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ABSTRACT OF THE DISSERTATION

Towards Data-efficient Machine Learning Systems

by

Noveen Sachdeva
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Professor Julian McAuley, Chair

The amount of data available to train modern machine learning systems has been increas-

ing rapidly, so much so that we’re using, e.g., entirety of the publicly available text data to train

state-of-the-art (SoTA) large language models (LLMs), interaction data from billions of users

to train SoTA recommender systems, etc. Training of such large machine learning systems on

such large datasets entails a high (i) computational runtime, (ii) economical cost, and (iii) carbon

footprint; all of which we aim to minimize for different reasons.

While a large body of literature develops “model-centric” techniques to better model a

given dataset, in this thesis, we develop a “data-centric” viewpoint, where we are interested in

techniques that can appropriately summarize a given training dataset, such that models can be
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trained equally effectively on the data summary vs. training on the much larger original dataset.

In addition to being more efficient overall, data-efficient techniques further aim to improve the

trained model’s quality by stripping away the low-quality and noisy sources of information in

the original dataset.

More specifically, we develop techniques from two disparate data summarization ide-

ologies: (i) data pruning (a.k.a. coreset construction) techniques that sample the most relevant

portions from the dataset using various grounded heuristics, and (ii) data distillation techniques

that generate synthetic data-points which summarize the underlying information in the dataset,

and are optimized end-to-end using meta-learning. We restrict our scope to training (i) language

models on textual datasets, and (ii) recommender systems on user-item interaction datasets.

By pushing the frontier of data-efficient training of machine learning systems, we believe

our research can effectively contribute to the practical success of such widely-deployed systems,

as well as provide a better understanding for the research community to build future work on.
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Introduction

Motivation

While the development of optimization frameworks such as gradient descent (Ruder,

2016) for optimizing large parametric function-approximator models such as deep neural net-

works (LeCun et al., 2015) has seen huge success in practical applications; the next frontier of AI

innovation, arguably, lies in improving the sample- or data-efficiency of the underlying “training”

procedure of such machine learning systems.

This claim of a surprising lack of data-efficiency of modern-day machine learning systems

is grounded in reality by a simple comparison between the amount of data seen by an average x

year old human and their estimated intelligence vs. the amount of data seen by the largest machine

learning system ever trained and its estimated intelligence. We routinely find humans (or other

animals for that matter) to be orders of magnitude more data-efficient at the fundamental process

of “learning” vs. state-of-the-art machine learning systems (Lake et al., 2015; Chevalier-Boisvert

et al., 2018).

While naïvely scaling up artifacts like (i) the model size, or (ii) total amount of training

data might seem to resolve (or at least severely decrease) the data-efficiency issue; there is still a

fundamental ceiling to increasing all of these aforementioned quantities. For example, the largest

language models have already crossed more than (i) a trillion total parameters (OpenAI, 2023),

and are (ii) routinely trained on trillions of tokens of text (Touvron et al., 2023b; Team et al.,

2024).

In this dissertation, we are interested in improving the data-efficiency of modern machine
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learning systems by creating high-fidelity data summaries of the original dataset, that are much

smaller and of higher quality compared to the original dataset. Consequently, training the same

model now on the curated data summary, we aim to achieve (i) faster convergence rates due to a

smaller dataset, and (ii) better model generalization achieved by removing redundant and noisy

sources from the dataset.

Dissertation Organization

Limiting the scope of this dissertation to training (i) recommender systems on user-item

interaction datasets, and (ii) language models on textual datasets, we develop techniques from two

disparate data summarization ideologies: (i) data pruning (a.k.a. coreset construction) techniques

that sample the most relevant portions from the dataset using various grounded heuristics, and (ii)

data distillation techniques that generate synthetic data-points which summarize the underlying

information in the dataset, and are optimized end-to-end using meta-learning.

First, in Chapter 1, we develop SVP-CF, a data curation strategy for collaborative filtering

(recommender systems) data, that aims to preserve the relative performance of models when

trained on sampled data, and is especially suited to long-tailed interaction datasets. Characterizing

the effect of sampling on downstream algorithm performance for a wide variety of data curation

techniques, we develop an oracle model, DATA-GENIE, which can suggest the sampling scheme

that is most likely to preserve model performance for a given dataset.

Next, in Chapter 2, we develop data-efficient approaches for pre-training large language

models. We seek to understand the tradeoffs associated with data curation routines based on (i)

expensive-to-compute data-quality estimates, and (ii) maximization of coverage and diversity-

based measures in the feature space. To this end, we develop two data curation strategies,

ASK-LLM and DENSITY. Our first technique, ASK-LLM, leverages the zero-shot reasoning

capabilities of instruction tuned LLMs to directly assess the quality of a training example. On

the other hand, the DENSITY sampler models the dataset distribution to select a diverse sample,
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maximizing coverage.

Next, in Chapter 3, we leverage the Neural Tangent Kernel and its equivalence to training

infinitely-wide neural networks to devise ∞-AE: an autoencoder with infinitely-wide bottleneck

layers. The outcome is a highly expressive yet simplistic recommendation model with a single

hyper-parameter and a closed-form solution. Leveraging ∞-AE’s simplicity, we further develop

DISTILL-CF, a data distillation technique for synthesizing terse and high-fidelity data summaries

which distill the most important knowledge from the extremely large and sparse user-item

interaction matrix for efficient and accurate subsequent data-usage like model training, inference,

architecture search, etc.

Finally, in Chapter 4, we study data distillation for auto-regressive machine learning

tasks, where the input and output have a strict left-to-right causal structure. More specifically,

we propose FARZI, which summarizes an event sequence dataset into a small number of syn-

thetic sequences — FARZI DATA — which are optimized to maintain (if not improve) model

performance compared to training on the full dataset.
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Chapter 1

Dataset Pruning for Recommender Sys-
tems

We study the practical consequences of dataset sampling strategies on the ranking

performance of recommendation algorithms. Recommender systems are generally trained and

evaluated on samples of larger datasets. Samples are often taken in a naïve or ad-hoc fashion,

e.g., by sampling a dataset randomly or by selecting users or items with many interactions. As

we demonstrate, commonly-used data sampling schemes can have significant consequences on

algorithm performance. Following this observation, this chapter makes three main contributions:

• Characterizing the effect of sampling on algorithm performance, in terms of algorithm and

dataset characteristics (e.g. sparsity characteristics, sequential dynamics, etc.)

• Designing SVP-CF, which is a data-specific sampling strategy, that aims to preserve the

relative performance of models after sampling, and is especially suited to long-tailed interaction

data.

• Developing an oracle, DATA-GENIE, which can suggest the sampling scheme that is most

likely to preserve model performance for a given dataset.

The main benefit of DATA-GENIE is that it will allow recommender system practitioners

to quickly prototype and compare various approaches, while remaining confident that algorithm

performance will be preserved, once the algorithm is retrained and deployed on the complete
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data. Detailed experiments show that using DATA-GENIE, we can discard upto 5× more data

than any sampling strategy with the same level of performance.

1.1 Introduction

Representative sampling of collaborative filtering (CF) data is a crucial problem from

numerous stand-points and can be performed at various levels: (1) mining hard-negatives while

training complex algorithms over massive datasets (Mittal et al., 2021; Chen et al., 2017); (2)

down-sampling the item-space to estimate expensive ranking metrics (Krichene and Rendle,

2020; Cañamares and Castells, 2020); and (3) reasons like easy-sharing, fast-experimentation,

mitigating the significant environmental footprint of training resource-hungry machine learning

models (Patterson et al., 2021; Wu et al., 2022; Gupta et al., 2021; Schwartz et al., 2019). In

this chapter, we are interested in finding a sub-sample of a dataset which has minimal effects on

model utility evaluation i.e. an algorithm performing well on the sub-sample should also perform

well on the original dataset.

Preserving exactly the same levels of performance on sub-sampled data over metrics,

such as MSE and AUC, is a challenging problem. A simpler yet useful problem is accurately

preserving the ranking or relative performance of different algorithms on sub-sampled data.

For example, a sampling scheme that has low bias but high variance in preserving metric

performance values has less utility than a different sampling scheme with high amounts of bias

but low variance, since the overall algorithm ranking is still preserved.

Performing ad-hoc sampling such as randomly removing interactions, or making dense

subsets by removing users or items with few interactions (Sachdeva and McAuley, 2020) can

have adverse downstream repercussions. For example, sampling only the head-portion of a

dataset—from a fairness and inclusion perspective—is inherently biased against minority-groups

and benchmarking algorithms on this biased data is likely to propagate the original sampling

bias. Alternatively, simply from a model performance view-point, accurately retaining the
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relative performance of different recommendation algorithms on much smaller sub-samples is a

challenging research problem in itself.

Two prominent directions toward better and more representative sampling of CF data

are: (1) designing principled sampling strategies, especially for user-item interaction data; and

(2) analyzing the performance of different sampling strategies, in order to better grasp which

sampling scheme performs “better” for which types of data. In this chapter, we explore both

directions through the lens of expediting the recommendation algorithm development cycle by:

• Characterizing the efficacy of sixteen different sampling strategies in accurately benchmarking

various kinds of recommendation algorithms on smaller sub-samples.

• Proposing a sampling strategy, SVP-CF, which dynamically samples the “toughest” portion

of a CF dataset. SVP-CF is tailor-designed to handle the inherent data heterogeneity and

missing-not-at-random properties in user-item interaction data.

• Developing DATA-GENIE, which analyzes the performance of different sampling strategies.

Given a dataset sub-sample, DATA-GENIE can directly estimate the likelihood of model

performance being preserved on that sample.

Ultimately, our experiments reveal that SVP-CF outperforms all other sampling strategies and

can accurately benchmark recommendation algorithms with roughly 50−60% of the original

dataset size. Furthermore, by employing DATA-GENIE to dynamically select the best sampling

scheme for a dataset, we are able to preserve model performance with only 10% of the initial

data, leading to a net 5.8× training time speedup.

1.2 Related Work

Sampling CF data. Sampling in CF-data has been a popular choice for three major scenarios.

Most prominently, sampling is used for mining hard-negatives while training recommendation

algorithms. Some popular approaches include random sampling; using the graph-structure (Ying
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et al., 2018; Mittal et al., 2021); and ad-hoc techniques like similarity search (Jain et al., 2019),

stratified sampling (Chen et al., 2017), etc. Sampling is also generally employed for evaluating

recommendation algorithms by estimating expensive to compute metrics like Recall, nDCG, etc.

(Krichene and Rendle, 2020; Cañamares and Castells, 2020). Finally, sampling is also used to

create smaller sub-samples of a big dataset for reasons like fast experimentation, benchmarking

different algorithms, privacy concerns, etc. However, the consequences of different samplers on

any of these downstream applications is under-studied, and is the main research interest of this

chapter.

Coreset selection. Closest to our work, a coreset is loosely defined as a subset of data-points

that maintains a similar “quality” as the full dataset for subsequent model training. Submodular

approaches try to optimize a function f : V 7→ R+ which measures the utility of a subset V⊆ X,

and use it as a proxy to select the best coreset (Kaushal et al., 2019). More recent works treat

coreset selection as a bi-level optimization problem (Borsos et al., 2020b; Krause et al., 2021)

and directly optimize for the best coreset for a given downstream task. Selection-via-proxy

(Coleman et al., 2020) is another technique which employs a base-model as a proxy to tag the

importance of each data-point. Note, however, that most existing coreset selection approaches

were designed primarily for classification data, whereas adapting them for CF-data is non-trivial

because of: (1) the inherent data heterogeneity; the (2) wide range of recommendation metrics;

and (3) the prevalent missing-data characteristics.

Evaluating sample quality. The quality of a dataset sample, if estimated correctly is of high

interest for various applications. Short of being able to evaluate the “true” utility of a sample,

one generally resorts to either retaining task-dependent characteristics (Morstatter et al., 2013)

or employing universal, handcrafted features like a social network’s hop distribution, eigenvalue

distribution, etc. (Leskovec and Faloutsos, 2006) as meaningful proxies. Note that evaluating the

sample quality with a limited set of handcrafted features might introduce bias in the sampled

data, depending on the number and quality of such features.
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1.3 Sampling Collaborative Filtering Datasets

Given our motivation of quickly benchmarking recommendation algorithms, we now

aim to characterize the performance of various commonly-used sampling strategies. We loosely

define the performance of a sampling scheme as its ability in effectively retaining the performance-

ranking of different recommendation algorithms on the full vs. sub-sampled data. In this section,

we start by discussing the different recommendation feedback scenarios we consider, along

with a representative sample of popular recommendation algorithms that we aim to efficiently

benchmark. We then examine popular data sampling strategies, followed by proposing a novel,

proxy-based sampling strategy (SVP-CF) that is especially suited for sampling representative

subsets from long-tail CF data.

1.3.1 Problem Settings & Methods Compared

To give a representative sample of typical recommendation scenarios, we consider three

different user feedback settings. In explicit feedback, each user u gives a numerical rating ru
i to

each interacted item i; the model must predict these ratings for novel (test) user-item interactions.

Models from this class are evaluated in terms of the Mean Squared Error (MSE) of the predicted

ratings. Another scenario we consider is implicit feedback, where the interactions for each user

are only available for positive items (e.g. clicks or purchases), whilst all non-interacted items are

considered as negatives. We employ the AUC, Recall@100, and nDCG@10 metrics to evaluate

model performance for implicit feedback algorithms. Finally, we also consider sequential

feedback, where each user u interacts with an ordered sequence of items Su = (Su
1 ,Su

2 , . . . ,Su
|Su|)

such that Su
i ∈ I for all i ∈ {1, . . . , |Su|}. Given S = {Su | ∀u ∈ U}, the goal is to identify the

next-item for each sequence Su that each user u is most likely to interact with. We use the same

metrics as in implicit feedback settings. Note that following recent warnings against sampled

metrics for evaluating recommendation algorithms (Krichene and Rendle, 2020; Cañamares and

Castells, 2020), we compute both Recall and nDCG by ranking all items in the dataset. Further
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specifics about the datasets used, pre-processing, train/test splits, etc. are discussed in-depth in

Section 1.3.5.

Given the diversity of the scenarios discussed above, there are numerous relevant rec-

ommendation algorithms. We use the following seven recommendation algorithms, intended to

represent the state-of-the-art and standard baselines:

• PopRec: A naïve baseline that simply ranks items according to overall train-set popularity.

Note that this method is unaffected by the user for which items are being recommended, and

has the same global ranking of all items.

• Bias-only: Another simple baseline that assumes no interactions between users and items.

Formally, it learns: (1) a global bias α ; (2) scalar biases βu for each user u ∈ U ; and (3) scalar

biases βi for each item i ∈ I. Ultimately, the rating/relevance for user u and item i is modeled

as r̂u
i = α +βu +βi.

• Matrix Factorization (MF) (Koren et al., 2009): Represents both users and items in a common,

low-dimensional latent-space by factorizing the user-item interaction matrix. Formally, the

rating/relevance for user u and item i is modeled as r̂u
i = α +βu +βi + γu · γi where γu,γi ∈ Rd

are learned latent representations.

• Neural Matrix Factorization (NeuMF) (He et al., 2017): Leverages the representation

power of deep neural-networks to capture non-linear correlations between user and item

embeddings. Formally, the rating/relevance for user u and item i is modeled as r̂u
i = α +

βu +βi + f (γu || γi || γu · γi) where γu,γi ∈ Rd , ‘||’ represents the concatenation operation, and

f : R3d 7→ R represents an arbitrarily complex neural network.

• Variational Auto-Encoders for Collaborative Filtering (MVAE) (Liang et al., 2018): Builds

upon the Variational Auto-Encoder (VAE) (Kingma and Welling, 2014) framework to learn

a low-dimensional representation of a user’s consumption history. More specifically, MVAE

9



encodes each user’s bag-of-words consumption history using a VAE and further decodes the

latent representation to obtain the completed user preference over all items.

• Sequential Variational Auto-Encoders for Collaborative Filtering (SVAE) (Sachdeva et al.,

2019): A sequential algorithm that combines the temporal modeling capabilities of a GRU

(Chung et al., 2014) along with the representation power of VAEs. Unlike MVAE, SVAE uses

a GRU to encode the user’s consumption sequence followed by a multinomial VAE at each

time-step to model the likelihood of the next item.

• Self-attentive Sequential Recommendation (SASRec) (Kang and McAuley, 2018): Another

sequential algorithm that relies on the sequence modeling capabilities of self-attentive neural

networks (Vaswani et al., 2017) to predict the occurance of the next item in a user’s consumption

sequence. To be precise, given a user u and their time-ordered consumption history Su =

(Su
1 ,Su

2 , . . . ,Su
|Su|), SASRec first applies self-attention on Su followed by a series of non-linear

feed-forward layers to finally obtain the next item likelihood.

We also list models and metrics for each of the three different CF-scenarios in Table 1.1. Since

bias-only, MF, and NeuMF can be trained for all three CF-scenarios, we optimize them using the

regularized least-squares regression loss for explicit feedback, and the pairwise-ranking (BPR

(Rendle et al., 2009)) loss for implicit/sequential feedback. Note however that the aforementioned

algorithms are only intended to be a representative sample of a wide pool of recommendation

algorithms, and in our pursuit to benchmark recommender systems faster, we are primarily

concerned with the ranking of different algorithms on the full dataset vs. a smaller sub-sample.

1.3.2 Sampling Strategies

Given a user-item CF dataset D, we aim to create a p% subset Ds,p according to some

sampling strategy s. In this chapter, to be comprehensive, we consider a sample of eight popular

sampling strategies, which can be grouped into the following three categories:
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Table 1.1. Demonstrates the pertinence of each CF-scenario towards each algorithm (left) and
each metric (right). Note that we can use ranking metrics for explicit feedback, however, we only
use MSE as a design choice and due to it’s direct relevance.

CF-scenario
Algorithm Metric

Bias-only MF NeuMF PopRec MVAE SVAE SASRec MSE AUC Recall@k nDCG@k

Explicit Yes Yes Yes × × × × Yes × × ×
Implicit Yes Yes Yes Yes Yes × × × Yes Yes Yes

Sequential Yes Yes Yes Yes Yes Yes Yes × Yes Yes Yes

Interaction sampling. We first discuss three strategies that sample interactions from D. In

Random Interaction Sampling, we generate Ds,p by randomly sampling p% of all the user-item

interactions in D. User-history Stratified Sampling is another popular sampling technique (see

e.g. (Sachdeva et al., 2019; X et al., 2011)) to generate smaller CF-datasets. To match the

user-frequency distribution amongst D and Ds,p, it randomly samples p% of interactions from

each user’s consumption history. Unlike random stratified sampling, User-history Temporal

Sampling samples p% of the most recent interactions for each user. This strategy is representative

of the popular practice of making data subsets from the online traffic of the last x days (Mittal

et al., 2021; Jain et al., 2016).

User sampling. Similar to sampling interactions, we also consider two strategies which sample

users in D instead. To ensure a fair comparison amongst the different kinds of sampling schemes

used in this chapter, we retain exactly p% of the total interactions in Ds,p. In Random User

Sampling, we retain users from D at random. To be more specific, we iteratively preserve

all the interactions for a random user until we have retained p% of the original interactions.

Another strategy we employ is Head User Sampling, in which we iteratively remove the user

with the least amount of total interactions. This method is representative of commonly used data

pre-processing strategies (see e.g. (Liang et al., 2018; He et al., 2017)) to make data suitable

for parameter-heavy algorithms. Sampling the data in such a way can introduce bias toward

users from minority groups which might raise concerns from a diversity and fairness perspective
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(Mitchell et al., 2018).

Graph sampling. Instead of sampling directly from D, we also consider three strategies that

sample from the inherent user-item bipartite interaction graph G. In Centrality-based Sampling,

we proceed by computing the pagerank centrality scores (Page et al., 1999) for each node in G,

and retain all the edges (interactions) of the top scoring nodes until a total p% of the original

interactions have been preserved. Another popular strategy we employ is Random-walk Sampling

(Leskovec and Faloutsos, 2006), which performs multiple random-walks with restart on G and

retains the edges amongst those pairs of nodes that have been visited at least once. We keep

expanding our walk until p% of the initial edges have been retained. We also utilize Forest-

fire Sampling (Leskovec et al., 2005), which is a snowball sampling method and proceeds by

randomly “burning” the outgoing edges of visited nodes. It initially starts with a random node,

and then propagates to a random subset of previously unvisited neighbors. The propagation is

terminated once we have created a graph-subset with p% of the initial edges.

1.3.3 SVP-CF: Selection-Via-Proxy for CF data

Selection-Via-Proxy (SVP) (Coleman et al., 2020) is a leading coreset mining technique

for classification datasets like CIFAR10 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009).

The main idea proposed is simple and effective, and proceeds by training a relatively inexpensive

base-model as a proxy to define the “importance” of a data-point. However, applying SVP to

CF-data can be highly non-trivial because of the following impediments:

• Data heterogeneity: Unlike classification data over some input space X and label-space

Y , CF-data consists of numerous four-tuples {u, i,ru
i , t

u
i }. Such multimodal data adds many

different dimensions to sample data from, making it increasingly complex to define meaningful

samplers.

• Defining the importance of a data point: Unlike classification, where we can measure

the performance of a classifier by its empirical risk on held-out data, for recommendation,
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there are a variety of different scenarios (Section 1.3.1) along with a wide list of relevant

evaluation metrics. Hence, it becomes challenging to adapt importance-tagging techniques

like greedy k-centers (Sener and Savarese, 2018), forgetting-events (Toneva et al., 2019), etc.

for recommendation tasks.

• Missing data: CF-data is well-known for (1) its sparsity; (2) skewed and long-tail user/item

distributions; and (3) missing-not-at-random (MNAR) properties of the user-item interaction

matrix. This results in additional problems as we are now sampling data from skewed, MNAR

data, especially using proxy-models trained on the same skewed data. Such sampling in the

worst-case might even lead to exacerbating existing biases in the data or even aberrant data

samples.

To address these fundamental limitations in applying the SVP philosophy to CF-data, we propose

SVP-CF to sample representative subsets from large user-item interaction data. SVP-CF is also

specifically devised for our objective of benchmarking different recommendation algorithms, as

it relies on the crucial assumption that the “easiest” part of a dataset will generally be easy for

all algorithms. Under this assumption, even after removing such data we are still likely to retain

the overall algorithms’ ranking.

Because of the inherent data heterogeneity in user-item interaction data, we can sub-

sample in a variety of different ways. We design SVP-CF to be versatile in this aspect as it can

be applied to sample users, items, interactions, or combinations of them, by marginally adjusting

the definition of importance of each data-point. In this chapter, we limit the discussion to only

sampling users and interactions (separately), but extending SVP-CF for sampling across other

data modalities should be relatively straightforward.

Irrespective of whether to sample users or interactions, SVP-CF proceeds by training

an inexpensive proxy model P on the full, original data D and modifies the forgetting-events

approach (Toneva et al., 2019) to retain the points with the highest importance. To be more

specific, for explicit feedback, we define the importance of each data-point i.e. {u, i,ru
i , t

u
i }
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interaction as P’s average MSE (over epochs) of the specific interaction if we’re sampling

interactions or P’s average MSE of u (over epochs) if we’re sampling users. Whereas, for implicit

and sequential feedback, we use P’s average inverse-AUC while computing the importance of

each data-point. For the sake of completeness, we experiment with both Bias-only and MF as

two different kinds of proxy-models for SVP-CF. Since both models can be trained for all three

CF-scenarios (Table 1.1), we can directly use them to tag the importance for each CF-scenario.

Ultimately, to handle the MNAR and long-tail problems, we also propose SVP-CF-PROP

which employs user and item propensities to correct the distribution mismatch while estimating

the importance of each datapoint. More specifically, let pu,i = P(ru
i = 1 | r∗ui = 1) denote the

probability of user u and item i’s interaction actually being observed (propensity), E be the

total number of epochs that P was trained for, Pe denote the proxy model after the eth epoch,

I+u := { j | ru
j > 0} be the set of positive interactions for u, and I−u := { j | ru

j = 0} be the set of

negative interactions for u; then, the importance function for SVP-CF-PROP, Ip is defined as

follows:

Ip(u | P) :=
1
|I+u |

· ∑
i∈I+

u

Ip(u, i | P) ; Ip(u, i | P) :=
∆(u, i | P)

pu,i

where, ∆(u, i | P) :=



E

∑
e=1

(Pe(u, i)− ru
i )

2

(for explicit feedback)

E

∑
e=1

∑
j∼I−u

1
1(Pe(u, i)> Pe(u, j))

(for implicit/sequential feedback)

Proposition 1.3.1. Given an ideal propensity-model pu,i; Ip(u, i | P) is an unbiased estimator
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of ∆(u, i | P).

Proof.

E
u∼U

E
i∼I

[Ip(u, i | P)]

=
1
|U||I| ∑

u∼U
∑
i∼I
Ip(u, i | P) ·P(ru

i = 1)

=
1
|U||I| ∑

u∼U
∑
i∼I

∆(u, i | P)
pu,i

· (P(r∗ui = 0) ·
����������:0
P(ru

i = 1 | r∗ui = 0)

+ P(r∗ui = 1) ·P(ru
i = 1 | r∗ui = 1))

=
1
|U||I| ∑

u∼U
∑
i∼I

∆(u, i | P) ·P(r∗ui = 1)

= E
u∼U

E
i∼I

[∆(u, i | P)]

Propensity model. A wide variety of ways exist to model the propensity score of a user-item

interaction (Zhu et al., 2020; Schnabel et al., 2016; Sachdeva et al., 2020; Jain et al., 2016).

The most common ways comprise using machine learning models like naïve bayes and logistic

regression (Schnabel et al., 2016), or by fitting handcrafted functions (Jain et al., 2016). For

our problem statement, we make a simplifying assumption that the data noise is one-sided i.e.

P(ru
i = 1 | r∗ui = 0) or the probability of a user interacting with a wrong item is zero, and model

the probability of an interaction going missing to decompose over the user and item as follows:

pu,i = P(ru
i = 1 | r∗ui = 1)

= P(ru = 1 | r∗u = 1) ·P(ri = 1 | r∗i = 1) = pu · pi

Ultimately, following (Jain et al., 2016), we assume the user and item propensities to lie on the

following sigmoid curves:

pu :=
1

1+Cu · e−A·log(Nu+B)
; pi :=

1
1+Ci · e−A·log(Ni+B)
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Where, Nu and Ni represent the total number of interactions of user u and item i respectively, A

and B are two fixed scalars, Cu = (log(|U|)−1) · (B+1)A and Ci = (log(|I|)−1) · (B+1)A.

1.3.4 Performance of a sampling strategy

To quantify the performance of a sampling strategy s on a dataset D, we start by creating

various p% subsets of D according to s and call them Ds,p. Next, we train and evaluate all the

relevant recommendation algorithms on both D and Ds,p. Let the ranking of all algorithms

according to CF-scenario f and metric m trained on D and Ds,p beR f ,m andRs,p
f ,m respectively,

then the performance measure Ψ(D,s) is defined as the average correlation betweenR f ,m and

Rs,p
f ,m measured through Kendall’s Tau over all possible CF-scenarios, metrics, and sampling

percents:

Ψ(D,s) = λ ·∑
f

∑
m

∑
p

τ

(
R f ,m,Rs,p

f ,m

)

Where λ is an appropriate normalizing constant for computing the average, sampling percent

p ∈ {80,60,40,20,10,1}, CF-scenario f , metric m and their pertinence towards each other can

all be found in Table 1.1. Ψ has the same range as Kendall’s Tau i.e. [−1,1] and a higher Ψ

indicates strong agreement between the algorithm ranking on the full and sub-sampled datasets,

whereas a large negative Ψ implies that the algorithm order was effectively reversed.

