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Abstract 
Self models contribute to key functional domains of human in-
telligence that are not yet presented in today’s artificial intelli-
gence. One important aspect of human problem-solving in-
volves the use of conceptual self-knowledge to detect self-rel-
evant information presented in the environment, which guides 
the subsequent retrieval of autobiographical memories that are 
relevant to the task at hand. This process enables each human 
to behave self-consistently in our own way across complex sit-
uations, manifested as self-interest and trait-like characteris-
tics. In this paper, we outline a computational framework that 
implements the conceptual aspect of human self models 
through a modified version of the joint-embedding predictive 
architecture. We propose that through the incorporation of hu-
man-like autobiographical memory retrieval and self-im-
portance evaluation, the modified architecture could support 
machine agents with significantly enhanced self-consistency, 
which could be applied to deliver more believable simulations 
of human behaviors. 

Keywords: self models, JEPA, autobiographical memory, 
conceptual self, machine self consistency, cognitive AI 

Introduction 
Humans are able to learn vast amounts of knowledge about 
the world in relatively small exposure and yet know how to 
apply them to reason and act in novel situations. This general 
intelligence (Hassabis et al., 2017; Summerfield 2022) has 
been attributed to our ability to develop and use abstract men-
tal models of the world, or world models (Ha & Schmidhu-
ber, 2018; Friston et al., 2021), to form predictions of future 
world states and plan for actions accordingly. Recently there 
are attempts to implement world models into machine agents 
as a pathway to achieve human-like general intelligence (Es-
lami et al., 2018; Ha & Schmidhuber, 2018; Schrittwieser et 
al., 2020; Assran et al., 2023; Rao, Gklezakos, & Sathish, 
2023), which have succeeded in out-performing correspond-
ing specialized programs for a wide range of tasks in several 
domains. 

On the other hand, there are important aspects of human 
intelligence that cannot be captured by world models alone. 
One of such aspects that has been largely overlooked in arti-
ficial intelligence research is the self. While the term’s use in 
cognitive science is wide-ranging, in this current paper we 
specifically focus on the self as the collection of perceptual 
and conceptual information that records one’s individual ex-
periences, thoughts, and actions (Kihlstrom et al., 1988). The 
presence of these mental models of self, or self models (Vo-
geley et al., 1999; Northoff, 2013), enables humans to reason 
and act with impressive self-consistency. On one hand, 

humans maintain and pursue complex, long-term goals that 
are contingent upon our personal beliefs and values, which is 
often described in terms of the possession of self-interest 
(Moore & Loewenstein, 2004). On the other hand, during 
these goal-oriented behaviors, humans exhibit characteristics 
that vary significantly across individuals but consistent 
among oneselves, often referred to as traits (Matthew, Deary, 
& Whiteman, 2003). Self-interest and trait-like characteris-
tics are two functionally significant features of human intel-
ligence that are not presented in today’s artificial intelligence 
but are vital to its functional improvement and public ac-
ceptance (Pelau, Dabija, & Ene, 2021). 
 We propose the computational simulation of human self 
models through the extension of the joint-embedding predic-
tive architecture (JEPA; as in LeCun, 2022) as an approach 
to enable human-like self-consistency in machine perfor-
mance. Designed to support intelligent agents capable of 
solving domain-general tasks, JEPA centers around a predic-
tive world model module that simulates the general pattern of 
higher cognition in humans without considering individual 
differences shaped by experiences. Under the rationale of 
cognition-inspired artificial intelligence (Cassenti, Veksler, 
& Ritter, 2022), we suggest that with modifications of its key 
components, JEPA could be extended to encompass the in-
formation-processing framework of self models to personal-
ize its performance. Designs of these modifications are for-
mulated by considering the mapping between relevant mod-
ules in the JEPA framework and the neurocognitive substrate 
of self models in humans, which we discuss below. 

Human Self Models 

Overview 
Human self models can be said to involve two key compo-
nents: (1) autobiographical memory and (2) conceptual self-
knowledge. Autobiographical memory is further differenti-
ated into perceptual and conceptual kinds. The retrieval of 
conceptual autobiographical memories serves an important 
role in humans’ self-consistent decision-making across com-
plex situations and is guided by the processing of conceptual 
self-knowledge. We therefore suggest that formalizing these 
conceptual self models is significant to our present goal. 

