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The perception of others’ actions supports important skills such as communication,
intention understanding, and empathy. Are mechanisms of action processing in the
human brain specifically tuned to process biological agents? Humanoid robots can perform
recognizable actions, but can look and move differently from humans, and as such, can be
used in experiments to address such questions. Here, we recorded EEG as participants
viewed actions performed by three agents. In the Human condition, the agent had biological
appearance and motion. The other two conditions featured a state-of-the-art robot in
two different appearances: Android, which had biological appearance but mechanical
motion, and Robot, which had mechanical appearance and motion. We explored whether
sensorimotor mu (8–13 Hz) and frontal theta (4–8 Hz) activity exhibited selectivity for
biological entities, in particular for whether the visual appearance and/or the motion of
the observed agent was biological. Sensorimotor mu suppression has been linked to
the motor simulation aspect of action processing (and the human mirror neuron system,
MNS), and frontal theta to semantic and memory-related aspects. For all three agents,
action observation induced significant attenuation in the power of mu oscillations, with no
difference between agents. Thus, mu suppression, considered an index of MNS activity,
does not appear to be selective for biological agents. Observation of the Robot resulted in
greater frontal theta activity compared to the Android and the Human, whereas the latter
two did not differ from each other. Frontal theta thus appears to be sensitive to visual
appearance, suggesting agents that are not sufficiently biological in appearance may result
in greater memory processing demands for the observer. Studies combining robotics and
neuroscience such as this one can allow us to explore neural basis of action processing on
the one hand, and inform the design of social robots on the other.

Keywords: EEG, action perception, social robotics, mirror neuron system, mu rhythm, theta rhythm

INTRODUCTION
From dolls and statues, to modern horror and science fiction
stories, humans have long been preoccupied with creating other
entities in their likeness. Advances in technology now allow us
to create increasingly realistic and interactive humanoid agents.
Lifelike humanoid robots are becoming commonplace, and assis-
tive technologies based on social robotics are being developed
for many application domains (e.g., Kanda et al., 2004; Corade-
schi et al., 2006). Research on how humans perceive, respond to
and interact with these agents is therefore increasingly impor-
tant. However little is understood about human social cognition
in this new, wider context. An interdisciplinary perspective on
social robotics is needed, since this field will impact many areas
of research, as well as issues of public concern in the near future,
for example in domains such as education and healthcare (Billard
et al., 2007; Dautenhahn, 2007; Mataric et al., 2009). Here, we pro-
vide hypotheses and data from cognitive and social neuroscience
to study the perception of humanoid robots. Our goal is on the

one hand to improve our understanding of human social cogni-
tion, and on the other, to help engineers and designers develop
robots that are well-suited to their application domains.

ACTION UNDERSTANDING AND THE BRAIN
Understanding the movements and actions of others is crit-
ical for survival, and in many species, for social cognition.
For humans, these processes are building blocks for important
higher-order social skills, such as coordination, communication,
intention understanding, and empathy (Blakemore and Decety,
2001; Iacoboni and Dapretto, 2006; Knoblich et al., 2006). A
prominent idea regarding how the nervous system achieves the
goal of “understanding others” is motor simulation. According to
this theory, an action is understood by mapping the visual rep-
resentation of an observed action to the observers’ own motor
representations (Rizzolatti et al., 2001). This view has become
more widespread following the discovery of mirror neurons
(MNs) in macaque premotor cortex (Di Pellegrino et al., 1992;
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Gallese et al., 1996; Rizzolatti et al., 1996). MNs are cells that fire
both during the execution of an action, and during the observation
of the same action performed by another agent, thereby providing
a neural basis for motor resonance. For instance a mirror neu-
ron that fires as the monkey cracks a peanut, can also fire as the
monkey observes someone else crack a peanut. The neural net-
work in the human brain supporting action and body movement
processing is generally referred to as the mirror neuron system
(MNS) – sometimes also as action observation network or action
perception system – and corresponds to a set of areas in tempo-
ral, parietal, and frontal cortices (Rizzolatti et al., 2001; Saygin
et al., 2004; Grafton and Hamilton, 2007; Saygin, 2007; Cattaneo
et al., 2010; van Kemenade et al., 2012; Cook et al., in press). The
MNS received considerable attention in the past two decades as
a possible neural basis for action understanding, social cognition,
empathy, and communication, and has been discussed in relation
to disorders affecting social functions such as autism (Iacoboni
and Dapretto, 2006).

Although the majority of studies on human MNS have
involved functional magnetic resonance imaging (fMRI) as a
method of investigation, there is also a body of evidence from
multiple temporally-sensitive methodologies including motor-
evoked potentials, magnetoencephalography (MEG), and elec-
troencephalography (EEG) indicating that the motor system is
involved during action observation (Fadiga et al., 1995; Hari et al.,
1998; Cochin et al., 1999; Babiloni et al., 2002; Pineda, 2005; Hari,
2006; Orgs et al., 2008; Kilner et al., 2009; Perry and Bentin, 2009;
Press et al., 2011). EEG studies in particular have revealed another
index of human MNS activity known as mu suppression, which
can be measured non-invasively via EEG with electrodes placed
on the scalp. Mu suppression refers to an attenuation in the
power of the EEG in the alpha frequency range (8–13 Hz) mea-
sured over sensorimotor cortex and, like mirror neuron activity,
is observed both during action execution and action observa-
tion (Cochin et al., 1999; Babiloni et al., 2002; Pineda, 2005; Hari,
2006; Orgs et al., 2008; Perry and Bentin, 2009). There is a grow-
ing body of literature that is revealing the functional properties
of sensorimotor mu suppression. Specifically, it has been sug-
gested that mu suppression might have a role in social interactive
contexts in addition to passive action observation (Tognoli et al.,
2007; Dumas et al., 2012; Naeem et al., 2012; Silas et al., 2012),
and that sub-bands of the mu rhythm might have different func-
tional properties (Naeem et al., 2012). In an attempt to understand
the relation between the mu suppression and the MNS, studies
using both fMRI and EEG have argued that attenuations in the
power of the EEG mu rhythm and fMRI activity in nodes of
the MNS likely index the activity of the same underlying neu-
ral populations (Arnstein et al., 2011; Braadbaart et al., 2013),
although it is worth noting mu suppression has also been cor-
related with brain areas other than the MNS (Mizuhara and Inui,
2011).

Although the 8–13 Hz oscillations have been the most impli-
cated frequency band in EEG studies of action observation, a
thorough understanding of the mechanisms of action observa-
tion and of the functional properties of this neural system can
benefit from considering other dependent measures whose func-
tional significance in cognition is well studied. As mentioned

above, one of the most influential mechanistic explanations of
action observation, the motor simulation framework, posits that
we understand others’ actions by mapping the visual input of the
seen action to our own sensorimotor representations (Rizzolatti
et al., 2001). For meaningful actions, during this mapping process,
one also needs to activate the existing semantic representations of
actions, and compare them with the current visual input and/or
the representations evoked during motor simulation (Barresi and
Moore, 1996). If there is a match between the seen action’s mean-
ing and existing long-term memory representations, this can result
in successful recognition of the action; if there is no match (e.g.,
in the case of actions or agents that have not been encountered
before, and thus do not have a memory trace), the newly encoun-
tered item will need to be encoded into long-term memory. Thus,
the entire process of action understanding requires the interplay
of perceptual, motor, and memory processes.

Although memory is an essential part of action understanding
(and the processing of meaningful stimuli in general), most stud-
ies to date have approached the issue implicitly (e.g., Umiltà et al.,
2001). However, both human behavioral and neuroscience studies
(e.g., Stefan et al., 2005; Casile and Giese, 2006; Carmo et al., 2012)
and robotics studies (e.g., Wermter and Elshaw, 2003; Ugur and
Erol, 2011) have highlighted a role for memory processes in action
understanding, and there is growing interest in specifying the role
of learning and memory in action perception and related brain
systems (Cook et al., in press). EEG theta oscillations have been
investigated in the context of memory processes, but have not been
studied thoroughly in relation to action understanding. Given
the crucial role of memory for action understanding within the
motor simulation framework, we believe it is time to incorporate
what we know about the functional significance of theta activity
in studying action processing. Thus, in the current study, we also
explored theta oscillations (4–8 Hz), which, especially at frontal
sites, are thought to index memory encoding and retrieval in both
linguistic and non-linguistic contexts (Hald et al., 2006; Osipova
et al., 2006; Davidson and Indefrey, 2007; Bastiaansen et al., 2008;
Shahin et al., 2009; Crespo-Garcia et al., 2010; Klimesch et al.,
2010; Zion-Golumbic et al., 2010; Atienza et al., 2011). Specifi-
cally, theta activity has been reported to increase during encoding
of information into long-term memory, and during retrieval of
information from long-term memory (see review Klimesch et al.,
2010). Zion-Golumbic et al. (2010) also reported that theta power
increase reflects the utilization of information from long-term
memory during processing of visual stimuli. Exploration of theta
oscillations during action processing could be informative given
the automatic employment of memory processing during action
observation, and given that there is almost no work on theta
oscillations in relation to action observation.

