differences in field propagation between the free and interacting

theories are expected to occur most clearly in the timelike region of spacetime. This feature

is not specific to flat space or AdS. It is expected simply because in the timelike regime, the
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self-energy tends to develop singularities and become complex-valued. In particular, while

the solutions of the free homogeneous EOM would tend to be oscillating, in the interacting

theory Π can develop an imaginary component which introduces an exponential behaviour

in the solutions. This then translates as an exponential damping in the Feynman propagator

described in Eq. (1.2), where the effect comes from ImΠ. These rough considerations only

rely on the analytical structure of Π, not on the existence of asymptotic states, hence they

are valid for QFT in curved spacetime.1

The damping effect can be seen in Lorentzian flat space—though the position

space propagator behaves as a power law in the free theory, it exponentially decays in the

interacting theory. Assuming a constant imaginary part ImΠ ≡ mΓ in Eq. (1.1) gives rise

to a propagator decaying as

G(X,X ′) ∼ m
d
2
−1

(∆X)
d
2

e−
Γ∆X

2 (1.3)

in d+ 1−dimensions, with ∆X =
√
ηMNXMX ′N ∈ R a timelike interval. The free theory

behaviour amounts to having Γ = 0 in Eq. (1.3): there is no exponential decay in this

case. This exponential suppression means that particles with ImΠ ̸= 0 decay through time.

This interpretation cannot be used in curved spacetimes, where intuitions using asymptotic

states are not necessarily valid.

1We note in passing that the existence of asymptotic states are not necessarily guaranteed in curved space-

time. Consider the case of spacetime with a cosmological constant, of which AdS spacetime is a particular

example. On this background, there is no vacuum state of minimal energy (because energy is not a con-

served quantity). Without the existence of such a ground state, there are no asymptotic particle states,

which are defined as excitations of the ground state. See e.g. [30] for more discussion on the topic. See also

Sec. 2.2.1 of this thesis.
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∂AdS

Figure 1.1: A propagator dressed by generic self-energy insertions, Π, in the bulk of AdS.

In Lorentzian AdS space—as in any other background—the propagator is also

dressed by self-energy insertions, as pictured in Fig. 1.1. How does this dressed propagator

behave in AdS? Some limited intuition from flat space might be used, but in any case an

explicit, quantitative description of the effects of quantum dressing remains to be obtained.

In chapter 2 of this thesis, we solve the dressed equation of motion, Eq. (1.2) in

AdS5, for timelike momentum p2 > 0 by working in the position-momentum space derived

from Poincaré coordinates (pµ, z). We find that the dressing may induce an exponential

damping of the propagator in the pz ≫ 1 region (the conformally flat region, see chapter

2). This damping behaviour occurs even if a single point is in the conformally flat region,

i.e. pz< ≪ 1, pz> ≫ 1, which includes the boundary-to-bulk propagator with pz ≫ 1 as a

particular case. We refer to this exponential dampening as the opacity of AdS, or simply as

opacity.
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Opacity may have implications for extensions of the Standard Model of particles.

This is for example relevant for extra-dimensional and holographic dark sector models.

Consider the so-called “slice of AdS”—in which there are UV and IR branes that truncate

the bulk. The exponential damping of the propagator indicates that particles in the UV

region of the bulk cannot propagate to the IR brane (and vice versa) if they have sufficiently

high absolute 4-momentum—either timelike or spacelike. Thus we say that we say that the

IR brane effectively emerges for bulk propagators as their 4-momentum is decreased below

a certain special value. This gives rise to the concept of an emergent sector which can only

interact at sufficiently small values of absolute 4-momentum.

1.1.2 Soft Bombs and IR Emergence

In the “slice of AdS”, as described in the previous paragraph, opacity suppresses

propagation between UV and IR branes above some specific value of momentum p > Λ̃. For

sufficiently high four-momentum, the EFT will be invalid in the region near the IR brane.

Thus one may conjecture that for p≫ Λ̃, the theory is described by an effective Lagrangian

without an IR brane. A workaround to this conjecture may be possible via bulk cascade

diagrams. A cascade diagram can split the energy of an individual state into many offspring

states which have poffspring < Λ̃ and can thus propagate to the IR region.

Across the p ∼ Λ̃ transition, do higher-point bulk correlators also effectively lose

contact with the IR brane as the effective theory breaks down in that region of position–

momentum space? If so, we say that the IR brane effectively emerges for bulk correlators

as their energy is decreased through this KK–continuum transition.
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Another way of phrasing the previous question is to ask whether the cascade decays

induced by the bulk interactions may challenge the picture of effective emergence established

by opacity. Previous studies of these cascade decays in AdS (obtained from the dual CFT)

have indicated that they should be soft and highly spherical [31–37]. Hence in this thesis

will we refer to these cascade decays as soft bombs.2 Soft bombs can split the energy of

individual excitations across many offspring states. Thus the soft bomb näıvely appears to

be a way for a bulk field to propagate information to the IR brane even when the initial

excitation is in a regime where it is not sensitive to the IR brane. The picture of effectively

emergent IR brane physics thus depends on a careful understanding of soft bomb events

from bulk decays.

In chapter 3 of this thesis, we study soft bombs events in the regime in which

propagation to the IR brane is suppressed. There are multiple motivations for such a

study:

• Earlier work on soft bombs in AdS5 [40] did not take into account the opacity of AdS

and the subsequent breakdown of the effective theory in the IR region of AdS. For

p > λ̃, propagation to the IR brane is exponentially suppressed and thus KK modes

are no longer appropriate degrees of freedom. In this regime, we address kinematic

considerations, such as the soft and spherical nature of the events. We also calculate

occurrence probabilities for soft bomb events. To the best of our knowledge, such a

calculation has not been presented in the literature.

2We note that soft bombs have also been referred to in the literature as “soft unclustered energy patterns”

(SUEPs) [38,39], “spherical events” [40], “fireworks” [37] or “jets at strong coupling.”
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• Understanding the soft bomb rate allows us to complete the picture of the emergence

of the IR brane. Without soft bomb rates, it remains unclear whether the theory

can actually be described by a high-energy effective theory with no IR brane in the

continuum regime.

• Both IR brane emergence and the properties of soft bombs have phenomenological

implications for models of physics beyond the Standard Model that involve a strongly–

coupled hidden sector with an AdS dual. This holographic dark sector scenario has

been recently put presented in [1, 27], see also [24–26, 41–43] for earlier and related

attempts.

1.2 Exotic Forces

In the second portion of this thesis, our focus is not on (4+1)-dimensional AdS,

but rather on “exotic” (non-Yukawa) forces. Why might one study new exotic forces in the

first place?

1.2.1 Exotic Spin-Dependent Forces from A Hidden Sector

The existence of dark matter and dark energy suggests the possible existence of a

light hidden sector. To avoid experimental observation, the particles in this hidden sector

should have suppressed interactions with visible matter; these sectors are broadly referred

to as dark sectors. The existence of a dark sector may imply that nature exhibits new

macroscopic forces between visible sector particles. For example the exchange of a single

bosonic particle induces a Yukawa-like potential. A multitude of experimental searches
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probe the possible existence of spin-independent forces, see e.g. [44–46]. However, it is also

possible that the dominant effects of a hidden sector force could be spin-dependent. These

types of forces are more challenging to observe and relatively few experiments are designed

to probe them.

Both theoretical and experimental efforts have focused primarily on Yukawa-like

spin-dependent forces that arise from the exchange of a single massive boson. Spin-dependent

forces from the axion were identified in [47]. More recently, Dobrescu and Mociou presented

a dictionary between the field theoretical properties of new bosons and the types of spin-

dependent macroscopic forces that they generate [48]. See [49] for a recent discussion

that includes contact interactions, further phenomenology, and corrections of earlier litera-

ture. Conversely, experiments have been focused on the search for Yukawa-like forces, see

e.g. [5, 50,51].

In chapter 4 of this manuscript we present spin-dependent exotic forces. We define

exotic to mean forces that are not Yukawa-like. The complementarity of the exotic and

Yukawa-like potentials is manifested clearly in searches for spin-dependent forces. We point

out that spin-dependent Yukawa forces have specific properties and are not representative of

the behavior of generic spin-dependent potentials. Because of this, it is necessary to have a

set of benchmark scenarios beyond the spin-dependent Yukawa case to interpret and design

experiments. The main goal of chapter 4 is to fill a gap in the literature by presenting exotic

potentials generated by explicit dark sector models. 3

3See also [46,52,53] for related work on spin-independent potentials.
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1.2.2 The Neutrino Casimir Force

There exists a great body of experimental evidence [54–57] to suggest that neu-

trinos undergo flavor oscillations and therefore have mass. A neutrino can be described

as a 2-component fermion, and two distinct possibilities exist to generate its mass. One

possibility is that neutrinos mass mix with an extra SM-singlet, in which case both can be

described together in 4-component Dirac fermions. Alternatively, a neutrino mass can arise

from lepton number-violating mass insertions, in which case neutrinos can be described as

self-conjugate 4-component Majorana fermions.

The difficulty in distinguishing these possibilities lies in the “Majorana-Dirac con-

fusion theorem” [58, 59]. In any amplitude, a neutrino propagator with 4-momentum

p ≫ mν has mass insertions suppressed as m2
ν/p

2 and thus the mass generation mecha-

nism cannot be observed. This is shown diagrammatically in Fig. 1.2. By unitary cuts the

same property applies to external neutrino lines. 4

Massive neutrinos have a mass of order 0.1 eV (see e.g. the upper bounds being

placed by [61]). This is much smaller than the energy scale of most typical scattering exper-

iments, and therefore the confusion theorem makes the mass generation mechanism difficult

to observe. In the laboratory, one approach has been to search for processes that are forbid-

den for Dirac neutrinos but are allowed for Majorana neutrinos. Such processes include the

lepton number-violating neutrinoless double beta decay [62–64] and the neutrinoless double

4The confusion theorem is a property of the SM. In contrast, gravity knows about all degrees of freedom

and could identify whether an extra singlet neutrino exists, hence determining the nature of the neutrino

mass. Existing approaches require one to consider the cosmological history of the Universe and depend on

extra assumptions about physics beyond the SM (see e.g. [60]).
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electron capture [65–67].

Another approach is to study the macroscopic forces that arise from the exchange

of virtual neutrinos [7,68]. In the low energy effective theory of the weak interaction, pairs

of neutrinos can be exchanged, as shown in Fig. 1.3. This exchange results in long range

quantum 5 forces between Standard Model fermions [2, 69–74]. On distances the order of

1/mν or larger the confusion theorem no longer presents any issue as the neutrino mass is

not negligibly small at that length scale. Hence by measuring the potential, one could in

principle distinguish the Dirac versus Majorana nature of neutrinos.

Recently there has been renewed interest in this approach, for instance in [68].

These authors consider three generations of neutrinos (including mixing) in their calculation

of the potential between point sources. They again find that a distinction between Majorana

and Dirac neutrinos is possible when the separation of the point sources is on the order of

1/mν or greater.

The sources considered in the previous works are pointlike. There also exists a

force between extended macroscopic bodies: a neutrino Casimir force. In a realistic “fifth

force” experimental setup aimed at establishing the nature of the neutrino masses, it is

likely to be this Casimir force which is experimentally relevant, as the Compton wavelength

of massive neutrinos is on the order of a micron, much larger than the atomic scale. In

the case of sources with planar geometry, the potential is dominated by long wavelength

contributions and therefore it is not obvious how the confusion theorem applies. It is with

these motivations that in chapter 5 we present a study of the neutrino Casimir force in the

5Quantum forces have their leading contribution at loop level. See [1, 46, 53] for applications to dark sector

searches.
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Figure 1.2: The Majorana-Dirac confusion theorem. The blob represents an arbitrary SM
amplitude from which we single out an internal neutrino propagator. Dirac mass insertions
(top) and Majorana mass insertions (bottom) become negligible for p ≫ mν such that
amplitudes become equivalent in this limit.

plate-plate and point-plate configurations. These can then serve as approximations of the

force in more evolved geometries [75].
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ψ ψ

ψ ψ

νi νj

Figure 1.3: Quantum forces can be induced from the exchange of two neutrinos. The two
virtual neutrinos can in principle have different masses mi ̸= mj .
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Chapter 2

Dressed Propagators and AdS

Opacity

2.1 Chapter Abstract

We investigate how quantum dynamics affects the propagation of a scalar field in

Lorentzian AdS. We work in momentum space, in which the propagator admits two spectral

representations (denoted “conformal” and “momentum”) in addition to a closed-form one,

and all have a simple split structure. Focusing on scalar bubbles, we compute the imaginary

part of the self-energy ImΠ in the three representations, which involves the evaluation of

seemingly very different objects. We explicitly prove their equivalence in any dimension,

and derive some elementary and asymptotic properties of ImΠ.

Using a WKB-like approach in the timelike region, we evaluate the propagator

dressed with the imaginary part of the self-energy. We find that the dressing from loops
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exponentially dampens the propagator when one of the endpoints is in the IR region, ren-

dering this region opaque to propagation. This suppression may have implications for field-

theoretical model-building in AdS. We argue that in the effective theory (EFT) paradigm,

opacity of the IR region induced by higher dimensional operators censors the region of EFT

breakdown. This confirms earlier expectations from the literature. Specializing to AdS5,

we determine a universal contribution to opacity from gravity.

2.2 Introduction

2.2.1 Preliminary Observations

in the introduction chapter, the principal question we want to answer is: How do

quantum dynamics affect the propagation of a field in AdS spacetime? Here we provide

supplementary background on recent related work in AdS to set the stage and sharpen the

scope of our study.

A study of the dressed propagator involves evaluating loops in AdS and summing

the Born series. But propagators in position space are complicated functions of the AdS

geodesic distance, making every step a challenging calculation. Loops in AdS have been an

intense topic of study, see [76–114]. AdS loops are often evaluated in position space and

are given by fairly complex expressions. A summation of the Born series in the spectral

formalism in the O(N) model can be found in [101]. However the expressions involve

spectral integrals and are fairly difficult to handle for further analysis. Hence to reduce the

complexity of our calculations, we restrict our study to a scalar. We will study quantum

effects induced both from matter interactions and from gravity on this propagating scalar.
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We choose to investigate the dressed propagator by working in the position-

momentum space derived from Poincaré coordinates (pµ, z). Though some symmetry is

lost when going in this Poincaré position-momentum space, various representations of the

propagator become simultaneously available which take a simple form. Momentum space is

also the natural language to study the loop summation and to connect with flat space QFT

knowledge and tools. Among the above references, [112,113] and [114] involve calculations

in momentum space—the use of momentum space proves to be instrumental in these works.

Momentum space has also been used in diverse studies of tree-level amplitudes [115–137]

and in the calculation of cosmological observables [138–154].

When considering the effective field theory (EFT) of gravity, the theory necessarily

becomes strongly coupled in the IR region of the Poincaré patch. This feature was pointed

out at a qualitative level in [155], wherein it was suspected that rapid oscillations of the

timelike propagator may render this region inaccessible, hence censoring superPlanckian

effects. A more accurate analysis involving dressed propagators in the timelike region of

AdS has been initiated in [110] and [3]. The present work also serves to reinforce and

complete these EFT-oriented analyses.

As discussed in the introduction chapter, the imaginary part of the self-energy,

ImΠ, will play an important role in the field propagation in AdS. Consequently ImΠ will

be a central object in our study.

In flat space, ImΠ implements unitarity cuts. Unlike in flat space, AdS lacks

asymptotic states to define a standard S-matrix, and thus a standard optical theorem

[156,157]. However an AdS cut operation has been introduced in [158]—and a corresponding
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operation has been identified in the dual conformal theory [159]. In the scope of the present

work, we will note the interplay between the Im() and the AdS cut operations. We do not

delve into the CFT side apart from using some elementary results.

At leading order in the loop expansion, ImΠ is expected to be finite in any space-

time dimension. This is because the divergences renormalize local bilinear operators, which

contribute to the real part of Π. The mass term in D may for instance be renormalized. We

focus on a finite part of Π hence renormalization aspects do not require further discussion

and can be ignored.

2.2.2 Summary of Results

Working in Poincaré position-momentum space (i.e. in Fourier-transformed Poincaré

coordinates), three representations of the propagator become simultaneously available and

take simple forms: a closed-form “canonical” representation, a conformal spectral represen-

tation, and a momentum spectral representation. Each of these representations is useful to

illuminate different properties of the AdS loop.

We consider cubic couplings, such that the self-energies considered always have a

bubble topology. We obtain the following results.

• We derive the imaginary part of the simplest scalar bubble in the three representations

mentioned above. In the conformal spectral representation, AdS/CFT arises and we

recover various results from the literature. 1 We prove the equivalence of all three

1In the conformal spectral representation, we show that ImΠ takes the form of a sum over double-trace

propagators with coefficients that exactly match those from [79, 160]. When summing the Born series in

the conformal spectral representation, we recover the anomalous dimension found in [93].
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representations of ImΠ and show some of its elementary and asymptotic properties.

• We solve the dressed equation of motion for timelike momentum p2 > 0 in the con-

formally flat region pz ≫ 1 using a WKB-type approximation. We work in the

momentum spectral representation of ImΠ and the canonical representation of the

propagator. To render the calculations analytically tractable and obtain a closed-

form result, we employ kinematic and saddle-point approximations. This is a new

method of studying the dressed propagator.

• The dressing induces an exponential damping of the propagator in the pz ≫ 1 region.

This damping behaviour occurs even if a single point is in the conformally flat region,

i.e. pz< ≪ 1, pz> ≫ 1, which includes the boundary-to-bulk propagator with pz ≫ 1

as a particular case. This regime has no flat-space equivalent—the pz ≪ 1 region

vanishes if one Weyl-transforms to flat space. Renormalizable interactions may not

give rise to an exponential damping, but operators of sufficiently high dimension—as

present in an EFT—will induce it. This is pictured in Fig. 2.1.

• In the EFT paradigm, the EFT breaks down when higher dimensional operators give

contributions of the same order. In AdS this occurs at sufficiently large pz, i.e. in

the IR region of the Poincaré patch. Working in the EFT paradigm, we find that the

exponential damping censors the region of EFT breakdown.

• In case of a scalar field theory in AdS5, the leading damping occurs from the Φ3 −

Φ∂MΦ∂MΦ bubble. The timelike propagator behaves schematically as

G(p; z, z′) ∝ e−c
k
Λ
(pz>)2 (2.1)
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Figure 2.1: AdS boundary-to-bulk propagators in Poincaré position-momentum space
(pµ, z). For spacelike momentum the propagator decays exponentially for |p|z ≫ 1 (left).
For timelike momentum, exponential decay is induced by interactions at the quantum level
for c ξ2(pz)n ≫ 1. The dimensionless coupling ξ parameterizes some cubic interaction and
c ≪ 1 encodes a loop factor suppression. In both cases, AdS becomes “opaque” to propa-
gation at large enough z.

where the coefficient c = O(10−2) (see Sec. 2.6.4) includes suppression by a loop

factor and estimates from 5D dimensional analysis. Here k is the AdS curvature and

Λ characterizes the strength of couplings in the EFT.

• A partial contribution from bulk gravity in AdS5 leads to the suppression

G(p; z, z′) ∝ e−c′κ2(pz>)4 (2.2)

with c′ = O(10−6) and κ = k
MPl

. This effect depends only on the strength of gravity

κ.
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2.2.3 Outline

Our investigation takes the following steps. We lay down the basic formalism and

derive the scalar propagator in various representations in Sec. 2.3. Asymptotic properties

of Poincaré position-momentum space are also discussed. Using the conformal spectral

representation, we evaluate a bubble diagram and sum the Born series in Sec. 2.4. This

involves AdS/CFT—the CFT elements required for the calculations are also given. In

Sec. 2.5 we derive the expressions of ImΠ in the various representations, as well as their

equivalence proofs. We proceed to prove some general properties of ImΠ.

In Sec. 2.6 we adopt the EFT viewpoint and study the dressed propagator in

the conformally flat region. We present a WKB-like approach and justify some related

assumptions needed to tackle the calculations analytically. We use this approach to de-

rive the behavior of the dressed propagator in a given regime. Aspects of EFT validity,

arbitrary dimensions, higher order diagrams and deformed AdS backgrounds are also dis-

cussed. A universal contribution from gravity to opacity is then calculated in Sec. 2.7.

Closing remarks and possible future directions (including implications for field-theoretical

AdS model-building) are given in Sec. 2.8.

2.3 A Scalar Field in AdSd+1

We focus on a scalar quantum field theory in (d + 1)-dimensional Anti-de Sitter

(AdS) spacetime with d > 2. The action has the form

S = SEH +

∫
dd+1X

√
g

(
1

2
∂MΦ∂MΦ− 1

2
m2

ΦΦ
2 + . . .

)
(2.3)
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where SEH is the Einstein-Hilbert action. The metric of the AdS background is denoted as

γMN such that gMN = γMN + . . . where the ellipses represent fluctuations of the metric.

The background metric in Poincaré coordinates is

ds2 = γMN dX
MdXN =

1

(kz)2
(
ηµνdx

µdxν − dz2
)

(2.4)

with k the AdS curvature and z ∈ [0,∞]. 2 The AdS boundary is at z = 0, the Poincaré

horizon at z →∞. We use a mostly-minus metric such that η = diag(1,−1,−1, . . .).

The ellipses in Eq. (2.3) represent operators with more fields and/or more deriva-

tives, including interactions such as 1
3!Φ

3, 1
3!Φ∂MΦ∂MΦ. Interactions play a central role

in this work and will be specified further on. The Einstein-Hilbert action is expanded in

Sec. 2.7, which considers gravity-scalar interactions. In the other sections, we focus on scalar

interactions.

Regarding the free part of the scalar action, it is often useful to parameterize the

scalar mass as

m2
Φ ≡

(
α2 − d2

4

)
k2 . (2.5)

The Breitenlohner-Freedman bound is satisfied for α2 ≥ 0 in any dimension. In general we

have α ∈ R. Throughout this work we restrict to α ∈ R+ without loss of generality. In any

dimension the α = 1/2 value corresponds to a conformally massless scalar, see Sec. 2.3.3 for

details.

In this work we focus on exact AdS, with no departure or truncation of the metric

in the UV (towards the boundary) or in the IR (towards the Poincaré horizon). However our

2Poincaré coordinates render manifest the SO(1, 1)× SO(1, d− 1) subgroup of the SO(2, d) isometry group

of AdSd+1, which encodes dilatation and d-dimensional Poincaré isometries.
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results will also be relevant in the context of deformed AdS backgrounds. This is discussed

in Sec. 2.6.7.

2.3.1 Free and Dressed Propagator

The equation of motion for the free field—when all interactions are neglected—can

be obtained by extremizing the fundamental action. This gives

DΦcl ≡
1
√
γ
∂M (γMN√γ∂NΦcl) +m2

ΦΦcl = 0 (2.6)

where with have introduced the differential operator D. The Green’s function of D is the

propagator of the free field, G(0)(X,X ′) = ⟨Φ(X)Φ(X ′)⟩free, satisfying

DXG(0)(X,X ′) =
−i
√
γ
δ(d+1)(X −X ′) . (2.7)

In the presence of interactions, the propagator is dressed by self-energy insertions,

i.e. by bilinear operators resulting from the quantum dynamics. This is described using

the partition function and derived quantities such as the quantum effective action.

The dressed equation of motion can be obtained from the partition function

Z =

∫
D[fields] eiS (2.8)

by using invariance under an infinitesimal change of the field variable Φ(X)→ Φ(X)+ϵ(X).

An explicit derivation is given in App.A. The result for the propagator dressed by a generic

self-energy iΠ(X,X ′) is given by

DXG(X,X ′)− 1
√
γ
Π ∗G(X,X ′) =

−i
√
γ
δ(d+1)(X −X ′) (2.9)

where ∗ is the convolution product, A ∗B(X,X ′) =
∫
dd+1Y A(X,Y )B(Y,X ′).
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Treating the self-energy operator perturbatively, one can verify that Eq. (2.9) im-

plies the well-known Born series representation of the dressed propagator G =
∑∞

n=0G
(n)

with

G(X,X ′) = G(0)(X,X ′) +G(1)(X,X ′) + . . . = G(0)(X,X ′) +G(0) ∗ iΠ ∗G(0)(X,X ′) + . . .

(2.10)

For example, from the perturbative solving of Eq. (2.9), the first nontrivial term satisfies

DXG(1)(X,X ′) =
1
√
γ
Π ∗G(0)(X,X ′) , (2.11)

which gives the contribution Eq. (2.10) using that the solution to DΦ = J is given by

Φ(X) = i
∫
dd+1Y

√
|γ|G(0)(X,Y )J(Y ). The higher order terms are obtained recursively,

generating the Born series representation of G.

2.3.2 Three Representations in Poincaré Coordinates

The free Feynman propagator in the Poincaré coordinates (xµ, z) defined in Eq. (2.7)

is derived in Ref. [161]. Here we rather work in momentum space along the Minkowski slices,

using Fourier transform

Φ(pµ, z) =

∫
ddxΦ(xµ, z)eiηµνpµxν . (2.12)

When working in Fourier-transformed Poincaré coordinates, the d-dimensional Poincaré

isometries SO(1, d − 1) remains manifest, and the dilatation isometry becomes (pµ, z) →

(pµ/λ, λz). 3 One discrete symmetry is lost: the inversion XM → XM

(XNXN )
. As a counter-

part to position space, position-momentum space offers supplemental insights. These are

discussed throughout this section.

3This follows from requiring invariance of the Fourier transform Eq. (2.12) under these symmetries.

23



We define p2 =
√
ηµνpµpν . Notice that the quantity pz is invariant under dilata-

tions in addition to SO(1, d− 1) transformations. It is thus a good quantity to characterize

points in the position-momentum space. The pz invariant appears throughout this work.

In position-momentum space the EOM operator becomes

D = □+m2
Φ = k2

(
−z2p2 − zd+1∂z

(
z1−d∂z

)
+

(
α2 − d2

4

))
. (2.13)

The EOM of the propagator is then given by

DzG(0)(p; z, z′) = −i(kz)d+1δ(z − z′) . (2.14)

G(0)(p; z, z′) corresponds to the reduced 2-point function defined by factoring out a Dirac

delta function associated with overall momentum conservation,

⟨Φ(pµ, z)Φ(p′µ, z′)⟩free = G(0)(p; z, z′)(2π)dδ(d)(pµ − p′µ) . (2.15)

In the following we often use the shortcut G(p; z, z′) = Gp(z, z
′).

In Lorentzian space, the physical p2 takes both signs. Since we have chosen the

mostly minus metric, we have p2 < 0 for spacelike momentum, p2 > 0 for timelike momen-

tum. In the free theory, p2 is made slightly complex to resolve the non-analyticities arising

for timelike momentum. This corresponds to the inclusion of an infinitesimal imaginary

shift p2 + iϵ, ϵ → 0. ϵ > 0, the “Feynman prescription”, is consistent with causality and

defines the Feynman propagator. The iϵ shift will often be left implicit in our notations.

In Fourier space, the homogeneous solutions to the EOM are linear combinations

of

zd/2Jα (pz) , zd/2Yα (pz) , (2.16)
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using the bulk mass parameter α introduced in Eq. (2.5). It is also useful to use the basis

zd/2Iα

(√
−p2z

)
, zd/2Kα

(√
−p2z

)
, (2.17)

which shows explicitly the occurence of a branch cut for timelike momentum p2 > 0. In

this case one has the identities

Iα

(√
−p2z

)
Kα

(√
−p2z

)
=


iπ

2
Jα (pz)H

(1)
α (pz) if ϵ > 0

− iπ
2
Jα (pz)H

(2)
α (pz) if ϵ < 0

(2.18)

We now derive three different representations of the propagator.

Canonical Representation

A direct solving of Eq. (2.14) is possible using standard ODE techniques (see

App.A of [162]). In this reference a solving has been done for d = 4, but the general-

ization to arbitrary dimension is straightforward.

The propagator takes the general form

Gp(z, z
′) =

i

C
F<(z<)F>(z>) (2.19)

with z< = min(z, z′), z> = max(z, z′). The F<,> functions are linear combinations of the

solutions Eq. (2.16) and are determined such that the propagator decays at z → 0,∞. In

the timelike regime, this decay is ensured by the iϵ prescription. 4 An equivalent method is

to assume boundary conditions on branes placed at z ̸= 0,∞, and then send those branes to

z → 0 and z →∞. The overall coefficient C is related to the WronskianW = F<F
′
>−F ′

<F>

such that C =W (z)/(kz)d−1 [162].

4The iϵ is presumably replaced by a physical effect in the interacting theory. We explicitly show how this

occurs in Sec. 2.6.
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Since we have chosen α > 0, the condition that Eq. (2.19) does not diverge as

z → {0,∞} dictates that F<(z) = z2Iα

(√
−p2z

)
and F>(z) = z2Kα

(√
−p2z

)
. We thus

find

G(0)
p (z, z′) = − i

k
(kz)d/2(kz′)d/2Iα

(√
−p2z<

)
Kα

(√
−p2z>

)
(2.20)

with C = −k. In the timelike regime we obtain

G(0)
p (z, z′) =


π

2k
(kz)d/2(kz′)d/2Jα(pz<)H

(1)
α (pz>) if ϵ > 0

− π

2k
(kz)d/2(kz′)d/2Jα(pz<)H

(2)
α (pz>) if ϵ < 0.

(2.21)

Spectral Representations

The homogeneous solutions Eq. (2.16) depends on two external continuous param-

eters, α and p. The physical value of α is real and the physical value of p can be either purely

real or imaginary, but both of these parameters can be analytically continued everywhere

into the complex plane.

Each of these parameters can be used to develop a spectral representation of the

propagator. What is required is a spectral function ΩX(z, z
′) solution of the homogeneous

EOM DΩX(z, z′) = 0 and satisfying a completeness relation of the form

∫
dXΩX(z, z

′) ∝ δ(z − z′) (2.22)

where the integration is over some specified domain and where X is either α or p in our case.

As we will see below, an integral representation of G(0) can be easily obtained whenever

ΩX is known. The completeness relation can be difficult to guess directly. However it can

be built starting from the propagator, possibly with an appropriate analytic continuation

of the relevant parameter.
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Conformal Spectral Representation

Here we consider the spectral representation based on the bulk mass parameter α.

In this subsection we indicate explicitly the α dependence of G(0) and of D via subscripts.

The α parameter plays a central role in the AdS/CFT and CFT literature. α is directly

related to the conformal dimension of the operators in the conformal field theory, see Sec. 2.4

for further details.

A spectral function in α is found to be

Ωα(z, z
′) =

iα sin(πα)(kz)
d
2 (kz′)

d
2

π2
Kα

(√
−p2z

)
Kα

(√
−p2z′

)
. (2.23)

We find it satisfies the completeness relation

∫ i∞

−i∞
dα̂Ωα̂(z, z

′) = (kz)d+1 δ(z − z′)
k

. (2.24)

The direct proof of Eq. (2.24) is not trivial, we give it in App.B. The spectral function also

satisfies the homogeneous EOM Dz;αΩα(z, z′) = 0.

The propagator with bulk mass parameter α (i.e. with bulk mass (α2 − d2/4)k2)

expressed in the conformal spectral representation takes the form

G(0)
p,α(z, z

′) =
i

k

∫ i∞

−i∞
dα̂ P (α̂, α) Ωα̂(z, z

′) , P (α̂, α) =
1

α̂2 − α2
. (2.25)

One can notice that Dz;αΩα(z, z′) = 0 implies

Dz;αΩα̂(z, z′) = (α2 − α̂2)k2Ωα̂(z, z
′) . (2.26)

By using Eq. (2.26) and the completeness relation Eq. (2.24), one can show that Eq. (2.25)

obeys the EOM.
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One can also verify that the spectral function satisfies

Ωα(z, z
′) =

α

2π

(
G(0)
p,α(z, z

′)−G(0)
p,−α(z, z

′)
)
. (2.27)

This can be used to prove Eq. (2.25). Substituting Eq. (2.27) into Eq. (2.25), and using

that G
(0)
p,α(z, z′) ∝

(
z<
z>

)α
for large Re(α) > 0 as discussed in and below Eq. (2.39), we can

close the contour of the
∫
dα̂ integral of G

(0)
p,α̂(z, z

′) clockwise towards the positive reals and

the contour integral of G
(0)
p,−α̂(z, z

′) counterclockwise towards the negative reals. This picks

respectively the α̂ = α and α̂ = −α poles of the P (α̂, α) measure. The residues combine to

prove Eq. (2.25).

The conformal spectral representation obtained here amounts to the Fourier trans-

form of the so-called split representation of the AdS propagator, usually taken in position

space in the AdS/CFT literature. The split representation in position space involves a

convolution of two boundary-to-bulk propagators [163]. In our position-momentum space

formalism, such boundary convolution integral changes into a product. The “split” feature

simply corresponds to the fact that Ωα(z, z
′) factors into the product of the z2Kα

(√
−p2z

)
,

z′2Kα

(√
−p2z′

)
solutions. This is not surprising since Ωα(z, z

′) has to satisfy the homo-

geneous EOM for both z and z′. This dictates that Ωα(z, z
′) must factor into a product of

solutions of the free EOM.

Momentum Spectral Representation

Here we consider the spectral representation based on the absolute 4-momentum

p. In this subsection we need to indicate explicitly the p dependence of D in subscript.
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A spectral function in p is found to be

Ωp(z, z
′) =

p

k
(kz)d/2(kz′)d/2Jα(pz)Jα(pz

′) . (2.28)

It satisfies the homogeneous EOM. Moreover Ωp(z, z
′) satisfies the completeness relation

∫ ∞

0
dpΩp(z, z

′) = (kz)d−1δ(z − z′) . (2.29)

This follows directly from the identity

∫ ∞

0
dp̂p̂Jα(p̂z)Jα(p̂z

′) = z−1δ(z − z′) . (2.30)

The propagator with momentum p expressed in the momentum spectral represen-

tation takes the form

G(0)
p (z, z′) = i

∫ ∞

0
dp̂ P (p̂, p) Ωp̂(z, z

′) , P (p̂, p) =
1

p2 − p̂2
. (2.31)

One can notice that Dz;pΩp(z, z′) = 0 implies

Dz;pΩp̂(z, z′) = (p̂2 − p2)(kz)2Ωp̂(z, z′) . (2.32)

By using Eq. (2.32) and the completeness relation Eq. (2.29), one can show that Eq. (2.31)

obeys the EOM. We note that for timelike p̂ the spectral function is given by

Ωp̂(z, z
′) =

p̂

π

(
G

(0)
p̂+iϵ(z, z

′)−G(0)
−p̂+iϵ(z, z

′)
)

(2.33)

using that

J(x)H(1)(y) = −(J(−x∗)H(1)(−y∗))∗ (2.34)

for Im(x, y) > 0.
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We see that the structure of these expressions is similar to those of the conformal

spectral representation. For instance Ωp has a split structure just like Ωα, since it satis-

fies the homogeneous EOM for both z and z′. The analogy is completed by extending

the integration over p̂ ∈ [−∞,+∞] —and including an overall factor of 1/2. This then

reproduces a structure similar to the integral Eq. (2.25) when taking spacelike momentum

p2 < 0 such that the poles are imaginary. It follows that Eq. (2.31) can be derived from

Eq. (2.33) by closing the contour of the p̂ integral. 5 Alternatively one could use the known

result, Eq. (10.22.69) of [164].

The form of the spectral function Eq. (2.33) is reminiscent of the Källén-Lehmann

spectral representation from flat space QFT (see e.g. [165, 166]). This is because using

Eq. (2.33) with Eq. (2.34) amounts to picking the discontinuity of G(0) across the branch

cut in p,

Disc[G(0)
p (z, z′)]p∈R+ =

π

k
(kz)d/2(kz′)d/2Jα(pz)Jα(pz

′) . (2.35)

Eq. (2.31) is then equivalent to

G(0)
p (z, z′) =

i

2π

∫ ∞

0
dp̂2

Disc[G
(0)
p̂ (z, z′)]p̂∈R+

p2 − p̂2
, (2.36)

which follows from Cauchy’s integral formula.

2.3.3 Asymptotics in Poincaré Coordinates

In Poincaré momentum space, the factorized structure of the propagator implies

that the asymptotic behaviour of the propagator can be independently understood for the

5One has G
(0)
p̂ ∝ e−Im p̂|z−z′| at large |p̂|. One closes the contour upward for both terms. The residues from

each term have opposite signs and add up.
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z and z′ endpoints. The behaviour is dictated by Bessel functions asymptotics, where the

relevant quantities to expand about are either the pz, pz′ invariants or the α parameter.

In contrast, notice that in full position space, the propagator admits asymptotic

behaviours as a function of the chordal distance ξ =
(z−z′)2−xµxµ

zz′ . Hence the asymptotic

behaviour in position space involves information from both endpoints, the endpoints are

not disentangled like in position-momentum space.

A given propagator has three distinct regimes: (pz< ≪ 1, pz> ≪ 1), (pz< ≫ 1,

pz> ≫ 1), and (pz< ≪ 1, pz> ≫ 1). Expanding the Bessel functions at fixed complex α,

the three asymptotic regimes are 6

G(0)
p (z, z′) ≈ −i

(
k2zz′

) d−1
2

sin (pz< − φ) ei(pz>−φ)

p
if pz, pz′ ≫ 1 (2.37)

G(0)
p (z, z′) ≈ −i

√
π

Γ(α+ 1)

(
k2zz′

) d−1
2

(pz<
2

)α+1/2 ei(pz>−φ)

p
if pz< ≪ 1 , pz> ≫ 1 .

(2.38)

G(0)
p (z, z′) ≈ − i

2kΓ(α+ 1)

(
k2zz′

)d/2(
Γ(α)

(
z<
z>

)α
+ Γ(−α)e−iπα

(
p2z<z>

4

)α)
if pz, pz′ ≪ 1

(2.39)

for α ̸∈ Z with φ = π(2α−1)
4 . Note that for spacelike momentum p2 < 0, the expressions

Eq. (2.37) and Eq. (2.38) are exponentially suppressed for |p|z> ≫ 1. Some other features

of these expressions are discussed further below.

6The exact criterion for Bessel asymptotics depends on α, throughout the paper we write simply pz ≪ 1,

pz ≫ 1 for convenience.
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The limit of large bulk mass/conformal dimension at fixed pz, pz′ is equivalent

to the limit taken in Eq. (2.39) when α ̸∈ Z. When Re(α) is large and positive, the first

term in Eq. (2.39) dominates. When Re(α) is large and negative, it is the second term that

dominates. This limit is useful for Mellin-Barnes-type integrals appearing in the conformal

spectral representation.

Conformally Massless Scalar

Here we further discuss the behaviour of the solutions at pz ≫ 1.

Consider a scalar in d + 1-dimensional flat space with mass m2
0. A conformal

Weyl transform from flat space (R = 0) to curved space (R ̸= 0) gives an additional mass

contribution uniquely fixed by the geometry,

m2
Φ =

d− 1

4d
R+m2

0 . (2.40)

We have R = −d(d+ 1)k2 in AdS. Setting m0 = 0 in Eq. (2.40) then gives

m2
Φ =

1− d2

4
k2 . (2.41)

We refer to a scalar with such mass as a conformally massless scalar—since it becomes

massless when Weyl-transforming from AdS to flat space.

In position-momentum space, a scalar field in the pz ≫ 1 regime behaves asymp-

totically as a conformally massless scalar, i.e. its mass is set to Eq. (2.41), or equivalently

has α = 1/2 in any dimension. This property can be noted by inspecting the solutions to

the EOM for arbitrary α at pz ≫ 1. The α dependence remains only in phases which are

irrelevant for solutions to the homogeneous EOM. An α-dependence also remains in higher

order terms O
(

1
pz

)
of the asymptotic expansion of the Bessel functions.
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This implies that G
(0)
p (z, z′) in the pz, pz′ ≫ 1 regime (Eq. (2.39)) is equivalent to

a massless propagator in d+1-dimensional flat space under a Weyl transformation. This is

shown in next section where we study the flat space limit in more details. In contrast, for

G
(0)
p (z, z′) in the pz< ≪ 1 and pz> ≫ 1 (Eq. (2.38)), only “one half” of the propagator has

such conformally massless behaviour. In next section we make clear the propagators in the

pz< ≪ 1, pz> ≪ 1 and pz< ≪ 1, pz> ≫ 1 regimes have no equivalent in flat space.

The Flat Space Limit

Here we study the flat space limit in order to bring perspective to the asymptotic

behaviours Eqs. (2.37)-(2.39). This limit is defined by the Weyl transform

γMN → (kz)2γMN (2.42)

which takes AdS space to flat space with a boundary at z = 0 [167].