Autobiographical Memory 
A particular life event that happened to a human agent can be 
remembered both perceptually and conceptually, which are 
processed through distinctive neural networks (Tulving, 
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1984; Brown et al., 2018). These two facets of autobiograph-
ical memory form the basis of the autobiographical memory 
system (Neisser, 1986; Conway & Pleydell-Pearce, 2000; 
Conway, 2005), which plays an important role in one’s judg-
ment and decision-making in both close and open-ended 
tasks (Simon et al., 1987; Sheldon, Fenerci, & Gurguryan, 
2019). 
 
Perceptual Autobiographical Memory Memories of per-
ceptual details during moment-specific events constitute the 
perceptual aspect of the autobiographical memory system. 
These perceptual autobiographical memories are critical ref-
erences for humans in solving close-ended tasks, given that 
their solutions are contingent upon the context of the prob-
lems. Detection of perceptual cues from the surroundings ac-
tivates the posterior hippocampus to retrieve perceptual 
memories of past events that are relevant to the present tasks, 
which is then served as a case-by-case template for decision-
making (Sheldon, Fenerci, & Gurguryan, 2019). While per-
ceptual autobiographical memory is an important constituent 
of the human self models and is reliable in solving close-
ended tasks, we do not mean to explore its computational ad-
aptation in our model due to both functional and feasibility 
reasons. To begin with, perceptual memory is less relevant in 
solving open-ended tasks, given that in these cases perceptual 
details do not contain cues for accessing task-relevant 
memory segments, which is the central concern of this pro-
ject. Furthermore, reinstating and applying perceptual 
memory requires conscious access, which machine adapta-
tion faces significant engineering challenges and ethical con-
cerns (Krauss & Maier, 2020). 
 
Conceptual Autobiographical Memory In contrast to per-
ceptual autobiographical memory, the conceptual aspect of 
the autobiographical memory system consists of both epi-
sodic memories and semantic ones. Conceptual episodic 
memories (i.e. conceptual details of discrete, moment-spe-
cific events) decay rapidly after formation (Talamini & Gor-
ree; 2012). However, elements of each discrete memory dur-
ing their consolidation process contributes to the thematic, 
knowledge-like memories of one’s life over a longer time 
scale (e.g. life stories and general events), often referred to as 
autobiographical semantic memories or autobiographical 
knowledge (Conway & Pleydell-Pearce, 2000; Conway, 
2005), which could be retained for extended periods of time, 
even after corresponding discrete memories have been for-
gotten. Autobiographical knowledge is suggested to be hier-
archically organized in terms of abstraction level and stored 
across the brain (Conway, Singer, & Tagini, 2004; Prebble, 
Addis, & Tippett, 2012), constituting the memory system 
known as the autobiographical knowledge base (Conway & 
Pleydell-Pearce, 2000). Given that solutions to open-ended 
problems are not contingent to contexts, retrieval of autobio-
graphical knowledge with task-relevant conceptual infor-
mation is critical for one’s decision-making in complex social 
situations (Conway, Singer, & Tagini, 2004; Conway, 2005; 
Sheldon, McAndrews, & Moscovitch, 2011). We therefore 

suggest that the implementation of conceptual autobiograph-
ical memory could be a significant addition to cognitive-in-
spired artificial intelligent systems for achieving human-like 
performance in open-ended tasks. In particular, such perfor-
mances are marked by a significant degree of self-con-
sistency, which is enabled by conceptual self-knowledge in 
its role among the retrieval of autobiographical knowledge, 
which we discuss below. 