1.3.5 Experiments

Datasets. To promote dataset diversity in our experiments, we use six public user-item rating

interaction datasets with varying sizes, sparsity patterns, and other characteristics. We use

the Magazine, Luxury, and Video-games categories of the Amazon review dataset (Ni et al.,

2019b), along with the Movielens-100k (Harper and Konstan, 2015), BeerAdvocate (McAuley

et al., 2012), and GoodReads Comics (Wan and McAuley, 2018) datasets. A brief set of data

statistics is also presented in Table 1.2. We simulate all three CF-scenarios (Section 1.3.1) via
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Table 1.2. Data statistics of the six datasets used in our experiments.

Dataset # # # Avg. User
Interactions Users Items history length

Amazon Magazine 12.7k 3.1k 1.3k 4.1
ML-100k 100k 943 1.7k 106.04

Amazon Luxury 126k 29.7k 8.4k 4.26
Amazon Video-games 973k 181k 55.3k 5.37

BeerAdvocate 1.51M 18.6k 64.3k 81.45
Goodreads Comics 4.37M 133k 89k 32.72

different pre-processing strategies. For explicit and implicit feedback, we follow a randomized

80/10/10 train-test-validation split for each user’s consumption history in the dataset, and make

use of the leave-one-last (Meng et al., 2020) strategy for sequential feedback i.e. keep the last

two interactions in each user’s time-sorted consumption history in the validation and test-set

respectively. Since we can’t control the initial construction of datasets, and to minimize the initial

data bias, we follow the least restrictive data pre-processing (Dacrema et al., 2019; Sachdeva and

McAuley, 2020). We only weed out the users with less than 3 interactions, to keep at least one

occurrence in the train, validation, and test sets.

Training details. We implement all algorithms in PyTorch1 and train on a single GPU. For

a fair comparison across algorithms, we perform hyper-parameter search on the validation

set. For the three smallest datasets used in this chapter (Table 1.2), we search the latent size

in {4,8,16,32,50}, dropout in {0.0,0.3,0.5}, and the learning rate in {0.001,0.006,0.02}.

Whereas for the three largest datasets, we fix the learning rate to be 0.006. Note that despite the

limited number of datasets and recommendation algorithms used in this study, given that we

need to train all algorithms with hyper-parameter tuning for all CF scenarios, % data sampled

according to all different sampling strategies discussed in Section 1.3.2, there are a total of

∼ 400k unique models trained, equating to a cumulative train time of over 400k ×∼ 1min≈ 9

months.
1Code is available at https://github.com/noveens/sampling_cf
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Data sampling. To compute the Ψ-values as defined in Section 1.3.4, we construct {80, 60, 40,

20, 10, 1} % samples for each dataset and sampling strategy. To keep comparisons as fair as

possible, for all sampling schemes, we only sample on the train set and never touch the validation

and test sets.

How do different sampling strategies compare to each other? Results with Ψ-values for

all sampling schemes on all datasets are in Table 1.3. Even though there are only six datasets

under consideration, there are a few prominent patterns. First, the average Ψ for most sampling

schemes is around 0.4, which implies a statistically significant correlation between the ranking

of algorithms on the full vs. sub-sampled datasets. Next, SVP-CF generally outperforms

all commonly used sampling strategies by some margin in retaining the ranking of different

recommendation algorithms. Finally, the methods that discard the tail of a dataset (head-user and

centrality-based) are the worst performing strategies overall, which supports the recent warnings

against dense sampling of data (Sachdeva and McAuley, 2020).

How does the relative performance of algorithms change as a function of sampling rate? In

an attempt to better understand the impact of sampling on different recommendation algorithms

used in this study (Section 1.3.1), we visualize the probability of a recommendation algorithm

moving up in the overall method ranking with data sampling. We estimate the aforementioned

probability using Maximum-Likelihood-Estimation (MLE) on the experiments already run in

computing Ψ(D,s). Formally, given a recommendation algorithm r, CF-scenario f , and data

sampling percent p:

PMLE(r | f , p) = λ ·∑
D

∑
s

∑
m

0.5+
R f ,m(r)−Rs,p

f ,m(r)

2 · (n−1)

where λ is an appropriate normalizing constant, and n represents the total number of algorithms.

A heatmap visualizing PMLE for all algorithms and CF-scenarios is shown in Figure 1.1. We

see that simpler methods like Bias-only and PopRec have the highest probability across data
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Table 1.3. Ψ-values for all datasets and sampling strategies. Higher Ψ is better. The best Ψ for
every dataset is underlined. The Ψ-values for each sampling scheme averaged over all datasets
is appended to the right.

Sampling strategy

Datasets

Amazon
Magazine

ML
100k

Amazon
Luxury

Amazon
V.games

Beer
Adv.

Goodr.
Comics Average

In
te

ra
ct

io
n

sa
m

pl
in

g Random 0.428 0.551 0.409 0.047 0.455 0.552 0.407
Stratified 0.27 0.499 0.291 -0.01 0.468 0.538 0.343
Temporal 0.289 0.569 0.416 -0.02 0.539 0.634 0.405

SVP-CF w/ MF 0.418 0.674 0.398 0.326 0.425 0.662 0.484
SVP-CF w/ Bias-only 0.38 0.684 0.431 0.348 0.365 0.6 0.468
SVP-CF-PROP w/ MF 0.381 0.617 0.313 0.305 0.356 0.608 0.43

SVP-CF-PROP
w/ Bias-only 0.408 0.617 0.351 0.316 0.437 0.617 0.458

U
se

rs
am

pl
in

g

Random 0.436 0.622 0.429 0.17 0.344 0.582 0.431
Head 0.369 0.403 0.315 0.11 -0.04 -0.02 0.19

SVP-CF w/ MF 0.468 0.578 0.308 0.13 0.136 0.444 0.344
SVP-CF w/ Bias-only 0.49 0.608 0.276 0.124 0.196 0.362 0.343
SVP-CF-PROP w/ MF 0.438 0.683 0.307 0.098 0.458 0.592 0.429

SVP-CF-PROP
w/ Bias-only 0.434 0.751 0.233 0.107 0.506 0.637 0.445

G
ra

ph

Centrality 0.307 0.464 0.407 0.063 0.011 0.343 0.266
Random-walk 0.596 0.5 0.395 0.306 0.137 0.442 0.396

Forest-fire 0.564 0.493 0.415 0.265 0.099 0.454 0.382
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Figure 1.1. Heatmap of the probability of an algorithm moving in the overall ranking with
extreme sampling. A high value indicates that the algorithm is most probable to move up in the
sampled data ranking order, whereas a low value indicates that the algorithm is most probable to
move down.

scenarios of increasing their ranking order with extreme sampling. Whereas parameter-heavy

algorithms like SASRec, SVAE, MVAE, etc. tend to decrease in the ranking order, which is

indicative of overfitting on smaller data samples.

How much data to sample? Since Ψ is averaged over all p ∈ {80,60,40,20,10,1}% data

samples, to better estimate a reasonable amount of data to sample, we stratify Ψ according to

each value of p and note the average Kendall’s Tau. As we observe from Figure 1.2, there is a

steady increase in the performance measure when more data is retained. Next, despite the results

in Figure 1.2 being averaged over sixteen sampling strategies, we still notice a significant amount

of performance retained after sampling just 50−60% of the data.

Are different metrics affected equally by sampling? In an attempt to better understand how

the different implicit and sequential feedback metrics (Section 1.3.1) are affected by sampling, we

visualize the average Kendall’s Tau for all sampling strategies (except SVP-CF for brevity) and

all % data sampling choices separately over the AUC, Recall, and nDCG metrics in Figure 1.3.

As expected, we observe a steady decrease in the model quality across the accuracy metrics

over the different sampling schemes. This is in agreement with the analysis from Figure 1.2.
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Figure 1.2. Comparison of the average Kendall’s Tau with % data sampled. A higher Tau
indicates better retaining power of the ranking of different recommendation algorithms.

Next, most sampling schemes follow a similar downwards trend in performance for the three

metrics with AUC being slightly less affected and nDCG being slightly more affected by extreme

sampling.

1.4 DATA-GENIE: Which sampler is best for me?

Although the results presented in Section 1.3.5 are indicative of correlation between

the ranking of recommendation algorithms on the full dataset vs. smaller sub-samples, there

still is no ‘one-size-fits-all’ solution to the question of how to best sub-sample a dataset for

retaining the performance of different recommendation algorithms? In this section, we propose

DATA-GENIE, that attempts to answer this question from a statistical perspective, in contrast

with existing literature that generally has to resort to sensible heuristics (Leskovec and Faloutsos,

2006; Belletti et al., 2019; Chen et al., 2017).

1.4.1 Problem formulation

Given a datasetD, we aim to gauge how a new sampling strategy will perform in retaining

the performance of different recommendation algorithms. Having already experimented with

sixteen different sampling strategies on six datasets (Section 1.3.5), we take a frequentist approach
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Figure 1.3. Heatmap of the average Kendall’s Tau for different samplers stratified over metrics
and % data sampled.

in predicting the performance of any sampling scheme. To be precise, to predict the performance

of sampling scheme s on dataset D, we start by creating D’s subset according to s and call it

Ds. We then represent D and Ds in a low-dimensional latent space, followed by a powerful

regression model to directly estimate the performance of s on D.

1.4.2 Dataset representation

We experiment with the following techniques of embedding a user-item interaction

dataset into lower dimensions:

Handcrafted. For this method, we cherry-pick a few representative characteristics of D and

the underlying user-item bipartite interaction graph G. Inspired by prior work (Leskovec and

Faloutsos, 2006), we represent D as a combination of five features. We first utilize the frequency

distribution of all users and items in D. Next, we evaluate the distribution of the top−100

eigenvalues of G’s adjacency matrix. All of these three distributions are generally long-tailed

and heavily skewed. Furthermore, to capture notions like the diameter of G, we compare the

distribution of the number of hops h vs. the number of pairs of nodes in G reachable at a

distance less than h (Palmer et al., 2002). This distribution, unlike others is monotonically
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increasing in h. Finally, we also compute the size distribution of all connected components in G,

where a connected component is defined to be the maximal set of nodes, such that a path exists

between any pair of nodes. Ultimately, we ascertain D’s final representation by concatenating

10 evenly-spaced samples from each of the aforementioned distributions along with the total

number of users, items, and interactions in D. This results in a 53−dimensional embedding for

each dataset. Note that unlike previous work of simply retaining the discussed features as a

proxy of the quality of data subsets (Leskovec and Faloutsos, 2006), DATA-GENIE instead uses

these features to learn a regression model on-top which can dynamically establish the importance

of each feature in the performance of a sampling strategy.

Unsupervised GCN. With the recent advancements in the field of Graph Convolutional Net-

works (Kipf and Welling, 2017b) to represent graph-structured data for a variety of downstream

tasks, we also experiment with a GCN approach to embed G. We modify the InfoGraph

framework (Sun et al., 2020a), which uses graph convolution encoders to obtain patch-level

representations, followed by sort-pooling (Zhang et al., 2018) to obtain a fixed, low-dimensional

embedding for the entire graph. Since the nodes in G are the union of all users and items in D,

we randomly initialize 32−dimensional embeddings using a Xavier-uniform prior (Glorot and

Bengio, 2010). Parameter optimization is performed in an unsupervised fashion by maximizing

the mutual information (Nowozin et al., 2016) amongst the graph-level and patch-level repre-

sentations of nodes in the same graph. We validate the best values of the latent dimension and

number of layers of the GCN from {4,8,16,32} and {1,3} respectively.

1.4.3 Training & Inference

Having discussed different representation functions E :D 7→ Rd to embed a CF-dataset

in Section 1.4.2, we now discuss DATA-GENIE’s training framework agnostic to the actual details

about E .
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Optimization problem. As a proxy of the performance of a sampler on a given dataset, we re-

use the Kendall’s Tau for each CF-scenario, metric, and sampling percent used while computing

the Ψ(D,s) in Section 1.3.5. To be specific, given Ds,p
f which is a p% sample of f−type

feedback data D f , sampled according to sampling strategy s, we aim to estimate τ(R f ,m,Rs,p
f ,m)

without ever computing the actual ranking of algorithms on either the full or sampled datasets:

τ̂

(
R f ,m,Rs,p

f ,m

)
= Φ

(
E(D f ),E(Ds,p

f ),m
)
, (1.1)

where Φ is an arbitrary neural network, and m is the metric of interest (see Table 1.1). We train Φ

by either (1) regressing on the Kendall’s Tau computed for each CF scenario, metric, and sampling

percent used while computing the Ψ(D,s) scores in Section 1.3.5; or (2) performing BPR-style

(Rendle et al., 2009) pairwise ranking on two sampling schemes si ≻ s j ⇐⇒ τ(R f ,m,Rsi,p
f ,m)>

τ(R f ,m,Rs j,p
f ,m). Formally, the two optimization problems are defined as follows:

arg min
Φ

∑
D f

∑
s

∑
p

∑
m

(
τ

(
R f ,m,Rs,p

f ,m

)
− τ̂

(
R f ,m,Rs,p

f ,m

))2

(DATA-GENIE-regression)

arg min
Φ

∑
D f

∑
si≻s j

∑
p

∑
m
−ln σ

(
τ̂

(
R f ,m,Rsi,p

f ,m

)
− τ̂

(
R f ,m,Rs j,p

f ,m

))
(DATA-GENIE-ranking)

where, τ̂

(
R f ,m,Rs,p

f ,m

)
= Φ

(
E(D f ),E(Ds,p

f ),m
)
.

The critical differences between the two aforementioned optimization problems are the down-

stream use-case and Φ’s training time. If the utility of DATA-GENIE is to rank different sampling

schemes for a given dataset, then DATA-GENIE-ranking is better suited as it is robust to the noise

in computing τ(R f ,m,Rsi,p
f ,m) like improper hyper-parameter tuning, local minima, etc. On the

other hand, DATA-GENIE-regression is better suited for the use-case of estimating the exact

values of τ for a sampling scheme on a given dataset. Even though both optimization problems
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Table 1.4. Results for predicting the best sampling scheme for a particular dataset over a germane
metric. The MSE-value next to randomly choosing the sampling scheme represents the variance
of the test-set. Best values are underlined.

E Φ MSE P@1

Random 0.2336 25.2
User sampling w/ Bias-only SVP-CF-PROP – 30.6

Handcrafted Least squares regression 0.1866 31.7
” XGBoost regression 0.1163 43.9
” DATA-GENIE-regression 0.1008 51.2
” DATA-GENIE-ranking – 51.2

Unsupervised GCN Least squares regression 0.1838 39.1
” XGBoost regression 0.1231 43.9
” DATA-GENIE-regression 0.1293 48.8
” DATA-GENIE-ranking – 53.7

converge in less than 2 minutes given the data collected in Section 1.3.5, the complexity of

optimizing DATA-GENIE-ranking is still squared w.r.t. the total number of sampling schemes,

whilst that of DATA-GENIE-regression is linear.

Architecture. To compute Φ(E(D f ),E(Ds,p
f ),m) we concatenate E(D f ), E(Ds,p

f ), one-hot

embedding of m; and pass it through two relu-activated MLP projections to obtain τ̂(R f ,m,Rs,p
f ,m).

For DATA-GENIE-regression, we also pass the final output through a tanh activation, to reflect

the range of Kendall’s Tau i.e. [−1,1].

Inference. Since computing both E and Φ are agnostic to the datasets and the sampling schemes,

we can simply use the trained E and Φ functions to rank any sampling scheme for any CF dataset.

Computationally, given a trained DATA-GENIE, the utility of a sampling scheme can be computed

simply by computing E twice, along with a single pass over Φ, completing in the order of

milliseconds.
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Figure 1.4. Comparison of the average Kendall’s Tau with % data sampled for different sampling-
selection strategies. A higher Tau indicates better retaining power of the ranking of different
recommendation algorithms.

1.4.4 Experiments

Setup. We first create a train/validation/test split by randomly splitting all possible metrics

and sampling % pairs (m, p) into 70/15/15% proportions. Subsequently for each dataset D,

CF-scenario f , and (m, p) in the validation/test-set, we ask DATA-GENIE to rank all 16 samplers

(Table 1.3) for p% sampling of f−type feedback for D and use metric m for evaluation by

sorting τ̂ for each sampler, as defined in Equation (1.1). To evaluate DATA-GENIE, we use

the P@1 metric between the actual sampler ranking computed while computing Ψ−scores in

Section 1.3.5, and the one estimated by DATA-GENIE.

How accurately can DATA-GENIE predict the best sampling scheme? In Table 1.4, we

compare all dataset representation choices E , and multiple Φ architectures for the task of

predicting the best sampling strategy. In addition to the regression and ranking architectures

discussed in Section 1.4.3, we also compare with linear least-squares regression and XGBoost

26



regression (Chen and Guestrin, 2016) as other choices of Φ. In addition, we compare DATA-

GENIE with simple baselines: (1) randomly choosing a sampling strategy; and (2) the best

possible static sampler choosing strategy—always predict user sampling w/ Bias-only SVP-CF-

PROP. First and foremost, irrespective of the E and Φ choices, DATA-GENIE outperforms both

baselines. Next, both the handcrafted features and the unsupervised GCN features perform quite

well in predicting the best sampling strategy, indicating that the graph characteristics are well

correlated with the final performance of a sampling strategy. Finally, DATA-GENIE-regression

and DATA-GENIE-ranking both perform better than alternative Φ−choices, especially for the

P@1 metric.

Can we use DATA-GENIE to sample more data without compromising performance? In

Figure 1.4, we compare the impact of DATA-GENIE in sampling more data by dynamically

choosing an appropriate sampler for a given dataset, metric, and % data to sample. More

specifically, we compare the percentage of data sampled with the Kendall’s Tau averaged over all

datasets, CF-scenarios, and relevant metrics for different sampling strategy selection approaches.

We compare DATA-GENIE with: (1) randomly picking a sampling strategy averaged over 100

runs; and (2) the Pareto frontier as a skyline which always selects the best sampling strategy for

any CF-dataset. As we observe from Figure 1.4, DATA-GENIE is better than predicting a sampling

scheme at random, and is much closer to the Pareto frontier. Next, pairwise ranking approaches

are marginally better than regression approaches irrespective of E . Finally, DATA-GENIE can

appraise the best-performing recommendation algorithm with a suitable amount of confidence

using only 10% of the original data. This is significantly more efficient compared to having to

sample 50−60% if we were to always sample using a fixed strategy.

1.5 Discussion

In this work, we discussed two approaches for representative sampling of CF-data, espe-

cially for accurately retaining the relative performance of different recommendation algorithms.
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Table 1.5. CO2 emissions comparison (Strubell et al., 2019a).

Consumption CO2e (lbs.)

1 person, NY↔SF flight 2k
Human life, 1 year avg. 11k

Weekly RecSys development cycle 20k
” w/ DATA-GENIE 3.4k

First, we proposed SVP-CF, which is better than commonly used sampling strategies, fol-

lowed by introducing DATA-GENIE which analyzes the performance of different samplers on

different datasets. Detailed experiments suggest that DATA-GENIE can confidently estimate the

downstream utility of any sampler within a few milliseconds, thereby enabling practitioners to

benchmark different algorithms on 10% data sub-samples, with an average 5.8× time speedup.

To realize the real-world environmental impact of DATA-GENIE, we discuss a typical

weekly RecSys development cycle and its carbon footprint. Taking the Criteo Ad dataset as

inspiration, we assume a common industry-scale dataset to have ∼ 4B interactions. We assume a

hypothetical use case that benchmarks for e.g. 25 different algorithms, each with 40 different

hyper-parameter variations. To estimate the energy consumption of GPUs, we scale the 0.4

minute MLPerf (Mattson et al., 2020) run of training NeuMF (He et al., 2017) on the Movielens-

20M dataset over an Nvidia DGX-2 machine. The total estimated run-time for all experiments

would be 25×40× 4B
20M × 0.4

60 ≈ 1340 hours; and following Strubell et al. (2019a), the net CO2

emissions would roughly be 10× 1340× 1.58× 0.954 ≈ 20k lbs. To better understand the

significance of this number, a brief CO2 emissions comparison is presented in Table 1.5. Clearly,

DATA-GENIE along with saving a large amount of experimentation time and cloud compute cost,

can also significantly reduce the carbon footprint of this weekly process by more than an average

human’s yearly CO2 emissions.

Despite having significantly benefited the run-time and environmental impacts of bench-

marking algorithms on massive datasets, our analysis heavily relied on the experiments of
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training seven recommendation algorithms on six datasets and their various samples. Despite

the already large experimental cost, we strongly believe that the downstream performance of

DATA-GENIE could be further improved by simply considering more algorithms and diverse

datasets. In addition to better sampling, analyzing the fairness aspects of training algorithms

on sub-sampled datasets is an interesting research direction, which we plan to explore in future

work.

Chapter 1, in part, is a reprint of the material as it appears in “On Sampling Collaborative

Filtering Datasets.” by Noveen Sachdeva, Carole-Jean Wu, and Julian McAuley, in Proceedings

of the Fifteenth ACM International Conference on Web Search and Data Mining. 2022. The

dissertation author was the primary investigator and author of this paper.
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Chapter 2

Dataset Pruning for Pretraining Large
Language Models

The training of large language models (LLMs) is expensive. In this chapter, we study

data-efficient approaches for pre-training LLMs, i.e., techniques that aim to optimize the Pareto

frontier of model quality and training resource/data consumption. We seek to understand the

tradeoffs associated with data selection routines based on (i) expensive-to-compute data-quality

estimates, and (ii) maximization of coverage and diversity-based measures in the feature space.

Our first technique, ASK-LLM, leverages the zero-shot reasoning capabilities of instruc-

tion tuned LLMs to directly assess the quality of a training example. To target coverage, we

propose DENSITY sampling, which models the data distribution to select a diverse sample.

Testing the effect of 22 different data curation techniques on the pre-training of T5-style

of models, involving hundreds of pre-training runs and post fine-tuning evaluation tasks, we

find that ASK-LLM and DENSITY are the best methods in their respective categories. Coverage

sampling can recover the performance of the full data, while models trained on ASK-LLM data

consistently outperform full-data training—even when we reject 90% of the original dataset,

while converging up to 70% faster.

30



100 200 300 400 500
Training Tokens (Billion)

3.80

3.90

4

4.10

4.20
Pe

rp
le

xi
ty

 (H
Q)

44% speedup

100 200 300 400 500
Training Tokens (Billion)

86.50

87

87.50

88

88.50

GL
UE

70% speedup

100 200 300 400 500
Training Tokens (Billion)

79

80

81

82

83

84

Su
pe

r-G
LU

E

50% speedup

Full data Random Ask-LLM (XL)

Figure 2.1. Data-efficient pre-training run of T5-Large (800M) using ASK-LLM with Flan-T5-
XL as the data quality scorer. Training on 60% of the original dataset, ASK-LLM is able to train
T5-Large both better and 70% faster, compared to training on 100% of the dataset.

2.1 Introduction

Large language model (LLM) pre-training is perhaps the most data- and compute-

intensive task attempted by the machine learning community to date, with impressive capabilities

primarily being accomplished by training massive transformer architectures on trillions of tokens

of text (OpenAI, 2023; Gemini et al., 2023; Touvron et al., 2023b).

But even these incredibly capable LLMs are subject to empirical scaling laws, which

predict sharply diminishing returns from a linear increase in model- or data-size (Hoffmann et al.,

2022; Kaplan et al., 2020). Power-law scaling therefore acts as a soft limit on model quality,

beyond which it is prohibitively expensive to drive performance by scaling up the data or model.

At the same time, Sorscher et al. (2022)—in the context of vision pre-training—show that we can

significantly improve the power law constants in the aforementioned scaling laws if we prioritize

important training examples using some robust notion of data quality or impact.

A similar call for data-curation is also apparent in the context of training LLMs, where

our largest models are quickly approaching their capacity and data thresholds. LIMA (Zhou

et al., 2023) showed that LLaMA-65B (Touvron et al., 2023a) can be better aligned with human

preferences when trained on a set of 1,000 carefully selected fine-tuning prompts, compared to

training on as much as 52,000 unfiltered examples. Tirumala et al. (2023) recently conducted

a large-scale data-efficient pre-training evaluation, showing that a 6.7B OPT model (Zhang
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et al., 2022) can converge up to 20% faster on data curated by a technique based on stratified

cluster sampling. The Phi-2 experiments also suggest that when data curation is performed at a

human-expert level (e.g., by textbook editors), models can outperform baselines that are up to

25x larger (Javaheripi et al., 2023).

Data curation routines can be fundamentally characterized as selecting training samples

for quality, coverage, or some mixture of both (Figure 2.2). In this work, we seek to understand

how quality and coverage affect the data efficiency of LLM pre-training. Our core research

question is:

“Are cheap-to-compute heuristics like maximum-coverage enough to pre-

train a SoTA LLM, or are there real benefits from costly samplers that

carefully evaluate the quality of each example?”

This question is crucial to answer because data-curation algorithms can improve the

Pareto frontier of the data-quantity↔model-quality tradeoff, directly addressing the bottleneck of

power-law scaling by enabling higher-quality models to be trained using less data. Data curation

also unlocks new tradeoffs between training time, inference cost, data collection effort, and

downstream performance. For example, if we consider the compute-constrained (single-epoch)

regime, a data-efficient LLM training routine may reach the desired performance using only X%

of the data (corresponding to a ≤X% training speedup).

Despite considerable interest from the community for building data-efficient training

methods (Sorscher et al., 2022; Paul et al., 2021; Coleman et al., 2020; Jiang et al., 2019;

Katharopoulos and Fleuret, 2018), large-scale analyses of data pruning strategies are rare because

of the extreme computational cost—especially in the context of LLM pre-training. To be more

specific, an extensive comparative study necessarily entails pre-training (i) various sizes of

LLMs, (ii) for a variety of data sampling rates, (iii) obtained through various pruning strategies.

Further, downstream evaluations for LLMs also frequently involve fine-tuning, which is resource

intensive in itself.
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2.1.1 Contributions

We hypothesize that the roles of coverage and quality depend on the stage of training,

size of the model, and the sampling rate. To understand the coverage/quality design choice

better, we develop new data-efficiency routines that independently (and solely) target quality and

coverage. Our ASK-LLM sampler prioritizes high-quality and informative training samples by

asking a proxy LLM. Our DENSITY sampler seeks to maximize the coverage of latent topics in

the input dataset through a diversified sampling procedure. To summarize, our contributions are

as follows:

ASK-LLM sampling. We find that ASK-LLM can train better models (vs. training on the

entire dataset) even after removing up to 90% of training samples, while also consistently

beating well-established data curation routines. Furthermore, we find ASK-LLM also promotes

data-efficiency during training (Figure 2.1).