COGNITIVE NEUROSCIENCE AND ROBOTICS
The cognitive neuroscience of action perception, and especially
the MNS, has received intense interest from neuroscientists in the
last two decades, and we can now use the accumulated knowledge
in this field to study how the human brain supports human-robot
interaction. Conversely robotics can help research on the human
brain by allowing us to test functional properties of the MNS and
other brain areas that support action understanding.
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One question that has been of interest since the identification
of the MNS is whether the system is selectively tuned to pro-
cess the actions of biological agents. For example, we may ask,
during perception of or interactions with robots, does the brain
rely on the same or distinct processes as with perception of or
interactions with biological agents? The neuroscience-based the-
ory of motor simulation argues that a visually perceived body
movement or action is mapped onto the perceiving agent’s sen-
sorimotor neural representations, and “an action is understood
when its observation causes the motor system of the observer to
‘resonate’ ” (Rizzolatti et al., 2001). But what are the boundary
conditions for “resonance?” What kinds of agents or actions lead
to the simulation process? Is biological appearance important? Is
biological motion? Artificial agents such as robots can be impor-
tant experimental stimuli to test such hypotheses since robots can
perform recognizable actions like biological agents, but can differ
from biological agents in some other aspects (e.g., on how they
appear or how they move – see below).

The neuroscience literature on the perception of robots has
not revealed consistent results (Kilner et al., 2003; Chaminade
and Hodgins, 2006; Chaminade et al., 2007; Gazzola et al.,
2007; Oberman et al., 2007; Press et al., 2007). Some studies
have reported that artificial agents’ actions apparently affect the
observers’ own motor processing, or activity within the MNS,
whereas others have argued that the MNS either does not respond,
or responds weakly if the perceived actor is not human, including
a clear claim that the MNS is only “mirror” for biological actions
(Tai et al., 2004).

Conversely, neuroscience research on human observation of
and interaction with robots can be invaluable to social robotics
researchers since an important issue in the growing field of per-
sonal and social robotics is how to design robots that are likely to
be socially accepted by their human companions. Research on the
neural basis of social cognition using robots can provide valuable
insights to advance the field of robot design and human-robot
interaction by identifying the critical qualities that a robot should
have, and eventually to guide the building of “neuroergonomic”
robots that people are comfortable to interact with (Saygin et al.,
2011).

BRAIN ACTIVITY AND ROBOT DESIGN
Here, we explored human brain activity evoked by humans and
robots. Robots can have a range of appearance and movement
patterns – but at the same time, they can be perceived as carrying
out recognizable actions. Is biological appearance or biological
movement necessary for engaging human brain systems that sup-
port social cognition? Does robot perception require additional
memory processing demands? Robots can allow us to ask such
questions and to test whether particular brain systems are selec-
tive for or sensitive to the presence of a human, or an agent with a
humanlike form, or whether they respond similarly regardless of
the agent performing the action.

Given that action observation is important for imitation learn-
ing and higher-level social skills, we hypothesized that human
likeness of the observed agent (i.e., the degree of similarity between
the observer and the observed agent) could be important for the
MNS. Indeed, motor resonance theory would predict increased

humanlikeness would lead to more effective or efficient simula-
tion (e.g., Buccino et al., 2004; Calvo-Merino et al., 2006; Casile
et al., 2010). On the other hand, in artificial agents, human resem-
blance is not necessarily always a positive feature. The “uncanny
valley” (UV) hypothesis suggests that as a robot is made more
humanlike, the reaction to it becomes more and more positive,
until a point is reached at which the robot becomes oddly repulsive
(Mori, 1970). This phenomenon is well known to roboticists and
animators, but its scientific understanding remains incomplete
– although there is a growing body of research on the topic, with
some recent contributions from the behavioral and neural sciences
(e.g., MacDorman and Ishiguro, 2006; Ho et al., 2008; Stecken-
finger and Ghazanfar, 2009; Cheetham et al., 2011; Thompson
et al., 2011; Tinwell et al., 2011; Lewkowicz and Ghazanfar, 2012;
Saygin et al., 2012).

Most studies on the observation of robot actions have used
very basic robot arms consisting of a stick/body and a claw, akin
to rudimentary industrial robot arms, performing grasping, or
other simple movements. Therefore, the results are not sufficient
to make conclusions regarding social humanoid robots that are
being developed today. To overcome these limitations of previous
work, we created well-controlled stimuli based on state-of-the-art
humanoid robots developed by an interdisciplinary team. Further-
more, our hypotheses, stimuli, and experimental design focused
on whether the seen agent had biological (humanlike) appearance,
whether the agent’s body movements were biological, plus whether
their appearance and movements matched (Saygin et al., 2012).

We used human EEG cortical oscillatory activity in the
alpha/mu and theta frequency bands as dependent measures in
the present study. In addition to asking functional questions about
action processing and social cognition, we also hoped to shed new
light onto the functional significance of these dependent mea-
sures in relation to action observation. For instance, are cortical
theta and mu oscillations sensitive to the sensory properties of
the stimuli, or to higher-level cognitive processes? In particu-
lar, we investigated whether cortical theta and mu oscillations
are modulated by the human likeness of the observed agent. We
characterized human likeness in two different ways: in terms of
appearance and in terms of motion. Participants watched videos
of three agents as their EEG was recorded: Human, Android,
and Robot. Human had biological appearance and movement,
Android had biological appearance and mechanical movement,
and Robot had mechanical appearance and mechanical move-
ment (see Figure 1, Methods, and Saygin et al., 2012 for more
detail).

FIGURE 1 | Still frames from the videos used in the experiment

depicting the three actors: Human, Android, and Robot.
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We hypothesized that if mu suppression is influenced by the
specific visual properties of the seen action, we might find a
difference between the actions of the different agents based on
their appearance and/or motion characteristics. If on the other
hand mu suppression reflects higher-level processes related to the
meaning of the action, then the agents might not differ from
each other since they all perform the same recognizable actions
despite their different degrees of human likeness. For theta activ-
ity, we hypothesized that its power would be modulated by the
human likeness of the observed agent, reflecting the processing
demands of mapping the visual input into existing semantic rep-
resentations. Since in the context of action processing, people are
more familiar with human actors than robot actors, we hypoth-
esized memory processes would differ depending on the agent’s
appearance. More specifically, we hypothesized that the power of
the theta oscillations would decrease as a function of the human
likeness of the observed agent, since observation of relatively unfa-
miliar stimuli would result in greater memory processing demands
(Hald et al., 2006; Zion-Golumbic et al., 2010; Atienza et al., 2011).
We thus expected that observation of the Robot would result in
increased theta activity compared to the Human, since the human-
like appearance of the agent would facilitate access to semantic
representations related to human action. The Android condition,
which features humanlike appearance but non-human motion,
additionally allows us to ask whether or not the human likeness of
the motion is a modulator of memory processes.

In sum, the aim of the study was threefold. First, by manipu-
lating various features of the observed agent, we aimed to improve
our understanding of the functional significance of EEG mu
and theta oscillations during action observation and their rela-
tion to the MNS. Second, using robots as experimental stimuli
in the presence of existing knowledge in cognitive neuroscience
of action perception, we aimed to inform robotics about how
humans respond to robots of varying degrees of human likeness,
what dependent measures could be used as gold-standards for
social robotics research, and accordingly for guiding the design
of robots in the long-term. Finally, the current study allowed us
to do cross-methodology comparison, as we previously reported
an fMRI study utilizing the same agents as stimuli (Saygin et al.,
2012).

MATERIALS AND METHODS
PARTICIPANTS
Twelve right-handed adults (three females; mean age = 23.4;
SD = 4.7) from the student community at the University of Cal-
ifornia, San Diego participated in the study. Participants had
normal or corrected-to-normal vision and no history of neuro-
logical disorders. We recruited only those participants who had
no experience working with robots in order to minimize possi-
ble effects of familiarity or expertise on our results (MacDorman
et al., 2009). Informed consent was obtained in accordance with
the UCSD Human Research Protections Program. Participants
were paid $8 per hour or received course credit.

STIMULI
Stimuli were video clips of actions performed by the humanoid
robot Repliee Q2 (in robotic and humanlike appearance, Figure 1

right and middle images, respectively) and by the human “master,”
after whom Repliee Q2 was modeled (Figure 1 left image). We
refer to these agents as the Robot, the Android (dressed up robot),
and the Human conditions (even though the former two are in
fact the same robot).

Repliee Q2 has 42 degrees of freedom and can make face, head,
and upper body movements (Ishiguro, 2006). The robot’s move-
ments are mechanical or“robotic,” and do not match the dynamics
of biological motion. The same movements were videotaped in
two appearance conditions. For the Robot condition, Repliee
Q2’s surface elements were removed to reveal its wiring, metal
arms, and joints, etc. The silicone “skin” on the hands and face
and some of the fine hair around the face could not be removed
but was covered. The movement kinematics for the Android and
Robot conditions was identical, since these conditions comprised
the same robot, carrying out the very same movements. For the
Human condition, the female adult whose face was used in con-
structing Repliee Q2 was videotaped performing the same actions.
All agents were videotaped in the same room with the same back-
ground. Video recordings were digitized, converted to grayscale
and cropped to 400 × 400 pixels. Videos were clipped such that
the motion of the agent began at the first frame of each 2 s
video.

In summary, we had three agents and varied the form and
motion of the observed agent: a human with biological appear-
ance and motion, an Android with biological appearance and
mechanical motion, and a Robot with mechanical appearance and
motion. Due to the considerable technical difficulty in develop-
ing these stimuli and limitations inherent to the robot systems
we worked with, we did not have a fourth condition (i.e., an
agent with a well-matched mechanical appearance and biological
motion) that would make our experimental design 2 (motion) ×
2 (appearance).