Conceptual Self-knowledge 
The active employment of contents from the autobiograph-
ical knowledge base (Conway & Pleydell-Pearce, 2000) dur-
ing goal-oriented processing contributes to the construction 
of a separate system of self-relevant information often re-
ferred to as the conceptual self (Neisser, 1988; Conway, 
Singer, & Tagini, 2004; Demiray & Bluck; 2011). This sepa-
rate system contains a rich collection of conceptual self-
knowledge not limited to relational self-schema, personal be-
liefs and values, and long-term goals (Kihlstrom & Cantor, 
1984; Klein & Loftus, 1993; Conway, Singer, & Tagini, 
2004). Sustained by neural networks separate from that of au-
tobiographical knowledge base (Grilli & Verfaellie; 2015), 
the conceptual self is instrumental in the evaluation and re-
trieval of task-relevant autobiographical knowledge for deci-
sion-making, and is especially responsible for self-con-
sistency across performances.  

Specifically, the cue-detection process that guides the re-
trieval of task-relevant memory segments from the autobio-
graphical knowledge base is enabled by the schematic evalu-
ative processes mediated by the medial prefrontal cortex 
(mPFC), which indexes conceptual self-knowledge to assess 
the self-importance of specific conceptual information pre-
sented in the task environment and activates autobiographical 
knowledge containing corresponding cues (Hampton, Bos-
saerts, & O’Doherty, 2006; D’Argembeau, 2013; Vaidya & 
Badre, 2020; Levorsen et al., 2023). Specific segments of au-
tobiographical knowledge are retrieved to inform perfor-
mance not only based on its relevance to the tasks, but also 
whether it has high self-importance according to one’s con-
ceptual self-knowledge, such as relational self-schema, per-
sonal beliefs and values, and long-term goals (D’Argembeau, 
2013). The conceptual self therefore has been referred to as 
the underlying representation of self-interest and trait-like 
characteristics (Kihlstrom & Cantor, 1984; Klein & Loftus, 
1993), which essentially enable one’s performance in com-
plex, novel situations to be consistently aligned with past ex-
periences. In that respect, we propose that the computational 
implementation of the conceptual self along with its interac-
tive mechanisms with the autobiographical knowledge base 
is critical for machine agents to achieve human-level self-
consistency. Notably, since conceptual self-knowledge 
guides autobiographical knowledge retrieval by serving as 
the schematic input of the evaluation network centered in the 
mPFC, we suggest that the implementation of the conceptual 
self for decision-making could be reduced to a simulation of 
the self-importance evaluation mechanism, without any con-
struction of individual conceptual self-knowledge. 
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The Original JEPA 

Overview 
Joint-Embedding Predictive Architecture (JEPA) is a cogni-
tive architecture trained with self-supervised learning with 
the implementation of world models processing that closely 
resembles human cognition (LeCun, 2022). The perception 
module represents the current state of the world, taking in as-
pects of reality and sending them to the world model module, 
which predicts potential future world states based on imag-
ined action sequences proposed by the actor. The cost mod-
ule, comprising the intrinsic cost and the trainable critic, com-
putes a single scalar output referred to as "energy," measuring 
the agent's discomfort level. The actor module computes a 
chain of actions that may optimally respond to the world. The 
operation of JEPA begins with the perception system gener-
ating a representation of the current external world state sx(0) 
= P(x), with the cost module simultaneously computing the 
immediate cost associated with the state. Following, the actor 
proposes an initial sequence of actions (a(0), . . . , a(t),…, 
a(T)).  Given the proposed action sequence, the world model 
then predicts likely world state representations which is again 
fed in the cost module for estimation of the total cost, repre-
sented as F(x) = C(sx(t)). The actor then proposes a new ac-
tion sequence with a lower cost within several iterations. 
Once a low-cost action sequence is converged upon, the actor 
sends the actions in series to the configurators to implement. 
The entire cycle repeats for the next perception-action epi-
sode. 