Since the Weyl transform amounts to undoing the overall 1/(kz)2 factor of the

metric Eq. (2.4), such transform also amounts to take the AdS curvature to zero, k → 0

—keeping track of the k-dependence of the bulk mass. Such zero-curvature limit is best

taken by first switching from Poincaré coordinates to the y-coordinates

z =
eky

k
, γMNdX

MdXN = e−2kyηµνdx
µdxν − dy2 (2.43)

in which it is manifest that k → 0 gives the (d+ 1) Minkowski metric. The AdS boundary

is at y = −∞.

For any point which is not on the boundary, taking k → 0 gives z − z′ → y − y′,

kz → 1, while sending z, z′ to infinity. This last feature implies that, for any fixed p, there
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is no pz ≪ 1 regime in the flat space limit. Instead, any (pµ, z) point of the position-

momentum space ends up satisfying pz ≫ 1. We refer to pz ≫ 1 as the conformally flat

region.

This feature illuminates how the propagator behaves under the flat space limit. For

k → 0 both endpoints have pz ≫ 1, pz′ ≫ 1, such that the propagator is in the conformally

flat regime of Eq. (2.37). Taking kz → 1 and α → 1/2 in this expression reproduces the

massless scalar propagator in d+ 1-dimensional flat space with a boundary.

Conversely, the flat space limit makes clear that the pz ≪ 1, pz′ ≪ 1 and pz< ≪ 1,

pz> ≫ 1 asymptotic regimes shown in Eqs. (2.39), (2.38) have no flat space equivalent.

Instead these regimes vanish in the flat space limit. These non-conformally flat regimes

include the cases of one or two endpoints on the AdS boundary and are thus key for

AdS/CFT features. Our study of dressing will focus on the pz< ≪ 1, pz> ≫ 1 regime in

Sec. 2.6.

2.4 Bubble and Dressing in the Conformal Spectral Repre-

sentation

This section focuses on the self-energy and the dressed propagator in the conformal

spectral representation. In this representation, the AdS/CFT correspondence 7 naturally

arises [183].

The evaluation of the dressed propagator is the primary goal of this work as

7For AdS/CFT see [11–13], subsequent early works [14–18], and some yet unmentioned recent developments

[168–182]. Some lecture notes and reviews are [19–22].
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a whole. The advantage of the conformal spectral representation is that CFT objects

naturally appear, which greatly simplifies the evaluation and allows us to use known CFT

results. This approach allow us to obtain the dressed propagator written as a spectral

integral. Though exact, this representation of the dressed propagator is not convenient for

the purpose of obtaining a simple and intuitive idea of its behaviour in position-momentum

space. This aspect will instead be tackled in Sec. 2.5 and Sec. 2.6 with the help of the

momentum spectral and canonical representations.

From the dressed propagator in the conformal spectral representation, we can use

a simple trick to obtain a form of the self-energy, Π, itself. We will use this form in the

calculations of Sec. 2.5. The self-energy is a necessary component of our analysis in Sec. 2.6.

Some results of this section connect to earlier results from AdS/CFT works [93,

101]. The calculations we present here in momentum space offers various cross-checks with

these works, and perhaps a different perspective.

2.4.1 Bubble Diagram

We consider a cubic interaction of the form 8

S ⊃
∫
dXM

√
|γ|λΦΦ1Φ2 . (2.44)

The coupling has dimension [λ] = 5−d
2 , we introduce the dimensionless coupling

λ̂2 = λ2kd−5 . (2.45)

The external propagating field is chosen to be Φ. The Φ1, Φ2 fields form the self-

8 The results can be trivially extended to the cubic self-interaction of a scalar field via the interaction λ
3!
Φ3.

A symmetry factor of 1/2 has then to be taken in the bubble amplitude.
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energy bubble. In the conformal representation calculations it is convenient to use ᾱ for the

external field and no bar for the dummy variable α to be integrated over. The bulk masses

for Φ, Φ1,2 are parametrized as

m2
Φ =

(
ᾱ2 − d2

4

)
k2 , m2

Φ1,2
=

(
ᾱ2
1,2 −

d2

4

)
k2 . (2.46)

The respective free propagators are noted G(0) and G
(0)
1,2.

This cubic interaction gives rise to dressing by bubble self-energy diagrams as

shown in Fig. 2.2 (left). The bubble amplitude is given by

iΠ(p;u, v) = − λ2

(ku)d+1(kv)d+1

∫
ddq

(2π)d
G

(0)
1 (q + p;u, v)G

(0)
2 (q; v, u) (2.47)

where we have included the metric factors coming from the vertices. This Π is the self-energy

entering in the dressed equation of motion Eq. (2.9).

2.4.2 A Bit of AdS/CFT in Momentum Space

The elements of AdS and CFT needed for calculating the dressed propagator in the

conformal spectral representation are collected in App.C. Here we give a brief description

of these AdS/CFT ingredients together with an outline of the upcoming calculation.

In momentum space, the spectral function Ωα can be decomposed as the product

Ωα(z, z
′) ∼ K+

α (p, z)K−
α (p, z

′) (2.48)

where K±
α (p, z) are boundary-to-bulk propagators defined in App.C.5. Writing all the

propagators in this form for a given term of the Born series gives the diagram in Fig. 2.2

(center), where each line represents a K propagator.
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The z-coordinate of each internal vertex (blue points in Fig. 2.2) are integrated

over in each term of the Born series. Each cubic vertex gives rise to convolutions of three

K±
αi
(pi, z) with distinct αi and d-momentum pi. Each of these triple-K integrals give rise to

a CFT three-point correlator in d-dimensional Minkowski space, as given by

∫
dz
√
|γ|K±

α (p1, z)K±
α (p2, z)K±

α (p3, z) ∼ ⟪O1(p1)O2(p2)O3(p3)⟫ . (2.49)

This is AdS/CFT in action. The coefficient is given in Eq. (C.25). Only α and d-momentum

integrals remain. This is pictured in Fig. 2.2 (right).

Each bulk bubble gives rise to two CFT three-point correlators connected together

via the pairing described in App.C.3, forming a (non-amputated) CFT bubble. The evalu-

ation of the CFT bubble in momentum space is given in App.C.4

∫
ddq

(2π)d
⟪Oa(p)O1(q)O2(−p− q)⟫⟪Õ1(−q)Õ2(p+ q)Õb(−p)⟫ ∼ δabδ(α− α′) + s.t. (2.50)

where Õ denotes the shadow transform of O (see App.C.3) and s.t is short for shadow

transform.

Finally, the δ(α ± α′) arising from each CFT bubble eliminates a
∫
dα integral

from one of the G(0) connected to it. This implies that for any term of the Born series, a

single
∫
dα integral ultimately remains. This allows the Born series to be summed.

In the next sections we proceed with the calculation of the dressed propagator per

se.
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∂AdS ∂AdS ∂AdS

Figure 2.2: Left: A bulk line dressed by bubble self-energy diagrams. Center: Rewriting
using the conformal spectral (i.e. split) representation. Right: Structure after integrating
intermediate bulk points. Each solid red line represents a conformal bubble integral.

2.4.3 One Bubble Insertion

In this subsection, we work out the details of the G(1) term of the Born series

G =
∑∞

n=0G
(n) which is the term with one insertion, see Eq. (2.10). Computation of higher

terms is similar, and the full series will be summed in next subsection.

The G(1) term of the series reads

G(1) (z, z′) = G(0) ∗ iΠ ∗G(0) (z, z′) (2.51)

=

∫ i∞

−i∞
dα

∫ i∞

−i∞
dα′

(
i

k

)2

P (α, ᾱ)P (α′, ᾱ) Ω(0)
α ∗ iΠ ∗ Ω

(0)
α′ (z, z′)

with the measures

P (α, ᾱ) =
1

α2 − ᾱ2
, P (α′, ᾱ) =

1

α′2 − ᾱ2
. (2.52)

We single out the convolution appearing in Eq. (2.51),

Ω(0)
α ∗ iΠ ∗ Ω

(0)
α′ (z, z

′) =

∫
du

∫
dv Ω(0)

α (z, u) iΠ(u, v) Ω
(0)
α′ (v, z

′) (2.53)
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and introduce the conformal spectral representation for the bubble and the external legs.

We write all spectral functions in terms of the boundary-to-bulk propagators as shown in

Eq. (C.24), giving

∫
du

∫
dv Ω(0)

α (z, u) iΠ(u, v) Ω
(0)
α′ (v, z

′) (2.54)

=

(
1

4π

)4(λ
k

)2 ∫ du

(ku)d+1

∫
dv

(kv)d+1

∫ i∞

−i∞
dα1

∫ i∞

−i∞
dα2 P (α1, ᾱ1)P (α2, ᾱ2)×∫

ddq

(2π)d
K+
α (p; z)K−

α (p;u)K+
α1
(q + p;u)K−

α1
(q + p; v)K+

α2
(q; v)K−

α2
(q;u)K+

α′(p; v)K−
α′(p; z

′).

The diagram involves products of boundary-to-bulk propagators—it corresponds to Fig. 2.2

(center) with a single bubble.

In G(1) there are two triple-K integrals, one corresponding to each vertex. Using

results from App.C.5, we have

∫
du

(ku)d+1
K−
α (p;u)K+

α1
(q + p;u)K−

α2
(q;u) = cα,−α1,α2k

d/2−1⟪Õ(p)O1(−p− q)Õ2(q)⟫

(2.55)∫
dv

(kv)d+1
K+
α′(p; v)K−

α1
(q + p; v)K+

α2
(q; v) = c−α′,α1,−α2k

d/2−1⟪O(−p)Õ1(p+ q)O2(−q)⟫ .

(2.56)

We see that a CFT bubble integral arises in the last line of Eq. (2.54) when performing the

intermediate bulk point integrations. This is shown in Fig. 2.2 (right). The evaluation of

the CFT bubble in momentum space is given in Eq. (C.20). Both terms of the right-hand

side of Eq. (C.20) give identical contribution by shadow symmetry (α↔ −α).
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Putting the pieces together, we have

Ω(0)
α ∗ iΠ ∗ Ω

(0)
α′ (z, z

′) = 2δ(α− α′)
λ2kd−4

(4π)4
2πBO K+

α (pz)K−
α′(pz) (2.57)

×
∫
dα1dα2P (α1, ᾱ1)P (α2, ᾱ2)cα,−α1,α2c−α′,α1,−α2 ,

where BO is given in Eq. (C.19). In Eq. (2.57) we are left with two boundary-to-bulk prop-

agators associated with the two endpoints of G(1). Since α = α′ from the Dirac delta,

these two boundary-to-bulk propagators can be combined into a spectral function using

Eq. (C.24). We thus obtain

Ω(0)
α ∗ iΠ ∗ Ω

(0)
α′ (z, z

′) = δ(α− α′)λ2kd−4 1

4π
K+
α (pz)K−

α′(pz)B(α) (2.58)

= δ(α− α′)λ2kd−4 iB(α) Ω(0)
α (z, z′),

where we introduced the dimensionless bubble function

B(α) = −2 1

(4π)3
2πBO ×

∫
dα1dα2 P (α1, ᾱ1)P (α2, ᾱ2) cα,−α1,α2c−α,α1,−α2 (2.59)

= − 1

25π4+d/2
1

Γ(d/2)Γ(d/2− α)Γ(d/2 + α)

∫
dα1dα2

α1α2 sin(πα1) sin(πα2)

(α2
1 − ᾱ2

1)(α
2
2 − ᾱ2

2)

× Γ
(
α+α1+α2+d/2

2

)
Γ
(
α−α1+α2+d/2

2

)
Γ
(
α+α1−α2+d/2

2

)
Γ
(
−α+α1+α2+d/2

2

)
× Γ

(
−α−α1−α2+d/2

2

)
Γ
(
−α+α1−α2+d/2

2

)
Γ
(
−α−α1+α2+d/2

2

)
Γ
(
α−α1−α2+d/2

2

)
This bubble function is proportional to the one obtained in [93]. An additional cross-check

is obtained further below.

In Eq. (2.58) we have reduced the convolutions in G(1) into a nontrivial algebraic
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factor. We complete the evaluation by putting Eq. (2.58) back into Eq. (2.51), which gives

G(1) (z, z′) = G(0) ∗ iΠ ∗G(0) (z, z′) (2.60)

=

∫ i∞

−i∞
dα

∫ i∞

−i∞
dα′

(
i

k

)2

P (α, ᾱ)P (α′, ᾱ) δ(α− α′)λ2kd−4iB(α)Ω(0)
α (z, z′)

=
i

k

∫ i∞

−i∞
dαP 2(α, ᾱ)

[
−λ̂2B(α)

]
Ω(0)
α (z, z′).

2.4.4 The Spectral Born Series

The above steps can be reproduced for an arbitrary number of bubble insertions.

One finds the n-bubble contribution to be

G(n) (z, z′) =
i

k

∫ i∞

−i∞
dαP (α, ᾱ)

[
−λ̂2P (α, ᾱ)B(α)

]n
Ω(0)
α (z, z′). (2.61)

We see that a geometric series appears and hence the full Born sum can be performed. This

is because spectral transforms turn convolutions into products, as discussed in [101]. Here

we have recovered this feature via direct calculation. There is no analog to this property in

the momentum spectral representation, because unlike in the conformal representation the

bubble integral does not conserve the spectral variable p̂.

Summing the Born series, we find that the complete dressed propagator in the

conformal spectral representation is

∞∑
n=0

G(n) (z, z′) = G (z, z′) =

(
i

k

)∫ i∞

−i∞
dα

1

P (α, ᾱ)−1 + λ̂2B(α)
Ω(0)
α (z, z′) . (2.62)

Thus it turns out that in the conformal spectral representation the dressing amounts to

a deformation of the P (α, ᾱ) measure and λ̂2B(α) effectively has the role of a “spectral

self-energy”. In particular we can see that the α = ±ᾱ poles of the free spectral function

P (α, ᾱ) get shifted by the λ̂2B(α) term.
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2.4.5 Aside: Anomalous Dimension from the Dressed Propagator

For sufficiently small coupling λ̂ ≪ 1 we can approximate B(α) ≈ B(ᾱ) near the

α = ±ᾱ poles. Other poles exist whenever λ̂ ̸= 0, but the corresponding residues are

expected to be small for λ̂≪ 1 and are not our focus. 9 The B(ᾱ) constant can be seen as

a correction to the bulk mass,

m2
Φ|dressed =

(
ᾱ2 − d2

4
− B(ᾱ)

)
k2 . (2.63)

In the dual CFT, the correction amounts to an anomalous dimension γ shifting the conformal

dimensions ∆±. We define γ such that

∆±|dressed = ∆± ± γ =
d

2
± ᾱ± γ , (2.64)

with

γ = −B(ᾱ)
2ᾱ

. (2.65)

The fact that the sign of the correction flips between ∆+ and ∆− is enforced from the AdS

side since it is a correction on ᾱ and since ∆± = d
2 ± ᾱ. The sign flip is also clear from the

CFT side in order for shadow symmetry to be respected.

We find that the imaginary part of B(ᾱ) vanishes. To note this, close the contours

in Eq. (2.59) and use the residue theorem. The residues are real and hence by counting

9From direct evaluation [93, 101], B(α) features an infinite set of simple poles. B(α) goes to ±∞ when

approaching each pole from either side. Hence for any λ̂ ̸= 0, 1/(P (α, ᾱ)−1 + λ̂2B(α)) has an infinite set of

poles contributing to Eq. (2.62). For λ̂ ≪ 1 these extra residues are expected to vanish with λ̂. Otherwise,

there would be a discontinuity in G(z, z′) (and thus in the spectrum of operators obtained from related

Witten diagrams) when turning on λ̂. See [101] for a related study of B(ᾱ) in the O(N) model.
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factors of i, we determine that B(ᾱ) is purely real. This is consistent with the conclusions

in [93]. Thus the leading correction to ᾱ is purely real.

We find that our result Eq. (2.65) precisely matches the anomalous dimension

found in [93] (Eq. (2.37) in that reference). In that reference the anomalous dimension was

evaluated by looking at the log(∆X) term in a on-shell bubble amplitude in position space.

Here we have confirmed their result with a different approach. From Eq. (2.62) other higher

order effects such as wave-function renormalization could be studied.

2.4.6 The Self-Energy as a Spectral Transform

To obtain a useful form of Π in the conformal spectral representation, we apply

the EOM operator D on both sides of G(1)(z, z′) = G(0) ∗ iΠ ∗ G(0)(z, z′). Using the free

EOM Eq. (2.14), we obtain

DzDz′G(1)(z, z′) = −i 1√
|γ|z
√
|γ|z′

Π(z, z′) = −i(kz)d+1(kz′)d+1Π(z, z′). (2.66)

G(1) in the conformal spectral representation has been computed in Eq. (2.60). Using it in

Eq. (2.66) gives

DzDz′G(1)(z, z′) =
i

k

∫ i∞

−i∞
dαP 2(α, ᾱ)

[
−λ̂2B(α)

]
DzDz′Ω(0)

α (z, z′) (2.67)

= −ik3
∫ i∞

−i∞
dα λ̂2B(α)Ω(0)

α (z, z′) .

In doing so we have thus obtained

i(kz)d+1(kz′)d+1Π(z, z′) = iλ̂2k3
∫ i∞

−i∞
dαB(α)Ω(0)

α (z, z′) . (2.68)

This establishes that λ̂2k3B(α) is the spectral transform of (k2zz′)d+1Π. This is the form

of the self-energy that we will use in the conformal spectral calculation of Sec. 2.5.2.
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2.5 Representations and Properties of ImΠ

In this section we evaluate a self-energy bubble diagram iΠ in the three different

representation shown in Sec. 2.3. Our focus is on the imaginary part ImΠ. The equivalence

of the expressions in various representations is nontrivial, hence we demonstrate it explicitly

in Sec. 2.5.4. The various representations render manifest different properties of the self-

energy. These properties are discussed in Sec. 2.5.5.

Throughout this section the interaction considered is a cubic coupling between

three inequivalent real scalar fields

S ⊃
∫
dXM

√
|γ|λΦΦ1Φ2 . (2.69)

We introduce α1,2 to parameterize the bulk masses of the Φ1,2 fields. When working in

the conformal spectral representation, we change our convention α1,2 → ᾱ1,2 as done in

Sec. 2.4. Our results are trivially extended to a cubic self-interaction via the operator λ
3!Φ

3

and taking into account a 1
2 symmetry factor in the loop.

In our calculations, we focus on p2 close to the real line. For p2 ∈ R−, we are

permitted to stay exactly on the real line. The propagator has a branch cut for timelike

momentum however, so taking p2 ∈ R+ is not well defined (see Sec. 2.3.2). Instead, one

must give p2 a small imaginary part p2 → p2+ iϵ to resolve the branch ambiguity. We allow

for either ϵ > 0 or ϵ < 0 in our calculations. We show in Sec. 2.5.5 that the sign of ϵ controls

the sign of ImΠ.

The self-energy of Φ is given by

Πp(z, z
′) =

iλ2

(k2zz′)d+1

∫
ddq

(2π)d
G

(0)
1 (p+ q, z, z′)G

(0)
2 (q, z′, z). (2.70)
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Eq. (2.70) serves as the starting point for the following calculations.

2.5.1 ImΠ in the Canonical Representation

We substitute the canonical propagator Eq. (2.20) into Eq. (2.70) and use the in-

finite series-representations of the Bessel functions,

Iα(
√
−p2z) =

∞∑
m=0

1

m!Γ(m+ α+ 1)

(√
−p2z
2

)2m+α

(2.71)

Kα(
√
−p2z) = π

2 sin(πα)

∑
m=0

1

m!

(√
−p2z
2

)2m

× (2.72)[
1

Γ(m− α+ 1)

(√
−p2z
2

)−α

− 1

Γ(m+ α+ 1)

(√
−p2z
2

)α]
.

In this representation, the self-energy is

Πp(z, z
′) =

−iπ2λ2

4k4zz′ sin(πα1) sin(πα2)

∫
ddq

(2π)d

∞∑
s,t=0

∞∑
n,m=0

(−1)n+m+s+t

n!m!s!t!
× (2.73)

1

Γ(n+ α2 + 1)

1

Γ(s+ α1 + 1)

(qz<
2

)2s+α1
(
(p+ q)z<

2

)2n+α2 (qz>
2

)2t((p+ q)z>
2

)2m

×
(
qz>
2

)−α1

Γ(t− α1 + 1)
−

(
qz>
2

)α1

e−iα1πSign(ϵ)

Γ(t+ α1 + 1)



(
(p+q)z>

2

)−α2

Γ(m− α2 + 1)
−

(
(p+q)z>

2

)α2

e−iα2πSign(ϵ)

Γ(m+ α2 + 1)

 .
Πp(z, z

′) contains many terms, each of which go like

Πp(z, z
′) ∼

∫
ddq

(2π)d

(
(p+ q)2

)a (
q2
)b

(2.74)

for some a, b. To each term, we apply the identity

(
(p+ q)2

)a (
q2
)b

=

∫ 1

0
dx

(x (p+ q)2 + (1− x)q2)a+b

xa+1(1− x)b+1

Γ(−a− b)
Γ(−a)Γ(−b)

. (2.75)

The integral on the right-hand side converges for Re(a),Re(b) < 0. However, provided the

final result of the calculation is analytic in a, b, the result can be extended by analytical
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continuation such that restrictions on a, b are ultimately lifted. 10

Shifting the loop momentum l ≡ q + px, we obtain

Πp(z, z
′) ∼

∫ 1

0
dx

∫
ddl

(2π)d
(l2 + x(1− x)p2)a+b

xa+1(1− x)b+1

Γ(−a− b)
Γ(−a)Γ(−b)

. (2.76)

We evaluate the loop integral with

∫
ddl

(2π)d
(
l2 +∆

)c
=
i(−iSign(ϵ))d

(4π)
d
2

Γ
(
−c− d

2

)
Γ(−c)

∆c+ d
2 . (2.77)

Again, the loop integrals are performed in the domain of (c, d) where the integral on the

left-hand-side converges. The functions on the right-hand-side are analytic in c anywhere

away from c integer, hence the final result will be ultimately analytically continued in c.

The particular points where a divergence appear require renormalization. However such

divergences are in the real part of Π and are irrelevant for the study of ImΠ.

Putting Eqs. (2.75) and (2.77) together yields

Πp(z, z
′) ∼ i(−iSign(ϵ))d

(4π)
d
2

(
p2
)a+b+ d

2
Γ
(
−a− b− d

2

)
Γ(−a)Γ(−b)

∫ 1

0
dxxb+

d
2
−1(1− x)a+

d
2
−1. (2.78)

We identify the remaining integral as being the integral representation of the Beta function.

10Although the details of analytic continuation are usually left implicit, it is interesting to know how it

concretely happens in the intermediate steps. The Feynman parametrization Eq. (2.75) follows from the

integral representation of Gamma functions valid for Re(a),Re(b) < 0, which involves integrals along the

real line. The analytical continuation of the Feynman parametrization relies on analytically continued

Gamma functions, whose integral representation involves Hankel contours in the complex plane. It turns

out that the x parameter must follow a Pochhammer contour appropriately wrapping the 0 and 1 points

in the complex plane. The Pochhammer contour in x gives rise to the analytically continued integral

representation of the hypergeometric function, lifting the Re(a),Re(b) < 0 restriction in Eq. (2.75) and

ultimately giving rise to the analytically continued Beta function in e.g. Eq. (2.78).
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Evaluating the integral, we obtain 11

Πp(z, z
′) ∼ i(−iSign(ϵ))d

(4π)d/2
(
p2
)a+b+d/2 Γ(−a− b− d/2)

Γ(−a)Γ(−b)
Γ(a+ d/2)Γ(b+ d/2)

Γ(a+ b+ d)
. (2.79)

There are four terms in Eq. (2.73) corresponding to the four sign pairings of α1, α2

in the exponents. All but the zα1+α2
> term have either a ∈ N or b ∈ N or both. These terms

vanish trivially on account of the Γ(−a)Γ(−b) function in the denominator of Eq. (2.79).

The disappearance of the z−α1−α2
> term can also be shown by taking the imaginary part of

Π. In particular for even d when Γ(−a− b− d/2) diverges, we find that the z−α1−α2
> term

is purely real.

Making everything explicit again and taking the imaginary part, we have

ImΠp(z, z
′) = (2.80)

Im

[
π2λ2pde−iπ(α1+α2+d/2)Sign(ϵ)

4k4zz′ sin(πα1) sin(πα2)(4π)d/2

∞∑
s,t=0

∞∑
n,m=0

(pz
2

)2n+2s+α1+α2
(
pz′

2

)2m+2t+α1+α2

×

(−1)s

s!Γ(s+ α1 + 1)

(−1)t

t!Γ(t+ α1 + 1)

(−1)n

n!Γ(n+ α2 + 1)

(−1)m

m!Γ(m+ α2 + 1)
×

Γ(−n−m− s− t− α1 − α2 − d/2)
Γ(−n−m− α2)Γ(−s− t− α1)

Γ(s+ t+ α1 + d/2)Γ(n+m+ α2 + d/2)

Γ(s+ t+ n+m+ d+ α1 + α2)

]
,

where we removed the <,> subscripts because the expression is symmetric upon relabeling.

We regroup the complex exponential with the factors of p in Eq. (2.80) to make the
√
−p2

factor appear explicitly. This involves reabsorbing the iϵ into p2, where it remains implicitly,

11S.F. thanks M.Quiros for providing insight on this loop integral calculation in an early unpublished

work [184].
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yielding

ImΠp(z, z
′) =

∞∑
n,m,s,t=0

λ2π2

4πd/2k4 (zz′)1+d/2 sin(πα1) sin(πα2)
× (2.81)

(−1)s

s!Γ(s+ α1 + 1)

(−1)t

t!Γ(t+ α1 + 1)

(−1)n

n!Γ(n+ α2 + 1)

(−1)m

m!Γ(m+ α2 + 1)
×

Γ(−n−m− s− t− α1 − α2 − d/2)
Γ(−n−m− α2)Γ(−s− t− α1)

Γ(s+ t+ α1 + d/2)Γ(n+m+ α2 + d/2)

Γ(s+ t+ n+m+ d+ α1 + α2)
×

Im

[(√
−p2z
2

)2n+2s+α1+α2+d/2(√−p2z′
2

)2m+2t+α1+α2+d/2
]
.

In this form, ImΠp(z, z
′) explicitly vanishes for spacelike momentum. Using Euler’s

reflection formula

Γ(x)Γ(1− x) = π

sin(πx)
for x ̸∈ Z, (2.82)

and taking the imaginary part, Eq. (2.81) can be written as

ImΠp(z, z
′) = (2.83)

Sign(ϵ)πλ2pd

4k4zz′(4π)d/2

∞∑
n,m,s,t=0

(pz
2

)2n+2s+α1+α2
(
pz′

2

)2m+2t+α1+α2

×

(−1)s

s!Γ(s+ α1 + 1)

(−1)t

t!Γ(t+ α1 + 1)

(−1)n

n!Γ(n+ α2 + 1)

(−1)m

m!Γ(m+ α2 + 1)
×

Γ(n+m+ α2 + 1)Γ(s+ t+ α1 + 1)

Γ(n+m+ s+ t+ α1 + α2 + d/2 + 1)

Γ(s+ t+ α1 + d/2)Γ(n+m+ α2 + d/2)

Γ(s+ t+ n+m+ d+ α1 + α2)
.

Eq. (2.83) represents our final result for ImΠp(z, z
′) in the canonical representation.

2.5.2 ImΠ in the Conformal Spectral Representation

Some preliminary work was done in Sec. 2.4 to calculate ImΠ in the conformal

spectral representation. Here we start from the identity Eq. (2.68), repeated here:

Im(k2zz′)d+1Π(z, z′) = Im

[
λ̂2k3

∫ i∞

−i∞
dαB(α)Ω(0)

α (z, z′)

]
. (2.84)
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In this subsection only, we follow the convention of Sec. 2.4 and use α, α1, α2 to

denote integration variables. We use ᾱ1, ᾱ2 for the bulk mass parameters, Eq. (2.5). We

expand the Bessel functions in a series using Eq. (2.72) and use the α ↔ −α shadow

symmetry of the integrand to write the four terms in Ω
(0)
α (z, z′) as two. We have

ImΠ(z, z′) = (2.85)

Im

[
iλ̂2k3

(k2zz′)d/2+1

∫ i∞

−i∞
dαB(α) α

2 sin(πα)

∞∑
m,n=0

1

m!n!

(√
−p2z′
2

)2n(√
−p2z
2

)2m

×

1

Γ(n− α+ 1)

(√
−p2z′
2

)−α
(

1

Γ(m− α+ 1)

(√
−p2z
2

)−α
− 1

Γ(m+ α+ 1)

(√
−p2z
2

)α)]
.

The imaginary part of the above expression will ultimately come from Im
(
−p2

)a
for some a. That is, all other factors of i from applications of the residue theorem conspire

to produce a real prefactor. In the second term of Eq. (2.85) above, the two powers of α

cancel, and hence a is necessarily an integer. Thus we find that this second term vanishes

upon taking the imaginary part, as it is purely real. The poles from the 1/ sin(πα) factor

sit at integer α, which again yields integer a upon applying the residue theorem. Hence

these residues do not contribute to ImΠ(z, z′).

Following this preliminary result, only the first term in the bracket in Eq. (2.85)

contributes to the imaginary part, and only the poles within the bubble function B(α)

are relevant. We close the α-contour towards the negative reals, where the integrand van-

ishes exponentially on account of the Gamma functions. This selects an infinite number

of residues from the four relevant Gamma functions within the bubble function, Eq. (2.59).

The sets of poles that we enclose are located at

α = ±α1 ± α2 −
d

2
− 2l for l ∈ N . (2.86)
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The corresponding four sets of residues all take the same form, but with relative sign flips

(α1 ↔ −α1 and/or α2 ↔ −α2). We have

ImΠ(z, z′) = Im
∞∑

m,n,l=0

∫
dα1dα2 (Iα1,α2 + I−α1,α2 + Iα1,−α2 + I−α1,−α2) (2.87)

for

Iα1,α2 ≡ (2.88)

λ̂2k3

(k2zz′)d/2+1

(√
−p2z
2

)2m+2l+α1+α2+d/2(√−p2z′
2

)2n+2l+α1+α2+d/2

×

1

24π1+d/2
1

l!m!n!

(2l + α1 + α2 + d/2) csc(π(α1 + α2 + d/2))

Γ(d/2)Γ(2l + α1 + α2 + d)Γ(l + α1 + α2 + 1)

α1α2

(α2
1 − ᾱ2

1)(α
2
2 − ᾱ2

2)
×

Γ (l + d/2) Γ (l + α1 + d/2) Γ (l + α2 + d/2) Γ (2l + α1 + α2 + 1)Γ (l + α1 + α2 + d/2)

Γ(n+ 2l + α1 + α2 + d/2 + 1)Γ(m+ 2l + α1 + α2 + d/2 + 1)Γ (l + α1 + 1)Γ (l + α2 + 1)
,

where we have simplified the expression by using the reflection formula Eq. (2.82). All four

terms are equivalent—as can be seen by αj → −αj relabelings—and hence the integrand

amounts to 4Iα1,α2 .

We then perform the α1 and α2 integrals. We close the integrals towards the pos-

itive reals, where the integrand vanishes exponentially on account of the Gamma functions.

Within the contour, there are poles at αi = ᾱi from the P (ᾱi, αi) measures (see Eq. (2.52))

and poles at α1+α2+d/2 ∈ Z+ from csc(π(α1+α2+d/2)). The residues from the cosecant

only give a contribution to ReΠ(z, z′) because they give rise to even powers of
√
−p2. The

residues from the P (ᾱi, αi) measures yield a contribution to ImΠ(z, z′).
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We obtain

ImΠ(z, z′) = −
∞∑

m,n,l=0

λ̂2k3

(k2zz′)d/2+1

1

22πd/2−1

1

l!m!n!
× (2.89)

Γ (l + ᾱ1 + ᾱ2 + d/2) (2l + ᾱ1 + ᾱ2 + d/2) csc(π(ᾱ1 + ᾱ2 + d/2))

Γ(d/2)Γ(n+ 2l + ᾱ1 + α2,0 + d/2 + 1)Γ(m+ 2l + ᾱ1 + ᾱ2 + d/2 + 1)
×

Γ (l + d/2) Γ (l + ᾱ1 + d/2) Γ (l + ᾱ2 + d/2) Γ (2l + ᾱ1 + ᾱ2 + 1)

Γ(2l + ᾱ1 + ᾱ2 + d)Γ(l + ᾱ1 + ᾱ2 + 1)Γ (l + ᾱ1 + 1)Γ (l + ᾱ2 + 1)
×

Im

[(√
−p2z
2

)2m+2l+ᾱ1+ᾱ2+d/2(√−p2z′
2

)2n+2l+ᾱ1+ᾱ2+d/2
]
.

The self-energy becomes real for spacelike momenta, which is straightforward to

note in this form. For timelike momenta, the imaginary part is given by

ImΠ(z, z′) = (2.90)

Sign (ϵ)
∞∑

m,n,l=0

(−1)n+m

m!n!l!

(pz
2

)2m+2l+ᾱ1+ᾱ2+d/2
(
pz′

2

)2n+2l+ᾱ1+ᾱ2+d/2

×

λ̂2k3

22πd/2−1 (k2zz′)d/2+1

Γ (l + d/2) Γ (l + ᾱ1 + d/2) Γ (l + ᾱ2 + d/2) Γ (2l + ᾱ1 + ᾱ2 + 1)

Γ(d/2)Γ(2l + ᾱ1 + ᾱ2 + d)Γ(l + ᾱ1 + ᾱ2 + 1)
×

(2l + ᾱ1 + ᾱ2 + d/2)Γ (l + ᾱ1 + ᾱ2 + d/2)

Γ (l + ᾱ1 + 1)Γ (l + ᾱ2 + 1)Γ(n+ 2l + ᾱ1 + ᾱ2 + d/2 + 1)Γ(m+ 2l + ᾱ1 + ᾱ2 + d/2 + 1)
.

We recognize the sums over n,m as the series representation of the Bessel function J ,

J2l+ᾱ1+ᾱ2+d/2 (x) =

∞∑
j=0

(−1)j
(
x
2

)2j+2l+ᾱ1+ᾱ2+d/2

j!Γ(j + 2l + ᾱ1 + ᾱ2 + d/2 + 1)
. (2.91)

This gives

ImΠ(z, z′) = (2.92)

Sign (ϵ) λ̂2k3

22πd/2−1 (k2zz′)d/2+1

∞∑
l=0

(2l + ᾱ1 + ᾱ2 + d/2)J2l+ᾱ1+ᾱ2+d/2 (pz) J2l+ᾱ1+ᾱ2+d/2

(
pz′
)
×

Γ (l + d/2) Γ (l + ᾱ1 + d/2) Γ (l + ᾱ2 + d/2) Γ (2l + ᾱ1 + ᾱ2 + 1)Γ (l + ᾱ1 + ᾱ2 + d/2)

Γ(d/2)Γ(l + 1)Γ(2l + ᾱ1 + ᾱ2 + d)Γ(l + ᾱ1 + ᾱ2 + 1)Γ (l + ᾱ1 + 1)Γ (l + ᾱ2 + 1)
.

Eq. (2.92) represents our final result for ImΠp(z, z
′) in the conformal spectral representation.

In Sec. 2.5.5, we identify this result as being a sum over the imaginary part of propagators.
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2.5.3 ImΠ in the Momentum Spectral Representation

We again start from Eq. (2.70) and express the propagator in the p-spectral rep-

resentation, Eq. (2.31). We introduce a Feynman parameter and shift the loop momentum,

l ≡ q + px. This yields

Πp(z, z
′) =

−iλ2

(k2zz′)d+1

∫ 1

0
dx

∫ ∞

0
dm1Ωm1(z, z

′)

∫ ∞

0
dm2Ωm2(z, z

′)

∫
ddl

(2π)d
1

(l2 −∆)2

(2.93)

for

∆ ≡ xm2
2 + (1− x)m2

1 − x(1− x)p2. (2.94)

We evaluate the loop integral in arbitrary dimension with

∫
ddl

(2π)d
1

(l2 −∆)2
=
iΓ
(
2− d

2

)
(4π)d/2

∆d/2−2 . (2.95)

The left-hand side integral converges for d < 4. However it can be analytically continued

in d. For odd d, we write the square root as

√
∆
∣∣∣
Re∆≫Im∆

≈ i
√
|∆|Θ(−Re∆) Sign (Im∆) +

√
|∆|Θ(Re∆) , (2.96)

valid for ∆ near the real line. For even d, we take d = d0±ε for ε≪ 1 and use the reflection

formula Eq. (2.82). We obtain

∫
ddl

(2π)d
1

(l2 −∆)2

∣∣∣∣
d0 even

=
iπ(−1)d0/2−1

(4π)d0/2 sin
(
±πε

2

)
Γ
(
d0
2 − 1

)∆d0/2−2∆±ε/2 . (2.97)

We expand Eq. (2.97) for ε≪ 1 using

∆±ε/2 ≈ 1 +±ε
2
log∆ , sin

(
±πε

2

)
≈ ±πε

2
. (2.98)
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We note that the log can be described in terms of arctan and a step function,

log (∆) = log |∆|+ i arctan

(
Im∆

Re∆

)
+ iπΘ(−Re∆) Sign (Im∆) . (2.99)

For ∆ near the real line, the arctan term is small and can be dropped. The 1 and log |∆|

terms yield contributions to the self-energy that are purely real and hence vanishes when

taking the imaginary part.

With these simplifications, we can combine results for both even and odd d to

obtain

Im

[
i

∫
ddl

(2π)d
1

(l2 −∆)2

]
Re∆≫Im∆

≈ π(−∆)d/2−2

(4π)d/2Γ
(
d
2 − 1

)Θ(−Re∆) Sign (Im∆) , (2.100)

valid for d > 2. Taking the imaginary part of the self-energy, we now have

ImΠp(z, z
′) =

−π
(4π)d/2Γ

(
d
2 − 1

) λ2

(k2zz′)d+1

∫ 1

0
dx × (2.101)

∫ ∞

0
dm1Ωm1

∫ ∞

0
dm2Ωm2(−∆)d/2−2Θ(−Re∆) Sign (Im∆) .

We find that for spacelike momenta p2 < 0, Re∆ > 0 and hence ImΠ = 0. Specializing to

timelike momenta p2 > 0, we have

Sign (Im∆) = −Sign (ϵ) , (2.102)

where ϵ > 0 is the Feynman prescription for the propagator. The step function truncates

the integrals over m1,m2 and x. We now have

ImΠp(z, z
′) =

Sign (ϵ)π

(4π)d/2Γ
(
d
2 − 1

) λ2

(k2zz′)d+1

∫ p

0
dm1Ωm1

∫ p−m1

0
dm2Ωm2

∫ x+

x−

dx(−∆)d/2−2

(2.103)
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for

x± ≡
p2 +

(
m2

1 −m2
2

)
±
√
(p2 − (m1 −m2)2) (p2 − (m1 +m2)2)

2p2
. (2.104)

Notice that −∆ = (x+ − x)(x − x−)p2. To evaluate the integral, we change variables to

y = (x− x−) / (x+ − x−) and recognize the integral representation of the Beta function,

∫ 1

0
dyyn1(1− y)n2 =

Γ(n1 + 1)Γ(n2 + 1)

Γ(n1 + n2 + 2)
≡ B(n1 + 1, n2 + 1) . (2.105)

n1 = n2 =
d
2 − 2 in the current case, and thus we obtain

Ξ(d, p,m1,m2) ≡
1

Γ
(
d
2 − 1

) ∫ x+

x−

dx(−∆)d/2−2 = 2p2−dKd−3 Γ
(
d
2

)
Γ (d− 1)

(2.106)

Here K = K(p,m1,m2) is the standard four-dimensional two-body kinematic factor,

K(p,m1,m2) ≡
√(

p2 − (m1 +m2)
2
)(

p2 − (m1 −m2)
2
)
. (2.107)

The Ξ(d, p,m1,m2) function is the two-body kinematic factor in arbitrary dimension d.

Thus we obtain

ImΠp(z, z
′) = Sign (ϵ)

2π

(4π)d/2
Γ
(
d
2

)
Γ (d− 1)

λ2

(k2zz′)d+1
× (2.108)∫ p

0
dm1Ωm1

∫ p−m1

0
dm2Ωm2p

2−dK(p,m1,m2)
d−3 .

Eq. (2.108) represents our final result for ImΠp(z, z
′) in the momentum spectral represen-

tation.

