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Abstract 

Enhanced Skeletal Anabolism by Concurrently Targeting The Parathyroid Hormone 1 

Receptor (PTH1R) and Extracellular Calcium-Sensing Receptor (CaSR) 

by  

Christian Norman Davey Yuzon Santa Maria 

 

Maintaining normal Ca2+ homeostasis is essential for all biological functions. 

Parathyroid glands (PTGs) were developed in land vertebrates to defend against 

hypocalcemic challenges by tightly regulated secretion of parathyroid hormone (PTH), 

which activates the PTH1R in target tissues to increase Ca2+ recycling in kidneys, Ca2+ 

absorption from the small intestine via indirect renal production of 1,25-dihydroxyvitamin 

D3 (1,25-D), and Ca2+ release from bone matrices. These PTH-mediated calciotropic 

activities are subsided by elevated concentrations of serum Ca2+ through actions of its 

putative receptor, the extracellular Ca2+-sensing receptor (CaSR), in PTGs to suppress 

PTH secretion, in kidneys to enhance Ca secretion, and in bone to remineralize 

matrices and suppress bone resorbing activity, together with PTH/ PTH1R, constituting 

a “yin/yang” feedback mechanism to maintain Ca2+ homeostasis at a steady state. 

Interestingly, intermittent PTH (iPTH), administered by once-daily injections, can 

produce skeletal anabolism in the presence of Ca2+ sufficiency. However, more effective 

dosages could not be achieved for clinical use, mainly due to its intolerable 

hypercalcemic side-effects. This dissertation explores interplays between the actions of 

PTH1R and CaSR and exploits these interactions to harness hypercalcemic effects of 

PTH while enhancing its skeletal anabolism to prevent bone loss and enhance bone 
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fracture repair. Our strategy leverages the ability of co-injecting an allosteric agonist of 

CaSR (or calcimimetic) to normalize PTH induced hypercalcemia and synergize 

anabolic actions of CaSR and PTH1R in bone cells. The study employed state-of-the-art 

technologies, including high-resolution microCT imaging, automated comprehensive 

serological assays, Nanostring nCounter gene expression profiling, steady and dynamic 

histomorphometry, biomechanics testing, and novel genetically manipulated murine 

models. Our findings reveal novel synergistic actions of PTH and CaSR in bone and 

their underlying mechanisms, which hold powerful clinical implications for future 

strategies needed to treat osteoporotic disease and skeletal fractures.  
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Chapter 1: 
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1.1 Background 

The parathyroid hormone (PTH)-related peptide (PTHrP) controls the pace of pre- and 

post-natal growth plate development by activating the PTH1R in chondrocytes, while 

PTH maintains mineral and skeletal homeostasis by modulating calciotropic activities in 

kidneys, gut, and bone. The extracellular calcium-sensing receptor (CaSR) is a member 

of family C G-protein-coupled receptor, which regulates mineral and skeletal 

homeostasis by controlling PTH secretion in parathyroid glands and Ca2+ excretion in 

kidneys. Recent studies showed the expression of CaSR in chondrocytes, osteoblasts, 

and osteoclasts and confirmed its non-redundant roles in modulating the recruitment, 

proliferation, survival, and differentiation of the cells. This review emphasizes the 

actions of CaSR and PTH1R signaling responses in cartilage and bone and discusses 

how these two signaling cascades interact to control growth plate development and 

maintain skeletal metabolism in physiological and pathological conditions. Lastly, novel 

therapeutic regimens that exploit interrelationship between the CaSR and PTH1R are 

proposed to produce more robust osteoanabolism.  

 

Maintaining normal Ca2+ homeostasis is essential for all cellular functions in our body. 

Land vertebrates develop large bony skeleton to store excess Ca2+ in the form of 

hydroxyapatite [Ca10(PO4)6(OH)2] and releases it to meet systemic demands at the time 

of Ca2+ deficiency. The parathyroid gland (PTG) also evolves to coordinate the 

calciotropic activities in the skeleton with those in the gut and kidney, by secreting the 

parathyroid hormone (PTH).  The current working model for the regulation of serum 

Ca2+ concentration (sCa2+) emphasizes: (i) the ability of parathyroid cell (PTC) to 
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respond to subtle changes in sCa2+ that promptly alter PTH secretion (Figure 1.1 A, 1); 

(ii) the ability of PTH to activate its receptor, PTH1R (2), in the kidney to promote Ca2+ 

reabsorption (3) and stimulate 1,25dihydroxyvitamin D (1,25D) production to increase 

intestinal Ca2+ absorption (4); (iii) the ability of PTH to enhance bone turnover (5-�, 

see detailed descriptions in Section 8 Actions of PTH and PTH1R in bone) to release 

Ca2+ into the circulation (�); and (iv) the negative feedback of increasing sCa2+ and 

serum 1,25D (s1,25D) to suppress PTH secretion by activating the extracellular Ca2+-

sensing receptor (CaSR) and vitamin D receptor (VDR) (1) to close this regulatory loop 

[1-3]. Defects at any point in this pathway disturb mineral balance and produce 

endocrine and skeletal dysfunction.  

 

Skeletal development begins in the embryo and continues throughout adolescence until 

a peak bone mass is attained in early adulthood.  The mature skeleton is then 

maintained by continuous bone turnover (or remodeling) through balanced bone-

forming activities of osteoblasts (OBs) and bone-resorbing activities of osteoclasts 

(OCLs) (Figure 1.1 A, 6-�) in the bone-remodeling units (BRUs).  Excessive bone 

resorption due to aging, post-menopause, use of glucocorticoids, and metabolic 

diseases, like hyperparathyroidism (HPT), produces osteoporotic skeleton with 

increased risk of fracture [4-13].  

 

Ca2+ availability critically impacts skeletal development and bone turnover [14]. Ca2+ 

deficiency produces rickets and osteomalacia, characterized by inadequate cartilage or 

bone matrix mineralization, in patients [15-18]. Supplementation of the diet with Ca2+ 
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and vitamin D, and in some cases with Ca2+ alone, completely heals those cartilage and 

bone defects [14, 15, 19-21]. Similarly, rachitic changes in bone and cartilage in VDR 

knockout (KO) mice are prevented by a high Ca2+ diet [22-24]. The above observations 

underscore the importance of adequate Ca2+ supply to normal cartilage and bone 

development. Although Ca2+ could contribute passively to bone mineralization as an 

essential substrate, recent discoveries of CaSR in chondrocytes, OBs, and OCLs have 

prompted investigations for direct Ca2+ actions on those cells as a critical “growth 

factor”. 

 

Inactivating mutations in the CASR gene reduce the responsiveness of PTC to changes 

in sCa2+ and produce familial hypocalciuric hypercalcemia (FHH) and neonatal severe 

HPT (NSHPT) in patients, who show elevated serum PTH (sPTH), s1,25D, and sCa2+ 

levels and in the severest forms a growth-retarded and under-mineralized skeleton [25-

28]. Skeletal defects in NSHPT patients are likely caused by aberrant PTH secretion 

and the associated mineral and hormonal disturbances. Direct effects of mutant CaSR 

in chondrocyte and bone cell, however, cannot be ruled out [29-38].   

 

Prolonged elevation of sPTH produces catabolic effects on bone [39-42], but once-daily 

(or intermittent) injections of supra-physiological doses of PTH1-34 or PTH1-84 

increase trabecular bone mass in normal and osteoporotic animal models and in 

osteoporosis patients [43-47]. The anabolic effect of intermittent PTH (iPTH) appears to 

rely on its ability to promote bone-forming activities of OBs to a greater extent than the 

bone-resorbing activities of OCLs at the beginning of the treatment -- creating a so-
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called “anabolic window”, but its underlying cellular and molecular mechanisms remain 

unclear. 

 

In the past decades, investigations using genetically manipulated mouse models and 

cell cultures have confirmed essential roles for the CaSR and PTH1R signaling in 

controlling pre- and post-natal skeletal development and maintenance of adult skeleton.  

However, perspectives on how these two signaling pathways interact in cartilage and 

bone are lacking.  In light of two recent review articles that provide comprehensive 

updates on general systemic and local actions of the CaSR and PTH on bone and 

mineral metabolism [30, 48], this review emphasizes the interplay between the CaSR 

and PTH1R signaling in chondrocytes, OBs, and OCLs and proposes novel regimens 

exploiting this receptor interaction to enhance osteoanabolism for treatment of skeletal 

disease.  
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1.2 Endochondral bone formation 

In vertebrates, all weight-bearing axial and appendicular skeletons are formed by 

endochondral bone formation that begins in early embryos. This process starts with the 

condensation of mesenchymal progenitors and their commitment to the chondrocytic 

lineage to form cartilaginous anlagen that later becomes a growth plate (GP). In the GP, 

chondrocytes proliferate, mature, and hypertrophy sequentially within single cell 

columns and then begin to deposit Ca2+/phosphate-containing minerals into the 

surrounding matrix after they reach terminal differentiation (Figure 1.2 A). Within this 

mineralized matrix, the terminally differentiated chondrocytes produce matrix 

metalloproteinases to remodel surrounding matrix [49-51] and release growth factors to 

induce vascular invasion and promote OB differentiation at the chondro-osseous 

junction. It was originally proposed, mainly based on histological observations, that 

terminally differentiated hypertrophic chondrocytes in the GP undergo cell death and 

OBs arise from the osteoprogenitors delivered by the invading vasculature to replace 

the dying chondrocytes and produce new bone. This classic scheme of chondro-to-

osteo transition has just undergone a significant paradigm shift [52-54]. By using 

protein-based fluorescent probes to label chondrocytes in vivo and by following the fate 

of the labeled cells in the bone using time-lapse cell/tissue imaging, it has been clearly 

shown that the majority of hypertrophic chondrocytes can trans-differentiate directly into 

OBs in the GP during endochondral bone formation or in the healing callus of fractured 

bone [53, 55-57]. GPs exist throughout adolescence to support longitudinal bone growth 

by repeating the above cell differentiation programs until the chondroprogenitor pool is 
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exhausted at the time of GP closure in early adulthood. Aberrant acceleration or delay 

in chondrocyte differentiation produces disorganized GPs and impede bone growth [58]. 
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1.3 PTHrP and PTH1R in endochondral bone formation 

Many transcription [58-69] and autocrine/paracrine factors [56, 70-83] were found to 

induce the commitment of progenitors to the chondrocytic lineage and to pace their 

differentiation [49, 56, 76, 84, 85]. Among them, the parathyroid hormone–related 

protein/Indian hedgehog (PTHrP/Ihh) feedback loop is the best-established pathway 

that prevents aberrant acceleration of chondrocyte differentiation and early closure of 

the GP [58, 86, 87]. According to the current model, PTHrP produced by perichondral 

cells in embryonic skeleton or by maturing/prehypertrophic chondrocytes in postnatal 

GPs diffuses into the proliferation zone where it activates the PTH1R and downstream 

signaling cascades to sustain the proliferative activities of the cells and delay their 

further differentiation [88] (Figure 1.2 A). When chondrocytes eventually mature, they 

increase the production of Ihh to simulate its receptor Patched in the neighboring cells 

and increase PTHrP production via mechanisms that remain to be determined, thus 

constituting a feedback loop to slow down cell differentiation [87, 89] (Figure 1.2 A). 