Exhaustive benchmark. We implement 22 different sampling strategies for pre-training T5-

Large (800M) and T5-Small (60M) on 524B tokens and evaluate them on 111 downstream

evaluation tasks. This leads to a total of 220 pre-training and 1,100 distinct fine-tuning runs.

New insights. By analyzing the differences between ASK-LLM and DENSITY sampling, we

study the role of coverage, quality, and sampling cost in LLM pre-training. We support our

conclusions with additional studies of the convergence rate, correlations between sampler outputs,

and impact of sampling cost on downstream performance.

Takeaway. Our results show that while coverage sampling can recover the performance of

the full data, ASK-LLM (quality filtering) can often exceed it. These experiments suggest

that LLM-based quality raters are a worthwhile and effective way to drive performance in

pre-training.
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2.2 Related Work

Data selection is a classical problem with well-established literature on coresets, sketch-

ing, importance sampling, filtering, denoising, and a host of other algorithms with similar

goals. While we cannot possibly catalog the entire sampling literature, we hope to provide an

overview of the principles behind common data selection algorithms. We also describe how these

algorithms have been applied to machine learning, with a focus on language model training.

2.2.1 Coverage Sampling

The first class of methods maximize the coverage of the sample by selecting points that are

evenly distributed across the entire input domain, e.g., an ε-net for a Lipschitz function (Phillips,

2017). When training language models, coverage sampling is motivated by the intuition that we

ought to show the model the full breadth of genres, topics, and languages (Longpre et al., 2023b).

Coverage sampling is typically accomplished by embedding examples into a metric space and

selecting points which are mutually far from each other (Lee et al., 2023).

Cluster sampling algorithms group inputs based on embedding similarity and select

representatives from each group. These algorithms are popular, scalable, interpretable, and enjoy

strong theoretical support – k-means sampling provably approximates the SVM objective (Tukan

et al., 2021) and many others (Feldman et al., 2020). However, there are also recent techniques

based on submodular optimization of a coverage score (Chen et al., 2012; Indyk et al., 2014;

Borsos et al., 2020a), models of the data distribution (Coleman et al., 2022), discrepancy

minimization (Karnin and Liberty, 2019), and deduplication through token matching / locality-

sensitive hashing (Lee et al., 2022).

Many variations of cluster sampling have been applied to vision and language model

training. Sorscher et al. (2022) propose the “SSL prototypes” method for vision models, which

removes points that fall too close to the nearest k-means centroid. SemDeDup (Abbas et al.,

2023) also removes points based on this distance, but targets pairs of nearby examples, or
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“semantic duplicates,” and prefers points close to the centroid. The D4 sampler chains MinHash

deduplication, SemDeDup, and SSL prototypes together to prune both high-variance, sparse

regions and prototypical, dense regions of LLM pre-training datasets (Tirumala et al., 2023).

Coleman et al. (2020) considers a k-centers submodular selection routine on the last-layer

embeddings of ResNet vision models.

2.2.2 Quality-score Sampling

Another class of methods are based on quality scores, where a scoring algorithm rates

every example and the sampler preferentially selects points with high scores. Even though this

framework was originally developed for importance sampling (Hastings, 1970), the machine

learning community has expanded the theoretical “score-and-sample” framework to include a

variety of practical heuristics.

For example, the selection-via-proxy (SVP) algorithm determines the importance of an

input using the validation loss and uncertainty scores of a pre-trained model on the input (Cole-

man et al., 2020; Sachdeva et al., 2021). Paul et al. (2021) sample according to an “EL2N score”

formed by ensembling the losses of 10 lightly-trained models. Ensemble prediction variance

has also been used as the scoring metric (Chitta et al., 2021), as have ensemble disagreement
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rates (Meding et al., 2021). Other scores measure whether an example is likely to be forgot-

ten (Toneva et al., 2019), memorized (Feldman and Zhang, 2020), or un-learnable (Mindermann

et al., 2022).

In the context of pre-training LLMs, there exist a few different schools-of-thought for scor-

ing the quality of training samples. The first (and arguably most used) camp is perplexity-filtering,

where we prioritize samples with low perplexity and filter out highly surprising examples (Wen-

zek et al., 2019; Marion et al., 2023; Muennighoff et al., 2023). Notably, recent advancements

in cheaper to run model-based training-run simulators for LLMs can be used to estimate the

perplexity of a training sample instead of running an LLM inference (Guu et al., 2023). Another

group of methods selects training data that minimizes the distance between the distribution of

selected data and a handcrafted high-quality data source (typically wikipedia and books). Typical

ways are to do this in a feature space (Xie et al., 2023b) or by training a contrastive-style classifer

(Radford et al., 2019; Anil et al., 2023; Javaheripi et al., 2023). Similar ideas have also been

explored for optimizing the data mixture weights for pre-training (Xie et al., 2023a).

Unlike using LLMs for quality evaluation, in concurrent work, Maini et al. (2024) also

show promise for an LLM-based data re-writing approach. Engstrom et al. (2024) consider a

quality evaluation based on datamodels, though their analysis suggests that this approach selects

for strongly model-dependent notions of quality.

2.3 Methods

We propose two samplers, ASK-LLM and DENSITY. These samplers have significantly

different costs—ASK-LLM requires an LLM inference call for each training sample, whereas

DENSITY is based on a diversified sampling routine that is cheaper than even clustering the

dataset. They also exhibit substantially different selection behavior: ASK-LLM conducts a

highly nuanced and contextual quality evaluation for each sample, while DENSITY asks whether

we have already sampled many similar examples. By studying samplers on extreme ends of this
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Ask-LLM prompt

### 
This is a pretraining …. datapoint. 
### 

Does the previous paragraph demarcated within ### and ### 
contain informative signal for pre-training a large-language model? 
An informative datapoint should be well-formatted, contain some 
usable knowledge of the world, and strictly NOT have any harmful, 
racist, sexist, etc. content. 

OPTIONS: 
- yes 
- no

Sampling score = P(“yes” | prompt)

Figure 2.3. The prompt for obtaining the sampling score for each training sample in ASK-LLM.

spectrum, we hope to better understand the salient factors for LLM data curation.

2.3.1 ASK-LLM Sampling

Intuition. Our intuition is that humans can easily identify commonly occurring failure modes

in state-of-the-art data quality scorers. Hence, it should be possible to correct these mistakes

using the reasoning capabilities of modern instruction-tuned LLMs.

To do so, in ASK-LLM, we directly prompt an instruction-tuned proxy LLM with the

prospective training example for the sampling decision (see Figure 2.3 for the prompt). We

take the softmax probability of the token “yes” as the estimated data-quality score. Consider

the following common failure modes of perplexity filtering (i.e., keeping the lowest perplex-

ity examples), which the ASK-LLM scoring model fixes (see more qualitative examples in

Section 2.6):

• Contextuality. Perplexity filters often select samples that lack context, e.g., containing
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Algorithm 1. ASK-LLM Sampling

Input: Dataset D = {x1,x2, · · · ,xN} s.t. xi ∈ X is the training sample in plain-text, sample size
k, scoring modelM : X ;X 7→ R
Output: Sampled data

1: Initialize list of scores S = [].
2: for n = 1→ N do
3: promptn←make_prompt(xn) ▷ Make ASK-LLM prompts as in Figure 2.3
4: AppendM(“yes” | promptn) to S ▷ UseM to score xn

5: return k elements from D with top-k scores in S, without replacement.

questions without answers (Examples 5, 6). ASK-LLM correctly identifies that these examples

do not provide new information.

• Nonsense. Perplexity filters can select examples that endlessly repeat the same phrases /

words , likely because these word combinations are common (resulting in high likelihood).

• Niche examples. Perplexity filters can reject niche topics that are otherwise informative,

well-written, and contain useful tail knowledge of the world. Example 7 contains detailed

information about a Manchester art installation but is assigned a high perplexity, likely because

it contains uncommon (but valid) word combinations.

Discussion on the cost of ASK-LLM scoring. Even though ASK-LLM sampling results

in impressive performance and training efficiency improvements compared to training on the

full-dataset (Figure 2.6), the data quality scoring cost might seem prohibitive. On the other hand,

on top of the improved results, we argue the following to be compelling points in justifying

ASK-LLM’s one-time-amortized data scoring cost:

• ASK-LLM only requires forward passes on the entire dataset. This is much cheaper than

(i) training the model itself which requires both forward and backward passes on multiple

repetitions of the entire dataset, (ii) gradient-based data-curation techniques (Sachdeva and

McAuley, 2023; Sachdeva et al., 2023) that also require backward passes, etc.
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• An additional benefit of the ASK-LLM framework is the ability to leverage memory-efficient,

quantized LLM inference setups (Dettmers et al., 2022). This is strictly not possible, e.g., for

pre-training LLMs. Notably, quantization isn’t the only ASK-LLM-friendly technique. All the

recent (and future) advances in efficient inference techniques for LLMs (Weng, 2023) directly

reduce the amortization cost of the ASK-LLM framework.

• Another benefit of ASK-LLM is the ability to naïvely parallelize quality scoring. To be more

specific, we can simply scale-up the amount of small & independent inference resources,

and run inference calls for various training samples parallely. Note that inference hardware

has much smaller requirements compared to, e.g., pre-training or fine-tuning requirements.

This is primarily true because of no batch size requirement for inference vs. large batch size

requirement while training. This enables scaling-up hardware to happen via a large number of

small-compute setups (e.g., 4 interconnected GPUs per node) versus increasing the number of

large-compute setups (e.g., 1000s of interconnected GPUs per node).

• ASK-LLM also uses strictly less compute compared to teacher-student knowledge distillation

based training setups (Agarwal et al., 2023). This is true simply because knowledge distillation

require (i) bigger teacher model’s softmax predictions (ii) for each token in our training data.

On the other hand, ASK-LLM requires just the score of the token “yes” given the prompt.

2.3.2 DENSITY Sampling

Intuition. Our intuition is that the data distribution provides a strong coverage signal. High-

probability regions contain “prototypical” examples—ones with many near-duplicates and strong

representation in the dataset. Low-probability regions will contain outliers, noise, and unique/rare

inputs. If we wish to maximize topic coverage, we should boost the signal from under-represented

portions of the input domain and downsample redundant, high-density information.

The key difficulty for our DENSITY sampler is to accurately estimate an example’s local

density. Like Tirumala et al. (2023) (D4), we assume access to embeddings from a pre-trained
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Algorithm 2. Inverse Propensity Sampling (IPS) via Kernel Density Estimation (KDE)

Input: Dataset D = {x1,x2, · · · ,xN} of embeddings, sample size k, kernel k with corresponding
locality-sensitive hash familyH (see Coleman and Shrivastava (2020)), hash range B, rows R,
random seed s
Output: Sampled data

1: Initialize: KDE sketch S ← 0R×B

2: Generate R independent hash functions h1, . . . ,hR fromH with range B and random seed s.
3: for n = 1→ N do ▷ Construct KDE estimator for D.
4: for r = 1→ R do ▷ Add xn to the KDE estimator.
5: Sr,hr(xn)+= 1

6: Initialize list of scores S = [].
7: for n = 1→ N do ▷ Score each example xn
8: score = 0
9: for r = 1→ R do ▷ Compute approximate KDE using S

10: score+= S[r,hr(xn)]

11: Append score/R to S
12: return k elements from D with probability p = S

∑S without replacement.

LLM. However, we depart from the traditional approach of clustering and opt to sample based

on kernel sums. Given a dataset D of embeddings and a kernel k(x,y), we estimate the density

using the following score.

score(y) = ∑
x∈D

kλ (x,y).

λ is a smoothing parameter called the kernel bandwidth that controls the scale of the points’

effects. To reduce the complexity from O(N2) to O(N logN), we use recent breakthroughs

from the algorithm community to approximate the sum (Siminelakis et al., 2019; Coleman and

Shrivastava, 2020). Our density sampler is adapted from that of Coleman et al. (2022), with a

few critical departures:

• We use a two-pass procedure that allows for more rigorous theoretical guarantees (and different

sampling behavior).

• We conduct the density estimation in the model’s latent space rather than using Jaccard

similarity over n-grams.
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Improvements. Jaccard similarities are sufficient to construct a reasonable sampling distribu-

tion for genomics applications, which are significantly more structured than natural language.

However, this is not the case with text — we found that sampling based on Jaccard density is no

better than random. For this reason, we must use different kernels (p-stable rather than MinHash)

and different input representations (embedding rather than n-grams).

However, our more interesting departure from Coleman et al. (2022) is our two-pass

sampling procedure, which changes the behavior of the algorithm and allows for more rigorous

theoretical guarantees. The original method was only able to demonstrate convergence of cluster

populations in the sampled dataset. While this leads to (weak) convergence for some measures

of diversity, it also requires strong assumptions about the cluster structure.

Theoretical Analysis. We use a recent result that demonstrates consistent sketch-based estima-

tion of the kernel sum (Theorem 3.3 of Liu et al. (2023)), which we paraphrase below.

Lemma 2.3.1. Let P(x) denote a probability density function. Let D ∼
iid

P(x) denote a dataset.

Let k(x,y) be a positive definite LSH kernel, and let S be the DENSITY score. Then S(x) is a

consistent estimator for the kernel sum.

S(x)→
i.p.

1
N ∑

xi∈D
k(xi,q)

with convergence rate O(
√

logR/R).

If we perform inverse propensity sampling using the score in Lemma 2.3.1, we obtain a

sampling procedure that outputs a uniformly-distributed sample.

Theorem 2.3.2. Let Q(x) be the distribution formed by (i) drawing N samples i.i.d. from a

distribution P, e.g. D = {x1, ...xN} ∼ P, and (ii) keeping x with probability proportional to 1
S(x) .

Under the conditions of Lemma 2.3.1, Q(x)→
i.p.

U(x), where U(x) is the uniform distribution.

Proof. Under the conditions of Wied and Weißbach (2012) (specifically, positive-definiteness

and ℓ1 integrability / bounded domain), the kernel sum is a consistent estimator of the density.
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That is, the sum converges in probability to P(x).

1
N ∑

xi∈D
k(xi,q)→

i.p.
P(x)

Lemma 2.3.1 shows that S(x) converges in probability to the sum (and thus to P(x)). By Slutsky’s

Theorem, 1
S(x) → 1

P(x) for all x in the support of the distribution (i.e. P(x) ̸= 0). The probability

of generating x as part of the sample is:

Q(x) = Pr[Selectx∩Generatex] = Pr[Selectx]Pr[Generatex] =
1

S(x)
P(x)

Because 1
S(x) → c

P(x) for some constant c, we have that Q(x)→ c.

Theorem 2.3.2 demonstrates that our DENSITY sampler outputs a uniformly-distributed

collection of points over the input space (latent LLM representation space).

Cost. Like SemDeDup, D4, and SSL prototypes, our DENSITY sampler requires access to

embeddings for each example in the training corpus. However, by eliminating the expensive

clustering step, we eliminate a significant computational overhead. Our DENSITY sampling

routine required just 80MB of memory and two linear passes through the dataset to score all

364M embeddings. This is significantly less expensive than clustering.

Tuning. We also eliminate a large number of hyperparameters, improving tuning. Cluster-

based samplers must choose the number of clusters, clustering optimizer and objective, and

per-cluster sampling rate or deduplication similarity. Kernel density estimation, on the other

hand, has just two hyperparameters: the choice of kernel and the bandwidth. We did not observe

a significant performance variation among different bandwidth and kernel choices (e.g., the L2

and cosine kernels of Coleman and Shrivastava (2020) perform nearly identically). This is likely

because all positive-definite kernels enjoy strong guarantees on the distribution approximation

error (Devroye, 1983).
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2.3.3 Sampling Techniques

DENSITY and ASK-LLM are both scoring methods that reduce an example to a floating

point value that measures coverage or quality. Once we have scores for a complete dataset of

training examples (sentences, paragraphs, etc.), we can make score-based decisions about which

examples to include in the training set.

Top / Bottom K. The simplest method is to sort examples by score and accept the top or

bottom K, depending on whether a higher or lower score signifies better data-quality. While

straightforward, this approach is supported by the “permutation” theory of Sorscher et al. (2022),

and sensitivity score sampling (a softened version) is the core subroutine for many coresets (Mai

et al., 2021). When applied to DENSITY and perplexity scores, top-K sampling selects for the

head of the data distribution (similar to SSL prototypes). Bottom-K sampling selects the tail and

removes common items.

Inverse Propensity Sampling. Inverse propensity sampling (IPS) selects items proportional to

their reweighted and normalized inverse score (Rosenbaum and Rubin, 1983). When applied to

DENSITY or perplexity scores, IPS implements a form of diversified sampling that uniformizes

the distribution of selected inputs (Theorem 2.3.2).

In our experiments, the DENSITY sampler uses IPS to maximize the coverage of the

dataset.1 For our ASK-LLM filter, we adopt top-k sampling because we expect the “yes”

probability to be a reliable and strong measure of quality.

2.3.4 Relationships Between Methods

DENSITY, Perplexity, and Loss. When a language model is trained to minimize perplexity, the

LLM itself is a data distribution model. Therefore, the perplexity and loss filtering approaches

of Marion et al. (2023), Muennighoff et al. (2023), and other authors can be viewed as model-

1We also implemented top-K and bottom-K sampling, but these samplers do not maintain coverage and perform
poorly.
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based density sampling. However, our sampler measures the density of the training dataset in

a latent geometric space, while perplexity measures the likelihood under the scoring model.

The samplers also differ in terms of decision complexity. Thanks to the capacity of the LLM,

a perplexity filter can make highly-nuanced decisions between two texts on the same topic.

On the other hand, our DENSITY sampler is constructed from a simple nonparametric density

model (Rosenblatt, 1956) that does not have the capacity to distinguish examples at such a

granular level.

ASK-LLM and Perplexity. Perplexity filters exhibit a strong in-distribution bias, making

decisions based on the data used to train the scoring model (not the dataset we wish to sample).

By using the LLM for quality evaluation rather than likelihood estimation, our sampler can escape

this bias because the additional context and alternative task change the sampling distribution.

This occurs even when the ASK-LLM and perplexity models are the same size.

DENSITY and Clustering. The kernel sum procedure at the core of our DENSITY sampler

operates on embedding-similarity relationships in a similar way to D4, SemDeDup, and SSL

prototypes. Indeed, near-duplicate detection can be viewed as a discretized version of similarity-

based density estimation (Kirsch and Mitzenmacher, 2006). Outlier rejection, which motivates

the “nearest-to-centroid” heuristic of SSL prototypes, also has intimate connections with density

estimation (Schubert et al., 2014).

Intuition. Perplexity should be viewed as a “difficulty” or “quality” score rather than as a

coverage-maximizing score. Our ASK-LLM sampler should be viewed as a contextualized

quality score that incorporates reasoning.2 Our DENSITY sampler is a pure “coverage” score in

the latent representation space, while SemDeDup, and SSL Prototypes all incorporate quality /

outlier filtering to some extent (e.g., by preferring points near / far from a centroid).

2Note that ASK-LLM may also incidentally improve coverage because it does not suffer from in-distribution
bias.
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Total Training = 524B tokens

100% sample of C4  ☰  184B unique tokens  ☰  2.8 epochs

80% sample of C4  ☰  147B unique tokens  ☰  3.5 epochs

60% sample of C4  ☰  110B unique tokens  ☰  4.7 epochs

40% sample of C4  ☰  73.6B unique tokens  ☰  7.1 epochs

20% sample of C4  ☰  36.8B unique tokens  ☰  14.2 epochs

10% sample of C4  ☰  18.4B unique tokens  ☰  28.4 epochs

Figure 2.4. We consider a setup where all of our models are trained on exactly 524B tokens,
causing us to repeat the same examples for more epochs when we downsample. We borrow the
format of this graphic from Muennighoff et al. (2023), who consider a similar setting.

2.4 Empirical Setup

2.4.1 Models

We pre-train T5-style models (Raffel et al., 2020), which belong to the encoder-decoder

family of Transformer models and offer competitive performance on many tasks (Shen et al.,

2023). See Phuong and Hutter (2022) for a formal introduction to various Transformer model

configurations. We train T5-Small (60M) and T5-Large (800M), reusing all of the training

settings from the original T5 implementation except the batch size (2048→ 1024). We train on

batches of 1024 sequences of length 512 for 1M steps.

2.4.2 Dataset

We use the C4 dataset (Raffel et al., 2019), which was also used for pre-training the

original T5. The C4 dataset is a version of the Common Crawl—a publicly available archive of

web-text—that has been pre-processed using several heuristics (Raffel et al., 2020, Section 2.2).

In its entirety, C4 contains 184B tokens. We use our algorithms (see Section 2.4.3 for a list) to
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sample {10,20,40,60,80}% of C4.

Because a low sampling ratio yields exceedingly small datasets, we choose to train in the

iso-compute setting, i.e., training all models for exactly 524B tokens. This results in more epochs

(repetitions) at smaller sampling rates. We believe this gives each data curation method an equal

chance to maximize model performance, and not penalize methods that sample a small number

of high-quality repeatable tokens vs. large number of non-repeatable tokens. See Figure 2.4 for a

demonstration of this process.

2.4.3 Baseline Samplers

Random Sampling. The de-facto standard for obtaining samples of large datasets where

we sample training examples uniformly at random. Notably, random sampling has also been

accompanied with strong results in a variety of applications in the data-curation literature

primarily due to its unbiased sampling (Ayed and Hayou, 2023b; Guo et al., 2022b).

DENSITY Sampling. See Section 2.3.2 for technical details about the DENSITY sampler. We

use Sentence-T5-Base (Ni et al., 2021) as our embedding model for training samples, primarily

due to its contrastive training, giving confidence for computing distances amongst its 768-dim

embeddings. We use the PStable hash (Datar et al., 2004) to hash the embeddings, along with a

[1,000×20,000] sketch matrix.

SemDeDup. The key idea is to perform (coverage maximizing) semantic deduplication inside

clusters of the original dataset (Abbas et al., 2023). We re-use the Sentence-T5-Base embeddings

of data-points used for DENSITY sampling, and perform k-means clustering to obtain 10,000

clusters of the entire dataset.

SSL Prototypes. They key idea is to remove prototypical points in a dataset (Sorscher et al.,

2022). As a meaningful proxy, this method removes the points closest to cluster centroids of a

dataset. For brevity, we use the name “Prototypes” when reporting our results. We re-use the

same embeddings and clustering for both SemDeDup and Prototypes.
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Perplexity Filtering. A popular quality-filtering approach in the literature is to use the perplexity

of proxy language models to filter data-points with a high-perplexity under that language model.

While the literature historically used small language models for perplexity filtering (Wenzek

et al., 2019; Muennighoff et al., 2023), recent work (Marion et al., 2023) suggests improved

filtering performance when using LLMs for this task. To this end, we employ perplexity filtering

with T5-{Small, Base, Large, XL, XXL} models; as well as intermediate checkpoints during the

course of training T5-Large: {20k, 100k, 300k, 500k, 700k}.

Text-quality Classifier (Q-Classifier). First proposed by GPT-3 for curating its pretraining

dataset (Brown et al., 2020), and later used by various state-of-the-art LLMs at their time

(Chowdhery et al., 2023; Anil et al., 2023; Gao et al., 2020; Du et al., 2022) another popular

quality filtering approach is to train a linear classifier for distinguishing web-scrape data vs.

known reference high-quality data. Consistent with existing usage of this technique (Gao et al.,

2020; Xie et al., 2024; Brown et al., 2020; Chowdhery et al., 2023; Du et al., 2022), we train a

hashing-based linear classifier with a hash size of 262k trained to classify if a document is either

from (negative) C4 or (positive) Wikipedia + BookCorpus. We train this classifier for a total of

218k steps (equivalent to 14 Trillion unigrams), and based on recent evidence (Xie et al., 2024)

we sample the documents with the highest score according to this classifier.

Data Selection with Importance Resampling (DSIR). Proposed by Xie et al. (2024), DSIR

performs importance sampling using a bag-of-words estimator (we use unigram and bigram

features) over some “high-quality” target data-source. This approach is, in spirit, quite similar to

the aforementioned text-quality classification approach but performs distribution-matching in a

non-parametric way, and without the hassle of training a classifier on large piles of data. To be

consistent, we use Wikipedia + BookCorpus as the target source for DSIR as well. We re-use the

official public implementation for DSIR3.

3https://github.com/p-lambda/dsir
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ASK-LLM Sampling. See Section 2.3.1 for technical details about the ASK-LLM sampler.

Since ASK-LLM relies on the reasoning capabilities of instruction-tuned models, we use the Flan-

T5-{Small, Base, Large, XL, XXL} (Longpre et al., 2023a) and instruction tuned Gemma-7B

(Team et al., 2024) models for obtaining the quality scores in ASK-LLM.

2.4.4 Evaluation Tasks

We use 111 downstream evaluation tasks to assess diverse performance indicators for

pre-trained LLMs as listed below.

Perplexity. Defined as the exponentiated average negative log-likelihood of an average sequence

in the dataset; we report the perplexity computed over the target tokens in T5’s denoising objective

(Raffel et al., 2020) over the default validation set provided by C4. Note that C4’s validation set

is a random sample of the dataset, so it is prone to be of much lower quality than curated sources,

and hence, a less reliable indicator of true model quality.

HQ Perplexity. As our best effort to devise an inexpensive-to-compute metric that is better

aligned with model quality than perplexity on C4’s validation set, inspired by the evaluation

conducted in Tirumala et al. (2023), we construct a high-quality validation set from non web-

scrape sources. We collate the validation sets from (1) English portion of wiki40b (Guo et al.,

2020), (2) realnews and webtext subsets of C4, and (3) news commentary from the LM1B dataset

(Chelba et al., 2013).

GLUE. A popular natural language understanding meta-benchmark comprising of eleven

different tasks (Wang et al., 2018a). Note that we report the average score for all individual

tasks, after finetuning on the concatenation of all individual tasks’ training sets, as is done in the

original T5 implementation.

SuperGLUE. A harder meta-benchmark (vs. GLUE) built to further test the natural language

understanding abilities of language models (Wang et al., 2019). Similar to GLUE, we report the
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average score of all tasks, and conduct fine-tuning on all tasks’ concatenated train-set.

CNN/DM. We use the CNN/DM dataset (Hermann et al., 2015) for testing our models’ abstrac-

tive summarization abilities. Like the T5 original setting, we finetune on the train-set, and report

the ROUGE-2 scores.

SQuAD. A popular dataset (Rajpurkar et al., 2016) used to evaluate question-answering ca-

pabilities of language models, we compare the finetuned performance of our models using

exact-match as the metric.

FLAN Instruction Tuning. A popular application of LLMs has been instruction-following,

and chatting capabilities. To test our model’s quality on this front, we finetune our models on the

FLANv2 dataset (Longpre et al., 2023a), and test the instruction-tuned models’ performance

from four fronts:

• 5-shot MMLU (Hendrycks et al., 2020): a popular benchmark consiting of exam questions

from 57 tasks.

• 3-shot Big Bench Hard (BBH) (Srivastava et al., 2022): a popular set of 23 hardest tasks from

big bench.

• Reasoning: macro-average 8-shot performance on GSM8k (Cobbe et al., 2021), SVAMP (Patel

et al., 2021), ASDIV (Miao et al., 2021), and StrategyQA (Geva et al., 2021) benchmarks.