2.5.4 Proofs of Equality

The equivalence of the representations of ImΠ obtained in Secs. 2.5.1, 2.5.2, 2.5.3 is

not manifest. In the canonical representation, a key piece of the calculation was a loop inte-

gral with non-integer powers. In the conformal spectral representation, AdS/CFT naturally
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arises: CFT correlators appear and combine to form a CFT bubble diagram. Finally in the

momentum spectral representation, a generalized two-body kinematic threshold emerges—

with no intrinsic dependence on α. These three evaluations thus involve rather different

objects and methods.

In this section, we prove the equality of these various representations of ImΠ.

Canonical—Momentum Spectral Equivalence

Here we relate the self-energy from the calculation in the momentum spectral

representation to the calculation in the canonical representation. We start from Eq. (2.101)

in the momentum spectral representation and substitute in the spectral functions Ωm in

terms of the Bessel functions explicitly

ImΠp(z, z
′) =Sign(ϵ)

π2

(4π)d/2+1Γ
(
d
2 − 1

) λ2

k4zz′

∫ 1

0
dx

∫ ∞

0
dm2

1

∫ ∞

0
dm2

2 × (2.109)

Jα1(m1z)Jα1(m1z
′)Jα2(m2z)Jα2(m2z

′)(−∆)d/2−2Θ(−Re∆) .

We use the step function to cut the m1,m2 integrals instead of the x integral. We also

expand out the Bessel functions in terms of the series

Jα(z) =
∞∑
m=0

(−1)m

m!Γ(m+ α+ 1)

(z
2

)2m+α
. (2.110)
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We obtain

ImΠp(z, z
′) = (2.111)

Sign(ϵ)π2

(4π)d/2+1Γ
(
d
2 − 1

) λ2

k4zz′

∫ 1

0
dx

∫ xp2

0
dm2

1

∫ (1−x)(xp2−m2
1)/x

0
dm2

2 ×

∞∑
s,t,m,n=0

(−1)s+t+n+m

s!t!n!m!Γ(s+ α1 + 1)Γ(t+ α1 + 1)Γ(m+ α2 + 1)Γ(n+ α2 + 1)
×

(m1z

2

)2s+α1
(
m1z

′

2

)2t+α1 (m2z

2

)2n+α2
(
m2z

′

2

)2m+α2

(−∆)d/2−2 .

We perform the integral over m2, then the integral over m1, and lastly the integral over x.

Each of these integrals can be expressed as the integral representation of the Beta function,

Eq. (2.105). Thus we obtain

ImΠp(z, z
′) = (2.112)

Sign(ϵ)pdπ2

(4π)d/2+1

λ2

k4zz′

∞∑
s,t,m,n=0

(pz
2

)2s+2n+α1+α2
(
pz′

2

)2t+2m+α1+α2

×

(−1)s+t+n+m

s!t!n!m!Γ(s+ α1 + 1)Γ(t+ α1 + 1)Γ(m+ α2 + 1)Γ(n+ α2 + 1)
×

Γ(1 + s+ t+ α1)Γ(1 +m+ n+ α2)

Γ
(
1 + s+ t+ n+m+ α1 + α2 +

d
2

) Γ (d2 + s+ t+ α1

)
Γ
(
d
2 +m+ n+ α2

)
Γ(d+ s+ t+ n+m+ α1 + α2)

,

which is exactly Eq. (2.83).

Equivalence with the Conformal Spectral Representation

It is difficult to show the exact equivalence between the conformal spectral repre-

sentation and either the canonical or momentum spectral representation. The proof involves

sums over generalized hypergeometric functions 4F3 which are nontrivial to perform. It is

not as difficult to show the equivalence order by order in pz<. Here we present a proof of

equivalence for pz< ≪ 1 with arbitrary pz>.
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We take the self-energy in the canonical representation Eq. (2.83) to leading order

in pz<,

ImΠp(z, z
′) =

Sign(ϵ)πλ2pd

4k4zz′(4π)d/2
1

Γ(α1 + 1)

1

Γ(α2 + 1)

(pz<
2

)α1+α2

× (2.113)

∞∑
n,s=0

(pz>
2

)2n+2s+α1+α2 (−1)s+n

s!n!

Γ(s+ α1 + d/2)Γ(n+ α2 + d/2)

Γ(s+ n+ d+ α1 + α2)Γ(n+ s+ α1 + α2 + d/2 + 1)
.

We introduce j ≡ s+ n and reorganize the sums

ImΠp(z, z
′) =

Sign(ϵ)πλ2pd

4k4zz′(4π)d/2
1

Γ(α1 + 1)

1

Γ(α2 + 1)

(pz<
2

)α1+α2

× (2.114)

∞∑
j=0

(−1)j
(pz>

2

)2j+α1+α2

Γ(j + d+ α1 + α2)Γ(j + α1 + α2 + d/2 + 1)

j∑
s=0

Γ(s+ α1 + d/2)Γ(j − s+ α2 + d/2)

s!(j − s)!
.

We directly evaluate the sum over s with Mathematica [185]. We obtain

ImΠp(z, z
′) =

Sign(ϵ)πλ2pd

4k4zz′(4π)d/2
1

Γ(α1 + 1)

1

Γ(α2 + 1)

(pz<
2

)α1+α2

× (2.115)

∞∑
j=0

(−1)j
(pz>

2

)2j+α1+α2 Γ
(
α1 +

d
2

)
Γ
(
α2 +

d
2 + j

)
2F1

(
α1 +

d
2 ,−j;−α2 − j − d

2 + 1; 1
)

j!Γ(j + d+ α1 + α2)Γ(j + α1 + α2 + d/2 + 1)
.

We now use a known result for this special case of the hypergeometric function—Eq. (15.4.20)

of [164]—reprinted here:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (2.116)

We obtain

ImΠp(z, z
′) =

Sign(ϵ)πλ2pd

4k4zz′(4π)d/2
1

Γ(α1 + 1)

1

Γ(α2 + 1)

(pz<
2

)α1+α2

× (2.117)

∞∑
j=0

(−1)j
(pz>

2

)2j+α1+α2 Γ
(
α1 +

d
2

)
Γ
(
α2 +

d
2 + j

)
Γ(−α1 − α2 − d+ 1)Γ(−α2 − j − d

2 + 1)

j!Γ(j + d+ α1 + α2)Γ(j + α1 + α2 + d/2 + 1)Γ(−α1 − α2 − j − d+ 1)Γ(−α2 − d
2 + 1)

.
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We simplify further by using Euler’s reflection formula, Eq. (2.82), and trigonometric iden-

tities. We obtain

ImΠp(z, z
′) =

Sign(ϵ)πλ2

4k4(zz′)d/2+1πd/2
Γ
(
α1 +

d
2

)
Γ
(
α2 +

d
2

)
Γ(α1 + 1)Γ(α2 + 1)

1

Γ(d+ α1 + α2)
× (2.118)

(pz<
2

)α1+α2+d/2
∞∑
j=0

(−1)j
(pz>

2

)2j+α1+α2+d/2

j!Γ(j + α1 + α2 + d/2 + 1)
.

We recognize the remaining sum as the series representation of the Bessel function J as

given in Eq. (2.91). Thus we obtain

ImΠp(z, z
′) =

Sign(ϵ)πλ2

4k4(zz′)d/2+1πd/2
Γ
(
α1 +

d
2

)
Γ
(
α2 +

d
2

)
Γ(α1 + 1)Γ(α2 + 1)

Jα1+α2+d/2 (pz>)

Γ(d+ α1 + α2)

(pz<
2

)α1+α2+d/2
.

(2.119)

The conformal spectral result is given by Eq. (2.92). To leading order in pz<, l = 0

and we take the small argument limit of the pz< ≪ 1 Bessel function. Upon application of

the recurrence formula for the Gamma functions, we immediately obtain Eq. (2.119).

We have checked the equality of the next-to-leading order terms in pz<. This

calculation goes just as above, but with more terms that nontrivially sum. When attempting

to show equality generally (for any pz<), sums over generalized hypergeometric functions

4F3 emerge which are difficult to evaluate. We expect equality to hold to all orders in pz<.

2.5.5 Properties of the Self-Energy

Based on our results, here we discuss some properties of the imaginary part of the

bubble diagram ImΠ.
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Elementary Features

• The self-energy becomes real for spacelike momentum p2 < 0, i.e.

ImΠ|p2<0 = 0 . (2.120)

This is easily shown from the conformal spectral or canonical representations, where

we note that ImΠ ∝ Im
(
−p2

)γ
for some power γ. When the momenta becomes space-

like −p2 > 0, ImΠ subsequently vanishes. In the momentum spectral representation,

we note that the Heaviside Θ-function in Eq. (2.100) cannot be satisfied for spacelike

momenta, and hence ImΠ = 0.

• ImΠ is finite for nonzero z, z′ and finite timelike momentum p.

This can be shown from any of the representations. Consider for instance the canonical

representation Eq. (2.83). At fixed p and z, z′, when going to high enough order in a

given sum, the Gamma functions in the denominator imply that the absolute value

of the ratios of two subsequent terms is strictly smaller than 1. This implies that the

series (absolutely) converges, therefore ImΠ is finite.

• If z = z′, ImΠ carries the same sign as ϵ, i.e.

Sign (ImΠ(z, z)) = Sign(ϵ) . (2.121)

This property can be shown from the momentum spectral representation Eq. (2.108).

For z = z′, both spectral functions are positive since∝ (Jα(miz))
2. Hence the integrals

are positive and Sign (ImΠ) = Sign (ϵ). This property can also be shown in the

conformal spectral representation by noting that the self-energy can be written as a
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sum over squares when z = z′. Along the same lines, we show that Sign (ImΠ(z, z′)) =

Sign(ϵ) if p|z − z′| ≪ 1, i.e. when z and z′ are close enough (see below).

Asymptotic Features

• At large pz →∞ with timelike momentum p, ImΠ becomes asymptotically

local, with

ImΠp(z, z
′)
∣∣∣
p→∞

∝ pd−3

z4
sin(p(z − z′))

z − z′
∣∣∣
p→∞

∼ pd−3

z4
δ(z − z′) . (2.122)

We show this in the momentum spectral representation. Details are given in App.D.

In short, at large pz the spectral functions rapidly oscillate such that their average

can be pull out from the mass integrals. The averages asymptotically give rise to a

nascent Dirac delta in z. The remaining mass integral depends only on p and must

scale as pd−3. This limit makes clear that ImΠp(z, z
′) is peaked on z ∼ z′, and that it

becomes increasingly peaky with pz ≫ 1 since in this limit it approaches a Dirac delta.

This asymptotic feature should not be seen as a literal divergence. These properties

are more difficult to show in the conformal spectral and canonical representations.

• At small pz, pz′ with timelike momentum p, the behaviour of ImΠ is

ImΠp(z, z
′)
∣∣∣
pz≪1,pz′≪1

∝ (zz′)α1+α2−1pd+2α1+2α2 = (zz′)∆1+∆2−d−1p2∆1+2∆2−d .

(2.123)

This behaviour can be shown from any of the representations, and can be directly

read from e.g. Eq. (2.83) by taking the first term of the series. The scaling in p is

consistent with the one found in [114]. For the last equality we used ∆i =
d
2 + αi. If
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z approaches zero, ImΠp(z, z
′) goes as zα1+α2−1, which diverges if α1 + α2 < 1. In

physical expressions, however, ImΠp(z, z
′) is always multiplied by extra metric factors

which remove this possibly divergent behavior near the boundary. Such z, z′ factors

appear for instance in Eq. (2.139), thus justifying the saddle-point expansion.

Double-Trace Formula from Conformal Spectral Representation

Starting from the conformal spectral representation of ImΠ Eq. (2.92), we notice

that each term of the sum can be rewritten as the discontinuity of a free propagator with

bulk mass parameter α1 + α2 + d/2 along the timelike branch cut (see Eq. (2.35)). This is

equivalently given by the imaginary part of iG(0),

Im
[
iG

(0)
α1+α2+d/2+2l(z, z

′)
]
= Sign (ϵ)

π

2k
(kz)d/2(kz′)d/2Jα1+α2+d/2+2l(pz)Jα1+α2+d/2+2l(pz

′)

(2.124)

In terms of conformal dimension, using ∆i = αi + d/2, this propagator amounts

to the exchange of operators with dimension ∆1 +∆2 + 2l. We recognize the structure of

the well-known “double-trace” formula [79, 160] which gives the product of position-space

propagators G
(0)
α1 (X,Y )G

(0)
α2 (X,Y ) as an infinite sum over G

(0)
α1+α2+d/2+2l(X,Y ).

Making the imaginary part of iG(0) explicit in Eq. (2.92), we obtain

ImΠp(z, z
′) =

λ̂2k3

(k2zz′)d+1

∞∑
l=0

a∆1,∆2,l Im
[
iG

(0)
α1+α2+d/2+2l(z, z

′)
]

(2.125)

with

a∆1,∆2,l =
2l + α1 + α2 + d/2

2πd/2
× (2.126)

Γ (l + d/2) Γ (l + α1 + d/2) Γ (l + α2 + d/2) Γ (2l + α1 + α2 + 1)Γ (l + α1 + α2 + d/2)

Γ(d/2)Γ(l + 1)Γ(2l + α1 + α2 + d)Γ(l + α1 + α2 + 1)Γ (l + α1 + 1)Γ (l + α2 + 1)
.
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Using Legendre’s duplication formula

Γ(2z)

Γ(z)
=

22z−1

√
π

Γ

(
z +

1

2

)
(2.127)

it turns out that one can re-write a∆1,∆2,l in terms of Pochammer functions (x)n = Γ(x +

n)/Γ(x), obtaining

a∆1,∆2,l =

(
d
2

)
l

2πd/2l!

(∆1 +∆2 + 2l)1−d/2 (∆1 +∆2 + l − d+ 1)l

(∆1 + l)1−d/2 (∆2 + l)1−d/2 (∆1 +∆2 + l − d/2)l
. (2.128)

This matches precisely the coefficients of the double-trace formula [79]. With Eq. (2.125),

we have thus recovered the imaginary part of the double-trace formula by direct calculation

starting from the conformal spectral representation. 12

Relation to AdS Unitarity Methods

Unitarity methods in AdS have recently been investigated in [114, 158]. These

methods typically aim to compute the double discontinuity of the dual CFT correlators

from the AdS side [159], and therefore focus on full Witten diagrams. However amputated

diagram such as our bubble iΠ encapsulate essential information about the Witten diagram

they are a part of. Let us consider the interplay between our results for ImΠ and existing

AdS unitarity methods.

In [158], a Cut operation was introduced in the space of conformal dimensions. 13

This Cut applies in the conformal spectral representation: It picks the poles of the P (α, ᾱ)

measure enclosed by the corresponding α-contour integral. One can apply this operation

12Upon Fourier-transform and appropriate translation into our Lorentzian conventions.

13A Ĉut operation is also introduced, which involves an extra projection and applies only to full Witten

diagrams. Here our focus is on the Cut operation only.
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to the bubble diagram in the conformal spectral representation (Sec. 2.5.2). Consider the

Cut12 operation, which cuts both lines of the bubble in the sense defined above. This cut

amounts to selecting the poles of P (α1, ᾱ1) and P (α2, ᾱ2) in the α1, α2 integrals. This is

intuitively what the Im operation would do in flat space. What is the effect of Im on the

AdS bubble as compared to Cut12? We have seen by direct calculation in Sec. 2.5.2 that

the Im does the same work as Cut12 because other residues are real and are thus projected

out. We conclude that

Im(Cut12Π) = Cut12(ImΠ) = ImΠ . (2.129)

These identities imply that the Im projection is at least as strong as Cut12, i.e. ImΠ ⊂

Cut12Π. The equality of the operations is not guaranteed. The evaluation of Cut12Π in

our formalism would require further investigation.

In [114], unitarity cuts in the momentum spectral representation have been ex-

plored. Following this reference, we can evaluate a cut of the Π bubble instead of evaluating

its imaginary part. To do so, we implement Cutkosky rules in the propagator Eq. (2.31),

cutting the P (p̂, p) using the substitution

P (p̂, p) ∝ δ
(
p2 − p̂2

)
. (2.130)

With such substitution in Eq. (2.31), one can evaluate the integral in p̂, which gives rise to

the AdS Wightman propagator [114] given schematically by 14

GWp (z, z′) ∝ (zz′)d/2Jα(pz)Jα(pz
′) . (2.131)

Pursuing the evaluation of the cut of Π along these lines, we obtain a product of four Bessel

14We thank the authors of [114] for pointing this out in private correspondence.
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J functions. Expanding the Bessel functions as a series and performing the loop integrals

as in Sec. 2.5.1, we ultimately find that the cut diagram reproduces the result of ImΠ in the

canonical representation Eq. (2.92).

2.6 Opacity of AdS

In this section we solve the dressed equation of motion in the timelike regime. This

is done using an improved version of the WKB method 15 and other approximations. Our

focus is on the effect of the imaginary contribution ImΠp(z, z
′).

As discussed in Sec. 2.3.3, three distinct regimes can be distinguished in position-

momentum space, depending on whether the invariants pz, pz′ are smaller or larger than

1. In the pz, pz′ ≪ 1 regime, the effects of dressing are expected to be small because the

self-energy gets suppressed by higher powers of pz with respect to the terms in the free

EOM operator Dz (see e.g. Eq. (2.83) or (2.123)). The behaviour of the dressed propagator

for pz, pz′ ≫ 1 could be understood from a flat space viewpoint by using a Weyl transform

(see Sec. 2.3.3). Hence we do not focus on these cases. Our focus in this section is rather on

the non-trivial pz< ≪ 1, pz> ≫ 1 regime, which has no flat space analog since the pz ≪ 1

vanishes in the flat space limit. Note this regime includes the boundary-to-bulk propagators

(Sec. C.5) as a particular case.

Recall that for spacelike momentum, the propagator in the |p|z< ≪ 1, |p|z> ≫ 1

15Also known as the Carlini–Liouville–Green–Rayleigh–Gans–Jeffreys–Wentzel–Kramers–Brillouin approxi-

mation.
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regime decays as

Gp(z, z
′) ∝ exp (−|p|z>) (2.132)

irrespective of z<. This can be seen from Eq. (2.38) using that p is imaginary in the spacelike

region. The purpose of this section is to show that a similar exponential decay happens for

timelike momentum in the interacting theory. This exponential fall-off directly results from

the imaginary part of Π, which introduces a damping in the EOM solutions, which would

otherwise be oscillating.

We have provided various representations of ImΠ in Sec. 2.5. The momentum

spectral representation—made available by working in position-momentum space—turns

out to be the most convenient to pursue the calculation and make intuitive approximations.

In this section we will work within the effective field theory (EFT) paradigm.

Before delving into the dressing calculations, some details about EFT are given in Sec. 2.6.1.

2.6.1 Interactions and Effective Field Theory

Matter interactions have been left implicit in the action Eq. (2.3). In Secs. 2.4, 2.5,

we have restricted the calculation to a non-derivative scalar cubic coupling for simplicity.

Here we are interested more broadly in the low-energy effective field theory (EFT)

viewpoint, in which the action S encodes local interactions with arbitrary high number of

fields and derivatives. In addition to scalar cubic interactions with no derivatives—which are

renormalizable for d ≤ 6 —cubic interactions with an arbitrary number of extra derivatives
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are also present in principle. We consider the cubic couplings 16

S ⊃
∫
dXM

√
|γ|
(
λΦΦ1Φ2 − ζΦ∂MΦ1∂

MΦ2 + . . .
)

(2.133)

where the ellipses denote scalar cubic couplings with higher number of derivatives. In

Sec. 2.7, cubic matter-gravity interactions will be considered.

Following the EFT paradigm, these interactions of higher dimension are suppressed

by a typical energy scale Λ, the EFT cutoff. The natural relation for the couplings in

Eq. (2.133) is expected to be ζ/λ ∼ 1/Λ2, i.e. each derivative brings an extra 1/Λ factor.

Conversely, the EFT action is valid only up to a proper distance scale of order ∆X ∼ 1/Λ.

How does the cutoff appear in our Poincaré position-momentum space? To see

it, one can compare the effects of operators of different order, e.g. the two operators in

Eq. (2.133), or the scalar kinetic term and a bilinear four-derivative operator Λ−2□(∂MΦ∂MΦ),

in some physical amplitude. 17 This shows that the cutoff of the EFT is reached for

pz ∼ Λ

k
. (2.134)

This happens because higher derivatives operators necessarily come together with extra

powers of kz. More generally, at the value set by Eq. (2.134), operators with arbitrary

number of derivatives become equally important in the amplitudes, signalling that the low-

energy EFT has reached its limit and that a deeper UV-completion should be used instead.

We in fact recover the scaling of Eq. (2.134) in our results Eq. (2.168). This feature is

well-known, see [3, 110,155,186–188] for further details.

16In the EFT, other two-derivative cubic interactions such as Φ1∂MΦ∂MΦ2 can be reduced to the ones in

Eq. (2.133) using integration by parts and the equation of motion.
17One can e.g. examine the correction to the free propagator from Λ−2□(∂MΦ∂MΦ).
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2.6.2 Solving the Dressed EOM

The dressed EOM can be treated with standard solving techniques just like the

free case (see Sec. 2.3.2 and Eq. (2.19)), such that the dressed canonical propagator admits

the structure

G(p; z, z′) =
i

C̃
F̃<(z<)F̃>(z>) . (2.135)

The F̃i satisfies the homogeneous dressed EOM

DF̃i(z)−
1√
|γ|

Π ∗ F̃i(z) = 0 . (2.136)

The quantum dressing affects both solutions F̃< and F̃>. Our focus is on the pz< ≪ 1,

pz> ≫ 1 regime, and we are interested in the effect of dressing on the F̃> part of the

propagator. As discussed above, the effects of dressing on F̃< and C̃ are small—this follows

from e.g. Eq. (2.123)—and are neglected for our purposes.

A WKB-like Approximation

In the pz> ≫ 1 regime we know from Sec. 2.3.3 that F̃> is conformally equivalent

to a massless flat space solution, which is a eipz exponential—the asymptotic AdS solution

is z
d−1
2 eipz. This feature implies that we can use developed WKB-type methods to find the

solution F̃> as a suitable perturbation of the free solution F>. The WKB ansatz of F̃> for

timelike momentum, assuming ϵ > 0 and taking the pz ≫ 1 limit, is the asymptotic form 18

F̃>(z)
∣∣∣
pz≫1

≈ F̃ c.m.
> (z) = z

d−1
2 eipz+S(z) . (2.137)

18We dropped an irrelevant multiplicative constant as compared to the convention of the free case of

Sec. 2.3.2. By construction such factors cancel in the full expression, see Sec. 2.3.2.
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The S(z) function is determined perturbatively. Setting S → 0 gives the asymptotic con-

formally massless solution of the free EOM, noted F c.m.
> (z). In our analysis, we show that

S(z) < 0. Thus we find that loop corrections are consistent with the ϵ > 0 prescription of

the free theory.

Plugging F̃ c.f.
> (z) into the dressed equation of motion gives

S′(z) = −e
−ipz

2p

∫ ∞

0
du ImΠ(z, u)(k2 z)

d−1
2 F>(u) (2.138)

at first order, assuming |S′| ≪ p, |S′′| ≪ p|S′| and |S| not arbitrarily large. 19 These

conditions are satisfied for pz ≫ 1.

Upon extracting the u
d−1
2 prefactor from F>(u), we note that the resulting inte-

grand is highly peaked at z ∼ u—as expected from locality. Upon inspecting
(
k2 z u

) d−1
2 ImΠ(z, u),

one can also confirm that the dominant contributions to S(z) do indeed come from the

pz ≫ 1 region. Further, the steepness of the peak increases with pz. This can be checked

in the amplitudes of Sec. (2.6.4), see e.g. Eq. (2.151). Additional supporting details are

discussed in Sec. 2.5.5.

Having a peak at z ∼ u, and having pz ≫ 1 by assumption, we can safely use

the pu ≫ 1 approximation for the convoluted propagator such that F>(u) ≈ F c.m.
> (u) in

Eq. (2.138). This gives

S(z) = − 1

2p

∫
z
dz̃

∫ ∞

0
du ImΠ(z̃, u)

(
k2 z̃ u

) d−1
2 e+ip(u−z̃) (2.139)

19More precisely, taking e−S(z)+S(u) ∼ 1 (with S < 0) on the right-hand side of Eq. (2.138) is valid as

long as the rest of the integrand is sufficiently peaked. In Sec. 2.6.2, we use a saddle-point approximation

for the rest of the integrand which gives e−
1

2C
p2(z−u)2 . So long as e−S(z)+S(u) does not compete with

e−
1

2C
p2(z−u)2 , our approximation is valid. The breakdown occurs at values of |S| sensibly larger than 1.
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where we have integrated S′ to obtain S.

The integration constant for the last dz̃ integral would be determined by a match-

ing condition at z = z′ in the propagator. Such condition is not accessible analytically in

the asymptotic regime considered, since z> ≫ z<. However we will see that the integration

constant is essentially irrelevant for our analysis.

Aside on an Elementary Approximation

For large pz, the integrand in Eq. (2.139) is highly peaked. The most basic approx-

imation that we can perform is to take
(
k2 z u

) d−1
2 ImΠ(z, u) to be proportional to a Dirac

distribution, i.e. assuming exact locality along the z direction. Under this approximation

we have

(z u)
d−1
2 ImΠ(z, u) ≈ I(z)δ(z − u), I(z) =

∫ ∞

0
du (z u)

d−1
2 ImΠ(z, u) . (2.140)

In this limit, the convolution Π ∗ F>(z) becomes a product I(z)F>(z). The convolution

being gone, the problem reduces to a standard WKB one in which the EOM is perturbed

by a potential I(z). This approximation reproduces the large p limit of the self-energy

established in Sec. 2.5.5. Even though the integrand in Eq. (2.139) is very peaked at large

pz, it multiplies an exponential which oscillates in pz and thus cannot be treated as a

function varying slowly with respect to ImΠ. Thus this approximation scheme is potentially

inaccurate and a more refined approach is necessary.

69



Saddle-Point Approximation

As an improved approximation, we take
(
k2 z u

) d−1
2 ImΠ(z, u) as a Gaussian cen-

tered on z̃ = u, whose width is controlled by the second derivative at this point. 20 This is

the saddle-point approximation. It allows us to treat
(
k2 z u

) d−1
2 ImΠ(z, u) as peaked while

also accounting for the complex exponential. The saddle-point approximation will allow us

to perform the integrals analytically.

We write Eq. (2.139) as

S(z) = − 1

2p

∫
z
dz̃

∫ ∞

0
du e−f(z̃,u)+ip(u−z̃) (2.141)

for

f(z, u) = − log

((
k2 z u

) d−1
2 ImΠ(z, u)

)
. (2.142)

The maximum of
(
k2 z u

) d−1
2 ImΠ(z, u) being at z = u, f(z, u) has a minimum at z ∼ u up

to a small O(1/pz) suppressed shift. Expanding f(z, u) about this minimum, we have

S(z) = − 1

2p

∫
z
dz̃

∫ ∞

0
du e−f(z̃,z̃)+ip(u−z̃)−

1
2(∂

2
uf(z̃,u)|u=z̃

)(u−z̃)2 (2.143)

where ∂2uf(z, u)
∣∣
u=z

is given by

∂2uf(z, u)
∣∣
u=z
≈ −

∂2u

((
k2 z u

) d−1
2 ImΠ(z, u)

)
(
(k2 z u)

d−1
2 ImΠ(z, u)

)
∣∣∣∣∣∣∣∣
u=z

+ (∂uf(z, u)|u=z)
2 ≡ Cp (z) p2. (2.144)

20While performing this approximation, ImΠ(z, u) > 0 is required. While this is not strictly the case for

ImΠ(z, u) globally, it is true on the z ∼ u peak. A side effect of the kinematic approximation discussed

in Sec. 2.6.3 is to smooth the oscillations of ImΠ(z, u). This smoothed version satisfies ImΠ(z, u) > 0

everywhere.
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Note that ∂uf(z, u)|u=z = 0 by construction. The p2 factor we have extracted in our

convention will naturally appear in the upcoming explicit calculations. We now have

S(z) = − 1

2p

∫
z
dz̃ (kz̃)d−1 ImΠ(z̃, z̃)

∫ ∞

0
du eip(u−z̃)−

1
2
Cp(z̃)p2(u−z̃)2 , (2.145)

which is a Gaussian integral. Evaluating this integral gives

S(z) ≈ − 1

2p2

∫
z
dz̃ ImΠp(z̃, z̃) (kz̃)

d−1

√
2π

Cp(z̃)
e
− 1

2Cp(z̃) . (2.146)

Compared to the delta-function approximation shown in Eq. (2.140), it turns out

that an extra factor e
− 1

2Cp(z) appears above in Eq. (2.146) —inducing an extra suppression

of the S function. This extra effect reflects the departure from the standard WKB problem

taken into account by the saddle-point approximation. It encodes the fact that the pertur-

bation to the EOM is a convolution Π∗G, and not a mere potential multiplying G as would

be approximated by Eq. (2.140). We will use this improved WKB-like approximation in our

analysis.

2.6.3 Kinematic Approximation for ImΠ in Any Dimension

We turn to the imaginary part of the self-energy itself. In Sec. 2.5, we gave the

exact form of ImΠ from a Φ3 interaction in various forms. In this section, we allow for a

more general form that could arise from the derivative cubic interactions in Eq. (2.133).

Using the momentum spectral representation established in Sec. 2.5.3, the imagi-

nary part of the bubble diagram takes the structure

ImΠp(z, z
′) = (2.147)

cacbπ

(4π)d/2k4zz′

∫ p

0
dq1

∫ p−q1

0
dq2q1q2Va Jα1(q1z)Jα2(q2z)Vb Jα1(q1z

′)Jα2(q2z
′)Ξ(d, p, q1, q2) .
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The Vi ≡ Vi(q1, q2, ∂z, ∂z′) are operators encoding the Lorentz structure of the vertices. The

ci are the overall dimensionful coefficient of the vertices. Dimensions are such that [ciVi] =

5−d
2 . The Ξ(d, p, q1, q2) function is the d-dimensional 2-body kinematic function appearing

in the momentum spectral representation (see Sec. 2.5.3). Its dimension is [Ξ] = d− 4.

Eq. (2.147) is exact, but is in general difficult to evaluate. In any dimension the

Ξ(d, p, q1, q2) function drops to zero at the p = q1 + q2 threshold. Away from the threshold

p≫ q1 + q2, K tends to p2 and the kinematic function simplifies to

Ξ(d, p, q1, q2) ≈ Ξ(d, p, 0, 0) =
2pd−4Γ

(
d
2

)
Γ (d− 1)

(2.148)

giving for instance

d 3 4 5 6

Ξ(d, p, 0, 0)
√
π
p 1

√
π
4 p

p2

6

Following these observations, we introduce a kinematic threshold approximation

for which Ξ(d, p, q1, q2) is replaced by Θ
(
q1 <

p
2

)
Θ
(
q2 <

p
2

)
Ξ(d, p, 0, 0). We have checked

this approximation gives a typical error of O(10%) upon z integration. Numerical examples

are shown in App. E. The approximate expression for ImΠp becomes

ImΠp(z, z
′) ≈ (2.149)

cacbπ

(4π)d/2k4zz′

∫ p/2

0
dq1

∫ p/2

0
dq2q1q2Va Jα1(q1z)Jα2(q2z)Vb Jα1(q1z

′)Jα2(q2z
′)Ξ(d, p, 0, 0) .

Additionally, when working in the pz, pz′ ≫ 1 regimes, it turns out that the

propagators can be accurately approximated as the conformally massless ones, such that

one can also take α1,2 = 1/2 in Eq. (2.149). This last approximation is not strictly necessary

to render the evaluation of the WKB function S analytically tractable, but it will simplify

the following expressions and integrals.
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2.6.4 Bubbles in AdS5

In the following subsections, we calculate the various contributions to the self-

energy coming from the cubic vertices in Eq. (2.133). A detailed calculation of the Φ3 −Φ3

bubble was performed in Sec. 2.5. Abridged versions of all bubble calculations are given in

App. F.

Here we specialize to the d = 4 case, i.e five-dimensional AdS. Results in other

dimension are qualitatively similar, this is discussed in Sec. 2.6.5. As described in the

previous subsection, to leading order we can set α1,2 = 1/2 to simplify our expressions in

the pz ≫ 1 region.

Φ3 − Φ3 Bubble

The contribution to ImΠ from the bubble induced by two λΦΦ1Φ2 vertices is given

by

ImΠλλ(z1, z2) =
λ2

16πk4z1z2

∫
dq1dq2q1q2Jα1(q1z1)Jα1(q1z2)Jα2(q2z1)Jα2(q2z2)

K(p; q1, q2)

p2
.

(2.150)

Details of the calculation are given in Sec. 2.5.3. An abridged version is provided in App. F.1.

We now set α1,2 = 1/2. Performing the mass integrals using the kinematic thresh-

old approximation gives

ImΠλλ(z1, z2) ≈ λ2
(
z2 cos

(pz2
2

)
sin
(pz1

2

)
− z1 cos

(pz1
2

)
sin
(pz2

2

))2
4π3 k4 z21z

2
2(z

2
1 − z22)2

. (2.151)

Finally, to complete the evaluation of the WKB function S in Eq. (2.146), we consider ImΠ
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at same point z1 = z2 = z. Keeping the leading term in pz ≫ 1 gives

ImΠλλ(z, z) = λ2
p2

64π3(kz)4

(
1 +O

(
1

pz

))
(2.152)

and

Cλλ(z) =
1

6
+O

(
1

pz

)
. (2.153)

We note ImΠλλ(z, z) has oscillating terms but they are subleading in 1/pz and thus do not

appear in Eq. (2.152). The same feature is true in the other diagrams we evaluate.

Φ3 − Φ(∂Φ)2 Bubble

We evaluate the contribution to ImΠ from the bubble induced by one λΦΦ1Φ2

and one ξΦ∂MΦ1∂
MΦ2 vertex. We get

ImΠλζ(z1, z2) ⊃− λζ
z22

k2 z1z2

∫
dq1dq2q1q2 (2.154)

1

16π

(
q21 + q22 −

p2

2
− ∂z2∂z2

)
Jα1(q1z1)Jα(q1z2)Jα2(q2z1)Jβ(q2z2)

+
(
1↔ 2

)
.

Details of the calculation are given in App. F.2. Taking z1 = z2 = z, α1,2 = 1/2, and

expanding for large pz, we obtain

ImΠλζ(z, z) = λζ
p4

96π3(kz)2

(
1 +O

(
1

pz

))
(2.155)

and

Cλζ(z) =
2

15
+O

(
1

pz

)
. (2.156)
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Φ(∂Φ)2 − Φ(∂Φ)2 Bubble

We evaluate the contribution from two ξΦ∂MΦ1∂
MΦ2 vertices. Intermediate de-

tails of the derivation are similar to the other contributions but more cumbersome. Details

are given in App. F.3. Proceeding similarly we get

ImΠξξ(z, z) = ζ2
113 p6

46080π3

(
1 +O

(
1

pz

))
(2.157)

and

Cξξ(z) =
213

1582
+O

(
1

pz

)
. (2.158)

2.6.5 Opacity from the Dressing

We have all the ingredients to describe the behaviour of the dressed propagator in

the timelike, pz< ≪ 1, pz< ≫ 1 regime of Poincaré position-momentum space induced by

the above bubble diagrams.

We plug the various contributions into the WKB formula Eq. (2.146) —which gives

the argument of the exponential WKB ansatz. We integrate from a point z0 to z with z0 ≪ z

and satisfying pz0 ≫ 1 such that the asymptotic behaviour is valid. Using the full functions,

the contribution to S(z) from z0 < 1/p should be negligible. The dependence on z0 will be

essentially irrelevant for our purposes, for concreteness we let z0 ∼ 1/p.
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We obtain

Sλλ(z) = −
√

3

2

e−3

128π5/2
λ2

k
log (pz) (2.159)

≈ −3 · 10−5 λ
2

k
log (pz)

Sλζ(z) = −
√

5

6

e−15/4

128π5/2
λζk (pz)2 (2.160)

≈ −1 · 10−5 λζk (pz)2

Sζζ(z) = −
√

791

446

11e−791/223

46080π5/2
ζ2k3 (pz)4 (2.161)

≈ −5 · 10−7 ζ2k3 (pz)4.

The z0 dependence is negligible in Sλζ , Sζζ because of z0 ≪ z.

Following the WKB analysis of Sec. 2.6.2, we conclude that the dressed propagator

in the timelike region behaves as

Gp(z, z
′) ∼ eS(z>) , (2.162)

with S functions given by Eqs. (2.159)-(2.161). Neglecting the effect of Sλλ which varies

very slowly, the dressed propagator is damped for

Sλζ (pz|opacity) ∼ −1 . (2.163)

The condition Eq. (2.163) translates as a condition on pz for given couplings and AdS

curvature—or vice-versa.

Hence we have found that the bubble diagrams found above dictate the exponential

damping of the propagator in the IR region of timelike Poincaré position-momentum space.
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In the propagator, when pz> gets larger than the value set by Eq. (2.163), the propagator

gets exponentially suppressed, making the corresponding IR region effectively opaque to

propagation.

Dimensional Analysis and EFT Censorship

We go further by using knowledge from the EFT paradigm, which provides esti-

mate for the couplings. Dimensional analysis at strong coupling (i.e. “naive dimensional

analysis”, here denoted NDA) for an EFT in five dimensions dictates that [188–190]

λ ∼
√
ℓ5Λ , ζ ∼

√
ℓ5
Λ3

(2.164)

where ℓ5 = 24π3 is the 5D loop factor. Using Eq. (2.164) in Sλζ , Sζζ we have

Sλζ ≈ −1 · 10−5 ℓ5
k

Λ
(pz)2 , Sζζ ≈ −5 · 10−7 ℓ5

k3

Λ3
(pz)4 . (2.165)

Λ and k can also be related by NDA. It was found in Ref. [3] that

Λ ≳ πk . (2.166)

This condition follows from avoiding the strong coupling of momentum modes in the mo-

mentum spectral representation. This relation is also tied to the large N expansion in the

dual CFT, see Eq. (2.170).

Taking Λ ∼ πk, we find that the damping condition Sλζ ∼ 1 is attained for

pz|opacity ∼ 20 . (2.167)

For larger Λ, the value of pz for which the damping occurs gets larger.

But what of the contribution from the higher dimension operators? According to

the standard EFT paradigm, all contributions should become the same order at the limit
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of validity of the EFT. Thus by comparing Sλζ and Sζζ , we robustly determine the validity

region of the EFT. Using ζ
λ ∼

1
Λ2 , it turns out that Sλζ ∼ Sζζ for

(pz)2 ∼ 10
Λ2

k2
, (2.168)

which makes the familiar z-dependent cutoff of Poincaré position-momentum space appear

once again. For Λ ∼ πk, the region of EFT breaking starts at pz = O(10) and thus

qualitatively matches the region of opacity. For Λ > πk, the damping occurs before the

breaking of the EFT. This is because

pz|opacity ∝
√

Λ

k
, pz|EFTbreaking ∝

Λ

k
. (2.169)

We conclude the damping induced by interactions prevents the propagator to enter the

region of EFT breaking. In short, we can say that opacity censors the region of EFT

breaking. 21 This is valid in particular for the boundary-to-bulk propagator.

A first sketch of these features was done in [110] and further insights were given

in [3]. Censorship of the IR region for timelike momenta was also qualitatively predicted

in [155]. Our analysis validates all of these conclusions.

Aside on the Dual CFT

Here we mention how the above quantities match to the dual CFT. Using dimen-

sional analysis in the holographic action and comparing to correlators of a gauge theory

21Throughout we have used NDA on the renormalizable λ coupling. As an alternative scenario, one could

assume that λ is smaller than its strong coupling estimate. In such case the region of EFT breaking cannot

be obtained using the Sλζ ∼ Sζζ criterion. Instead the effect of a next-to-leading higher dimensional

operator has to be evaluated and compared to e.g. Sλζ or Sζζ . We expect similar conclusions regarding

the exponential damping and EFT breakdown.
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with adjoint fields, Ref. [3] finds

πk

Λ
∼ 1

N2
(2.170)

where N is the number of colors. Hence the ubiquitous Λ/k ratio is directly related to N .

N ≫ 1 corresponds to Λ≫ k, in agreement with Eq. (2.166).

Qualitative Behavior for AdSd+1

Finally we comment about the behavior of the damping for other dimensions of

spacetime. To estimate the behavior, we use the kinematic approximation Eq. (2.149), in

which the scaling of the kinematic function is

Ξ(d, p, 0, 0) ∝ pd−4. (2.171)

In addition, contributions from higher dimensional operators grow with higher powers of pz,

coming from the extra derivatives in the vertices of the bubble. This knowledge is enough

to estimate the behavior of ImΠ in any dimension.

