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Abstract: Traditionally, the bioavailability of vitamin B-12 (B12) from in vivo labeled foods was
determined by labeling the vitamin with radiocobalt (57Co, 58Co or 60Co). This required use of
penetrating radioactivity and sometimes used higher doses of B12 than the physiological limit of B12
absorption. The aim of this study was to determine the bioavailability and absorbed B12 from chicken
eggs endogenously labeled with 14C-B12 using accelerator mass spectrometry (AMS). 14C-B12 was
injected intramuscularly into hens to produce eggs enriched in vivo with the 14C labeled vitamin.
The eggs, which provided 1.4 to 2.6 µg of B12 (~1.1 kBq) per serving, were scrambled, cooked and fed
to 10 human volunteers. Baseline and post-ingestion blood, urine and stool samples were collected
over a one-week period and assessed for 14C-B12 content using AMS. Bioavailability ranged from 13.2
to 57.7% (mean 30.2 ± 16.4%). Difference among subjects was explained by dose of B12, with percent
bioavailability from 2.6 µg only half that from 1.4 µg. The total amount of B12 absorbed was limited
to 0.5–0.8 µg (mean 0.55 ± 0.19 µg B12) and was relatively unaffected by the amount consumed.
The use of 14C-B12 offers the only currently available method for quantifying B12 absorption in
humans, including food cobalamin absorption. An egg is confirmed as a good source of B12, supplying
approximately 20% of the average adult daily requirement (RDA for adults = 2.4 µg/day).

Keywords: cobalamin; vitamin B12; bioavailability; eggs; endogenous label; human; accelerator
mass spectrometry

1. Introduction

Access to methods for quantifying the absorption of vitamin B12 (B12) from foods is important in
setting dietary requirements for the vitamin, and for assessing food cobalamin malabsorption which
can cause B12 depletion and deficiency, especially in the elderly. No methods are currently available
for quantifying B12 absorption from foods in humans [1]. The only method for detecting clinical B12
malabsorption, the CobaSorb test, is qualitative and does not provide data on the % of B12 absorbed [2].

The only natural dietary sources of B12 are animal products. However, B12 in animal source foods
is bound to protein and its bioavailability from these foods depends on factors such as the complexity
of different food protein structures and the body’s ability to release B12 from food proteins in the
stomach [3,4]. In the Framingham Study [5], strong associations were observed between plasma B12
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concentrations and intake of the vitamin from dairy products, eggs, meat, and seafood, but the data
suggested differences in the relative bioavailability of B12 from these sources.

In the past, to determine the bioavailability of B12 from foods animals were injected with or fed
radiocobalt (57Co, 58Co or 60Co) labeled B12, which became incorporated into the liver, meat, or eggs
of the animal. These endogenously labeled tissues were then fed to humans and the amount of labeled
B12 appearing in plasma, urine, and stool was measured to determine bioavailability [6–15]. Gamma
ray counters used to measure radiocobalt isotopes measure the decay of the radiosubstrates rather
than the actual amount present in a sample. Consequently, limitations in sensitivity and precision
required the use of radiosubstrates with relatively high specific activity and often a dose of labeled
B12 an order of magnitude larger than the limit of B12 absorption through the physiologic, intrinsic
factor-mediated pathway (i.e., ≈2–3 µg from a single meal) [8,9,16,17].

Accelerator mass spectrometry (AMS), a highly sensitive technology for the detection and
quantification of 14C-labeled substrates at attomole (10−18) concentrations [18], directly counts 14C
atoms rather than radioactive decay events [18] and is approximately one million-fold more sensitive
than scintillation counting. The synthesis of 14C-labeled B12 (14C-B12) [19] provides a means to utilize
AMS technology in B12 bioavailability studies in humans. AMS typically requires samples containing
only 0.5 mg of carbon, enabling analysis in microliter-sized biological samples even when the dose
consists of a small amount of substrate with low specific activity [20]. Absorption studies can be carried
out with minimal radiation exposure for the participant. Finally, the long half-life of 14C (5730 y)
enables sample collection over a longer period of time, which increases the accuracy of the study [21].