Pth1r, Pthrp, and Ihh gene KOs in mice all led to accelerated chondrocyte 

differentiation, early GP closure, and dwarfism [87]. Transgenic mice overexpressing 

PTHrP specifically in chondrocytes also presented short-limbed dwarfism, but their 

growth plates were composed exclusively of proliferating cells and lacked endochondral 

ossification [90], confirming the role of PTHrP/PTH1R signaling in preventing an early 

entry of proliferating chondrocyte into terminal differentiation.  

 

Several elegant investigations explored signaling events underlying the actions of 

PTHrP on cartilage development with emphases on its ability to activate different 



	  
	  

9 

heterotrimeric GTP-binding proteins (G-proteins) and multiple down-stream effectors in 

chondrocytes [86]. In fibroblastic COS-7 cells expressing exogenous PTH1Rs, binding 

of PTHrP to the receptor stimulated Gs-mediated cAMP synthesis as well as Gq-

mediated intracellular Ca2+ releases, indicating the multifaceted actions of 

PTHrP/PTH1R signaling [91].  To determine the impact of Gs-mediated signaling 

responses on GP development, chimeric mice with GPs comprising mixed populations 

of normal and Gsα-deficient chondrocytes were studied [92]. In the chimeric GPs, Gsα-

deficient chondrocytes appeared to stop proliferating and become hypertrophic 

prematurely [91] -- phenotypes similar to those of chondrocyte-specific PTH1R KO mice 

[93, 94].  It was, therefore, concluded that PTHrP activates Gs-mediated signaling 

responses to sustain chondrocyte proliferation [87].  

 

In cultured chondrocytes, pharmacological stimulation of Gq-coupled protein kinase C 

(PKC) and mitogen-activated protein kinase kinase (MEK) pathway suppressed 

proliferation, enhanced cell hypertrophy, and increased expression of type X collagen 

[95, 96], supporting a role for Gq-mediated signaling in promoting chondrocyte terminal 

differentiation. But there has been no report on the study of mice with targeted ablation 

of Gaq specifically in chondrocytes to clearly define its impact on GP development in 

vivo. Instead, studies of mice with a knock-in of an engineered Pth1r mutant gene, 

which encodes a mutant PTH1R that retains the ability to activate Gs, but not Gq, 

signaling pathway, showed delayed GP ossification and increased chondrocyte 

proliferation [97]. Though, the effects were modest, likely due to the relatively restricted 

expression of PTH1R in the proliferation zone.  Nevertheless, the investigators of the 
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study concluded that the PTH1R-mediatd Gs and Gq signaling cascades constitute a 

“Yin-Yang” relationship to control the pace of cell differentiation [86, 87]. However, the 

fact that chondrocyte-specific PTH1R KO mice presented profoundly accelerated 

chondrocyte differentiation and early GP closure indicates the existence of other, 

perhaps Gq-coupled, mediators that can promote the terminal differentiation of 

chondrocyte and engage in a “tug-of-war” relationship with the PTHrP/PTH1R/Ihh 

feedback loop to control the pace of GP development. Recent studies suggest that Ca2+ 

and its receptor, CaSR, constitute a critical signaling pathway that instigates such “pro-

differentiation” activities in chondrocytes. 
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1.4 Signaling transduction of the CaSR 

The CaSR is a member of family C G-protein coupled receptor (GPCR), which consists 

of a large extracellular domain (ECD; ≈450–600 amino acids) for ligand binding, a 

seven-transmembrane domain (7-TMD) for G protein coupling, and a long intracellular 

C-terminal tail (≈250 amino acids) for recruitment of signaling molecules and for 

receptor binding to cytoskeletons [98, 99]. Members of family C GPCRs function 

exclusively in the form of multimeric complex [100, 101]. The CaSR can form 

homodimers [100, 101] or heterodimerize with other members of family C GPCRs, 

including metabotropic glutamate receptors [102]
 
and type B gamma-aminobutyric acid 

receptors (GABABR1 and GABABR2) [103, 104]. Like other GPCRs, the CaSR activates 

multiple downstream signaling cascades by coupling to 3 major groups of G proteins, 

Gq/11, Gi/o and G12/13 [99]. Through coupling to the Gq/11, the CaSR activated 

different subtypes (β, γ, δ, ε, ζ, η) of phospholipase C (PLC) to cleave the phospholipid 

phosphatidylinositol 4,5-bisphosphate (PIP2) into diacyl glycerol (DAG), which activates 

protein kinase C, and inositol 1,4,5-trisphosphate (IP3), which releases Ca2+ from 

intracellular stores by binding to IP3 receptors in the stores [99].  This signaling cascade 

has been demonstrated in most of the cell systems tested, including parathyroid cells 

[105, 106], keratinocytes [107], chondrocytes, osteoblasts [29], and transformed cells 

expressing the CaSR exogenously [108], to regulate diverse cell functions ranging from 

PTH secretion [109],
 

osteoblast migration [35], and cell growth, survival, and 

differentiation [33]. By coupling to the pertussis toxin-sensitive Gi/o, the CaSR 

suppressed adenylyl cyclase activities and cAMP production in PTCs [110] and OBs 

[29]. 
 

Activation of Gi/o also activated the extracellular-signal-regulated kinases 
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(ERK1/2) in PTCs [111, 112], OBs [113, 114], and HEK-293 cells expressing 

exogenous CaSRs [115-117]. Through the activation of G12/13, the CaSR enhanced 

Wnt3a-βcatenin signaling to promote osteoblast differentiation [118], but inhibited 

osteoclastogenesis by suppressing the expression of the receptor activator of nuclear 

factor kappa-B ligand (RANKL) and increasing osteoprotegerin (OPG) expression [119]. 

The CaSR could also activate phospholipase D though coupling to G12/13 in Madin-

Darby canine kidney cells [120]. 
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1.5 CaSR in chondrocyte differentiation and cartilage 

development 

Ca2+ deficiency produced rickets in childhood [18] and in VDR and Cyp27b1 KO mice 

[24, 121] by delaying chondrocyte differentiation and blocking matrix mineralization in 

their GPs. The ability of dietary Ca2+ supplements to reverse the GP defects [21] 

signifies the importance of Ca2+ availability to GP development. The expression of 

CaSR first appears in maturing chondrocytes in the GP and increases in hypertrophic 

chondrocytes (Figure 1.2 B) [29] including those being released from the cartilage 

matrix at the chondro-osseous junction (Figure 1.2 C, red arrowheads) and adjacent 

OBs [29]. This expression pattern supports a role for the CaSR in mediating the 

terminal differentiation of hypertrophic chondrocytes and their transformation into 

osteoblastic lineage, according to the newly established paradigm [52-54].  

 

Direct actions of Ca2+ and CaSR on chondrocyte differentiation have been confirmed by 

studies of primary cells cultured from cartilage of different species, chondrogenic cell 

lines, and metatarsal bone rudiments explants. Chondrocytes in a high-density culture 

exhibited spontaneous differentiation that recapitulates keep steps of chondrogenesis 

as seen in vivo (Figure 1.3 A) [29, 103, 122-124].  For example, mouse GP 

chondrocytes proliferated robustly and produced a proteoglycans (PG)-rich matrix 

immediately after plating (Figure 1.3 A). Mineral deposition appeared to start in the 

matrix surrounding the hypertrophic chondrocytes (Figure 1.3 A, 7-day post-

confluence, insert). As mineral deposition increased in the cultures, PG accumulation 

declined and the cells lost their chondrocytic morphology (Figure 1.3 A, 21-day post-
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confluence, insert). Along with those morphological changes, RNA levels for early 

differentiation markers -- aggrecan (Agg) and type II collagen a1 subunit [a1(II)] -- were 

highest in early cultures and decreased in later cultures (by >90%), while the expression 

of late differentiation markers -- alkaline phosphatase (ALP) and type X collagen a1 

subunit [a1(X)], and putative OB markers -- osteopontin (OPN), osteocalcin (OCN) and 

osteonectin (ON) increased with time of culture (Figure 1.3 B). The above changes in 

cell morphology, gene expression, and matrix protein synthesis recapitulate steps of 

chondrogenesis and indicate time-dependent transformation of the cultured 

chondrocytes into the osteoblastic lineage.  

 

Changes in [Ca2+]e profoundly impacted the differentiation of cultured chondrocytes. In 

tibio-tarsal chondrocytes cultured from chicken embryos, high [Ca2+]e increased the 

expression of a1(X) [125].  In mouse GP chondrocyte cultures, raising [Ca2+]e dose-

dependently suppressed PG accumulation, increased mineral accumulation (Figure 1.3 

C and 3D -PTHrP), reduced expression of chondrocyte markers [Agg, a1(II), and a1(X)], 

and increased expression of OPN (Figure 1.3 E, Control) [29 , 103, 122, 123]. Similar 

effects of high [Ca2+]e were seen in cultures of non-transformed chondrogenic 

RCJ3.1C5.18 (or C5.18) cells, cloned from fetal rat calvarias [29, 124, 126]. The ability 

of high [Ca2+]e to increase intracellular Ca2+ mobilization and promote terminal 

differentiation in C5.18 cells could be blocked by overexpression of a dominant-negative 

CaSR or anti-sense RNA in the cells [29, 124, 126]. In cultures of fetal rat metatarsal 

bone explants, administration of CaSR agonist (or calcimimetics) increased their 

longitudinal growth by enhancing chondrocyte differentiation in the GP [127]. The above 
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studies confirm the actions of Ca2+ and CaSR in promoting chondrocyte differentiation 

and mineralizing functions, and perhaps to speed up their transformation to acquire 

osteogenic phenotypes. 