PROCEDURE
Before starting EEG recordings, participants were presented with
all the action stimuli and were informed as to whether each agent
was human or robot. Since prior knowledge can induce cog-
nitive biases against artificial agents (Saygin and Cicekli, 2002),
each participant was given exactly the same introduction to the
study. Participants went through a short practice session before
the experiment.

EEG was recorded as participants watched video clips of the
three agents performing five different upper body actions (drink-
ing from a cup, picking up and looking at an object, hand
waving, introducing self, nudging). The experiment consisted of
15 blocks of 60 trials with equal number of videos of each agent
and action (four repetitions of each video in each block). Stim-
uli were presented in a pseudo-randomized order ensuring that
a video was not repeated on two consecutive trials. Each par-
ticipant experienced a different pseudo-randomized sequence of
trials.

Stimuli were displayed on a 22′′ Samsung LCD monitor at
60 Hz using Python-based Vizard (Worldviz, Inc.) software. We
displayed a gray screen with a fixation cross before the start of the
video clip on each trial. Participants were instructed to fixate the
blue fixation cross at the center of the screen for 700–1000 ms.
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Then the color of the fixation cross was changed to green and
presented for 500–700 ms to inform participants of the upcom-
ing video. A comprehension question was displayed every 6–10
trials after the video, asking participants a true/false question
about the action in the just seen video (e.g., Drinking?). Since
participants did not know whether they would receive a ques-
tion during video presentation, this task allowed us to direct
the subjects’ attention to the stimuli, but not in a manner that
might bias the results for any particular condition (behavioral
performance in the task did not differ across conditions; all p
values > 0.1). Participants responded with a bimanual key press
(Yes/No responses).

EEG RECORDING AND DATA ANALYSIS
EEG was recorded at 512 Hz from 64 Active Two Ag/AgCl elec-
trodes (Biosemi, Inc.) following the International 10/20 system.
The electrode-offset level was kept below 25 k ohm. Four addi-
tional electrodes were placed above and below the right eye, and
lateral to the eyes to monitor oculomotor activity. Two mastoid
electrodes were placed behind the ears for re-referencing. The
data were preprocessed with MATLAB and the EEGLAB tool-
box (Delorme and Makeig, 2004). Each participant’s data were
first high-pass filtered at 1 Hz, low-pass filtered at 50 Hz, and
re-referenced to average mastoids. Then the data were epoched
ranging from 900 ms preceding video onset to 2000 ms after video
onset, and were time-locked to the onset of the video clips. Atypical
epochs of electromyographic activity were removed from further
analysis by semi-automated epoch rejection procedures (kurtosis
and probability-based procedures with standard deviation ≥ 6).
To remove eye-related artifacts, the data were decomposed by
extended infomax ICA using the algorithm binica, and compo-
nents that showed typical eye-related artifact characteristics were
removed from the data. After preprocessing, data for each condi-
tion were transformed into a spectrographic image using 3-cycle
Morlet wavelets in the 4–55 Hz frequency range at a number of
frontal channels (F3 and F4), central channels (C3 and C4 over
the sensorimotor cortex), and parietal channels (P3 and P4). The
frontal and central channels were selected since these or neighbor-
ing electrodes were consistently reported in the literature on theta
and mu oscillations, respectively (Hald et al., 2006; Oberman et al.,
2007; Zion-Golumbic et al., 2010). For both mu and theta oscilla-
tions, these are the specific regions of interest that are related to our
hypotheses regarding MNS and memory, and posterior electrodes
for each frequency band are believed to have different functional
significance. However, for completeness, we reported also on pari-
etal channels to cover the posterior parts of the scalp. The mean
power of the baseline period of the spectrographic images was
removed from the power at each time point of the experimental
trials.

STATISTICAL ANALYSIS
The spectral windows of mu and theta oscillations for statistical
analyses were determined from the mean spectrographic images
across all conditions in the 4–55 Hz frequency range and con-
strained by well-established windows of these cortical rhythms,
which are 8–13 Hz for mu and 4–8 Hz for theta. The specific
time windows for statistical analyses of the power of mu and

theta oscillations were determined from the mean spectrographic
image across all conditions, allowing us to test modulations in
time periods of interest without introducing any bias for finding
specific condition differences. For mu, mean alpha power in the
time window of the mu attenuation (400–1400 ms after stimu-
lus onset) was extracted for each condition (Agent) and channel
(C3: left hemisphere; C4: right hemisphere), and entered into a
3(Agent) × 2 (Hemisphere) repeated measures ANOVA. For theta,
the mean power in the time window of the theta increase (150–
400 ms after stimulus onset) was extracted for each condition
(Agent) and channel (F3: left hemisphere; F4: right hemisphere)
and entered into a 3(Agent) × 2 (Hemisphere) repeated measures
ANOVA. Although our hypotheses primarily related to the Agent
manipulation (Robot, Android, Human), we also modeled Action
(the five different actions) and Hemisphere (left, right) to explore
any modulation that may be specific to particular actions. These
analyses are not reported since they did not reveal any action-
specific effects or interactions, and the effects reported below for
the 3 × 2 ANOVA did not change. Greenhouse–Geisser correction
was applied to the ANOVAs whenever indicated. p-values reported
below are two-tailed except for the comparisons of mu and alpha
power against zero, where our hypotheses were one-tailed (i.e., we
expected a decrease in mu power and an increase in theta power).
Planned or posthoc t-test p-values were corrected for multiple
comparisons.

In addition to our hypothesis-driven ANOVAs described above,
for completeness, we also included ANOVAs for each of theta
and mu oscillations in the other channel locations: (C3, C4) and
(P3, P4) for theta; (F3, F4) and (P3, P4) for mu. Furthermore,
given recent experimental evidence that sub-bands of the mu band
might have different functional properties (Naeem et al., 2012), we
ran two additional 3(Agent) × 2 (Hemisphere) ANOVAs for lower
(8–10 Hz) and upper (10–13 Hz) bands of the mu oscillations at
channels C3 and C4.

MULTIVARIATE PATTERN ANALYSES
In recent years, computational methods from machine learning
have been used to analyze neuroimaging data as an alternative
to conventional analyses (Kamitani and Tong, 2005; Haynes and
Rees, 2006; Norman et al., 2006). The idea is to build a model
(classifier) that can decode information recorded from the brain
with neuroimaging. This is done by first training the model with
a set of data labeled with class information (e.g., the conditions of
the experiment) and allowing it to learn the patterns within the
data, and then testing it with a separate set of data to see whether
it can correctly predict unlabeled data. Predictions with higher-
than-chance accuracy indicate that there is sufficient information
in the data that distinguishes the neural patterns correspond-
ing to different conditions of an experiment. The advantage of
these methods is that they are more sensitive to the differences
between conditions since they consider the patterns of activity as
the basic units of measurement, as opposed to an average of the
activity, which may discard useful information. This is important
in the context of the current study since there are discrepan-
cies in the mu suppression literature, which might be due to the
information lost by using the traditional analysis (i.e., averaging
technique).
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In order to explore subtle differences that may be missed when
analyzing mu and theta oscillations with traditional analyses as
described above, we used Multivariate Pattern Analysis (MVPA)
using the pattern of mu activity and pattern of theta activity. We
used support vector machines (Cortes and Vapnik, 1995) with
a linear basis function and the LIBSVM software package (Chang
and Lin, 2011) on mu oscillations at channels C3 and C4, and theta
oscillations at channels F3 and F4 in three-way [Robot-Android-
Human (R-A-H)] and two-way classifications [Robot-Android
(R-A), Robot-Human (R-H), Android-Human (A-H)]. The data
that were fed into the classifier were time-frequency features in the
frequency range 8–13 Hz and in the time interval 400–1400 ms for
mu, and time-frequency features in the frequency range 4–8 Hz
and in the time interval 150–400 ms for theta. The data were scaled
before classification and five-fold cross validation was applied in
the classification procedure. The prediction accuracy (the number

of correctly predicted trials) was used as the performance met-
ric of the classifier. Each classification (R-A-H, R-A, R-H, A-H)
was run three times for each subject and the average prediction
accuracy of these three runs are reported. Above-chance perfor-
mance (corresponding to the 95% confidence interval) was 54.37%
for the two-way classifications, and 37.59% for the three-way
classification (Muller-Putz et al., 2008).

RESULTS
MU OSCILLATIONS (8–13 Hz)
In the channels of interest, C3 and C4, action observation led to
an increase in theta power shortly after stimulus onset (see theta
results below for quantified analyses), followed by an attenuation
in alpha power starting around 350 ms, and becoming stronger
around 600 ms after stimulus onset (Figure 2). For observation of
all agents’ actions (Human as well as the two robot agents, Android

FIGURE 2 |Time-frequency plots for the three conditions (Human, Andr-

oid, Robot) at channel C3 (left hemisphere). Plots for the right hemisphere
(C4) were very similar and are not shown. The frequency axis is log scaled.
The zero point on the time axis indicates the onset of the action movies.