The aim of the study was to determine in humans the bioavailability and absorbed B12 from
chicken eggs endogenously labeled with 14C-B12 using AMS. The yolk of a single large raw egg
contains up to 20% of the Recommended Dietary Allowance (RDA) of 2.4 µg [22]. Hens readily deposit
large amounts of labeled B12 in egg yolk when injected with the vitamin [23,24], potentially producing
eggs with sufficient 14C-B12 label for use in bioavailability and absorption studies.

2. Materials and Methods

2.1. 14C-B12 Synthesis

14C-B12 was synthesized by S. enterica (serovar Typhimurium) strain TT24733, genotype
cbiD24::MudJ. The bacteria were grown aerobically on ethanolamine and incubated with
dicyanocobinamide and 14C-dimethylbenzimidazole (DMB), which under these growth conditions
are dedicated precursors for the biosynthesis of B12 [19]. After a 24 h to 48 h incubation, the newly
synthesized 14C-B12 was extracted and purified by high performance liquid chromatography
(HPLC). The product was confirmed as B12 by ultraviolet-visible spectrophotometry and liquid
chromatography-mass spectrometry [19]. The synthesis incorporates a cyanation step to convert all
forms of B12 to cyanocobalamin with the 14C label located as shown in Figure 1.

2.2. Production of Labeled Eggs

All experimental procedures involving the use of animals were conducted in accordance with the
Universities Federation for Animal Welfare Handbook on the Care and Management of Laboratory
Animals [25] and approved by the Animal Use and Care Committee at the University of California,
Davis (#13036). Four White Leghorn laying hens aged 1.5 y were housed in individual laying cages
in the University of California, Davis, Avian Science Unit. Temperature was maintained at 24–25 ◦C.
The 24-h light cycle was 20 h light and 4 h dark with light fixtures present on both ceiling and walls.
Air exchange was continuous. Hens received a commercial diet for laying hens (Layena, 5.5 µg B12 per
pound; Purina Mills, St. Louis, MO, USA) and water ad libitum.

Over a period of 4 d, three individual hens received a total injected dose in the thigh of 13.0,
14.8, or 17.8 kBq (350, 400, or 480 nCi) 14C-B12 corresponding to 8.3 µg, 9.4 µg, and 11.3 µg total
B12, respectively. The dosing regimen was determined with the aid of a mathematical model for
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distribution of an intramuscular dose of B12 to other tissues and accumulation in eggs, which is
detailed in Appendix B. The fourth hen was used as the control and received no injections. Injections
were given at 09:00. Eggs were collected daily from each hen for a month, producing a total of 35 eggs.
Eggs produced during the first 16 days were used for the feeding study. Total enrichment of eggs
with 14C-B12 was determined by counting samples to 1–2% precision in a Liquid Scintillation Counter
(Tri-Carb 2500 TR, Model 2700, Packard Instrument Company, Downers Grove, IL, USA). Total B12
in eggs was determined by Covance Laboratories, Inc. (Madison, WI, USA) using turbidometry to
compare the growth response of a sample utilizing the bacterium Lactobacillus delbrueckii against the
growth response to a B12 standard (coefficient of variation: 9.91%) [26].
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In the Metabolic Kitchen of the USDA, ARS Western Human Nutrition Research Center, eggs
were pooled from each hen, mixed with a hand blender, portioned into servings, cooked in covered
plastic containers by immersion in boiling water until the egg reached at least 71 ◦C, and stored at
−20 ◦C until used in the human bioavailability studies. Total B12 ranged from 1.82 to 2.65 µg/100 g
cooked egg. Each serving contained approximately 80 g of egg, 1.1 kBq 14C-B12, and 1.44 to 2.65 µg
total B12. The specific activity of the servings of cooked eggs varied from 429 to 781 Bq/µg B12 since
the 14C-B12 content varied amongst the eggs.

2.3. Human Subjects, Dosing and Sample Collection

A correlation coefficient power calculation was completed to estimate the population sample
size sufficient to detect a significant correlation between individual B12 bioavailability as determined
by the fecal excretion method. For this calculation, we made the following assumptions based on
previous studies in the literature: A null hypothesis correlation coefficient = 0; an alternative hypothesis
correlation coefficient = 0.8; a significance level of p = 0.05; a power = 0.8; and a one-sided analysis.
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Based on these assumptions, the required sample size was calculated to be 8 subjects. A total of 12
subjects started the study and 10 subjects completed it.