• QA: macro-average 0-shot performance on UnifiedQA (Khashabi et al., 2020), BoolQ (Clark

et al., 2019), Arc-Easy and Arc-Challenge (Clark et al., 2018) benchmarks.

• Average: macro-average of all the four benchmarking suites listed above: MMLU, BBH,

Reasoning, and Q/A.

Please note that all of our reported numbers are based on single checkpoint evaluations, i.e., we

first select the best checkpoint during FLAN finetuning using the average performance on all

tasks, and report the individual task performance on that checkpoint.
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Figure 2.5. Empirical scaling laws for T5-models trained on the entire C4 dataset for various
downstream tasks.

2.4.5 Effective Model Size

In addition to these individual tasks, to compare a normalized average performance

improvement over all downstream evaluations, we devise a metric called “Effective Model Size.”

Inspired by the LLM scaling-law literature (Hoffmann et al., 2022; Muennighoff et al., 2023), the

Effective Model Size metric measures the effective model size by extrapolating on a parametric

fit of the “number of parameters vs. downstream eval” trend, averaged over various downstream

tasks.

It is challenging to concisely summarize performance using a single measure, primarily

because our evaluation consists of 111 individual tasks, all of which respond at different rates to

data and model optimizations. To provide a holistic view of performance, we fit a parametric

model, a.k.a scaling law (Hoffmann et al., 2022; Muennighoff et al., 2023), of the “model-size

↔ quality” curve for the original T5 models (i.e., trained on the full C4 dataset) over various

downstream tasks.

More specifically, we fit functions of the following form, for each downstream task
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Figure 2.6. Tradeoff between data quantity (number of unique tokens in the sampled dataset) and
model quality for (top) T5-Large and (bottom) T5-Small pre-training. Each point corresponds to
a converged pre-training run over a sub-sample.

separately:

ModelSize = A+ exp(B+EvalPerformance∗C) , (2.1)

and use scipy.optimize.curve_fit to estimate the A,B,C parameters based on the evalua-

tions of T5-{Small, Base, Large, XL}. See Figure 2.5 for a visual interpretation of the parametric

models we fit.

Finally, given the performance of a model trained on downsampled data, the effective

model size is defined as the predicted model size by plugging in the observed downstream

performance into the parametric scaling law estimated via Equation (2.1), taking a median over

various downstream evaluation tasks listed in Figure 2.5. To summarize intuitively, this metric is

a principled estimate to the following question:

“If our ablations (in this chapter, data sampling) lead to x performance,

what sized LLM should I have trained in the original setting (in this

chapter, the full dataset) to achieve the same x performance?”
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Table 2.1. Comparison of sampling algorithms at a fixed sample size. For each sampling strategy,
we sample the dataset to X% of the original size and pre-train T5-Small and T5-Large for 524B
tokens. This table is a cross-section of Figure 2.6 but with more metrics.

LLM
Training config.

Effective
Model Size

Downstream tasks FLAN Instruction Tuning

Sampler # Tokens GLUE
Super
GLUE

CNN/
DM

SQuAD MMLU BBH Reasoning QA

T5-Small — 184B 60M 79.9 58.6 18.6 78.6 25.5 28.5 15.2 37.0

T5-Small Random 36B 59.2M 79.9 58.3 18.6 78.1 26.9 27.8 15.2 38.1

T5-Small Density 36B 60.1M 80.5 59.7 18.5 78.5 28.1 30.3 14.5 33.4
T5-Small Prototypes 46B 58.9M 79.7 58.8 18.5 78.0 26.8 27.7 15.7 34.2

T5-Small Perplexity (Small) 36B 62.0M 79.9 58.5 18.5 77.5 28.2 28.2 15.0 35.1
T5-Small DSIR 36B 59.9M 79.3 61.0 18.5 78.9 26.9 28.0 15.5 36.1
T5-Small Q-Classifier 36B 63.5M 80.8 62.7 18.6 79.6 27.1 28.2 15.0 36.4
T5-Small Ask-LLM (XL) 36B 66.9M 80.3 59.8 18.6 79.1 29.9 28.5 15.8 36.4

T5-Large — 184B 800M 88.2 82.5 20.8 86.7 40.7 33.6 21.6 73.0

T5-Large Random 18B 713M 88.4 82.3 20.8 85.9 41.8 33.6 20.6 71.5

T5-Large Density 18B 802M 88.0 80.5 20.9 86.9 42.6 35.5 19.1 70.6
T5-Large Prototypes 18B 423M 87.7 80.5 20.4 86.6 36.7 33.0 17.6 66.0

T5-Large Perplexity (Small) 18B 301M 87.6 80.2 20.5 85.2 36.8 33.8 17.7 60.9
T5-Large DSIR 18B 476M 87.3 81.7 20.7 85.4 39.8 33.3 22.2 65.0
T5-Large Q-Classifier 18B 797M 88.7 83.6 20.8 87.7 40.5 35.0 20.2 65.4
T5-Large Ask-LLM (G.7B) 18B 1.5B 88.2 82.5 20.8 87.8 44.2 37.1 22.7 78.2

2.5 Experiments

2.5.1 Does reasoning improve data efficiency?

Figure 2.6 shows that ASK-LLM trains 800M models to an equivalent performance, as

if we were to train 1.5B models on the original C4 dataset. ASK-LLM consistently outperforms

perplexity filtering (and coverage-maximizing baselines), despite having access to a scoring

model of the same model capacity (XL). Similar findings hold true for training efficiency

(Figure 2.7). ASK-LLM converges faster than perplexity filters, both in terms of the average

(expected final performance over all proxy model sizes) and pointwise for the best configuration

(Small and XL for training T5-Small and T5-Large).

Figure 2.9 further demonstrates that prompting adds critical information to the sampler

not present in perplexity: ASK-LLM scores show no correlation with the perplexity scores.
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Figure 2.7. Training efficiency comparison between two quality-score based samplers: ASK-
LLM and Perplexity filtering. ASK-LLM (Avg.) and Perplexity filtering (Avg.) represent the
training run averaged across (i) proxy model sizes, i.e., T5-{Small, Base, Large, XL, XXL}; and
(ii) sampling ratios, i.e., {10, 20, 40, 60, 80}%. The training runs for ASK-LLM and perplexity
filtering with T5-{Small, XL} specifically are averaged only over the sampling ratios. Each point
in this plot is the (averaged) performance of an intermediate checkpoint during the course of
training on sampled data.

Based on this clear behavioral difference, we conclude that reasoning and context are crucial

ingredients. We expect prompting techniques such as chain-of-thought reasoning (Wei et al.,

2022) to further drive performance.

2.5.2 When are expensive quality scores justified?

Observing the effective model size while training T5-Large, Figure 2.6 suggests that other

samplers start performing well only at larger sample ratios (≥ 60%), with performance very close

to ASK-LLM. On the other hand, at smaller sampling ratios, ASK-LLM tends to significantly

outperform both coverage-based samplers, as well as cheaper alternatives for data-quality scoring

like Q-Classifier and DSIR (Section 2.4.3). Hence, the higher costs of LLM-based filters are

most justified in two scenarios: (i) improving full-data performance, where quality filtering by
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removing the lowest-quality data is the main way to push the upper limit of model performance;

or (ii) in the low-data regime, where keeping only the highest-quality data drives the most model

performance compared to other sampling strategies.

We also observe that random sampling is a strong baseline, aligning with recent observa-

tions in the literature. Guo et al. (2022a) found that only three methods outperformed random

sampling in a computer vision benchmark of 15 algorithms. Ayed and Hayou (2023a) prove

the existence of adversarial problem instances where score-based sampling cannot outperform

random sampling. These results only serve to highlight the significance of ASK-LLM’s gains.

2.5.3 Effect of quality-scoring model capacity

Figure 2.8 demonstrates a clear scaling trend for ASK-LLM’s quality-scoring model:

larger scoring models are increasingly beneficial as the scale of the to-be-trained LLM increases.

Perplexity filters do not seem to exhibit such trends. The strongly consistent scaling for ASK-

LLM also suggests an interesting performance-recipe: to improve downstream data-efficiency,

use better quality-scoring models. Creating better quality scorers for ASK-LLM (via fine-tuning,

chain-of-thought prompting, more capable scoring models, etc.) is thus an exciting direction for

future work.

2.5.4 Do samplers prioritize different examples?

To understand whether different algorithms prioritize different examples, we sorted

examples by score and computed the Kendall Tau rank correlation between samplers (Figure 2.9).

We find that samplers differ in significant and interesting ways. For example, the “T5-Large”

row shows that (i) T5-Large outputs perplexity scores similar to T5-Small early in training,

but becomes progressively more nuanced on the path from 20k to 700k training steps, and (ii)

perplexity and ASK-LLM select for wildly different criteria, with almost no ranking correlation.

DENSITY prioritizes coverage over de-noising, maintaining the in-distribution test per-

plexity better than any other strategy (Figure 2.6), other than random sampling in which case
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Figure 2.8. We investigate the change in ranking of quality-scoring models when pre-training
different LLMs. A positive ∆Rank indicates that the scorer’s task-averaged rank within {Small,
Base, Large, XL, XXL} increased when training T5-Large vs. T5-Small.
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Figure 2.9. Kendall’s Tau correlation amongst the scores from quality filters (first 8), perplexity
filters (next 10), and coverage-based samplers (last 3) over 500k randomly selected training
samples.

the validation data is exactly in-distribution w.r.t. the training data. This suggests that coverage

sampling preserves the objective function, in contrast with other methods that preferentially

select for quality in addition to diversity.

56



DS
IR

Q-
Cl

as
sif

ie
r

Ge
m

m
a 

7B

Fl
an

 T
5-

Sm
al

l

Fl
an

 T
5-

Ba
se

Fl
an

 T
5-

La
rg

e

Fl
an

 T
5-

XL

Fl
an

 T
5-

XX
L

T5
-S

m
al

l

T5
-B

as
e

T5
-L

ar
ge

T5
-X

L

T5
-X

XL

T5
-L

ar
ge

 (2
0k

)

T5
-L

ar
ge

 (1
00

k)

T5
-L

ar
ge

 (3
00

k)

T5
-L

ar
ge

 (5
00

k)

T5
-L

ar
ge

 (7
00

k)

De
ns

ity

Pr
ot

ot
yp

es

Se
m

De
Du

p

Art & Entertainment

Business

Food

Home Features

Medical

Politics & Relegion

Products & Services

School & University

Tech

-0.21 0.07 -0.22 -0.01 0.17 -0.13 0.04 0.04 -0.22 -0.20 -0.17 -0.15 -0.14 -0.23 -0.21 -0.20 -0.19 -0.19 0.00 0.17 0.25

0.20 -0.16 0.38 -0.03 0.13 -0.05 0.19 0.14 0.21 0.18 0.15 0.13 0.11 0.23 0.20 0.19 0.18 0.17 0.00 -0.28 -0.26

0.12 -0.14 0.11 0.13 -0.12 -0.29 0.18 0.11 -0.04 -0.05 -0.05 -0.06 -0.07 -0.05 -0.04 -0.04 -0.05 -0.04 -0.00 0.03 0.02

-0.04 -0.09 0.15 -0.07 0.01 0.02 0.12 0.13 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 -0.00 -0.08 -0.12

0.07 0.18 0.30 0.03 0.21 -0.09 0.26 0.16 0.04 0.01 -0.00 -0.02 -0.03 0.03 0.01 -0.00 -0.01 -0.01 -0.01 -0.24 -0.22

-0.05 0.63 -0.02 0.22 0.31 0.39 0.26 0.01 -0.09 -0.08 -0.06 -0.04 -0.04 -0.09 -0.09 -0.08 -0.08 -0.08 -0.00 -0.20 -0.11

-0.08 -0.20 -0.07 -0.06 -0.17 -0.16 -0.41 -0.02 -0.21 -0.20 -0.19 -0.18 -0.16 -0.22 -0.21 -0.21 -0.20 -0.19 0.00 0.31 0.17

-0.27 0.04 0.04 -0.15 0.23 -0.06 0.13 0.18 0.05 0.07 0.09 0.10 0.10 0.04 0.06 0.06 0.07 0.07 -0.01 -0.02 0.04

0.20 -0.19 -0.52 0.02 -0.63 0.19 -0.51 -0.54 0.12 0.12 0.11 0.09 0.10 0.13 0.13 0.13 0.12 0.12 0.00 0.27 0.20

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 2.10. Estimated topic affinity for quality filters (first 8), perplexity filters (next 10), and
coverage-based samplers (last 3) over 500k randomly selected training samples.A higher score
represents more affinity. All effects significant at the p < 0.01 level.

2.5.5 Analysis of Different Samplers’ Affinity to Different Topics

Since the different sampling strategies explored in this chapter operate with different

implicit biases, we try to understand if certain samplers exhibit more affinity to certain topics in

the data compared to others. To visualize this phenomenon, we conduct the following procedure:

1. Load a random sample of 500k datapoints, along with their respective data-quality scores.

2. Perform topic-modeling (via LDA) on the 500k datapoints with 9 topics.

3. Manually inspect the most common word associations in each of the 9 topics, and label a

“high-level description” for each topic.

4. Assign each of the 500k datapoints to the LDA topic with the highest likelihood and analyze

the differences between the distribution of scores within each topic and the global score

distribution.
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5. We conducted a one-way ANOVA, one-vs-rest style, to determine whether the averages were

statistically significant. Because N = 500k, all effects were significant at the p < 0.01 level.

We measure the effect size using Cohen’s d and report results in Figure 2.10.

From the topic affinity analysis in Figure 2.10, we can observe a few interesting common

trends:

• The perplexity filters have relatively low variance in their scores, indicating a much less biased

sampling. This is expected, because perplexity filtering primarily biases toward “well-written

text” which is relatively task/topic agnostic.

• The quality-based samplers (ASK-LLM, DSIR, Q-Classifier) exhibit a much stronger variance

in their scores, with a common liking towards business, political, and religious content; and a

common disliking towards tech, art, and entertainment content.

• Consistent with the score correlations in Figure 2.9, the prototypes and SemDeDup samplers

exhibit inverse correlation with most other samplers when comparing topic affinity too.

• Density sampling, as expected, exhibits no special affinity to any particular topic because it’s

objective is to only maximize coverage.

2.6 Qualitative Analysis

In this section we look at some qualitative training samples, sorted according to various

criteria of data-quality scores. Along with the textual content of each training sample, we also

list the estimated data-quality percentile for ASK-LLM and perplexity filtering samplers, i.e., the

percentile of the given data-point’s quality score amongst the entire training set. A high percentile

represents that the sampler estimates this training sample to have higher quality compared to

other training samples in the dataset. We manually don’t include any NSFW examples to the

best of our knowledge.
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2.6.1 High-quality Samples Identified by ASK-LLM

We look at the training samples that all ASK-LLM scoring models, on average, think are

good (i.e., have a high percentile). To the best of our understanding, the overarching conclusions

we make by observing these qualitative samples are:

• ASK-LLM doesn’t seem to have any length bias for good examples.

• ASK-LLM can accurately tag high-quality training samples that contain a lot of proper nouns

and named entities. Perplexity filtering gets these kind of samples wrong.

• Even looking at this slice of only the highest-quality data tagged by ASK-LLM, perplexity

filtering scores don’t seem to correlate well with ASK-LLM scores as suggested by Figure 2.9.

Example 1: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

93.33% 88.21% 88.11% 100.0% 99.99% 50.29% 30.34% 32.56% 31.61% 25.62%

BC

What constitutes overtime for a part-time employee? Question: What is overtime for a
part-time employee? Overtime for a part-time employee is time that is beyond the

part-time employee’s ordinary hours of work or outside the agreed number of hours of
work, as specified in their employment contract.
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Example 2: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

87.08% 89.33% 95.26% 99.13% 99.94% 98.09% 97.52% 98.83% 97.39% 97.38%

BC

Bonelli, N.; Giordano, S.; Procissi, G. Enif-Lang: A Specialized Language for
Programming Network Functions on Commodity Hardware. J. Sens. Actuator Netw.

2018, 7, 34. Bonelli N, Giordano S, Procissi G. Enif-Lang: A Specialized Language for
Programming Network Functions on Commodity Hardware. Journal of Sensor and

Actuator Networks. 2018; 7(3):34. Bonelli, Nicola; Giordano, Stefano; Procissi, Gregorio.
2018. "Enif-Lang: A Specialized Language for Programming Network Functions on

Commodity Hardware." J. Sens. Actuator Netw. 7, no. 3: 34.

Example 3: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

96.41% 86.03% 97.38% 95.91% 90.8% 34.7% 44.8% 56.87% 60.15% 77.25%

BC

"What is your number one secret to productivity?" In recording their responses, Kruse
came across some fascinating suggestions. What follows are some of my favorites. They
focus on minutes, not hours. Most people default to hour and half-hour blocks on their
calendar; highly successful people know that there are 1,440 minutes in every day and

that there is nothing more valuable than time. Money can be lost and made again, but time
spent can never be reclaimed. As legendary Olympic gymnast Shannon Miller told Kevin,
"To this day, I keep a schedule that is almost minute by minute." You must master your

minutes to master your life.
...

Energy is everything. You can’t make more minutes in the day, but you can increase your
energy to increase your attention, focus, and productivity. Highly successful people don’t
skip meals, sleep, or breaks in the pursuit of more, more, more. Instead, they view food as
fuel, sleep as recovery, and breaks as opportunities to recharge in order to get even more

done. Author of #1 bestselling book, Emotional Intelligence 2.0, and president of
TalentSmart, world’s leading provider of emotional intelligence.
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2.6.2 Low-quality Samples Identified by ASK-LLM

We look at the training samples that all ASK-LLM scoring models, on average, think are

bad (i.e., have a low percentile). To the best of our understanding, the overarching conclusions

we make by observing these qualitative samples are:

• ASK-LLM doesn’t seem to have any length bias for bad examples.

• ASK-LLM filters hateful or toxic examples that might hurt LLM training.

• ASK-LLM rejects non-contextual samples, e.g., having only questions with no answers,

repeated non-sensical content, etc. Notably, perplexity filtering performs bad in these cases, as

these low quality examples tend to have a low perplexity score.

Example 4: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

5.41% 3.86% 0.49% 0.8% 6.24% 62.97% 75.91% 86.3% 85.26% 88.11%

BC

You were a good daughter the first day or two. Now, you are only showing the worst sides
of yourself. I can only be sad and disappointed in you.

Example 5: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

1.08% 0.41% 6.16% 2.46% 1.44% 35.97% 24.13% 31.46% 51.15% 38.19%

BC

Kids can help you enrich your life? Be a better person? Learn to think about someone
else? Apparently whoever said these things has never had children because from

everything we have seen and experienced, kids are flat out horrible. College can’t come
fast enough.
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Example 6: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

1.89% 3.58% 3.11% 6.02% 0.09% 18.09% 22.8% 25.61% 19.14% 47.01%

BC

EventsThis is how you can go ice skating with real penguinsGrab your tickets before they
sell out! Can you spot anyone you know in these fun pics? EventsHow do I get tickets for

Wimbledon 2018?

2.6.3 Increasing-quality Samples Identified by ASK-LLM

We look at the training samples that ASK-LLM scoring models disagree on as we go

from Flan-T5-Small→ Flan-T5-XXL. Specifically, we look at training samples that Flan-T5-

Small thinks are of low quality, whereas Flan-T5-XXL thinks otherwise. To the best of our

understanding, our overarching conclusions by observing these qualitative samples are:

• Larger scoring models in ASK-LLM are able to identify training samples containing tail-end

of knowledge, e.g., rare world-events, rare named entities, etc.

• The increasing quality trend going from Flan-T5-Small→ Flan-T5-XXL isn’t correlated with

the quality scoring model size in perplexity filtering.
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Example 7: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

7.67% 30.45% 57.41% 78.17% 97.41% 15.56% 31.02% 24.14% 50.59% 49.64%

BC

The historic city of Manchester now features one of the most interesting public art
installations that art lovers have ever witnessed. Design studio, Acrylicize installed five
giant lamps in Piccadilly Place that represent the many historic periods that the city has

gone through, including; Art Deco, Art Nouveau, Victorian, mid-century, and
contemporary. The installation is without any doubt, a great piece of art but unlike other
artworks, these are absolutely functional as well. Each lamp provides the many visitors

with seating, shelter, light and even heat in the winters. The admirers can also witness the
historic stories of Manchester via graphic illustrations on the lamps.

Example 8: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

10.48% 31.26% 54.17% 84.17% 97.93% 30.52% 39.49% 35.79% 30.89% 25.39%

BC

The Cokin Yellow and Pink Center Spot filter has a clear center and diffused yellow and
pink edges. Theses diffused edges will be produce blur while leaving the center sharp.
The filter effect is directly influenced by the f-stop and the focal length. A lens shot at

f/1.4 will see a greater blurring effect than f/8.0 and a 85mm lens will see more blur than
a 28mm. Additionally, a longer focal length lens will visually increase the size of the

center spot area because it sees less of the filter area.
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Example 9: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

0.98% 24.84% 53.36% 88.98% 98.18% 2.3% 1.48% 2.03% 2.1% 3.07%

BC

The Disknet is a networking solution which uses the external floppy drive port of the
Amiga. It uses the same coax cabling as 10Base2 Ethernet (RG-58U/50Ohm) but is NOT
compatible and is capable of transferring at around 45k/sec. The Disknet may be the same

device as the AmigaLink, but this has not been confirmed.

2.6.4 Decreasing-quality Samples Identified by ASK-LLM

We look at the training samples that ASK-LLM scoring models disagree on as we go

from Flan-T5-Small→ Flan-T5-XXL. Specifically, we look at training samples that Flan-T5-

XXL thinks are of low quality, whereas Flan-T5-Small thinks otherwise. To the best of our

understanding, our overarching conclusions by observing these qualitative samples are:

• Smaller quality-scoring models sometimes mislabel non-informative training samples, that

contain, e.g., non-informative content, or repeated content.

• The decreasing quality trend going from Flan-T5-Small→ Flan-T5-XXL isn’t correlated with

the quality scoring model size in perplexity filtering.
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Example 10: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

64.05% 46.39% 35.92% 25.29% 9.63% 4.3% 10.21% 3.47% 3.34% 3.35%

BC

one filled with goodwill and cheer. who have supported me thru the year. I wouldn’t be
changing careers. instead of on strange people’s rears. Wishes You a Healthy, Happy

Holidays! Ah, how the mighty have fallen! And a Merry fave to you ... and a happy new
rear. From one Xmas humor story to another, enjoyed this! Thanks Jack & Susan! Doug,
I checked him out–wonderful stuff! Will pass along the good word. Fun and funny–as
always! Thanks for the cheer! I can only fave this once, but I’ve looked at it repeatedly

over what has been a bizarre week– and each time you’ve given me a laugh. That’s a gift
Bob and I’m grateful! Best of holidays to you and a great New Year!

Example 11: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

82.64% 75.2% 63.2% 29.51% 8.94% 78.34% 82.07% 91.01% 87.78% 88.02%

BC

You can now configure the minimum TLS protocol level for client connections and
connections to other servers. Refer to the following page for more information: Advanced
TLS. You can now set an Integrated Capture Point (ICP) to stopped mode by changing the
state of the corresponding configuration object to disabled; changing the state to enabled
restarts the inbound cycle of the ICP. You can now set the minimum TLS protocol level
for the Web Service Capture Point by configuring the option <sec-protocol> in the section

<settings> of the Capture Point object.
...

Support for the following databases. See the Supported Operating Environment:
eServices page for more detailed information and a list of all supported databases. No

special procedure is required to upgrade to release 8.5.201.05. Retrieved from
"https://docs.genesys.com/Documentation:RN:mm-ixn-svr85rn:mm-ixn-

svr8520105:8.5.x (2019-04-21 22:59:48)" This page was last modified on November 8,
2018, at 08:48.
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Example 12: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering

Small Base Large XL XXL Small Base Large XL XXL

62.21% 54.71% 35.73% 22.64% 6.76% 64.82% 85.95% 94.65% 93.35% 85.29%

BC

are willing to provide you with perfect services and striding for Display Stand For
Boutique , Display Stand for Boutique , Display Stand for Phone , Our product quality is

one of the major concerns and has been produced to meet the customer’s standards.
"Customer services and relationship" is another important area which we understand good
communication and relationships with our customers is the most significant power to run

it as a long term business. "We have quite a few great team customers very good at
internet marketing, QC, and dealing with kinds of troublesome trouble while in the output
approach for Display Stand For Boutique , Display Stand for Boutique , Display Stand for
Phone , We set a strict quality control system. We’ve got return and exchange policy and

you can exchange within 7 days after receive the wigs if it is in new station and we
service repairing free for our solutions. You should feel free to contact us for further

information and we are going to give you competitive price list then.

2.7 Discussion

Amortized scoring. The ASK-LLM and perplexity scorers require considerable computation—

one LLM inference call for every training sample—which is concerning from both a carbon-

emissions and cost perspective (Strubell et al., 2019b). However, we argue that the scoring

costs are amortized over many pre-training runs, which together cost significantly more than

the ASK-LLM inference calls (Luccioni et al., 2023). In practical systems, cheaper samplers

/ scoring models can also pre-filter examples for our more expensive scorers. While LLM

pre-training is often thought of as a one-time cost, this has historically not been the case. We

therefore view quality scores as a long-term investment.

LLM-Based Data Refinement. Recursively training on model-generated data causes degre-

dation in both diffusion models and LLMs, inciting concerns about whether the internet will

remain a viable source of training data (Shumailov et al., 2023; Alemohammad et al., 2023;
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Briesch et al., 2023). It is therefore somewhat surprising that LLMs are so effective at deciding

which training data to consume. Our ASK-LLM results raise important questions about whether

LLM-based filters can function as an intervention in the self-consumption loop, allowing LLMs

to self-improve.

2.8 Conclusion

We studied the performance of sampling algorithms that select high-quality data through

highly-capable proxies and maximize coverage through embedding similarity. Our experiments

reveal that LLM-based quality filtering yields a Parteo optimal efficiency tradeoff between data

quantity and model quality, with important implications for training cost, self-improvement, and

LLM training data curation.

Chapter 2, in part, is currently being prepared for submission for publication of the

material “How to Train Data-Efficient LLMs.” by Noveen Sachdeva, Benjamin Coleman, Wang-

Cheng Kang, Jianmo Ni, Lichan Hong, Ed Chi, James Caverlee, Julian McAuley, and Derek

Zhiyuan Cheng. 2024. The dissertation author was the primary investigator and author of this

paper.
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Chapter 3

Data Distillation for Recommender Sys-
tems

We leverage the Neural Tangent Kernel and its equivalence to training infinitely-wide

neural networks to devise ∞-AE: an autoencoder with infinitely-wide bottleneck layers. The

outcome is a highly expressive yet simplistic recommendation model with a single hyper-

parameter and a closed-form solution.