Shortly after the onset of the action videos, we observed an increase in the
theta frequency band (see also Figure 4), followed by an attenuation in the
alpha frequency band (8–13 Hz) that started around 350 ms, and grew
stronger around 600 ms.
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FIGURE 3 | Attenuation in the power (in dB) of the mu (8–13 Hz)

oscillations for the three conditions (Human, Android, Robot) plotted

at channels C3 and C4. Error bars indicate the standard error of the mean.
For both C3 and C4, all conditions led to statistically significant attenuation
in mu power (all p’s < 0.05, see Results). There were no significant
differences between agents (Human, Android, Robot) or hemispheres
(C3, C4).

and Robot), attenuation of the mu oscillations were robust and
significant (Figure 3; C3: Human (Mean = −1.21, SD = 0.61),
t(11) = −6.871, p < 0.001; Android (Mean = −1.14, SD = 0.60),
t(11) = −6.642, p < 0.001; Robot (Mean = −1.21, SD = 0.74),
t(11) = −5.675, p < 0.001, and C4: Human (Mean = −1.09,
SD = 0.71), t(11) = −5.328, p < 0.001; Android (Mean = −1.15,
SD = 0.65), t(11) = −6.11, p < 0.001; Robot (Mean = −1.19,
SD = 0.87), t(11) = −4.76, p = 0.001). Suppression in alpha
power was also observed in frontal and parietal channels over
the scalp with greater suppression at parietal channels. Although,
we report some results from other channels here for descriptive
purposes, given the differential functional significance of frontal
and posterior alpha, our focus will be on the hypothesis-driven
analyses at channels C3 and C4.

ANOVA
Our primary comparison of interest was the 3(Agent) × 2 (Hemi-
sphere) repeated measures ANOVA at central channels C3 and
C4, which revealed no main effect of Agent [F(2, 22) = 0.151] or
Hemisphere [F(1, 11) = 0.163] on the power of the mu oscilla-
tions (all p > 0.1; Figure 3). There was no Agent × Hemisphere
interaction [F(2, 22) = 0.947, p > 0.1].

When we explored lower (8–10 Hz) and upper (10–13 Hz)
bands of the mu oscillations at the same channels separately, we
again found no main effects or interactions {Lower Mu: Agent
[F(1.376, 15.136) = 0.047], Hemisphere [F(1, 11) = 0.007],
Agent × Hemisphere [F(2, 22) = 1.093]; Upper Mu: Agent [F(2,
22) = 0.216], Hemisphere [F(1, 11) = 0.136], Agent × Hemisphere
[F(2, 22) = 0.496] all p > 0.1}.

Similar 3(Agent) × 2 (Hemisphere) repeated measures
ANOVAs at frontal (F3, F4) and parietal channels (P3, P4) are
reported here for completeness: There were no main effects or
interactions {F3-F4: Agent [F(2, 22) = 0.210], Hemisphere [F(1,
11) = 0.110], Agent × Hemisphere [F(2, 22) = 1.334]; P3-
P4: Agent [F(2, 22) = 0.629], Hemisphere [F(1, 11) = 1.187],
Agent × Hemisphere [F(2, 22) = 0.359], all p > 0.1}.

Multivariate pattern analysis
Multivariate pattern analyses of the mu suppression at channels C3
and C4 were performed to reveal any subtle modulations in alpha
power over time that may have been missed due to averaging in
the traditional analysis. For the three-way classification R-A-H,
the average performance of MVPA for all subjects was not above
chance (33.91% for C3 and 34.28% for C4). Pairwise classifications
R-A, R-H, and A-H also resulted in chance-level performance on
average (50.53, 52.11, and 49.77%, respectively for channel C3,
and 50.95, 51.31, and 50.82%, respectively for channel C4).

THETA OSCILLATIONS (4–8 Hz)
At channels F3 and F4, action observation led to an increase in
theta power starting at around 150 ms and lasting until about
400 ms after stimulus onset (Figure 4), followed by an attenua-
tion in alpha power (see Mu results above for quantified analyses).
For the Robot condition, the increase in theta was significant at
both F3 and F4 [Figure 4; For F3, Mean = 0.71, SD = 1.05,
t(11) = 2.322, p < 0.01; for F4, Mean = 0.83, SD = 1.13,
t(11) = 2.527, p < 0.01]. Observation of Android and Human
actions also resulted in increased theta power that were either sta-
tistically significant or just at the cusp of significance (Figure 4; For
F3, Human (Mean = 0.32, SD = 0.75), t(11) = 1.479, p = 0.054;
Android (Mean = 0.45, SD = 0.88), t(11) = 1.774, p = 0.05; For
F4, Human (Mean = 0.37, SD = 0.68), t(11) = 1.848, p < 0.05;
Android (Mean = 0.37, SD = 0.84), t(11) = 1.506, p = 0.053).
Increase in the power of theta oscillations was also observed at cen-
tral and parietal channels over the scalp. Although, we reported
results from all channels here, we based our discussion mainly on
the hypothesis-driven results at channels F3 and F4 given the prior
literature.

ANOVA
Our main comparison of interest, a 3(Agent) × 2 (Hemisphere)
repeated measures ANOVA at channels F3 and F4 revealed a signif-
icant main effect of Agent [F(1.350, 14.852) = 5.276, p < 0.05, see
Figure 5]. Planned comparisons (paired t-tests) indicated theta
oscillations were greater for the Robot condition compared with
the Human [F(1, 11) = 5.386, p < 0.05] and the Android condi-
tions [F(1, 11) = 9.879, p < 0.01]. The effect of Hemisphere [F(1,
11) = 1.144, p > 0.1] or the Agent × Hemisphere interaction [F(1,
11) = 3.196, p > 0.1] were not significant.

Similar 3(Agent) × 2 (Hemisphere) repeated measures
ANOVAs at central and parietal channels are reported here for
completeness: There was a main effect of Agent at central chan-
nels, but no effect of Hemisphere or interaction effect {C3-C4:
Agent [F(1.133, 12.458) = 5.016], p < 0.04, Hemisphere [F(1,
11) = 0.401], p > 0.1, Agent × Hemisphere [F(2, 22) = 1.819]}.
The Agent effect reflected increased theta for the Robot, similar
to that found in frontal channels (see Figure 4). There were no
main effects or interactions in parietal channels {P3-P4: Agent
[F(1.260, 13.860) = 2.588], Hemisphere [F(1, 11) = 1.078],
Agent × Hemisphere [F(2, 22) = 0.908], all p > 0.1}.

Multivariate pattern analysis
Although traditional analyses already revealed differences between
agents, we applied multivariate pattern analyses on the theta
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FIGURE 4 |Time-frequency plots for the three conditions (Human,

Android, Robot) at channel F3 (left hemisphere). Plots for the right
hemisphere (F4) were very similar and are not shown. The frequency axis is

log scaled. The zero point on the time axis indicates the onset of the action
movies. Shortly after the onset of the stimuli, there was an increase in theta
power (4–8 Hz), followed by a reduction in alpha power (see also Figure 2).

oscillations at channels F3 and F4 for completeness. For the
three-way classification R-A-H, the average performance of MVPA
for all subjects was above chance (39.58% for C3 and 39.53%
for C4). Pairwise classifications R-A and R-H resulted in above-
chance performance on average (58.25 and 58.33%, respectively
for channel F3, and 57.80 and 58.61%, respectively for channel F4).
A-H classification resulted in chance-level performance on aver-
age (51.76% for channel F3 and 52.16% for channel F4). These
MVPA results were thus in line with the results of the traditional
analyses.

DISCUSSION
We investigated how the sensorimotor EEG mu rhythm that is
considered to index human MNS activity, and the frontal theta
activity that is implicated in memory processes are modulated
by the human likeness of the agent being observed. Participants

viewed three agents, a Human, and a state-of-the-art robot in two
different appearances (as an Android and a Robot) performing
the same recognizable actions. The Human had biological motion
and appearance, whereas the Android had biological appear-
ance and mechanical motion, and the Robot had mechanical
motion and mechanical appearance (Figure 1). We hypothesized
that any modulations of the oscillations by sensory features of
the stimuli would be revealed as significant differences between
the experimental conditions, based on the seen agents’ differing
appearance and motion characteristics. Specifically if these depen-
dent measures are sensitive to the movement kinematics of the
seen actor, then we would expect the Human condition to be dis-
tinguished from the others. If they are sensitive to the appearance,
then the Robot would be distinguished from the other agents,
or there would be a degree of activity that corresponds to the
degree of human likeness of the appearance of the agents. If they
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FIGURE 5 | Power in the theta frequency range (4–8 Hz, in dB) for the

three conditions (Human, Android, Robot) plotted at channels F3 and

F4. Error bars indicate the standard error of the mean. All conditions led to
significant increase in theta power (all p’s ≤ 0.05, see Results). The Robot
condition led to significantly increased theta power in comparison to the
Android and Human conditions (*p’s ≤ 0.05, see Results).

are sensitive to the congruence of the movement dynamics and
appearance, then Android would be distinguished from the other
agents since this condition features a humanlike appearance along
with non-human motion dynamics, whereas the other agents fea-
ture congruent appearance and motion (both biological, or both
mechanical). If on the other hand these dependent measures reflect
higher-level processing related to the meaning of the actions and
are not sensitive to the visual properties of the stimuli, then the
agents might not differ from each other since they all perform the
very same actions.

Mu OSCILLATIONS
We showed that the observation of the human agent as well
as both of the robot agents resulted in robust and significant
attenuations in the power of mu oscillations over the frequently
reported sensorimotor areas. The magnitude of the attenua-
tions was equivalent for all agents. This replicates and extends
a previous mu suppression study that had used a simple robot
hand (Oberman et al., 2007). Consistent with previous work
on action observation, we did not find any hemispheric differ-
ences (Babiloni et al., 2002). Overall, our results show that the
human MNS is unlikely to be selective only for other humans,
since a commonly accepted measure of human MNS activity
(EEG mu suppression) showed robust and significant modula-
tions also when observing robot actions. These data also suggest
that mu suppression might not be sensitive to early sensory
stages of action processing, since the agents’ differences in terms
of their visual appearance and movement kinematics did not
differentially affect mu power. Frontal and parietal sites also
showed the same pattern of results as the sensorimotor chan-
nels, although it must be noted that alpha oscillations at these
latter sites are not specifically linked to the MNS or action
processing.