Subject recruitment and study procedures were approved by the Human Subjects Review
Committees at the University of California, Davis (#260218-1) and Lawrence Livermore National
Laboratory (LLNL) (#08-103), and written informed consent was obtained from all participants.
The study is registered on ClinicalTrials.gov (#NCT01366937). The recruiting, enrollment and study
completion flow is described in Appendix A, Figure A1 Inclusion criteria included good overall
health based on pre-study survey self-report, adequate B12 status and assumed aborptive capacity as
determined by serum B12 assay above the cutoff for deficiency (>148 pmol/L), and the availability to
complete the protocol. Exclusion criteria included any chronic health disorder, anemia of any kind,
renal insufficiency, and pregnancy or lactation. The radiation dose from ingestion of 14C-B12 was
calculated to be about 0.030 mSv, equivalent to the exposure during a 6 h commercial airline flight.

Human volunteers were each fed a single serving of the scrambled 14C-B12 labeled egg (Table 1)
with dry toast and water. Individual doses ranged from 777 to 1158 Bq with total B12 per dose ranging
from 1.4 to 2.6 µg depending on the eggs used (Table 1). The adequacy of this dose was determined in
a pilot study in which a 2180 Bq dose of crystalline 14C-B12 (1.5 µg B12) in water was given to one
subject and produced a very strong signal to background ratio in plasma, urine, and stool samples [19].
Upon analysis of the plasma samples of the first subject to complete the study (S2), subsequent doses
were adjusted to contain 1.1 kBq of 14C. The total dose of B12 varied due the specific activity varying
between eggs and consequently servings.

Table 1. Study subjects and dosing.

Subject Age (y) Sex 1 BMI 2 (kg/m2)

Serum B12 14C-B12 Specific

B12 Dose Dose Activity

(pmol/L) (µg) (kBq) (Bq/µg)

S1 29 F 24.4 331 2.38 1.114 468
S2 43 M 28.2 441 1.66 0.777 468
S3 29 M 24.5 358 2.65 1.159 437
S4 24 F 21.2 323 2.65 1.158 437
S5 53 F 20.8 365 1.43 1.089 761
S6 25 M 23.9 371 1.40 1.083 774
S7 24 M 24.5 306 1.40 1.093 781
S8 26 M 23.8 325 1.44 1.089 756
S9 22 F 35.1 227 2.64 1.131 428

S10 24 M 23.1 386 2.64 1.131 428
1 F = female, M = male. 2 BMI = Body mass index.

Blood samples were taken at baseline, hourly through 12 h, at 15 h and 24 h, then daily at the
time of day the dose was given for an additional 7 d. Twenty-four hour urine and stool samples were
collected before dosing followed by collection of all post-dosing voids for 8 d. Meals were controlled
to provide no foods of animal origin or containing B12 during the first 24 h. Subjects returned to their
normal diet for the remainder of the study.

Stool collections were homogenized in order to obtain representative samples [28]. A stool
sample ≤ 350 g was placed in a 3.8 L paint can and an equivalent weight of water added. Fifty grams
of 8 mm 316 stainless steel balls was added to the can and the lid sealed with duct tape. The can was
shaken on a commercial paint shaker for 30 min, aliquots of 1.5 mL and 50 mL were retained and
the remaining stool discarded. The 1.5 mL tube was sent to LLNL for AMS analysis of 14C content.
The 50 mL sample was retained for possible future analysis. Each sample was processed in a new
can with new stainless steel balls to prevent cross-contamination between samples. Aliquots of stool
homogenate, urine and plasma were promptly frozen and then shipped overnight to LLNL for graphite
preparation and AMS analyses.
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2.4. Analysis of 14C

Samples were prepared as graphite for measurement using standard procedures [29,30].
Since the carbon concentrations can vary widely, carbon concentrations of all urine samples and
stool homogenates were measured at LLNL using an Exeter Analytical CE440 carbon analyzer
(North Chelmsford, MA, USA) as described [28]. All 14C AMS measurements were conducted on the
1-MV National Electrostatics Corporation (Middleton, WI) AMS system at LLNL and normalized to
four identically prepared IAEA C-6 isotopic standards [28,29,31]. An isotopic fractionation correction
of δ13C = −25 per mil was used for all samples and results were reported as described previously [28].
All AMS data are reported as mean ±1 standard deviation.