In d = 4, we have obtained that Sλλ, Sλζ , Sζζ grow respectively as log(pz), (pz)2,

(pz)4, hence the leading contribution to the exponential damping comes from Sλζ .
22 Notice

that Sλζ is the leading contribution from the higher dimensional operators of the EFT, since

the λ coupling is renormalizable in d = 4.

In d > 4 the contribution from the λλ bubble to the S function goes as S ∝

λ2(pz)d−4. Hence the exponential suppression already happens from the cubic coupling λ

in these dimensions. For d = 3 the first polynomial contribution to S is from the λζ bubble,

which grows as ∝ pz. For d = 2, it is from the ζζ bubble which grows as ∝ (pz)2.

22Notice the Sζζ contribution is of same order as a mixed contribution from the λΦΦ1Φ2 and a higher

dimensional operator such as Φ∂M∂NΦ1∂
M∂NΦ2.
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We conclude that, for any dimension of spacetime, when considering an effective

field theory in AdS—implying a tower of higher derivative operators, the interactions render

the IR region of Poincaré position-momentum space opaque to propagation. Conversely, the

IR region of EFT breakdown, which exists because of the presence of these higher derivative

operators, gets censored. These features are summarized in Fig. 2.1.

2.6.6 Structure of Higher Order Diagrams

One may wonder what happens to the exponential damping when one takes into

account higher order diagrams into account in the self-energy dressing the propagator. For

instance the internal lines of the bubble considered so far are themselves dressed by bubble

subdiagrams, and so on.

A convenient way to get the answer is to use the momentum spectral representation

and introduce a UV and IR brane such that the momentum modes get discretized—they

become the familiar Kaluza-Klein modes. The optical theorem can then be used in the

regime of momentum where these modes are narrow.

Using this approach, it becomes clear that the contribution of higher order dia-

grams to ImΠ appear when the mass integrals in Eq. (2.108) go beyond the leading order

kinematic threshold, e.g. beyond the two-body threshold in case of a bubble. Instead of be-

ing cut at the two-body threshold, the integrand is now non zero for higher masses. These

higher order regions of the integrand come with additional loop factor suppression—i.e.

the additional phase space suppression in the halved diagram. The region of the mass in-

tegrals where the two-body channel is opened is essentially unaffected by these subleading

corrections.
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In summary, higher order corrections give small higher order additions to ImΠ,

the main contribution to opacity comes from the leading order 1PI diagram. Using results

from [3] on cascade topologies in the continuum regime where the branes become irrelevant,

these conclusions generalize to the un-truncated Poincaré patch.

2.6.7 Application to Asymptotically AdS Backgrounds

Our study has been focused on the entire Poincaré patch z ∈ [0,∞] of AdS. In some

models, the metric in the IR region can naturally get deformed and become singular. This

is instrumental for AdS/QCD, see e.g. [191–200]. In many instances, models are built which

truncate the UV and/or IR regions—leading to UV/IR branes. This well-known setup has

applications across physics beyond the Standard Model, for e.g. recent holographic dark

sector applications see [1, 24–27,41].

How do our findings about AdS opacity apply to such deformed AdS backgrounds?

In the case of an IR brane, propagation to the brane will be exponentially damped

at sufficiently high momentum, such that the propagators become agnostic of the IR region

and do not know about the IR brane—neither in the spacelike regime, nor in the timelike

regime (see earlier discussion in [3,110]). This conclusion readily extends to asymptotically

AdS backgrounds with an IR deformation which can be described as an effective IR brane

as in [199].

In the presence of a UV brane, one can check using limits of the propagator from [3]

that the effects of the UV brane on the propagator become negligible when the endpoints

are away from it. Whenever one of the endpoints of the propagator is away from the UV

brane, the locality property of ImΠ dictates that both endpoints of the relevant dressing
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diagrams will be away from the brane. The exponential damping is usually relevant deep

in the IR, and hence the existence of the UV brane is irrelevant and our conclusions hold.

A wide class of backgrounds is described by a conformally flat metric of the form

ds2 = e−2A(z)
(
ηµνdx

µdxν − dz2
)
. (2.172)

In particular, deformed AdS backgrounds typically admit such a description. 23 Like in

Poincaré position coordinates, this metric has d-dimensional Poincaré isometries in the xµ

coordinates. Hence for an arbitrary warping A(z) we can Fourier-transform to position-

momentum space (pµ, z) as we did in the exact AdS case. This implies that the canonical

and spectral representations of the propagator may be used in more general backgrounds.

The last remaining ingredient is to obtain the solution of the Fourier-transformed free

EOM. In any case, the split structure of the spectral functions should automatically hold

throughout, as explained in Sec. 2.3.

In summary, we conclude that our results on opacity of the Poincaré momentum-

space apply to a broad range of deformed/truncated AdS backgrounds, and that our for-

malism itself may also be generalized to other metrics of the form Eq. (2.172).

2.7 Opacity from Gravity in AdS5

Even if cubic matter interactions are absent—which could happen for symmetry

reasons or if they are vanishing/negligible altogether, there is always a cubic interaction

between AdS gravity and matter. This is true for any matter field since the graviton couples

linearly to the matter stress tensor as hMNT
MN . Hence bulk gravity always produces a

23This metric appears in certain 5D supergravities, see e.g. [201].
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bubble contribution to the self-energy of a matter field, thereby inducing a universal, 1-loop

contribution to the “opacity” of the IR region (see discussions in Sec. 2.6).

For this work we consider propagation of a scalar field and we focus only on the

d = 4 case. In d = 4, the bulk graviton splits into five degrees of freedom, two of helicity-two,

two of helicity-one, one of helicity-zero, each with their own coupling to the stress-energy

tensor. The trace of the metric is a non-physical, ghosty degree of freedom which also

contributes to the loop. We closely follow the formalism of [202]. 24

The pure gravity part of the action is

SEH =M3
∗

∫
d5X
√
g (R− Λ5) (2.173)

with Λ5 = −12k2. The canonically normalized metric fluctuation around the AdS back-

ground γMN is defined by

gMN = γMN +

√
2

M3
∗
hMN . (2.174)

The expansion of the gravity action Eq. (2.173) up to quadratic order is well-known (see

e.g. [203,204]), giving the action for the 5d graviton hMN ,

Sh =

∫
d5X
√
γ

(
1

2
∇RhMN∇RhMN − 1

2
∇Rh∇Rh+∇MhMN∇Nh (2.175)

−∇MhMN∇RhRN + k2(h2MN + h2) +

√
1

2M3
∗
hMNTMN

)

where

TMN = −2 δLΦ
δγMN

+ γMNLΦ . (2.176)

Following [202], all degrees of freedom of the graviton can be disentangled using field re-

definitions and Faddeev-Popov gauge fixing. Defining ĥMN = (kz)2hMN then splitting the

24Except that we use the opposite metric signature.
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graviton components as

h̃µν = ĥµν −
1

4
ηµνh

ρ
ρ , Bµ =

√
2

kz
ĥµ5 , χ =

1

2

(
ĥµµ − 2ĥ55

)
, ϕ =

√
3√

2(kz)2
ĥ55 , (2.177)

and defining the sources

T̃µν = Tµν −
1

4
ηµνT

ρ
ρ , T̃55 = T55 +

1

2
T ρρ , (2.178)

the graviton action Sh =
∫
dxMLh takes the simple form

Lh =
1

2

(
1

(kz)3
(∂Rh̃µν)

2 +
1

kz
(∂RBµ)

2 + kz(∂Rϕ)
2 − 1

(kz)3
(∂Rχ)

2

)
(2.179)

+
1√
M3

∗

(
1√

2(kz)3
h̃µν T̃µν +

1

(kz)2
BµTµ5 +

1

2
√
2(kz)3

χTµµ +
1√
3kz

ϕT̃55

)
.

In Eqs. (2.177)-(2.179) all contractions are done with the Minkowski metric. As expected

the χ field has “wrong-sign” kinetic term and is an unphysical degree of freedom. Its

contribution naturally combines with the one of the h̃µν field.

The graviton degrees of freedom in Eq. (2.179) are diagonal, hence their contribu-

tions to the self-energy are disentangled such that

ImΠp(z, z
′) = ImΠhp(z, z

′) + ImΠBp (z, z
′) + ImΠϕp(z, z

′) + ImΠχp (z, z
′) . (2.180)

In this work we focus on the contribution of the scalar component ϕ of the graviton multiplet.

The Feynman propagator of ϕ is given by

Gϕ(z, z′) =
π

2k
J0(pz<)H

(1)
0 (pz>) (2.181)

with ⟨ϕ(p, z)ϕ(p′, z′)⟩ = Gϕ(z, z′)(2π)4δ(4)(pµ − p′µ).

The stress-energy tensor of the bulk scalar Φ is

TMN = −∂MΦ∂NΦ+
1

2
γMN

(
∂RΦ∂

RΦ−m2
ϕΦ

2
)
, (2.182)
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giving the source

T̃55 = −
3

2
(∂5Φ)

2 − 1

2 (kz)2
m2

ΦΦ
2 , (2.183)

which couples to the ϕ component of the graviton multiplet. Using integration by parts, we

rewrite the relevant term of the Lagrangian as

Lh ⊃ Φ∂5

( √
3

2kz
√
M3

∗
ϕ∂5Φ

)
−

m2
Φ

2(kz)3
√
3M3

∗
ϕΦ2. (2.184)

We perform the graviton loop calculation in App. F.4. We find

ImΠϕ(z1, z2) =
1

48πM3
∗

(
m2

Φ

2(kz1)2
− 3

2
∂z1∂

GΦ
z1

)(
m2

Φ

2(kz2)2
− 3

2
∂z2∂

GΦ
z2

)
(2.185)

1

z1z2

∫
dq1dq2q1q2

[
z21z

2
2Jα(q1z1)Jα(q1z2)

]
J0(q2z1)J0(q2z2) .

Here the ∂GΦ
z derivatives act on the internal Φ propagator only (i.e. only the term in square

brackets), whereas the ∂z derivatives act on everything to the right.

Using the WKB approximation scheme introduced and justified in Sec. 2.6, we

then obtain

ImΠϕ(z, z) = κ2
7 p6

30720π3 k3

(
1 +O

(
1

pz

))
(2.186)

Cϕ(z) =
24

49
+O

(
1

pz

)
, (2.187)

where we have introduced the 5D gravity coupling strength

κ ≡

√
k3

M3
∗
=

k

MPl
. (2.188)

This contribution is similar to the effect from the Φ(∂Φ)2 − Φ(∂Φ)2 scalar bubble—which

is not surprising since the number of derivatives in the vertices is the same. The argument

of the exponential of the WKB ansatz given by Eq. (2.146) is found to be
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Sϕ(z) = − 49e−49/48

491520
√
3π5/2

κ2 (pz)4 (2.189)

≈ −1 · 10−6 κ2 (pz)4

This shows explicitly that bulk gravity itself induces opacity of the IR region in

Poincaré position-momentum space, i.e. Gp(z, z
′) ∼ eS

ϕ(z>). The contribution is universal

in the sense that it depends only on the strength of the AdS gravity coupling κ. 25

In five dimensions, the gravity Lagrangian is understood as an EFT from which

the leading term is the Einstein-Hilbert one. Studying higher order effects from the gravi-

ton EFT would require one to include the effect of higher dimension interactions such as

RLmatter. This is beyond the scope of this work, in which the main focus has been on scalar

fields. Since we do not attempt to evaluate higher order contributions from the EFT, we do

not comment on the interplay between EFT breakdown and IR opacity in this section. It

would be interesting to check if the superPlanckian region is censored as a result of opacity

from graviton loops, along the lines of Sec. 2.6.5.

2.8 Discussion

In this work, we have investigated how quantum dynamics affects the propagation

of a scalar field in Lorentzian AdSd+1. Our main results are presented in Sec. 2.2.2. This

section contains a summary, comments on the implications of this work and possible future

directions.

255D dimensional analysis shows that the maximal value of κ is O(1) to avoid higher curvature terms. For

completeness we also remind that κ2 ∼ 1
N2 when matching the theory to a 4D CFT [19].
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In the first part of this work, we studied the simplest scalar bubble in momentum-

position space. Different objects appear depending on the representation used. In the canon-

ical representation, loop integrals with non-integer powers are the key ingredient. In the

momentum spectral representation, a generalized two-body kinematic threshold emerges.

In the conformal spectral representation, AdS/CFT arises: CFT correlators naturally ap-

pear and combine to form a CFT bubble diagram. 26 By direct computation, we find that

the conformal spectral result for ImΠ takes the form of a sum over double-trace propaga-

tors, with coefficients that match exactly those from [79, 160]. We have provided explicit

equivalence proofs between these representations.

We prove a number of global and asymptotic properties of the imaginary part of

the bubble via the various representations. Asymptotics and convenient approximations are

best obtained in the momentum spectral representation. In particular this representation

shows that ImΠ tends to be peaked at large pz.

To study concretely how loops affect propagation in AdS, we directly solve the

dressed equation of motion. To do so, we introduce a WKB-type method adapted to

a convolution term Π ∗ G(0) and use a saddle-point approximation of ImΠ. The most

interesting regime is when the propagator endpoints satisfy pz< ≪ 1, pz> ≫ 1, which

includes the boundary-to-bulk propagators with pz ≫ 1 as a particular case. This regime

has no flat-space equivalent—the pz ≪ 1 region vanishes if one Weyl-transforms to flat

space.

We adopt the EFT viewpoint in which Lagrangians contain an infinite series of

26We obtained the anomalous dimension via resummation and verified that it matches exactly the one found

in [93] by another method.
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higher dimensional operators and evaluate the effect of bubbles from leading and next-to-

leading operators in AdS5. We find that interactions of high-enough order in the bulk of

AdS induce an exponential damping of the propagator for timelike momentum at large pz.

The damping renders the IR region of the Poincaré patch opaque to propagation. This

exponential damping is similar to the one induced by the Feynman iϵ prescription in the

free case. We thus conclude that loop corrections are consistent with the iϵ prescription.

By definition, an EFT breaks down when higher dimensional operators give contri-

butions of the same order. In AdS this occurs at sufficiently large pz, i.e. in the IR region

of the Poincaré patch. Estimating the operator coefficients using standard dimensional

analysis, we find that the region of EFT breakdown falls behind the region of exponential

suppression, meaning that this region is effectively censored. A qualitative generalization

to AdSd+1 is presented.

A first sketch of these features was proposed in [110]. Censorship of the IR for

timelike momenta was also qualitatively predicted in [155], though the mechanism by which

their predicted behavior occurs is fundamentally different. Our analysis validates all of

these conclusions.

The damping behavior observed is not unique to AdS, it may occur in any space-

time background whenever the self-energy of the propagating field develops an imaginary

part. In flat space such damping is associated to decaying particles via the S-matrix optical

theorem, but such interpretation is not required in general—as exemplified by our AdS

findings. The key aspect is rather that Π develop an imaginary part in some region.

Going beyond scalar loops, we have evaluated a contribution from the leading
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graviton loop in AdS5. Opacity of the IR region again occurs, and depends only on the

strength of AdS gravity controlled by k/MPl. We do not comment on EFT breaking in this

context since it would require to evaluate the effect of graviton-matter vertices from higher

dimensional operators.

2.8.1 Possible Implications and Future Directions

There are some immediate extensions to our study. It would be interesting to

derive the approximate behavior of the dressed propagator as obtained in Sec. 2.6 from the

conformal spectral representation as given in Sec. 2.4. Other directions include the study

of propagating fields with non-zero spin or to investigate the effect of a larger variety of

self-energies including those from fermion or graviton loops.

The formalism developed here for AdS may be useful for more general backgrounds—

namely those admitting a warped, conformally-flat metric of the form described in Eq. (2.172).

A direct consequence of working in the Poincaré momentum space (pµ, z) is that the prop-

agators have a split structure in pz, pz′, both in the spectral representations and in the

canonical one. Moreover, whenever the solutions to the free EOM in momentum-position

space are analytical, we can expect the various representations (canonical, conformal and

momentum spectral) of the propagator to have analytical expressions.

This study has been focused on AdSd+1. We have essentially not discussed as-

pects of the dual CFT, apart from using some basic elements which naturally arise in the

calculations. The bubble topology is the simplest loop diagram, and as such may be seen

as a laboratory to study unitarity in AdS. AdS/CFT unitarity methods have recently been

developed [114, 158]. Our detailed analysis of ImΠ in its various forms could be useful in
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these types of studies. 27

On a more phenomenological note, our results on the exponential damping of the

propagator may have implications for extensions of the Standard Model of particles. This

is for example relevant for extra-dimensional and holographic dark sector models. Consider

the so-called “slice of AdS”—in which there are UV and IR branes that truncate the bulk.

Our results indicate that particles in the UV cannot propagate to the IR brane if they have

sufficiently high absolute 4-momentum—either timelike or spacelike. This gives rise to the

concept of an emergent sector which can only interact at sufficiently small values of absolute

4-momentum, as discussed in [3]. This is discussed in more detail in chapter 3.

Our work may have implications for AdS/QCD, since timelike bulk processes are

related to timelike fragmentation functions in the gauge theory. One may note that opacity

of AdS in the spacelike regime played a role in the AdS/CFT deep-inelastic study of [205].

Hence timelike opacity should also be important in the study of the cross-symmetric process,

e.g. e+e− annihilation into states of the strongly-coupled gauge theory.

27We have found that Im(CutΠ) = Cut(ImΠ) = ImΠ, where the AdS Cut operation acts on poles in the

conformal spectral representation. We have also found that upon cutting the bubble in the momentum

spectral representation, we obtain the imaginary part in the canonical representation.
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Chapter 3

Soft Bombs and the Continuum

Regime of AdS

3.1 Chapter Abstract

We consider a scalar field in a slice of Lorentzian five-dimensional AdS at arbitrary

energies. We show that the presence of bulk interactions separate the behavior of the theory

into two different regimes: Kaluza–Klein and continuum. We determine the transition scale

between these regimes and show that UV brane correlation functions are independent of

IR brane-localized operators for four-momenta beyond this transition scale. The same

bulk interactions that induce the transition also give rise to cascade decays. We study

these cascade decays for the case of a cubic self-interaction in the continuum regime. We

find that the cascade decay progresses slowly towards the IR region and gives rise to soft

spherical final states, in accordance with former results from both gravity and CFT. We
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identify a recursion relation between integrated squared amplitudes of different leg numbers

and thus evaluate the total rate. We find that cascade decays in the continuum regime are

exponentially suppressed. This feature completes the picture of the IR brane as an emergent

sector as seen from the UV brane. We briefly discuss consistency with the holographic dual

description of glueballs and some implications for dark sector models.

3.2 Introduction

The overarching idea throughout this chapter is that the bulk correlators effectively

lose contact with the IR brane above some specific value of momentum p > Λ̃. At the

qualitative level, this can be argued from the breakdown of the effective theory in the IR

region (using e.g. Refs. [155, 186]). Quantitatively, this requires one to account for bulk

loops that dress the propagator [110]. Throughout this chapter we say that the IR brane

effectively emerges for bulk correlators as their energy is decreased through the p ∼ Λ̃.

transition.

We begin our study by outlining the regimes of field theory in a slice of 5D AdS, as

obtained in this chapter. The fundamental scales fixed by geometry are the AdS curvature,

k, and the IR brane position, 1/µ. The Kaluza–Klein scale is µ≪ k and represents the mass

gap in the dual gauge theory. In the presence of interactions, the theory has a 5D cutoff Λ

and a transition scale Λ̃ that is explained below. These have a hierarchy Λ > k > Λ̃ > µ

that define four different energy regimes:

• 4D regime, E < µ. In this limit, Kaluza–Klein modes are integrated out and only

sufficiently light 4D modes such as gauge or Goldstone bosons remain in the spectrum.
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• Kaluza–Klein regime, µ < E < Λ̃. The theory in this regime has a tower of regularly

spaced narrow resonances. The resonances in this energy window are narrow glueballs

in the dual gauge theory.

• Continuum regime, Λ̃ < E < k. In this regime, the effective theory breaks down in

the IR region of AdS. Quantum corrections mix the KK modes and merge them into

a continuum. An observer on the UV brane effectively sees pure AdS. The theory can

equivalently be described by a holographic CFT with no mass gap.

• Flat space regime, k < E < Λ. Here the curvature of AdS becomes negligible, and KK

modes from any other compact dimensions appear. No simple CFT dual is expected

in this regime.

One may conjecture that for p ≫ Λ̃, the theory is described by an effective La-

grangian without an IR brane. As described in the introductory chapter, a workaround

to this conjecture may be possible via bulk cascade diagrams (i.e. soft bombs). A cascade

diagram can split the energy of an individual state in the continuum regime into many

offspring states reaching into the KK regime. The evaluation of the rate for such event

would imply that the high energy theory already knows about the IR brane, which would

invalidate the proposal that there is effectively no IR brane in the continuum regime. A

careful investigation of the soft bomb rates is thus required.

In summary, this chapter i) establishes the existence of a continuum regime in

the presence of interactions and ii) studies soft bomb events in this regime. The chapter

is organized as follows. Section 3.3 establishes the basic five-dimensional formalism in a

slice of AdS. In particular, we present the classical propagator for a scalar field in mixed
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position–momentum space. Interactions in the bulk of AdS play a central role in our study.

Section 3.4 provides the necessary tools for dimensional analysis at strong coupling. In

Section 3.5, we dress the propagator with quantum corrections. The imaginary part of the

self-energy induces distinct KK and continuum regimes. The transition scale is understood

both qualitatively from the viewpoint of effective theory validity and from the viewpoint of

the opacity of the IR region resulting from the dressing of the propagator by bulk fields.

In Section 3.6 we identify a recursion relation that relates the continuum-regime cascade

decay rates with arbitrary number of legs. Section 3.7 presents the general picture of soft

bomb events in the continuum regime. Building on this, we spell out the notion of IR

brane emergence. Asymptotically AdS backgrounds and implications for holographic dark

sectors are also discussed. In Section 3.8 we connect our analysis to strongly coupled gauge

theories using AdS/CFT. We discuss CFT soft bombs, establish the relation between bulk

matter interactions and large-N expansion, and analyse the transition scale in the EFT of

glueballs. Conclusions are given in Sec. 3.9.

3.3 A Bulk Scalar in a Slice of AdS

In studies of the gravity–scalar system, a general ansatz for the metric preserving

the 4D Poincaré invariance is

ds2 = gMN dX
MdXN = e−2A(y)ηµνdx

µdxν − dy2 , (3.1)

where ηµν is the 3+1-dimensional Minkowski metric with (+,−,−,−) signature. This metric

appears in certain 5D supergravities, see e.g. [201]. It can depart from AdS and develop

a singularity at large y, beyond which spacetime ends, see e.g. [191–193, 196, 198, 199]. In
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other classes of models, an IR brane truncating the y coordinate is explicitly included. In

this paper we focus on the simplest example of a slice of AdS for which the metric is exactly

anti-de Sitter. Using the conformally flat coordinates z = eky/k, the metric is

ds2 = gMN dX
MdXN = (kz)−2

(
ηµνdx

µdxν − dz2
)
. (3.2)

Space is truncated at endpoints

zUV = k−1 and zIR = µ−1 > zUV , (3.3)

which correspond to the positions of a UV and IR brane, respectively.

3.3.1 Action

A generic effective theory on this background involves gravitons and matter fields

of different spins. In this manuscript we focus on the case of a scalar field Φ with non-

derivative, cubic interactions. We expect that the results of this study generalize readily to

any other type of field. The action for this field is

S =

∫
d5X
√
g

(
1

2
∇MΦ∇MΦ− 1

2
m2

ΦΦ
2 +

1

3!
λΦ3

)
+ SUV + SIR + · · · (3.4)

where we explicitly write the kinetic, mass and interaction terms. The ellipses denote

additional contributions from gravity and higher-dimensional operators that are suppressed

by powers of the effective theory’s cutoff. A convenient parameterization of the scalar mass

is

m2
Φ ≡ (α2 − 4)k2 . (3.5)

The Breitenlohner-Freedman bound requires α2 ≥ 0 [206,207]. In this chapter we routinely

take α to be non-integer. The actions SUV and SIR encode brane-localized operators. These
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can include mass terms for the scalar which are conveniently parameterized with respect to

dimensionless parameters bUV and bIR as (see, e.g. [188]),

SUV + SIR ⊃
1

2

∫
d5X
√
ḡ [(α− 2− bUV)kδ(z − zUV)− (α− 2 + bIR)kδ(z − zIR)] Φ2 .

(3.6)

We leave these parameters unspecified and simply assume that bUV ̸= 0. There is a special

mode in the spectrum with mass ∼ bUVk. For bUV sufficiently small, this mode may affect

the physical processes studied here. We assume this special mode is heavy such that it is

irrelevant in our analysis. ḡµν is the induced metric on the brane so that
√
ḡ = (kz)−4.

Other degrees of freedom may be localized on the brane and interact with Φ. 1 In the

context of our analysis, such brane modes provide asymptotic states for the bulk scattering

amplitudes.

3.3.2 The Scalar Propagator

The classical equation of motion obtained by varying the bulk action for the scalar

field, Φ, is

DΦ ≡ 1
√
g
∂M (gMN√g∂NΦ) +m2

ΦΦ = 0 . (3.7)

The Feynman propagator is the Green’s function of the D operator,

DX∆(X,X ′) =
−i
√
g
δ(5)(X −X ′) . (3.8)

1There are hints that a brane-localized degree of freedom always arises from a bulk field and is thus necessarily

accompanied by a tower of Kaluza-Klein modes [162]. This tower can be decoupled from the brane so that

it is consistent to consider only the brane-localized mode.
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Rather than work in position-space coordinates, XM = (xµ, z), we Fourier transform along

the 4D Minkowski slices: Φp(z) ≡
∫
eiηµνxµpνΦ(xµ, z). We call this Poincaré position-

momentum space. The AdS dilatation isometry becomes (pµ, z) → (pµ/λ, λz) so that pz

is an invariant. Here p is the Minkowski norm p =
√
ηµνpµpν , which is real (imaginary)

for timelike (spacelike) four-momentum, pµ. In these coordinates, the propagator is, see

e.g. [162],

∆p(z, z
′) =i

πk3(zz′)2

2

[
Ỹ UV
α Jα(pz<)− J̃UVα Yα(pz<)

] [
Ỹ IR
α Jα(pz>)− J̃IRα Yα(pz>)

]
J̃UVα Ỹ IR

α − Ỹ UV
α J̃IRα

, (3.9)

where z<,> is the lesser/greater of the endpoints z and z′. The p-dependent quantities

J̃UV,IR are

J̃UVα =
p

k
Jα−1

(p
k

)
− bUV Jα

(p
k

)
J̃IRα =

p

µ
Jα−1

(
p

µ

)
+ bIRJα

(
p

µ

)
, (3.10)

with similar definitions for Ỹ UV,IR.

For timelike momentum, the propagator (3.9) has poles set by the zeros of the

denominator. This propagator can always be written formally as an infinite sum over 4D

poles. Let us introduce the matrix notation

f(z) = [ fn(z) ] D =

[
δnr

p2 −m2
n

]
, (3.11)

where f is a one-dimensional infinite vector and D is an infinite diagonal matrix indexed by

the Kaluza–Klein (KK) numbers n and r. The propagator in the Kaluza-Klein representa-

tion is

∆p(z, z
′) = i f(z) ·D · f(z′) . (3.12)
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Amplitude calculations often feature sums over KK modes. We can represent these

sums as contour integrals [110],

ñ∑
n=0

U(mn)fn(z)fn(z
′) = − 1

2π

∮
C[ñ]

dq2U(q2)∆q(z, z
′) , (3.13)

where the contour C [ñ] in momentum space encloses the first ñ poles. U can be any function

that does not obstruct the contour with singularities. The identity (3.13) is a useful link

between the KK and closed form representations of the propagator.

3.4 Interactions: Dimensional Analysis

A key ingredient of our study is the magnitude of the couplings of the bulk scalar

from an effective field theory (EFT) perspective. In the presence of interactions, a five-

dimensional theory is understood to be an EFT with some ultraviolet cutoff Λ beyond

which the EFT becomes strongly coupled. This cutoff is tied to the strength of interactions

through dimensional analysis in the strong coupling limit through so-called näıve dimen-

sional analysis (NDA) [189, 208–211]; see e.g. [188] for a pedagogical introduction of NDA

to 5D theories. The crux of this analysis is to compare amplitudes of different loop order

or involving higher dimensional operators. Let us define the loop factors

ℓ5 = 24π3 and ℓ4 = 16π2 . (3.14)

3.4.1 Gravitational Interactions

The interactions of the graviton in AdS is controlled by the dimensionless coupling

κ =
k

MPl
. (3.15)
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The reduced 4D and 5D Planck masses are related by M3
5 =M2

Plk. By NDA, the cutoff in

the gravity sector

Λ3
grav = ℓ5M

3
5 = ℓ5κM

3
Pl . (3.16)

In order to keep higher order gravity terms under control, κ should be at most O(1) [189,

190].

The gravity cutoff Λgrav is sometimes taken as a universal scale setting the strength

of all interactions in the effective Lagrangian. However, in the EFT the typical strength

of interactions in various sectors can in principle be different with different strong coupling

scales. Strongly-interacting matter cannot influence the strength of gravity, which is pro-

tected by diffeomorphism invariance and set by the background geometry. In particular,

matter interactions are at least as strong as gravity. The strong coupling scale of pure

matter interactions can thus be lower than Λgrav. Notice that gravity can even be removed,

MPl →∞, while the matter cutoff remains unchanged. 2

3.4.2 Matter Interactions

We assume that a universal cutoff Λ sets the strength of interactions in the matter

sector of our theory. To make this connection manifest in D-dimensions, one writes the

fundamental action in terms of dimensionless fields Φ̂ with ℓD factored out [188,189]:

SD =
NsΛ

D

ℓD

∫
dDXL̂

[
Φ̂, ∂/Λ

]
. (3.17)

2In a UV completion, the Λ, Λgrav scales would likely be correlated and a fine-tuning might be needed to

separate these scales.

99



Ns counts the number of species in the Lagrangian; for the present study we set Ns = 1.

NDA states that an O(1) coupling in L̂ corresponds to a strong interaction strength. The

dimensionful Lagrangian is recovered by canonically normalizing the fields. For the case of

a cubic interaction, the NDA coupling dictated by (3.17) is λ ∼ (ℓ5Λ)
1/2.

The gravitational cutoff Λgrav is related to the AdS curvature k through (3.15)

and (3.16). One may determine a similar relation between the matter cutoff Λ and k by

considering the effective 4D interactions between specific KK modes. When expanding the

5D field in terms of canonically normalized 4D modes, Φ = kz
∑

n f̃n(z)ϕn(x), one finds that

f̃n(1/µ) is of order
√
k. 3 Because KK modes are localized towards the IR brane, this implies

that the order of magnitude of an effective 4D coupling between KK modes is obtained from

the 5D coupling by multiplying by powers of
√
k and the warp factor w = µ/k. For a given

KK mode, the 4D NDA action is

SKK =
w4Λ4

ℓ4

∫
d4xL̂

[
ϕ̂, ∂/(wΛ)

]
(3.18)

following the same conventions of (3.17). Notice that the cutoff only appears through the

warped down cutoff scale wΛ = Λ̃; we discuss this feature in Section 3.5.1.

Consider a general monomial interaction λ5DΦ
n/n! in the 5D action with n > 2.

5D NDA, (3.17), reveals that the strong coupling coefficient is

λ5D = ℓ5
n/2−1Λ5−3n/2 . (3.19)

An interaction between n KK modes with O(1) dimensionless couplings is then

λ4D ∼ ℓ5n/2−1Λ5−3n/2kn/2−1w4−n . (3.20)

3The KK mode normalization is
∫
dz(kz)−1f̃n(z)f̃m(z) = δmn. One has f̃m(z) = (kz)−1fm(z), where the

fm are introduced in Sec. 3.3.
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On the other hand, the 4D NDA value for λ4 is

λ4 = ℓ4
n/2−1Λ4−nw4−n . (3.21)

For the effective theory of KK modes to be valid, one must require the effective λ4 in (3.20)

to be smaller than or equal to its strong coupling estimate, (3.21). This implies

Λ >
ℓ5
ℓ4
k . (3.22)

This universal relation arises because the
√
k and the loop factors have the same powers in

the NDA estimates, which are in turn fixed by field counting. When (3.22) is not saturated,

the effective 4D couplings of KK monomials are suppressed by powers of (ℓ5k/ℓ4Λ)
1/2 with

respect to their strong coupling value. This systematic suppression factor is reminiscent of

the large N suppression in the dual CFT, see Section 3.8.2.

3.4.3 Value of the Cubic Coupling

In this chapter we consider a scalar field, whose natural mass scale would be O(Λ),

as reflected by NDA. While the NDA value of the cubic coupling is λ ∼ (ℓ5Λ)
1/2, for this

manuscript we set it to a smaller value

λ ∼ mΦ
ℓ
1/2
5

Λ1/2
. (3.23)

This value is consistent with a bulk mass parametrically lower than Λ: the self-energy bubble

diagram from λ gives a O(m2
Φ) contribution, in accordance with NDA. The λ coupling tends

to zero in the free limit Λ→∞ (i.e. N →∞) as it should.
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3.5 The Kaluza–Klein and Continuum Regimes of AdS

We study the behavior of the effective theory using the results of the free theory

in Section 3.3 and the interaction strengths in Section 3.4. Quantum corrections from the

bulk interactions ‘dress’ the bulk propagator and cause it to have qualitatively different

behavior depending on the four-momentum, p. We show how these corrections separate the

Kaluza–Klein and continuum regimes of a bulk scalar.

3.5.1 The Transition Scale

The homogeneity of AdS implies a homogenous 5D cutoff on proper distances

smaller than ∆X ∼ 1/Λ. In the conformal coordinate system the cutoff is z-dependent with

respect to the Minkowski distance, since
√
ηµν∆xµ∆xν ∼ kz/Λ. In position–momentum

space the condition amounts to p ∼ Λ/(kz). This implies that the 5D cutoff for an observer

at position z in the bulk is warped down to Λ/(kz).

One can see this from an EFT perspective: the effects of higher-dimensional op-

erators in the action are enhanced by powers of z. For example, consider dressing the

propagator with a higher derivative bilinear, □(∂µΦ)
2/Λ2 with an O(1) coefficient as dic-

tated by NDA (see Eq. (3.17)). This term dominates for

pz ≳ Λ/k . (3.24)

For a fixed p, this implies that the EFT breaks down in the IR region of AdS, z ≳ (Λ/k)/p;

see e.g. [110, 155, 186]. The cutoff is warped below the scale p for values of z beyond this

region. Therefore propagation into this region of position–momentum space falls outside

the EFT’s domain of validity.
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It follows that the theory also contains a scale

Λ̃ = Λ
µ

k
, (3.25)

the warped down cutoff at the IR brane. At energies p > Λ̃, the correlation functions cannot

know about the IR brane since it is in the region of position–momentum space hidden by

the EFT validity condition (3.24). In short, for p > Λ̃ the IR brane is “outside of the EFT,”

see Section 3.7.

This is a hint that the behavior of the theory undergoes a qualitative change at

Λ̃. The IR brane imposes a boundary condition that leads to discrete KK modes. Thus for

p < Λ̃, one can expect that the theory features KK modes. On the other hand, for p > Λ̃

the IR brane is outside the EFT, hence no KK modes should exist. Instead, an observer

should see a continuum of states.

3.5.2 Dressed Propagator

The free propagator in (3.9) encodes narrow KK modes. It amounts to Λ →

∞ or N → ∞. The continuum behavior becomes apparent when one dresses the free

propagator with quantum corrections. 4 These quantum corrections resolve the poles in the

free propagator with timelike momenta as they do in 4D Minkowski space. Including these

effects corresponds to evaluating the leading 1/N2 effect on the propagator of the strongly

coupled dual theory; in our case this is 1/N2 ∼ λ2/k.
4The exact calculation of diagrams in AdS has recently been an intense topic of research, see e.g. [93,95,96,

101,108,158] for loop-level diagrams and [112,119,124,137] for developments in position–momentum space.

Throughout this paper we instead use approximate propagators.
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We focus on bulk self-energy corrections from a cubic self-interaction. Brane-

localized self-energies only modify the boundary conditions and are thus unimportant for

our purposes. In contrast to the free propagator, the Green’s function equation for the

dressed propagator satisfies

DX∆(X,X ′)− 1
√
g

∫
dY Π(X,Y )∆ (Y,X ′) = − i

√
g
δ(5)(X −X ′) , (3.26)

where iΠ(X,Y ) are 1PI insertions that dress the propagator. In our case, the leading iΠ

insertion is induced by the scalar bubble induced by the λΦ3 interaction. We are interested

only in the imaginary part of the self-energy, which is finite.

A calculation of iΠ(X,Y ) is performed analytically in [110] with self-consistent

approximations in the limit of strong coupling and moderate bulk masses α = O(1). One

of the tricks for the analytical estimate is to expand the non-local self-energy as a series of

local insertions, which amounts to a ∂z expansion. Using this method, we estimate of the

contribution from the |p| > 1/z< regime. The imaginary part of the 1-loop bubble induces

a shift of p,

∆dressed
p (z, z′) ∼ ∆free

p(1+ic)(z, z
′) c ∼ a λ

2

ℓ5k
, (3.27)

where c is loop-induced and estimated to have a ∼ O(1/10) with a large uncertainty. 5 Using

the NDA value of λ in (3.23) and taking mΦ = O(k), one finds c ∼ ak/Λ ∼ a/(πN2). The

|p| > 1/z< regime provides a larger contribution to a than the result previously presented

from the |p| < 1/z> regime [110]. This extends the validity of our calculations to weaker cou-

pling, hence allowing large N . A self-consistent numerical solution to the integro-differential

5This estimate is confirmed in the upcoming detailed analysis of [4].
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equation of motion, (3.26), may be required to obtain the general dressed propagator. We

leave this for future work.

3.5.3 The Two Regimes

The self-energy dressing of the propagator presents distinct Kaluza–Klein and

continuum regimes. The poles of the free propagator are set by zeros of its denominator.

For momenta much larger than the IR brane scale, p≫ µ, the asymptotic form of the Bessel

functions lead to a propagator that is approximately proportional to

∆p(z, z
′) ∝ 1

sin
(
p
µ −

π
4 (1 + 2α)

) . (3.28)

The effect of the dressing, (3.27), softens the poles and causes them to merge at a scale

p ∼ µ

c
∼ Λ̃

a
. (3.29)

Above this scale the propagator describes a continuum rather than distinct Kaluza–Klein

modes. Thus we observe that the dressing of the propagator reaffirms the existence of

distinct KK and continuum regimes separated by a transition scale controlled by Λ̃ =

(µ/Λ)k. Let us comment further on both sides of the transition.

3.5.4 Kaluza–Klein Regime: p < Λ̃

For momenta less than the transition scale Λ̃, UV correlation functions are sensitive

to the physics of the IR brane. The IR brane provides a boundary condition for the bulk

equation of motion and hence imposes a discrete spectrum of KK modes. These modes

may be narrow. However, as the KK mass approaches the transition scale, the KK modes
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must merge to form a continuum. To see this, one may use the full form of the dressed KK

propagator from (3.26). This propagator is given by

∆q(z, z
′) = i f(z) ·

[
D−1 + i ImΠ

]−1 · f(z′) (3.30)

where

iΠ ≡
∫
du

∫
dv iΠ(u, v)f(u)⊗ f(v) . (3.31)

The imaginary part of Π gives rise to a “width matrix” for the KK resonances. Critically,

ImΠ is not diagonal: the KK modes mix due to this non-diagonal, imaginary contribution

to the mass matrix. The KK modes may merge into a continuum either because they become

broad, or because of the mixing induced by ImΠ. This property of the AdS propagator is

suggestive of how heavy glueballs in the strongly-coupled dual tend to merge near the Λ̃

cutoff, see Section 3.8.3.

At low enough four-momentum p, the narrow-width approximation applies to the

KK modes. The KK modes can then be treated as asymptotic 4D states. The optical

theorem applies to these light KK modes. In contrast, when approaching the transition

scale, the KK modes cannot be seen as asymptotic states due to large widths and KK-mode

mixing. This is consistent with the properties of non-truncated AdS.

3.5.5 Continuum Regime: p > Λ̃

When p is above the transition scale, Λ̃, the oscillating pieces of the propagator

are smoothed. Within this regime, the endpoints of the propagator define additional scales

for which the propagator realizes different behavior.
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Continuum regime, low momentum. In the continuum regime with low momentum,

|p| > Λ̃ and |p| < z−1
> , and away from the poles, the propagator is

∆p(z, z
′) ≈ ∆UV +∆heavy +∆light , (3.32)

where the pieces are

∆UV = i
(bUV + 2α)(kz)2−α(kz′)2−α

α (p2/(α− 1)k + 2bUV k)
∆heavy = −i(kz)

2(kz′)2

2αk

(
z<
z>

)α
(3.33)

∆light = −i
Γ(−α)(kz)2(kz′)2

Γ(α+ 1)2b2UV k
g(z<)g(z>)

(
−p2

4k2

)α
g(z) =

bUV + 2α

(zk)α
− bUV(zk)

α .