After exploring mu suppression with traditional statistical anal-
yses adopted from previous work (e.g., Oberman et al., 2007),
we also explored the data using machine learning and multivari-
ate pattern analyses. The pattern activity has more information

than the average activity (over time and frequency band) used in
traditional analyses so more subtle differences can be picked up
(see Kamitani and Tong, 2005; Norman et al., 2006; Pereira et al.,
2009 for discussion of such issues). Our primary goal in apply-
ing pattern analysis on mu oscillations was to reduce concerns
readers may possibly have about lack of a difference between con-
ditions being due to an insensitive analysis method. In other words,
we wanted to pre-answer the question a reader may have about
whether there could be subtler differences when the entire pattern
gets taken into account, especially given that recent literature on
the mu suppression field has started to include finer modulations
(Naeem et al., 2012). The fact that we did not find differences
in the patterns of mu suppression with this much more sensitive
analysis method provides strong evidence that mu suppression
is also found for observing the actions of humanoid robots. Mu
suppression patterns do not appear to be sensitive to the early
sensory stages of action processing (as evidenced by chance-level
performance for the R-A-H classification), in particular to the
appearance (as evidenced by chance-level performance for the
R-A classification) or the movement kinematics (as evidenced
by chance-level performance for the A-H classification) of the
observed agent.

To be clear, there may be other systems in the brain that are
modulated by sensory properties of the seen stimuli, or even those
that are selective for processing biological agents. Indeed, in related
work (and in the theta results here), we have reported perceptual
and neural processes that are sensitive to the properties of the seen
action such as humanlike appearance or motion (e.g., Saygin and
Stadler, 2012; Urgen et al., 2012). The mu suppression results here
indicate however that the human MNS does not appear to respond
differentially to the actions of humanoid robots and humans.
Although a PET study had claimed the human MNS is “mirror
only for biological actions” (Tai et al., 2004), several recent fMRI
studies are consistent instead with our present results, and have
reported that human MNS also responds to robot actions (e.g.,
Gazzola et al., 2007; Cross et al., 2012; Saygin et al., 2012). In par-
ticular, Saygin et al. (2012), using very similar stimuli to the present
study, found no difference between human and robot actions in
premotor cortex, but showed that parietal cortex is sensitive to
the congruence of the motion and appearance of the agent (as evi-
denced by significant differences in response to the Android). More
broadly, these data are consistent with the view that the premotor
cortex is largely insensitive to the surface properties of the stim-
uli depicting actions, but instead is more involved in computing
goals and intentions (Rizzolatti et al., 2001; Grafton and Hamil-
ton, 2007; Cattaneo et al., 2010). Human fMRI studies indicate that
human premotor cortex responds to a wide range of action stimuli,
including impoverished or simplified displays such as point-light
biological motion or simple avatars (Pelphrey et al., 2003; Saygin
et al., 2004). Since the mu rhythm appears to be insensitive to the
visual aspects of the actions (i.e., the humanlike appearance and
movement kinematics in the current study), cognitive and affective
manipulations during passive action observation or social inter-
active contexts as evidenced by recent literature (Tognoli et al.,
2007; Dumas et al., 2012; Naeem et al., 2012; Silas et al., 2012)
would be more appropriate for future studies to better understand
the functional properties of the mu rhythm. The fact that we did
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not find any difference between the different sub-bands of the
mu rhythm further suggests that social interactive contexts may
be suitable to study the functional properties of the mu rhythm
(Naeem et al., 2012).

THETA OSCILLATIONS
For the frontal theta oscillations, we expected our meaningful
stimuli to lead to increases in power, reflecting memory-related
processing (i.e., accessing long-term memory representations to
process the higher-level meaning of the action stimuli). In partic-
ular, we hypothesized that the power would decrease as a function
of the human likeness of the observed agent, since observation of
relatively unfamiliar agents could result in greater memory pro-
cessing demands (Hald et al., 2006; Zion-Golumbic et al., 2010;
Atienza et al., 2011). More specifically, we hypothesized that obser-
vation of the Robot would result in greater theta activity compared
to the Human, as we expected the humanlike appearance of the
agent would facilitate access to semantic representations related
to human action. However, it was also possible biological motion
would also influence responses, in which case we would expect the
Android condition to also differ from the Human.

Our analysis of the frontal theta activity indeed showed that
observation of the Robot resulted in a significantly stronger
increase in the power of theta oscillations (4–8 Hz) compared to
the agents with humanlike appearance; the Human and Android
did not differ from each other. MVPA of the theta oscillations cor-
roborated these results. Since the Robot was distinguished from
the other agents by its non-human appearance, these results sug-
gest that frontal theta activity is modulated by the appearance of
the agent being observed during action observation. Central sites
revealed a similar pattern of results with the frontal sites; there
were no agent differences over parietal sites.

Since theta oscillations reflect memory processes such as
retrieval from long-term memory and encoding into long-term
memory (see review Kahana et al., 2001; Klimesch et al., 2010),
our results suggest that processing of the Robot resulted in greater
demands on memory systems as compared to the other agents.
This difference is best viewed as reflecting the interplay of per-
ceptual processing and long-term memory, particularly during
retrieval of items from semantic memory. A robotic appearance,
especially in the context of actions that are typical for humans, is
less likely to be associated with strong semantic links that can aid
in the mapping of the visual input onto existing representations
from long-term memory. The difficulty of integrating the visual
input with existing semantic knowledge could manifest itself as
increased frontal theta activity in comparison to the conditions
with humanlike appearance. For the human stimuli, linking the
visual input with semantic representations of human actions is
likely to be less effortful, since participants have had existing
semantic representations about actions developed over time by
seeing other humans. This interpretation is consistent with pre-
vious work, which has found increased theta activity during the
retrieval of semantic information from long-term memory, and
especially sensitivity to semantic congruence in linguistic and non-
linguistic contexts (Hald et al., 2006; Davidson and Indefrey, 2007;
Bastiaansen et al., 2008; Shahin et al., 2009; Zion-Golumbic et al.,
2010; Atienza et al., 2011; Steele et al., 2013). The similarity of the

results for the Android with that of the Human suggests that the
very humanlike appearance of the Android may have facilitated
the activation of semantic representations about human actions,
even though the motion of this agent was not humanlike (and was
in fact the same as that for Robot), and even though participants
knew that this agent was not a real human.

In a recent event-related potential (ERP) study (Urgen et al.,
2012), we averaged the EEG time-locked to the onset of actions
for the Human, Android, and Robot conditions. While all action
stimuli evoked a significant negativity called the N300/N400 com-
ponent complex beginning at around 200 ms after stimulus onset
over frontal channels, the amplitude of this component differed
significantly for the Robot condition compared to the other agents,
a parallel to the present results. Given the timing of the theta
oscillations observed here, and the known function of these ERP
components for semantic processing (Sitnikova et al., 2008; Kutas
and Federmeier, 2011; Wu and Coulson, 2011), we conclude that a
humanlike appearance facilitates (or a non-human appearance
impedes) access to long-term memory representations related
to action. The link between frontal theta and ERP components
related to memory processes should be explored in future work.
Furthermore, the addition of a condition that presents a biologi-
cal motion and mechanical appearance combination can be useful
to better understand the interaction between the appearance and
motion parameters.

CROSS-METHODS COMPARISON: EEG AND fMRI WITH HUMAN AND
ROBOT ACTION STIMULI
The present study allows us to compare our EEG time-frequency
results to our previous fMRI work with a similar stimulus set
(Saygin et al., 2012). The main finding of our fMRI study was
that parietal regions of the human cortex (specifically bilat-
eral anterior intraparietal sulcus, which is part of the human
MNS) responded significantly more to the Android agent, there-
fore to the mismatch of form and motion of the agent being
observed. Premotor regions of the MNS did not show selectiv-
ity for the form or the motion of the agents. Although EEG
mu activity has been found to correlate with fMRI activity both
in premotor cortex and parietal cortex (Arnstein et al., 2011),
our studies suggest that the mu rhythm might share more func-
tional properties with the activity of premotor cortex than parietal
cortex.

In the current study theta oscillations distinguished the Robot
agent around 150–400 ms after stimulus onset. Although there was
a region in left lateral temporal cortex (the extrastriate body area)
that responded significantly less to the Robot agent in the fMRI
data, based on the functional properties of this region, this activa-
tion is more likely to reflect visual stimulus properties rather than
the memory-related processing indexed by the theta oscillations
in the present study, or by event related potentials (Urgen et al.,
2012). It is likely that EEG, with its milliseconds time resolution,
can reveal effects that do not emerge in fMRI studies due to the
limited time resolution of this latter method.