2.5. Calculation of % Bioavailability

Normally, % bioavailability would be determined based on the difference between intake and
fecal excretion. However, we found that the percent of the dose of radioactivity excreted in urine is
1–2 orders of magnitude higher than that previously reported when the vitamin was labeled with
radioactive cobalt. This phenomenon was first observed by Carkeet et al. [19] who used a similar
dose of 14C-B12 given in aqueous form. In that study, it was determined that the majority (>99%) of
radioactivity in the urine from the aqueous dose was not intact B12, indicating that the majority of 14C
in the urine may be a degradation product of B12 that was absorbed, and not a bioavailable fraction of
the oral dose. Based on this observation % bioavailability was calculated using the sum of both urinary
and fecal excretion of 14C:

% Bioavailability =
14C intake− [14C excretion in feces + urine]

14C intake
× 100%.

2.6. Statistics

Data were examined for normality using the Shapiro–Wilk test. The alpha level was set at 0.05,
and a p-value > 0.05 is consistent with a normally distributed population. Mean % bioavailability
values in subjects receiving lower (1.43–1.66 µg) and higher (2.38–2.65 µg) doses of B12 were compared
using Student’s t-test. Both the Shapiro–Wilk test and the Student’s t-test were conducted using
Microsoft Excel.

3. Results

3.1. Appearance of 14C Label in Eggs

In the Edwards study [23], peak enrichment was noted in eggs produced 5–7 d after dosing when
% dose incorporated ranged from 9.6–10.3%. In the present study, the nCi concentration and range
of enrichment in peak eggs was similar to that observed by Edwards [23]. Peak enrichment in each
injection protocol was achieved in eggs produced on d 6–8 in all hens and ranged from 7.1 to 12.2% of
the total dose given (Figure A4). The initial delay in enrichment is due to the time (approximately 24 h)
that the egg remains in the ovary, where the B12 is incorporated into the yolk. Each hen incorporated
a different percentage of the total dose into the eggs produced over the initial 16-d time period; 48%,
56%, and 39% for doses of 13.0, 14.8, and 17.8 kBq, respectively. The efficiency of B12 incorporation
into the eggs enables endogenous 14C-B12 labeling in normal sized servings (Figure 2).
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received by different hens.

3.2. Appearance of 14C Label in Plasma, Uurine, and Feces

14C first appeared in plasma approximately 4 h after ingestion of the labeled egg in all volunteers
although peak plasma concentrations of 14C varied among participants (Figure 3). Most excess plasma
14C was cleared by 72 h although a low-level elevation above baseline remained throughout the
collection period. Plasma peak 14C concentration (Cmax) ranged from 17.4 to 60.3 Bq/L plasma with
a mean ± SD peak value of 34.9 ± 12.0 mBq/mL. Plasma area under the curve (AUC) for 0–24 h ranged
from 250 to 649 Bq·h/L plasma with a mean AUC of 404 ± 106 Bq·h/L. Plasma area under the curve
(AUC) for 0–168 h ranged from 657 to 1785 Bq·h/L plasma with a mean AUC of 1294 ± 327 Bq·h/L.
The plasma AUC for all study subjects is given in Table 2.
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Table 2. Plasma absorption and clearance parameters for study subjects S1–S10.