 

A global CaSR KO (Exon5CaSR-/-) mouse model was generated by inserting a neomycin 

gene cassette into the exon 5 of the gene, which encodes 77 amino acids in the ECD of 

the receptor.  The Exon5CaSR-/- mice manifested severe phenotypes of human disorder 

NSHPT -- HPT, hypercalcemia, hypocalciuria, hypophosphatemia, parathyroid 

hyperplasia, and failure to thrive and the mice died before 3-4 weeks of age. Analyses 

of their bones reveled severe rickets with delayed formation of secondary ossification 

center, expanded and disorganized growth plate, and impaired bone formation [36, 

128]. Interestingly, the growth and skeletal defects and early death of the Exon5CaSR −/− 

mice could be rescued by preventing the development of HPT after breeding the mice 

with PTH-/- mice lacking PTH gene or Gcm2−/− mice lacking the development of PTG 

[129, 130]. The reversal of skeletal defects in the Exon5CaSR −/−;PTH-/- and Exon5CaSR 

−/−;Gcm2−/− double KO mice led to the conclusion that the CaSR is not essential for 

skeletal development [129, 130] and prompted searches for other Ca2+-sensing 

mechanism(s) [131, 132].  However, it was not realized at the time that the exon 5 

gene-targeting strategy allowed an in-frame gene-splicing event to exclude the exon 5 

along with the inserted neomycin cassette from the full-length transcript, producing a 

truncated CaSR lacking 77 amino acids in its ECD. This truncated receptor was 

expressed in the skin, growth plate, and bone of the Exon5CaSR −/− mice [122, 133] and 

is sufficient to render Ca2+-responsiveness in GPCs cultured from the mice [122].   
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To clearly define the role of CaSR in skeletal development, a floxed-CaSR mouse 

model was generated by flanking the exon 7 of the Casr gene with two loxP sites.  The 

exon 7 encodes the entire 7-TM domain and the C-terminal tail, which are absolutely 

required for the coupling of the receptor to downstream signaling cascades [33]. The 

utility of this floxed-CaSR model was validated by the generation of PTC-specific CaSR 

KO mice (PTCCaSRrflox/rflox) through breeding the floxed-CaSR mice with PTH-Cre mice 

expressing Cre-recombinase under the control of PTH promoter [33]. Analyses of 

genomic DNA, RNA, and protein extracted from different tissues of the PTCCaSRrflox/rflox 

mice showed completely deletion of the exon 7 of the gene in PTGs, but not in other 

vital organs [33]. PTCCaSRrflox/rflox mice presented severe HPT, hypercalcemia, skeletal 

and growth phenotypes, and early death as seen in the Exon5CaSR −/− mice, except that 

the PTCCaSRrflox/rflox mice developed hypercalciuria, but not hypocalciuria, due to the 

preservation of normal renal CaSR functions, which enhances Ca2+ excretion in 

response to hypercalcemia [33].  

 

To determine the role of CaSR in GP development, the floxed-CaSR mice were bred 

with Col(II)-Cre mice, which express Cre recombinase under the control of a1(II) gene 

promoter [134]. Unexpectedly, the resulting CartCaSRrflox/rflox embryos died before 

embryonic day 13 (E13), with severely under-mineralized skeleton [33]. The cause for 

the early death of CartCaSRrflox/rflox embryos remains unclear [33].  As chondrogenesis 

also takes place during the development of heart valve [135-138], defective cardiac 

functions could have caused the death of CartCaSRrflox/rflox embryos.  These 
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observations also support the ability of exon5-less CaSR to sustain the development of 

Exon5CaSR −/− embryos. An additional mouse model was made to study the impact of 

CaSR function at later stages of GP development by breeding floxed-CaSR mice with 

Tam-Col(II)-Cre mice,  which express tamoxifen-inducible Cre recombinase under the 

control of a1(II) gene promoter [139] to achieve time-dependent chondrocyte-specific 

CaSR gene ablation. The resulting Tam-CartCaSRflox/flox mice developed normally until 

adulthood in the absence of tamoxifen.  Induction of CaSR KO in E18-19 embryos by a 

single maternal injection of tamoxifen profoundly ablated CaSR expression in the GPs 

of the newborn Tam-CartCaSRrflox/rflox mice, which presented short stature with expanded 

and under-mineralized GPs and delayed chondrocyte terminal differentiation as seen in 

rickets [33]. These in vivo studies confirm a non-redundant role for the CaSR in 

mediating chondrocyte differentiation and GP development. 
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1.6 Interplay between Ca2+/CaSR and PTHrP/PTH1R signaling 

in chondrocytes 

Studies of cultured GP chondrocytes revealed a close interaction between 

PTHrP/PTH1R and Ca2+/CaSR signaling pathways in controlling the pace of 

chondrocyte differentiation. Raising [Ca2+]e profoundly inhibited PTH1R and PTHrP 

expression in cultures of mouse GP chondrocytes (Figure 1.3 E, Control and 

unpublished observations) [123]. Conversely, treating those cultures with PTHrP(1-34) 

significantly blunted the ability of high [Ca2+]e to suppress PG accumulation and 

promote mineral deposition (Figure 1.3 D; -PTHrP vs +PTHrP).  In cells maintained at 

0.5 mM Ca2+, treatment with PTHrP significantly increased Agg expression and 

markedly reduced the expression of a1(X) and ALP -- markers of maturing and 

hypertrophic chondrocytes (Figure 1.3 E). Incubation with PTHrP also blocked the 

ability of high [Ca2+]e to inhibit Agg and a1(II) expression and to increase OPN RNA 

levels (Figure 1.3 E), suggesting that increased PTHrP/PTH1R signaling can 

counteract the effects of high [Ca2+]e on cell differentiation.  

 

In the GPs of Tam-CartCaSRrflox/rflox mice, the expression of IGF1 and IGF1R was 

profoundly reduced [33], suggesting that Ca2+/CaSR could promote chondrocyte 

differentiation at least in part by enhancing IGF1 signaling (Figure 1.2 A).  This 

scenario is supported by the ability of Igf1r gene knockdown to suppress the ability of 

high [Ca2+]e to promote terminal differentiation and matrix mineralization in cultured 

chondrocytes [33]. Furthermore, ablating the Igf1r gene specifically in GP chondrocytes 

in mice increased their expression of PTHrP, but not PTH1R [140], indicating a negative 
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regulation of PTHrP expression by IGF1R signaling. These observations support a 

paradigm in which Ca2+/CaSR signaling counteracts PTHrP/PTH1R signaling by 

suppressing PTH1R expression independently of IGF1/IGF1R signaling and by 

inhibiting PTHrP expression via the IGF1R-dependent pathway to support normal 

progression of chondrocyte differentiation and growth plate development (Figure 1.2 

A). 
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1.7 Bone modeling and remodeling 

At the end of chondrogenesis in the GP, vascular invasion recruits OCL precursors to 

the chondro-osseous junction where they differentiate and resorb mineralized cartilage 

matrix to facilitate the release of GP-derived OB precursors [53, 55-57]. The vasculature 

may also provide a migratory pathway for osterix-expressing osteoprogenitors from the 

periosteum to future bone sites [141, 142]. The relative contributions of various sources 

of OB precursors to overall bone development remain unclear.  

 

In the primary spongiosa beneath the GP, osteoprogenitors progress though the stages 

of pre-OBs, committed OBs, mature OBs, and osteocytes, which are characterized by 

the expression of specific marker proteins, osterix (Osx), type I collagen [Col(I)], OCN, 

and dentin matrix protein 1 (DMP1), respectively.  The immature OBs produce a large 

quantity of Col(I), which constitutes the majority of protein matrix (or osteoid), while 

mature OBs exert mineralizing functions to deposit Ca2+ and phosphate into the protein 

matrix to increase its mechanical strength. At the end of bone-forming activity, OBs, 

which are embedded in the mineralized matrix, become osteocytes, while others turn 

into inactive flattened bone-lining OBs. Upon stimulation by calcemic factors, like PTH, 

bone-lining OBs are reactivated and OCLs are recruited to the BRUs, which serve to 

liberate matrix Ca2+ to meet systemic demands of Ca2+ and repair micro damages of the 

bone.   
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1.8 Actions of PTH and PTH1R in bone 

Comparison of the skeletal phenotypes in PTH-/- mice and PTH-/-;PTHrP-/- double KO 

mice indicated PTH-dependent bone-forming activities in the primary spongiosa of long 

bone [143]. Bone cell-specific PTH1R KO mouse models are, however, required to 

further define cell-autonomous actions of the receptor. Thus far, there is no report on 

study of mice with PTH1R KO at early stages of osteoblast differentiation.  Mice with 

osteocyte-specific PTH1R KO showed increases in bone mineral density and trabecular 

and cortical bone volume and thickness, along with a low bone turnover state due to 

suppressed OB and OCL activities [144]. Interestingly, mice with osteocyte-specific 

overexpression of a constitutively active PTH1R also showed increased trabecular and 

cortical bone mass, but in the state of high bone turnover [145, 146]. These studies 

support a role for the osteocytic PTH1R in controlling bone turnover, but other factors 

are involved in balancing bone forming and resorbing activities and determining overall 

bone accrual.  

  

Direct actions of PTH on OBs were deduced from in vitro studies using cultures of bone 

marrow-derived osteoprogenitors, osteoblasts/osteocytes released from bone 

fragments, and osteogenic cell lines, and in vivo studies of mice injected with PTH [44-

47]. Those studies together support the scheme that PTH increases osteoblastic 

activities by recruiting osteoprogenitors and sustaining the proliferation and survival of 

the committed OBs (Figure 1.1 A, 5). Although, iPTH could increase bone accrual and 

more importantly bone mineralization in vivo [44-47], PTH actually inhibits terminal 

differentiation of primary OBs or OB-like cell lines and their mineralizing functions in 
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culture [147-151]. This paradox between in vivo and in vitro observations suggests that 

iPTH in vivo must produce other changes in bone microenvironment that are needed to 

promote terminal differentiation of the newly recruited OBs by iPTH. This effect is not 

recapitulated in OB cultures, likely due to the absence of OCL activity. 

 

In vivo, PTH enhances osteoclastic activities by increasing osteoblastic expression of 

RANKL, macrophage colony stimulating factor (M-CSF), and other cytokines to recruit 

osteoclast precursors and promote their growth and differentiation through activation of 

RANK, c-fms (M-CSF receptor), and other signaling pathways in the cells (Figure 1.1 A, 

6) [152-155]. The above PTH actions on OBs are mediated by cell-autonomous 

responses as well as by locally produced growth factors and cytokines, including IGF1 

[155-157], fibroblast growth factor-2 (FGF-2) [158, 159], Wnt signaling-related agonists 

and antagonists [160-163], periostin [164], and sympathetic tone [165]. These 

sequential effects of PTH on OBs and then OCLs provide not only a cellular basis for 

iPTH to increase bone turnover rate, but also a time window to produce anabolic effects 

before its catabolic effects catch up [44-47]. 

 

The importance of OCL activity in producing osteoanabolism is shown by studies of 

antiresorptives, such as bisphosphonates and the humanized monoclonal antibody 

denosumab, which binds to and neutralizes the activity of RANKL and therefore 

suppresses osteoclastogenesis and bone resorption [166-170].  Antiresorptive agents 

not only block bone resorption, but also impede bone-forming activities in the BRUs. 