(3.34)

Notice that the dependence on the µ parameter has dropped this expression. This is a

manifestation of the propagator’s agnosticism of the IR brane in this regime. Conversely,

this implies that when varying p from UV scales to IR scales, the IR brane is effectively

emergent when p drops below Λ̃.

The content of each term in (3.32) is also instructive. The first term, ∆UV repre-

sents a 4D mode localized near the UV brane. 6 This 4D mode is assumed to be very heavy,

bUV = O(1), such that it does not play a role in the processes of in this manuscript. The

second term, ∆heavy is analytic and encodes the collective effect of heavy KK modes. The

third term, ∆light is nonanalytic and encodes the collective effect of light modes.

6In our convention, the 4D mode squared mass is positive for negative bUV.
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Continuum regime, high momentum. In the continuum regime with high momentum,

|p| > λ̃ and z−1
> < |p| < z−1

< , the numerator of the propagator oscillates:

∆p(z, z
′) ∝

cos
(
pµ−1 − pz>

)
cos (pµ−1 + φ−)

×


1 for z−1

> < p < z−1
<

cos (pz< − φ+) for p > z−1
< ,

(3.35)

where we have written phase shifts as φ± = π (1± 2α) /4. Upon dressing, the non-

oscillatory part of the propagator in this region scales as

∆p(z, z
′) ∼


e−|p|z> for pµ spacelike

e−cpz> for pµ timelike

. (3.36)

This is an important feature: the IR region of AdS is opaque to propagation for both space-

like and timelike momenta. The regions of opacity are somewhat different—the suppression

for spacelike momentum occurs at z ∼ 1/|p|, while the suppression for timelike momentum

occurs at z ∼ 1/cp. Substituting in c, we see that the suppression in the timelike regime

occurs for

pz> ≳
Λ

ak
. (3.37)

This behavior is similar to the region of EFT breaking in (3.24). Therefore the opacity of

the space effectively censors the region where the EFT breaks down. This behavior was

qualitatively predicted in Ref. [155]. For the specific case with an endpoint on the IR brane,

z> = 1/µ, the opacity threshold (3.37) is the same as the scale at which the Kaluza–Klein

poles disappear, (3.29). The two effects are, of course, closely related: the poles vanish

precisely when the IR brane becomes opaque to the propagator.
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In the continuum regime, KK modes are not appropriate variables to describe the theory

because the fn profiles fall into a spacetime region where the EFT breaks down, (3.24).

Instead, the meaningful variables are those localized on the UV brane. These remain in

the theory up to the ultimate cutoff p ∼ Λ. This was already observed in [186] from

EFT considerations, and is completely consistent with the holographic formalism needed

for AdS/CFT.

3.6 Cascade Decays in the Continuum Regime

The same bulk interactions that induce opacity in the IR region necessarily induce

cascade decays in the bulk. These cascade decays, in turn, may appear to be a possible

loophole to the arguments in the previous section. In particular, it is possible that a

continuum with p ≫ Λ̃ undergoes cascade decays down the KK regime, ending in light

narrow KK states and/or in IR-localized states. In such a process, it may seem that for

any initial momentum the cascade decay ‘knows’ that an IR brane exists. This appears to

circumvent the picture obtained in Section 3.5, where the theory at p ≫ Λ̃ does not know

at all about the IR brane. We evaluate explicitly this process in this section and discuss

implications in Section 3.7.

The properties of cascade decays initiated in the KK regime are fairly well-understood

and are summarized in Section 3.7.1. We instead focus on the cascade decays starting in the

continuum regime. This regime is always present unless interactions are removed (Λ→∞).

Furthermore, in the strong coupling limit Λ ∼ k, there is essentially no KK regime and all

propagation is in the continuum regime. We seek to determine the overall shape and the
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total probability for a cascade decay event to occur in the continuum regime.

The bulk of AdS does not permit asymptotic states or a conventional S-matrix (see

e.g. [156,157]). However the 4D modes localized on the branes, which have a 4D Minkowski

metric, can provide usual asymptotic states. We thus consider decays that are initiated on

the UV brane. The decay may end back on the UV brane or reach asymptotic states on

the IR brane. It can also end in narrow KK modes which are effectively asymptotic states

in the limit of the 4D narrow width approximation.

3.6.1 The Decay Process

The explicit evaluation of a generic decay diagram with an arbitrary number of

legs is, in principle, challenging because there are many phase space and position integrals

to perform over a non-trivial integrand. However, it turns out that a recursive approach can

be adopted based on simplifying approximations. We build on this approach to estimate

the total rate for a generic decay.

For intermediate steps in this calculation, it is convenient to formally write the

final states as KK modes, even if the corresponding momenta are in the continuum regime.

Sums over KK modes may then be re-expressed in terms of the closed form propagator at

the end of the calculation.

Measurable event rates, such as cross sections and decay widths, depend on the

integral of the squared amplitude over phase space. To emphasize that our approach does

not depend on how the continuum is created, we work at the level of this integrated square

amplitude, denoted as PM . For the diagram in Fig. 3.1 with M + 1 final states,
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Figure 3.1: The cascade decay amplitudes. u and v are coordinates in the z direction. In
our recursive approach, we relate the integrated square amplitude of the left diagram to
that of the right diagram.

PM+1 ≡
∫ ∑

FS(M+1)

|MM+1|2(2π)4dΦM+1. (3.38)

The sum over FS(M + 1) is shorthand for a sum over all possible combinations of (M + 1)

KK modes that are kinematically allowed final states. dΦM+1 is the volume element of the

(M +1)−body Lorentz-invariant phase space [212]. We label specific specific final state KK

numbers and four-momenta as m, pm and n, pn. The amplitude for a given set of final state

KK modes is expressed as

M(m,n,··· )
M+1 =

∫
du I(··· )M (u)

∫ 1/µ

1/k
dv
λ∆q(u, v)

(kv)5
fm(v)fn(v) . (3.39)

I(...)M (u) is the amplitude that has been amputated just before the propagator that produces

the m and n modes, see Fig. 3.1.

TheMM amplitude, shown on the right-hand side of Fig. 3.1, is

M(n,··· )
M =

∫
du I(··· )M (u)fn(u). (3.40)

The corresponding integrated square amplitude is

PM ≡
∫ ∑

FS(M)

|MM |2(2π)4dΦM . (3.41)

We now relate PM+1 to PM .
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3.6.2 Recursion Relation

Propagators with timelike momentum are suppressed beyond z> ∼ 1/(cp), as seen

in (3.36). We assume for simplicity that c ∼ 1. This implies that our evaluation assumes

nearly strong coupling, i.e. Λ is not far from k. Following this, the position integrals

effectively have no support beyond z ∼ 1/p. Note that this is equivalent to only considering

contributions from the µ < |p| < z−1
> region of position–momentum space, see (3.32).

We have numerically evaluated contributions from the |p| > z−1
> regions and found

that they tend to be smaller or of the same order as the results from this section for c near

unity. These contributions can be somewhat larger for smaller c, though a detailed analysis

is beyond the scope of this manuscript.

We square the amplitude and write sums on KK modes as integrals over the

propagator using (3.13). In the continuum regime, only the third term of the continuum

propagator in (3.32) contributes to the contour integral because it carries a branch cut. By

deforming the contour to fit snugly around the branch cut, we determine that

ñ∑
n=0

U(m2
n)fn(z)fn(z

′) = − 1

2π

∮
C[ñ]

dq2 U(q2)∆q(z, z
′) =

−1
2π

∫ m2
ñ

0
dq2 U(q2)Disc[∆q(z, z

′)] .

(3.42)

In terms of the propagator, PM+1 then reads

PM+1 = 4π2
∑

FS(M−1)

∫
dΦM+1

∫
du

∫
du′ IM (u) I∗M (u′)

∫ 1/q

1/k
dv

∫ 1/q

1/k
dv′

λ2∆q(u, v)∆
∗
q(u

′, v′)

(kv)5(kv′)5
×

(3.43)∫
dp21Disc[∆p1(v, v

′)]

∫
dp22Disc[∆p2(v, v

′)] .

The integrals over the p21, p
2
2 variables implement the sum over KK modes in (3.42). The
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integrands in (3.43) carry positive powers of v and v′ so that the dv dv′ integrand is largest

at the upper limit, v, v′ ∼ 1/q. Because q is the momentum flowing through the parent this

implies that the cascade decay progresses slowly towards the IR region.

We break up the phase space using the standard recursion relation, see e.g. [212],

dΦM+1 = dΦ2(q; p1, p2) dΦM (2π)3dq2 . (3.44)

We get

PM+1 = (2π)4
∑

FS(M−1)

∫
dΦM

∫
du

∫
du′ IM (u) I∗M (u′)

∫ 1/q

1/k
dv

∫ 1/q

1/k
dv′

λ2

(kv)5(kv′)5
×

(3.45)∫
dp21Disc[∆p1(v, v

′)]

∫
dp22Disc[∆p2(v, v

′)]

∫
dq2

64π4q2
K(q, p1, p2)∆q(u, v)∆

∗
q(u

′, v′) .

Here K(q, p1, p2) is the 2-body kinematic factor,

K(q, p1, p2)
2 ≡

[
q2 − (p1 + p2)

2
] [
q2 − (p1 − p2)2

]
. (3.46)

We approximate the integrals over p21 and p22 as

∫ q

0
dp1

∫ q−p1

0
dp2 p

2α+1
1 p2α+1

2 K(q, p1, p2) ≈
∫ q/2

0
dp1

∫ q/2

0
dp2 p

2α+1
1 p2α+1

2 q2 . (3.47)

This approximation introduces a O(1) error that depends on α.7 Note that the dominant

contribution to the integral in (3.47) comes from the region near the upper limit. This

indicates that the continua tend to decay near kinematic threshold. Thus the cascades

gives rise to soft spherical final states, in accordance with former results from both gravity

and CFT sides.

7The error monotonically increases from ∼ 25% for α near 0 to ∼ 30% for α near 1.
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Integrating over p21, p
2
2, v, and v

′, we have

PM+1 =Cα
∑

FS(M−1)

(2π)4
∫
dΦM

∫
dq2

k

( q
k

)2α ∫
du

∫
du′ IM (u) I∗M (u′)(ku)2+α(ku′)2+α ,

(3.48)

where the constant prefactor is

Cα =
84(1−α)λ2

α4π4k

(
Γ(1− α) sin(πα)

Γ(1 + α)

)2 |(2 + 3α)4α − (α+ 2)Γ(1−α)Γ(1+α)e
iαπ|2

(2 + 3α)2(2 + α)2(1 + α)2
. (3.49)

One may replace the dq2 in favor of a sum over the continuum of KK final states by applying

(3.42). This yields a recursion relation

PM+1 = r

∫ ∑
FS(M)

∣∣∣∣∫ du IM (u)fn(u)

∣∣∣∣2 (2π)4dΦn = r PM . (3.50)

The fact that one obtains a simple relation is a consequence of the integrand having a

specific momentum dependence and is nontrivial. This relation is clearly useful since it can

be used to give an estimate of a total rate with arbitrary number of legs.

The recursion coefficient r is given by

r ≡ λ2

k

1

10241+α
1

2π3α3

 |(2 + 3α)4α − (2 + α)Γ(1−α)Γ(1+α)e
iαπ|2

(2 + 3α)2(2 + α)2(1 + α)2

 Γ(1− α) sin(πα)
Γ(1 + α)

. (3.51)

Even for the strongly coupled case, λ2 ∼ ℓ5k, this coefficient is much smaller than one.

3.7 Soft Bombs and the Emergence of the IR Brane

The recursion relation (3.51) allows us to study the qualitative features of a com-

plete cascade decay event. An event initiated on the UV brane with timelike momentum

P > Λ̃ starts in the continuum regime and decays as a cascade of continua. This decay

eventually reaches the KK regime.
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3.7.1 Shape

The differential event rate—the integrand in the expression for PM—determines

the most likely configurations in phase space. The phase space approximation (3.47) shows

that decays tend to occur near threshold with final momenta evenly split between the

offspring. The event thus tends to be soft and spherical. This confirms the soft bomb

picture obtained in the KK regime [40], in string calculations (see e.g. [31]) and in the

gauge theory dual [33,36].

The integrand in (3.45) shows that vertices tend to occur at z ∼ 1/p where p is the

momentum of the parent continuum. There is a sense of progression in the fifth dimension:

the cascade decay proceeds from the UV to the IR with each offspring moving further into

the IR than its parent.

Let pf be the average momentum of states after some number of branchings. The

soft bomb then leaves the continuum regime and enters the KK regime at pf ∼ Λ̃. This is

roughly the scale at which the KK modes become narrow. These features are summarized

in Fig. 3.2.

3.7.2 Total Rate

The soft bomb enters the regime of narrow KK modes when the offspring have

average momenta pf ∼ Λ̃. At this scale, the narrow width approximation is valid and the

recursion (3.50) halts because subsequent decays factorize. This highlights a key feature of

the continuum regime in contrast to the KK regime: the phase space suppression factors are

not compensated by narrow poles due to the breakdown of the narrow width approximation.
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Figure 3.2: A typical field-theoretical soft bomb event in AdS5 in the continuum regime
p > Λ̃. The rate for such an event to occur is exponentially suppressed.

This is why cascade events starting in the continuum regime are suppressed.

One can estimate the total rate of cascade decays using the recursion (3.50). A

continuum cascade initiated with momentum P stops at momentum pf ∼ Λ̃. Assuming an

equal split of momenta among a total of M offspring gives

M ∼ P/Λ̃ . (3.52)

The recursion relation (3.50) shows that the rate is suppressed by rM−1.

PM ∼ rP/Λ̃ . (3.53)

Since r ≪ 1, the soft bomb is exponentially suppressed as a function of P for initial timelike

momenta in the continuum regime P > Λ̃.

3.7.3 Emergence of the IR Brane

The suppression of the soft bomb rate in the continuum regime completes our

picture of quantum field theory in AdS for timelike momenta. We can now make a statement
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about the ‘disappearance’ of the IR brane in QFT first hinted in Section 3.5.1.

Consider, for example, a UV-localized field φ that couples to the bulk scalar, Φ.

The collision of two φ states can induce a cascade decay φφ → Φ → ΦΦ → · · · When the

center-of-mass four-momentum is in the KK regime, P < Λ̃, the event rate is determined

by the φφ → Φ(n) amplitude to create an on-shell KK mode Φ(n) with mass mn ∼ P . In

contrast, in the continuum regime, P > Λ̃, the cascade is initiated with 5D continua that

have no poles and thus no notion of being on-shell. Narrow KK modes only appear after

the cascade has produced enough offspring for the typical momentum to drop below Λ̃. The

amplitude to calculate includes the entire cascade up to, and including, the first narrow KK

modes. The rate for a cascade in the continuum regime is suppressed with respect to that

in the KK regime by the tiny factor rP/Λ̃ in (3.53).

This suppression implies that continua produced tend not to cascade down to many

narrow KK states which can interact with an IR brane, but instead tend to go promptly

into UV-brane states with no cascade. Thus in the continuum regime, the theory truly does

not know about the IR brane. The observables—including decays—in this regime of the

theory can be equivalently obtained in AdS background with no IR brane.

Formally this statement can be spelled out using the partition function of the

theory

eiE[J ] =
〈
e
i
∫ zIR
zUV

dzd4pΦJ
〉
=

∫
D[fields] exp i

(∫ zIR

zUV

dzd4p (Lbulk +ΦJ) + SUV + SIR

)
,

(3.54)

where E[J ] is the generating functional of the connected correlators. Our claim is that in
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the p≫ Λ̃ regime, the correlators are equivalently described by

e
iE[J ]

∣∣
p≫Λ̃ ≈

∫
D[fields] exp i

(∫ ∞

zUV

dzd4p (Lbulk +ΦJ) + SUV

)
≡ e

iE[J ]
∣∣
zIR→∞ . (3.55)

On the right-hand side, E[J ]
∣∣
zIR→∞ amounts to the theory with the IR brane removed. In

other words, the IR brane—and the fields and operators localized on it—effectively vanishes

for p ≫ Λ̃. Conversely, the IR brane affects correlators for lower p and is thus effectively

emergent. 8

Finally we notice that the continuum regime is exactly described by an appropriate

CFT model as dictated by the AdS/CFT correspondence. Apart from the UV brane which

amounts to a UV cutoff in the CFT, the theory is exactly AdS in the continuum regime.

3.7.4 Optical Theorem

In Section 3.5.4 we observed that in the Kaluza–Klein regime, KK modes are valid

asymptotic states that obey the optical theorem. In the continuum regime, even though

the rate of cascade decays is exponentially suppressed, the imaginary part of the bulk self-

energy ImΠ is not. This does not contradict the optical theorem, though it may appear to

do so when using the intuition from KK modes. This is because unlike the KK regime, the

continuum regime has no narrow state on which one may perform a unitarity cut. Thus

the loop-level contribution to the self-energy is not related to a decay—the optical theorem

does not apply.

8For the purpose of taking functional derivatives, the source J can formally be any distribution. If instead

J is given a physical meaning, it is typically localized towards the UV brane to avoid any backreaction of

the metric towards the IR. In the context of holography, J is exactly localized on z = zUV, giving rise to

UV-localized variables as done in Section 3.8.2.
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One may insist on identifying propagators of light KK modes with narrow widths

upon which one may perform a unitarity cut. Because of the “near-threshold” property

of KK vertices in Section 3.7.1, these light KK modes only appear at high loop order. A

unitarity cut on this high-loop order diagram ultimately reproduces the typical soft bomb

diagram in Figure 3.2 that ends in states with mKK ∼ Λ̃. Such diagrams only amount to a

tiny portion of ImΠ.

3.7.5 Asymptotically AdS Backgrounds

Our study focuses on a slice of pure AdS with no departure from AdS in the IR

region. The qualitative features of our results can apply to models whose backgrounds are

deformed in the IR. One kind of model is the slice of AdS stabilized by the Goldberger–Wise

mechanism. This produces a non-negligible backreaction of the metric near the IR brane.

Another class of model are those where the metric develops a naked curvature singularity

in the IR—the soft-wall models, see e.g. [191–193,196,198,199] for some points of entry in

the literature. Such models are typically asymptotically AdS towards the UV brane, with

the IR deformation becoming relevant near the IR brane/singularity.

One can apply the reasoning of Section 3.5 to these models. By dimensional

analysis, there is some typical scale µ̂ associated with the IR region. A transition scale

Λµ̂/k thus also exists, above which the IR region should drop from the correlation functions

if the EFT is to remain under control.

More quantitatively, one can integrate out the IR region and encapsulate it into

an effective IR brane with non-trivial form factors localized on it [199]. This holographic

projection of the IR region demonstrates that the two regimes can indeed be meaningfully
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separated. The effective IR brane contains the details of the model-dependent KK regime.

Since the bulk is pure AdS, our results from Sections 3.3-3.7 apply. This immediately shows

that at high enough p, the effective IR brane leaves the theory, leaving thus a (quasi-)AdS

continuum regime like the one described in this paper. Conversely, when decreasing p, the

deviation from AdS gradually emerges from the viewpoint of a UV-brane observer.

3.7.6 Holographic Dark Sector

The soft bomb suppression rate has phenomenological implications for theories

where a dark (or hidden) sector is confined to the IR brane and the Standard Model is

confined to the UV brane, as recently proposed in [27]. Suppose, for concreteness, that the

decay chain ends in stable IR brane particles that could naturally be identified with dark

matter.

A standard way to search for dark matter at colliders is to look for missing energy

signatures. In our holographic dark sector scenario, the suppression of the cascade decay rate

in the continuum regime implies that the missing energy spectrum should vanish around the

Λ̃ scale. This characteristic of the holographic dark sector framework is completely distinct

from standard 4D dark sectors.

Another standard constraint on dark sectors with light states that couple to the

Standard Model is stellar cooling from the emission of dark states. In the holographic dark

sector scenario, stars emit KK modes with narrow widths when the temperature of the

star is roughly between µ and Λ̃. In contrast, if the star is hotter than Λ̃, the center-of-

mass energy for dark state production is typically in the continuum regime. One may then

expect that the anomalous cooling rates are then exponentially suppressed within the AdS
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model. One must be cautious with this intuition, however, as the finite-temperature system

may be better described by an AdS–Schwarzschild geometry [213]. The phenomenology of

this situation may lead to new possibilities to get around the stellar cooling bounds that

constrain standard dark sectors.

These effects are very interesting from a phenomenological viewpoint: they may

alleviate experimental constraints and change the experimental complementarity of dark

matter searches. The direct detection signatures of this type of framework are studied

in [42], which also discusses some qualitative differences of timelike correlation functions in

models of near-conformal sectors. We explore these effects in upcoming phenomenological

studies.

3.8 AdS/CFT

This paper focused primarily on the physics of 5D Anti-de Sitter spacetime. In

this section we connect our analysis to the properties of the dual gauge theory by the

AdS/CFT correspondence. First we briefly discuss consistency of our soft bomb picture

with the one obtained in the CFT literature. We will then show how dimensional analysis

(see Section 3.4) applied to the holographic action naturally relates to the dual large-N

expansion. Finally we study the transition scale in the dual low-energy EFT of glueballs.
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3.8.1 CFT Soft Bombs

There is strong evidence that gauge theories with large ’tHooft coupling exhibit

vastly different behaviour than weakly-coupled gauge theories, see e.g. [205]. 9

In [36], the fragmentation of a jet at large ’tHooft coupling was qualitatively

studied using properties of spacelike and timelike anomalous dimensions. The jet is assumed

to be created from well-defined asymptotic states such as in e+e− annihilation. In our AdS

dual this is realized using asymptotic states localized on the UV brane. The jet evolves and

ends at some infrared scale ΛIR at which the parton momenta are measured. In our AdS

dual this ΛIR corresponds to the infrared scale Λ̃ that we have determined in Section 3.5.

Ref. [36] finds that parton splitting tends to be democratic because there is no

reason for soft or collinear phase space configurations to be preferred—all partons tend to

have minimum momentum pf ∼ ΛIR. Hence, cascades give rise to spherical events with a

large number of low-momentum final states. This matches our explicit AdS calculation in

Section 3.7.1. The total number of offspring is found to be n ∼ P/ΛIR, which corresponds

to (3.52), with ΛIR ∼ Λ̃.

We conclude that the shape of an AdS soft bomb event is consistent with findings

on the CFT side.

3.8.2 Dimensional Analysis and Large N

In Section 3.4.2 we have shown that 4D KK mode interactions are naturally sup-

pressed by powers of (ℓ5k/ℓ4Λ). Here we show that this suppression corresponds to the

9In the gauge theory context, the strongly-coupled analog of jets have sometimes been referred to as “spher-

ical events” or “jets at strong coupling” instead of “soft bombs” as done here.
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large N suppression in the dual CFT. To see this correspondence, instead of KK modes, we

must consider the 5D theory in AdS using an appropriate variable—the value of the bulk

field on the UV brane

Φ̂0(x) ≡ Φ̂(X)
∣∣∣
UVbrane

. (3.56)

Φ is the dimensionless bulk field in (3.17). The bulk field in the action is rewritten as

Φ̂ = Φ̂0K, where K is the classical field profile sourced by Φ̂0. In terms of this holographic

variable, the partition function (3.54) takes the form
∫
DΦ̂0 exp

(
iS5[Φ̂0K]

)
, where S5 is

the 5D action for which the 5D NDA in (3.17) applies.

The leading term of the effective action in the semiclassical expansion is the clas-

sical holographic action

Γhol =
Λ5

ℓ5

∫
d4xLhol

[
Φ̂0, ∂/Λ

]
+ · · · , (3.57)

where the ellipses represent quantum terms that are irrelevant for our discussion. The

Lagrangian Lhol has dimension −1. To recover a 4D NDA formulation as in (3.17), we need

to introduce a dimensionless Lagrangian. From explicit calculation (see e.g. [13, 188]), the

quadratic part of Lhol, 1
2 Φ̂0Π[∂

2]Φ̂0, is proportional to the inverse of ∆q(z0, z0) and contains

an analytic part representing a 4D mode. Schematically, it is

Π[∂2] ∼ −1

k

∂2 +m2
0

Λ2
+ . . . (3.58)

up to an O(1) coefficient. In the language of AdS/CFT, this is the kinetic term of the

4D source probing the CFT. The exact expression can be read directly from the propaga-

tor (3.32) and is not needed here.
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We introduce the dimensionless Lagrangian 1
k L̂hol = Lhol, such that the dimension-

less source described in (3.58) is canonically normalized. The action now can be rearranged

as

Γhol =

(
ℓ4Λ

ℓ5k

)
Λ4

ℓ4

∫
d4xL̂hol

[
Φ̂0, ∂/Λ

]
+ · · · , (3.59)

where we explicitly write the Λ4/ℓ4 factor appear in accordance with 4D NDA. The factor

in parenthesis is the same suppression as obtained in Section 3.4.2. From (3.57) it is clear

that this factor systematically appears alongside ℏ in the semiclassical expansion of the

holographic action.

We may now perform dimensional analysis on the canonically normalized holo-

graphic variable,

Φ0 =

(
ℓ4Λ

ℓ5k

)1/2 Λ

ℓ
1/2
4

Φ̂0 . (3.60)

Functional derivatives with respect to Φ0 are suppressed as

δnΓhol

δΦ0(x1)δΦ0(x2) · · ·
∝
(
ℓ5k

ℓ4Λ

)n/2−1

(3.61)

at leading order. Hence by applying dimensional analysis at 5D and 4D levels in the

holographic action, we have shown that a small parameter (
√
ℓ5k/ℓ4Λ) systematically sup-

pressing the interactions and controlled by the AdS curvature appears.

The AdS/CFT correspondence dictates that the above quantity reproduces the

connected n-point functions of a conformal gauge theory with adjoint fields and large N .

The main contribution to the correlator at large N is suppressed as [21,214]

⟨OO . . .⟩con ∝
1

Nn−2
(3.62)
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with canonical normalization such that the 2pt function does not scale with N . Comparing

the AdS expression (3.61) and the CFT expression (3.62), we see that the suppression factor

in AdS corresponds to the 1/N2 suppression of the CFT,

ℓ5k

ℓ4Λ
∼ 1

N2
. (3.63)

We thus obtain a precise, field-theoretical version of the correspondence between the 1/N

expansion in the CFT and the parameters of the AdS effective field theory. At fixed AdS

curvature k, and i.e. fixed ’tHooft coupling, the N → ∞ limit corresponds to the Λ → ∞

limit. This sets all interactions to zero and therefore produces a free 5D theory. The

relation (3.63), when put in the holographic action (3.59), gives Γhol = N2 Λ4

ℓ4

∫
d4xL̂hol.

The N2 factor accompanying ℏ in this action is a hallmark feature of AdS/CFT [19].

3.8.3 Dual Interpretation of Transition Scale

In this section we consider the dual gauge theory interpretation of the transition

scale using Λ/k ∼ N2ℓ5/ℓ4 as established in (3.63). In the following discussion, we estimate

ℓ5/ℓ4 ∼ π. Interactions vanish in the Λ → ∞ limit. In this limit, the AdS theory thus

contains an infinite tower of free, stable KK modes. 10 This is the AdS manifestation of the

infinite tower of stable glueballs when N →∞.

For finite N , the transition scale is

Λ̃ ∼ N2πµ . (3.64)

10A confined gauge theory produces a spectrum with particles of arbitrary spin. In the QFT approach to

AdS/QCD, glueballs of a given spin corresponds to a given field on the AdS side, see e.g. [191]. Focusing

on a bulk scalar amounts to focusing on the sector of scalar glueballs.
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The scale controlling the mass of the KK modes, πµ appears. The KK masses grow linearly,

hence the transition is reached around the mass of the N2-th KK mode.

The Λ̃ scale would be the cutoff of the glueball EFT. Does the value (3.64) make

sense from the gauge theory side? Recall that the large-N theory contains, in principle,

many glueballs at low energy. It is thus described by an EFT containing many species. The

interactions between glueballs are set by the Λ̃ scale and suppressed by powers of 1/N . In

the loop diagrams, such suppression is compensated by the multiplicity of glueballs. For

N2 glueballs, the cutoff of the EFT becomes Λ̃. This feature can be seen by using 4D

NDA applied to the glueball theory with arbitrary number of species Ns and D = 4. The

prefactor of (3.17) is

NsΛ̃
4

N2ℓ4
, (3.65)

which indicates strong coupling when the number of glueballs Ns is of order N
2. This paints

a consistent picture: the N2 modes of the KK regime in AdS match the N2 glueballs of the

gauge theory.

These considerations are only about the number of species and do not tell us

about glueball masses. However we also know that an infinite tower of glueballs is needed

to reproduce the logarithmic momentum dependence of the correlator between gauge cur-

rents [214]. At finite N , the width over mass ratio of the nth glueball is expected to grow as

Γn/mn ∼ n/N2. The (1/N)2 factor comes from the 1/N suppressed cubic vertices, and the

n factor comes from the number of accessible decay channels into lighter glueballs. Hence

the glueballs tend to become broad at n ∼ N2, which signals the transition to a continuum.

Since there is a tower of glueballs, the cutoff of the glueball EFT has to be around the mass
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Figure 3.3: Schematic spectral density of the two-point correlator of the large-N glueball
EFT. The solid line shows the glueball resonances merging into a continuum when ap-
proaching the cutoff of the EFT. The merging of resonances that we describe is distinct
from the multiparticle continuum, which we show schematically for completeness.

of the N2-th glueball, i.e. Λ̃ ∼ mN2 . This matches the picture obtained on the AdS side

in (3.64), where the N2-th KK mode is indeed of order of Λ̃. Notice this reasoning relies

on state-counting and only requires enough of a hierarchy between masses for the decays

to occur. This is a very mild condition. In this work the mass distribution obtained from

the AdS side is mn ∼ n, but the same line of reasoning would apply to e.g. a Regge-like

spectrum mn ∼
√
n . 11

The spectral density of glueballs obained from the above considerations is summa-

rized in Fig. 3.3.

11For completeness we notice that at energies approaching the cutoff, Λ̃, contributions from the multipar-

ticle continuum should become sizeable. This is expected since, by definition, at the EFT cutoff the

contributions from all loop orders become same order of magnitude—the EFT becomes strongly coupled.

The multiparticle contributions are suppressed by additional 1/N factors and by loop factors 1/ℓ4 which

define the perturbative expansion in the EFT. Near the cutoff, the 1/N suppression is compensated by the

multiplicity of states in the loop(s). Hence near the cutoff, one both expects that the resonances merge

into a tree-level continuum and that loop-level continua become of same order as the tree-level one. This

is included in Figure 3.3.
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3.9 Conclusion

We revisit the behaviour of an effective theory of interacting matter fields in a

slice of AdS5. We work in Poincaré position-momentum space—the AdS Poincaré patch

Fourier-transformed along Minkowski slices.

We study new features induced by bulk interactions for timelike four-momenta.

These correspond to including the leading 1/N2 effects in the strongly coupled dual theory.

We show using dimensional analysis that there is a transition scale, Λ̃, above which bulk

propagators lose contact with the IR brane because the latter falls beyond the domain

of validity of the effective theory. The scale separates the Kaluza–Klein and continuum

regimes of the bulk propagator. The continuum regime would be absent if interactions were

not taken into account. Conversely the continuum regime is the only one present in the

limit of strong interactions.

For timelike momenta the transition between the KK and continuum regimes oc-

curs because the propagator is dressed by bulk interactions, a leading 1/N2 effect. This

induces an exponential suppression of the propagator in the region where the EFT would

become invalid. This censorship property was qualitatively predicted in [155]. Our treat-

ment invokes approximations to loop integrals; more details of opacity in AdS may be better

elucidated with future formal developments.

In the CFT dual, the existence of the transition scale corresponds to the fact that

the effective theory of glueballs cannot contain infinitely many species. It becomes strongly

coupled if more than approximately N2 glueballs are included in the spectrum. Beyond the

transition scale, a gauge theory with no mass gap should appear. This is indeed what we

128



demonstrate in the AdS theory.

For timelike bulk propagators, the IR brane is effectively absent when p > Λ̃.

However, cascade decays could allow correlators with energy beyond Λ̃ to be sensitive to

the IR brane because the momentum is split between many offspring states. We therefore

study cascade decays to better understand the notion of IR brane emergence. We focus on

a scalar with a bulk cubic interaction and investigate the squared matrix element integrated

over final states that are the main ingredients of observable event rates. In the continuum

regime, there exists a recursion relation between cascades of different branching depth,

which we use to estimate the rate for arbitrarily deep cascade.

We have checked that contributions from other effects are subleading. These in-

clude direct decays into an IR brane localized state or into light KK modes via a tower of

off-shell KK modes. We found that the contribution from the region in which the propa-

gator is exponentially suppressed may be of the same order, but that this does not change

our conclusions.

In chapter 6, we provide additional concluding remarks and paint a broader picture

of soft bombs in the continuum regime of AdS.
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Chapter 4

Exotic Spin-Dependent Forces

from a Hidden Sector

4.1 Chapter Abstract

New dynamics from hidden sectors may manifest as long-range forces between

visible matter particles. The well-known case of Yukawa-like potentials occurs via the

exchange of a single virtual particle. However, more exotic behavior is also possible. We

present three classes of exotic potentials that are generated by relativistic theories: (i)

quantum forces from the loop-level exchange of two virtual particles, (ii) conformal forces

from a conformal sector, and (iii) emergent forces from degrees of freedom that only exist

in the infrared regime of the theory. We discuss the complementarity of spin-dependent

force searches in an effective field theory framework. We identify well-motivated directions

to search for exotic spin-dependent forces.
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Figure 4.1: t-channel diagrams generating long-range forces in the scenarios we consider.
Shaded regions represent strong dynamics.

4.2 Introduction

As stated in the introductory chapter, the main goal of this chapter is to fill a gap

in the literature by presenting exotic potentials generated by explicit dark sector models. 1

As a preliminary study, we systematically consider the experimental complementarity of

exotic and Yukawa-like potentials from an effective field theory perspective. The general

aspects of effective theory and experimental complementarity are discussed in Sections 4.3

and 4.4. In Sections 4.5– 4.7 we identify and examine three kinds of exotic potentials based

on how they are generated in a microscopic theory:

• Quantum: The potential is generated by particles that couple bilinearly to nucleons.

The leading contribution is generated at loop-level.

• Conformal : The potential is generated by approximately conformal dynamics.

• Emergent : The potential is generated by low-mass states that exist in the infrared

limit of the theory, analogous to pions in QCD.

These potentials are sketched in Fig. 4.1 and can serve as benchmarks for experimental

studies.

1See also [46,52,53] for related work on spin-independent potentials.
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4.3 Effective Field Theory

We assume that the dark sector interacts with nucleons via local effective operators.

Because the relevant distance scales are longer than the inverse QCD confinement scale,

ΛQCD, it is sufficient to use a relativistic effective theory of nucleons without specifying the

microphysics of dark sector–partonic interactions.

4.3.1 Effective Operators and Potentials

The low-energy effective Lagrangian between nucleons and the dark sector is of

the form

L ⊃ ONODS . (4.1)

We focus on bilinear nucleon operators ON = N̄ΓN with some Lorentz structure Γ. We

consider the following nucleon bilinears:

OS
N = N̄N OV

N = N̄γµN OT
N = N̄σµνN

OP
N = N̄iγ5N OA

N = N̄γµγ5N . (4.2)

We focus on the case where only one of these operators is active in the effective Lagrangian.

A pseudo-tensor operator N̄σµνγ5N also exists, but is redundant with the tensor operator

in the scope of our study. 2 Nucleon bilinears with more complex Lorentz structures also ex-

ist but have higher dimension, such that the ones considered here are the most important. 3

2This is a consequence of the relation iγ5σµν = i
2
εµναβσαβ .

3The complexity of the Lorentz structures grows together with the dimensionality of OSMODS because either

more derivatives or a more intricate UV origin—such as higher loop diagrams—are needed to form complex

Lorentz structures.
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While the OS,P,V,A operators can have renormalizable couplings to spin-0 and spin-1 media-

tors, the tensor operator has to couple to other fields through a higher-dimensional operator

such as a gauge field strength. We remark on ultraviolet completions of this coupling in

Appendix G.

The leading relativistic 2 → 2 scattering amplitude contributing to long-range

potential between nucleons N1 and N2 through operators OIN and OJN is

iMIJ ∝⟨N1,out| OIN |N1,in⟩ΣDS ⟨N2,out| OJN |N2,in⟩ (4.3)

where I ∈ {S, V, T, P,A}. The quantity ΣDS encodes the intermediate states generated by

the dark sector operators ODS. The class of ‘exotic’ long range potential is encoded in ΣDS.

We provide non-relativistic limits of ⟨Nout| OIN |Nin⟩ in Appendix J.

The potential between nucleons is proportional to the spatial Fourier transform of

the amplitude with respect to the exchanged three-momentum q,

VIJ(r) = −
1

4m2
N

∫
d3q

(2π)3
eiq·rMIJ . (4.4)

The non-relativistic limit is taken by keeping the leading order terms in |p|/mN , where mN

is the nucleon mass and p is the characteristic nucleon three-momentum. The cutoff of the

effective theory should in principle be taken into account when performing the Fourier inte-

gral4. We show in Appendix H that effects from the cutoff are negligible when implementing

a smooth cutoff avoiding spurious non-analyticity in the integrand.

4In this paper the cutoff, Λ, is the scale at which the contact operators of the effective relativistic theory are

UV completed. The non-relativistic potentials derived from this theory are expansions in q2/M2, where

M is typically the mass of the scattering particle. For distances shorter than M−1, higher order potential

terms in q2/M2 are significant when solving the Schrödinger equation. These terms are likely pertinent to

resolving the behavior of singular potentials near the origin [215]. Ref. [216] takes a complementary, bottom-
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In this manuscript we focus on the case where only one operator OI is present so

that we examine diagonal potentials VI ≡ VII(r). While cross terms VIJ ̸=I(r) may lead to

interesting effects, they are necessarily accompanied by the diagonal potentials. Thus in

the scope of fifth force searches it is sufficient to focus on diagonal potentials. Table 4.1

presents classification of spin structures arising in the potentials studied in this manuscript.

The non-relativistic formalism above takes only t-channel diagrams into account

and also implies that sources are distinguishable. For certain applications, u-channel dia-

grams can also be relevant see e.g. Ref. [215] for a discussion in the context of self-interacting

dark matter.

4.3.2 Spin Dependence and Spin Averaging

Both the amplitude for nucleon scattering, iM, and the associated long range po-

tential, V (r), are matrices in spin-space. For instance, the N1 current connects an incoming

nucleon spinor to an outgoing nucleon spinor. The potential is a tensor product of spin

matrices acting on N1 and N2. Each component gives the potential for a probe particle of

a specified spin scattering off of a source of specified spin. The spin-dependent interactions

are encoded in linear combinations of Pauli matrices σ1,2 acting on N1 and N2, respectively.

The spin-independent pieces are proportional to the 2×2 identities 11⊗12. The spin struc-

tures appearing in the potentials are always tensor products. In this manuscript, we omit

up approach and addresses singular potentials through a renormalization procedure based on physical

observables and assuming only the leading q2/M2 term.
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the explicit ⊗ symbol. The relevant spin structures and their simplified notation are

11 ⊗ 12 ≡ 1112 , σi1 ⊗ σi2 ≡ σ1 · σ2 , σi1∇i ⊗ σ
j
2∇

j ≡ (σ1 ·∇)(σ2 ·∇) ≡ /∇1 /∇2 (4.5)

where the 1, 2 indices correspond to the N1 and N2 currents.

For unpolarized sources, one averages over the appropriate initial (or final) state

spins in the potential. Observe that this is equivalent to summing together amplitudes with

different initial states. This averaging does not change the spin-independent contributions,

but causes the spin-dependent contributions to vanish. The scalar and vector potentials are

unaffected by polarization average, while the pseudo-scalar and axial potentials vanish at all

orders. For the tensor potential a spin-independent contribution remains at next to leading

order in the non-relativistic expansion. Spin averaging is denoted by ⟨σ2⟩ in Table 4.1.

4.3.3 Orientation Averaging for Spin-Dependent Potentials

Spin-dependent potentials may be sensitive to scattering orientation. Consider

scattering of a probe particle moving along a fixed axis towards the target. One may obtain

the potential for isotropic scattering—for example, in a gas—by appropriate averaging over

the polar angle. This is the orientation-averaged limit.