Leveraging ∞-AE’s simplicity, we also develop DISTILL-CF for synthesizing tiny,

high-fidelity data summaries which distill the most important knowledge from the extremely

large and sparse user-item interaction matrix for efficient and accurate subsequent data-usage

like model training, inference, architecture search, etc. This takes a data-centric approach

to recommendation, where we aim to improve the quality of logged user-feedback data for

subsequent modeling, independent of the learning algorithm. We particularly utilize the concept

of differentiable Gumbel-sampling to handle the inherent data heterogeneity, sparsity, and

semi-structuredness, while being scalable to datasets with hundreds of millions of user-item

interactions.

Both of our proposed approaches significantly outperform their respective state-of-the-art

and when used together, we observe 96−105% of ∞-AE’s performance on the full dataset with

as little as 0.1% of the original dataset size, leading us to explore the counter-intuitive question:

Is more data what you need for better recommendation?
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3.1 Introduction

The Neural Tangent Kernel (NTK) has recently advanced the theoretical understanding of

how neural networks learn (Arora et al., 2019; Jacot et al., 2018). Notably, performing Kernelized

Ridge Regression (KRR) with the NTK has been shown to be equivalent to training infinitely-

wide neural networks for an infinite number of SGD steps. Owing to KRR’s closed-form solution,

these networks can be trained in a fast and efficient manner whilst not sacrificing expressivity.

While the application of infinite neural networks is being explored in various learning problems

(Radhakrishnan et al., 2022; Arora et al., 2020), detailed comparative analyses demonstrate

that deep, finite-width networks tend to perform significantly better than their infinite-width

counterparts for a variety of standard computer-vision tasks (Lee et al., 2020).

On the contrary, for recommendation tasks, there always has been a debate of linear vs.

non-linear networks (Kong et al., 2022; Xu et al., 2021), along with the importance of increasing

the width vs. depth of the network (Cheng et al., 2016; Naumov et al., 2019). At a high level,

the general conclusion is that a well-tuned, wide and linear network can outperform shallow

and deep neural networks for recommendation (Rendle et al., 2020). We extend this debate by

introducing our model ∞-AE, an autoencoder with infinitely wide bottleneck layers and examine

its behavior on the recommendation task. Our evaluation demonstrates significantly improved

results over state-of-the-art (SoTA) models across various datasets and evaluation metrics.

A rising challenge in recommender systems research has been the increased cost of

training models on massive datasets which can involve billions of user-item interaction logs, in

terms of time, computational resources, as well as the downstream carbon footprint. Moreover,

despite anonymization efforts, privacy risks have been associated with publicly released user

data (Narayanan and Shmatikov, 2008). To this end, we further explore recommendation from a

data-centric viewpoint (Strickland, 2022), which we loosely define as:

Definition 3.1.1. (Data-centric AI) Systematic methods for improving the collected data’s

quality, thereby shifting the focus from merely acquiring large quantities of data; implicitly
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helping in a learning algorithm’s generalization, scalability, and eco-sustainability.

Previous work on data-centric techniques generally involve constructing terse data sum-

maries of large datasets, and has focused on domains with continuous, real-valued features such

as images (Zhao and Bilen, 2021; Nguyen et al., 2021b), which are arguably more amenable

to data optimization approaches. Due to the heterogeneity, sparsity, and semi-structuredness of

recommendation data, such methods are not directly applicable. Common approaches for scaling

down such recommendation datasets typically include heuristics such as random, head-user,

or k-core sampling. More principled approaches include coreset construction (Sachdeva et al.,

2022c) that focus on optimizing for picking the set of data-points that are the most representative

from a given dataset, and are generally shown to out-perform various heuristic sampling strate-

gies. However, synthesizing informative summaries for recommendation datasets still remains a

challenge.

Consequently, we propose DISTILL-CF, a data distillation framework for collaborative

filtering (CF) datasets that utilizes ∞-AE in a bilevel optimization objective to create highly

compressed, informative, and generic data summaries. DISTILL-CF employs efficient multi-step

differentiable Gumbel-sampling (Jang et al., 2017) at each step of the optimization to encompass

the heterogeneity, sparsity, and semi-structuredness of recommendation data. We further provide

an analysis of the denoising effect observed when training the model on the synthesized versus

the full dataset. To summarize, in this chapter, we make the following contributions:

• We develop ∞-AE: an infinite-width autoencoder for recommendation, that aims to reconstruct

the incomplete preferences in a user’s item consumption sequence. We demonstrate its efficacy

on four datasets, and demonstrate that ∞-AE outperforms complicated SoTA models with only

a single fully-connected layer, closed-form optimization, and a single hyper-parameter. We

believe our work to be the first to demonstrate that an infinite-width network can outperform

their finite-width SoTA counterparts for practical scenarios like recommendation.

• We subsequently develop DISTILL-CF: a novel data distillation framework that can synthesize
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tiny yet accurate data summaries for a variety of modeling applications. We empirically

demonstrate similar performance of models trained on the full dataset versus training the same

models on 2−3 orders smaller data summaries synthesized by DISTILL-CF. Notably, DISTILL-

CF and ∞-AE are complementary for each other’s practicality, as ∞-AE’s closed-form solution

enables DISTILL-CF to scale to datasets with hundreds of millions of interactions; whereas,

DISTILL-CF’s succinct data summaries help improving ∞-AE’s restrictive training complexity,

and achieving SoTA performance when trained on these tiny data summaries.

• Finally, we also note that DISTILL-CF has a strong data denoising effect, validated with a

counter-intuitive observation — if there is noise in the original data, models trained on less

data synthesized by DISTILL-CF can be better than the same model trained on the entire

original dataset. Such observations, along with the strong data compression results attained

by DISTILL-CF, reinforce our data-centric viewpoint to recommendation, encouraging the

community to think more about the quality of collected data, rather than its quantity.

3.2 Related Work

3.2.1 Autoencoders for recommendation

Recent approaches to implicit feedback recommendation involve building models that

can re-construct an incomplete user preference list using autoencoders (Liang et al., 2018;

Steck, 2019; Sachdeva et al., 2019; Ma et al., 2019). The CDAE model (Wu et al., 2016) first

introduced this idea and used a standard denoising autoencoder for recommending new items

to users. MVAE (Liang et al., 2018) later extended this idea to use variational autoencoders,

and provided a principled approach to perform variational inference for this model architecture.

More recently, EASE (Steck, 2019) proposed using a shallow autoencoder and estimates only

an item-item similarity matrix by performing ordinary least squares regression on the relevance

matrix, resulting in closed-form optimization.
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3.2.2 Infinite neural networks

The Neural Tangent Kernel (NTK) (Jacot et al., 2018) has gained significant attention

because of its equivalence to training infinitely-wide neural networks by performing KRR with

the NTK. Recent work also demonstrated the double-descent risk curve (Belkin et al., 2018) that

extends the classical regime of train vs. test error for overparameterized neural networks, and

plays a crucial role in the generalization capabilities of such infinite neural networks. However,

despite this emerging promise of utilizing NTK for learning problems, detailed comparative

analyses (Novak et al., 2019; Lee et al., 2020; Arora et al., 2019) for computer vision tasks

demonstrate that finite-width networks are still significantly more accurate than infinite-width

ones. Looking at recommendation systems, (Xu et al., 2021) performed a theoretical comparison

between Matrix Factorization (MF) and Neural MF (He et al., 2017) by studying their expressivity

in the infinite-width limit, comparing the NTK of both of these algorithms. Notably, their settings

involved the typical (user-ID, item-ID) input to the recommendation model, and observed results

that were equivalent to a random predictor. (Radhakrishnan et al., 2022) performed a similar

study that performed matrix completion using the NTK of a single layer fully-connected neural

network, but assumed meaningful feature-priors available beforehand.

3.2.3 Data sampling & distillation

Data sampling is ubiquitous — sampling negatives while contrastive learning (Robinson

et al., 2021; Kalantidis et al., 2020), sampling large datasets for fast experimentation (Sachdeva

et al., 2022c), sampling for evaluating expensive metrics (Krichene and Rendle, 2020), etc.

In this chapter, we primarily focus on sampling at the dataset level, principled approaches of

which can be categorized into: (1) coreset construction methods that aim to pick the most useful

datapoints for subsequent model training (Borsos et al., 2020a; Killamsetty et al., 2021; S et al.,

2021; Kazemi et al., 2021). These methods typically assume the availability of a submodular

set-function f : V 7→ R+ ∀ V ⊆ X for a given dataset X (see (Bilmes, 2022) for a systematic
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review on submodularity), and use this set-function f as a proxy to guide the search for the

most informative subset; and (2) dataset distillation: instead of picking the most informative

data-points, dataset distillation techniques aim to synthesize data-points that can accurately

distill the knowledge from the entire dataset into a small, synthetic data summary. Originally

proposed in (Wang et al., 2018b), the authors built upon the notions of gradient-based hyper-

parameter optimization (Maclaurin et al., 2015a) to synthesize representative images for model

training. Subsequently, a series of works (Zhao et al., 2021; Zhao and Bilen, 2021; Nguyen

et al., 2021a;b) propose various subtle modifications to the original framework, for improving the

sample-complexities of models trained on data synthesized using their algorithms. Note that such

distillation techniques focused on continuous data like images, which are trivial to optimize in

the original data-distillation framework. More recently, (Jin et al., 2022b) proposed a distillation

technique for synthesizing fake graphs, but also assumed to have innate node representations

available beforehand, prohibiting their method’s application for recommendation data.

3.3 ∞-AE: Infinite-width Autoencoders for Recommenda-
tion

3.3.1 Notation

Given a recommendation dataset D := {(useri, itemi, relevancei)}n
i=1 consisting of n

user-item interactions defined over a set of users U , set of items I, and operating over a

binary relevance score (implicit feedback); we aim to best model user preferences for item

recommendation. The given dataset D can also be viewed as an interaction matrix, X ∈ R|U |×|I|

where each entry Xu,i either represents the observed relevance for item i by user u or is missing.

Note that X is typically extremely sparse, i.e., n≪ |U|× |I|. More formally, we define the

problem of recommendation as accurate likelihood modeling of P(i | u,D) ∀u ∈ U , ∀i ∈ I.
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Algorithm 3. ∞-AE model training

Input: User set U ; dataset X ∈ R|U |×|I|; NTK K : R|I|×R|I| 7→ R ; regularization λ ∈ R
Output: Dual parameters α ∈ R|U |×|I|

1: procedure FIT(U ,X,K)
2: K← [0]|U |×|U | ▷ Zero Initialization
3: Ku,v←K(Xu,Xv) ∀u ∈ U ,v ∈ U
4: α ← (K+λ I)−1 ·X
5: return α

Algorithm 4. ∞-AE inference

Input: User set U ; dataset X ∈ R|U |×|I|; NTK
K : R|I|×R|I| 7→ R; dual params. α ∈ R|U |×|I| ; inference user history X̂u ∈ R|I|
Output: Prediction ŷ ∈ R|I|

1: procedure PREDICT(U ,X, X̂u,K,α)
2: K← [0]|U | ▷ Zero Initialization
3: Kv←K(X̂u,Xv) ∀v ∈ U
4: ŷ← softmax(K ·α)
5: return ŷ

3.3.2 Model

∞-AE takes an autoencoder approach to recommendation, where the all of the bottleneck

layers are infinitely-wide. Firstly, to make the original bi-variate problem of which item to

recommend to which user more amenable for autoencoders, we make a simplifying assumption

that a user can be represented only by their historic interactions with items, i.e., the much larger

set of users lie in the linear span of items. This gives us two kinds of modeling advantages: (1)

we no longer have to find a unique latent representation of users; and (2) allows ∞-AE to be

trivially applicable for any user not in U . More specifically, for a given user u, we represent

it by the sparse, bag-of-words vector of historical interactions with items Xu ∈ R|I|, which

is simply the uth row in X . We then employ the Neural Tangent Kernel (NTK) (Jacot et al.,

2018) of an autoencoder that takes the bag-of-items representation of users as input and aims

to reconstruct it. Due to the infinite-width correspondence (Jacot et al., 2018; Arora et al.,
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Algorithm 5. Data synthesis using DISTILL-CF

Input: User set U ; dataset X ∈ R|U |×|I|; NTK
K : R|I|×R|I| 7→ R ; support user size µ ∈ R ; gumbel softmax temperature
τ ∈ R ; reg. const. λ2 ∈ R ; SGD batch-size b,step-size η ∈ R
Output: Synthesized data Xs ∈ Rµ×|I|

1: procedure SAMPLE(n,U ,X)
2: U ′ ∼ U ▷ Randomly sample n users from U
3: X′← Xu ∀u ∈ U ′ ▷ Retrieve corresponding rows from X
4: return U ′,X′
5: procedure SYNTHESIZE(U ,X,K)
6: U s,Xs← SAMPLE(µ,U ,X) ▷ Sample support data
7: for steps = 0 . . .ξ do
8: X̂s← σ

[
∑

γ

i=1 gumbelτ(softmax(Xs))
]

9: αs← FIT(U s, X̂s,K) ▷ Fit ∞-AE on support data
10: Ub,Xb← SAMPLE(b,U ,X)
11: X̃← [0]b×|I|
12: X̃u← PREDICT(U s, X̂s,Xb

u,K,αs) ∀u∼ Ub ▷ Predict for sampled users
13: L← Xb · log(X̃)+(1−Xb) · log(1− X̃)+λ2 · ||X̂s||1 ▷ Re-construction loss

14: Xs← Xs−η · ∂L
∂Xs ▷ SGD on Xs

15: return Xs

2019), performing Kernelized Ridge Regression (KRR) with the estimated NTK is equivalent

to training an infinitely-wide autoencoder for an infinite number of SGD steps. More formally,

given the NTK, K : R|I|×R|I| 7→ R over an RKHS H of a single-layer autoencoder with an

activation function σ (see (Radhakrishnan, 2022) for the NTK derivation of a fully-connected

neural network), we reduce the recommendation problem to KRR as follows:

arg min
[α j]

|U |
j=1

∑
u∈U
∥ f (Xu | α)−Xu∥2

2 +λ · ∥ f∥2
H

s.t. f (Xu | α) =
|U |
∑
j=1

α j ·K(Xu,Xu j) ; K(Xu,Xv) = σ̃(XT
u Xv)+ σ̃ ′(XT

u Xv) ·XT
u Xv

(3.1)

Where λ is a fixed regularization hyper-parameter, α := [α1;α2 · · · ;α|U |] ∈ R|U |×|I| are
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the set of dual parameters we are interested in estimating, σ̃ represents the dual activation

of σ (Daniely et al., 2016), and σ̃ ′ represents its derivative. Defining a gramian matrix K ∈

R|U |×|U | where each element can intuitively be seen as the similarity of two users, i.e., Ki, j :=

K(Xui,Xu j), the optimization problem defined in Equation (3.1) has a closed-form solution given

by α̂ = (K +λ I)−1 ·X . We can subsequently perform inference for any novel user as follows:

P̂(· | u,D) = softmax( f (Xu | α̂)). We also provide ∞-AE’s training and inference pseudo-codes

in Algorithms 3 and 4.

3.3.3 Scalability

We carefully examine the computational cost of ∞-AE’s training and inference. Starting

with training, ∞-AE has the following computationally-expensive steps: (1) computing the

gramian matrix K; and (2) performing its inversion. The overall training time complexity

thus comes out to be O(|U|2 · |I|+ |U|2.376) if we use the Coppersmith-Winograd algorithm

(Coppersmith and Winograd, 1987) for matrix inversion, whereas the memory complexity is

O(|U| · |I|+ |U|2) for storing the data matrix X and the gramian matrix K. As for inference

for a single user, both the time and memory requirements are O(|U| · |I|). Observing these

computational complexities, we note that ∞-AE can be difficult to scale-up to larger datasets

naïvely. To this effect, we address ∞-AE’s scalability challenges in DISTILL-CF (Section 3.4),

by leveraging a simple observation from support vector machines: not all datapoints (users in

our case) are important for model learning. Additionally, in practice, we can perform all of these

matrix operations on accelerators like GPU/TPUs and achieve a much higher throughput.

3.4 DISTILL-CF

3.4.1 Motivation

Representative sampling of large datasets has numerous downstream applications. Con-

sequently, in this section we develop DISTILL-CF: a data distillation framework to synthesize
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small, high-fidelity data summaries for collaborative filtering (CF) data. We design DISTILL-CF

with the following rationales: (1) mitigating the scalability challenges in ∞-AE by training it only

on the terse data summaries generated by DISTILL-CF; (2) improving the sample complexity

of existing, finite-width recommendation models; (3) addressing the privacy risks of releasing

user feedback data by releasing their synthetic data summaries instead; and (4) abating the down-

stream CO2 emissions of frequent, large-scale recommendation model training by estimating

their parameters only on much smaller data summaries synthesized by DISTILL-CF.

3.4.2 Challenges

Existing work in data distillation has focused on continuous domain data such as images

(Nguyen et al., 2021a;b; Zhao et al., 2021; Zhao and Bilen, 2021), and are not directly applicable

to heterogeneous and semi-structured domains such as recommender systems and graphs. This

problem is further exacerbated since the data for these tasks is severely sparse. For example,

in recommendation scenarios, a vast majority of users interact with very few items (Jain et al.,

2016). Likewise, the nodes in a number of graph-based datasets tend to have connections with

very small set of nodes (Zheng et al., 2022). We will later show how our DISTILL-CF framework

is elegantly able to circumvent both these issues while being accurate, and scalable to large

datasets.

3.4.3 Methodology

Given a recommendation dataset D, we aim to synthesize a smaller, support dataset Ds

that can match the performance of recommendation models φ : U ×I 7→ R when trained on D

versus Ds. We take inspiration from (Nguyen et al., 2021a), which is also a data distillation

technique albeit for images. Formally, given a recommendation model φ , a held-out validation

set Dval, and a differentiable loss function l : R×R 7→ R that measures the correctness of a

prediction with the actual user-item relevance, the data distillation task can be viewed as the

following bilevel optimization problem:
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arg min
Ds

E
(u,i,r)∼Dval

[l (φ∗Ds(u, i),r)] (3.2)

s.t. φ
∗
Ds ≜ arg min

φ

E
(u,i,r)∼Ds

[l(φ(u, i),r)] (3.3)

This optimization problem has an outer loop which searches for the most informative

support dataset Ds given a fixed recommendation model φ∗, whereas the inner loop aims to find

the optimal recommendation model for a fixed support set. In DISTILL-CF, we use ∞-AE as the

model of choice at each step of the inner loop for two reasons: (1) as outlined in Section 3.3, ∞-

AE has a closed-form solution with a single hyper-parameter λ , making the inner-loop extremely

efficient; and (2) due to the infinite-width correspondence (Jacot et al., 2018; Arora et al., 2019),

∞-AE is equivalent to training an infinitely-wide autoencoder on Ds, thereby not compromising

on performance.

For the outer loop, we focus only on synthesizing fake users (given a fixed user budget

µ) through a learnable matrix X s ∈ Rµ×|I| which stores the interactions for each fake user in the

support dataset. However, to handle the discrete nature of the recommendation problem, instead

of directly optimizing for X s, DISTILL-CF instead learns a continuous prior for each user-item

pair, denoting the importance of sampling that interaction in our support set (similar to the notion

of propensity (Sachdeva et al., 2020; Schnabel et al., 2016)). We then sample X̂ s ∼ X s to get our

final, discrete support set.

Instead of keeping this sampling operation post-hoc, i.e., after solving for the optimization

problem in Equation (3.2); we perform differentiable Gumbel-sampling (Jang et al., 2017) on

each row (user) in X s at every optimization step, thereby ensuring search only over sparse and

discrete support sets. A notable property of recommendation data is that each user can interact

with a variable number of items (this distribution is typically long-tailed due to Zipf’s law (Wu

et al., 2020)). We circumvent this dynamic user sparsity issue by taking multiple Gumbel-samples
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for each user, with replacement. This implicitly gives DISTILL-CF the freedom to control the

user and item popularity distributions in the generated data summary X̂ s by adjusting the entropy

in the prior-matrix X s.

Having controlled for the discrete and dynamic nature of recommendation data by the

multi-step Gumbel-sampling trick, we further focus on maintaining the sparsity of the synthesized

data. To do so, in addition to the outer-loop reconstruction loss, we add an L1-penalty over X̂ s to

promote and explicitly control its sparsity (Hastie et al., 2009). Furthermore, tuning the number

of Gumbel samples we take for each fake user, gives us more control over the sparsity in our

generated data summary. More formally, the final optimization objective in DISTILL-CF can be

written as:

arg min
X s

E
u∼U

[
Xu · log(KXuX̂ s ·α)+(1−Xu) · log(1−KXuX̂ s ·α)

]
+λ2 · ||X̂ s||1

s.t. α = (KX̂ sX̂ s +λ I)−1 · X̂ s ; X̂ s = σ

(
γ

∑
i=1

Gumbelτ(softmax(X s))

) (3.4)

Where, λ2 represents an appropriate regularization hyper-parameter for minimizing the

L1-norm of the sampled support set X̂ s, KXY represents the gramian matrix for the NTK of ∞-AE

over X and Y as inputs, τ represents the temperature hyper-parameter for Gumbel-sampling, γ

denotes the number of samples to take for each fake user in X s, and σ represents an appropriate

activation function which clips all values over 1 to be exactly 1, thereby keeping X̂ s binary. We

use hard-tanh in our experiments. We also provide DISTILL-CF’s pseudo-code in Algorithm 5.

Further notes on multi-step Gumbel Sampling. We now discuss the Gumbel sampling

procedure described in Equation (3.4), in more detail. Given the sampling prior matrix X s, that

intuitively denotes the importance of sampling a specific user-item interaction, we intend to

sample X̂ s which will finally be used for downstream model applications. Note that for each row

(user) in X s, we need multiple, but variable number of samples to conform to the Zipfian law for
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user and item popularity. This requirement in itself rejects the possibility to use top-K sampling

which will sample the same number of items for each row. Furthermore, to keep X̂ s∼X s sampling

part of the optimization procedure, we need to compute the gradients of the logistic objective in

Equation (3.4) with respect to X s, and hence need the entire process to be differentiable. This

requirement prohibits the usage of other popular strategies like Nucleus sampling (Holtzman

et al., 2020), which is non-differentiable. To workaround all the requirements, we devise a

multi-step Gumbel sampling strategy where for each row (user) we take a fixed number of

Gumbel samples (γ), with replacement, followed by taking a union of all the sampled user-item

interactions. Note that the union operation ensures that due to sampling with replacement, if a

user-item interaction is sampled multiple times, we sample it only once. Hence, the number of

sampled interactions is strictly upper-bounded by γ×|I|. To be precise, the sampling procedure

is formalized below:

X̂ s
u,i = σ

 γ

∑
exp(

log(X s
u,i)+gu,i

τ
)

∑ j∈I exp(
log(X s

u, j)+gu, j

τ
)

 s.t. gu,i ∼ Gumbel(µ = 0,β = 1) ∀u ∈ U , i ∈ I

Where σ represents an appropriate function which clamps all values between 0 and 1. In

our experiments, we use hard-tanh.

3.4.4 Scalability

We now analyze the time and memory requirements for optimizing Equation (3.4). The

inner loop’s major component clearly shares the same complexity as ∞-AE. However, since

the parameters of ∞-AE (α in Equation (3.1)) are now being estimated over the much smaller

support set X̂ s, the time complexity reduces to O(µ2 · |I|) and memory to O(µ · |I|), where µ

typically only lies in the range of hundreds for competitive performance. On the other hand, for

performing multi-step Gumbel-sampling for each synthetic user, the memory complexity of a

naïve implementation would be O(γ ·µ · |I|) since AutoGrad stores all intermediary variables
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for backward computation. However, since the gradient of each Gumbel-sampling step is

independent of other sampling steps and can be computed individually, using jax.custom_vjp,

we reduced its memory complexity to O(µ · |I|), adding nothing to the overall inner-loop

complexity.

For the outer loop, we optimize the logistic reconstruction loss using SGD where we

randomly sample a batch of b users from U and update X s directly. In totality, for an ξ number of

outer-loop iterations, the time complexity to run DISTILL-CF is O(ξ · (µ2 +b+b ·µ) · |I|), and

O(b ·µ +(µ +b) · |I|) for memory. In our experiments, we note convergence in only hundreds of

outer-loop iterations, making DISTILL-CF scalable even for the largest of the publicly available

datasets and practically useful.

3.5 Empirical Setup

3.5.1 Datasets

We use four recommendation datasets with varying sizes and sparsity characteristics. A

brief set of data statistics can be found in Table 3.1. For each user in the dataset, we randomly split

their interaction history into 80/10/10% train-test-validation splits. Following recent warnings

against unrealistic dense preprocessing of recommender system datasets (Sachdeva and McAuley,

2020; Sachdeva et al., 2022c), we only prune users that have fewer than 3 interactions to enforce

at least one interaction per user in the train, test, and validation sets. No such preprocessing is

followed for items.

3.5.2 ∞-AE Baselines

We compare ∞-AE with various baseline and SoTA competitors as surveyed in recent

comparative analyses (Anelli et al., 2022; Dacrema et al., 2019). We provide a high-level

overview of the competitor models used in our experiments:

• PopRec: This implicit-feedback baseline simply recommends the most popular items in the
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Table 3.1. Brief set of statistics of the datasets used in this chapter.

Dataset # Users # Items # Interactions Sparsity

Amazon Magazine (Ni et al., 2019b) 3k 1.3k 12k 99.7%
ML-1M (Harper and Konstan, 2015) 6k 3.7k 1M 95.6%

Douban (Zhu et al., 2019) 2.6k 34k 1.2M 98.7%
Netflix (Bennett and Lanning, 2007) 476k 17k 100M 98.9%

catalog irrespective of the user. Popularity of an item is estimated by their empirical frequency

in the logged train-set.

• Bias-only: This baseline learns scalar user and item biases for all users and item in the

train-set, optimized by solving a least-squares regression problem between the predicted and

observed relevance. More formally, given a user u and an item i, the relevance is predicted as

r̂u,i = α +βu +βi, where α ∈ R is a global offset bias, and βu,βi ∈ R are the user and item

specific biases respectively. This model doesn’t consider any cross user-item interactions, and

hence lacks expressivity.

• MF: Building on top of the bias-only baseline, the Matrix Factorization algorithm tries to

represent the users and items in a shared latent space, modeling their relevance by the dot-

product of their representations. More formally, given a user u and an item i, the relevance

is predicted as r̂u,i = α +βu +βi +(γu · γi), where α,βu,βi are global, user, and item biases

respectively, and γu,γi ∈Rd represent the learned user and item representations. The biases and

latent representations in this model are estimated by optimizing for the Bayesian Personalized

Ranking (BPR) loss (Rendle et al., 2009).

• NeuMF (He et al., 2017): As a neural extension to MF, Neural Matrix Factorization aims

to replace the linear cross-interaction between the user and item representations with an

arbitrarily complex, non-linear neural network. More formally, given a user u and an item

i, the relevance is predicted as r̂u,i = α +βu +βi +φ(γu,γi), where α,βu,βi are global, user,
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and item biases respectively, γu,γi ∈ Rd represent the learned user and item representations,

and φ : Rd×Rd 7→ R is a neural network. The parameters for this model are again optimized

using the BPR loss.

• MVAE (Liang et al., 2018): This method proposed using variational auto-encoders for the

task of collaborative filtering. Their main contribution was to provide a principled approach to

perform variational inference for the task of collaborative filtering.