Subject

B12 14C-B12 Cmax Tmax Plasma Plasma

Dose Dose Plasma Plasma AUC 1 0–24 h AUC 1 0–168 h

(µg) (kBq) (Bq/L) (h) (Bq·h/L) (Bq·h/L)

S1 2.38 1.114 21.9 12 323 940
S2 1.66 0.777 17.4 15 250 657
S3 2.65 1.159 60.3 9 649 1745
S4 2.65 1.158 34.9 7 386 1241
S5 1.43 1.089 32.5 11 410 1649
S6 1.40 1.083 37.2 8 363 1185
S7 1.40 1.093 36.2 8 357 1291
S8 1.44 1.089 40.2 8 417 1336
S9 2.64 1.131 32.6 8 399 1308

S10 2.64 1.131 37.6 8 483 1585
1 AUC = Area under the curve.

In all volunteers, the majority of 14C label appeared in the first two 24 h urine collections
(Figure 4). However, the amount of label recovered in the first 48 h varied widely among the subjects
with the cumulative % dose recovered in urine ranging from 5.1 to 62.0% (mean 26.2 ± 18.9%).
14C concentrations in urine returned to near background values by the fifth 24 h urine collection (120 h).
The majority of fecal 14C label appeared in the stool by Day 4. However, as with the urine, the amount
of label recovered varied widely among the subjects (Figure 5). 14C concentration in stool returned to
background concentrations by the fifth 24 h stool collection (120 h). The cumulative % dose recovered
in feces ranged from 24.7 to 74.1% with a median 34.2%. The total (urine + stool) excreted 14C ranged
from 43.2 to 86.7% with a mean of 69.9 ± 16.4% (Figure 6).
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3.3. Calculation of Bioavailability

The % bioavailability in the 10 volunteers, calculated using the sum of the fecal and urinary 14C
excretion, ranged from 13.2 to 57.7% with a mean of 30.2 ± 16.4% (p = 0.19, Shapiro–Wilk test for
normality). Mean % bioavailability values in subjects receiving low doses (1.43–1.66 µg) of total B12
and in subjects receiving high doses (2.38–2.65 µg) of total B12 were significantly different (40.3 ± 17.8%
vs. 20.1 ± 5.4%, respectively; p = 0.04, Student’s t-test) (Figure 7A,C). The total amount of B12 absorbed
and retained was consequently very similar, ≈0.5–0.8 µg for most subjects (mean = 0.55 ± 0.19 µg;
p = 0.78, Shapiro–Wilk test for normality), across the doses administered (Figure 7B,D).
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Doscherholmen et al. used doses as high as 18.5 kBq of 57Co labeled B12 (half-life ~270 d) to determine
B12 bioavailability from scrambled eggs in human subjects [6]. In the present study, a 1.11 kBq dose of
14C labeled B12 (half-life ~5700 y) was sufficient to raise the concentration of 14C far enough above
background for accurate detection by AMS in all biological fluids analyzed. In addition, 57Co emits
penetrating high energy gamma radiation which is far more damaging than the low energy beta
radiation emitted by 14C.
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for the subjects follow the convention of earlier figures. (C) Mean % bioavailability values in subjects
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4. Discussion

The use of 14C-labeled B12 in this study allowed for a much lower dose of radioactive label for
determining bioavailability, compared to past studies using radiolabeled cobalt [8]. For example,
Doscherholmen et al. used doses as high as 18.5 kBq of 57Co labeled B12 (half-life ~270 d) to determine
B12 bioavailability from scrambled eggs in human subjects [6]. In the present study, a 1.11 kBq dose of
14C labeled B12 (half-life ~5700 y) was sufficient to raise the concentration of 14C far enough above
background for accurate detection by AMS in all biological fluids analyzed. In addition, 57Co emits
penetrating high energy gamma radiation which is far more damaging than the low energy beta
radiation emitted by 14C.

The bioavailability of B12 from eggs in this study (mean = 30.2%) is similar to the 27.5% reported
by Doscherholmen et al. when bioavailability was calculated based on intake minus fecal excretion of
57Co-B12 labeled in the corrin ring [6]. Active absorption of B12 from the gastrointestinal tract involves
a complex mechanism that requires the gastric production of intrinsic factor (IF). While the capacity of
the IF-dependent pathway is limited [16], the binding specificity of IF is very high and requires an
intact B12 molecule, limiting the absorption of analogues.