Let r̂ = r/|r| be the orientation of source N1 with respect to source N2. Cer-

tain spin-dependent potentials are proportional to (σ1 ·∇) (σ2 ·∇). Averaging over this

orientation yields

⟨V (r)⟩r̂ ∝ ⟨(σ1 ·∇) (σ2 ·∇) f(r)⟩r̂ =
1

3
(σ1 · σ2)∇2f(r) . (4.6)

This particular relation is phenomenologically significant. In the Coulomb case, coming from

the exchange of a single massless mediator particle, the radial dependence of the potential
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is f(r) ∝ 1/r. Because this is the Green’s function of the three-dimensional Laplacian,

⟨V (r)⟩r̂ ∝ ∇
2f(r) = −4πδ(r) . (4.7)

This is simply Gauss’ law. This means that when a single, massless mediator is exchanged,

the spin structure in (4.6) produces only a contact interaction and no finite-range contribu-

tion. Similarly, in case of a Yukawa interaction f(r) ∝ e−mr/r, ∇2f(r) = m2f(r)− 4πδ(r)

gives a finite range interaction suppressed by O((mr)2) with respect to the naive dimensional

expectation of 1/r3. The suppression of finite-range interactions in the orientation-averaged

limit are important for experimental prospects. We discuss this in Section 4.4.

Orientation averaging is denoted by ⟨r̂⟩ in Table 4.1. The columns marked Yukawa

have radial dependence characteristic of single particle exchange, whereas the columns

marked exotic are general and may be generated by the models presented in this manuscript.

4.3.4 Higher-Order Terms

We remark on the contribution of higher-order Feynman diagrams:

+ · · · ∝
∫

d4k

(2π)4
⟨N1,out| OIN∆NO

I
N |N1,in⟩ΣDS ⟨N2,out| OJN∆NO

J
N |N2,in⟩ ,

(4.8)

where ∆N is the nucleon propagator. The size of such loop diagrams is suppressed compared

to tree-level diagrams within the effective theory’s regime of validity. A good estimate of

the magnitude of these diagrams in the non-relativistic limit is obtained by taking ∆N ∼

−1/mN . However, it is possible that the tree-level diagram may be suppressed by its spin-

dependence while the loop diagram gives a spin-independent component. In this case, it
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Table 4.1: Spin structures, (4.5), generated by S, V, T, P,A nucleon operators in the cases
of no averaging, the orientation-averaged limit, averaging over N2 spins, and both the
orientation-averaged limit and averaging over N2 spin. Check marks indicate that the
spin structure is generated. Other factors indicate extra suppression depending on the
mediator mass, m, and the nucleon mass, mN . Yukawa forces indicate a potential with
radial dependence f(r) ∼ e−mr/r. Exotic forces indicate a radial dependence that is not
Yukawa-like.

is possible that the loop-level contribution produces the most experimentally viable signal.

See Section 4.4 for more details.

We explicitly illustrate the calculation of a higher order contribution with the case

of a pseudoscalar, L = iyϕN̄γ5N . The tree-level exchange of ϕ generates a spin-dependent

Yukawa-type force, as indicated in Tab. 4.1. At one-loop order, a box diagram made of ϕ

and N propagators exists. The diagram corresponds to substituting the blobs by tree-level

exchange of ϕ in (4.8). 5 The vertices in the amplitude of (4.8) are OI,JN = −yγ5. In our

approximation, we reduce the nucleon propagators ∆N to −1/mN in this amplitude. The

two γ5 simplify, giving OI∆NOI ≈ −1/mN . One then notices that such contracted diagram

5A cross-diagram also exists.
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is equivalent to the exchange of a bubble of scalars induced by an effective operator

y2

2mN
ϕ2N̄N . (4.9)

Such bubble loop diagram is much simpler to calculate than the original box, and has been

evaluated in e.g. Ref. [46]. The effective vertex (4.9) gives the spin-independent potential

V (r) = − y4

64π3m2
Nr

3
. (4.10)

It turns out this result matches exactly the result obtained by evaluation of the full box

diagram made in [52]. Note however that in general our approximation should give the

correct behaviour of the potential but not necessarily reproduce the exact coefficient.

4.4 On Experimental Complementarity

Our effective theory study of the potentials in Section 4.3 and the corresponding

classification of their properties in Table 4.1 are useful to evaluate experimental prospects.

They can be used to sharpen a search strategy and delineate the theoretical motivations of

a search. Whenever an experiment has potential sensitivity to a given type of potential, it is

natural to ask whether another effect necessarily exists which may overwhelm the proposed

search: either because an experimental bound is already set or because it provides a more

promising search direction. In this section, we discuss some examples of experimental

complementarity and point out the consequences for existing and future searches.

Two types of searches for fifth forces are neutron spin rotation and nuclear mag-

netic resonance experiments. Neutron spin rotation experiments pass a polarized neutron

beam between metal plates that contain unpolarized spins. Spin–velocity potentials cause
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the polarized neutron spins to precess about the direction of their three-momentum as they

pass through the plates. The observation of this precession would be evidence for new

physics that generates a spin–velocity potential. Nuclear magnetic resonance (NMR) ex-

periments can probe new spin-dependent forces through the effective anomalous J-coupling

of deuterated molecular hydrogen (HD). A gas of HD is in a disordered phase because col-

lisions result in random reorientations of nuclei. The relative orientations between nuclei

must be averaged for a fixed separation. This presents a way to search for orientation-

averaged potentials. We present quantitative details of the experimental reach of NMR

experiments in Section 4.5.1.

A simple example of this experimental complementarity is as follows. The vector–

axial Yukawa cross-potential VV A features a spin-velocity term that can be probed by neu-

tron spin rotation experiments [51]. However, any effective theory that yields a VV A poten-

tial must simultaneously furnish a vector–vector Yukawa potential VV . This VV potential

is spin-independent and easier to probe experimentally. As a matter of fact, it is highly

constrained. In the scope of the search for the dark sector, focusing on VV is clearly more

efficient than VV A so that the search for VV A is therefore not well-motivated. 6

We see that the complementarity between spin-dependent and spin-independent

searches is an important experimental consideration. To further illustrate this, consider the

tree-level exchange of a single pseudoscalar versus the loop-level box diagram coming from

the exchange of two pseudoscalars; see Sec. 4.3.4. The former term is spin-dependent while

the loop contribution is spin-independent. It is natural to ask which of these contributions

6Note that if a new VV potential were actually discovered, the cross term VV A would then become an efficient

way to search for a spin-dependent coupling of the newly discovered particle.
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is a more effective channel to search for the new pseudoscalar particle. A search for the spin-

dependent pseudoscalar potential has been done in [5] using NMR data. The experiment is

in a disordered phase so that the potentials are calculated in the orientation-averaged limit.

This means that the dominant contribution to the tree-level potential vanishes, and the main

term is proportional to e−mrm2/(m2
Nr)≪ e−mr/(m2

Nr
3). On the other hand, the loop-level

contribution force is proportional to 1/(m2
Nr

3) at short distance, as shown in (4.10). The

bound on this one-loop, spin-independent component can be readily obtained from [46].

It turns out that, except in a region of a few orders of magnitude around m ∼ 10 keV

where the NMR search is optimal, the bounds from the spin-independent component are

the dominant ones. There is therefore complementarity between spin-dependent and spin-

independent searches, and the spin-independent search turns out to be quite competitive in

this example. See [217] for another example of this complementarity.

Another key aspect of experimental complementarity is the role of exotic versus

Yukawa forces and the corresponding interplay with orientation and spin averages. To dis-

cuss orientation averaging, consider again the example of a pseudoscalar discussed above.

The Yukawa-like spin-dependent force is suppressed because of Gauss’ law. In particular,

the force is suppressed by a O
(
m2r2

)
factor such that the search sensitivity vanishes in

the m → 0 limit, while the spin-independent component does not. In contrast, an exotic

force is—by definition—not subject to cancellations related to Gauss’ law, and is there-

fore not suppressed in the same way. This affects the size of the spin-dependent force

relative to higher-order spin-independent counterparts. Moreover, in contrast to scenarios

with Yukawa-like forces, one typically expects that the higher-loop contributions to exotic
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forces are subdominant and poorly constrained. From this, one concludes that exotic forces

motivate experiments with disordered phases—such as NMR-based searches [5].

The case of a single polarized source is also interesting. Table 4.1 shows that

the tensor potential features a mixed velocity–spin structure, p × σ1, in this limit. The

complementarity of Yukawa versus exotic forces is again relevant in this case. For a Yukawa-

type force, the velocity-dependent structure is O(m2) and thus vanishes in the m→ 0 limit.

This is not the case for an exotic force. One concludes that exotic forces motivate searches

for velocity–spin dependent forces. These can be done in experiments with a polarized

source—such as a neutron beam—at finite velocity. We expand on the theoretical ultraviolet

completion of the tensor operator in Appendix G.

In summary, the possible existence of exotic spin-dependent forces motivates ex-

periments with (i) disordered phases and (ii) polarized sources at finite velocity. Another

general lesson is that the properties of Yukawa-like forces are rather non-generic and so they

should not be used as the only benchmark for spin-dependent fifth force experiments. The

following sections present well-motivated alternatives that can serve as benchmark models

for the exotic potentials.

4.5 Spin-Dependent Quantum Forces

Our first example of an exotic force is when ODS in (4.1) is a bilinear of dark

particles, each with mass m. The potential is generated by the exchange of two virtual

particles [218]. In the scenario where the dark particles are dark matter, then the bilinear

interaction with nucleons may be motivated from a Z2 symmetry that explains the particle’s
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stability. 7

We extend the spin-independent study in Ref. [53] to the case of spin-dependent

nucleon operators. We write the combined ONODS operators in (4.1) as effective contact

operators. Because ODS is a dark particle bilinear, it is possible to have dark particles of

any spin. Here we consider spin-0, 1
2 , and 1. These operators are non-renormalizable so

that the effective theory is valid above distance scales of

r ∼ max

(
1

4πΛ
,

1

4πΛQCD

)
, (4.11)

where Λ is the scale at which the contact operator description breaks down. This is defined

by the underlying physics that generate the ONODS operators. We consider the operators:

O0
a =

1

Λ2
N̄γµγ5Niϕ∗

←→
∂µϕ O

1
2
a =

1

Λ2
N̄iγ5Nχ̄iγ5χ O1

a =
1

Λ3
N̄iγ5N |Xµν |2

O0
b =

1

Λ
N̄iγ5N |ϕ|2 O

1
2
b =

1

Λ2
N̄iγ5Nχ̄χ O1

b =
1

Λ3
N̄iγ5NXµνX̃

µν

O0
c =

1

Λ3
N̄iγ5N |∂µϕ|2 O

1
2
c =

1

Λ2
N̄γµγ5Nχ̄γµγ

5χ (4.12)

O0
d =

1

Λ3
N̄σµνN(∂µϕ)(∂νϕ

∗) O
1
2
d =

1

Λ2
N̄γµγ5Nχ̄γµχ

O
1
2
e =

1

Λ2
N̄σµνNχ̄σµνχ .

We write the dark particle as ϕ for scalars, χ for fermions, and Xµ for vectors. We use

←→
∂µ ≡

−→
∂µ −

←−
∂µ. We assume that only one of these operators is active. That is, we do not

consider any cases that mix vertices from different operators in a single Feynman diagram.

The potentials depend on modified Bessel functions of the second kind and on a

7The search for long-range potentials induced by the loop-level exchange of pairs of dark particles is then

a search for virtual dark matter. In contrast to searches for on-shell dark matter in direct detection

experiments, this is independent of the dark matter phase space distribution in the local galaxy.
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Meijer G-function; we denote these by:

Ki ≡ Ki(2mr) G ≡ G2,0
2,4

m2r2
∣∣∣∣ 1

2 ,
3
2

0, 0, 12 ,
1
2

 . (4.13)

We also introduce a discrete variable for whether or not the dark particle is self-conjugate:

η =


0 if self-conjugate

1 otherwise

. (4.14)

For these loop-induced potentials, the amplitude has a branch cut—appearing via

a logarithm. The Fourier transform integral (4.4) is performed by analytical continuation

into the complex |q| plane, reducing the integral over the real line to one on the discontinuity

across the branch cut. Details are provided in Appendix I.
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The operators produce the following potentials:

V 0
a = −ηm

2(σ1 · σ2)

8π3Λ4

(
K2

r3

)
− η (σ1 ·∇)(σ2 ·∇)

96π3Λ4

(
−2mrK1 + 4 +m2π2r2G

r3

)
(4.15)

V 0
b = 2η

m(σ1 ·∇)(σ2 ·∇)

128π3Λ2m2
N

(
K1

r2

)
(4.16)

V 0
c = 2η

m2(σ1 ·∇)(σ2 ·∇)

128π3Λ6m2
N

(
(15mr +m3r3)K1 + (30 + 6m2r2)K2

r5

)
(4.17)

V 0
d = η

[
(σ1 ·∇)(σ2 ·∇)− (σ1 · σ2)∇2

]
32π3Λ6

(
m2K2

r3

)
(4.18)

V
1
2
a = 2η

(σ1 ·∇)(σ2 ·∇)

32π3m2
NΛ

4

(
3m2K2 − 2m3rK1

r3

)
(4.19)

V
1
2
b = 2η

(σ1 ·∇)(σ2 ·∇)

32π3m2
NΛ

4

(
3m2K2

r3

)
(4.20)

V
1
2
c = −2ηm

2(σ1 · σ2)

4π3Λ4

(
K2

r3

)
+ 2η

(σ1 ·∇)(σ2 ·∇)

96π3Λ4

(
π2m2r2G+ 4mrK1 + 4

r3

)
(4.21)

V
1
2
d = −ηm

2(σ1 · σ2)

2π3Λ4

(
mrK1 +K2

r3

)
+ η

(σ1 ·∇)(σ2 ·∇)

48π3Λ4

(
π2m2r2G+ 4mrK1 + 4

r3

)
(4.22)

V
1
2
e = −ηm

2(σ1 · σ2)

π3Λ4

(
K2

r3

)
− η

[
(σ1 ·∇)(σ2 ·∇)− (σ1 · σ2)∇2

]
12π3Λ4

(
π2m2r2G+ 4mrK1 + 4

r3

)
(4.23)

V 1
a = 2η

(σ1 ·∇)(σ2 ·∇)

8π3m2
NΛ

6

[(
30m3

r4
+

3m5

r2

)
K1 +

(
60m2

r5
+

12m4

r3

)
K2

]
(4.24)

V 1
b = 2η

(σ1 ·∇)(σ2 ·∇)

8π3m2
NΛ

6

(
30m3

r4
K3 +

12m4

r3
K2

)
. (4.25)

4.5.1 Orientation-Averaged Limit

We perform the orientation-averaging limit of Section 4.3.3 on the potentials of

the previous section. We present these in the r ≪ m−1 limit. Note that by doing so, the

mass dependence drops out. These take the limiting forms:
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Figure 4.2: Bounds on O
1
2
c from NMR [5] on the direct detection plane. Note that this

search is sensitive to much lighter masses than direct detection experiments, e.g. [6]. The
cross section is for tree-level 2→ 2 scattering of dark matter off xenon. The bound vanishes

in a narrow region around m ≈ 6850 eV because orientation averaging causes V
1
2
c to vanish

at approximately 2mr ≈ 5.2.

V 0
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σ1 · σ2

2π3m2
NΛ

6

105

r9

V 0
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64π3m2
NΛ

6
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V

1
2
c = −2η σ1 · σ2

12π3Λ4

1

r5
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V 0
d = −ησ1 · σ2

24π3Λ6

5

r7
V

1
2
d = −ησ1 · σ2

6π3Λ4

1

r5

V
1
2
e = η

σ1 · σ2

6π3Λ4

1

r5
.

Bounds on Dark Matter from NMR

The orientation-averaged form of the potential appears when forces are present

in a disordered phase of matter. This is the case for NMR experiments in a gas phase.

NMR data can be used to place bounds on the effective anomalous J-coupling of deuterated

molecular hydrogen HD; Ref. [5] found that ∆J3 must be less than 9.8× 10−16 eV. This, in
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turn, bounds the strength of a possible spin-dependent potential between these nuclei. The

proton-deuteron distance is of order ⟨r⟩ = 0.00038 eV−1. The relative orientations between

nuclei are averaged because of random reorientation of HD molecules due to collisions.

If one of the dark particles ϕ, χ or Xµ is identified as the dark matter, the contact

interactions (4.13) induce dark matter–nucleus scattering. This scattering process is probed

by dark matter direct detection experiments. The sensitivity of such searches typically

drops below m ∼ 1GeV. In contrast, NMR experiments probe dark particles that are much

lighter than this scale—illustrating the complementarity between dark matter scattering

and quantum force searches.

As a specific example, we provide bounds on Dirac dark matter interacting with

xenon through the O
1
2
c axial-vector interaction. This is the standard benchmark case for

spin-dependent direct detection. The bound is plotted in Fig. 4.2.

4.5.2 Spin-dependent Potentials with One Unpolarized Source

In the case in which one source is unpolarized, one must average over source’s

initial state spins. The corresponding nucleon bilinear vanishes for pseudoscalar (Niγ5N)

and axial vector (N̄γµγ5N) interactions. This leaves only the operators with spin-0 or spin-

1/2 dark particles interacting with the nucleon dipole. The resulting potentials include a

term that is spin independent term and a term that is both spin and velocity dependent. We

define the velocity, v as the average of the probe nucleon’s incoming and outgoing momenta

divided by the nucleon mass.
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The general long-range potentials are:

V 0
d = η

2mN12(v × σ1) ·∇+ 1112∇2

128π3m2
NΛ

6
∇2

(
m2K2

r3

)
(4.27)

V
1
2
e = η

2mN12(v × σ1) ·∇+ 1112∇2

4π3m2
NΛ

4
m2

(
2mrK1 +K2

r3

)
. (4.28)

At distances much smaller than the dark particle’s Compton wavelength, m−1,

these reduce to:

V 0
d (r ≪ m−1) = η

5

64π3m2
NΛ

6

(
421112
r9

+ 2mN12(v × σ1) ·∇
1

r7

)
(4.29)

V
1
2
e (r ≪ m−1) = η

1

8π3m2
NΛ

4

(
201112
r7

+ 2mN12(v × σ1) ·∇
1

r5

)
. (4.30)

4.6 Spin-Dependent Warped/Conformal Forces

Weakly coupled new physics in four dimensions produce potentials that carry neg-

ative integer powers of r. This section presents a departure from this behavior by examining

effects from a five dimensional curved space and from a four-dimensional conformal sector.

4.6.1 Warped Dark Sector Scenario

The Standard Model may live on a four-dimensional brane lying at the boundary

of a truncated five-dimensional AdS space with curvature k; see e.g. [28, 29, 155]. We

refer to this brane as the UV brane. In this model, the effect of 5D gravity is mild as it is

localized away from the UV brane. 5D gravity only induces a small O(k−2r−3) correction to

Newton potential. Such deviation is mildly constrained experimentally: torsion pendulum

experiments put a lower bound k ≳ 104 TeV, which constitutes the leading constraint for
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curvature in this model [46]. On the other hand, the AdS curvature k may be as high as

the 4D Planck mass while staying consistent with the validity of the 5D effective theory.

Beyond this minimal braneworld model, matter fields can in principle propagate

in the bulk of the extra dimension. These fields tend to be hidden from the UV brane as a

result of the localization in the fifth dimension induced by the curvature. This framework

therefore naturally gives rise to a dark sector [27] and is sketched in Fig. 4.3. As a concrete

realization, consider the simplest case of a bulk scalar field, Φ that couples linearly to

nucleons. The 5D matter action is

S5 ⊃
∫
bulk

d5X
√
|g|
(
1

2
∂MΦ∂MΦ−

m2
Φ

2
Φ2

)
+

∫
brane

d4X
√
|γ|
(
LSM +

λ√
k
ONΦ−

mUV

2
Φ2

)
,

(4.31)

where γµν is the induced metric on the brane, ON is a nucleon bilinear, and λ is a dimension-

less effective coupling which can be taken to be of order one. Using conformal coordinates

and a (+,−,−,−,−) signature, the AdS metric reads

ds2 = gMNX
MXN =

1

(kz)2
(
ηµνdx

µdxν − dz2
)
, (4.32)

and the brane is localized at z0 = k−1. 8 We focus on the case of a brane-localized mass

term satisfying the condition mUV =
√
4k2 +m2

Φ − 2k . This is consistent with the BPS

brane condition from supergravity, and can be also motivated using holography, see [29]

and references therein.

We consider couplings of the bulk scalar to the scalar (OS) and pseudoscalar (OP )

nucleon operators in (4.2). The former generates a spin-independent force which we include

8Another common convention in the literature is to use the curvature radius of AdS, R ≡ k−1.
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Figure 4.3: Diagram in 5D anti-de Sitter space giving rise to the conformal force.

as a useful benchmark. The axial coupling 1
ΛN̄γ5γµN∂µΦ generates the same tree-level

potential as the pseudoscalar. This can be seen directly at the level of the Lagrangian by

integrating by part the interaction and using the nucleon equation of motion. 9

4.6.2 Potential

The brane-to-brane Feynman propagator for Φ in mixed position/momentum space [219,

220] reads

⟨Φ(pµ, z0)Φ(−pµ, z0)⟩ ≡ ∆p(z0, z0) =
i

p

H
(1)
α (p/k)

H
(1)
α−1(p/k)

p =
√
ηµνpµpν α =

√
4 +

m2
Φ

k2
,

(4.33)

where H(1) is the Hankel function of the first kind. Regularity of the solution to the 5D

equation of motion is imposed to obtain this propagator. For invariant four-momenta much

9The theories differ at higher order in their interactions. At loop level, for example, the spin-independent

potential from a scalar with a derivative coupling to an axial vector current can be distinguished from a

pseudoscalar [52].
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less than the curvature, p≪ k, this gives

∆p(z0, z0) ≈ i
[

p2

2k(α− 1)
− 2k

Γ(1− α)
Γ(α)

(
− p

2k

)2α]−1

. (4.34)

For α > 1, this propagator is dominated by the analytic term ∝ 1/p2. An observer

on the UV brane thus mostly see a 4D massless field, similarly to the gravity case discussed

above. For α < 1, on the other hand, the propagator (4.34) is dominated by the non-analytic

term with p2α scaling.

One may qualitatively understand this behavior by imagining the presence of an

IR brane at some distance z1 > z0 that creates a discrete spectrum of Kaluza–Klein modes.

The parameter α controls the localization of these modes. For α > 1 and any boundary

condition on the IR brane, an ultralight mode localized on the UV brane exists. This

corresponds to the 4D pole in ∆p(z0, z0). For α < 1, the light mode is instead localized

towards the IR brane and an observer on the UV brane is primarily sensitive to the Kaluza–

Klein excitations that are collectively encoded in the non-analytic p2α term.

For the case α < 1, the bulk scalar Φ generates an exotic long-range force between

the nucleons on the UV brane. This force has non-integer dependence on the nucleon

separation. The scalar and pseudo-scalar nucleon operators in (4.2) generate the following

potentials:

VS(r) =
−λ2

2π
3
2

Γ(32 − α)
Γ(1− α)

1

r(kr)2−2α
(4.35)

VP (r) =
λ2

2π
3
2

Γ(32 − α)
Γ(1− α)

(σ1 ·∇)(σ2 ·∇)

4m2
N

(
1

r(kr)2−2α

)
. (4.36)

In the orientation-averaged limit, the pseudo-scalar potential becomes:

VP (r) =
2λ2

3π
3
2

(1− α)Γ(52 − α)
Γ(1− α)

(σ1 · σ2)

4m2
N

1

r3(kr)2−2α
. (4.37)
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4.6.3 A Conformal Model

The AdS/CFT correspondence relates the warped dark sector model to a purely

four-dimensional conformal dark sector. For an exotic potential with α < 1, the simplest

realization of the duality is

L = LSM + LCFT +
1

M∆SM+∆CFT−4
ONOCFT . (4.38)

The Lagrangian LCFT encodes the dynamics of the conformal field theory. The operator

OCFT contains fields from the conformal sector. ∆SM = 3 is the scaling dimension of the

scalar or pseudo-scalar nucleon operators. We further define ∆ ≡ ∆CFT, the dimension of

the OCFT operator.

The symmetries of the CFT fully dictates the theory’s behavior. In position space,

conformal symmetry constrains the two-point correlation function to be

⟨OCFT(0)OCFT(x)⟩ =
c

4π2(−|x|)2∆
, (4.39)

where c is an undetermined real number. In momentum space this is

⟨OCFT(−p)OCFT(p)⟩ = c
iΓ(2−∆)

4Γ(∆)

(
−p2

4

)∆−2

. (4.40)

By construction, nucleons source this correlation function and thus experience a force due

to the conformal dynamics.

By comparing (4.40) to the non-analytical part of the brane-to-brane propagator

in (4.34), one identifies ∆ = 2−α. In the language of AdS/CFT, this is the “∆− branch” of

the correspondence, in which the boundary of the bulk field is identified with the classical

value of OCFT itself. This version of the duality is valid only for 0 < α < 1, i.e. 1 < ∆ < 2.
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In contrast, the ∆+ branch identifies ∆ = 2 + α and is valid for any α. The ∆− branch

model is sufficient in the context of our study.

Taking the non-relativistic limit of the conformal two-point functions and trans-

forming back to position space yields the conformal spin-dependent potentials analogous

to (4.35–4.36):

VS(r) =
c

4π3/2
Γ(∆− 1/2)

Γ(∆)

1

r(Mr)2∆−2
(4.41)

VP (r) = −
c

4π3/2
Γ(∆− 1/2)

Γ(∆)

(σ1 ·∇)(σ2 ·∇)

4m2
N

(
1

r(Mr)2∆−2

)
. (4.42)

Both the warped and conformal models continuously interpolates between 1/r and 1/r3 as

a function of a continuous parameter: either the bulk mass of the scalar field living AdS

space, or—equivalently—the conformal dimension of the correlation function of conformal

dynamics exchanged between nucleons.

4.7 Spin-Dependent Emergent Forces

A new force may emerge from a change in a theory’s degrees of freedom at low

energies. This may happen, for example, as a consequence of a phase transition. This

scenario departs from Yukawa-like behavior and is thus exotic. Also, there is a priori no

principle enforcing exact continuity of the potential between the short- and long-distance

regimes, hence the potential might feature a smooth kink in the transition regime. We

discuss this scenario from the perspective of a confining non-Abelian gauge theory and

present a more explicit realization from a five-dimensional holographic setup.
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4.7.1 Emergent Force from a Confining Dark Sector

Suppose a dark sector contains a non-Abelian gauge field with coupling g and field

strength Xµν . This sector can couple to visible matter through gauge-invariant higher-

dimensional operators of the form (4.1):

L ⊃ c

M3
ONXµνX

µν + · · · . (4.43)

In the regime where the dark sector gauge theory is weakly coupled, it induces a quantum

force (see Section 4.5), whose exact form is given by (4.25). Dimensional analysis requires

the potential to scale as

V (r)gauge ∼
c2 g4

M6r7
. (4.44)

When the gauge theory is asymptotically free, there is an infrared scale, µ≪M , at which

the theory becomes strongly-interacting and confines. In this scenario, the theory may

develop a mass gap analogous to QCD. Below the confinement scale, physics is described

by an effective theory of composite states. Composite states with same quantum numbers

as Tr XµνX
µν may arise as scalar glueball fields:

Lconf ⊃
cφµ

3

M3
OSM φ+ . . . , (4.45)

where φ is a CP-even scalar denoting the glueball excitation in the confined theory. See

Refs. [221, 222] for earlier work on dark sectors described by glueball-like excitations. The

cφ coefficient arises from strong dynamics and is evaluated by dimensional analysis at strong

coupling.

In the confined phase, r ≫ µ−1, the potential is Yukawa-like,

Vconf(r) ∼
c2φ
r

µ6

M6
. (4.46)
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Figure 4.4: Diagram in 5D anti-de Sitter space giving rise to the emergent force. Blue line
shows the propagator of the IR brane localized field. Crosses indicate mass mixing.

The potentials (4.44) and (4.46) appear to match at the level of dimensional analysis: the

transition occurs at r ∼ 1/µ, where it turns out that Vconf(µ
−1) ∼ Vgauge(µ−1). However, the

c2g4 and c2φ couplings are in principle different. The coupling g is perturbative at energies

well above the confinement scale µ. In contrast, cφ may typically be O(4π), hence it is

possible that c2φ be substantially larger than c2g4. This implies that the spatial potential

could undergo some enhancement when r enters the confined region at r ∼ 1/µ.

4.7.2 Holographic Emergent Force

This emergent force scenario can be realized more precisely in a five-dimensional

model, as suggested by the AdS/CFT corresponddence. We sketch this in Fig. 4.4.

Consider the limit where the dark sector is a strongly-coupled gauge theory with

large ’t Hooft coupling and a large number of colors. The deconfined picture is similar to

the picture described in Section 4.6.3. The key difference is that, at four-momentum of

order of the confinement scale, an observer on the UV brane should see the appearance of

a mass gap. The AdS/CFT correspondence relates confinement to presence of an IR brane
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located at z1 = 1/µ > z0. This IR brane encodes the spontaneous breaking of conformal

symmetry in the infrared. States localized on the IR brane are identified with states that

emerge below the confinement scale.

For example, a UV observer probing the bulk at low four-momentum observes a

standard 4D theory. As four-momentum is increased beyond µ, the effect of the IR brane

vanishes from the correlation functions because the bulk propagators are exponentially

suppressed when probing the IR region z > 1/p [110]. Hence for p≫ µ, the IR region of the

bulk becomes opaque to observers on the UV brane. In that limit, the observer sees only

an infinite AdS bulk, as described in the conformal/warped force scenario of Section 4.6.3.

This mechanism can realize many versions of an emergent force. For simplicity, we

focus on an extension of the model in Section 4.6.3. Assume a warped 5D AdS space with

curvature k. The Standard Model is localized on the UV brane at z0 = 1/k and interacts

with a bulk scalar field Φ. We introduce an IR brane at z1 = 1/µ. There may be a IR-

localized mass term. This term is left as a free parameter and does not crucially affect the

results. Let us assume the existence an IR-localized operator that interacts linearly with Φ:

S = S5 +

∫
IR brane

d4X
√
|γ|
(
LIR +OIRΦ−

m2
IR

2
Φ2

)
, (4.47)

where S5 is the 5D action in (4.31).

The bulk Feynman propagator is readily expressed in terms of Bessel functions of

the first and second kinds,

∆p(z, z
′) = i

π(kz)2(kz′)2

2k

[
Ỹ UV
α Jα (pz<)− J̃UV

α Yα (pz<)
] [
Ỹ IR
α Jα (pz>)− J̃ IR

α Yα (pz>)
]

J̃UV
α Ỹ IR

α − Ỹ UV
α J̃ IR

α

,

(4.48)
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where we define the extra-dimensional positions z< ≡ min(z, z,′ ), z> ≡ max(z, z,′ ), and

the boundary functions

J̃UV
α ≡ p

k
Jα−1

(p
k

)
J̃ IR
α ≡

p

µ
Jα−1

(
p

µ

)
+ bIR Jα

(
p

µ

)
, (4.49)

and similarly for the Ỹα functions.

We assume that a 4D field φ is present on the IR brane and mixes with Φ such

that

OIR = ωφΦ . (4.50)

with brane mass mixing parameter

ω ≡ cφ
µ2√
k
. (4.51)

The magnitude of ω is set by dimensional analysis, such that cφ ∼ O(1). Since this is

a bilinear interaction, the presence of the IR brane field φ can be rigorously included in

the bulk propagator using the five-dimensional version of dressing, i.e. a geometric series

representation of the brane–bulk mass mixing. The UV-to-UV brane propagator dressed

by IR brane insertions is

∆dr
p (z0, z0) = ∆p(z0, z0)−

[
∆p(z0, z1)

]2 i ω2

p2 −m2
φ

. (4.52)

We have introduced the φ mass as

m2
φ = m2

φ,0 − i ω2∆(mφ,0; z1, z1) , (4.53)

where m2
φ,0 is a bare mass term and the ∆(p; z1, z1) term encodes the contribution to the

mass from Kaluza–Klein modes. From dimensional analysis, both terms have a typical

magnitude O(µ2). The first term of (4.52) corresponds to the undressed propagator. The
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second term encodes the effect of the IR brane and generates the emergent force in the

infrared.

4.7.3 Potential

The spatial potential follows from the dressed propagator, (4.52). However, the

Fourier transform of this expression is only analytically tractable in the high- and low-

energy limits. Let us consider the limits with space-like four-momentum p = i|q| ≡ iq, as

needed for the t-channel diagram that generates the potential. For q ≫ µ,

∆p(z0, z0) ≈ −i
Γ(α)

Γ(1− α)
2k

q2

( q
2k

)2−2α
(4.54)

∆p(z0, z1) ≈ −i
√
2π

Γ(1− α)
2k

q3/2
√
µ

( q
2k

)1−α
e−q/µ (4.55)

∆p(z1, z1) ≈ −i
k

qµ
tanh(q/µ) . (4.56)

In the q ≪ µ limit,

∆p(z0, z0) ≈ −i
2α+ bIR
2α bIR

k

µ2

(µ
k

)2−2α
(4.57)

∆p(z0, z1) ≈ −i
k

bIR µ2

(µ
k

)1−α
(4.58)

∆p(z1, z1) ≈ −i
k

bIR µ2
. (4.59)

The behavior of the potential can be understood from these limits. In the q ≪ µ

limit, all ∆’s are constant and only the IR-brane scalar remains in the spectrum. The dressed

propagator takes the form of a 4D massive propagator, thereby generating a standard 4D

Yukawa force. Equivalently, this is the behavior of the 4D effective theory whose Kaluza–

Klein modes are integrated out. In the q ≫ µ limit, the ∆(p; z0, z1) propagators are

exponentially suppressed. Only the ∆(p; z0, z0) term remains, reproducing the conformal
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scenario with no IR brane described in Section 4.6.3. In the 4D CFT interpretation, this is

because the composite states have typical size 1/µ and are not seen by probes with virtuality

much higher than µ.

For the scalar nucleon operators, OS , the potential is:

VS(r) ≈


−
c2φλ

2

b2IR

(µ
k

)2−2α e−mφr

4πr
if r ≫ 1/µ

− λ2

2π3/2
Γ(3/2− α)
Γ(1− α)

1

r

1

(kr)2−2α
if r ≪ 1/µ

(4.60)

Analogously, for the pseudoscalar nucleon operators, OP , the potential is:

VP (r) ≈


c2φλ

2

b2IR

(µ
k

)2−2α (σ1 ·∇)(σ2 ·∇)

4m2
N

e−mφr

4πr
if r ≫ 1/µ

λ2

2π3/2
Γ(3/2− α)
Γ(1− α)

(σ1 ·∇)(σ2 ·∇)

4m2
N

1

r

1

(kr)2−2α
if r ≪ 1/µ

. (4.61)

Just like the case of an emergent force from a confining non-Abelian sector in

Section 4.7.1, there is again an approximate continuity between the long and short distance

regimes. This can be seen in the spatial potentials (4.60–4.61), and also at the level in the

propagator itself by comparing the undressed and emergent parts of (4.52) at momentum

of order µ.

Despite this approximate continuity, there may be a smooth kink around r ∼ 1/µ

if the emergent force is enhanced. This can happen for sufficiently large ω. In our simple

scalar model this requires some tuning to keep mφ small. The emergent force can also be

enhanced if φ has some multiplicity, nφ, in which case the emergent component of the force

is increased by nφ. Note however that nφ cannot be arbitrarily increased because the local

strong coupling scale decreases as n
−1/2
φ .

Finally, it is instructive to estimate how the emergent force vanishes at short
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distances. In the q ≫ µ regime, the emergent contribution is

∆dr
p (z0, z0) ⊃

kµ3

q5

( q
k

)2−2α
e−2q/µ , (4.62)

where we have dropped all the O(1) factors for clarity. This approximation is valid for

momenta larger than µ. We thus take q > µ̃ where µ̃ is an IR cutoff that may be taken to

be around O(few)×µ. The Fourier transform integrates over a momentum range q ∈ [µ̃,∞].

Expanding in small rµ̃ shows that the emergent component of the potential behaves as

V (r)|r≪1/µ ∼ c
2
φλ

2e−2µ̃/µ µ
4r2

k

(
µ̃

k

)1−2α

+ · · · . (4.63)

This limit explicitly shows how the emergent force vanishes at short distance. This is only a

crude approximation as the overall magnitude strongly depends on µ̃. An exact, numerical

calculation of the holographic emergent force is beyond the scope of the present study.

4.8 Discussion

Hidden (dark) sectors with new particles may generate long-range forces between

visible sector matter. This manuscript examines exotic long-range forces that differ from

the Yukawa-like forces generated from single-particle exchange. We present three classes of

exotic forces.

Quantum forces come from the loop-level exchange of pairs of dark sector particles.

They are described by an effective theory and may themselves be the dark matter. We

present the spin-dependent potentials including the spin- and orientation-averaged limits.

As an example, we show the constraints on a light dark sector imposed from NMR bounds

on the anomalous J-coupling of deuterium.
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Conformal forces arise when visible particles couple to a dark sector with conformal

symmetry. Such forces are also generated in the case of a “warped dark sector,” which by

the AdS/CFT correspondence is a five-dimensional realization of the conformal dark sector.

These forces have non-integer behavior in r.

Emergent forces are induced by effective degrees of freedom arising in the infrared.

We presented a qualitative picture in a 4D strongly-interacting dark sector, and a quantita-

tive result from a specific realization of this scenario in a slice of AdS5. In the AdS model,

the emergent force comes from an IR brane-localized degree of freedom that becomes invis-

ible to the UV-localized nucleons at short distances.

As an aside we classify the behavior of spin-dependent and spin-independent forces,

for Yukawa and exotic cases, and for the ordinary, spin-averaged, and orientation-averaged

cases. Such an analysis is required to form a coherent vision of existing and upcoming

experimental prospects. We point out that in the orientation-averaged limit, the Yukawa

forces are suppressed as a result of Gauss’ law. A similar effect also occurs for the tensor

force upon spin-averaging. This behavior is not true for exotic forces. Yukawa forces are

thus non-generic compared to exotic forces.

It follows that experiments that use disordered phases of matter are particularly

appropriate for searching for exotic spin-dependent forces. NMR-based experiments are one

such type of setup. We find that searches for spin/velocity-dependent forces are especially

sensitive to exotic tensor potentials.
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Chapter 5

The Neutrino Casimir Force

5.1 Chapter Abstract

In the low energy effective theory of the weak interaction, a macroscopic force

arises when pairs of neutrinos are exchanged. We calculate the neutrino Casimir force

between plates, allowing for two different mass eigenstates within the loop. We also provide

the general potential between point sources. We discuss the possibility of distinguishing

whether neutrinos are Majorana or Dirac fermions using these quantum forces.

5.2 Introduction

For completeness, we study the general point-point neutrino-induced quantum

force in Sec. 5.3. The evaluation uses the standard momentum-space formalism. We then

introduce a mixed position-momentum space formalism and present the plate-plate and

plate-point calculations in 5.4. We discuss the results in Sec. 5.5.
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Figure 5.1: The Majorana-Dirac confusion theorem. The blob represents an arbitrary SM
amplitude from which we single out an internal neutrino propagator. Dirac mass insertions
(top) and Majorana mass insertions (bottom) become negligible for p ≫ mν such that
amplitudes become equivalent in this limit.

5.3 Potential Between Point Sources

We use the 4-component fermion formalism in our loop calculations. At energies

below the electroweak scale, the Lagrangian describing neutrino mass eigenstates interacting

with SM fermions is given by

LD = iν̄iDγ
µ∂µν

i
D −miν̄

i
Dν

i
D −

GF

2
√
2

[
ν̄jDγ

µ (1− γ5) νiD
] [
ψ̄γµ

(
gVij − gAijγ5

)
ψ
]

(5.1)

for Dirac neutrinos and

LM =
i

2
ν̄iMγ

µ∂µν
i
M −

mi

2
ν̄iMν

i
M +

GF

2
√
2

[
ν̄jMγ

µγ5ν
i
M

] [
ψ̄γµ

(
gVij − gAijγ5

)
ψ
]

(5.2)

for Majorana neutrinos. The link to the 2-component fermion notation is given in App. K.

The gVij and gAij coupling matrices depend on the SM field and on the neutrino generation.

They are given in App. K for completeness.
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ψ ψ

ψ ψ

νi νj

Figure 5.2: Quantum forces can be induced from the exchange of two neutrinos. The two
virtual neutrinos can in principle have different masses mi ̸= mj .

In this section, we present the force between two nonrelativistic fermions ψ arising

from the exchange of two neutrinos, νi and νj . Similar results have already been presented

in the literature, see for instance [7,68]. Here we present the most complete result including

the spin-dependent part of the potential.