• LightGCN (He et al., 2020): This simplistic Graph Convolution Network (GCN) framework

removes all the steps in a typical GCN (Kipf and Welling, 2017a), only keeping a linear

neighbourhood aggregation step. This light model demonstrated promising results for the

collaborative filtering scenario, despite its simple architecture. We use the official public

implementation1 for our experiments.

• EASE (Steck, 2019): This linear model proposed doing ordinary least squares regression by

estimating an item-item similarity matrix, that can be viewed as a zero-depth auto-encoder.

Performing regression gives them the benefit of having a closed-form solution. Despite its

simplicity, EASE has been shown to out-perform most of the deep non-linear neural networks

for the task of collaborative filtering.

3.5.3 DISTILL-CF Baselines

Given a recommendation datasetD := {(useri, itemi, relevancei)}n
i=1 consisting of n user-

item interactions defined over a set of users U , set of items I, and operating over a binary

relevance score (implicit feedback); we aim to make a p% sub-sample of D, defined in terms of

number of interactions. Below are the different sampling strategies we used in comparison with

DISTILL-CF:

• Interaction-RNS: Randomly sample p% interactions from D.
1https://github.com/gusye1234/LightGCN-PyTorch
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• User-RNS: Randomly sample a user u∼ U , and add all of its interactions into the sampled set.

Keep repeating this procedure until the size of sampled set is less than p×n
100 .

• Head user: Sample the user u from U with the most number of interactions, and add all of its

interactions into the sampled set. Remove u from U . Keep repeating this procedure until the

size of sampled set is less than p×n
100 .

• SVP-CF (user): This coreset mining technique was introduced in Chapter 1, and proceeds by

first training a proxy model on D for e epochs. SVP-CF then modifies the forgetting events

approach (Toneva et al., 2019), and counts the inverse AUC for each user in U , averaged

over all e epochs. Just like head-user sampling, we now iterate over users in the order of

their forgetting count, and keep sampling users until we exceed our sampling budget of p×n
100

interactions. We use the bias-only model as the proxy.

3.5.4 Evaluation metrics

We evaluate all models on a variety of pertinent ranking metrics, namely AUC, HitRate

(HR@k), Normalized Discounted Cumulative Gain (nDCG@k), and Propensity-scored Precision

(PSP@k), each focusing on different components of the algorithm performance. A notable

addition to our list of metrics compared to the literature is the PSP metric (Jain et al., 2016),

which we adapt to the recommendation use case as an indicator of performance on tail items.

We now present formal definitions of all the aforementioned ranking metrics:

• AUC: Intuitively defined as a threshold independent classification performance measure, AUC

can also be interpreted as the expected probability of a recommender system ranking a positive

item over a negative item for any given user. More formally, given a user u from the user set U

with its set of positive interactions I+u ⊆ I with a similarly defined set of negative interactions

I−u = I\I+u , the AUC for a relevance predictor φ(u, i) is defined as:

AUC(φ) := E
u∼U

[
E

i+∼I+
u

[
E

i−∼I−u

[
φ(u, i+)> φ(u, i−)

]]]

84



Table 3.2. List of all the hyper-parameters grid-searched for ∞-AE, DISTILL-CF, and baselines.

Hyper-Parameter Model Amz. Magazine ML-1M Douban Netflix

Latent size

MF

{4, 8, 16, 32, 50, 64, 128}
NeuMF

LightGCN
MVAE

# Layers

MF

{1, 2, 3}
NeuMF

LightGCN
MVAE
∞-AE {1}

Learning rate

MF

{0.001, 0.006, 0.01} {0.006}
NeuMF

LightGCN
MVAE

DISTILL-CF {0.04}

Dropout

MF

{0.0, 0.3, 0.5}
NeuMF

LightGCN
MVAE

λ

EASE {1, 10, 100, 1K, 10K}
∞-AE {0.0, 1.0, 5.0, 20.0 50.0, 100.0}

DISTILL-CF {1e-5, 1e-3, 0.1, 1.0, 5.0, 50.0}

λ2 DISTILL-CF
{1e-3, 10.0}

avg. # of interactions per user

τ DISTILL-CF {0.3, 0.5, 0.7, 5.0}

γ DISTILL-CF {50, 100, 200} {200, 500, 700} {500, 1K, 2K} {500, 700}
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• HitRate (HR@k): Another name for the recall metric, this metric estimates how many positive

items are predicted in a top-k recommendation list. More formally, given recommendation

lists Ŷu ⊆ IK ∀u ∈ U and the set of positive interactions I+u ⊆ I ∀u ∈ U :

HR@k := E
u∼U

[ |Ŷu∩I+u |
|I+u |

]

• Normalized Discounted Cumulative Gain (nDCG@k): Unlike HR@k which gives equal

importance to all items in the recommendation list, the nDCG@k metric instead gives a higher

importance to items predicted higher in the recommendation list and performs logarithmic

discounting further down. More formally, given sorted recommendation lists Ŷu ⊆ IK ∀u ∈ U

and the set of positive interactions I+u ⊆ I ∀u ∈ U :

nDCG@k := E
u∼U

[
DCGu

IDCGu

]
; DCGu :=

k

∑
i=1

Ŷ i
u ∈ I+u

log2(i+1)
; IDCGu :=

|I+
u |

∑
i=1

1
log2(i+1)

• Propensity-scored Precision (PSP@k): Originally introduced in (Jain et al., 2016) for

extreme classification scenarios (Prabhu et al., 2018; Jain et al., 2019; Mittal et al., 2021), the

PSP@k metric intuitively accounts for missing labels (items in the case of recommendation) by

dividing the true relevance of an item (binary) with a propensity correction term. More formally,

given recommendation lists Ŷu ⊆ IK ∀u ∈ U , the set of positive interactions I+u ⊆ I ∀u ∈ U ,

and a propensity model φ : I 7→ R:

PSP@k := E
u∼U

[
uPSPu

mPSPu

]
; uPSPu :=

1
k
·

k

∑
i=1

Ŷ i
u ∈ I+u
φ(Ŷ i

u)
; mPSPu := ∑

i∈I+
u

1
φ(i)

For φ , we adapt the propensity model proposed in (Jain et al., 2016) for the case of recommen-

dation as:
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φ(i)≡ E
u∼U

[
P(ru,i = 1|r∗u,i = 1)

]
=

1
1+C · e−A·log(ni+B)

; C = (logN−1) · (B+1)A

Where, N represents the total number of interactions in the dataset, and ni represents the

empirical frequency of item i in the dataset. We use A = 0.55 and B = 1.5 for our experiments.

3.5.5 Training details

We implement both ∞-AE and DISTILL-CF using JAX (Bradbury et al., 2018) along

with the Neural-Tangents package (Novak et al., 2020) for the relevant NTK computations.2,3

We re-use the official implementation of LightGCN, and implement the remaining competitors

ourselves. To ensure a fair comparison, we conduct a hyper-parameter search for all competitors

on the validation set. More details on the hyper-parameters for ∞-AE, DISTILL-CF, and all

competitors can be found in Table 3.2. All of our experiments are performed on a single RTX

3090 GPU, with a random-seed initialization of 42.

We also make use of a validation-set, and evaluate the performance of the ∞-AE model

trained in DISTILL-CF’s inner-loop to perform hyper-parameter search, as well as early exit.

Note that we don’t validate the inner-loop’s λ at every outer-loop iteration, but keep changing

it on-the-fly at each validation cycle. We notice this trick gives us a much faster convergence

compared to keeping λ fixed for the entire distillation procedure, and validating for it like other

hyper-parameters.

3.6 Experiments

3.6.1 Does ∞-AE outperform existing methods?

We compare the performance of ∞-AE with various baseline and competitor methods in

Table 3.3. We also include the results of training ∞-AE on data synthesized by DISTILL-CF

with an additional constraint of having a budget of only µ = 500 synthetic users. For the sake

2Our implementation for ∞-AE is available at https://github.com/noveens/infinite_ae_cf
3Our implementation for DISTILL-CF is available at https://github.com/noveens/distill_cf
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Table 3.3. Comparison of ∞-AE with different methods on various datasets. All metrics are
better when higher. Brief set of data statistics can be found in Table 1.2. Bold values represent
the best in a given row, and underlined represent the second-best. Results for ∞-AE on the
Netflix dataset (marked with a *) consist of random user-sampling with a max budget of 25K
≡ 5.4% users, and results for DISTILL-CF + ∞-AE have a user-budget of 500 for all datasets.

Dataset Metric PopRec
Bias
only

MF NeuMF
Light
GCN

EASE MVAE ∞-AE
DISTILL-CF

+ ∞-AE

Amazon
Magazine

AUC 0.8436 0.8445 0.8475 0.8525 0.8141 0.6673 0.8507 0.8539 0.8584
HR@10 14.35 14.36 18.36 18.35 27.12 26.31 17.94 27.09 28.27

HR@100 59.5 59.35 58.94 59.3 58.00 48.36 57.3 60.86 61.78
NDCG@10 8.42 8.33 13.1 13.6 22.57 22.84 12.18 23.06 23.81
NDCG@100 19.38 19.31 21.76 21.13 29.92 28.27 19.46 30.75 31.75

PSP@10 6.85 6.73 9.24 9.00 13.2 12.96 8.81 13.22 13.76

ML-1M

AUC 0.8332 0.8330 0.9065 0.9045 0.9289 0.9069 0.8832 0.9457 0.9415
HR@10 13.07 12.93 24.63 23.25 27.43 28.54 21.7 31.51 31.16

HR@100 30.38 29.63 53.26 51.42 55.61 57.28 52.29 60.05 58.28
NDCG@10 13.84 13.74 25.65 24.44 28.85 29.88 22.14 32.82 32.52
NDCG@100 19.49 19.13 35.62 33.93 38.29 40.16 33.82 42.53 41.29

PSP@10 1.10 1.07 2.41 2.26 2.72 3.06 2.42 3.22 3.15

Douban

AUC 0.8945 0.8932 0.9288 0.9258 0.9391 0.8570 0.9129 0.9523 0.9510
HR@10 11.06 10.71 12.69 12.79 15.98 17.93 15.36 23.56 22.98

HR@100 17.07 16.63 20.29 19.69 22.38 25.41 22.82 28.37 27.20
NDCG@10 11.63 11.24 13.21 13.33 16.68 19.48 16.17 24.94 24.20
NDCG@100 12.63 12.27 14.96 14.39 17.20 19.55 17.32 23.26 22.21

PSP@10 0.52 0.50 0.63 0.63 0.86 1.06 0.87 1.28 1.24

Netflix

AUC 0.9249 0.9234 0.9234 0.9244

Timed
Out

0.9418 0.9495 0.9663* 0.9728
HR@10 12.14 11.49 11.69 11.06 26.03 20.6 29.69* 29.57

HR@100 28.47 27.66 27.72 26.76 50.35 44.53 50.88* 49.24
NDCG@10 12.34 11.72 12.04 11.48 26.83 20.85 30.59* 30.54
NDCG@100 17.79 16.95 17.17 16.40 35.09 29.22 36.59* 35.58

PSP@10 1.45 1.28 1.31 1.21 3.59 2.77 3.75* 3.62
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Figure 3.1. Performance of ∞-AE with the amount of users (log-scale) sampled according to
different sampling strategies over the HR@10 and PSP@10 metrics. Results for the Netflix
dataset have been clipped due to memory constraints.

of reference, for our largest dataset (Netflix), this equates to a mere 0.1% of the total users.

There are a few prominent observations from the results in Table 3.3. First, ∞-AE significantly

outperforms SoTA recommendation algorithms despite having only a single fully-connected

layer, and also being much simpler to train and implement. Second, we note that ∞-AE trained

on just 500 users generated by DISTILL-CF is able to attain 96−105% of ∞-AE’s performance

on the full dataset while also outperforming all competitors trained on the full dataset.

3.6.2 How sample efficient is ∞-AE?

Having noted from Table 3.3 that ∞-AE is able to outperform all SoTA competitors

with as little as 0.1% of the original users, we now aim to better understand ∞-AE’s sample

complexity, i.e., the amount of training data ∞-AE needs in order to perform accurate recommen-

dation. In addition to DISTILL-CF, we use the following popular heuristics for down-sampling

(Section 2.4.3): interaction random negative sampling (RNS); user RNS; head user sampling; and

a coreset construction technique, SVP-CF user (Chapter 1). We then train ∞-AE on sampled data

for different sampling budgets, while evaluating on the original test-set. We plot the performance
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Figure 3.2. Performance of the (top) EASE model, and (bottom) MVAE model trained on
different amounts of users (log-scale) sampled by different samplers on the ML-1M dataset.

for all datasets computed over the HR@10 and PSP@10 metrics in Figure 3.1. We observe

that while all heuristic sampling strategies tend to be closely bound to the identity line with a

slight preference to user RNS, ∞-AE when trained on data synthesized by DISTILL-CF tends to

quickly saturate in terms of performance when the user budget is increased, even on the log-scale.

This indicates DISTILL-CF’s superiority in generating terse data summaries for ∞-AE, thereby

allowing it to get SoTA performance on the largest datasets with as little as 500 users.

3.6.3 How transferable are the data summaries synthesized by DISTILL-
CF?

In order to best evaluate the quality and universality of data summaries synthesized by

DISTILL-CF, we train and evaluate EASE (Steck, 2019) on data synthesized by DISTILL-CF.

Note that the inner loop of DISTILL-CF still consists of ∞-AE, but we nevertheless train and

evaluate both EASE and MVAE to test the synthesized data’s universality. We re-use the heuristic

sampling strategies from the previous experiment for comparison with DISTILL-CF. From the

results in Figure 3.2, we observe similar scaling laws as ∞-AE’s for the heuristic samplers as

well as DISTILL-CF. This behaviour validates the re-usability of data summaries generated by
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Figure 3.3. Performance drop of the EASE model trained on data sampled by different sampling
strategies when there is varying levels of noise in the data. Performance drop is relative to
training on the full, noise-free ML-1M dataset.
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Figure 3.4. Performance of ∞-AE on data sampled by DISTILL-CF and User-RNS when there
is noise in the data. Results for EASE have been added for reference. All results are on the
ML-1M dataset.

DISTILL-CF, because they transfer well to SoTA finite-width models, which were not involved

in DISTILL-CF’s user synthesis optimization.

3.6.4 How robust are DISTILL-CF and ∞-AE to noise?

User feedback data is often noisy due to various biases (see (Chen et al., 2020) for a

detailed review). Furthermore, due to the significant number of logged interactions in these

datasets, recommender systems are often trained on down-sampled data in practice. Despite this,

to the best of our knowledge, there is no prior work that explicitly studies the interplay between

noise in the data and how sampling it affects downstream model performance. Consequently,

we simulate a simple experiment: we add x% noise in the original train-set→ sample the noisy

training data→ train recommendation models on the sampled data→ evaluate their performance
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on the original, noise-free test-set. For the noise model, we randomly flip x% of the total number

of items in the corpus for each user. In Figure 3.3, we compare the drop in HR@10 the EASE

model suffers for different sampling strategies when different levels of noise are added to the

MovieLens-1M dataset (Harper and Konstan, 2015). We make a few main observations: (1)

unsurprisingly, sampling noisy data compounds the performance losses of learning algorithms;

(2) DISTILL-CF has the best noise:sampling:performance trade-off compared to other sampling

strategies, with an increasing performance gap relative to other samplers as we inject more

noise into the original data; and (3) as we down-sample noisy data more aggressively, head

user sampling improves relative to other samplers, simply because these head users are the least

affected by our noise injection procedure.

Furthermore, to better understand ∞-AE’s denoising capabilities, we repeat the afore-

mentioned noise-injection experiment but now train ∞-AE on down-sampled, noisy data. In

Figure 3.4, we track the change in ∞-AE’s performance as a function of the number of users

sampled, and the amount of noise injected before sampling. We also add the semantically equiva-

lent results for the EASE model for reference. Firstly, we note that the full-data performance-gap

between ∞-AE and EASE significantly increases when there is more noise in the data, demon-

strating ∞-AE’s robustness to noise, even when its not specifically optimized for it. Furthermore,

looking at the 5% noise injection scenario, we notice two counter-intuitive observations: (1)

training EASE on tiny data summaries synthesized by DISTILL-CF is better than training it on

the full data; and (2) solely looking at data synthesized by DISTILL-CF for EASE, we notice the

best performance when we have a lower user sampling budget. Both of these observations call

for more investigation of a data-centric viewpoint to recommendation, i.e., focusing more on the

quality of collected data rather than its quantity.

3.6.5 Applications to continual learning

Continual learning (see (Parisi et al., 2019) for a detailed review) is an important area

for recommender systems, because these systems are typically updated at regular intervals. A
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Figure 3.6. Performance of EASE on vary-
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continual learning scenario involves data that is split into multiple periods, with the predictive

task being: given data until the ith period, maximize algorithm performance for prediction on the

(i+1)th period. ADER (Mi et al., 2020) is a SoTA continual learning model for recommender

systems, that injects the most informative user sequences from the last period to combat the

catastrophic forgetting problem (Rolnick et al., 2019). An intuitive application for DISTILL-CF

is to synthesize succinct data summaries of the last period and inject these instead. To compare

these approaches, we simulate a continual learning scenario by splitting the MovieLens-1M

dataset into 17 equal sized epochs, and perform experiments with MVAE (Liang et al., 2018) for

each period. Note that in DISTILL-CF, we still use ∞-AE to synthesize data summaries (inner

loop). We also compare with two baselines: (1) Joint: concatenate the data from all periods

before the current; and (2) Individual: use the data only from the current period. As we can

see from Figure 3.5, DISTILL-CF consistently outperforms ADER and the baselines, again

demonstrating its ability to generate high-fidelity data summaries.
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Figure 3.7. Performance of ∞-AE with varying depths. The y-axis represents the normalized
metric i.e. performance relative to the best depth for a given metric.

3.6.6 How does DISTILL-CF compare to data augmentation ap-
proaches?

We compare the quality of data synthesized by DISTILL-CF with generative models

proposed for data augmentation. One such SoTA method is AR-CF (Chae et al., 2020), which

leverages two conditional GANs (Mirza and Osindero, 2014) to generate fake users and fake items.

For our experiment, we focus only on AR-CF’s user generation sub-network and consequently

train the EASE (Steck, 2019) model only on these synthesized users, while testing on the

original test-set for the MovieLens-1M dataset. We plot the results in Figure 3.6, comparing

the amount of users synthesized according to different strategies and plot the HR@10 of the

correspondingly trained model. The results signify that training models only on data synthesized

by data augmentation models is impractical, as these users have only been optimized for being

realistic, whereas the users synthesized by DISTILL-CF are optimized to be informative for

model training. The same observation tends to hold true for the case of images as well (Zhao
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Figure 3.8. Performance comparison of ∞-AE with SoTA finite-width models stratified over
the coldness of users and items. The y-axis represents the average HR@100 for users/items in a
particular quanta. All user/item bins are equisized.

et al., 2021).

3.6.7 How does depth affect ∞-AE?

To better understand the effect of depth on an infinitely-wide auto-encoder’s performance

for recommendation, we extend ∞-AE to multiple layers and note its downstream performance

change in Figure 3.7. The prominent observation is that models tend to get worse as they get

deeper, with generally good performance in the range of 1− 2 layers, which also has been

common practical knowledge even for finite-width recommender systems.
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3.6.8 How does ∞-AE perform on cold users & cold items?

Cold-start has been one of the hardest problems in recommender systems — how to best

model users or items that have very little training data available? Even though ∞-AE doesn’t

have any extra modeling for these scenarios, we try to better understand the performance of

∞-AE over users’ and items’ coldness spectrum. In Figure 3.8, we quantize different users and

items based on their coldness (computed by their empirical occurrence in the train-set) into

equisized buckets and measure different models’ performance only on the binned users or items.

We note ∞-AE’s dominance over other competitors especially over the tail, head-users; and

torso, head-items.

3.6.9 How anonymized is the data synthesized by DISTILL-CF?

Having evaluated the fidelity of distills generated using DISTILL-CF, we now focus on

understanding its anonymity and syntheticity. For the generic data down-sampling case, the

algorithm presented in (Narayanan and Shmatikov, 2008) works well to de-anonymize the Netflix

prize dataset. The algorithm assumes a complete, non-PII dataset D along with an incomplete,

noisy version of the same dataset D′, but also has the sensitive PII available. We simulate a

similar setup but extend to datasets other than Netflix, by following a simple down-sampling

and noise addition procedure: given a sampling strategy s, down-sample D and add x% noise
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by randomly flipping x% of the total items for each user to generate D′. We then use our

implementation of the algorithm proposed in (Narayanan and Shmatikov, 2008) to match the

corresponding users in the original, noise-free dataset D.

However, if instead of a down-sampled dataset D′, a data distill of D (using DISTILL-

CF), let’s say D̃, is made publicly available. The task of de-anonymization can no longer be

carried out by simply matching user histories from D′ to D, since D is no longer available. The

only solution now is to predict the missing items in D′. Note that this this task is easier than

the usual recommendation problem, as the user histories to complete in D′ do exist in some

incoherent way in the data distill D̃, and is more similar to train-set prediction. To test this out,

we formulate a simple experiment: given a data distill D̃, an incomplete, noisy subset D′ with

PII information, and also hypothetically the number of missing items for each user in D′ — how

accurately can we predict the exact set of missing items in D′ using an ∞-AE model trained on

D̃.

We perform experiments for both the cases of data-sampling and data-distillation. In

Figure 3.9, we measure the % of users de-anonymized using the aforementioned procedures. We

interestingly note no level of de-anonymization with the data-distill, even if there’s no noise inD′.

We also note the expected observation for the data-sampling case: less users are de-anonymized

when there’s more noise in D′. In Figure 3.10, we now control the amount of data revealed in D′.

We again note the same observation: even with 90% of the correct data from D revealed in D′

with 0% of noise, we still note a very tiny 0.86% of user de-anonymization with data-distillation,

whereas 96.43% with data-sampling for the Douban dataset.

3.7 Conclusion & Future Work

In this work, we proposed two complementary ideas: ∞-AE, an infinite-width autoen-

coder for modeling recommendation data, and DISTILL-CF for creating tiny, high-fidelity data

summaries of massive datasets for subsequent model training. To our knowledge, our work is the
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first to employ and demonstrate that infinite-width neural networks can beat complicated SoTA

models on recommendation tasks. Further, the data summaries synthesized through DISTILL-CF

outperform generic samplers and demonstrate further performance gains for ∞-AE as well as

finite-width SoTA models despite being trained on orders of magnitude less data.

Both our proposed methods are closely linked with one another: ∞-AE’s closed-loop

formulation is especially crucial in the practicality of DISTILL-CF, whereas DISTILL-CF’s

ability to distill the entire dataset’s knowledge into small summaries helps ∞-AE to scale to large

datasets. Moreover, the Gumbel sampling trick enables us to adapt data distillation techniques

designed for continuous, real-valued, dense domains to heterogeneous, semi-structured, and

sparse domains like recommender systems and graphs. We additionally explore the strong

denoising effect observed with DISTILL-CF, noting that in the case of noisy data, models trained

on considerably less data synthesized by DISTILL-CF perform better than the same model

trained on the entire original dataset. These observations lead us to contemplate a much larger,

looming question: Is more data what you need for recommendation? Our results call for further

investigation on the data-centric viewpoint of recommendation.

The findings of this chapter open up numerous promising research directions. First,

building such closed-form, easy-to-implement infinite networks is beneficial for various down-

stream practical applications like search, sequential recommendation, or CTR prediction. Further,

the anonymization achieved by synthesizing fake data summaries is crucial for mitigating the

privacy risks associated with confidential or PII datasets. Another direction is analyzing the

environmental impact and reduction in carbon footprint as our experiments show that models

can achieve similar performance gains when trained on much less data.

Chapter 3, in part, is a reprint of the material as it appears in “Infinite Recommendation

Networks: A Data-centric Approach.” by Noveen Sachdeva, Mehak Preet Dhaliwal, Carole-Jean

Wu, and Julian McAuley, in Advances in Neural Information Processing Systems. 2022. The

dissertation author was the primary investigator and author of this paper.
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Chapter 4

Data Distillation for Autoregressive Data

We study data distillation for auto-regressive machine learning tasks, where the input and

output have a strict left-to-right causal structure. More specifically, we propose FARZI, which

summarizes an event sequence dataset into a small number of synthetic sequences — FARZI

DATA — which are optimized to maintain (if not improve) model performance compared to

training on the full dataset. Under the hood, FARZI conducts memory-efficient data distillation

by (i) deriving efficient reverse-mode differentiation of the Adam optimizer by leveraging

Hessian-Vector Products; and (ii) factorizing the high-dimensional discrete event-space into

a latent-space which provably promotes implicit regularization. Empirically, for sequential

recommendation and language modeling tasks, we are able to achieve 98−120% of downstream

full-data performance when training state-of-the-art models on FARZI DATA of size as little

as 0.1% of the original dataset, translating to roughly 20× faster training. Notably, being

able to train better models with significantly less data sheds light on the design of future large

auto-regressive models, and opens up new opportunities to further scale up model and data sizes.

4.1 Introduction

The effectiveness of machine learning models relies heavily on the quantity and quality

of training data. While the quantity of training data is always well-regarded in the scaling-laws

of training highly-parameterized neural networks (Hoffmann et al., 2022; Kaplan et al., 2020;
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Figure 4.1. Visualization of FARZI DATA in the context of language modeling. FARZI DATA

can be seen as a 3-D tensor comprising of sequences of distributions over tokens, where a single
distribution sequence fuses the information content of multiple discrete sequences. E.g, a single
distribution sentence can unfold into an entire tree of similar sentences like “the rabbit slept
under the sofa” or “a dog stood at the bed” as depicted in the figure. Such a parameterization:
(i) makes the dataset GPU/TPU friendly; (ii) reduces the cardinality of the dataset leading to
efficient training; and (iii) enables models to be trained on fuzzy sequences, hopefully leading to
robust learning.

Borgeaud et al., 2022; Zhai et al., 2022; Du et al., 2022), the quality of underlying data is often

overlooked. Despite being an intuitive covariate in downstream model performance, there does

not exist an efficient out-of-the-box solution for measuring the quality of a data point. Some

popular heuristics (e.g., data valuation (Ghorbani and Zou, 2019), coresets (Borsos et al., 2020a))

fall short from a variety of angles (Basu et al., 2021; Kumar et al., 2020; Toneva et al., 2019;

Sener and Savarese, 2018).

Data distillation (DD) (see Sachdeva and McAuley (2023) for a comprehensive survey)

offers a promising alternative to explicitly tagging the quality of each datapoint. Loosely, DD

approaches aim to synthesize a terse data summary solely intended to train models to the same (if

not better) quality as training them on the original dataset. In this chapter, we propose FARZI, a

DD approach designed specifically for synthesizing high-fidelity auto-regressive data summaries.

We call the data synthesized by FARZI as FARZI DATA.

FARZI DATA takes a step towards addressing the massive costs (e.g., financial, environ-

mental, etc.) associated with training large auto-regressive models (OpenAI, 2023; Anil et al.,

100



2023; Radford et al., 2022) on massive amounts of pretraining data by (i) implicitly filtering out

low-quality sources of information resulting in a terse data summary, and (ii) re-organizing the

data in a format that is most pertinent for model training. Intuitively, a vast majority of underlying

information in such auto-regressive datasets is redundant from the downstream task’s perspective.