HUMAN QUALITIES OF SOCIAL ROBOTS
Neuroscience research on human observation of and interaction
with robots not only improves our understanding of the neural
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basis of social cognition but it can be invaluable to social robotics
researchers. One important issue in the growing field of personal
and social robotics is how to design robots that are likely to be
socially accepted by their human companions. Broadly, there are
two important design issues. The first is the visual properties of
robots, i.e., how they should look on the surface. The second
is the functional properties, i.e., how they should perform the
functions they are designed to perform. Not only should we con-
sider both visual properties and functional properties, but the
combination (or interaction) of them might also be important for
determining the eventual social acceptability of a robot. Therefore,
research efforts for robotics from social, behavioral, and neural
sciences should focus on both of these aspects. In the present
study, we kept the functioning of the robots constant (i.e., both
robots successfully performed various goal-directed, recognizable
human actions) and manipulated the visual properties. Our study,
together with existing neuroimaging evidence, provides insight
to robotics researchers about the visual human qualities of robots
that will be designed to interact with humans. It seems that as long
as the robot performs the action successfully and is of a sufficiently
humanoid design to do so, it will likely be processed in a similar way
in the MNS as other people (see also, Gazzola et al., 2007; Ober-
man et al., 2007; Saygin et al., 2012). Although mu suppression
has been linked to the human MNS, it and MNS activity in gen-
eral do not appear be the right dependent measure for comparing
the visual properties of robots with human standards. We suggest
that neuroscience studies with mu oscillations as dependent mea-
sure might consider using cognitive and affective manipulations to
study robot perception or human-robot interaction. It is possible
that mu oscillations can inform design issues about the functional
properties of robots, rather than visual properties.

Analysis of frontal theta activity on the other hand suggests that
theta oscillations can be used as a dependent measure to investi-
gate responses to visual properties of artificial agents, in particular
on the interplay between perceptual and memory processes. Our
results showed that if the artificial agent is sufficiently humanlike

in appearance (Android vs. Robot), it is more likely to facilitate
access to semantic representations pertaining to the seen stim-
uli (here, actions). If the seen agent is rather different from
a human in terms of its visual appearance (as in the case of
the Robot), it can result in greater processing demands in the
observer. Our results suggest that movement kinematics might
not be as important as the appearance in influencing the map-
ping process of the visual input to existing long-term memory
representations.

In general, future social, behavioral, and neuroscience research
on the perception of robots should distinguish the two dimensions,
i.e., visual properties and functional properties (and an interaction
of the two) when studying the social acceptability of robots. This
would result in a more systematic study of the design issues about
social robots and enable determination of the right dependent
measures to be used as gold standards in human-robot interac-
tion and robot design. This research in turn will inform social
and cognitive neuroscience about the neural basis of human social
skills. Our study demonstrates that this interdisciplinary work is
useful and fruitful, and progress in this direction will improve our
understanding in both fields.

ACKNOWLEDGMENTS
This research was supported by the Qualcomm Institute (for-
merly California Institute of Telecommunications and Informa-
tion Technology), Strategic Research Opportunities Award to Ayse
P. Saygin, fellowship for Burcu A. Urgen), Kavli Institute for
Brain and Mind (Innovative Research Award to Ayse P. Saygin),
NSF (CAREER Award BCS-1151805 to Ayse P. Saygin, and SBE-
0542013 to Temporal Dynamics of Learning Center), DARPA
(Ayse P. Saygin), and ONR (MURI Award N00014-10-1-0072 to
Howard Poizner). We thank Arthur Vigil and Joe Snider for assis-
tance with the experimental setup, Intelligent Robotics Laboratory
at Osaka University for help in the preparation of the stimuli, and
Alvin Li, Wayne Khoe, Marta Kutas, Seana Coulson, Jamie Pineda,
Chris Berka, and Scott Makeig for helpful discussion and feedback.

REFERENCES
Arnstein, D., Cui, F., Keysers, C., Mau-

rits, N. M., and Gazzola, V. (2011).
Mu suppression during action obser-
vation and execution correlates with
BOLD in dorsal premotor, infe-
rior parietal, and SI cortices. J.
Neurosci. 31, 14243–14249. doi:
10.1523/JNEUROSCI.0963-11.2011

Atienza, M., Crespo-Garcia, M., and
Cantero, J. L. (2011). Seman-
tic congruence enhances memory
of episodic associations: role of
theta oscillations. J. Cogn. Neurosci.
23, 75–90. doi: 10.1162/jocn.2009.
21358

Babiloni, C., Babiloni, F., Car-
ducci, F., Cincotti, F., Cocozza,
G., Del Percio, C., et al. (2002).
Human cortical electroencephalog-
raphy (EEG) rhythms during the
observation of simple aimless move-
ments: a high-resolution EEG study.

Neuroimage 17, 559–572. doi:
10.1006/nimg.2002.1192

Barresi, J., and Moore, C. (1996).
Intentional relations and social
understanding. Behav. Brain
Sci. 19, 107–154. doi: 10.1017/
S0140525X00041790

Bastiaansen, M. C. M., Oostenveld,
R., Jensen, O., and Hagoort, P.
(2008). I see what you mean: theta
power increases are involved in the
retrieval of lexical semantic informa-
tion. Brain Lang. 106, 15–28. doi:
10.1016/j.bandl.2007.10.006

Billard, A., Robins, B. Nadel, J., and
Dautenhahn, K. (2007). Building
Robota, a mini-humanoid robot
for the rehabilitation of children
with autism. Assist. Technol. 19,
37–49. doi: 10.1080/10400435.
2007.10131864

Blakemore, S. J., and Decety, J.
(2001). From the perception of

action to the understanding of
intention. Nat. Rev. Neurosci.
2, 561–566. doi: 10.1038/3508
6023

Braadbaart, L., Williams, J. H., and
Waiter, G. D. (2013). Do mirror neu-
ron areas mediate mu rhythm sup-
pression during imitation and action
observation? Int. J. Psychophysiol. 89,
99–105. doi: 10.1016/j.ijpsycho.2013.
05.019

Buccino, G., Lui, F., Canessa, N., Pat-
teri, I., Lagravinese, G., Benuzzi, F.,
et al. (2004). Neural circuits involved
in the recognition of actions per-
formed by nonconspecifics: an FMRI
study. J. Cogn. Neurosci. 16, 114–
126. doi: 10.1162/0898929043227
55601

Calvo-Merino, B., Grezes, J., Glaser, D.
E., Passingham, R. E., and Haggard, P.
(2006). Seeing or doing? Influence of
visual and motor familiarity in action

observation. Curr. Biol. 16, 1905–
1910. doi: 10.1016/j.cub.2006.07.065

Carmo, J. C., Rumiati, R. I., and
Vallesi, A. (2012). Understanding
and imitating unfamiliar actions: dis-
tinct underlying mechanisms. PLoS
ONE 7:e46939. doi: 10.1371/jour-
nal.pone.0046939

Casile, A., and Giese, M. A. (2006).
Nonvisual motor training influ-
ences biological motion percep-
tion. Curr. Biol. 16, 69–74. doi:
10.1016/j.cub.2005.10.071

Casile, A., Dayan, E., Caggiano, V.,
Hendler, T., Flash, T., and Giese, M. A.
(2010). Neuronal encoding of human
kinematic invariants during action
observation. Cereb. Cortex 20, 1647–
1655. doi: 10.1093/cercor/bhp229

Cattaneo, L., Sandrini, M., and
Schwarzbach, J. (2010). State-
dependent TMS reveals a hierar-
chical representation of observed

Frontiers in Neurorobotics www.frontiersin.org November 2013 | Volume 7 | Article 19 | 11

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neurorobotics/archive


“fnbot-07-00019” — 2013/11/12 — 21:14 — page 12 — #12

Urgen et al. EEG oscillations during action observation

acts in the temporal, parietal, and
premotor cortices. Cereb. Cortex
20, 2252–2258. doi: 10.1093/cercor/
bhp291

Chaminade, T., and Hodgins, J. K.
(2006). Artificial agents in social cog-
nitive sciences. Interact. Stud. 7,
347–353. doi: 10.1075/is.7.3.07cha

Chaminade, T., Hodgins, J., and
Kawato, M. (2007). Anthropo-
morphism influences perception
of computer-animated characters’
actions. Soc. Cogn. Affect. Neurosci. 2,
206–216. doi: 10.1093/scan/nsm017

Chang, C., and Lin, C. (2011). LIB-
SVM: a library for support vec-
tor machines. ACM Trans. Intell.
Syst. Technol. 2, 27:1–27:27. doi:
10.1145/1961189.1961199

Cheetham, M., Suter, P., and Jancke
L. (2011). The human like-
ness dimension of the “uncanny
valley hypothesis”: behavioral
and functional MRI findings.
Front. Hum. Neurosci. 5:126. doi:
10.3389/fnhum.2011.00126

Cochin, S., Barthelemy, C., Roux, S., and
Martineau, J. (1999). Observation
and execution of movement: similar-
ities demonstrated by quantified elec-
troencephalography. Eur. J. Neurosci.
11, 1839–1842. doi: 10.1046/j.1460-
9568.1999.00598.x

Cook, R., Bird, G., Catmur, C., Press,
C., and Heyes, C. (in press). Mirror
neurons: from origin to function.
Behav. Brain Sci.