The calculation starts from the scattering amplitude in 4-momentum space. This

formalism has been used in the literature (see e.g. [1, 52] for details), so we only present

results here. See App. L for additional details.

We introduce a discrete variable to distinguish between the Majorana and Dirac

cases:

η =


0 if Majorana

1 if Dirac

. (5.3)

The full potential can be written using discontinuities (noted D [f ]) across branch cuts of a

basis of fmn functions

fmn ≡
∫ 1

0
dxxm(1− x)n ln

(
xm2

j + (1− x)m2
i − x(1− x)λ2

Λ2

)
, (5.4)

163



which come from evaluating the loop integral. In this basis, the full potential is given by

V (r) =
∑
ij

Vij(r) = −iG2
F

∑
ij

(
δµ011g

V
ijδ

ν
012g

V
ji + δµc σc1g

A
ijδ

ν
dσ

d
2g
A
ji

)
(4π)2

∫ ∞

mi+mj

λdλ

(2π)2
× (5.5)

(
−gµν

(
m2
jD[f10] + (1− η)mimjD[f00] +m2

iD[f01]− 2λ2D[f11]
)
+ 2D[f11]δ

a
µδ
b
ν∇a∇b

) e−λr
r

where σA denotes the Pauli matrices acting on the spinors of source fermion A. Latin

indices, such as a, b, ..., are summed over 1, 2, 3. We refer to the Vij as partial potentials.

Summing over all combinations of neutrinos from the 3 generations yields the full quantum

potential from neutrinos.

We can perform the integral exactly for the diagonal terms (mi = mj ≡ m). These

partial potentials take on the form

Vii(r) = G2
F

(
δµ011

(
gVii
)2
δν012 + δµc σc1

(
gAii
)2
δνdσ

d
2

)
64π4

× (5.6)(
gµν

(
η
4m3πK3(2mr)

r2
+ (1− η)8m

2πK2(2mr)

r3

)
+ δaµδ

b
ν∇a∇b

mπ

3r2
(
4K1(2mr) +mπ2rG(m2r2)

))
where we have introduced the Meijer G-function

G(m2r2) ≡ G2,0
2,4

m2r2
∣∣∣∣ 1

2 ,
3
2

0, 0, 12 ,
1
2

 . (5.7)

The spin-independent piece of (5.6) is given by

Vii(r) = G2
F

(
gVii
)2

16π3

(
η
m3K3(2mr)

r2
+ (1− η)2m

2K2(2mr)

r3

)
, (5.8)

which corresponds to a repulsive force and is consistent with the literature (e.g. [7,68]). At

short distances mr ≪ 1, Dirac and Majorana predictions converge to

Vii(r) = G2
F

(
gVii
)2

16π3r5
, (5.9)

as expected from the confusion theorem.
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5.4 The Neutrino Casimir Force

Here we consider the quantum force between extended sources. Focusing on

nonrelativistic, unpolarized sources formed by the SM fermions, we have ψ̄γµγ5ψ ≈ 0,

ψ̄γµψ ≈ δµ0ψ
†ψ = δµ0 n(x) were n(x) is the number density operator. We denote by J(x)

the density expectation value in the presence of matter, J(x) = ⟨Ω|n(x)|Ω⟩. We can write

effective neutrino Lagrangians in the presence of such nonrelativistic static matter,

LD = iν̄iDγ
µ∂µν

i
D −miν̄

i
Dν

i
D −

GF

2
√
2

[
ν̄jDγ

0 (1− γ5) νiD
]
gVij J (5.10)

LM =
i

2
ν̄iMγ

µ∂µν
i
M −

mi

2
ν̄iMν

i
M +

GF

2
√
2

[
ν̄jMγ

0γ5ν
i
M

]
gVij J . (5.11)

We assume the matter density is compound of two pieces with density J1, J2,

separated by a distance L. The full matter density is J = J1 + J2. The potential between

these two sources can be obtained by varying the quantum vacuum energy of the system

with respect to L.

In case of strong coupling to sources, the neutrino would acquire an effective mass

inside the sources, which tends to repel the propagators. This strong coupling regime

reproduces precisely the familiar Casimir force with Dirichlet boundary conditions on the

sources [223]. Calculations of forces in the strong coupling limit can be found in [224].

Instead, in case of weak coupling to sources, which is the one relevant here, the potential is

given by the leading term of the one-loop functional determinant. The force in this weakly

coupled regime amounts to a “Casimir-Polder” force between extended objects. See App. M

and Ref. [223] for details. For simplicity, and because the weak and strong regime of the

force between extended objects have a unified description, we refer to the force in the weakly

coupled regime as “Casimir force”.
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We find the potential induced by the neutrinos between extended sources J1 and

J2 to be

V (L) = i
G2
F

2η 4

∫
d3x

∫
d4x′

∑
ij

tr
[
J1(x)∆i(x, x

′) Γ gVijJ2(x
′)∆j(x

′, x) Γ gVji
]
+O

(
G3
F

)
(5.12)

where Γ = γ0(η − γ5) encodes the Lorentz structure of the neutrino vertex. Here ∆(x, x′)

is the Feynman propagator of 4-component fermions. The trace is in spinor space. Notice

that one of the integrals is in 3d space while the other is in spacetime. This reflects the fact

that the quantum force is intrinsically relativistic.

In the limit of pointlike sources

J1(x) = δ(x) J2(x) = δ(x−L), (5.13)

(5.12) reproduces (L.9) and thus the point-point potential obtained in Sec. 5.3.

5.4.1 Potential Between Plates

We consider the sources are infinite plates with separation L. The plates are taken

to have number densities n1 and n2 and are orthogonal to the z direction,

J1(x) = n1Θ(z < 0) J2(x) = n2Θ(z > L) (5.14)

The two transverse spatial coordinates are denoted by x∥, hence xµ = (t,x) = (t, x∥, z). It

is also useful to introduce the (2+1) Lorentz indexes α = 0, 1, 2 defining xα = (t, x∥).

A naive method to obtain the plate-plate potential would be to directly integrate

the general point-point result (5.5). This is however rather challenging in the case of different

masses. We show here a simpler path to the general result.
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Since the sources are Lorentz-invariant along x∥, we introduce Fourier transforms

along these coordinates and time. This introduces the 3-momentum conjugate of the xα

coordinates. In this mixed position-momentum space, the fermion propagators are found

to be

∆(kα, z − z′) =
∫
dkz
2π

eikz(z−z
′)∆(kµ) =

(
/k + ωiγ

3Sign[z − z′] +m
) eiωi|z−z′|

2ωi
(5.15)

with

/k = γαkα , ωi ≡
√
k2 −m2

i + iε , k2 = kαk
α . (5.16)

Introducing the mixed space propagator in Eq. (5.12) gives

V (L) = i
G2
F

2η 4

∫
d3x

∫
d4x′

∫
d3k

(2π)3

∫
d3k′

(2π)3
ei(k−k

′)α(x−x′)α (5.17)

∑
ij

tr
[
J1(z)∆i(kα, z − z′) Γ gVijJ2(z′)∆j(k

′
α, z

′ − z) Γ gVji
]

A momentum redefinition makes appear the loop integral, the external momentum qα and

the overall Fourier transform in qα,

V (L) = i
G2
F

2η 4

∫
d3x

∫
d4x′

∫
d3q

(2π)3
eiqα(x−x

′)α
∫

d3k

(2π)3
(5.18)

∑
ij

tr
[
J1(z)∆i(kα, z − z′) Γ gVijJ2(z′)∆j(kα + qα, z

′ − z) Γ gVji
]

In the case of planar geometry considered here, it turns out that the external

3-momentum is set to zero because of

∫
d3xeiqα(x−x

′)α = (2π)3δ(3) (qα) . (5.19)

The fact that q0 = 0 is a mere consequence of the nonrelativistic limit. The fact that q∥ = 0

is specific of the planar geometry and indicates that the force is dominated by fluctuations
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with infinite transverse wavelengths. The remaining transverse integral is factored as a

surface
∫
d2x∥ = S, and the potential is given by

V (L) = i
G2
F

2η 4
S

∫
dzdz′

∫
d3k

(2π)3

∑
ij

tr
[
J1(z)∆i(kα, z − z′) Γ gVijJ2(z′)∆j(kα, z

′ − z) Γ gVji
]

(5.20)

Performing both remaining position integrals and evaluating the trace, we have

V (L) = −i
Sn1n2G

2
F

4

∑
ij

gVijg
V
ji

∫
d3k

(2π)3

(
2k20 − k2 − ωiωj − (1− η)mimj

ωiωj(ωi + ωj)2

)
ei(ωi+ωj)L.

(5.21)

The only remaining integral is the loop integral. We Wick rotate the momentum integral

from 2 + 1 Lorentzian to 3-dimensional Euclidian space,

V (L) =
−Sn1n2G2

F

4

∑
ij

gVijg
V
ji

∫
d3kE
(2π)3

(
2k2E0 − k2E − ωEiωEj + (1− η)mimj

ωEiωEj(ωEi + ωEj)2

)
e−(ωEi+ωEj)L.

(5.22)

where we has defined ωEi =
√
k2E +m2

i . We go to spherical coordinates and perform the

angular integrals. For the remaining radial integral we introduce a dimensionless variable

u = |kE |L , ρi =
√
u2 +m2

iL
2 . (5.23)

The potential between plates is found to be

V (L) =
Sn1n2G

2
F

8π2L

∑
ij

gVijg
V
ji

∫ ∞

0
duu2

(
1
3u

2 + ρiρj − (1− η)mimjL
2

ρiρj(ρi + ρj)2

)
e−(ρi+ρj). (5.24)

The rest of the integral cannot be performed analytically in general. Notice the

loop integral is finite by construction because the two sources have finite separation. In

this calculation there is no need for any loop integral regularization, expressions are finite

at every step.
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The pressure between the plates is given by

P (L) =
−1
S

∂

∂L
V =

n1n2G
2
F

8π2L

∑
ij

gVijg
V
ji

∫ ∞

0
duu2

(
1
3u

2 + ρiρj − (1− η)mimjL
2

ρiρj(ρi + ρj)

)
e−(ρi+ρj).

(5.25)

The neutrino Casimir pressure is thus repulsive.

Finally, at short distance i.e. in the limit of mi,mj ≪ 1/L, the integrals can be

done exactly,

V (L) =
Sn1n2G

2
F

48π2L

∑
ij

gVijg
V
ji P (L) =

n1n2G
2
F

48π2L2

∑
ij

gVijg
V
ji . (5.26)

In this regime the Majorana and Dirac predictions have become equal, as expected from

the confusion theorem.

5.4.2 Potential Between a Plate and a Point Source

To obtain the plate-point potential, we consider sources of the form

J1(x) = n1Θ(z > L) J2(x) = δ(x) (5.27)

with (5.18) and (5.19). Performing the remaining position integrals and evaluating the

trace, we have

V (L) =
−n1G2

F

4

∑
ij

gVijg
V
ji

∫
d3k

(2π)3

(
2k20 − k2 − ωiωj − (1− η)mimj

ωiωj(ωi + ωj)

)
ei(ωi+ωj)L. (5.28)

We follow the steps of the plate-plate calculation—Wick rotating, performing the angular

integral, and using the definitions (5.23). We obtain
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V (L) =
n1G

2
F

8π2L2

∑
ij

gVijg
V
ji

∫ ∞

0
duu2

(
1
3u

2 + ρiρj − (1− η)mimjL
2

ρiρj(ρi + ρj)

)
e−(ρi+ρj). (5.29)

At short distances, mi,mj ≪ 1/L for all (i, j), the integral can be done exactly, yielding

V (L) =
n1G

2
F

48π2L2

∑
ij

gVijg
V
ji . (5.30)

We again find that any trace of the mass generation mechanism has vanished from the

short-distance result.

5.5 Discussion

The neutrino Casimir force has not previously been determined in the literature,

to the best of our knowledge. In this section, we elucidate its properties.

The expressions for the neutrino Casimir force (5.24), (5.29) contain only one

numerical integral, just as for the point-point result (5.5). This property generalizes to

plates with an arbitrary number of layers, which is easily obtainable in our formalism. In

our calculation, we take into account loops with two different mass eigenstates, that we

denote below as m> = max (mi,mj) ,m< = min (mi,mj).

The Dirac and Majorana partial potentials Vij converge to each other in the limit

of short distance, L ≪ 1/m>. The convergence holds for all configurations of sources

considered and is shown for the case of equal masses (mi = mj) in Fig. 5.3. This is the

fingerprint of the confusion theorem—only the νL neutrino contributes to the pressure and

thus any trace of the mass generation mechanism vanishes (see Fig. 5.1). The plate-plate,

plate-point, and point-point potentials scale as 1/L, 1/L2, and 1/L5 in this limit respectively
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Figure 5.3: Ratios of the Dirac and Majorana potentials for point-point (orange), plate-point
(blue), and plate-plate (red) configurations. Results are shown for equal masses (mi = mj).
Majorana potentials are always weaker than Dirac potentials, consistent with prior results
(e.g. [7]).

(see (5.26) and (5.30)).

For distances L ≳ 1/m>, the partial potentials are exponentially suppressed for

all configurations. We find that for L ≳ 1/m<, the Dirac and Majorana partial potentials

have distinct L-dependencies with 1 − VM/VD ∼ O (1). The latter effect occurs when the

partial potential is already exponential suppressed, since 1/m< ≥ 1/m>. Hence we find

that the contributions from the cross-term partial potentials (mi ̸= mj) are not helpful in

making a Dirac/Majorana distinction.

We find the current sensitivity to neutrino forces remains very low. For plates at

a separation of L ∼ 1/m where 1−VM/VD ∼ O(1), we use data from a recent Casimir force

experiment1 [225] to determine that 20 orders of magnitude still remain between current

experimental limits and the quantum neutrino force.

Ref. [73] recently claimed that bounds from muonium spectroscopy place experi-

1This result is recast in [46] to bound the relevant quantum force.
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mental limits just two orders of magnitude shy of being able to detect quantum forces from

neutrinos. In their analysis, a non-relativistic formalism was used and it was assumed that

the form of the potential (5.8) and electronic wavefunctions are valid down to r ∼ 1/mZ .

It remains for this bound to be checked in a relativistic formalism. Unfortunately, even if

the bounds in [73] hold, the confusion theorem renders a Dirac/Majorana distinction nearly

impossible by this probe, as 1− VM/VD ∼ O
(
10−11

)
for rBohr ∼ L≪ 1/m.
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Chapter 6

Conclusions

Specific conclusions were presented at the end of each chapter. In this section, we

offer a brief summary and focus on the broader themes and ideas present in this work.

6.1 On EFT in AdS

In chapter 2, we investigated how quantum dynamics affects the propagation of a

scalar field in Lorentzian AdSd+1. Among other results, we found that loop-level dressings

by a self-energy with a bubble topology induce an exponential damping of the propagator

in the pz ≫ 1 region. This damping behaviour occurs even if a single point is in the

conformally flat region, i.e. pz< ≪ 1, pz> ≫ 1, which includes the boundary-to-bulk

propagator with pz ≫ 1 as a particular case. This regime has no flat-space equivalent—the

pz ≪ 1 region vanishes if one Weyl-transforms to flat space. Renormalizable interactions

may not give rise to an exponential damping, but operators of sufficiently high dimension—

as present in an EFT—will induce it. In the EFT paradigm, the EFT breaks down when
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higher dimensional operators give contributions to the self-energy of the same order. In AdS

this occurs at sufficiently large pz, i.e. in the IR region of the Poincaré patch. Working

in the EFT paradigm, we find that the exponential damping censors the region of EFT

breakdown.

In a nutshell, opacity tells us that 2-point correlators are exponentially suppressed

when one of the endpoints satisfies pz ≳ 1. Does this property apply to higher point

correlators as well? If so, the IR region of AdS can be said to be emergent at low energies.

This is what was investigated in chapter 3. It was found that in the regime in which

opacity suppresses propagation to the IR brane, the spectrum of KK modes merge to

form a continuum. In this continuum regime, cascade decays are suppressed and the IR is

effectively emergent.

Now consider the “slice of AdS”, in which the bulk of AdS is truncated by UV

and IR branes at small and large z, respectively. Opacity tells us that 2-point correlators

are exponentially suppressed when one of the endpoints satisfies pz ≳ 1, which implies the

existence of a scale Λ̃ above which propagation to the IR brane is exponentially suppressed.

For timelike bulk propagators with momenta above this scale (p > Λ̃), the IR brane is

effectively absent. This scale separates the Kaluza–Klein and continuum regimes of the

bulk propagator, as the IR brane is emergent for the propagator. Does this property apply

to higher point correlators as well?

Näıvely, cascade decays could allow correlators with energy beyond Λ̃ to be sensi-

tive to the IR brane because the momentum is split between many offspring states. There-

fore we studied cascade decays to better understand the notion of IR brane emergence in
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chapter 3. We focused on a scalar with a bulk cubic interaction and investigate the squared

matrix element integrated over final states that are the main ingredients of observable event

rates. In the continuum regime, there exists a recursion relation between cascades of differ-

ent branching depth, which we use to estimate the rate for arbitrarily deep cascade.

The cascade decay calculation provides a picture of soft bombs in the continuum

regime of AdS. We find that the shape of the cascade events tend to be soft and spherical

in the 4D Minkowski slices. This is because the branchings tend to be near-threshold with

momentum evenly split between the offspring, which matches previous results for the CFT

dual. Along the fifth dimension, the decays tend to occur near the region z ∼ 1/p where

p is the parent four-momentum. Therefore the soft bomb diagram grows in the Minkowski

direction and slowly progresses towards the IR. Once the typical momentum of the offspring

reaches Λ̃, the soft bomb enters the KK regime.

While there is no diagrammatic change between the KK and continuum regimes,

the crucial change occurs in the behaviour of the propagators. In the KK regime, the

narrow width approximation applies, such that amplitudes giving the soft bomb rate can

effectively be cut. In the continuum regime the propagators do not have poles and the event

cannot be cut before reaching the KK regime. The phase space factor associated with each

of the final states accumulate and the soft bomb rate in the continuum regime acquires an

exponential suppression. It follows that the continuum regime can be described by a high-

energy effective theory with no IR brane. In other words, the operators on the IR brane

effectively emerge at the energy scale E ∼ Λ̃, i.e. schematically E[J ]
∣∣
p≫Λ̃

≈ E[J ]no IRbrane

in terms of generating functionals of correlators. We expect that the same conclusions
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qualitatively apply to asymptotically AdS backgrounds with a metric deformation in the

IR region, such as soft-wall models.

These features can lead to new possibilities for physics beyond the Standard Model,

as already pointed out in [27]. In particular holographic dark sector scenarios may have bulk

fields that mediate interactions between a UV-brane localized Standard Model and IR brane

dark states that are emergent. This implies that a light dark particle can be invisible at high

energy experiments. For instance, bounds from stellar cooling or missing energy searches

may be alleviated if the dark particles are light enough. The many phenomenological

consequences of an emergent dark sector require further studies.

6.2 On Exotic Forces from a Dark Sector

Hidden (dark) sectors with new particles may generate long-range forces between

visible sector matter. Chapter 4 of this manuscript examines exotic long-range forces that

differ from the Yukawa-like forces generated from single-particle exchange. We present three

classes of exotic forces.

Quantum forces come from the loop-level exchange of pairs of dark sector particles.

They are described by an effective theory and may themselves be the dark matter. We

present the spin-dependent potentials including the spin- and orientation-averaged limits.

As an example, we show the constraints on a light dark sector imposed from NMR bounds

on the anomalous J-coupling of deuterium.

Conformal forces arise when visible particles couple to a dark sector with conformal

symmetry. Such forces are also generated in the case of a “warped dark sector,” which by
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the AdS/CFT correspondence is a five-dimensional realization of the conformal dark sector.

These forces have a non-integer power dependence on r.

Emergent forces are induced by effective degrees of freedom arising in the infrared.

We presented a qualitative picture in a 4D strongly-interacting dark sector, and a quantita-

tive result from a specific realization of this scenario in a slice of AdS5. In the AdS model,

the emergent force comes from an IR brane-localized degree of freedom that becomes invis-

ible to the UV-localized nucleons at short distances.

As an aside, we classify the behavior of spin-dependent and spin-independent

forces, for Yukawa and exotic cases, and for the ordinary, spin-averaged, and orientation-

averaged cases. Such an analysis is required to form a coherent vision of existing and

upcoming experimental prospects. We point out that in the orientation-averaged limit, the

Yukawa forces are suppressed as a result of Gauss’ law. A similar effect also occurs for the

tensor force upon spin-averaging. This behavior is not true for exotic forces. Yukawa forces

are thus non-generic compared to exotic forces.

It follows that experiments that use disordered phases of matter are particularly

appropriate for searching for exotic spin-dependent forces. NMR-based experiments are one

such type of setup. We find that searches for spin/velocity-dependent forces are especially

sensitive to exotic tensor potentials.

6.3 On the Neutrino Casimir Force

The neutrino Casimir force has not previously been determined in the literature,

to the best of our knowledge. Can this force be used to make a Dirac/Majorana distinction
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as to the origin of the Neutrino mass?

In chapter 5, we determine the plate-plate and plate-point potentials and find

that the current sensitivity to neutrino forces remains very low. We use data from a recent

Casimir force experiment1 [225] to determine that 20 orders of magnitude still remain

between current experimental limits and the quantum neutrino force.

We thus conclude that there are still many orders of magnitude in sensitivity

needed to make a Dirac/Majorana distinction with quantum neutrino forces. Perhaps in

the distant future, the neutrino Casimir force can be used to confirm the Dirac/Majorana

origin of the neutrino mass.

1This result is recast in [46] to bound the relevant quantum force.
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Appendix A

Dressed Equation of Motion

In this appendix we derive the equation of motion in the presence of a generic self-

energy using the path integral formalism. The approach amounts to requiring invariance

of a given path integral quantity under an infinitesimal change in the field variable. This

method was used in [166] in the free case.

We first derive the homogeneous equation of motion. Start from the partition

function of the interacting theory

Z =

∫
DΦDφeiS[Φ,φ] , S[Φ, φ] =

∫
dd+1X

√
|γ| (L0[Φ] + L[φ] + λΦO(φ)) . (A.1)

In the fundamental action, L0[Φ] is the free Lagrangian for Φ, given by

L0[Φ] = −
1

2
Φ(X)DΦ(X) . (A.2)

L[φ] encodes the properties of other fields φ and does not need to be specified. The (gener-

ally composite) operator O is here assumed to depend on the φ fields only. A very similar

calculation can be done if Φ has self-interactions. We recall the definition of the expectation
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value of an operator A dictated by the partition function,

⟨A⟩(X) = Z−1

∫
DΦDφA(X) ei

∫
dd+1X′ S[Φ,φ] . (A.3)

Starting from Z, we perform an infinitesimal change of variable of the field Φ(X) ≡

Φ̃(X) + ϵ(X). The path integral measure remains unchanged, DΦ = DΦ̃. Expanding the

exponential at first order in ϵ gives

Z =

∫
DΦDφei

∫
dd+1X′

√
|γ|(L0[Φ]+L[φ]+λΦO)

(
1 + i

∫
dd+1Xϵ(X)

√
|γ| [−DΦ(X) + λO(X)]

)
= Z + i

∫
dd+1X

√
|γ|ϵ(X)

∫
DΦDφei

∫
dd+1X′

√
|γ|(L0[Φ]+L[φ]+λΦO) [−DΦ(X) + λO(X)] .

(A.4)

The second term in the last line must vanish for any ϵ(X), implying the quantum equation

of motion ∫
DΦDφeiS[Φ,φ] [DΦ(X)− λO(X)] = 0 . (A.5)

Using the definition of the expectation value from Eq. (A.3) and introducing the notation

⟨Φ⟩ = Φcl, ⟨O⟩ = Ocl we have

DΦcl(X)− λOcl(X) = 0 . (A.6)

The second term involves the expectation value of the composite operator O

Ocl(X) = Z−1

∫
DΦDφO(X) ei

∫
dd+1X

√
|γ|(L0[Φ]+L[φ]+λΦO) . (A.7)

We now seek to express Ocl as a quantity involving Φcl. We can notice the Φ field acts as

a source for O. It is convenient to introduce a generating functional of the O correlators

E[Φcl] such that

E[Φcl] = i logZ[Φcl] , Z[Φcl] =

∫
Dφei

∫
dd+1X

√
|γ|(L0[Φ]+L[φ]+λΦclO) (A.8)
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From E[Φcl] we have the standard identities

δE[Φcl]

δΦcl(X)
= −λ

√
|γ|Ocl(X) . (A.9)

δ2E

δΦcl(X)δΦcl(X ′)
= −iλ2

√
|γ|X

√
|γ|X′⟨O(X)O(X ′)⟩conn (A.10)

where we display the connected correlator of O. The self-energy iΠ is defined such as it

absorbs the metric factors and the (iλ)2 vertices, giving

δ2E

δΦcl(X)δΦcl(X ′)
= −Π(X,X ′) . (A.11)

Finally we also have

−λ
√
|γ|Φcl(X) =

δE[Φcl]

δOcl(X)
. (A.12)

Given these identities, we can rewrite −λ
√
|γ|Ocl(X) as follows. Using the chain

rule for functional derivatives in Eq. (A.9) we get

−λ
√
|γ|Ocl(X) =

∫
dd+1X ′ δOcl(X

′)

δΦ(X)

δE[Φ]

δOcl(X ′)
=

∫
dd+1X ′ δOcl(X

′)

δΦ(X)

(
−λ
√
|γ|X′

)
Φcl(X

′) .

(A.13)

Then using again Eq. (A.9) notice that

−λ
√
|γ|X′

δOcl(X
′)

δΦ(X)
=

δ2E[Φ]

δΦ(X)δΦ(X ′)
= −Π(X,X ′) . (A.14)

Therefore we have shown that

λ
√
|γ|Ocl(X) =

∫
dd+1X ′Π(X,X ′)Φcl(X

′). (A.15)

Hence the dressed equation of motion takes the form

DΦcl(X)− 1√
|γ|

Π ∗ Φcl(X) = 0 . (A.16)
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In order to compute the dressed equation of motion for the Feynman propagator,

one proceeds similarly with an extra insertion of Φ in the path integral such that the starting

quantity considered amounts to ZΦcl(X). An infinitesimal shift of the field variable gives

ZΦcl(X) = (A.17)∫
DΦDφeiS

(
Φ(X) +

∫
dd+1X ′ϵ(X ′)

(
i
√
|γ|
[
−DΦ(X ′) + λO

]
Φ(X) + δ(d+1)(X −X ′)

))
= ZΦcl(X)+∫
dd+1X ′ϵ(X ′)

∫
DΦDφeiS

(
i
√
|γ|
[
−DΦ(X ′) + λO

]
Φ(X) + δ(d+1)(X −X ′)

)
.

The second term must vanish for any ϵ(X), hence we have

∫
DΦDφeiS

(
i
√
|γ|
[
−DΦ(X ′) + λO

]
Φ(X) + δ(d+1)(X −X ′)

)
= 0. (A.18)

In terms of expectation values, we find that the previous statement is equivalent to

√
|γ|XDX⟨Φ(X)Φ(X ′)⟩ − λ

√
|γ|X⟨Φ(X)O(X ′)⟩conn = −iδ(d+1)(X −X ′). (A.19)

Using similar manipulations as above 1 we find

λ
√
|γ|X⟨Φ(X)O(X ′)⟩ = iλ2

√
|γ|X

√
|γ|X′⟨O(X)O(X̃)⟩conn ∗G(X̃,X ′) = Π ∗G(X,X ′) .

(A.20)

The dressed equation of motion is thus

√
|γ|DXG(X,X ′)−Π ∗G(X,X ′) = −iδ(d+1)(X −X ′), (A.21)

which completes the proof of Eq. (2.9).

1One can for instance introduce a generating functional with sources for Φ and O which are set to zero at

the end of the calculation.
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Appendix B

Proof of Conformal Completeness

Relation

We prove Eq. (2.24) in two steps. In App.B.1, we show that the integral vanishes

for z ̸= z′. In App.B.2, we integrate Eq. (2.24) over z′ to determine the normalization of

the delta function.

B.1 z ̸= z′

Here we evaluate

∫ i∞

−i∞
dαΩp(α) =

∫ i∞

i∞
dα
iα sin(πα)

π2
(k2zz′)d/2Kα(

√
−p2z)Kα(

√
−p2z′) (B.1)

for z > z′. This choice is unimportant—it simply controls how we close the contour for

some of the terms. We use the series representation of the Bessel functions, Eq. (2.72). Four
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terms emerge. These reduce to two terms under a α→ −α relabeling. We are left with

∫ i∞

−i∞
dαΩp(α) = (B.2)

(k2zz′)d/2
∫ i∞

i∞
dα

iα

2 sin(πα)

∑
m,n=0

1

m!n!

(√
−p2z′

2

)2n(√
−p2z
2

)2m

×

[
1

Γ(n− α+ 1)

(√
−p2z′

2

)−α][
1

Γ(m− α+ 1)

(√
−p2z
2

)−α

− 1

Γ(m+ α+ 1)

(√
−p2z
2

)α]
.

We promote the line integral to a contour and close this contour in a large half-circle

towards the negative reals. We then apply the residue theorem and sum over the poles of

the 1/ sin (πα) function. A sequence of poles are cancelled by the roots of 1/Γ(m+ α+ 1)

in the second term. The remaining terms (labeled by T1 and T2) are

T1 = (k2zz′)d/2× (B.3)

∑
m,n=0

∞∑
l=1

il(−1)l

m!n!

(√
−p2z′

2

)2n+l(√
−p2z
2

)2m+l
1

Γ(n+ l + 1)Γ(m+ l + 1)

T2 = −(k2zz′)d/2× (B.4)

∑
m=1,n=0

m∑
l=1

il(−1)l

m!n!

(√
−p2z′

2

)2n(√
−p2z
2

)2m
1

Γ(n+ l + 1)Γ(m− l + 1)

(
z′

z

)l
.

We introduce c ≡ m + l in T1 and convert the sums over m, l into sums over c, l. Upon a

relabeling, this gives T1 = −T2 and thus

∫ i∞

−i∞
dαΩp(α) = 0 (B.5)

for z ̸= z′.
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B.2 Normalization

To obtain the normalization and thus prove Eq. (2.24), we evaluate∫ ∞

0
dz′
∫ i∞

−i∞
dαΩp(α) = (B.6)∫ ∞

0
dz′
∫ i∞

−i∞
dα
iα sin(πα)

π2
(k2zz′)d/2Kα(

√
−p2z)Kα(

√
−p2z′) .

We directly perform the integral over z′ and use the series representation Eq. (2.72) to

expand the remaining Bessel function. We then let α → −α to reduce the two terms to

one. We are left with∫ ∞

0
dz′
∫ i∞

−i∞
dαΩp(α) =

i

2π
√
−p2

(
2zk2√
−p2

)d/2 ∑
m=0

1

m!

(√
−p2z
2

)2m

× (B.7)

∫ i∞

−i∞
dα

[
α

Γ(m− α+ 1)

(√
−p2z
2

)−α]
Γ

(
1

4
(d− 2α+ 2)

)
Γ

(
1

4
(d+ 2α+ 2)

)
.

We promote the line integral to a contour and close to the negative reals. A

straightforward application of the residue theorem yields∫ ∞

0
dz′
∫ i∞

−i∞
dαΩp(α) = (B.8)

(kz)d+1

k

∑
m,n=0

(−1)n

m!n!

(2n+ d
2 + 1)Γ

(
n+ d

2 + 1
)

Γ(m+ (2n+ d
2 + 1) + 1)

(√
−p2z
2

)2n+2m
 .

By introducing c ≡ m+ n and reorganizing the sums, we obtain∫ ∞

0
dz′
∫ i∞

−i∞
dαΩp(α) = (B.9)

(kz)d+1

k

∞∑
c=0

(√
−p2z
2

)2c c∑
n=0

(−1)n(2n+ d
2 + 1)

(c− n)!n!
Γ
(
n+ d

2 + 1
)

Γ(c+ (n+ d
2 + 1) + 1)

.

We directly perform the sum over n with

c∑
n=0

(−1)n

(c− n)!n!
Γ
(
n+ 1 + d

2

)
(2n+ d

2 + 1)

Γ(c+ (n+ d
2 + 1) + 1)

= δc0 , (B.10)
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which we obtained through the use of Mathematica [185]. This gives

∫ ∞

0
dz′
∫ i∞

−i∞
dαΩp(α) =

(kz)d+1

k
,

which completes the proof of Eq. (2.24).
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Appendix C

Elements of AdS/CFT in

Momentum Space

In this Appendix we give elements of CFT in d-dimensional Minkowski space

and introduce the AdS bulk-to-boundary propagator. All these notions are consistently

translated into Lorentzian momentum space. We recall the chosen metric has mostly-minus

signature (+,−, . . . ,−). The Fourier transform convention is

O(x) =
∫

ddp

(2π)d
O(p)e−ip·x . (C.1)

C.1 Bulk Mass and Conformal Dimensions

The relation between a scalar bulk field in AdS with bulk massm2
Φ =

(
α2 − d2

4

)
k2

and a scalar primary operator with scaling dimension ∆ from the dual CFT is given by (see
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e.g. [13])

α2 =
M2

k2
+
d2

4
≡
(
∆− d

2

)2

. (C.2)

The relation implies ∆ = d
2 ± α. In general we have α ∈ R. As done in Sec. 2.3, we restrict

to α ∈ R+ without loss of generality, and define

∆± =
d

2
± α . (C.3)

Unitarity requires ∆ ≥ d/2 − 1. Hence for α > 1 only the dual CFT operator with ∆+

exists. For 0 < α < 1, both ∆− and ∆+ branches of the correspondence exist. 1

C.2 CFT Correlators

We are interested in scalar primary operators noted Oi. These representations of

the conformal group are labelled by the scaling dimension ∆i.

2-point In position space a 2-point correlator is constrained by conformal invariance to

the form

⟨Oi(x1)Oi(x2)⟩ =
1

(−x212)∆i
, (C.4)

up to an overall coefficient.

We introduce the reduced correlator

⟨O(p1)O(p2)⟩ = (2π)dδ(d)(p1 + p2)⟪O(p1)O(p2)⟫ . (C.5)

1Notice α is analytically continued to the complex plane in the spectral conformal representation, see

Sec. 2.3.2. Also, when studying the Euclidian principal series representation, the conformal dimension

is usually defined as ∆ = d
2
+ iν, ν ∈ R. Here we rather use α ≡ iν, which is typically used in other

momentum space works such as [114].
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We get ⟨O(x1)O(x2)⟩ =
∫ ddp

(2π)d
⟪O(p)O(−p)e−ip·x12⟫ and obtain

⟪O(p)O(−p)⟫ = −iπ
d/2Γ(d/2−∆)

Γ(∆)

(
4

−p2

)d/2−∆

(C.6)

Notice that for d = 4 and ∆ = d/2− 1 = 1, one recovers the usual 4d relation

−1
4π2x2

=

∫
d4p

(2π)4
i

p2
e−ip·x . (C.7)

Using ∆ = d/2 + α, the correlator reads

⟪Oi(p)Oi(−p)⟫ = −i π
d/2Γ(−α)

Γ(α+ d/2)

(
−p2

4

)α
. (C.8)

3-point 3-point correlators of the CFT are constrained by conformal invariance to the

form

⟨O1(x1)O2(x2)O3(x3)⟩ =
1√

−x212
∆1+∆2−∆3

√
−x223

∆2+∆3−∆1
√
−x213

∆1+∆3−∆2
. (C.9)

Using ∆i = d/2 + αi, we have

⟨O1(x1)O2(x2)O3(x3)⟩ =
1√

−x212
α1+α2−α3+d/2√−x223α2+α3−α1+d/2√−x213α1+α3−α2+d/2

.

(C.10)

In momentum space one introduces the reduced correlator

⟨O(p1)O1(p2)O2(p3)⟩ = (2π)dδ(d)(p1 + p2 + p3)⟪O(p1)O1(p2)O2(p3)⟫ . (C.11)

By direct calculation using e.g. Schwinger parametrization (see [119]), one obtains

i⟪O1(p1)O2(p2)O3(p3)⟫ = (C.12)

πd24−α1−α2−α3

Γ(α1+α2+α3+d/2
2 )Γ(α1+α2−α3+d/2

2 )Γ(α1−α2+α3+d/2
2 )Γ(−α1+α2+α3+d/2

2 )
×

(
−p21

)α1/2 (−p22)α2/2 (−p23)α3/2
∫ ∞

0
dzzd/2−1Kα1

(√
−p21z

)
Kα2

(√
−p22z

)
Kα3

(√
−p23z

)
.
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C.3 Shadow Transform

In conformal field theory a scalar operator O is accompanied by a “shadow” op-

erator Õ with dimension

∆̃ = d−∆ . (C.13)

Equivalently, if ∆ = d/2+α, then ∆̃ = d/2−α. O and Õ have a natural conformal-invariant

pairing
∫
ddxO(x)Õ(x). Such operation can connect the legs of different CFT correlators

to build loop diagrams, see Sec. C.4.

In a given n-point correlator, an operator Oi is shadow-transformed into Õi by

convoluting the correlator with the corresponding shadow 2-pt function ⟨Õi(x)Õi(x′)⟩ [226].

Here we give the transformation for a 3-pt correlator. The shadow transform of the position

space 3-pt correlator [158,226] in Minkowski metric is given by

i

∫
ddx′3⟨Õ3(x3)Õ3(x

′
3)⟩⟨O1(x1)O2(x2)O3(x

′
3)⟩ = S∆1,∆2

∆3
⟨O1(x1)O2(x2)Õ3(x3)⟩ (C.14)

with the coefficient

S∆1,∆2

∆3
=

πd/2Γ(α3)

Γ(d/2− α3)

Γ(α3+α1−α2+d/2
2 )Γ(α3−α1+α2+d/2

2 )

Γ(−α3+α1−α2+d/2
2 )Γ(−α3−α1+α2+d/2

2 )
. (C.15)

We introduce the Fourier transform of the operators as in Eq. (C.1). The shadow

transform in momentum space becomes a product

i

∫
ddx′3⟨Õ3(x3)Õ3(x

′
3)⟩⟨O1(x1)O2(x2)O3(x

′
3)⟩ (C.16)

= i

∫
ddp1
(2π)d

∫
ddp2
(2π)d

∫
ddp3
(2π)d

ei(p1.x1+p2.x2+p3.x3)⟪Õ3(p3)Õ3(−p3)⟫⟪O1(p1)O2(p2)O3(p3)⟫

= S∆1,∆2

∆3

∫
ddp1
(2π)d

∫
ddp2
(2π)d

∫
ddp3
(2π)d

ei(p1.x1+p2.x2+p3.x3)⟪O1(p1)O2(p2)Õ3(p3)⟫.

The relation in momentum space can be read from the two last lines.
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Using the explicit expression for the 2-point shadow correlator (given by Eq. (C.8)

with α→ −α3) the shadow transform in momentum space becomes simply

⟪O1(p1)O2(p2)Õ3(p3)⟫ = 1

S∆1,∆2

∆3

πd/2Γ(α3)

Γ(d/2− α3)

(
−p23
4

)−α3

⟪O1(p1)O2(p2)O3(p3)⟫ (C.17)

=
Γ(−α3+α1−α2+d/2

2 )Γ(−α3−α1+α2+d/2
2 )

Γ(α3+α1−α2+d/2
2 )Γ(α3−α1+α2+d/2

2 )

(
−p23
4

)−α3

⟪O1(p1)O2(p2)O3(p3)⟫ .

We can use this identity Eq. (C.17) on the explicit representation of the momentum-

space 3-pt correlator Eq. (C.12). When doing so, one explicitly sees that the shadow trans-

form Eq. (C.17) precisely amounts to flip the sign of α3 in Eq. (C.12).

C.4 CFT Bubble

In the calculation of the dressed AdS propagator in the conformal spectral repre-

sentation, a CFT bubble diagram appears. It is made of two 3-pt correlators whose legs are

connected via pairing between Oi and Õi, or equivalently the legs are connected by 2-pt

shadow correlators, see Sec. C.3.

The CFT bubble evaluation is well known [158,226]. Translating to our conventions

we have 2

∫
ddx1d

dx2⟨Oa(x)O1(x1)O2(x2)⟩⟨Õ1(x1)Õ2(x2)Õb(x′)⟩ (C.18)

= BOδab2π

(
δ(d)(x− x′)δ(α− α′) − i

(
Γ(α+ d/2)Γ(d/2− α)

πdΓ(α)Γ(−α)

)1/2 δ(α+ α′)

(−(x− x′)2)α+d/2

)

= BOδab2π
(
δ(d)(x− x′)δ(α− α′) + s.t.