For example, looking at recommender systems, a predictive model wouldn’t necessarily need

trillions of event-level data from billions of users to accurately model user-behaviour patterns.

Typical DD techniques (Zhao and Bilen, 2023; 2021; Nguyen et al., 2021b; Cazenavette

et al., 2022; Zhou et al., 2022; Deng and Russakovsky, 2022) are geared toward low-resolution

image datasets due to (i) computationally expensive data optimization, and (ii) generation-

friendly continuous domain of images (pixels). On the other hand, auto-regressive data generally

consists of sequences of discrete tokens (e.g., sub-words) with a potentially large vocabulary.

Further, many applications call for sequences with a long list of such tokens. FARZI addresses the

aforementioned characteristics of auto-regressive data by performing data distillation in a latent

space by organizing FARZI DATA into (i) a latent data summary that captures the downstream

task patterns, and (ii) a decoder (e.g., token-embeddings) that maps the latent-space back to the

token-space. In addition to making FARZI optimization-friendly (both of the aforementioned

data components are non-discrete/continuous), we demonstrate that such latent-parameterization

provably promotes implicit regularization when training models on FARZI DATA (Theorem 4.4.1).

To summarize, we highlight four main contributions of this chapter:

• We develop FARZI, a scalable DD technique for summarizing massive auto-regressive datasets,

and demonstrate FARZI DATA’s sample efficiency over 5 datasets spanning sequential recom-

mendation and language modeling tasks. Training on FARZI DATA, we are able to achieve up

to 98−120% of full-data performance for state-of-the-art models using as little as 0.1% of the

original dataset size, as well as noting a strong cross-architecture generalization, i.e., being able

to train various (student) models on FARZI DATA synthesized using a given (teacher) model.

• Building atop the meta-matching framework of DD, we propose two crucial modifications for
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largely improved sample efficiency. First, conducting an investigative study on the role of

inner-loop optimizer in DD, we conclude Adam (Kingma and Ba, 2015) to be much more adept

than SGD (with or without momentum) for auto-regressive DD. This is in stark contrast with

existing DD and meta-learning studies where SGD is the de-facto optimizer of choice. We

further improve FARZI’s sample quality by leveraging a set of pretrained training trajectories

in the underlying bilevel optimization.

• In addition to generating high-fidelity data, FARZI is computationally highly scalable. Firstly,

parameterizing FARZI DATA into a latent data summary and a token decoder saves large amount

of time and memory during optimization, thereby making FARZI (roughly) independent of the

vocabulary size. Further, we derive an efficient reverse-mode differentiation of Adam which

has a memory complexity independent of the number of inner-loop steps, unlike autograd

systems which store all intermediate variables, therefore leading to more than 100× memory

footprint reduction.

• We provide a formal analysis of FARZI from various standpoints. We firstly show that FARZI

DATA’s latent parameterization implicitly promotes regularization and provably improves

generalization. Previous studies have observed such data overfitting effects in DD empirically

(Zhou et al., 2022), but we are the first to study its theoretical underpinnings. We further

demonstrate the correctness of our proposed reverse-mode differentiation of Adam.

4.2 Related Work

4.2.1 Data downsampling

The complexity and training time for state-of-the-art models from different domains has

grown exponentially in the recent years (OpenAI, 2023; Sun et al., 2019; Mittal et al., 2021;

Rombach et al., 2022). Sampling has been the classic approach to summarize large datasets,

approaches for which can be grouped into the following categories: (i) Coreset construction

techniques which sample a weighted subset of the given dataset to accelerate model training
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(Kaushal et al., 2019; Borsos et al., 2020b; Krause et al., 2021; Kazemi et al., 2021). Being a

combinatorial optimization, coreset construction techniques typically leverage submodularity

assumptions (Bilmes, 2022) to optimize the coreset in a tractable manner. (ii) Data valuation

approaches which typically leverage shapley values (Shapley, 1953) to tag the value of each

data point for model training (Wang and Jia, 2023; Ghorbani and Zou, 2019; Kwon and Zou,

2023; Kwon et al., 2021). Notably, such data valuation methods turn out to be computationally

intractable even for moderate sized datasets. (iii) Heuristic samplers that build upon designing

ad-hoc notions of data quality. Two prominent schools-of-thought in designing such heuristics

has been to either preserve notions like diversity (Coleman et al., 2022; Abbas et al., 2023;

Sorscher et al., 2022), discrepancy (Karnin and Liberty, 2019), etc. in some metric-space of the

inputs, or use the loss-values from some proxy model to tag the difficulty (and thereby, quality)

for each datapoint (Paul et al., 2021; Coleman et al., 2020; Sachdeva et al., 2021).

4.2.2 Data distillation

Contrary to sampling datapoints from a given dataset, data distillation approaches aim

to synthesize high-quality data summaries for sample-efficient model training through bilevel

optimization (see Sachdeva and McAuley (2023) for a comprehensive survey). Prominent

existing approaches are designed for summarizing images (Wang et al., 2018b; Zhao et al., 2021;

Zhao and Bilen, 2021; Cazenavette et al., 2022; Zhou et al., 2022; Deng and Russakovsky, 2022;

Nguyen et al., 2021b), graphs (Jin et al., 2022a;c), and recommender systems (Sachdeva et al.,

2022a). Such approaches can essentially be viewed as meta-learning approaches (see Hospedales

et al. (2021) for a comprehensive survey) with the meta-optimization happening over the data

summary instead of common applications like model initialization (Finn et al., 2017) or task

hyper-parameters (Maclaurin et al., 2015b; Lorraine et al., 2020).
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4.2.3 Autoregressive tasks

A variety of machine learning tasks are auto-regressive, e.g., language modeling (OpenAI,

2023; Raffel et al., 2020), sequential recommendation (Sachdeva et al., 2019; Kang and McAuley,

2018), self-driving (Sachdeva et al., 2022b; Sun et al., 2020b), etc. Such tasks have a clear

left-to-right causal structure with one event preceding the other, typically in time. Further, since

a majority of such tasks are semi-supervised and are associated with large-amounts of data;

training large foundation models on such datasets can become daunting despite its practicality,

thereby limiting overall research progress. Concerningly, to the best of our knowledge, only

simple data sampling heuristics scale to such large auto-regressive datasets (Toneva et al., 2019;

Sener and Savarese, 2018).

4.3 FARZI: Autoregressive Data Distillation

4.3.1 Task & Notation

Given an autoregressive dataset D ≜ {xi}|D|i=1 where xi ≜ [xi j ∈ V]|xi|
j=1 is an ordered

sequence of tokens, each belonging to the vocabulary of all possible tokens V . We aim to

synthesize a data summary Dsyn ∈ Rµ×ξ×dim(V) consisting of µ fake sequences of maximum

length ξ , s.t., µ ≪ |D|. More specifically, we seek to construct Dsyn in such a way that a

representative learning algorithm Φθ : Vn 7→ V trained on Dsyn using an autoregressive task

(e.g., next-token-prediction (Radford et al., 2018)) specified by a cost function l : V ×V 7→ R

can achieve performance equivalent to that of training Φθ on the original dataset D. Taking

next-token-prediction (Radford et al., 2018) as a representative predictive task, we denote the

empirical risk as LD(θ)≜ Ex∼D, xi∼x[l(Φθ (x1:i),xi+1)] for notational convenience, where x1:i

represents the sequence of first i tokens in x.
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Figure 4.2. Visualization of a single outer-loop step in FARZI using the language modeling task.
In this framework, each outer-loop step first materializes FARZI DATA using (a batch of) its
respective low-rank counterparts, followed by training a learning algorithm on FARZI DATA for
T -steps using Adam. The meta-gradient to update the factorized FARZI DATA is obtained using
efficient reverse-mode Adam outlined in Algorithm 6. This process (outer-loop step) is repeated
till convergence, or for a fixed number of iterations.

4.3.2 Methodology

We cast the problem of autoregressive DD as a meta-learning problem, wherein the inner-

loop trains a learning algorithm on the data summary, and the outer-loop evaluates its quality

via l(·, ·) on the original dataset to directly update the data summary via gradient descent. More

formally, a naïve bilevel optimization problem can be framed as follows:

arg min
Dsyn

E
θ0∼Θ

[LD(θ ∗)] s.t. θ
∗ ≜ arg min

θ

LDsyn(θ | θ0) , (4.1)

where Θ is a distribution to initialize model parameters (e.g., uniform, Kaiming (He et al., 2015),

etc.). Such a formulation is commonly termed as meta-model matching based DD (see Sachdeva

and McAuley (2023) for a taxonomy of existing approaches), and is associated with significant

computational complexity in terms of both time and memory. Typical approaches resort to
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local optimization (e.g., SGD) in the inner-loop, and Truncated Backpropagation Through Time

(T-BPTT) by unrolling a finite number of inner optimization steps to obtain the meta-gradient.

Notably, DD becomes infeasible — even after making such assumptions — when the data is

autoregressive as each data-point (sequence) in the data summary (Dsyn) is associated with (i) a

large discrete token vocabulary, i.e., dim(V); and (ii) a third sequential dimension, i.e., ξ . Hence,

the space complexity of existing DD techniques directly grows by a factor of ≈ ξ ·dim(V).

To alleviate the computational challenges, FARZI performs data distillation in a latent

space. More specifically, FARZI factorizes Dsyn into: (i) a latent data summary D̃syn ∈ Rµ×ξ×d

where d≪ dim(V); and (ii) a token-decoder matrix M ∈ Rd×dim(V). Finally, we can compose

the latent data summary and the token-decoder to obtain the final data summary: Dsyn ≡

softmax(D̃syn ·M / T ), where T ∈ R+ represents the temperature in softmax(·) and controls the

entropy in Dsyn. Such a factorization makes FARZI scalable to both extremely large datasets, i.e.,

large |D| as well as datasets with large token vocabularies, i.e., large dim(V).

In addition to promoting scalability, we prove that FARZI DATA’s latent parameterization

implicitly promotes regularization while training downstream models (Section 4.4). More specif-

ically, we leverage the concept of Rademacher complexity (Bartlett and Mendelson, 2002) to

show that explicit rank regularization while synthesizing data summaries (e.g., latent factoriza-

tion) promotes generalization. Notably such data overfitting has been previously (empirically)

noted to notoriously affect DD (Zhou et al., 2022), but we are the first to explore the theoretical

underpinnings.

Further, while typical bilevel optimization approaches almost all use SGD in the inner

loop (Deng and Russakovsky, 2022) due to efficient reversible dynamics of SGD (see Maclaurin

et al. (2015b) for efficient reverse-mode SGD), we empirically observe that in our setting of

autoregressive DD, Adam optimization (Kingma and Ba, 2015) in the inner-loop is crucial for

downstream DD performance (see Figure 4.5). Further, we also note that a significant number of

inner-loop optimization steps — in the order of 100s — are needed for good generalization for

both Adam and SGD based DD, as is concurrently reported by other work (Deng and Russakovsky,
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Algorithm 6. Recursive reverse-mode differentiation of Adam.

1: Input: wT , mT , vT , α , ε , L(w,x), meta-objective f (w)
2: Initialize: dm ≜ d f (wT )/dm0 ← 0, dx ≜ d f (wT )/dx ← 0, dw ≜ d f (wT )/dw0 ←

∇w f (wT )
3: for t = T to 1 do
4: m̂t ≜ mt/(1−β t

1) ▷ exactly reverse Adam
5: v̂t ≜ vt/(1−β t

2) ▷ exactly reverse Adam
6: wt−1 = wt +α · m̂t/(v̂t + ε) ▷ exactly reverse Adam
7: gt ≜ ∇wL(wt−1,x) ▷ exactly reverse Adam
8: mt−1 = [mt− (1−β1) ·gt ]/β1 ▷ exactly reverse Adam
9: vt−1 = [vt− (1−β2) ·g2

t ]/β2 ▷ exactly reverse Adam
10: ε ′ ≜ ε ·

√
1−β t

2
11: α ′ ≜ α ·

√
1−β t

2 / (1−β t
1)

12: β ′ ≜ (1−β2) / (1−β1)

13: dm = dm+α ′ ·
(

β ′·mt ·gt√
vt ·(
√

vt+ε ′)2 − 1√
vt+ε ′

)
·dw ▷ Proposition 4.4.7

14: dw = dw− (1−β1) ·dm ·∇w∇wL(wt−1,x) ▷ Hessian-vector product
15: dx = dx− (1−β1) ·dm ·∇x∇wL(wt−1,x) ▷ Hessian-vector product
16: dm = β1 ·dm
17: Output: gradient of f (wT ) w.r.t. w0, m0, and x (i.e., dw, dm, dx)

2022). To this end, we derive an efficient approximation of reverse-mode differentiation of the

Adam optimization in Algorithm 6.

Algorithm 6 allows the memory footprint of the meta-gradient computation to be constant

w.r.t. the number of inner-loop steps. Notably, meta-gradient computation is the biggest

contributor in a meta-learning algorithm’s overall scalability. This is in stark contrast with

typical autograd libraries like PyTorch (Paszke et al., 2019), JAX (Bradbury et al., 2018), etc.

which require storing all intermediate variables across the inner-optimization to compute the

meta-gradient, resulting in a linearly growing memory footprint w.r.t. the number of inner-loop

steps.

FARZI also improves the sample-efficiency of the underlying meta-matching framework

(Equation (4.1)) by leveraging access to a limited number of training trajectories on the target

dataset. Formally, let Ω ≜ {[θi]
T
i=1 | θ0 ∼Θ} be the flat set of all episodic checkpoints of training

Φθ onD for a small number of random initializations. FARZI leverages Ω in its final optimization
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Memory Complexity: O
(
|Φ| + b ·dim(V) + bsyn ·ξ ·dim(V) + µ ·ξ ·d + d ·dim(V)

)
Time Complexity: O

(
bsyn ·ξ ·d ·dim(V) + T ·bsyn · |Φ| + b · |Φ| +
T · ( bsyn · |Φ| + bsyn ·ξ ·d + d ·dim(V) )

)

Figure 4.3. Computational complexity of a single outer-loop step in FARZI. D̂ ∼ D and
D̂syn ∼Dsyn are batches of real data and FARZI DATA such that b ≜ |D̂| and bsyn ≜ |D̂syn|; and
|Φ| represents the total number of parameters in Φ.

as follows:

arg min
M,D̃syn

E
θi∼Ω

[LD(θi+T )]

s.t. θt+1← Adam
(
θt ,∇θLDsyn(θt)

)
Dsyn← softmax

(
D̃syn ·M / τ

)
,

(4.2)

where Adam(·, ·) represents the set of Adam update equations (Kingma and Ba, 2015), T

represents the number of inner-loop optimization steps for each outer-loop step, and θi ∼ Ω

indicates that we start the inner-loop from a random checkpoint in Ω (could be of varying quality)

rather than initializing randomly. Notably, curating Ω is independent of the DD optimization and

can be precomputed beforehand, contributing nothing to FARZI’s computational complexity.

In addition to the inner-loop, note that the outer-loop is also optimized via simple gradient

descent (Adam) on D̃syn and M. To reiterate, we efficiently compute the meta-gradients using

Algorithm 6, i.e., dLD(θi+T )/dD̃syn and dLD(θi+T )/dM. In terms of the notation used in

Algorithm 6, we set wT ← θi+T , mT and vT to be the first- and second-order Adam momentums

at the end of the inner-loop, the meta-objective f (·)←LD(·), and compute the meta-gradient

once for x← D̃syn and once for x←M.

Model optimization Storing D̂ Storing D̂syn Storing & Updating D̃syn Storing & Updating M

Inner-loop optimization Computing ∇θ LD̂(θT )Computing D̂syn from Dsyn & M

Inner-loop reversal (Algorithm 6)

Computing ∇θ LD̂syn
(θt ) Updating meta-gradient for D̃syn

Updating meta-gradient for M
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4.3.3 FARZI’s computational complexity

We elucidate the complexity of optimizing Equation (4.2) in terms of a single outer-loop

step’s runtime and memory usage in Figure 4.3. Key things to note are (i) FARZI’s memory

complexity to be independent of the number of inner-loop steps T due to Algorithm 6’s recursive

update equations (keep updating dm,dx,dw while unrolling the inner-loop), and (ii) dominant

portion of FARZI’s time complexity (factor multiplied with T ) is independent of large terms like

ξ ·dim(V).

4.4 Formal Analysis

4.4.1 Radamacher Complexity Bounds

Theorem 4.4.1. Let Dsyn ∈ Rµ×ξ×dim(V) be parameterized using D̃syn ∈ Rµ×ξ×d and M ∈

Rd×dim(V), and Dnaive ∈Rµ×ξ×dim(V) denote the non-parameterized data. Let F be the function-

class of linear classifiers, and Rn(F ;D) denote the Rademacher complexity of a training set D

(lower is less prone to overfitting). Then Rn(F ;Dsyn ·M)< Rn(F ;Dnaive) whenever ∥Dsyn∥F <

∥Dnaive∥F/
√

2.

Preliminaries. The Rademacher complexity is a classical way to express the "capacity"

of a class of functions (Bartlett and Mendelson, 2002). Rademacher complexity is motivated by

the intuition that a highly-expressive (high capacity) model is capable of fitting random labels

just as well as structured ones. This complexity measure is useful for understanding various

phenomena in machine learning. For example, the Rademacher complexity (plus a probabilistic

failure-rate term that decays with n) is an upper bound on the generalization error in the PAC

learning framework. It can be shown that regularizers reduce the Rademacher complexity – and

thus the generalization error – of a class of models, e.g., for ℓp-regularized linear models (Kakade

et al., 2008). There is a sizable literature focused on bounding the Rademacher complexity for

various function classes and types of implicit / explicit regularization.
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In the following analysis, we will show that the low-rank constraint in FARZI DATA

implicitly regularizes the models trained on that data (i.e., reduces their Rademacher complexity).

The Rademacher complexity of a hypothesis class F is defined in terms the distribution

P from which the dataset D is drawn.

Definition 4.4.2. (Empirical and Expected Rademacher complexity) For a given given

function-class F and train-set D = {x1,x2, . . . ,xn}, the empirical Rademacher complexity

R̂n(D;F) is

R̂n(F ;D) = Eσσσ

[
sup
f∈F

1
n

n

∑
i=1

σi f (xi)

]
where σσσ = [σ1,σ2, . . . ,σn] is a vector of i.i.d. draws from the Rademacher distribution. The

expected Rademacher complexity Rn(F ;D) is simply the expectation over the data distribution,

i.e., Rn = EP [R̂n].

Proof. In the case of Theorem 4.4.1, we are interested in the Rademacher complexities of linear

functions trained on Dnaive and Dsyn. For the purposes of this analysis, we will "flatten" the

sequences so that we have Dnaive ∈ Rµ×(ξ dim(V).

Similarly, we will treat D̃syn and M as being "flattened" so that D̃syn ∈ Rµ×(ξ d), M ∈

Rd×dim(V), and the distilled data matrix is:

Dsyn = softmax(D̃syn ·M/T )

where T is the softmax temperature. We will use a recent result from Awasthi et al.

(2020), who study upper and lower bounds on R̂n for linear functions. We obtain the following

lemma by setting p = 2 in Theorems 1 and 2 of their paper.

Lemma 4.4.3. (Theorems 1 and 2 in Awasthi et al. (2020), with p = 2) Let Fλ be the set

of ℓ2-norm bounded linear models Fλ = {x⊤w : ∥w∥2 ≤ λ}. Then the empirical Rademacher
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complexity obeys the following inequality, where ∥D∥F is the Frobenius norm of the data matrix.

λ√
2n
∥D∥F ≤ R̂n(F ;D)≤ λ√

n
∥D∥F

Our proof strategy is to show an upper bound for R̂n(F ;Dsyn) and a lower bound for

R̂n(F ;Dnaive). By analyzing the case where the lower bound exceeds the upper bound, we can

understand when the low-rank constraint implicitly regularizes.

The following upper and lower bounds are a direct consequence of Lemma 4.4.3. The

second equality comes from the equivalence between the Frobenius norm and the sum of

eigenvalues σi.

R̂n(F ;Dnaive)≥
λ√
2n
∥Dnaive∥F =

λ√
2n

Rank(Dnaive)

∑
i=1

σ
2
i (Dnaive) (4.3)

R̂n(F ;Dsyn)≤
λ√

n
∥Dsyn∥F =

λ√
n

Rank(Dsyn)

∑
i=1

σ
2
i (Dsyn) (4.4)

Taken together, these two bounds imply that R̂n(F ;Dnaive) is larger than R̂n(F ;Dsyn) whenever

∥Dsyn∥F ≤
1√
2
∥Dnaive∥F (4.5)

4.4.2 Realistic Conditions

We theoretically characterize a setting where the conditions of Theorem 4.4.1 hold.

We consider a task where each element of Dnaive ∈ {0,1}, Dsyn ∈ [0,1], and the vocabulary

dimensions of both datasets sum to 1. This setting corresponds to the practical situation where

Dnaive is a dataset of 1-hot coded sequences and Dsyn is a dataset of soft sequences, where the

1-hot is replaced by a vocabulary distribution.
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Lemma 4.4.4. Let Dnaive be a 1-hot sequence dataset and Dsyn be a soft sequence dataset. The

conditions of Theorem 4.4.1 hold if max(Dsyn)<
(√

3−1
)
/2≈ 0.366.

We are interested in practical settings where the conditions of Theorem 4.4.1 can be ex-

pected to hold. As an easy warmup, consider the scenario whereDnaive andDsyn are full-rank ma-

trices with all singular values equal to 1. In this case, Rank(Dsyn)< ξ d and Rank(Dnaive) = ξV ,

making it easy to see that the Rademacher complexity decreases when the low-rank dimension

d < V/
√

2d.

To analyze the more practical scenario described in the main text, we require the following

technical lemma.

Lemma 4.4.5. Given a vector x ∈ Rd and α ∈ [0,1], if

∥x∥∞ <
1
2

(
αc±√c

√
4α + c

)

then ∥x∥2
2 ≤ α∥x∥2

1.

Proof. To simplify the notation, let

β = ∥x∥∞ c = ∥x∥1

Because β is the largest element of x, |xi| ≤ β for all i > 1.

We wish to find (and bound) the value of ∑
d
i=1 |xi|2 subject to the constraint that |xi| ≤ β

and ∑
d
i=1 |xi|= c. The solution to this optimization problem is to set as many xi = β as possible,

with one remaining component containing the remainder.

There are ⌊c/β⌋ components that contribute β 2 to ∥x∥2
2 and one component that con-

tributes the remainder (which is smaller than β 2). This gives the following bound:

∥x∥2
2 ≤ β

2
(⌊

c
β

⌋
+1
)
≤ β

2
(

c
β
+1
)
= βc+β

2
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Therefore, it is sufficient to find a value of β which satisfies the following inequality.

β
2 +βc≤ αc

β
2 +βc−αc≤ 0

The roots of this quadratic are β = 1
2

(
−c±√c

√
4α + c

)
. Because the quadratic is

convex, the expression is negative between the roots. Furthermore, the smaller root is negative

for all α > 0 and β = ∥x∥∞ > 0. Therefore, to satisfy the inequality, we only require

∥x∥∞ <
1
2

(
−c±√c

√
4α + c

)

We are now ready to prove Lemma 4.4.4. Recall that Dsyn is the post-softmax data

summary, i.e.

Dsyn = softmax(D̃syn ·M/T )

For this reason, the sum of the elements of Dsyn over the last dimension (the vocabulary

dimension) is one. As stated in Lemma 4.4.4, we assume that Dnaive is a binary 1-hot matrix, i.e.

Dnaive ∈ {0,1}µ×ξ×dim(V)

For Theorem 4.4.1 to hold, we require that

∥Dsyn∥F ≤
1√
2
∥Dnaive∥F

or, equivalently:

∥Dsyn∥2
F ≤

1
2
∥Dnaive∥2

F
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Because Dnaive is 1-hot,

∥Dnaive∥2
F = µξ

Using the technical lemma with α = 1/2 and ∥x∥1 = 1, if the maximal entry in each vo-

cabulary distribution of Dsyn is smaller than
√

3−1
2 , then each vocabulary row of D̃syn contributes

at most 1
2 to the Frobenius norm. This results in the following expression, where the second

inequality comes from the application of the technical lemma.

∥Dsyn∥2
F =

µ

∑
i=1

ξ

∑
j=1
∥Dsyn(i, j, :)∥2

2

≤
µ

∑
i=1

ξ

∑
j=1
∥Dsyn(i, j, :)∥2

2

≤ 1
2
∥Dsyn(i, j, :)∥2

1 =
1
2

µξ =
1
2
∥Dnaive∥2

F

which is true whenever maxDsyn <
(√

3−1
)
/2≈ 0.366.

Using Lemma 4.4.4, we can demonstrate that both temperature and latent dimension

induce regularization (under a mild boundedness condition for M and D̃syn) by “smoothing out”

the probabilities.

Theorem 4.4.6. Let Dnaive be a 1-hot dataset, D̃syn ∈ [−B,B]µ×ξ×d , M ∈ [−1,1]d×dim(V), and

T be the softmax temperature. Theorem 4.4.1 holds if dim(V)≥ 3 and d/T ≤ 1
2B logdim(V).

Proof. Recall that Dsyn = softmax(D̃syn ·M/T ), where

D̃syn = [−R,R]µ×ξ×d

M = [−1,1]d×dim(V)

We wish to apply Lemma 4.4.4 to understand what choices of the temperature T and latent

dimension d will lead to regularization. Let p(n,m) =Dsyn[n,m, :] (post-softmax probabilities)
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and z(n,m) =
(
D̃syn ·M

)
[n,m, :]/T (pre-softmax logits) to simplify the notation. We will drop

the superscripts when the context is obvious. For Lemma 4.4.4 to hold, the following inequality

must hold for all (n,m).

p(n,m) ≤
(√

3−1
)
/2

By definition,

pi =
ezi/T

∑
dim(V)
j=1 ez j/T

=
1

1+∑ j=1
j ̸=i

dim(V) e(z j−zi)/T

Because each entry of D̃syn ∈ [−B,B] and each entry of M ∈ [−1,1], −dB ≤ zi ≤ dB.

Therefore, z j− zi ≥−2dB and the following inequality holds.

pi =
1

1+∑ j=1
j ̸=i

dim(V) e(z j−zi)/T
≤ 1

1+∑ j=1
j ̸=i

dim(V) e−2dB/T
=

1
1+(dim(V)−1)e−2dB/T

Therefore, it is sufficient that

1
1+∑ j=1

j ̸=i

dim(V) e−2dB/T
=

1
1+(dim(V)−1)e−2dB/T

≤
√

3−1
2

Using the notation τ to represent the threshold τ =
(√

3−1
)
/2≈ 0.336, we have:

1
1+(dim(V)−1)e−2dB/T

≤ τ

which holds if the following holds.