Previous reports indicated that urinary excretion of an oral dose of intact B12 with radiocobalt
label is extremely low—far less than 1% of the dose given unless it is followed by a large intramuscular
flushing dose as in the Schilling test [16]. In this study, no flushing dose was administered, yet 5 to
62% (mean 25%) of the 14C dose was found in urine. In parallel work using an oral dose of 14C-B12 in
water, the amount of isotope appearing in urine without a flushing dose administered was similar to
that observed in this study, and HPLC fractionation verified that the radioactivity in urine was not
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intact 14C-B12 [19]. It is assumed that this is also the case with the same label found in the urine of the
current egg study volunteers. Therefore, in calculating bioavailability in this study, it was assumed
that the substantial amount of urinary 14C detected was not originally absorbed as intact 14C-B12.

The mean bioavailability from doses of 1.4 to 2.6 µg of B12 was 30%. A large egg contains
approximately 0.6 µg of the vitamin [32], all in the yolk—a lower amount than in our study because
injecting the chickens with B12 increased the total amount of B12 in the eggs that we used. Mean
bioavailability from 1.44 µg B12 in egg (the equivalent of 2 to 3 normal eggs) in this study was closer to
50% in the 4 subjects given this dose. Because bioavailability decreased with increasing B12 intake our
overall estimate of 30% bioavailability may substantially underestimate the actual bioavailability from
a single egg.

Most of the wide range in % bioavailability among the 10 human subjects (13.2 to 57.7%) was
explained by the fact that different amounts of total B12 were given to the volunteers. The dose of egg
was determined based on the experimental decision to supply approximately 1.1 kBq to each subject.
While this supplied the same dose of 14C-B12 (~1.1 kBq), the amount of total B12 varied between
doses because the eggs were derived from different hens, different injection protocols, and contained
different amounts of the total vitamin—approximately 1.4, 2.4 and 2.6 µg per dose. This protocol,
using different doses of total B12, revealed an inverse relationship between the dose of total B12 and
bioavailability, which is consistent with the well-established phenomenon of saturation of the intrinsic
factor-cobalamin receptor at higher doses [16]. It was surprising, however, how strong this saturation
effect was across the range of relatively low amounts of B12 provided in the single servings of eggs,
causing the amount of absorbed vitamin to be very similar across the dose range used.

The Recommended Dietary Allowance for B12 established by the Institute of Medicine
is ≈0.5 to 2.4 µg/d across the age range from young children to adults. This recommendation assumes
that the usual bioavailability of the vitamin from foods such as meat and fish is 50%, i.e., that the
average adult requirement for absorbed B12 is 1.2 µg/d. The current study shows that B12 is absorbed
as well from egg as has been reported from fish and meat [1,3,8,13,17]. An egg containing 0.5 µg will
therefore provide ≈100% and 20% of the daily recommended intake of the vitamin for children and
adults, respectively.

The method for producing eggs endogenously labelled with 14C-B12 worked well. The amount
of 14C-B12 in individual eggs dropped such that eggs laid after Day 16 did not have sufficient label
for human servings. Endogenous labels are the best way to trace natural nutrient absorption in
food sources. The approach we used works well for small animals and in a ‘tissue’ such as egg that
concentrates the nutrient under study. Although not endogenously labeled, it is possible that 14C-B12,
added to eggs at the point of preparation, could be used to detect food cobalamin malabsorption,
following the approach used in the egg yolk cobalamin absorption modification of the Schilling test [1].
Tracing the 14C-B12 in plasma, urine and stool was easily accomplished using AMS, but the level of
14C is too low for conventional decay counting techniques. Recent developments using cavity ring
down spectroscopy [33,34] to measure 14C in samples containing a few mg of carbon could be applied
to samples such as those generated in absorption studies. Based on the data obtained, it is likely the
sampling could have been truncated. Most of the activity was excreted in urine by 48 h and in the stool
by Day 4. A limitation of the study was the small sample size (n = 10), but it is noted that the sample
size was calculated to be sufficient to provide sufficient power for statistical analysis, and that the
calculated mean % bioavailability was very similar to that reported by Doscherholmen et al. [6] using
57Co-B12, as discussed above. This provides some confidence that our method using endogenously
labeled 14C-B12 containing eggs gives a reasonable estimate of % bioavailability of the vitamin from
eggs. The study sample also was fairly diverse in age, sex, and BMI, suggesting that the findings may
be fairly generalizable to other healthy adults with putatively intact absorptive capacity.
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5. Conclusions