Latent Variable Z & Energy-based Model Training 
The distinction between JEPA and most predictive models 
lies in their approach of evaluating the prediction as com-
pared to the outcome. Instead of minimizing the divergence 
between predictions calculated from inputs sx and actual out-
comes y, JEPA compares the prediction based on inputs sx 
with the prediction of outcomes based on the actual outcome 
(a perception of y, hence sy). This selective processing pro-
cess aligns closely to human cognition, in the sense that we 
do not need to process every element of the external world to 
make choices but instead relies on a perception of the world 
that filters out non-salient details. However, this auto-deter-
mined selective processing of all information dimensions 
may lead to the collapse of the system due to uncontrolled 
minimization of perceptual dimensions to maximize effi-
ciency. To prevent this, JEPA introduces a latent variable Z 
to the predictor in addition to sx. The content of Z at a specific 
timeframe may come from the training dataset or from as-
pects not included by the perception module in x itself, thus 
also providing additional dimensions alongside the percep-
tion sx to aid prediction. 
 Due to JEPA's structure being incompatible with the prob-
abilistic modeling training used in traditional machine learn-
ing, LeCun (2022) employed an approach based on an im-
plicit energy function F during JEPA training known as the 
energy-based model. F represents the compatibility between 
x and y. Specifically, when a pair (xi, yi) exhibits high 

compatibility, the energy function takes a low value, and vice 
versa. F can therefore capture the dependence between x and 
y. During training, the main optimization goal is formalized 
as follow: 
 

𝑧̌ = argmin
!∈𝒵

𝐸$(𝑥, 𝑦, 𝑧) = argmin
!∈𝒵

𝐷1𝑠%, Pred(𝑠& , 𝑧)6

𝐹$(𝑥, 𝑦) = 𝑚𝑖𝑛
!∈𝒵

 𝐸$(𝑥, 𝑦, 𝑧) = 𝐷1𝑠%, Pred(𝑠& , 𝑧̌)6
 

 
Namely, we want the pair (x, y) to have minimal energy, 
which indicates higher compatibility and more accurate pre-
diction. Given this motivation, optimizations are specified in 
order to maximize the information content of sx from x and 
sy from y, facilitating prediction of sy from sx and also min-
imize the information content of the latent variable z used in 
the prediction. 

Cost Module 
The cost module assesses the discomfort of the agents and 
represents it using it as an internal energy state. A lower en-
ergy level is associated with less discomfort and vice versa. 
The Cost module comprises two parts: (1) the intrinsic cost 
module, corresponding to human’s innately positive or nega-
tive values attributed to basic biological states such as pleas-
ure and pain; (2) the critic, which is a trainable and optimiz-
ing module that takes current intrinsic cost as an input to pre-
dict potential values of intrinsic cost in the future. The pre-
diction of the critic is trained through access to short-term as-
sociative memory. It is noteworthy that the design and train-
ing of the cost module is a completely data-driven process 
through a single projection from the short-term associative 
memory with Markovian property without any externally 
registered rules, therefore minimizing bias from human as-
sumptions. 

Implementing Self Models Into JEPA 

Memory Module 
In the original JEPA, z represents a reservoir of information 
derived from both the current stimuli that isn't included in 
perception (i.e. the unattended aspects of stimuli) and a 
broader pool of information not present in the original world 
(e.g. the entire training set). This module is necessary for pre-
venting system collapse while improving predictions of the 
world state by serving alongside the information in the per-
ceptual module. However, since it is based entirely on un-
designated inputs, the specific content of Z in a given 
timeframe is completely unpredictable. Therefore, while the 
inclusion of Z improves predictions for each individual task, 
it also creates additional inconsistency for the agent’s behav-
iors across situations. On the contrary, as illustrated in previ-
ous sections, humans apply relevant autobiographical 
knowledge through self-importance evaluation as an aid to 
perception to improve predictions. The way conceptual com-
ponents of self models are applied in this process resembles 
that of z in the original JEPA, but unlike the latter it drasti-
cally improves the consistency of one’s action across 
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timeframe by providing self-generated input based on one’s 
past experiences. 
 We therefore propose an alternative to the original latent 
variable Z by introducing a memory module simulating the 
processing of conceptual self models in humans. The memory 
module consists of a Long-Term Memory (LTM) submodule 
including autobiographical knowledge base and discrete task 
memories, and a Conceptual Self submodule which functions 
as a classifier that models after the role of the mPFC in self-
importance evaluation. This memory module takes the per-
ception of current situation (sx) or prediction (pred(sx)) to be 
processed under the classifier, which compares them with a 
set of labels that were each automatically created based on 
their respective category of discrete conceptual memories. 
The design of the memory module is described below in de-
tail. 
 