)
2One uses δ(xE) = iδ(x), δ(ν) = δ(−iα). The latter will be integrated along the imaginary line, such that the

argument of the Dirac delta is real. However one can check that one can equivalently use δ(−iα) = iδ(α),

that we use throughout.
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where the second term in the parenthesis corresponds to the shadow transform of the first

one—the −i results from Minkowski metric. Below we denote this second term by s.t. The

bubble coefficient is given by

BO =
2π3d/2

Γ(d/2)

Γ(α)Γ(−α)
Γ(α+ d/2)Γ(d/2− α)

. (C.19)

Introducing the Fourier tranform of the operators, one obtains the CFT bubble in

momentum space (involving the reduced correlators). It is given by

∫
ddq

(2π)d
⟪Oa(p)O1(q)O2(−p− q)⟫⟪Õ1(−q)Õ2(p+ q)Õb(−p)⟫ = 2πBOδabδ(α− α′) + s.t.

(C.20)

On the left-hand side we recognize the integration over the internal d-momentum running

inside the loop.

C.5 Boundary-to-Bulk Propagators

Here we come back to AdS. We introduce the boundary-to-bulk propagatorK(z, x, x′),

a Green function for sources placed on the AdS boundary (see e.g. [13, 201] ). From the

bulk-to-bulk AdS propagator G(0)(X,X ′), K(z, x, x′) can be obtained by sending e.g. z′ to

the AdS boundary, while including an appropriate scaling factor in z′ such that the obtained

object is non zero and finite for z ̸= 0. Boundary-to-bulk propagators are closely related

to the dual CFT operators and can be directly labelled with the corresponding scaling

dimension ∆.

The boundary-to-bulk propagator associated with a CFT operator with dimension
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∆+ (∆−) is defined as

K∆±(x, x
′, z) =

Γ(∆∓)

πd/2Γ(∆∓ − d
2)

(
z

z2 − (x− x′)2

)∆∓

(C.21)

where ∆− = d−∆+, according to definitions in Eq. (C.3)). 3

Introducing the Fourier transform, we define the boundary-to-bulk propagator in

position-momentum space as K∆+(p, z) = kd/2
∫
ddxK∆+(x, x

′, z)eip.(x−x
′). 4 The result is

K∆±(p, z) = i(kz)d/2
2

Γ(∆∓ − d/2)

(√
−p2
2

)∆∓−d/2

Kd/2−∆∓(
√
−p2z) . (C.22)

We see that the Bessel K function appears. We also see that multiplying K∆+(p, z) and

K∆−(p, z) cancels out the overall factor of p, giving the dimensionless quantity

K∆+(p, z)K∆−(p, z
′) = 4

α sin(πα)

π
(k2zz′)d/2Kα(

√
−p2z)Kα(

√
−p2z′) . (C.23)

This product reproduces precisely the form of the conformal spectral function Ωα(p; z, z
′)

(see Eq. (2.23)) such that

Ωα(p, z, z
′) =

i

4π
K∆−(p, z)K∆+(p, z

′) . (C.24)

Such feature is expected—it amounts to introduce the “split” representation [163] in position-

momentum space. Since in position space the split representation would involve a convolu-

tion on the AdS boundary, in position-momentum space the split representation involves a

simple product.

For our calculation of the dressed AdS propagator, the well-known correspondence

between K and CFT 2-pt correlator is not needed. On the other hand, bulk cubic inter-

actions will involve the convolution of three different boundary-to-bulk propagagors. We

3These propagators satisfy K∆±(z → 0) = iz∆±δ(d)(x). A bulk field ϕ(z, x) sourced by a boundary field

(i.e. “boundary data”) ϕ0(x) satisfies ϕ(z, x) = −iz−∆±
∫
ddyK∆+(z, x− y)ϕ0(y) .

4Defined that way, K∆+ and K∆− have opposite mass dimensions, [K∆− ] = −[K∆+ ] = α.
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introduce the notation K∆±(p, z) = K±
α (p, z). For the product of three generic K−, using

Eq. (C.12) we find

∫
du

(ku)d+1
K−
α1
(p1;u)K−

α2
(p2;u)K−

α3
(p3;u) (C.25)

= −i 23−α1−α2−α3

Γ(α1)Γ(α2)Γ(α3)
(−p21)α1/2(−p22)α2/2(−p23)α3/2

×
∫
du (ku)d/2−1Kα1

(√
−p21u

)
Kα2

(√
−p22u

)
Kα3

(√
−p23u

)
= cα1,α2,α3k

d/2−1⟪O1(p1)O2(p2)O3(p3)⟫ .

with the dimensionless coefficient

cα1,α2,α3 =
Γ(α1+α2+α3+d/2

2 )Γ(α1−α2+α3+d/2
2 )Γ(α1+α2−α3+d/2

2 )Γ(−α1+α2+α3+d/2
2 )

2πd Γ(α1)Γ(α2)Γ(α3)
(C.26)

Eq. (C.25) relates a 3-pt bulk diagram (first line) to a 3-pt CFT correlator (last line),

explicitly showing AdS/CFT at work.

Convolutions involving K+ propagators are obtained from Eq. (C.25) by a shadow

transform. As seen in Sec. C.3, this amounts to flipping the signs of the corresponding αi

in the c(α1, α2, α3) coefficient. We have for instance

∫
du

(ku)d+1
K−
α1
(p1;u)K−

α2
(p2;u)K+

α3
(p3;u) = c(α1, α2,−α3)k

d/2−1⟪O1(p1)O2(p2)Õ3(p3)⟫ .

(C.27)
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Appendix D

Momentum Spectral Integrals at

Large pz

We first review aspects of the spectral integral
∫ A
0 dmΩm(z, z

′). We are interested

in the Az ≫ 1, Az′ ≫ 1 limit at fixed α, hence for our purposes the α-dependence is

negligible and we can set α = 1/2. The spectral integral is then proportional to

∫ A

0
dm sin(mz) sin(mz′) =

1

2

sin(A(z − z′))
z − z′

− 1

2

sin(A(z + z′))

z + z′
. (D.1)

If we let A→∞ at fixed z, z′, using the definition of the sinc function as a nascent

Dirac delta, the first term of Eq. (D.1) becomes proportional to a Dirac delta and the second

vanishes—proving Eq. (2.30). We recall this is understood in the distribution sense. The

second term oscillates infinitely rapidly for any z, z′ such that under a z integral, for any

appropriate test function the second term averages to zero under the integral. This happens

similarly for the first term of Eq. (D.1) except for A(z−z′)≪ 1, which asymptotically gives

rise to the Dirac delta.
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Instead of letting A → ∞ in Eq. (D.1), we can introduce z̄ = z+z′

2 , z − z′ = z̄ϵ,

and let z̄ →∞ at fixed A and ϵ. This gives the same result as the A→∞ limit since

sin(A(z − z′))
z − z′

=
sin(Az̄ϵ)

z̄ϵ
=
A

z̄

sin(Az̄ϵ)

Aϵ
−−−→
z̄→∞

πA

z̄
δ(Aϵ) = πδ(z − z′) . (D.2)

Again, this limit is understood in the distribution sense. For our purposes, taking the limit

of large z̄ at fixed interval [0, A] is more convenient.

Consider then the spectral integral

∫ A

0
dm sin(mz) sin(mz′)F (m,A) (D.3)

where the F (m,A) function is smooth in m and is independent of z, z′. Taking the large z̄

limit at A fixed, for large enough z̄ we have ∂m (sin(mz) sin(mz′))≫ ∂mF (m,A) everywhere

on the interval and we can approximate the rapidly oscillating function by its average over

[0, A],

∫ A

0
dm sin(mz) sin(mz′)F (m,A) ≈

(
1

2

sin(A(z − z′))
A(z − z′)

− 1

2

sin(A(z + z′))

A(z + z′)

)∫ A

0
dmF (m,A)

(D.4)

Taking the large z̄ limit as above gives asymptotically

(
1

2

sin(A(z − z′))
A(z − z′)

)∫ A

0
dmF (m,A) −−−→

z̄→∞

π

2A
δ(z − z′)

∫ A

0
dmF (m,A) (D.5)

in the distribution sense.

We can apply the preliminary results above to evaluate the double spectral integral

of Eq. (2.108) ∫ A1

0
dm1

∫ A2

0
dm2Ωm1(z, z

′)Ωm2(z, z
′)F (m1,m2, Ai) (D.6)
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where A1 = p, A2 = p −m1 in the large pz limit. We keep p finite and take the limit of

large z̄. Taking α = 1/2, the integral is proportional to

∫ A1

0
dm1

∫ A2

0
dm2 sin(m1z) sin(m1z

′) sin(m2z) sin(m2z
′)F (m1,m2, Ai) (D.7)

F is assumed to be smooth in m1 and m2 such that the limit for rapidly oscillating function

introduced above applies. We first approximate the m2 integral, giving

∫ A1

0
dm1 sinm1z sinm1z

′
(
1

2

sin(A2(z − z′))
A2(z − z′)

− 1

2

sin(A2(z + z′))

A2(z + z′)

)∫ A2

0
dm2F (m1,m2, Ai) .

(D.8)

Then we use that 1
A2

∫ A2

0 dm2F (m1,m2, Ai) is smooth in m1 with respect to the whole

oscillating function such that the latter can be averaged and extracted from the m1 integral.

Combining the sines we have

=
1

4A1

∫ A1

0
dm1

(
cos(m1(z − z′))− cos(m1(z + z′))

)(sin(A2(z − z′))
z − z′

− sin(A2(z + z′))

z + z′

)
×
∫ A1

0
dm1

∫ A2

0
dm2

1

A2
F (m1,m2, Ai) (D.9)

The first line contains the average of the oscillating function in m1. The integrals of the

four terms give

1

A1

∫ A1

0
dm1 cos(m1(z − z′))

sin(A2(z − z′))
z − z′

=
1

2(z − z′)
sin p(z − z′) (D.10)

1

A1

∫ A1

0
dm1 cos(m1(z − z′))

sin(A2(z + z′))

z + z′
=

1

2pzz′
sin pz sin pz′ (D.11)

1

A1

∫ A1

0
dm1 cos(m1(z + z′))

sin(A2(z − z′))
z − z′

=
1

2pzz′
sin pz sin pz′ (D.12)

1

A1

∫ A1

0
dm1 cos(m1(z + z′))

sin(A2(z + z′))

z + z′
=

1

2(z + z′)
sin p(z + z′) (D.13)
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In the large z̄ limit the first term Eq .(D.10) dominates, the other become negligible. Again,

this term gives rise a nascent Dirac delta in the large z̄ limit,

1

2(z − z′)
sin p(z − z′) = 1

2z̄ϵ
sin pz̄ϵ =

p

2z̄

sin pz̄ϵ

pϵ
−−−→
z̄→∞

p

z̄

π

2
δ(pϵ) =

π

2
δ(z − z′) , (D.14)

understood in the distribution sense.

We have thus obtained that the double spectral integral Eq. (D.7) tends to

π

8
δ(z − z′)

∫ p

0
dm1

∫ p−m1

0
dm2

1

A2
F (m1,m2, Ai) (D.15)

at large z̄. This delta function, as mentioned throughout this section, is best thought of as

being under an integral. When interested in the value of ImΠ itself, this delta may naively

seem like a divergence. One should remember that this is a nascent delta and is hence

replaced as z − z′ becomes arbitrarily small.

In our bubble calculation, F (m1,m2) = Ξ(d, p,m1,m2). Even though the remain-

ing double integral may be difficult, we see that all the dependence in z is factored out.

Hence the scaling in p is obtained by simple dimensional analysis, giving pd−3. Putting

together all the factors leads to the asymptotic scaling given in Eq. (2.122).
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Appendix E

Kinematic Approximation:

Numerical Checks

Fig. E.1 shows examples of ImΠ(z, z′) in the kinematic approximation introduced

in Sec. 2.6.3. We can see that a side effect of the kinematic approximation is to somewhat

smoothen the oscillations. It also renders ImΠ positive for any z ̸= z′. These details have a

mild impact on the subsequent results. Upon performing the z integrals, the results match

with O(10)% accuracy.
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10 20 30 40 50 20 40 60 80 100

Figure E.1: The exact (red) and approximate (blue) profiles of (zz′)
d−1
2 ImΠ(z, z′) as a

function of pz, taking pz′ = 20 (left) and pz′ = 60 (right), and taking d = 4.
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Appendix F

Bubble Diagrams

In these calculations, we consider bubbles formed of λΦΦ1Φ2 and ξΦ∂MΦ1∂
MΦ2

vertices, hence the fields and propagators are not treated as identical. We use standard

manipulations (Feynman parameterization, dimensional regularization) to evaluate the loop.

We define ∆ = −x(1− x)p2 + xm2
1 + (1− x)m2

2.

When taking the imaginary part of Π, we use the kinematic approximation of

Sec. 2.6.3 to obtain

Im

∫ x+

x−

log∆ = −π (F.1)

Im

∫ x+

x−

x log∆ = Im

∫ x+

x−

(1− x) log∆ = −π
2

(F.2)

Im

∫ x+

x−

x(1− x) log∆ = −π
6

(F.3)

Im

∫ x+

x−

x2(1− x) log∆ = Im

∫ x+

x−

x(1− x)2 log∆ = − π

12
(F.4)

Im

∫ x+

x−

x2(1− x)2 log∆ = − π

30
. (F.5)
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F.1 Φ3 − Φ3

The amplitude of the bubble induced by two λΦΦ1Φ2 vertices is

iΠλλ(z1, z2) = λ2
1

k4z1z2

∫
dq1dq2q1q2

∫
d4q

(2π)4
Jα1(q1z1)Jα1(q1z2)Jα2(q2z1)Jα2(q2z2)

(q2 − q21)((q + p)2 − q22)
.

(F.6)

We introduce a Feynman parameter x and use dimensional regularization to evaluate the

loop. We have

iΠλλ(z1, z2) = (F.7)

λ2
1

k4z1z2

∫
dq1dq2q1q2

∫ 1

0
dx
−i
16π2

log

(
∆

Λ2

)
Jα1(q1z1)Jα1(q1z2)Jα2(q2z1)Jα2(q2z2) + . . .

Λ is the regularization scale and the ellipses represent the divergent part of the loop diagram.

Both the divergence and the Λ-dependence vanish upon taking the imaginary part of Π.

Taking the imaginary part gives Eq. (2.150).

F.2 Φ3 − Φ(∂Φ)2

The amplitude of the bubble induced by one λΦΦ1Φ2 and one ξΦ∂MΦ1∂
MΦ2

vertex is given by

iΠλζ(z1, z2) = (F.8)

− λζ (kz2)
2

k4z1z2

∫
dq1dq2q1q2

∫
d4q

(2π)4

(
q.(p+ q)− ∂(1)z2 ∂

(2)
z2

)
Jα1(q1z1)Jα1(q1z2)Jα2(q2z1)Jα2(q2z2)

(q2 − q21)((q + p)2 − q22)

plus its (1↔ 2) counterpart. The ∂
(i)
z derivative acts only on the Gqi(z1, z2) propagator, i.e.

only on the Jαi(qiz) Bessel function in the above expression and subsequent ones. We intro-

duce a Feynman parameter x and perform the loop integral via dimensional regularization.
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We obtain

iΠλζ(z1, z2) = −λζ
z22

k2z1z2

∫
dq1dq2q1q2

∫ 1

0
dx (F.9)

−i
16π2

log

(
∆

Λ2

)(
2∆− x(1− x)p2 − ∂(1)z2 ∂

(2)
z2

)
Jα1(q1z1)Jα1(q1z2)Jα2(q2z1)Jα2(q2z2) + . . .

Λ is the regularization scale and the ellipses represent the divergent part of the loop diagram.

Both vanish upon taking the imaginary part of Π. Taking the imaginary part and including

the (1↔ 2) contribution gives Eq. (2.154).

F.3 Φ(∂Φ)2 − Φ(∂Φ)2

The amplitude of the bubble induced by two ξΦ∂MΦ1∂
MΦ2 vertices is

iΠζζ(z1, z2) = ζ2
(kz1)

2(kz2)
2

k4z1z2

∫
dq1dq2q1q2

∫
d4q

(2π)4
(F.10)(

q.(p+ q)− ∂(1)z1 ∂
(2)
z1

)(
q.(p+ q)− ∂(1)z2 ∂

(2)
z2

)
Jα1(q1z1)Jα1(q1z2)Jα2(q2z1)Jα2(q2z2)

(q2 − q21)((q + p)2 − q22)
.

We introduce a Feynman parameter x and perform the loop integral via dimensional regu-

larization to obtain

iΠζζ(z1, z2) = ζ2
z21z

2
2

z1z2

∫
dq1dq2q1q2

∫ 1

0
dx
−i
16π2

log

(
∆

Λ2

)
(F.11)(

3∆2 +

(
1

2
− 6x(1− x)

)
p2∆+ x2(1− x)2p4

− (2∆− x(1− x)p2)
(
∂(1)z1 ∂

(2)
z1 + ∂(1)z2 ∂

(2)
z2

)
+ ∂(1)z1 ∂

(2)
z1 ∂

(1)
z2 ∂

(2)
z2

)
Jα1(q1z1)Jα1(q1z2)Jα2(q2z1)Jα2(q2z2) + . . .
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Λ is the regularization scale and the ellipses represent the divergent part of the loop diagram.

Evaluating the x integrals and taking the imaginary part of Π gives

ImΠζζ(z1, z2) = ζ2
z21z

2
2

z1z2

1

16π

∫
dq1dq2q1q2 (F.12)(
q41 + q42 + q21q

2
2 −

3

4
p2(q21 + q22) +

p4

4

−
(
q21 + q22 −

p2

2

)(
∂(1)z1 ∂

(2)
z1 + ∂(1)z2 ∂

(2)
z2

)
+ ∂(1)z1 ∂

(2)
z1 ∂

(1)
z2 ∂

(2)
z2

)
Jα1(q1z1)Jα1(q1z2)Jα2(q2z1)Jα2(q2z2) .

F.4 Scalar-Graviton Bubble

The amplitude induced by the scalar component of the graviton multiplet is

iΠϕ(z1, z2) =
−1
3M3

∗

(
m2

Φ

2(kz1)2
− 3

2
∂z1∂

GΦ
z1

)(
m2

Φ

2(kz2)2
− 3

2
∂z2∂

GΦ
z2

)
(F.13)

1

(kz1)(kz2)

∫
dq4

(2π)4
GΦ
α(q1, z1, z2)G

ϕ(q2, z2, z1) .

The ∂GΦ
z derivatives act only on the internal Φ propagator (henceforth the term contained in

square brackets). Introducing the propagators in their momentum spectral representations,

we have

iΠϕ(z1, z2) =
1

3M3
∗

(
m2

Φ

2(kz1)2
− 3

2
∂z1∂

GΦ
z1

)(
m2

Φ

2(kz2)2
− 3

2
∂z2∂

GΦ
z2

)
(F.14)

1

z1z2

∫
dq1dq2q1q2

∫
dq4

(2π)4

[
z21z

2
2Jα(q1z1)Jα(q1z2)

]
J0(q2z1)J0(q2z2)

(q2 − q21)((q + p)2 − q22)
.

We introduce a Feynman parameter and perform the loop integral to obtain

iΠϕ(z1, z2) =
−i

48π2M3
∗

(
m2

Φ

2(kz1)2
− 3

2
∂z1∂

GΦ
z1

)(
m2

Φ

2(kz2)2
− 3

2
∂z2∂

GΦ
z2

)
(F.15)

1

z1z2

∫
dq1dq2q1q2

∫ 1

0
dx log

(
∆

Λ2

)[
z21z

2
2Jα(q1z1)Jα(q1z2)

]
J0(q2z1)J0(q2z2) .
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Taking the imaginary part gives Eq. (2.185).
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Appendix G

The Dipole Potential

The four operators OS,P,A,V
N can couple to a dark mediator with renormalizable

couplings. In contrast, the tensor operator OT
N can only couple to other fields through a

higher-dimensional operator. This is a consequence of its two Lorentz indexes. Since σµν is

antisymmetric, the only operator available is a field strength tensor Xµν which couples to

the tensor operator as

mN

Λ2
N̄σµνNX

µν mN

Λ2
N̄σµνNX̃

µν . (G.1)

It is natural to assume that Xµν is the field strength of a hidden gauge group. The operators

in (G.1) then describe dark magnetic and electric dipole moments. We assume the gauge

group is Abelian and denote it U(1)X . We refer to the gauge boson as the dark photon.

The Standard Model particles themselves may have hidden charge. This possibility

is highly constrained due to the chiral structure of the Standard Model: either new chiral

fermions must be carefully introduced to cancel anomalies, or Wess–Zumino terms are

generated in the low-energy theory. A less constrained possibility is that all Standard
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Model fields are singlets under U(1)X . In that case, the dark photon may have a kinetic

mixing with the visible photon [227,228]. This mixing is typically loop induced so that the

dark photon has a small coupling to visible electric currents.

Even without kinetic mixing, visible sector fields can interact with the dark photon

through multipole operators. Complex and Dirac fields can have dipoles, and self-conjugate

fields can have dark polarizability. 1 In particular, nucleons (or quarks), have dark dipole

operators like those in (G.1). Two ways to generate a dark polarization are: (i) The

polarization may be induced by loops of heavy particles coupled to the Standard Model. (ii)

The polarization could be a consequence of the compositeness of Standard Model particles if

the underlying constituents are charged under U(1)X . In the latter case, the dipole moment

is a low-energy manifestation of the internal structure of the Standard Model particle. This

is analogous to the electromagnetic moments of hadrons. In this “dark dipole scenario,”

some amount of photon–dark photon kinetic mixing should also be present, at least as a

result of loops contributing to Fµν −Xµν mixing. However, this loop-induced mixing via

Standard Model fields can be expected to be small.

If the hidden gauge boson is sufficiently light, the nucleon dipole operator induces

a spin-dependent force of tensor-type:

VT(r) =
−4m2

N [(σ1 · σ2)∇2 − (σ1 ·∇)(σ2 ·∇)]

Λ4

(
e−mr

4πr

)
. (G.2)

Upon spin averaging σ2, the dominant piece is

VT(r) =
{12[(p1 + p′

1)× σ1] ·∇+ 1112∇2}
Λ4

∇2

(
e−mr

4πr

)
. (G.3)

1See e.g. [229] for more details on polarizability operators in the context of a dark sector.
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If, instead, the dark photon is heavy, then (G.1) generates the N̄σµνNOµνDS tensor interac-

tion. This operator induces a quantum force, presented in the analysis of Section 4.5. We

leave further study of this “dipole portal” scenario for future work.
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Appendix H

Fourier Transforms and Effective

Theory

While the technique to derive a non-relativistic potential from a field theory am-

plitude is not new (see e.g. [230]), some aspects related to the effective theory framework

are usually left implicit and deserve clarification. 1

The integral in the Fourier transform (4.4) spans three-momenta up to infinity.

However, whenever working within a low-energy effective theory, momenta higher than

the effective theory cutoff Λ should not be used in a calculation because it probes physics

beyond the validity of the theory. For finite, low-energy predictions—like the potentials

studied here—the details of the momentum truncation are ultraviolet details that should

have negligible impact.

However, this leads to an apparent paradox. Amplitudes arising in the effective

1This appendix is based on discussions between S. F., G. von Gersdorff, and E. Ponton.
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theory can grow with energy with a polynomial form such that the integrand in (4.4) takes

typically the form eiqrqn ln q2, with n > 0, q ≡ |q|, r ≡ |r|. An integral up to infinity

diverges and requires an ultraviolet cutoff. One may impose the cutoff by introducing

a step function Θ(|q| < Λ) in the integrand. In the presence of this factor the integral

produces oscillating Λ-dependent terms such as Λn sin(Λr) in addition to Λ-independent

terms from the low-energy region of the Fourier integral. These Λ terms are unsuppressed

and do not vanish in the Λ→∞ limit.

The same paradox occurs if one attempts an analytic continuation to transform

the integral along the real line as an integral over the branch cut of the amplitude, as

described in Appendix I and used in Section 4.5. In that case, the integral along the branch

cut provides the universal long-distance contribution, while the integral over the large arcs

of radius Λ needed to close the contour gives rise to the Λ-dependent oscillating terms

described above.

These Λ-dependent contributions originate from the fact that a hard cutoff factor

Θ(|q| < Λ) introduces a non-analyticity at |q| = Λ because it is not continuous across this

boundary. The Λ-dependent contributions are thus artifacts of the truncation of momentum

space. The solution to the paradox is then clear: A smooth cutoff should be used in order

to avoid the spurious Λ-dependent contributions.

Such smooth cutoff is conveniently implemented by convolving the step function

with a smooth distribution, π. For example:

Θ(|q| < Λ)→
∫
dξΘ(|q| < Λ + ξ)π(ξ) π(ξ) =

1√
2πσ

e−ξ
2/(2σ2) , (H.1)
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where σ ≪ Λ is the width of the smoothing function. The Fourier integral takes the form

∫
d3q

(2π)3
eiq·rMIJ

∫
dξΘ(|q| < Λ + ξ)π(ξ) . (H.2)

The ξ integral is most conveniently performed after the Fourier transform. The Λ-dependent

contribution to the potential is exponentially suppressed by a factor e−r
2σ2

, thereby leaving

the universal long-distance contribution as the main contribution to the potential.
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Appendix I

Calculation of the Quantum

Potentials

We present additional details for the calculation of the quantum potentials in

Section 4.5.
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I.1 Loop Calculation

The relevant one-loop amplitudes for the operators of Section 4.5 are:

iM0
a =

η

Λ4
(ūp′1γ

µγ5up1 ūp′2γ
νγ5up2)

∫
d4k

(2π)4
2kµ + qµ
k2 −m2

2kν + qν
(q + k)2 −m2

(I.1)

iM0
b =

2η−1

Λ2
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4
1

k2 −m2

1

(q + k)2 −m2
(I.2)

iM0
c =

2η−1

Λ6
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4
k2 + k · q
k2 −m2

k2 + k · q
(q + k)2 −m2

(I.3)

iM0
d =

η

Λ6
(ūp′1σ

µνup1 ūp′2σ
αβup2)

∫
d4k

(2π)4
kµ(k + q)ν
k2 −m2

kα(k + q)β
(q + k)2 −m2

(I.4)

iM
1
2
a =

−2η−1

Λ4
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4
Tr

[
(/k +m)iγ5

k2 −m2

(/q + /k +m)iγ5

(q + k)2 −m2

]
(I.5)

iM
1
2
b =

−2η−1

Λ4
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4
Tr

[
(/k +m)

k2 −m2

(/q + /k +m)

(q + k)2 −m2

]
(I.6)

iM
1
2
c =

−2η−1

Λ4
(ūp′1γ

µγ5up1 ūp′2γ
νγ5up2)

∫
d4k

(2π)4
Tr

[
(/k +m)γµγ

5

k2 −m2

(/q + /k +m)γνγ
5

(q + k)2 −m2

]
(I.7)

iM
1
2
d =

−η
Λ4

(ūp′1γ
µγ5up1 ūp′2γ

νγ5up2)

∫
d4k

(2π)4
Tr

[
(/k +m)γµ
k2 −m2

(/q + /k +m)γν

(q + k)2 −m2

]
(I.8)

iM
1
2
e =

−η
Λ4

(ūp′1σ
µνup1 ūp′2σ

αβup2)

∫
d4k

(2π)4
Tr

[
(/k +m)σµν
k2 −m2

(/q + /k +m)σαβ

(q + k)2 −m2

]
(I.9)

iM1
a =

2η+3

Λ6
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4
1

k2 −m2

2(k · (k + q))2 + k2(k + q)2

(q + k)2 −m2
(I.10)

iM1
b =

2η+4

Λ6
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4
1

k2 −m2

(k · (k + q))2 − k2(k + q)2

(q + k)2 −m2
, (I.11)

where q = p1 − p′1 = p′2 − p2. Unprimed momenta represent the initial states, and primed

momenta represent the final states. We introduce Feynman parameters to simplify the
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integral in the usual way. The resulting integrals are

∫
d4l

(2π)4
1

(l2 −∆)2
−→ −i

(4π)2
ln

(
∆

Λ2

)
(I.12)∫

d4l

(2π)4
l2

(l2 −∆)2
−→ −2i∆

(4π)2
ln

(
∆

Λ2

)
(I.13)∫

d4l

(2π)4
(l2)2

(l2 −∆)2
−→ −3i∆

2

(4π)2
ln

(
∆

Λ2

)
(I.14)

with ∆ = m2 − x(1− x)q2. The amplitudes can then be written in a basis of integrals over

the Feynman parameters,

fn =

∫ 1

0
dx(x(1− x))n ln

(
∆

Λ2

)
. (I.15)

ln(y) has a branch cut along the real axis for y < 0. The discontinuity in fn due to this

branch cut is given by

Disc(fn) = 2πi

∫ x+

x−

dx(x(1− x))n x± =
1

2
± 1

2q

√
q2 − 4m2 . (I.16)

I.2 Amplitude to Spatial Potential

The spatial potential is a Fourier transform of the relativistic scattering amplitude

M,

V (r) =

∫
d3q

(2π)3
−M(q)

4m2
N

eiq·r M(q) =
∑
A

SA(q)fA(|q|) . (I.17)

Here A indexes possible tensor structures in spin space as carried by the factors SA(q).

Observe that SA(q) may depend on q through (q · σ1)(q · σ2). This is the only piece of the

amplitude that may depend on q as a spatial vector rather than just its magnitude. Inside

the Fourier transform, we may identify the transfer momentum with a gradient, q = −i∇.

229



This gives an expression for the potential that is a Fourier transform of a function that only

depends on the magnitude, ρ = |q|:

V (r) =
∑
A

−iSA(−i∇)
4m2

N

∫ ∞

−∞

dρ

(2π)2
ρfA(ρ)e

iρr , (I.18)

where we have performed the angular integrals and have extended the radial integral to the

entire real line. The remaining integral may be performed by analytic continuation into

the complex plane, minding the branch cuts in the fA(ρ) functions along the imaginary

ρ-axis starting at ρ = 2im. Deforming the integration contour then maps the integral to

the discontinuity across this branch cut:

∫ ∞

−∞

dρ

(2π)2
ρfA(ρ)

eiρr

r
=

∫ i∞+ε

2im+ε

dρ

(2π)2
ρfA(ρ)

eiρr

r
−
∫ i∞−ε

2im−ε

dρ

(2π)2
ρfA(ρ)

eiρr

r
. (I.19)

Changing integration variables then yields:

V (r) =
∑
A

iSA(−i∇)
4m2

N

∫ ∞

2m

dλ

(2π)2
λDisc [fA(λ)]

e−λr

r
. (I.20)

To complete the remaining integral, we use

∫ ∞

2m
dλ
√
λ2 − 4m2e−λr =

2m

r
K1(2mr) (I.21)∫ ∞

2m
dλλ2

√
λ2 − 4m2e−λr =

8m3

r
K1(2mr) +

12m2

r2
K2(2mr) (I.22)∫ ∞

2m
dλλ4

√
λ2 − 4m2e−λr =

32m4

r2
K2(2mr) +

(
120m3

r3
+

32m5

r

)
K3(2mr) (I.23)∫ ∞

2m
dλλ6

√
λ2 − 4m2e−λr = 2m8

[
K1(2mr)

2mr
+

9K2(2mr)

(2mr)2
+

45K3(2mr)

(2mr)3
+

105K4(2mr)

(2mr)4

]
(I.24)∫ ∞

2m

dλ

λ2

√
λ2 − 4m2e−λr =

1

4m2r2
(
4 + πm3r3 + π2m2r2G(m2r2)

)
. (I.25)

230



G(m2r2) is shorthand for one of the Meijer G–functions,

G(m2r2) ≡ G2,0
2,4

m2r2
∣∣∣∣ 1

2 ,
3
2

0, 0, 12 ,
1
2

 . (I.26)

The orientation-averaged form for the potentials is equivalent to the replacement

∂i∂j −→
1

3
δij∇2 . (I.27)
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Appendix J

Non-Relativistic Spinor Limits

For convenience, we present results of spinor contractions to leading order in the

non-relativistic limit. Latin indices refer to spatial directions.

J.1 Both Sources Polarized

ūp′1up1 ūp′2up2 ≈ 4m2
N1112 (J.1)

ūp′1γ
µup1 ūp′2γ

νup2 ≈ 4m2
Nδ

µ
0 δ

ν
01112 (J.2)

ūp′1σ
µνup1 ūp′2σ

ρλup2 ≈ 4m2
Nε

ijkεlmnδµi δ
ν
j δ
ρ
l δ
λ
mσ

k
1σ

n
2 (J.3)

ūp′1γ
µγ5up1 ūp′2γ

νγ5up2 ≈ 4m2
Nδ

µ
i δ

ν
j σ

i
1σ

j
2 (J.4)

ūp′1iγ
5up1 ūp′2iγ

5up2 ≈ qjqkσ
j
1σ

k
2 . (J.5)
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J.2 One Source Polarized, Other Unpolarized

The above results change when one source of nucleons is unpolarized. Take σ2

to represent the spin of the unpolarized nucleon current. The long-range potential is the

average of the initial spins. The spin-independent OS and OV bilinears remain unchanged.

The axial and pseudo-scalar combinations vanish at all order:

ūp′1γ
µγ5up1 ūp′2γ

νγ5up2 = 0 ūp′1iγ
5up1 ūp′2iγ

5up2 = 0 . (J.6)

The tensor combination at leading order is

ūp′1σ
µνup1 ūp′2σ

ρλup2 ≈ −iqa12[((p1 + p′
1)×σ1)i− iqi11](δµi δ

ν
0 − δνi δ

µ
0 )(δ

ρ
aδ
λ
0 − δλaδ

ρ
0) . (J.7)
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Appendix K

Neutrino Lagrangians

Here we give more details on Lagrangians in the 2 and 4-component formalisms.

The 2-component neutrino charged under SU(2)L is denoted νL, the singlet neutrino is

denoted νR. The L and R labels only refer to the gauge charge. νL and νR are left-handed

i.e. transform as the (1/2, 0) representation of the Lorentz group.

The free Lagrangian for νL in case of Dirac and Majorana masses are given by

LD,kin = iνi†L σ̄
µ∂µν

i
L + iνi†R σ̄

µ∂µν
i
R −mi

(
νiLν

i
R + νi†L ν

i†
R

)
(K.1)

LM,kin = iνi†L σ̄
µ∂µν

i
L −

mi

2

(
νiLν

i
L + νi†L ν

i†
L

)
. (K.2)

Integrating out the Z boson in the electroweak Lagrangian gives the effective interaction

LZint =
4GF√

2
JµZJZµ ⊃

4GF√
2
(νi†L σ̄

µνiL)Jψµ (K.3)

where Jψµ is the weak neutral current for fields other than neutrinos. Integrating out the

W bosons gives

LWint =
8GF√

2
Jµ−W J+

Wµ ⊃
4GF√

2
(e†Lσ̄

µνiL)(ν
i†
L σ̄

µeL) = −
4GF√

2
(νi†L σ̄

µνiL)(e
†
Lσ̄

µeL). (K.4)
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We used a Fierz rearrangement in the last step.

The νL field can be described as a 4-component Majorana fermion

νM =

νL
ν†L

 (K.5)

The νL, νR can be combined into a Dirac fermion

νD =

νL
ν†R

 . (K.6)

This provides the Dirac and Majorana fields used in our calculations. The neutrino bilinear

in the various representations is expressed as

ν†Lσ̄
µνL = −1

2
ν̄Mγ

µγ5νM = ν̄Dγ
µ 1− γ5

2
νD . (K.7)

Using this and the definitions (K.5), (K.6) in LD/M,kin + Lint gives the 4-component La-

grangians (5.1), (5.2).

In these 4-component Lagrangians, the relevant couplings to SM fermions in case

of unpolarized matter are the vector ones. We find

gVij = (1− 4s2w)δij if ψ = p (K.8)

gVij = −δij if ψ = n (K.9)

gVij = 2UieU
†
ej − (1− 4s2w)δij if ψ = e. (K.10)
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Appendix L

Point-Point Neutrino Force

Derivation

For this calculation, we follow the steps outlined in [1, 46]. The scattering ampli-

tude corresponding to the loop diagram in Fig. 5.2 is given by

iMij = −Sµν
∫

d4k

(2π)4
Tr

[(
(/k +mi)γµ(η − γ5)

k2 −m2
i + iε

)(
(/q + /k +mj)γν(η − γ5)
(q + k)2 −m2

j + iε

)]
(L.1)

with

Sµν ≡ 2−2−ηG2
F ūp′1γ

µ
(
gVij − gAijγ5

)
up1 ūp′2γ

ν
(
gVji − gAjiγ5

)
up2 . (L.2)

When both point sources are nonrelativistic and polarized, the spin structure simplifies to

ūp′1γ
µup1 ≈ 2mψδ

µ
01 ūp′1γ

µγ5up1 ≈ 2mψδ
µ
aσ

a . (L.3)

We introduce Feynman parameters to simplify the loop integral. Upon dimensional
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regularization, the resulting integrals are given by

∫
d4l

(2π)4
1

(l2 −∆ij)2
−→ −i

(4π)2
ln

(
∆ij

Λ2

)
(L.4)∫

d4l

(2π)4
l2

(l2 −∆ij)2
−→ −2i∆ij

(4π)2
ln

(
∆ij

Λ2

)
(L.5)

with ∆ij = xm2
j +(1−x)m2

i −x(1−x)q2. The remaining function can be decomposed into

the basis of

fmn ≡
∫ 1

0
dxxm(1− x)n ln

(
∆ij

Λ2

)
. (L.6)

These functions have a branch cut when ∆ij < 0. The discontinuity across this branch cut

is

D[fmn] = 2πi

∫ x+

x−

dxxm(1− x)n (L.7)

for

x± ≡
q2 +

(
m2
i −m2

j

)
±
√
(q2 − (mi −mj)2) (q2 − (mi +mj)2)

2q2
. (L.8)

The amplitude is related to the spatial potential by

Vij(r) =

∫
d3q

(2π)3
−Mij(q, q0 ≈ 0)

4m2
ψ

eiq·r. (L.9)

Inside the Fourier transform, we identify the transfer momentum with a gradient, q = −i∇.

This gives an expression for the potential that is a Fourier transform of a function that only

depends on the magnitude |q| and the gradient. 1 The magnitude is analytically continued

as |q| = iλ, and after some manipulations we find

Vij(r) =
1

4m2
ψ

∫ ∞

mi+mj

dλ

(2π)2
λD [iMij (λ,−i∇, q0 ≈ 0)]

e−λr

r
. (L.10)

Summing the partial potentials from three generations of neutrinos then yields (5.5).
1For more details, please see [1, 46].
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Appendix M

Casimir Force from the Path

Integral

We show how to derive the potential between generic extended sources, shown in

(5.12). Start from an effective Lagrangian with a bilinear coupling between a Dirac fermion

Ψ and a nonrelativistic density of matter J ,

L = iΨ̄/∂Ψ−mΨ̄Ψ + Ψ̄ΓΨJ(x) (M.1)

where Γ can be any Lorentz structure.

We are interested in calculating the energy of a configuration involving two objects

J1, J2 acting as sources, both described by the distribution J = J1 + J2. The relevant

information is contained in the generating functional of connected correlators W [J ], given

by

Z[J ] =

∫
DΨ̄DΨei

∫
d4xL[Ψ,J ] = e−iW [J ] . (M.2)

When the source is static, W [J ] = E[J ]T where T =
∫
dt is the integral over time. E[J ]
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is the quantum vacuum energy. At one-loop level, the vacuum energy E[J ] is given by the

functional determinant (see e.g. [166])

E[J ] = i lnDet
[
i/∂ −m+ ΓJ

]
(M.3)

= i

( ∞∑
n=1

(−1)n+1

n

(
ΓJ

i/∂ −m

)n
+Tr ln

[
i/∂ −m

])
, (M.4)

where Det/Tr is the determinant/trace in the functional sense.

E[J ] contains infinities—the observable quantity is rather the variation ∂LE[J ],

which gives the Casimir force. In the limit where the ΓJ contribution can be treated

perturbatively, the leading contribution to ∂LE[J ] is from the n = 2 term,

∂LE[J ] ⊃ i
∫
d3x

∫
d4x′ tr

[
Γ∂LJ(x)∆(x− x′)ΓJ(x′)∆(x′ − x)

]
(M.5)

where tr is the trace on spinor indexes. The piece of potential associated to this term is

found to be

V (L) = i

∫
d3x

∫
d4x′ tr

[
ΓJ1(x)∆(x− x′)ΓJ2(x′)∆(x′ − x)

]
. (M.6)

Restoring the coupling constant yields (5.12) in the Dirac case.
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