The exact mechanisms for coupling bone resorption to formation remain unclear. It is 
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proposed that OCLs interact with OBs directly through binding of their cell-surface 

receptors (e.g., the RANK/RANKL and Ephrin/Eph systems) [152-155] to promote 

mutual cell differentiation and functions. Alternatively, OCLs actively release growth 

factors (e.g., IGF1 and TGFb) [171, 172] and other constituents (e.g., Ca2+) from the 

matrix that may serve as anabolic signals to recruit osteoprogenitors and promote their 

differentiation. It has been shown that local [Ca2+] can rise to >40 mM at sites of active 

resorption [173] and that Ca2+ can function as a strong anabolic signal for OB 

recruitment, growth, survival, and differentiation [29, 31, 33, 174-178]. Based on this 

coupling mechanism, inhibition of bone resorption by antiresorptives is expected to limit 

local Ca2+ availability and thereby slow down OB differentiation and bone formation. On 

the other hand, increasing bone turnover by iPTH is anticipated to increase local [Ca2+] 

bathing the OBs and promoting their differentiation (Figure 1.1 A, 8). 
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1.9 Actions of Ca2+ and CaSR in bone – osteoblast and 

osteoclast 

Osteoblastogenesis 

Studies of primary OBs and osteocytes and osteoblastic cell lines in culture 

demonstrated the ability of extracellular Ca2+ to stimulate acute signaling responses and 

enhance the migration, proliferation, survival, expression of terminal differentiation 

markers, and mineralizing functions of the cells by activating the CaSR [29, 32, 33, 35, 

37, 174, 178-181]. In bone, the CaSR was found in active OBs, inactive bone-lining 

cells, and osteocytes ([29] and Figure 1.2 B, 1.2 E). As seen in cultured chondrocytes, 

CaSR activation with specific agonists stimulated Gq-mediated PLC activity, increased 

production of IP3, elevated [Ca2+]i, and opened Ca2+-dependent K+ channels to promote 

chemotaxis and cell proliferation in cultures of osteoblastic MC3T3-E1 [35, 182].  In 

calvarial OBs, CaSR activation (i) stimulated ERK 1/2 and downstream Akt and 

glycogen synthase kinase 3β (GSK3β) signaling cascades to promote cell growth, 

survival, and matrix mineralization [178, 180] and (ii) activated PLC and store-operated 

Ca2+ entry to increase [Ca2+]i to support cell proliferation [183]. The above observations 

are just few of many studies demonstrating the multifaceted actions of the CaSR in 

mediating OB proliferation, survival, and terminal differentiation.  

 

While the above in vitro studies support a role for the CaSR in OB differentiation, its role 

in vivo had been controversial. This was due to the ability of concurrent Pth or Gcm2 

gene KO to rescue the skeletal defects in the global Exon5CaSR-/- mice [184].  It was 

concluded at the time that the development of HPT due to defective CaSRs in PTCs 
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was the main cause for skeletal defects observed in the Exon5CaSR-/- mice [129, 130]. 

Again, follow-up studies revealed the expression of the truncated exon 5-less CaSR in 

the cartilage and bone of the Exon5CaSR-/- mice.  This truncated CaSR appeared to be 

sufficient to support overall skeletal development.  The latter notion was further 

supported by studies of mice with OB-specific ablation of the exon 7 of the Casr gene 

KO [185].  

 

Deletion of the exon 7 of Casr at the early stage of OB differentiation in vivo by crossing 

the floxed-CaSR mice with mice expressing Cre under the control of two different 

versions (2.3 and 3.6 kb) of the Col(I)-a1 gene promoter produced the OBCaSRrflox/rflox 

mice [185], which died before 3-4 weeks of age with severely blunted growth. µCT 

images reveled their severely under-mineralized skeletons with multiple unhealed bone 

fractures [33, 175]. Histomorphometric analyses of the CaSR-deficient bones showed 

reduced bone formation rates and bone volume and large quantifies of unmineralized 

osteoid deposited in both trabecular and cortical bone. Gene expression profiling 

showed profoundly reduced expression of OB differentiation markers, but increased 

expression of IL-10 gene -- an inducer of cell apoptosis.  The up-regulation of the latter 

gene was consistent with an increased number of apoptotic OBs and osteocytes in the 

bones of the KO mice [33, 175].  The above skeletal defects were presented in the 

presence of lower serum PTH levels, further supporting cell-autonomous effects of the 

gene KO.  These data together confirm an essential role for the CaSR in mediating OB 

proliferation, survival, and mineralizing functions.   
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Mice with transgenic overexpression of a constitutively active CaSR mutant cDNA under 

the control of a 3.5-kb OCN gene promoter were also made to examine the impact of 

the CaSR in mature OBs [176, 177]. The transgenic mice displayed mild osteopenia 

due to increased number and activity of osteoclast as a result of increased RANKL 

expression, supporting a role for the CaSR in mediating the coupling between 

osteoblastic and osteoclastic activities.   

 

Osteoclastogenesis 

OCLs responded to changes in [Ca2+]e in culture [186-189]. CaSR expression has been 

detected in monocytes and macrophages freshly isolated from human bone marrow 

[190], and in osteoclasts cultured from bone marrow and spleen [37, 38]. In situ 

hybridization and immunohistochemistry (Figure 1.2 C, green arrowheads) confirmed 

the expression of CaSR mRNA and protein, respectively, in bone marrow cells and 

osteoclasts in resorbing pits [29]. High [Ca2+]e and/or CaSR agonists stimulated PLC, 

elevated [Ca2+]i [187-189, 191], and enhanced the translocation of nuclear factor NF-κB 

[189] in cultured OCLs. Some of those signaling responses were blunted in OCLs 

cultured from Exon5CaSR-/- mice [189]. High [Ca2+]e also inhibited the differentiation [37], 

secretion of acid phosphatase [188], and bone-resorbing functions in cultured OCLs [38] 

and increased apoptosis of mature OCLs [189]. The above in vitro data support the 

scheme that CaSR activation inhibits bone-resorbing activities by suppressing 

differentiation and secretory function of OCL and promoting cell apoptosis. Interestingly, 

allosteric activator of the CaSR (e.g., cinacalcet HCl) at the concentration, which 

suppresses PTH section in PTCs, had no effect on resorbing functions of human OCLs 
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in culture [192].  Similarly, the inhibitory effect of the allosteric inhibitor of the CaSR, 

NPS 2143, on resorbing functions of cultured human OCLs could be seen only at 

concentrations that are 250 fold higher than those required to block the CaSR in PTCs 

[193]. These data indicate different pharmacological profiles of the CaSR in OCLs vs 

PTCs. As decreasing pH renders the CaSR a right-shifted Ca2+ set-point [194], so the 

CaSR in OCLs are predicted to be less responsive to its ligand (i.e., Ca2+) and perhaps 

its modulators (calcimimetics and calcilytics) in actively resorbing pits. By using a 

combination H+ and Ca2+ double-barreled electrode, Silver et al. showed that the pH 

reached a lower limit of 4.7 and the [Ca2+]e rose to a maximum of 40 mM in the erosion 

sites of the bone. It is plausible that the OCL CaSRs could be operational under such 

high [Ca2+]e environments despite the low pH.  Future in vitro studies of OCL cultures 

with better controls of [Ca2+]e and pH that mimic in vivo conditions and in vivo studies of 

OCL-specific CaSR KO mice are required to clearly define the CaSR actions in OCLs. 
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1.10 Interplay between Ca2+/CaSR and PTHrP/PTH1R 

signaling in bone 

Based on the studies reviewed above, we propose the following models for the 

regulation of mineral and bone metabolism by the interactions between Ca2+/CaSR and 

PTHrP/PTH1R signaling. Under a physiological state (Figure 1.1 A), a normal sCa2+ 

level (1) maintains a steady supply of PTH from PTCs (2) to support basal Ca2+ 

reabsorption in the kidney (3) and Ca2+ absorption in the gut (via stimulation of renal 

1,25D production) (4), together maintaining Ca2+ homeostasis at the level that meets 

the systemic demand.  This level of PTH also supports steady bone forming activities by 

recruiting OB progenitors, activating bone-lining OBs, and sustaining their survival to 

maintain an adequate number of bone-forming cells (Figure 1.1 A, 5) [44, 157, 158, 

195-200]. Through production of growth factors and/or direct physical interactions, the 

OBs aid in the recruitment of osteoclast precursors and their survival and differentiation 

(6) in the BRUs. The resulting bone resorbing activities liberate matrix Ca2+ into fluid 

bathing OBs and OCLs (7). Under conditions of Ca2+ sufficiency, low systemic demand 

of Ca2+ (s) allows retention of the liberated Ca2+ to increase local [Ca2+] that stimulates 

OB maturation and their mineralizing functions to redeposit the Ca2+ into newly formed 

matrices (8).  The increasing [Ca2+]e also feeds back to OCLs to prevent their further 

expansion and aberrant bone resorption (9).  These balanced bone-forming and bone-

resorbing activities sustain a steady bone turnover rate to continuously remodel the 

skeleton without bone loss.   
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In conditions of chronic Ca2+ deficiency (Figure 1.1 B), e.g., insufficient Ca2+ and/or 

vitamin D intakes, reduced sCa2+ levels increase PTH secretion (1) in PTGs to 

enhance (2) renal Ca2+ reabsorption (3) and 1,25D production to increase intestinal 

Ca2+ absorption in an attempt to restore sCa2+ levels to normal. But inadequate 

intestinal Ca2+ intakes (4) prevent such normalization and lead to chronic hypocalcemia 

and sustained elevation of sPTH, which drastically increases bone turnover rates (5-

7). As a result, excessive bone resorption releases a large amount of Ca2+ (7), which 

is shunted into the circulation (s) to further meet the systemic demands of Ca2+.  