Coradeschi, S., Ishiguro, H., Asada,
M., Shapiro, S. C., Thielscher, M.,
Breazeal, C., et al. (2006). Human-
inspired robots. IEEE Intell. Syst. 21,
74–85. doi: 10.1109/MIS.2006.72

Cortes, C., and Vapnik, V. N.
(1995). Support-vector networks.
Mach. Learn. 20, 273–297. doi:
10.1007/BF00994018

Crespo-Garcia, M., Cantero, J. L.,
Pomyalov, A., Boccaletti, S., and
Atienza, M. (2010). Functional neu-
ral networks underlying semantic
encoding of associative memories.
Neuroimage 50, 1258–1270. doi:
10.1016/j.neuroimage.2010.01.018

Cross, E., Liepelt, R., Hamilton, A.,
Parkinson, J., Remsey, R., Stadler, W.,
et al. (2012). Robotic movement pref-
erentially engages the action obser-
vation network. Hum. Brain Mapp.
33, 2238–2254. doi: 10.1002/hbm.
21361

Dautenhahn, K. (2007). Socially intelli-
gent robots: dimensions of human-
robot interaction. Philos. Trans. R.
Soc. Lond. B Biol. Sci. 362, 679–704.
doi: 10.1098/rstb.2006.2004

Davidson, D. J., and Indefrey, P. (2007).
An inverse relation between event-
related and time-frequency violation

responses in sentence processing.
Brain Res. 1158, 81–92. doi:
10.1016/j.brainres.2007.04.082

Delorme, A., and Makeig, S. (2004).
EEGLAB: an open source tool-
box for analysis of single-trial
EEG dynamics including indepen-
dent component analysis. J. Neu-
rosci. Methods 134, 9–21. doi:
10.1016/j.jneumeth.2003.10.009

Di Pellegrino, G., Fadiga, L., Fogassi,
L., Gallese, V., Rizzolatti, G.
(1992). Understanding motor events:
a neurophysiological study. Exp.
Brain Res. 91, 176–180. doi:
10.1007/BF00230027

Dumas, G., Martinerie, J., Soussig-
nan, R., and Nadel, J. (2012).
Does the brain know who is at
the origin of what in an imitative
interaction? Front. Hum. Neurosci.
6:128. doi: 10.3389/fnhum.2012.
00128

Fadiga, L., Fogassi, L., Pavesi, G., and
Rizzolatti, G. (1995). Motor facili-
tation during action observation: a
magnetic stimulation study. J. Neu-
rophysiol. 73, 2608–2611.

Gallese, V., Fadiga, L., Fogassi, L.,
and Rizzolatti, G. (1996). Action
recognition in the premotor cor-
tex. Brain 119, 593–609. doi:
10.1093/brain/119.2.593

Gazzola, V., Rizzolatti, G., Wicker,
B., and Keysers, C. (2007). The
anthropomorphic brain: the mir-
ror neuron system responds to
human and robotic actions. Neu-
roimage 35, 1674–1684. doi: 10.1016/
j.neuroimage.2007.02.003

Grafton, S. T., and Hamilton, A. F.
(2007). Evidence for a distributed
hierarchy of action representa-
tion in the brain. Hum. Mov.
Sci. 26, 590–616. doi: 10.1016/
j.humov.2007.05.009

Hald, L. A., Bastiaansen, M. C.
M., and Hagoort, P. (2006). EEG
theta and gamma responses to
semantic violations in online sen-
tence processing. Brain Lang. 96,
90–105. doi: 10.1016/j.bandl.2005.
06.007

Hari, R. (2006). Action–perception con-
nection and the cortical mu rhythm.
Prog. Brain Res. 159, 253–260. doi:
10.1016/S0079-6123(06)59017-X

Hari, R., Forss, N., Avikainen, S.,
Kirveskari, E., Salenius, S., and
Rizzolatti, G. (1998). Activation
of human primary motor cortex
during action observation: a neu-
romagnetic study. Proc. Natl. Acad.
Sci. U.S.A. 95, 15061–15065. doi:
10.1073/pnas.95.25.15061

Haynes, J. D., and Rees, G. (2006).
Decoding mental states from
brain activity in humans. Nat.

Rev. Neurosci. 7, 523–534. doi:
10.1038/nrn1931

Ho, C.-C., MacDorman, K. F., and Dwi
Pramono, Z. A. D. (2008). “Human
emotion and the uncanny valley: a
GLM, MDS, and Isomap analysis of
robot video ratings,” in Proceedings
of the 3rd ACM/IEEE International
Conference on Human Robot Inter-
action (Amsterdam: Association for
Computing Machinery).

Iacoboni, M., and Dapretto, M. (2006).
The mirror neuron system and the
consequences of its dysfunction. Nat.
Rev. Neurosci. 7, 942–951. doi:
10.1038/nrn2024

Ishiguro, H. (2006). Android science:
conscious and subconscious recogni-
tion. Conn. Sci. 18, 319–332. doi:
10.1080/09540090600873953

Kahana, M. J., Seelig, D., and Mad-
sen, J. R. (2001). Theta returns. Curr.
Opin. Neurobiol. 11, 739–744. doi:
10.1016/S0959-4388(01)00278-1

Kamitani, Y., and Tong, F. (2005).
Decoding the visual and subjec-
tive contents of the human brain.
Nat. Neurosci. 8, 679–685. doi:
10.1038/nn1444

Kanda, T., Ishiguro, H., Imai, M., and
Ono, T. (2004). Development and
evaluation of interactive humanoid
robots. Proc. IEEE 92, 1839–
1850. doi: 10.1109/JPROC.2004.
835359

Kilner, J. M., Marchant, J. L., and Frith,
C. D. (2009). Relationship between
activity in human primary motor cor-
tex during action observation and
the mirror neuron system. PLoS
ONE 4:e4925. doi: 10.1371/jour-
nal.pone.0004925

Kilner, J. M., Paulignan, Y., and Blake-
more, S. J. (2003). An interfer-
ence effect of observed biological
movement on action. Curr. Biol.
13, 522–525. doi: 10.1016/S0960-
9822(03)00165-9

Klimesch, W., Freunberger, R., and
Sauseng, P. (2010). Oscillatory
mechanisms of process binding in
memory. Neurosci. Biobehav. Rev.
34, 1002–1014. doi: 10.1016/
j.neubiorev.2009.10.004

Knoblich, G., Thornton, I. M., Grosjean,
M., Shiffrar, M., eds. (2006). Human
Body Perception from the Inside
Out. New York: Oxford University
Press.

Kutas, M., and Federmeier, K. D.
(2011). Thirty Years and Counting:
Finding Meaning in the N400 Com-
ponent of the Event-Related Brain
Potential (ERP). Annu. Rev. Psy-
chol. 62, 621–647. doi: 10.1146/
annurev.psych.093008.131123

Lewkowicz, D. J., and Ghazanfar,
A. A. (2012). The development

of the uncanny valley in infants.
Dev. Psychobiol. 54, 124–132. doi:
10.1002/dev.20583

MacDorman, K. F., and Ishiguro,
H. (2006). The uncanny advan-
tage of using androids in cognitive
and social science research. Interact.
Stud. 7, 297–337. doi: 10.1075/is.7.3.
03mac

MacDorman, K. F., Vasudevan, S. K.,
and Ho, C.-C. (2009). Does Japan
really have robot mania? Compar-
ing attitudes by implicit and explicit
measures. AI Soc. 23, 485–510. doi:
10.1007/s00146-008-0181-2

Mataric, M., Tapus, A., Winstein, C.,
and Eriksson, J. (2009). Socially assis-
tive robotics for stroke and mild TBI
rehabilitation. Stud. Health Technol.
Inform. 145, 249–262.

Mizuhara, H., and Inui, T. (2011).
“Is mu rhythm an index of the
human mirror neuron system? A
study of simultaneous fMRI and
EEG,”in Advances in Cognitive Neuro-
dynamics (II) (Berlin: Springer), 123–
127.

Mori, M. (1970). The uncanny val-
ley. Energy 7, 33–35. doi: 10.1109/
MRA.2012.2192811

Muller-Putz, G. R., Scherer, R., Brun-
ner, C., Leeb, R., and Pfurtscheller, G.
(2008). Better than random: A closer
look on BCI results. Int. J. Biomagn.
10, 52–55.

Naeem, M., Prasad, G., Watson, D. R.,
and Kelso, J. A. (2012). Electrophys-
iological signatures of intentional
social coordination in the 10–12Hz
range. Neuroimage 59, 1795–1803.
doi: 10.1016/j.neuroimage.2011.
08.010

Norman, K. A., Polyn, S. M., Detre,
G. J., and Haxby, J. V. (2006).
Beyond mind-reading: multi-voxel
pattern analysis of fMRI data. Trends
Cogn. Sci. 10, 424–430. doi:
10.1016/j.tics.2006.07.005

Oberman, L. M., McCleery, J. P.,
Ramachandran, V. S., and Pineda, J.
A. (2007). EEG evidence for mirror
neuron activity during the observa-
tion of human and robot actions:
Toward an analysis of the human
qualities of interactive robots. Neu-
rocomputing 70, 2194–2203. doi:
10.1016/j.neucom.2006.02.024

Orgs, G., Dombrowski, J., Heil, M., and
Jansen-Osmann, P. (2008). Expertise
in dance modulates alpha/beta event-
related desynchronization during
action observation. Eur. J. Neurosci.
27, 3380–3384. doi: 10.1111/j.1460-
9568.2008.06271.x

Osipova, D., Takashima, A., Oosten-
veld, R., Fernández, G., Maris, E.,
and Jensen, O. (2006). Theta and
gamma oscillations predict encoding

Frontiers in Neurorobotics www.frontiersin.org November 2013 | Volume 7 | Article 19 | 12

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neurorobotics/archive


“fnbot-07-00019” — 2013/11/12 — 21:14 — page 13 — #13

Urgen et al. EEG oscillations during action observation

and retrieval of declarative mem-
ory. J. Neurosci. 26, 7523–7531.
doi: 10.1523/JNEUROSCI.1948-
06.2006

Pelphrey, K. A., Mitchell, T. V., McK-
eown, M. J., Goldstein, J., Alli-
son, T., and McCarthy, G. (2003).
Brain activity evoked by the percep-
tion of human walking: controlling
for meaningful coherent motion. J.
Neurosci. 23, 6819–25.