Label Generation The LTM system maintains a collection 
of discrete task memories, which each structured as: 
 

𝑀1𝑠(𝑥)' , pred	1𝑠(𝑥)' , 𝑎(𝑠(𝑥)')6, 𝑎(𝑠(𝑥)'), cost 6 
 
A label of a category is determined as the average of all 
memory content it includes, which encompass all dimensions 
of its 4 components: sx, Pred, a, and Cost. sx’s dimensionality 
is determined by the perception  module，pred’s dimensions 
is based on the perception and the optimal actions series, a is 
the list of actions based on the predictions made by the world 
model, while the total cost is represented as a singular numer-
ical value, with detailed computation elucidated in the fol-
lowing section. Notably, all components stored here are in 
their final state that is outside the iteration of the modules and 
thus encompassing the final predictions, the optimal actions 
series and the final cost. Within the LTM submodule, a neural 
network categories all existing discrete memories based on 
the similarity of the perception sx, resulting in an indetermi-
nate number of categories through unsupervised learning. 
This categorization prioritizes maximizing homogeneity 
within categories and heterogeneity between them, without 
relying on predesignated rules. An essential difference be-
tween the simulation and human cognition is that here we re-
fer to discrete memories as lower-level autobiographical 
knowledge as opposed to episodic conceptual memories, as 
for machine decision-making there is no need to represent 
events in its non-abstracted, declarative form due to the ab-
sence of awareness. Additionally, autobiographical 
knowledge base in the LTM submodule refers to only the set 
of the highest-level autobiographical knowledge marked as 
labels as opposed to the entire hierarchy of autobiographical 
knowledge. 
 
Classification Rather than exhaustively running through all 
discrete memories for ones that matches with the current per-
ception, the Conceptual Self submodule scans the perception 
for matching elements with the set of labels and from which 
activates corresponding categories in the autobiographical 
knowledge base, a process simulating the mPFC self- 

 
Figure 1: The memory module As a novel perception (sx) 
or prediction (pred(sx)) emerges, it is incorporated into the 
system and compared against the labels of all categories (L1, 
L2, …, Ln), leading to its classification into a specific cate-
gory (L2 in the graph). Subsequently, these labels act as cues 
for retrieving pertinent memories. The system then returns 
the original memories within the designated category, along 
with their respective prediction and corresponding weight 
values (as indicated by the Ebbinghaus curve on the retrieval 
arrow), to the world model module (pred) and actor module 
respectively, enhancing their predictive capabilities. 
 
importance evaluation process. This activation allows the 
memory contents in the LTM within the paired category to be 
accessed and retrieved, thus enabling the involvement of 
more intricate and specific underlying memories in the ongo-
ing process for predictions in world model module and actor 
module, contributing to improved predictions. Following the 
prediction phase, the newly acquired memories are stored in 
LTM to be available for future reference in subsequent 
events. 
 
Memory Initialization Despite being abstracted into a time-
invariant knowledge, lower-level conceptual memories aren't 
constantly accessible due to the process of forgetting, as in 
human cognition. Obtaining a label doesn't assure the suc-
cessful retrieval of all related memories since the activation 
of lower-level conceptual memories is significantly time-de-
pendent (Davis & Zhong, 2018). We thus specifically con-
sider using the Ebbinghaus forgetting curve to initialize 
weight assignments (Ebbinghaus, 1964). The most recent 
memory is assigned a weight of 100%, while other memories 
have weights that progressively decrease based on their entry 
time. We employ a time stamp framework that shifts at the 
entering of new events. This approach also prevents the algo-
rithm of categorization to fall into local optima, ensuring the 
identification of a global optimum based on memory availa-
bility. The function of activation of the neural network is as 
following: 
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𝑓(∑(𝑤 ∗ 𝑥̅) + 𝑏) 
 

where the synaptic weights are represented as: 
 