Consequently, the decreasing [Ca2+]e in the BRUs retards the maturation and 

differentiation of the OBs as well as their mineralizing functions (8), leading to 

accumulation of unmineralized osteoid and osteomalacia. Inability of low [Ca2+]e to 

check on the osteoclastogenesis (9) further increases bone resorption and exacerbates 

the catabolic effects of chronic HPT.  
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1.11 Skeletal anabolism by targeting the PTH1R and CaSR in 

bone 

Osteoporosis is a growing epidemic that afflicts aging men and women across the world 

[201]. iPTH is the only FDA-approved therapy that produces skeletal anabolism [43-47], 

but its dosing is limited to the lowest level that produces anabolic effects with an 

acceptable rate of hypercalcemia as an adverse effect[43, 45]. A better understanding 

of the mechanism underlying the anabolic effects of iPTH is needed to improve the 

therapy. Based on the current data, we propose that daily injections of supra-

physiological doses of PTH1-34 (Figure 1.1 C, 2) in addition to the endogenous PTH1-

84 transiently enhance calcemic activities in the kidney (3) and the gut (4) to a degree 

that can cause hypercalcemia and perhaps shunting of Ca2+ into the bone (s). As a 

result, local [Ca2+]e is elevated in the BRUs and promotes the differentiation and 

mineralizing functions (8) of the OBs recruited by the injected PTH (5).  Although the 

increased OB activity is also anticipated to promote osteoclastogenesis (6) in the 

BRUs, this effect could be transient due to a short half-life of PTH (in minutes) and a 

negative feedback of the increasing [Ca2+] (9) at least before the Ca2+ is redeposit into 

the matrix. The above events together give an anabolic window for a bone gain.  We 

hypothesize that continuous infusion of PTH eventually allows osteoclastic activities to 

surpass the osteoblastic activities due to the enhancement of RANKL/RANK signaling, 

therefore producing catabolic effects on bone.  According to this scheme, the efficacy of 

iPTH treatment will highly depend on the availability of Ca2+ and calcemic functions in 

the kidney and the intestine.  This may explain for the considerably variable efficacies of 

the treatment in patients.  This regulatory scheme also critically relies on a functional 
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CaSR in OBs.  Indeed, a blunted anabolic effect of iPTH was recently observed in the 

OBCaSRrflox/rflox mice [202]. The latter study also raises the possibility of targeting the 

CaSRs in OBs and OCLs to enhance skeletal anabolism.   

 

We have proposed to co-inject calcimimetics to enhance the anabolic effects of iPTH. 

Calcimimetics are non-ionic allosteric CaSR agonists that are being used clinically to 

treat HPT and hypercalcemia by potentiating extracellular Ca2+-induced inhibition of 

PTH secretion and thereby suppressing the calciotropic actions in the kidney, intestine, 

and bone [203-206]. We theorize that transient activation of CaSR in PTCs with 

calcimimetics will dampen the secretion of endogenous PTH1-84, and therefore reduce 

its calciotropic activities in the kidney (3) and gut (4), therefore alleviating some of the 

adverse hypercalcemic effects in patients also receiving iPTH (Figure 1.1 D). According 

to our working model, the injected PTH will continue to promote OB (5) and then OCL 

activities (6) in the BRUs. Although a smaller increase in sCa2+ level is anticipated to 

give a less increase in local [Ca2+]e in the BRUs (s), when compared to iPTH treatment 

alone, the injected calcimimetic is anticipated to enhance the Ca2+-responsivenes of OB 

by shifting the Ca2+ set-point of the CaSR to the left and therefore promote the 

differentiation and functions of OBs (8). The inhibitory actions of calcimimetics on OCL 

activities are anticipated to slow down bone resorption by inhibiting OCL recruitment, 

differentiation and survival (9), therefore expanding the anabolic window. The actions 

of both agents together are expected to produce more robust anabolism with less or no 

hypercalcemia. Preliminary studies indeed showed that daily co-injections of a 

calcimimetic, (NPS-R568, 20 nmole/kg) with PTH1-34 (40-80 µg/kg) for 4-6 weeks in 



	  
	  

32 

both adult (3 months old) male and aging (12 months old) female mice (i) completely 

prevented the development of hypercalcemia, (ii) produced anabolic effects on 

trabecular bone that was 2-3 fold more robust than that with iPTH treatment alone, and 

(iii) produced significant anabolic effects and increased bone strength at cortical sites, 

which were absent with iPTH treatment alone [207]. The ability of this combined 

PTH/calcimimetic treatment to address the issue of hypercalcemia may allow use of 

higher doses of PTH to build more bone mass perhaps over a shorter time-course to 

minimize possible risks of osteosarcoma and make treatment more effective and cost 

less.  Cinacalcet, an orally active calcimimetic, is approved to treat hypercalcemia in 

patients with primary and secondary HPT and has been in clinical use for several years. 

Translation of this novel combination drug strategy to human disease therapy could be 

facilitated. 
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1.12 Conclusion 

In cartilage and bone, close complementary interactions between CaSR and PTH1R 

signaling are required for smooth progression of chondrocyte, OB, and OCL 

differentiation. Regimens with combined pharmaceutics concurrently targeting these two 

receptors have the propensity of producing more robust anabolic bone effects than 

treatments with individual compound. However, the dosing of the compounds and timing 

(concurrent vs sequential) for the drug deliveries remain to be optimized. Based on their 

cDNA sequences, the CaSRs expressed in OBs and chondrocytes are identical to that 

cloned from the PTGs [29, 122]. Immunoblotting analyses, however, showed distinct 

glycosylation patterns of the receptor in chondrocytes and OBs compared to that in 

PTGs and in HEK-293 cells expressing CaSR cDNA [29]. This difference in post-

translational modification could produce different pharmacological profiles of the 

receptor at different anatomical sites (e.g., OCLs in the resorbing pits), but this concept 

has not been formally addressed.  In addition, the CaSR forms heteromeric complexes 

with type B g-aminobutyric acid receptor (GABABR1 and R2) in OBs and chondrocytes 

[[103], and unpublished data]. In GABABR1-deficient chondrocytes, the ability of Ca2+ to 

stimulate acute signaling responses was reduced significantly [103]. Since GABABR1 

and R2 are co-localized with the CaSR in many tissues at various levels [103, 104], it is 

plausible that different stoichiometric interactions among these receptors and perhaps 

with other members of family C GPCRs could produce receptor complexes with distinct 

pharmacological files in a cell-specific manner. These differences in receptor processing 

and complex formation provide opportunities for designs of tissue-specific compounds 

to enhance skeletal anabolism. 
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Figure 1.1  

 
Figure 1.1.  Schemas for the actions of PTH/PTH1R and Ca2+/CaSR signaling in the 
regulation of mineral and skeletal metabolism under (A) a physiological state and (B) 
Ca2+ deficiency and its responses to (C) iPTH or (D) combined iPTH and calcimimetics 
treatment. See the text for detailed descriptions. 
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Figure 1.2  

 
Figure 1.2. (A) A schema for growth plate chondrocyte differentiation and its regulation 
by PTHrP/PTH1R/Ihh, IGF1/IGF1R, and Ca2+/CaSR signaling pathways. See the text 
for detailed descriptions. (B-E) Immunohistochemical (IHC) detection of CaSR protein in 
(B) mouse growth plate and primary spongiosa; (C) chondro-osseous junction; (D) 
resorbing pits in the secondary spongiosa, and (E) cortical bone of the tibia. Red, greed, 
purple, blue arrowheads depict  terminally differentiated chondrocyte being released 
from cartilage matrix in (C), osteoclasts in (D), and bone-lining OBs and osteocytes in 
(E),  respectively. 
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Figure 1.3  

 

Figure 1.3. Direct actions of Ca2+ and CaSR on chondrocyte differentiation (A) PG 
accumulation and mineral deposition by Alcian green and von Kossa staining, 
respectively, in mouse GPCs cultured for different times. Cultures were counterstained 
with hematoxylin. Insets: high-power (100x) views. (B) RNA levels, assessed by q-PCR, 
for Agg, and a1(II), ALP, OPN, OCN, and ON, in mouse GPCs cultured for various times 
[subconfluent (Sub), confluent (Con), 7, 14, and 21 days post-confluence]. The level of 
gene is expressed as “%” of L19 expression. (C) Effects of different [Ca2+]e on 
proteoglycans (PG) accumulation, mineralization in mouse GPCs cultured at 0.5 or 3.0 
mM Ca2+ for 14 days after confluence and viewed at 20x and 100x in upper and 2 lower 
panels, respectively. (D) PG accumulation and mineral accumulation assessed by 
Alcian green and Alizarin red staining, respectively, and (E) RNA expression assessed 
by qPCR in mouse GPCs cultured at different [Ca2+]e (0.5 to 3.0 mM) in the absence (-) 
or presence (+) of 10-7 M PTHrP for 14 days. RNA levels are presented as the 
percentage of ribosomal L19 gene expression.  
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2.1 Introduction 

The incidence of osteoporosis is rising dramatically in aging societies across the globe. 

At present, ≈10 million Americans have osteoporosis [1].  This number is expected to 

reach 12 million by 2025 [2]. Osteoporosis is predicted to cause 3 million fractures and 

incur $25 billion in costs each year [2].  Hip fractures cause the most dramatic morbidity 

and mortality. Within the first year of a hip fracture, overall mortality is 18% (but mortality 

rates reach as high as 30% in men) [3-5]. Disability rates of post-hip fractures are also 

startlingly high.  30% of patients are permanently disabled; 40% are unable to walk 

independently again; and 80% lose the ability to perform at least one key activity of daily 

living [1]. Thus, such fractures greatly impact the survival and quality of life of elderly 

people and impose steep financial and emotional burdens on society.    

 

Bisphosphonates are the current first-choice drugs for various diseases associated with 

enhanced bone resorption, including osteoporosis [6,7]. These drugs promote apoptosis 

of osteoclasts (OCLs), thereby suppressing bone resorption [8]. This mechanism of 

action interferes with bone remodeling, which requires a precise coupling of osteoblast 

(OB) and OCL activities. Thus, skeletal adaptation and repair in response to changes in 

mechanical signals and/or the accumulation of microdamage is impaired. This may 

ultimately weaken the structural integrity of bone and cause possible long-term 

complications of chronic anti-resorptive therapy, including osteonecrosis of the jaw and 

atypical femoral fractures [9-12]. Such pitfalls of therapy, although rare, fuel the search 

for regimens to promote formation of bone with strong mechanical properties. 
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To date, once-daily injections of PTH(1-34) or Teriparatide, comprising the first 34 

amino acids of full-length PTH [PTH(1-84)], is a mainstay treatment available in the US 

that has skeletal anabolic effects to treat osteoporosis by stimulating bone remodeling. 

This regimen administered under Ca2+-sufficient conditions (i.e. with Ca2+ and Vitamin D 

supplementation) increases trabecular bone mass in normal and osteoporotic animal 

models and in patients [13-17]. The osteoanabolism of PTH occurs in an “anabolic 

window” when bone-forming activities of OBs exceed the bone resorbing activities of 

OCLs at the beginning of treatment. While PTH increases bone turnover, it also 

improves the microarchitecture by remodeling damaged bone. The anabolic actions of 

PTH are site-dependent. Anabolism of PTH(1-34) in trabecular-rich vertebral bodies and 

appendicular bone has been well-documented, although the same regimen has less or 

even catabolic effects (e.g. increasing porosity) on cortical bone. Recent interest has 

also been developed regarding its potential for tissue regeneration such as fracture 

healing of long bones and repair of osseous defects in the oral cavity [18-21]. Studies of 

animal models with or without induced osteoporosis support the impact of PTH on bone 

formation and remodeling in the craniofacial region [22-24]. Rodent studies with PTH(1-

34) treatments show increased mandibular bone density, reversed periodontitis-induced 

bone loss, accelerated implant osseointegration and improved mandibular fracture 

healing [25]. Also, pre-clinical studies have shown promising results with PTH(1-34) for 

periodontal regeneration and the treatment of osteonecrosis of the jaw related to the 

use of anti-resorptive drugs [26-28]. These studies together provide sound rationale for 

the use of PTH in facilitating craniofacial bone regeneration. 
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The exact mechanisms underlying the osteoanabolic actions of PTH remain unclear. 