Pereira, F., Mitchell, T., and Botvinick,
M. (2009). Machine learning classi-
fiers and fMRI: A tutorial overview.
Neuroimage 45, 199–209. doi:
10.1016/j.neuroimage.2008.11.007

Perry, A., and Bentin, S (2009). Mir-
ror activity in the human brain
while observing hand movements:
a comparison between EEG desyn-
chronization in the mu-range and
previous fMRI results. Brain Res.
1282, 126–132. doi: 10.1016/
j.brainres.2009.05.059

Pineda, J. (2005). The functional sig-
nificance of mu rhythms: Translating
“seeing” and “hearing” into “doing.”
Brain Res. Rev. 50, 57–68. doi:
10.1016/j.brainresrev.2005.04.005

Press, C., Cook, J., Blakemore, S. J.,
and Kilner, J. M. (2011). Dynamic
modulation of human motor activ-
ity when observing actions. J.
Neurosci. 31, 2792–2800. doi:
10.1523/JNEUROSCI.1595-10.2011

Press, C., Gillmeister, H., and
Heyes, C. (2007). Sensorimotor
experience enhances automatic imi-
tation of robotic action. Proc. Biol.
Sci. 274, 2509–2514. doi: 10.1098/
rspb.2007.0774

Rizzolatti, G., Fadiga, L., Gallese, V.,
and Fogassi, L. (1996). Premotor cor-
tex and the recognition of motor
actions. Brain Res. Cogn. Brain
Res. 3, 131–141. doi: 10.1016/0926-
6410(95)00038-0

Rizzolatti, G., Fogassi, L., and Gallese,
V. (2001). Neurophysiological mech-
anisms underlying the understand-
ing and imitation of action. Nat.
Rev. Neurosci. 2, 661–670. doi:
10.1038/35090060

Saygin, A. P. (2007). Superior temporal
and premotor areas are necessary
for biological motion percep-
tion. Brain 130, 2452–2461. doi:
10.1093/brain/awm162

Saygin, A. P., Chaminade, T., Ishig-
uro, H., Driver, J., and Frith,
C. (2012). The thing that should
not be: predictive coding and the
uncanny valley in perceiving human
and humanoid robot actions. Soc.
Cogn. Affect. Neurosci. 7, 413–422.
doi: 10.1093/scan/nsr025

Saygin, A. P., Chaminade, T., Urgen, B.
A., and Ishiguro, H. (2011). “Cog-
nitive neuroscience and robotics: a
mutually beneficial joining of forces,”
in Robotics: Systems and Science,
ed. L. Takayama (Los Angeles: MIT
Press).

Saygin, A. P., and Cicekli, I. (2002).
Pragmatics in human-computer con-
versations. J. Pragmat. 34, 227–
258. doi: 10.1016/S0378-2166(02)
80001-7

Saygin, A. P., and Stadler, W. (2012).
The role of appearance and motion
in action prediction. Psychol. Res. 76,
388–394. doi: 10.1007/s00426-012-
0426-z

Saygin, A. P., Wilson, S. M., Hagler,
D. J. Jr., Bates, E., and Sereno, M. I.
(2004). Point-light biological motion
perception activates human premo-
tor cortex. J. Neurosci. 24, 6181–6188.
doi: 10.1523/JNEUROSCI.0504-04.
2004

Shahin, A. J., Picton, T. W., and
Miller, L. M. (2009). Brain oscilla-
tions during semantic evaluation of
speech. Brain Cogn. 70, 259–66. doi:
10.1016/j.bandc.2009.02.008

Silas, J., Levy, J. P., and Holmes,
A. (2012). Sensitivity of ‘mu’
rhythm modulation to the rele-
vance of an observed movement
but not to goal congruency. Int.
J. Psychophysiol. 85, 168–173. doi:
10.1016/j.ijpsycho.2012.05.008

Sitnikova, T., Holcomb, P. J., Kiyon-
aga, K. A., and Kuperberg, G. R.
(2008). Two neurocognitive mecha-
nisms of semantic integration during
the comprehension of visual real-
world events. J. Cogn. Neurosci. 20,
2037–2057. doi: 10.1162/jocn.2008.
20143

Steckenfinger, S. A., and Ghazan-
far, A. A. (2009). Monkey visual
behavior falls into the uncanny val-
ley. Proc. Natl. Acad. Sci. U.S.A.
106, 18362–18366. doi: 10.1073/
pnas.0910063106

Steele, V. R., Bernat, E. M., van den
Broek, P., Collins, P., Patrick, C. J.,
and Marsolek, C. J. (2013). Sepa-
rable processes before, during, and
after the N400 elicited by previously
inferred and new information: Evi-
dence from time-frequency decom-
positions. Brain Res. 1492, 92–107.
doi: 10.1016/j.brainres.2012.11.016

Stefan, K., Cohen, L. G., Duque, J.,
Mazzocchio, R., Celnik, P., Sawaki,
L., et al. (2005). Formation of a
motor memory by action observa-
tion. J. Neurosci. 25, 9339–46. doi:
10.1523/JNEUROSCI.2282-05.2005

Tai, Y. F., Scherfler, C., Brooks, D.
J., Sawamoto, N., and Castiello, U.
(2004). The human premotor cor-
tex is ‘mirror’ only for biological
actions. Curr. Biol. 14, 117–120. doi:
10.1016/j.cub.2004.01.005

Thompson, J. C., Trafton, J. G., and
McKnight, P. (2011). The perception
of humanness from the movements
of synthetic agents. Perception 40,
695–704. doi: 10.1068/p6900

Tinwell, A., Grimshaw, M., Abdel-
Nabi, D., and Williams, A. (2011).
Facial expression of emotion and
perception of the uncanny val-
ley in virtual characters. Comput.
Hum. Behav. 27, 741–749. doi:
10.1016/j.chb.2010.10.018

Tognoli, E., Lagarde, J., DeGuzman, G.
C., and Kelso, J. S. (2007). The phi
complex as a neuromarker of human
social coordination. Proc. Natl. Acad.
Sci. U.S.A. 104, 8190–8195. doi:
10.1073/pnas.0611453104

Ugur, E., and Erol, S. (2011). “Unsuper-
vised learning of object affordances
for planning in a mobile manip-
ulation platform,” in Robotics and
Automation (ICRA) IEEE Interna-
tional Conference, Shanghai.

Umiltà, M. A., Kohler, E., Gallese,
V., Fogassi, L., Fadiga, L., Key-
sers, C., et al. (2001). I know what
you are doing: a neurophysiologi-
cal study. Neuron 31, 155–165. doi:
10.1016/S0896-6273(01)00337-3

Urgen, B. A., Plank, M., Ishiguro,
H., Poizner, H., and Saygin, A.
P. (2012). “Temporal dynamics of
action perception: the role of bio-
logical appearance and motion kine-
matics,” in 34thAnnual Conference of
Cognitive Science Society, Sapporo.

van Kemenade, B. M., Muggleton,
N., Walsh, V., and Saygin, A. P.
(2012). Effects of TMS over premo-
tor and superior temporal cortices
on biological motion perception. J.
Cogn. Neurosci. 24, 896–904. doi:
10.1162/jocn_a_00194

Wermter, S., and Elshaw, M. (2003).
Learning robot actions based on
self-organising language memory.
Neural Netw. 16, 691–699. doi:
10.1016/S0893-6080(03)00100-X

Wu, Y. C., and Coulson, S. (2011).
Are depictive gestures like pic-
tures? Commonalities and dif-
ferences in semantic processing.
Brain Lang. 119, 184–195. doi:
10.1016/j.bandl.2011.07.002

Zion-Golumbic, E., Kutas, M., and
Bentin, S. (2010). Neural dynam-
ics associated with semantic and
episodic memory for faces: evidence
from multiple frequency bands. J.
Cogn. Neurosci. 22, 263–277. doi:
10.1162/jocn.2009.21251

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 01 May 2013; paper pend-
ing published: 04 August 2013; accepted:
09 October 2013; published online: 13
November 2013.
Citation: Urgen BA, Plank M, Ishiguro
H, Poizner H and Saygin AP (2013) EEG
theta and Mu oscillations during percep-
tion of human and robot actions. Front.
Neurorobot. 7:19. doi: 10.3389/fnbot.
2013.00019
This article was submitted to the journal
Frontiers in Neurorobotics.
Copyright © 2013 Urgen, Plank, Ishiguro,
Poizner and Saygin. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is per-
mitted, provided the original author(s)
or licensor are credited and that the orig-
inal publication in this journal is cited, in
accordance with accepted academic prac-
tice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Neurorobotics www.frontiersin.org November 2013 | Volume 7 | Article 19 | 13

http://dx.doi.org/10.3389/fnbot.2013.00019
http://dx.doi.org/10.3389/fnbot.2013.00019
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neurorobotics/archive

	EEG theta and Mu oscillations during perception of human and robot actions
	Introduction
	Action understanding and the brain
	Cognitive neuroscience and robotics
	Brain activity and robot design

	Materials and methods
	Participants
	Stimuli
	Procedure
	EEG recording and data analysis
	Statistical analysis
	Multivariate pattern analyses

	Results
	Mu oscillations (8–13 Hz)
	Anova
	Multivariate pattern analysis

	Theta oscillations (4–8 Hz)
	Anova
	Multivariate pattern analysis


	Discussion
	Mu oscillations
	Theta oscillations
	Cross-methods comparison: eeg and fMRI with human and robot action stimuli
	Human qualities of social robots

	Acknowledgments
	References