1− τ

(dim(V)−1)τ
≤ e−2dB/T
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log
(

1− τ

(dim(V)−1)τ

)
≤−2dB/T

Provided that dim(V)> 1+ 1−τ

τ
= 1+ 3−

√
3√

3−1
≈ 2.74 (which is satisfied because dim(V)≥

3), the argument to the logarithm is < 1 and thus the logarithm is negative. As an aside, this

condition makes sense because we need more than 3 target vocabulary tokens over which to

spread the softmax probability if we are to have each token’s probably be < 0.336.

The following condition is sufficient for the guarantees to hold. All we have done is to

multiply both sides of the inequality by -1 (and flip the direction).

log
(
(dim(V)−1)τ

1− τ

)
≥ 2dB/T

This results in the following condition, which is sufficient for Theorem 4.4.1 to hold.

d
T
≤ 1

2B
log
(
(dim(V)−1)τ

1− τ

)
≤ 1

2B
log
(
(dim(V)−1)

τ

1− τ

)
=

1
2B

log

(
(dim(V)−1)

3−
√

3√
3−1

)

To get a slightly looser (but simpler) version of this inequality, first we observe that

dim(V)≤ (dim(V)−1)
3−
√

3√
3−1

whenever dim(V) ≥ (3−
√

3)/(4− 2
√

3) ≈ 2.366, which is true because dim(V) ≥ 3.

This results in the following sufficient condition.

d
T
≤ 1

2B
logdim(V)
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Table 4.1. Statistics of the meta-optimized [10 x 150] FARZI DATA (Dsyn) synthesized via
factorized vs. non-factorized parameterizations for the ML-100k dataset. We also list the
performance of models trained on each FARZI DATA parameterization. See Theorem 4.4.1 for
a formal interpretation of these results. Most significantly, a lower ||Dsyn||2F signifies higher
implicit regularization.

Parameterization
Data Summary Statistics Performance of Models trained on Data Summary (Dsyn)

max(Dsyn) ||Dsyn||2F max(σ(Dsyn)) HR@10 HR@100 nDCG@10 nDCG@100 AUC

One-hot
Initialization

1 511.99 1 —

Factorized
Dsyn ≜ softmax(D̃syn ·M)

0.731 18.92 0.612 18.45 61.93 9.16 17.54 0.9041

Non-Factorized
Dsyn ≜ softmax(D̃syn)

0.836 51.72 0.693 17.81 60.65 9.03 17.04 0.8960

4.4.3 Empirical Validation of Theorem 4.4.1

To better understand the practical significance of the result in Theorem 4.4.1, we devise a

simple empirical experiment. We compare the Frobenius norm (and some other statistics) of the

optimized data summaries obtained via FARZI, under the following circumstances:

1. The synthesized data is factorized (the standard setup in FARZI) as in Equation (4.2), i.e.,

Dsyn ≜ softmax(D̃syn ·M).

2. The synthesized data is not factorized, and we optimize the full-rank D̃syn ∈ Rµ×ξ×|V|

(computationally intractable for large datasets). To make the data amenable for model

training, we take a softmax on D̃syn, i.e., Dsyn ≜ softmax(D̃syn). This emprically vastly

improved the optimization stability and final performance.

Note that we used temperature T = 1 in the softmax(·) for both factorized and non-factorized

FARZI DATA setups for convenience. From the results in Table 4.1, we do confirm that factorized

parameterization of FARZI DATA does lead to data summaries with a significantly lower Frobe-

nius norm, compared to both the original one-hot data representation as well as if we conducted

FARZI using a non-factorized parameterization.
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This has two implications. First for Theorem 4.4.1 to hold, we need for the value of

∥Dsyn∥2
F for the factorized FARZI DATA to be no more than 1/2∥Dsyn∥2

F of the non-factorized

FARZI DATA. This is indeed the case for the results in Table 4.1.

Second, we confirm that our theoretical intuitions carry over into practice. The second

column (“Performance”) contains the results of training the same SASRec models as our main

evaluation on the factorized and non-factorized distillation data. The factorized representation of

FARZI DATA leads to better quality models than the non-factorized FARZI DATA (Table 4.1),

likely because of the stronger implicit regularization with a low latent dimension.

4.4.4 Correctness of Reverse-mode Adam

Proposition 4.4.7. Correctness of Algorithm 6, line 13.

Proof. Using the chain rule of derivatives:

d f (wT )

dm0
≜ dm = dm+

∂wt

∂mt
·dw

= dm− α

1−β t
1

[√v̂t + ε
]
−
[
mt ·

(
∂vt/∂mt

2·√v̂t ·(1−β t
2)

)]
(
√

v̂t + ε)2

 ·dw

= dm+α
′ ·


[
mt ·

(
∂vt/∂mt

2·√vt

)]
(
√

vt + ε ′)2 − 1√
vt + ε ′

 ·dw ,

where, ε ′ ≜ ε ·
√

1−β t
2 and α ′ ≜

α·
√

1−β t
2

1−β t
1

.

Using the chain rule again:

∂vt

∂mt
=

∂vt/∂gt

∂mt/∂gt
=

2 · (1−β2) ·gt

(1−β1)
= 2 ·β ′ ·gt ,
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where, β ′ ≜ 1−β2
1−β1

, leading to finally:

d f (wT )

dm0
≜ dm = dm+α

′ ·


[
mt ·

(
∂vt/∂mt

2·√vt

)]
(
√

vt + ε ′)2 − 1√
vt + ε ′

 ·dw

= dm+α
′ ·
(

β ′ ·mt ·gt√
vt · (
√

vt + ε ′)2 −
1√

vt + ε ′

)
·dw

4.5 Empirical Setup

4.5.1 Predictive Tasks

We empirically evaluate FARZI’s practicality over two well-studied autoregressive pre-

dictive tasks:

• Sequential Recommendation: Predict the item that a user is most likely to consume next, given

their historic item consumption history. We use four datasets: Movielens-100k, Movielens-

1M (Harper and Konstan, 2015), Amazon Magazine (Ni et al., 2019a), Netflix (Bennett and

Lanning, 2007); and use AUC, HitRate, and nDCG to evaluate model quality.

• Language Modeling (LM): Predict the most probable following word given a sequence of

words. We conduct our experiments on the official-released train/validation/test split of the

English Penn Treebank (PTB) corpus (Marcus et al., 1993): an open-sourced benchmark

widely used for LM. We evaluate our models using word-level perplexity, as well as the token

prediction accuracy after greedy decoding on the test set.

4.5.2 Models

We use SASRec (Kang and McAuley, 2018) and a small Transformer model (Vaswani

et al., 2017) as the representative learning algorithms (Φ) in FARZI’s inner-loop for sequential

recommendation and LM tasks respectively, and use cross-entropy as the underlying objective
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Table 4.2. List of all hyper-parameters combinations tried for FARZI and other baselines for
sequential recommendation.

Hyper-Parameter Model Magazine ML-100k ML-1M Netflix

Latent size
SASRec

{8, 16, 32, 50, 64, 128}GRU4Rec
FMLP

# Layers
SASRec

{1, 2}GRU4Rec
FMLP

Attention Heads
SASRec

{1, 2}
FMLP

Learning rate
SASRec {0.01, 0.02, 0.05}

GRU4Rec {0.01, 0.02, 0.05}
FMLP {0.0001, 0.0002, 0.0005}

Dropout

SASRec

{0.0, 0.2, 0.4}
GRU4Rec

FMLP
FARZI

ξ FARZI {10, 20} {50, 100, 150} {50, 100, 150} 200

d FARZI 8 8 32 32

τ FARZI {0.5, 1, 2}

|Ω| FARZI 100 100 100 50

Inner
loop

Weight Decay

FARZI

{0, 10−6}
Learning Rate {0.01, 0.02}

# Steps {100, 200, 300}
β1 0.9
β2 0.999

SGD Momentum {0.5, 0.75, 0.9, 0.95, 0.99}

Outer
loop

Weight Decay
FARZI

{0, 10−6, 10−4}
Learning Rate 0.01

# Steps 4000

Batch
size

D
FARZI

512
Dsyn — — 50 25
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Table 4.3. List of all hyper-parameters combinations tried for FARZI and other baselines for
language modeling.

Hyper-Parameter Model Penn Treebank

Latent size
Transformer

16
RNN

# Layers
Transformer

1
RNN

Attention Heads
Transformer

1
RNN

Learning rate
Transformer {0.01, 0.02, 0.05}

RNN {0.01, 0.02, 0.05}

Dropout
Transfomer

{0.0, 0.2}
RNN

ξ FARZI {5, 15}

d FARZI 8

τ FARZI {0.5, 1, 2}

|Ω| FARZI 400

Inner
loop

Weight Decay

FARZI

{0, 10−7}
Learning Rate {0.01, 0.02}

# Steps {200, 300,400, 500, 600}
β1 0.999

SGD Momentum -

Outer
loop

Weight Decay
FARZI

{0, 10−6, 10−4}
Learning Rate 0.01

# Steps 8000

Batch
size

D
FARZI

256
Dsyn —
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function for both. We implement FARZI using PyTorch (Paszke et al., 2019), and for the sake

of better reproducibility, we list all hyper-parameter combinations tried for our experiments in

Tables 4.2 and 4.3.

4.5.3 Metrics

We present a formal definition of all metrics used in this chapter for both sequential

recommendation and language modeling tasks.

Sequential Recommendation. We use the AUC, HitRate (HR@k), and Normalized Discounted

Cumulative Gain (nDCG@k) metrics, as earlier defined in Section 3.5.4.

Language Modeling. We first use Perplexity (PPL) to evaluate language modeling performance.

Perplexity quantifies how uncertain the model is when trying to predict the next word in a

sequence, given the previous words. Given a sentence x⃗i, which is tokenized into a sequence of

tokens [w1,w2, · · · ,w|⃗xi|], the sentence PPL is defined as:

log2 (PPLi)≜−
1
|⃗xi|
|⃗xi|
∑

i
log2 P(wi|w1,w2, · · · ,wi−1)

where P is the probability assigned by the language model to wi given the context of the previous

words. Then, given a corpus C containing N sentences C = {x⃗1, x⃗2, · · · , x⃗N}, the perplexity over

C is defined as the average PPL over the sentence PPLs:

PPLC ≜
1
N
·

N

∑
i

PPLi

To better evaluate the generation quality of a language model, we also evaluate the average top-1

predicted token accuracy after greedy decoding, similar to the HR@1 metric described earlier.
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Table 4.4. Datasets used in this chapter as well as a brief set of statistics.

Dataset
# Users / # Items / # Interactions / Seq. Length

# Sentences # Unique tokens # Total tokens Mean/Median/Min

Amazon Magazine (Ni et al., 2019b) 3k 1.3k 12k 4.10 / 3 / 3
ML-100k (Harper and Konstan, 2015) 943 1.6k 100k 104.04 / 63 / 18
ML-1M (Harper and Konstan, 2015) 6k 3.7k 1M 165.22 / 95 / 20
Netflix (Bennett and Lanning, 2007) 476k 17k 100M 210.91 / 98 / 3

PTB (Marcus et al., 1993) 49k 10k 1M 22 / 21 / 2

4.5.4 Datasets

We list the datasets used in this chapter as well as brief data statistics in Table 4.4. We

discuss other task-specific preprocessing and train/test splitting strategy below.

Sequential Recommendation. Owing to recent work (Sachdeva et al., 2022c), we follow the

minimal amount of preprocessing by only removing the users with less than two total interactions.

We simulate the train/test split from the strong-generalization school-of-thought (Liang et al.,

2018), where we keep a completely disjoint set of 80/10/10% train, validation, and test users

split randomly. For each user in the validation/test-set, the chronologically last interacted item is

used for computing ranking metrics, whereas all previous interactions are used as context for the

model. Further, to simulate a realistic recommendation scenario, we compute all metrics on the

full item-space without any down-sampling (Krichene and Rendle, 2020).

Language Modeling. We employ the Penn Treebank (PTB) dataset, an established and openly

accessible benchmark extensively utilized in natural language processing and language modeling

tasks, as introduced by (Marcus et al., 1993). We use the train/validation/test split of the official

release. The original PTB corpus consists of more than 4.5 million words of American English,

featuring a word vocabulary of 9,999 words, including the <unk> token. In our experimentation,

we opt to maintain a vocabulary comprising 2,000 words with the highest frequencies, while any

out-of-vocabulary words are represented as <unk>.
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Figure 4.4. Performance change of SASRec (left four columns) and Transformer (rightmost
column) with increasing data (log-scale) for recommendation and LM respectively. For a tabular
version of these results see Table 4.5.

4.6 Experiments

4.6.1 How sample efficient is FARZI DATA?

We evaluate the fidelity of FARZI DATA by first optimizing for Dsyn using Equation (4.2),

followed by training Φ (from scratch) on Dsyn. We plot the performance of the trained Φ on the

test-set for various amounts of data budgets (µ) in Figure 4.4 for sequential recommendation

and LM tasks. A tabular version of the same results can be found in Table 4.5. We also plot

semantically equivalent results for other commonly used data samplers, namely (i) random

sampling: sample sequences uniformly at random, and (ii) head sampling: retain the sequences

with the largest length. We first note that FARZI DATA is much more sample-efficient than other

data sampling techniques, being able to achieve up to 1000× data compression with no loss

in performance. Further, in Figure 4.4, we notice that on two out of the four recommendation

datasets, FARZI’s orders of magnitude smaller data is able to train models of higher quality

than the original dataset itself. This observation acts as further evidence for the intuitive yet

under-explored idea that less but high-quality data can be more important for model training than

a very large but noisy dataset (Sachdeva et al., 2022a; Zhou et al., 2023).
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Table 4.5. Performance change of SASRec & Transformer with various sizes of FARZI DATA

for sequential recommendation & language modeling tasks respectively. The best result for each
dataset & metric is colored orange.

Dataset &
Model

FARZI DATA

size
HR@10 HR@100 nDCG@10 nDCG@100 AUC PPL Acc.

Magazine
&

SASRec

[10 x 10] ≡ 0.3% 23.3 52.3 15.8 21.1 0.8428 - -
[25 x 20] ≡ 0.8% 23.9 52.3 16.5 21.6 0.8307 - -
[50 x 20] ≡ 1.6% 24.5 52.1 17.1 22.1 0.8291 - -

Full-data 23.2 52.0 16.9 21.7 0.8223 - -

ML-100k
&

SASRec

[10 x 150] ≡ 1% 17.3 61.2 9.2 17.7 0.8957 - -
[25 x 150] ≡ 2.6% 19.3 61.6 9.9 17.7 0.902 - -
[50 x 50] ≡ 5.3% 19.6 62.9 9.9 18.1 0.9016 - -

[100 x 100] ≡ 10.6% 19.5 61.9 10.1 18.1 0.9016 - -

Full-data 18.2 60.6 9.3 17.6 0.9011 - -

ML-1M
&

SASRec

[10 x 150] ≡ 0.1% 22.4 59.0 12.0 19.0 0.923 - -
[50 x 100] ≡ 0.8% 24.8 61.6 13.8 20.8 0.9301 - -
[100 x 100] ≡ 1.6% 25.6 63.6 14.1 21.3 0.9317 - -
[200 x 50] ≡ 3.3% 25.4 61.8 14.1 21.0 0.9315 - -
[500 x 50] ≡ 8.2% 26.2 61.0 13.8 20.7 0.9293 - -

Full-data 26.2 62.8 14.4 21.8 0.9291 - -

Netflix
&

SASRec

[50 x 200] ≡ 0.01% 15.6 38.0 9.9 14.1 0.9235 - -
[500 x 200] ≡ 0.1% 17.8 40.7 11.6 16.1 0.9449 - -
[2000 x 200] ≡ 0.4% 17.5 40.3 11.3 15.8 0.9455 - -

Full-data 18.1 41.9 11.8 16.4 0.947 - -

PTB
&

Transformer

[10 x 50] ≡ 0.02% - - - - - 238.5 20.48
[200 x 50] ≡ 0.47% - - - - - 124.0 24.0
[400 x 50] ≡ 1% - - - - - 91.9 25.16

[2000 x 50] ≡ 4.7% - - - - - 91.0 25.4

Full-data - - - - - 72.10 26.03
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Table 4.6. Cross-architecture generalization for FARZI DATA of size [50×150] of the ML-100k
dataset.

Teacher

Student
HR@10 / HR@100

SASRec GRU4Rec

SASRec 19.61/61.50 19.93/64.47
GRU4Rec 18.23/61.08 22.16/66.70

Full-Data 18.23/60.65 21.20/64.05

4.6.2 How versatile is FARZI DATA?

Since FARZI DATA is inherently optimized for a specific learning algorithm, we ascer-

tain its universality by training different kinds of student networks over data synthesized

using a given teacher network in FARZI’s inner-loop for the sequential recommendation task.

Note that the student network is completely unrelated to the data synthesis procedure and

underlying FARZI optimization. From the results in Table 4.6, we observe that irrespective of

the teacher network, FARZI DATA is able to train varied student network architectures

(Transformers↔ RNNs) better than training on the full dataset. On the other hand, however, the

best performance for any given student network is obtained when the same network is used

during FARZI optimization.

4.6.3 Does training on FARZI DATA converge faster?

Unlike the existing DD literature, we assess the training time improvement for using

FARZI DATA. Comparing the training time for SASRec on the entire Netflix dataset vs. its

corresponding FARZI DATA in Table 4.7, we observe that SASRec can train equally well (cf.

Figure 4.4) while seeing 70× less training sequences leading to 20× less training time. Even

for this large dataset, the total time for FARZI optimization (500 outer-loop steps ×15s / step

= 7500s) is only twice as large compared to a single training run on the full dataset (3700s).

As is the case with all popular data quality scoring, data distillation, etc. family of methods;

126



Table 4.7. Training time for SASRec on the Netflix dataset. Wall-clock times are calculated
using the same hardware and codebase.

Data Size Convergence
Duration

Wall-clock
Training Time

FARZI DATA [2000×200] 100 Epochs
(≡ 0.2M Sequences)

172s

Full Data [476k×200] 30 Epochs
(≡ 14M Sequences)

3700s

the cost of curating high-quality data summaries is always justified via amortization, i.e., the

one-time cost of data-curation is recovered by reaping the efficiency gains over multiple rounds

of using the same curated data. Notably, the case for amortization is even stronger for FARZI

where we observe strong cross-architecture generalization (Table 4.6), making once-optimized

FARZI DATA to be re-usable not only for the same model used during the FARZI optimization

but also by various other kinds of model architectures.

4.6.4 How important is the inner-loop optimizer in FARZI?

We compare SGD (with or without momentum) and Adam (Kingma and Ba, 2015) as

different optimization routines in FARZI’s inner-loop (Equation (4.2)). Notably, we implement

differentiable Adam optimization in three different ways: (i) higher package (Grefenstette et al.,

2019); (ii) PyTorch’s autograd; and (iii) our efficient reverse-mode implementation (Algorithm 6).

We measure their effect on downstream performance as well as the time and memory associated

with each outer-loop iteration in Figure 4.5. We first observe that Adam is much better suited

for DD in our setting. This is a novel finding in the context of meta-learning and its applications,

where Adam has been reported to be worse than SGD (Grefenstette et al., 2019). Further, we

observe that while different reverse-mode implementations of Adam lead to data of similar

sample quality, their computational properties vastly differ. We observe that PyTorch and

higher have similar memory footprints, but the former has a lower runtime. Our efficient
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Figure 4.5. Changes in distillation performance and computational scalability of each outer-loop
step for different inner-loop optimizers and increasing number of inner-loop steps. All results
are for [10×150] sized FARZI DATA of the ML-100k dataset.

implementation elegantly trades-off memory with runtime, leading to constant memory footprint

and a linear increase in runtime compared to PyTorch’s autograd. This allows FARZI to scale to

large autoregressive datasets without compromising on data fidelity.

4.6.5 How do different meta-objectives affect FARZI?

We further evaluate the importance of FARZI’s optimization objective by comparing it

with existing DD approaches. We adapt existing approaches to work with autoregressive data

by reusing the latent distillation proposition of FARZI, and vary only the outer-loop goodness

function to (i) gradient matching (DC (Zhao et al., 2021)); (ii) meta-matching (MM (Wang et al.,

2018b; Deng and Russakovsky, 2022)); or (iii) trajectory matching (MTT (Cazenavette et al.,

2022)), as explained below.

DC (Zhao et al., 2021) This data distillation objective performs one-step gradient matching

using a distance function D : R|Φ|×R|Φ| 7→ R:

arg min
M,D̃syn

E
θ0∼Θ

[
T

∑
t=0

D
(
∇θLD(θt),∇θLDsyn(θt)

)]

s.t. θt+1← Opt
(
θt ,∇θLDsyn(θt)

)
; Dsyn← softmax

(
D̃syn ·M / τ

)
.
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Table 4.8. Comparison of FARZI with other existing DD techniques modified to distill autore-
gressive data. Results for both using SGD or Adam as the inner-loop optimizer are listed.
Meta-matching is shortened as MM. The best distillation result for each metric is colored orange,
and the best result other than FARZI is colored blue for Adam-based methods and emboldened
for SGD-based methods.

Dataset Metric
Random
Sampling

Data Distillation Objectives

Full-DataDC MM MTT
FARZI

SGD Adam SGD Adam SGD Adam

ML-100k
[50×150]

HR@10 ↑ 7.74 7.95 11.77 9.65 16.86 12.19 14.52 19.61 18.23
HR@100 ↑ 39.13 41.88 49.52 42.31 58.43 50.37 56.94 61.50 60.65

nDCG@10 ↑ 3.83 3.44 5.6 4.72 8.35 6.12 6.73 9.91 9.33
nDCG@100 ↑ 9.61 9.84 12.51 10.85 16.47 13.03 14.66 17.91 17.69

PTB
[400×50]

Perplexity ↓ 218.66 203.23 131.07 180.61 115.84 202.98 129.72 91.92 72.10
Accuracy ↑ 20.42 20.64 22.35 21.60 23.47 21.00 23.00 25.16 26.03

MM (Wang et al., 2018b; Deng and Russakovsky, 2022) The meta-matching objective

computes the meta-gradient by unrolling the inner-loop optimization starting from random

networks:

arg min
M,D̃syn

E
θ0∼Θ

[LD(θT )]

s.t. θt+1← Opt
(
θt ,∇θLDsyn(θt)

)
; Dsyn← softmax

(
D̃syn ·M / τ

)
.

MTT (Cazenavette et al., 2022) The trajectory matching objective computes the meta-gradient

by matching the parameters of networks trained on the real data for M optimization steps vs.

models trained on the data summary for N ≪ M steps. Let {θD
t }T

t=0 represent the training
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trajectory of training Φθ on D, and D : R|Φ|×R|Φ| 7→ R be a pertinent distance function:

arg min
M,D̃syn

E
θ0∼Θ

T−M

∑
t=0

D
(

θD
t+M,θ

Dsyn

t+N

)
D
(
θD

t+M,θD
t
)


s.t. θ
Dsyn

t+i+1← Opt
(

θ
Dsyn

t+i ,∇θLDsyn(θ
Dsyn

t+i )
)

; θ
Dsyn

t+1 ← Opt
(

θ
D
t ,∇θLDsyn(θ

D
t )
)

;

Dsyn← softmax
(
D̃syn ·M / τ

)
.

Even though all existing DD approaches use SGD in their inner-loop, we nonetheless ex-

periment with both SGD and our efficient reverse-mode Adam (Algorithm 6), and list the results

in Table 4.8. We observe that Adam is a consistently better inner-loop optimizer irrespective

of the meta-objective used. This is in stark contrast with existing DD studies which use SGD

in the inner-loop. Further, FARZI significantly outperforms all existing DD techniques despite

improving them to use Adam in the inner-loop.

4.6.6 How important are pre-trained trajectories for data distillation?

To elicit the importance of the pre-trained trajectories, i.e., Ω ≜ {[θi]
T
i=1 | θ0 ∼ Θ}

in FARZI’s optimization (Equation (4.2)), we plot the change in downstream distillation per-

formance with increasing |Ω| in Figure 4.6b. We indeed observe a massive improvement in

downstream distillation performance with using as little as just 5 trajectories, compared to

randomly initializing networks in FARZI’s inner-loop. Notably, the improvement saturates as we

keep adding more trajectories to Ω.

4.6.7 Does FARZI affect cold users or items more?

A longstanding problem in recommender systems is modeling the cold-start scenario,

i.e., users/items with less data. We study the effect training models on FARZI DATA from the

cold-start perspective, by stratifying the users and items based on their popularity into equal-

sized quantiles, and checking the trained model’s performance on each individual quantile. In

130



25 50 100 160

User frequency

20

40

60

80
A

vg
.

H
R

@
10

0

20 50 100 200 600

Item frequency

0

20

40

60

80

A
vg

.
H

R
@

10
0

Farzi

Full Data

(a)
0 25 50 75 100

# Trajectories

12

13

14

15

16

17

H
R

@
10

Farzi

(b)

Figure 4.6. (a) Performance of SASRec trained on [50×150] sized FARZI DATA for ML-100k,
and stratified over the popularity of users and items. The popularities are quantized into 10 equal
sized bins and the average HR@100 is plotted. (b) Performance change of SASRec trained on
[10×150] sized FARZI DATA for ML-100k with increasing number of pretrained trajectories.

Figure 4.6a, we do this for SASRec (Kang and McAuley, 2018) trained on (i) the full dataset; and

(ii) FARZI DATA synthesized using different hyper-parameter combinations. We first observe that

less popular items are harder to model, as is the typical case of recommender systems. Further,

we observe that models trained on FARZI DATA are, in expectation, (i) better on the tail/torso

region of users/items; but (ii) worse for the head users/items. Notably, this behaviour is not

directly optimized-for by FARZI, and is a by-product of the overall data-quality optimization in

Equation (4.2).

4.7 Conclusion & Discussion

In this chapter, we proposed FARZI—a scalable technique to summarize large autore-

gressive datasets into terse, high-fidelity data summaries. Through extensive experiments on

next-item recommendation and language modeling, we demonstrated that data synthesized by

FARZI (FARZI DATA) is able to train various kinds of SoTA models to the same quality (if not

better) as training them on the full dataset, despite FARZI DATA being up to 1000× smaller.

Better performance with less FARZI DATA. Figure 4.4 hints towards the possibility for

improving performance, while training on orders of magnitude smaller FARZI DATA vs. the

original dataset, that also leads to training efficiency gains (Table 4.7). We hypothesize this to

be an artifact of the implicit denoising in FARZI due to the data bottleneck, and are excited to
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explore this direction further in future work.

FARZI for Large Language Models (LLMs). While training LLMs is out-of-scope for this

chapter given the compute available to us, we see a clear path for enabling DD to scale to LLM-

scale data via FARZI. First, our largest dataset (Netflix, 0.5M sequences) uses a tiny batch

size of just 512 and 25 for the real and synthetic data respectively (Table 4.2). Further, FARZI

uses efficient reverse-mode Adam for meta-gradient computation (Algorithm 6). Both of these

allow DD to scale out-of-the-box to LLM-scale models and data using strictly no more hardware

requirements vs. training the same LLM (cf. Figure 4.3 for FARZI’s computational complexity).

Chapter 4, in part, is currently being prepared for submission for publication of the

material “Farzi Data: Autoregressive Data Distillation.” by Noveen Sachdeva, Zexue He,

Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Derek Zhiyuan Cheng, and Julian McAuley.

2024. The dissertation author was the primary investigator and author of this paper.
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