Given its role as a Ca2+ depot in a greater scheme of mineral homeostasis, the 

outcomes of skeletal metabolism likely depend on systemic Ca2+ demands, which is 

subject to tight regulation by a dynamic feedback loop that begins with the ability of 

parathyroid cells (PTCs) to sense minute changes in circulating [Ca2+]. When serum 

[Ca2+] is lowering, inactivation of CaSR in PTCs permits tonic PTH secretion to promote 

renal Ca2+ reabsorption, enhance intestinal Ca2+ absorption [via the production of 1,25-

dihydroxy-vitamin D3 (1,25D)], and mobilize Ca2+ from bone, thus raising serum [Ca2+] 

toward normal29. In contrast, increasing serum [Ca2+] beyond its physiological set-point 

activates CaSRs in PTCs to suppress PTH secretion and its ensemble of calcemic 

activities. In addition, via activation of the same CaSR, high serum [Ca2+] also increases 

Ca2+ excretion in renal tubule cells to further reduce circulating [Ca2+] [30]. Growing 

evidence further demonstrates CaSR expression in chondrocytes, osteoblasts, and 

osteocytes and abilities of [Ca2+] to promote terminal differentiation and mineralizing 

functions of the cells. In vitro studies have shown that raising extracellular [Ca2+] could 

suppress differentiation and resorbing functions of osteoclast and promote their 

apoptosis [31-32]. These effects of raising local [Ca2+] on osteoblasts and osteoclasts 

together provide a potential mechanism to redeposit surplus Ca2+ back into bone and 

create an anabolic window for skeletal anabolism in response to PTH when demands of 

systemic Ca2+ are low in conditions of Ca2+ sufficiency. 

 

Based on the above regulatory scheme, hypercalcemic effects of intermittent PTH 

treatment could be a prerequisite for its anabolic action. However, hypercalcemia is 
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afflicting and was a major limiting factor in the approval of the current PTH therapy by 

the FDA, as aberrant increases in serum [Ca2+] can cause nausea, vomiting, 

headaches, altered mental status, dehydration and even kidney stones. Another side-

effect considered by the FDA was oncogenic effects of the peptide. In rats subjected to 

daily doses of PTH(1-34) for 24 months in toxicological studies developed 

osteosarcomas at substantial rates rates [13, 15] that increased with the doses of 

PTH(1-34) tested [10, 33]. Given these potential side-effects, the FDA approved a daily 

dose of 20 µg PTH(1-34) for a maximum of 2 years for the treatment of severe 

osteoporosis, despite the fact that doses above 20 µg/day produced greater BMD 

responses in the pivotal phase 3 trial7 and in other trials [34, 35].  Clearly future 

optimization of intermittent PTH therapy requires strategies to increase the potency of 

the peptide by increasing its efficacy and/or duration of action, and minimize its 

hypercalcemic side-effects while producing more robust anabolic effects at different 

skeletal sites. With regards to enhancement of potency in targeting PTH1R, PTH 

analogs have been designed to prolong cAMP responses to sustain PTH1R-dependent 

effects on systemic Ca2+ and active 1,25-D levels [36-39], which in turn produces an 

anabolic effect on bons [40,41]. A remarkable PTH analog, which emerged from efforts 

initially aimed at optimizing the N-terminal region of PTH(1-34) [42, 43] and culminated 

in the joining of the optimized N-terminal PTH(1-14) sequence to a C-terminal segment 

derived from the (15-36) region of PTHrP [38]. This long-acting PTH analog, or LA-PTH, 

induces prolonged cAMP production from endosomes much more than PTH(1-34) and 

was shown to also induce calcemic responses in blood that far exceeded those 

observed for PTH(1-34) in both magnitude and duration [44], thus limiting in clinical 
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potential. 

 

Motivated by the counteracting calcemic actions of PTH1R and CaSR and their 

potential synergistic actions in producing skeletal anabolism as outlined in the above 

sections and Chapter 1, this dissertation tested the mineral and skeletal effects of a 

novel combined PTH and calcimimetic (a non-ionic allosteric CaSR agonist) therapy in 

physiological and pathological contexts. Specifically, we performed once daily co-

injections of combined PTH(1-34) or LA-PTH with NPS-R568, an injectable 

calcimimetic, in C57/B6 mice of different ages and sexes and in mice subjected to non-

fixed tibial fracture. We compared the abilities of the combined treatment versus PTH or 

LA-PTH alone to promote bone anabolism or enhance fracture healing using micro-

computed tomography (µCT) imaging and analysis, automated biochemical assays, 

histomorphometry, biomechanics testing, and novel Nanostring nCounter gene 

expression profiling. Similar experiments were also performed in mice with Tamoxifen 

(Tam)-inducible ablation of Casr in osteoblasts to demonstrate a non-redundant role of 

CaSR in mediating the anabolic effects of the combined treatment.  

  

 

 
 

  



	  
	  

70 

2.2 Results  

Calcimimetics abrogated PTH-induced hypercalcemia 

We first optimized a combination of PTH(1-34) with calcimimetic (NPS-R568) that would 

yield normalization of serum [Ca2+] and [PO4
3-], be most physiologically tolerable, and 

enhance the osteoanabolic effect of PTH. Previous studies have shown that 20 µmol/kg 

NPS-R568 results in acute hypocalcemia in mouse/rat model [45-51] and thus was 

chosen to be co-injected with 10, 20, 40, and 80 µg/kg of PTH(1-34) for 4 weeks. Mice 

injected with 40 µg/kg PTH(1-34), a common dose known to produce significant 

anabolic effects on bone, was used as “PTH alone” control. As anticipated, daily 

injections of 40 µg/kg PTH(1-34), or PTH-40, produced transient hypercalcemia in 3-

month old male C57/B6 mice (Figure 2.1 A, O vs O), while daily injections of 20 

µmol/kg NPS-R568 calcimimetic expectedly produced hypocalcemia and 

hypophosphatemia 3 hours after injections (Figure 2.1 A, O vs O). In support of our 

hypothesis, co-injections of NPS-R568 counteracted the acute Ca2+-elevating effects of 

PTH in a dose-dependent manner, and produced normocalcemia with PTH-40. 

However, the hypercalcemic effect of 80 µg/kg PTH(1-34) was not completely 

normalized by NPS-R568 (Figure 2.1 A, O vs O). Interestingly, the mice treated with 

NPS-R568 alone developed chronic hypercalcemia, likely due to long-term exposure to 

hypocalcemic action of the compound (Figure 2.1 B, O vs O). No such effect was seen 

in mice treated with PTH with or without NPS-R568 (Figure 2.1 B, O or O vs O). 

Expectedly, treatment with either PTH(1-34) alone, in which elevating serum Ca 

activates CaSR directly, or in any combination of PTH with NPS-R568 that allosterically 

activates CaSR in parathyroid glands, suppressed endogenous intact PTH(1-84) 
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secretion (Figure 2.1 A), highlighting the functional potency of both drugs on the 

glandular function and indirectly on other target organs. We also measured both acute 

and sustained blood urea nitrogen (BUN), creatinine (CREAT), albumin (ALB), and 

alkaline phosphatase (ALP) levels to assess acute or chronic renal and liver status (as 

summarized in Figure 2.1). Acute changes in BUN:CREAT and ALB were mostly 

restored to normal levels by the end of 4-week treatment, indicating no permanent 

alterations in renal and liver functions. In contrast, significant changes in acute and 

chronic increases in non-specific serum ALP could be indicative of more permanent 

changes in bone function. Lastly, only mice treated with NPS-R568 alone had a 

significant decrease in body weight, which indicates the deleterious physiological effects 

of chronic hypocalcemia and hypophosphatemia (Figure 2.1 B, B.Wt).  

 

We also tested a similar combination regimen with 10, 40, and 80 µg/kg PTH(1-34) on 

12-month-old female mice (Figure 2.2). NPS-R568 prevented acute hypercalcemia in 

the mice 3 hours after the last injection of combined NPS-R568 with either 40 or 80 

µg/kg PTH(1-34) during a 6-week course of treatment (Figure 2.2 A), supporting our 

hypothesis that calcimimetic co-injection will prevent PTH-induced hypercalcemia 

regardless of age and sex and even with very high doses (80 µg) of PTH. The ability of 

NPS-R568 to normalize hypercalcemic effects of 80 µg/kg PTH(1-34) in these aged 

females (Figure 2.2 A), but not in young males (Figure 2.1 A), indicating sex and/or 

age differences in the response to the drug. Acute and chronic phosphate metabolism is 

unaffected in these 12-month-old female mice (Figure 2.2 A, B). Similar to the 3-month-
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male cohort, the acute and chronic increases to nonspecific serum ALP are likely 

indicative of prolonged skeletal changes.  

 

Calcimimetics enhanced the osteoanabolic effect of PTH(1-34) in adult male and aged 

female mice 

Skeletal analyses by µCT (micro-computed tomography) showed that PTH alone 

modestly increased Tb bone mass (Tb. BV/TV) and thickness (Tb. Th) by ≈10% in distal 

femurs of 3-month-old male mice when compared to vehicle-injected controls (Figure 

2.3 A and B, O vs O). Although NPS-R568 alone had no effect on these Tb bone 

parameters (Figure 2.3 A and B, O vs O), when it was co-injected with PTH(1-34), 

there were robust increases in Tb. BV/TV  (of ≈25%) and in Tb.Th (of ≈22%) (Figure 

2.3 B, 40 µg/kg PTH, O vs O). Treatment with PTH alone resulted in a reduced Tb 

BMD. However, co-injecting with NPS-R568 rescued this effect, supporting the ability of 

CaSR activation to restore mineralizing function in bone in accordance with our 

hypothesis (Figure 2.3 B, 40 µg/kg PTH, O vs O). Furthermore, the reduced Tb. SMI 

values in mice treated with combined PTH/R568 indicate an increase in plate-like 

trabeculae in the distal femurs, which are indicative of increased mechanical strength. 