𝑤 =
100𝑘

log	(𝑡)( +𝐾 

 
Recollection and Reparameterization This process enables 
the assimilation and adjustment of categories (labels) with the 
addition of each new discrete task memory. When a new per-
ception recalls memories linked to a specific category, these 
memories are consolidated as the result of reactivation (Schil-
ler & Phelps, 2011). This reactivation, achieved by incorpo-
rating them into recent memories, refreshes the accessibility 
of the memories. In the model, this indicates that the memory 
enters a new forgetting curve, resulting in an augmentation of 
its weight value. The mechanism for this augmentation in-
volves setting the weight of the most recent memory (initially 
with the highest weight) to 100%. For the remaining memo-
ries, their weights are adapted based on the highest memory 
curve. For example, if the highest memory in the initially ex-
tracted category was at 80% and increases to 100%, this 
125% increment is applied to all memories. Their weight val-
ues are multiplied by 125%, demonstrating the adjustment 
across all retrieved memories. 
 
Dimensionality Reduction Replacing latent variables with 
autobiographical memory in the JEPA framework necessi-
tates additional processes for dimensionality reduction. 
Since reducing dimensionality before storing memory might 
result in a significant loss of information, we suggest that it 
could instead be done during memory retrieval. Specifically, 
we propose that autoencoder is a suitable technique for di-
mensionality reductions in the given framework, provided 
that it can efficiently handle complex, high-dimensional 
data and maintain the information richness of temporality 
and activation frequency by adjusting hidden layers and net-
work structures. 
Personalized Cost Module 
Cost in the original JEPA model is based entirely on intrinsic 
cost, which only reflect hardwired values like the inherently 
negative valence of hunger and pain. This approach thus pro-
vides a universal metric for all value judgment and is suitable 
for supporting agents having identical values across all do-
mains which are determined by a set of given fixed rules. Hu-
man value judgment, however, is characterized by remarka-
ble individual differences. This is because it is supported by 
a hierarchical and multifaceted cost-value system, in which 
intrinsic values like basic biological drives are only one 
among several crucial factors (Maslow, 1954; Kenrick et al., 
2010). The rest, ranging from socially constituted needs to 
self-actualizations, are deeply grounded in one’s past experi-
ences and are represented in the Conceptual Self. In the likely 
cases in which different levels of needs clash with each other, 
higher-order cognitive functions make use of the Conceptual  
 

 
Figure 2: Personalized Cost Module A predefined Intrinsic 
Cost function (IC) takes the perception of current event(sx) 
or prediction(pred(sx)) in subsequent iteration as its input. 
Simultaneously, the classifier identifies labels similar to the 
current sx in the LTM categories and their pertinent memory 
clips(sx*), returning costs associated with all memory frag-
ments in the same category (C(sx*)). In the training phase, 
Conceptual Self retrieves past state vectors HC(sx(1)) and the 
energy of HC(sx(t)) at a later time. The critic then fine-tunes 
its parameter vector to minimize the disparity between the 
target HC(sx(1)) and the predicted energy HC(sx(t)). 
 
Self to make a personalized value judgment, a feature not ev-
ident in JEPA due to the sole reliance on intrinsic cost. 
 Evidently, the consideration of multi-level costs is vital to 
the personalized and self-consistent nature of human deci-
sion-making and makes critical use of the self models. We 
therefore propose a modification to the cost module to incor-
porate the Conceptual Self into cost evaluation. In addition to 
the intrinsic cost representing basic biological discomfort, we 
introduce a hierarchical system of cost termed higher-level 
cost (HC). HC considers low-level intrinsic cost while com-
bining personalized information considering the values tied 
to specific elements in the task situation. 
 The information pertaining to the states of the world and 
the self is encoded in variables represented as sx and C(sx*). 
C(sx*) denotes the total cost predicted in the preceding event, 
serving as a baseline for the current cost assessment. This ap-
proach is grounded in the assumption that an individual's re-
sponses and discomfort-related sentiments tend to exhibit 
consistency over time. Consequently, it becomes more plau-
sible that the agent would harbor similar feelings toward 
comparable external stimuli. 
 Given that C(sx*) encapsulates the cost from past experi-
ences by the context cues of similar events (similar sx*), its 
value is determined by the retrieval process that is similar to 
the retrieval of past memories in LTM as mentioned in the 
memory module. The sx of current events is juxtaposed with 
the labels of all categories, returning the cost associated with 
all discrete task memories in the same category, adjusted with  
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Figure 3: This diagram illustrates the model's Markov process. The perception module estimates the world's state (s0), and the 
actor proposes a series of actions (stored in a(0)). sx(0) also undergoes classification by the Conceptual Self into a memory 
category. The Pred in the relevant memories among this category is sent to the world model, and their action series to the actor. 
The world model recursively predicts the estimated world state sequence based on the previous moment's predictions, the Pred 
fed by the Long-Term Memory (LTM), and the action series. The cost C(sx(t)) calculates energy for each predicted state, and 
iterative modules compute an optimized action series. 
 