We confirm that eggs are a good source of B12, and that the experimental approach described
here provides a method for quantifying the absorption of the vitamin from in vivo labeled food and
for detecting food-bound cobalamin malabsorption, using extremely low doses of radioactivity and
low doses of B12. Since urinary and fecal excretion of the label were relatively constant after 48–72 h,
the period and frequency of sample collection can be reduced in any future studies. These results
also show that more attention needs to be paid to the effect of the amount of total B12 in foods on
bioavailability. The latter is especially important for interpreting relationships among intake data,
biomarkers of B12 status, and requirements for the vitamin.
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Appendix A. Recruitment, Screening and Participation of Subjects

The protocol included a week of participation, so finding a study population willing and able to
complete all the blood, urine, and stool collections required a relatively large pool. Of the 12 subjects
who started the protocol, 10 completed it. The data for those 10 are used in the reported analyses.
A flowchart showing the recruitment, screening and participation of the population is presented in
Figure A1.
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Appendix B. Egg Labeling Model

To estimate the 14C-B12 dose necessary and to optimize hen dosing schedules, B12 kinetics and
transfer into egg were estimated by developing a mathematical model. The model used data from
six previously reported dose–response studies [23,24]. Edwards [23] used radioactive B12 while
Denton et al. [24] used a dose of the unlabeled vitamin. Differential equations estimated B12 intake
and absorption by gut, and transfer of 14C-B12 from an intramuscular dose to other tissues, muscle,
and accumulation in eggs from blood (Figure A2). Exchanges between state variables were based on
mass action kinetics and estimated using Advanced Continuous Simulation Language with a 4th-order
Runge-Kutta algorithm for numerical integration of differential equations and an integration interval
of 0.01 d (acslXtreme 2007, Aegis Technologies, Huntsville, AL, USA).Nutrients 2019, 10, x FOR PEER REVIEW  13 of 15 
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Figure A2. Model diagram representing 14C-B12 kinetics in laying hens. 14C-B12 is transferred between
blood, muscle, gut, all other tissues, and deposited in each egg from egg number 1 to N.

The mathematical model was able to replicate experimental results from Denton et. al. [24] and
Edwards [23] (Table A1). Observed (literature) and predicted (model) percentage accumulation of B12
dose in all eggs (ODE and PME, respectively), and observed and predicted peak B12 peak eggs (OPE
and PPE, respectively) were very close for all experiments (Table A1). Several different 14C-B12 doses
were simulated to determine which design or dosing schedule would result in the most 14C-B12 label
accumulation in eggs (Figure A3). The dosing regimen of 100 nCi/d (3.7 kBq/d, 2.36 µg B12/d) for 4 d
predicted the maximum percent of dose transferred to eggs. Figure A4 depicts the 14C activity per egg
for the eggs collected from the three hens dosed with 14C-B12.

Table A1. Summary of model simulation results for experimental protocols.

Reference Protocol Dose 1 ODE PME OPE PPE ODB PMB

(%) (%) (%) (%) (%) (%)

Edwards [23] 1 0.5 µCi 57Co-B12 (IM) 52 52 8 11 35 37
Edwards [23] 2 0.5 µCi 57Co-B12 (FED) 33 32 5 4 18 19
Edwards [23] 3 0.072 µCi 60Co-B12 (IM) 63 59 11 12 45 41
Edwards [23] 4 0.072 µCi 60Co-B12 (FED) 36 37 7 5 30 27
Denton [24] 5 3 µg/d crystal B12 (IM) 33 28 4 4 NA NA
Denton [24] 6 3 µg/d crystal B12 (FED) 20 15 1.5 1.3 NA NA

1 Abbreviations: IM = intramuscular, ODE = observed data eggs, PME = predicted (model) eggs, OPE = observed
peak egg, PPE = predicted peak egg, ODB = observed data body, PMB = predicted model body, NA = not available.
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