Increases in Tb. BV/TV and Tb. Th with reduced Tb. SMI was also found in the L5 

vertebrae of the same animals treated with combined PTH and NPS-R568 (Figure 2.3 

C). At the tibiofibular junction (TFJ), PTH alone had no significant effects on Ct.TV, 

Ct.BV, and Ct.Th (Figure 2.3 D, O vs O).  However, injections of NPS-R568 alone 

significantly reduced these Ct parameters (Figure 2.3 C, O vs O), perhaps because the 

drug caused chronic hypocalcemia due to reduced secretion of endogenous PTH 
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without supplementation of exogenous PTH, as shown in Figure 1.1. Despite the 

potential of negative effects of NPS-R568 on Ct bone, co-injections of NPS-R568 with 

PTH instead significantly increased Ct.TV, Ct.BV, and Ct.Th by 24-28% in these 3-

month-old male mice (Figure 2.3 D, 40 µg/kg PTH + 20 µmol/kg, O vs O). Furthermore, 

mechanical testing showed increased bone strength in the femurs of 3-month-old male 

mice injected with both PTH(1-34) and NPS-R568 vs those injected with PTH alone or 

vehicle as indicated by a significant increase in the ultimate force to failure (Fu) in the 

co-treated bones (Figure 2.4). These data suggest that the osteoanabolism induced by 

the combined PTH/calcimimetic produces stronger bone that may resist fracture. 

 

Using sequential labeling protocol for bone described in (Figure 2.5 A) dynamic 

histomorphometric analyses of TFJ showed robust periosteal bone formation in the first 

3 weeks of PTH(1-34) with NPS-R568 treatment, as indicated by the outward concentric 

fluorescent labels (#1-4). (Figure 2.5 B, left panel). However, the progressively reduced 

width and intensity of the labels and the shortened distances between the labels (white 

double-head arrows), suggest that this periosteal expansion waned and stalled 3 weeks 

after the treatment as indicated by the lack of fluorescent labels #5 and #6, which were 

injected at beginning of week 5 and 6 of the treatment, respectively (left panel). The 

latter finding indicates the closure of the anabolic window for these Ct effects, which 

began ≈3 weeks after the treatment. Interestingly, we found intense bone-forming 

activities in the first week of treatment with PTH alone, as indicated by a long interval 

between labels #1 and #2 (Figure 2.5 B, right panel), but only small amount of 

demeclocycline (label #3; in orange) was detected in the areas, which showed 
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characteristics of actively remodeling pits (right panel, arrowheads), which could be due 

to increases in perilacunar remodeling (PLR) of osteocyte and/or osteoclastic actvitiies. 

The latter structures are less prominent in PTH/calcimimetic-treated bones (left panel). 

If those remodeling structures are confirmed by assessment of OCL activities with 

TRAP staining and/or assessment of PLR by silver staining, it will suggest that, in Ct 

bone treated with PTH alone, PLR and/or OCL-mediated bone loss quickly catches up 

with formation to close the anabolic window. This may explain the ineffectiveness of 

intermittent PTH alone at sites rich in Ct bone. The absence or reduced frequency of 

those remodeling structures in the periosteum of PTH/calcimimetic-treated Ct bones will 

support our hypothesis that the calcimimetic inhibits PTH-induced OCL and PLR 

activities to extend its anabolic window. Future experiments will quantify dynamic bone 

formation, OCL, and PLR parameters in these labeled skeletons to clearly define the 

anabolic windows of PTH vs combined PTH/calcimimetic treatment on Ct bone. 

 

These data therefore demonstrate synergy between PTH and calcimimetic in promoting 

osteoanabolism at both Tb and Ct sites in adult male mice. Given that bone mass is lost 

during ageing, especially for post-menopausal women, we also applied this regimen to 

12-month-old female mice (Figure 2.6). Although there is an increase in Tb bone mass 

(Tb. BV/TV) at the distal femur with combined therapy at 80 µg/kg, we deemed this to 

be an unreliable site due to the overall lack of Tb bone, which results in variation of data 

points (Figure 2.6 A, BV/TV,%). As an alternative site to assess trabecular bone, we 

scanned L5 vertebrae of the same animals. Synergistic effects of PTH and calcimimetic 

similar to those in 3-month-old mice were observed in Tb bone in the L5 vertebrae and 
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Ct bone at TFJ with maximal responses at 80 µg/kg (Figure 2.6 B, C, O vs O) These 

data support the idea that the ability of NPS-R568 to control hypercalcemia permits the 

use of higher doses of PTH that is required to enhance osteoanabolism in older mice. 

Notably, mice with doses lower than 80 µg/kg did not produce significant 

osteoanabolism, highlighting the insufficiency of PTH(1-34) and/or decreased PTH1R 

signaling response in aged animals.  

 

NPS-R568 calcimimetic normalizes the hypercalcemic effects of LA-PTH and produces 

even more robust osteoanabolism than PTH(1-34) 

Previous studies into the structural determinants that optimize PTH1R signaling for 

patients with hypoparathryroidism yielded the generation of PTH analogs [52-57]. 

Notably, LA-PTH, in which the of N-terminal PTH(1-14) amino acid substitutions is fused 

to C-terminal PTHrP(15-36), was shown to induce prolonged downstream signaling 

responses by lengthening its occupancy time on the PTH1R in bone and kidney target 

cells, and consequently resulted in increased calcemic responses in blood that surpass 

those detected for PTH(1-34). Accordingly, we tested whether NPS-R568 can normalize 

the strong hypercalcemic effect of LA-PTH in order to take advantage of its potential for 

enhanced osteoanabolism (Figure 2.7). As expected, animals treated with PTH(1-34) 

and LA-PTH (both at 40 µg/kg) displayed increases in serum [Ca2+] (Figure 2.7 A, O 

and O vs O) while those treated with NPS-R568 (20 µmol/kg) showed transient 

decrease in serum [Ca2+] (O vs O). However, the combined regimen completely 

normalized these individual calcemic effects (O and O vs O), similarly to that seen with 

3-month-old male mice. Treatment with PTH(1-34), LA-PTH, and NPS-R568 resulted in 
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transient hypophosphatemia. While NPS-R568 with PTH(1-34) rescues this effect, the 

calcimimetic cannot overcome it with LA-PTH, suggesting LA-PTH’s pharmacodynamics 

is more potent in mediating phosphate metabolism. Endogenous PTH secretion was 

decreased by all treatments (Figure 2.7 A) as expected, indicating once again that our 

drugs are functionally suppressive at the parathyroid gland. We also measured blood 

urea nitrogen (BUN), creatinine (CREAT), albumin (ALB), and alkaline phosphatase 

(ALP) to assess renal and liver status (Figure 2.7 B). Mice treated with LA-PTH with 

and without NPS-R568, have decreased serum ALB and increased ALP, which could 

suggest permanent, and possibly deleterious, changes due to chronically robust PTH1R 

signaling. Further studies into the toxicological extent of daily treatment with this 

compound are needed.  

 

In a cohort of 3-month-old male mice, treatments with LA-PTH produced a much more 

profound effect on osteoanabolism compared to PTH(1-34). Skeletal analysis with µCT 

of LA-PTH treated mice revealed markedly increased Tb. bone mass (BV/TV,%) of over 

200% along with increased trabecular number, thickness, and bone surface (Figure 2.8 

B, O, O vs O). The significant decrease of Tb. SMI (Figure 2.8 B, O, O vs O) is a 

reflection of the transition to mostly plate-like trabecular structures, with little to no rod-

like trabeculae. The enhanced osteoanabolic effect of LA-PTH is further corroborated by 

the significant increase of serum ALP (Figure 2.7 B), which although nonspecific, likely 

indicates a substantial skeletal transformation. While NPS-R568 rescued PTH(1-34)-

mediated decrease in BMD (Figure 2.8 B) as seen in previous experiments, this 

calcimimetic did not restore mineralizing ability of trabecular bone in mice treated with 
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LA-PTH (Figure 2.8 B, Tb BMD O, O vs O). This along with the significant increases in 

serum bone turnover markers, P1NP and TRAcP5b shown in Figure 2.7 B, suggests 

that new bone is being synthesized at a faster rate than it can be mineralized. 

Histomorphometry analysis will further reveal the amount of immature bone/ osteoid in 

these mice treated with LA-PTH. At the tibiofibular junction, PTH(1-34) alone had no 

significant effects on Ct.TV or Ct.BV (Figure 2.8 D, O vs O).  However, LA-PTH with 

and without NPS-R568 exhibited increased Ct. BV and BV/TV (Figure 2.8 D, O, O vs 

O).  2D and 3D µCT imaging also revealed bony extensions from the cortical 

endosteum and periosteum (Figure 2.8 C, LA-PTH, LA-PTH + R568), which highlights 

the more robust cortical expansion effect of LA-PTH compared to PTH(1-34).  

Furthermore, µCT images of show increased cortical porosity, which suggests a surge 

in perilacunar/ canalicular remodeling by osteocytes (Figure 2.8 C, LA-PTH, LA-PTH + 

R568). Unfortunately, the enhanced anabolic effect proved toxic to some mice (N = 3 

out of 10) that were treated with LA-PTH alone for 4 weeks. We suspect that the 

lethality of LA-PTH could be attributed to 1) chronic hypercalcemia and/or 2) anemia 

due to shrinking bone marrow space due to continued endosteum expansion, (Figure 

2.8 A). Co-treating with NPS-R568 increased survivability of the animals, as none died 

before the time course was completed. 

 

These data demonstrates cooperation between LA-PTH and calcimimetic in promoting 

osteoanabolism at both Tb and Ct sites, which far exceed those observed with PTH(1-

34) with no hypercalcemic side effects. To determine if the efficacy of LA-PTH in 

osteoanabolism is maintained in aged mice, we tested a similar regimen on 12 -month-
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old male and female mice (Figure 2.9). In this pilot study, instead of once-daily 

injections for 4 weeks, we performed 3 injections per week for 4 weeks due to suspicion 

of physiologically intolerable and deleterious effects of LA-PTH in the older mice. In both 

aged male and female mice, serum [Ca2+] was normalized after 4 weeks of treatment 

with LA-PTH and NPS-R568 (Figure 2.9 A, B). As was not the case with female mice, 

aged male mice treated with LA-PTH maintained significantly higher serum [Ca2+], 

indicating sex-dependent difference in drug responses at this age.  In both male and 

female mice, nonspecific ALP was normalized to vehicle control levels when co-injected 

with NPS-R568, while those treated with LA-PTH alone maintained a significantly higher 

level (Figure 2.9 A, B). Chronically robust PTH1R signaling through LA-PTH likely 

resulted in sustained changes to liver and bone, which can be attenuated with 

calcimimetics. Future experiments will include more N and collection of retro-orbital 

serum to analyze acute changes in mineral homeostasis and bone turnover markers in 

LA-PTH-treated mice with and without calcimimetics.  