weights according to the forgetting curve. HC is thus ex-
pressed as the following: 
 

HC(IC(𝑠𝑥), 𝑠𝑥(𝑡), C∗(𝑠𝑥), 𝑡) 
 
The three inputs, IC, sx, and C(sx*), are assigned respective 
weights through the vector V(a, b, c)  in the High-Level Cost 
(HC). The final cost is computed as: 
 

C = 𝑎(𝑠𝑥) + 𝑏IC(𝑠𝑥) + 𝑐C∗(𝑠𝑥) 
 
The assignment of values in vector V is determined during 
training by the Conceptual Self, assessing the importance of 
each piece of information. The stored HC (time, state, intrin-
sic energy, previous costs) in the associative short-term 
memory are accessible for the Conceptual Self to retrieve. 
During training, the Conceptual Self retrieves a past state 
vector HC(sx(1)) and an intrinsic energy at a later time 
HC(sx(τ)), adjusting the parameters a, b, c in vector V to min-
imize the divergence measure between the target and the pre-
dicted energy HC(sx(1)). 

Discussion 
In this paper, we propose a modified version of JEPA that 
aims to enable consistent self-interest and trait-like character-
istics in autonomous intelligent agents with the implementa-
tion of human-like self models. The modification has two key 
components: (1) a memory module replacing the latent vari-
able module that supports graded recall of past experiences; 
(2) a personalized cost module that supports high-level value 
judgment. Self-important evaluations underlying both pro-
cesses are powered by the classifier in the memory module, 
which scans for matching conceptual information between 
those presented in the task environment and synthesized au-
tobiographical knowledge. Said implementations are inspired 

by neurocognitive mechanisms underlying the information-
processing of human self models comprising autobiograph-
ical memory and conceptual self-knowledge. 
 Self models could provide multiple advantages to intelli-
gent agents in terms of performance. Compared to solely re-
lying on world models, self models enable agents to make 
personalized and self-interested decisions in complex, open-
ended situations by allowing references to synthesized 
knowledge of past experiences. Such functionalities are espe-
cially relevant to the design of autonomous agents aimed to 
simulate complex human behaviors, which could empower 
technical applications ranging from chatbots to immersive 
social environments. Park et al. (2023) proposed an extended 
large language models (LLM) architecture featuring a 
memory system which they demonstrated could power gen-
erative agents with social interactions. However, said 
memory system does not support human-like processing of 
autobiographical knowledge, but rather records all past expe-
riences without decay and uses a universal criterion for im-
portance evaluation during retrieval, which could lead to dif-
ficulties in long-term goal-directed planning and believability 
in complex social situations. In that respect, we suggest that 
our architecture may offer an alternative path that could lead 
to better self-consistency in similar applications with the im-
plementation of self models. 
 As this is a position paper, there are several aspects of the 
present architecture that await specifications. For instance, 
feedback administration is needed to prevent cases where the 
model is self-consistent but does not align with external in-
puts and outputs (i.e. delusional), which could happen to the 
current instantiation given it only relies on predicted outcome 
(sy) for self-supervised learning. Overall, the proposal out-
lined in this paper offers tractable future directions toward 
building cognitive-inspired machine agents that could reason 
and act in complex open-ended situations with human-level 
self-consistency. 
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