 

Skeletal analyses by µCT showed site-specific effects of LA-PTH with or without 

calcimimetics. For example, while LA-PTH treatment alone resulted in robust bone 

anabolism in both male and female distal femur trabeculae (Figure 2.10 A, 2.11 A), co-

injection with NPS-R568 shows no significant difference when compared to Vehicle 

controls. With regards to cortical bone at the TFJ, LA-PTH alone causes a thinning of 

cortical thickness with male and females, which is rescued with co-injection with NPS-

R568 (Figure 2.10 B, 2.11 B). In L5-vertebrae of mice treated with LA-PTH and 

calcimimetics, females have greater Tb bone mass while males exhibit no difference 
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from Vehicle controls (Figure 2.10 C, 2.11 C). These data support the use of NPS-R568 

to control hypercalcemia permitting the use of LA-PTH in aged mice regardless of sex, 

however, whether calcimimetics will enhance osteoanabolism remains to be confirmed 

with studies using various combinations of drug doses and duration and frequency of 

drug injection.  

 

The anabolic effects of the combined iPTH and NPS-R568 treatment were abrogated in 

osteoblast-specific CaSR knockout mice 

To determine whether expression and activation of CaSRs in OBs are required for the 

osteoanabolism of intermittent PTH and the combined PTH with NPS-R568 treatment, 

we compared the effects of these regimens on skeletal parameters in mice with their 

CaSR genes knocked-out specifically in early OBs. The specific deletion is in exon 7 of 

the gene, which encodes the seven transmembrane domains and four intracellular 

loops of the CaSR.  2.3Col(I)CaSR∆flox/∆flox mice showed that ablation of CaSRs early in the 

OB lineage abrogated osteoanabolism induced by the combined PTH with calcimimetic 

treatment (Figure 2.12), supporting our hypothesis that OB CaSRs play an essential 

role in mediating skeletal responses to treatment. In fact, we observed significant bone 

loss (45% of Tb) in those mice vs the 2.3Col(I)CaSR∆flox/∆flox mice injected with vehicle 

(Figure 2.12). Surprisingly, we also found that 2.3Col(I)CaSR∆flox/∆flox resulted in higher 

bone mass compared to controls injected with vehicle.  

 

Based on what we have learned from the skeletal phenotypes of the constitutive 

Col(I)CaSRrflox/rflox KO mice(citation 18) we speculate that the bone loss is caused by (i) 
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increased OB apoptosis, (ii) reduced OB proliferation, and/or (iii) inability of OBs to 

deposit Ca2+ into their surrounding matrix in an orderly manner.  This may lead to a 

mismatch between resorption and formation caused by the PTH excess. Thus, we 

anticipate seeing hypercalcemia (due to Ca2+ release from bone and poor Ca2+ 

deposition into matrix), increased TUNEL staining, reduced numbers of PCNA-(+) OBs, 

and the accumulation of unmineralized osteoid reflected in the analysis of Goldner 

staining of the PTH/R568-treated vs. vehicle-treated 2.3Col(I)CaSR∆flox/∆flox mice. The 

above serum and skeletal abnormalities are anticipated to be even more severe in 

2.3Col(I)CaSR∆flox/∆flox mice treated with PTH alone, due to additional catabolic actions of 

endogenous PTH, which are absent in PTH/R568-treated mice. We anticipate the 

ablation of CaSRs in mature OBs to block some, but not all, skeletal effects of the 

combined PTH/calcimimetic treatment in OCNCaSR∆flox/∆flox mice. This is based on our 

hypothesis that CaSRs mediate mineralizing functions, but not cell proliferation and 

survival, after OBs reach maturity. Therefore, we anticipate the combined drug regimen 

to retain the ability to promote proliferation (by PCNA staining), reduce apoptosis (by 

TUNEL-staining), increase quantity of bone as osteoid form (by histomorphometry) in 

the OCNCaSR∆flox/∆flox mice, but loss of the ability to promote mineralization, which will be 

reflected by reduced tissue mineral density (by µCT) and immature apatite lattice in their 

bone matrices. Further studies into delineating the underlying mechanism by examining 

the effects of the compounds on the proliferation, survival, differentiation, and 

mineralizing functions of OBs with their CaSR genes acutely deleted in vitro are also 

warranted.  
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Nanostring confirms gene expression shift towards bone anabolism 

To further characterize gene expression changes during the osteoanabolic action of our 

PTH analog versus PTH analog with calcimimetic, we used a customized Nanostring 

code set containing 625 genes involved in chrondrogenic, osteogenic, osteocytic, 

osteoclastic, adipogenic, inflammatory and metabolic pathways. Intact femurs and tibias 

dissected free of surrounding muscle, tendon, and fibrous tissues were used for RNA 

extraction without flushing of the marrow space in order to gain an integral view of 

changes in gene expression patterns. Duplicate samples of isolated total mRNA were 

processed by Nanostring technology as stated in the Methods section.  

 

We first compared intact femurs and tibias from mice treated with PTH(1-34) vs vehicle 

(Figure 2.13 A) or PTH(1-34) with calcimimetic (Figure 2.13 B) 3 hours after treatment. 

74/650 genes changed with PTH(1-34) alone while 119/650 genes changed in the 

combination therapy cohort. Acute changes with PTH(1-34) alone result in a resorptive 

profile, as Ctsk and Mmp13 are upregulated while transcripts for OB differentiation and 

bone anabolism, such as BMPs, Bglap, Col10a1, and Wnt/ β-catenin signaling, are 

downregulated. In contrast, treatment with PTH(1-34) with NPS-R568, exhibit a strong 

shift towards bone formation, as BMPs, Rank, and Wnt/ β-catenin signaling transcripts 

are more abundant, while Ctsk and Mmp13 are no longer significantly altered. This 

Nanostring data is consistent with known physiological function of PTH to mobilize 

serum Ca2+ and also our data above showing enhanced osteoanabolic potential of co-

treating with calcimimetics.  
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Bone from mice treated with PTH(1-34) for 4 weeks exhibit an expected change 

towards osteoprogenitor maintenance and function (Efnb1) and bone remodeling; 

formation (Alpl, Dmp1, Mepe) and resorption (Ctsk) (Figure 2.13 C). In support of our 

hypothetical model (Figure 1.1), co-treatment with PTH(1-34) with NPS-R568 shifts 

gene expression towards bone anabolism (Figure 2.13 D), as evidenced by an increase 

in transcripts from genes involved in OB differentiation (Satb2) and OB matrix 

mineralization (Alpl, Bglap, Col1a1, Dmp1, and Enpp1). 

 

As our data has shown, LA-PTH’s bone remodeling and osteoanabolic potential far 

exceeds that of PTH(1-34). Over 70% of the 625 bone-related transcripts we tested 

were demonstrated to have significant changes in LA-PTH treatment, whereas co-

treatment with calcimimetics decreased it to approximately 30% (Figure 2.13 E,F). This 

combined with our µCT data, suggest the potential for NPS-R568 to tune the robust 

anabolic effect of LA-PTH.  

 

Co-injections of calcimimetic NPS-R568 produce synergistic osteoanabolism in bony 

calluses 

Given the anabolic actions of CaSRs in callus chondrocytes and OBs [58, 59] we 

examined the potential for targeting the CaSR to enhance fracture repair. Closed-

unfixed tibia midshaft fractures were generated as described in Materials and Methods 

and illustrated in Figure 2.14. We compared the osteogenic activity in fracture calluses 

from mice subjected to daily injections of vehicle, PTH(1-34) (40 µg/kg)  alone, or the 

PTH(1-34)/R568 (20 µmol/kg)  combination for 4 weeks.  Analyses of hard calluses 
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treated with PTH(1-34) alone by µCT with a 400 mg HA/cm3 threshold showed a 

significant increase in Cal.BV/TV (by ≈12% vs vehicle controls, p<0.05), but had no 

significant effects on Cal.Th or mineral density (Cal.BMD) (Figure 2.15).  In contrast, 

co-treatments with combined PTH(1-34) (40 µg/kg) and R568 increased Cal.BV/TV by 

20% (p<0.01), Cal.Th by 10% (p<0.05), and Cal.BMD by 2.5% (p<0.05), when 

compared to vehicle controls (Figure 2.15), indicating more robust osteoanabolism than 

the treatments with PTH1-34 alone.  We reasoned that the increased levels of apparent 

Cal.Th and Cal.BMD might be due to increasing amount of higher-density bone, 

considering the ability of CaSR activation (by R568) to promote mineralizing functions in 

chondrocytes and OBs. In supporting this hypothesis, µCT analyses using a higher 

threshold to segment out bone with a higher mineral density (1000-2100 mg HA/ cm3) 

showed a larger increase in Tb.BV/TV (by 27% or 13%) and Tb.Th (by 17% or 13%) vs 

calluses treated with vehicle or PTH(1-34) alone, respectively (Figure 2.15). These data 

together indicate that the combined PTH(1-34)/R568 treatment produces stronger 

anabolic effects than PTH(1-34) alone without the unwanted calcemic side-effects. 

Given our results with LA-PTH treatments, experiments are underway involving its use 

in combination with NPS-R568 calcimimetic in the same fracture model.  
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Figure 2.1  
 
 

A. 3 hours post-injection, retro-orbital serum 

 
B. 24 hours post-injection, terminal serum  
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Figure 2.1. Co-injections of the calcimimetic NPS-R568  offset the hypercalcemic 
side-effects of PTH(1-34) in 3-month-old male mice. 
 
Serum Ca2+, phosphate (Pi), albumin (Alb), non-specific alkaline phosphatase (ALP), 
blood urea nitrogen/ creatinine ratio (BUN/Creat), endogenous parathyroid hormone 
(PTH), body weight (B. Wt) from mice treated daily with Vehicle, 40ug/kg PTH(1-34), 
NPS-R568 (20 umol/kg), or increasing PTH(1-34) 10, 20, 40, 80 ug /kg B. wt. in 
combination with NPS-R568 for 28 days. Serum Ca2+ show the ability of injectable 
calcimimetics to offset hypercalcemic effects by PTH(1-34) (A) 3 hours post-injection 
with 40 ug/kg and (B) 24 hours post-injection in a dose-dependent manner. Both 
PTH(1-34) and NPS-R568 achieve dampening of endogenous PTH secretion 3 hours 
post-injection (A). Kidney and liver functions were most normal with 40 ug/kg (PTH 1-
34) treatment. N=10-27 mice per group with each individual mouse represented by a 
colored circle; p-values labeled per comparison as determined by one-way ANOVA. NS 
= not significant. 
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Figure 2.2  
 
A. 3 hours post-injection, retro-orbital serum 

 
 

B. 24 hours post-injection, terminal serum 
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Figure 2.2. Co-injections of the calcimimetic NPS-R568  offset the hypercalcemic 
side-effects of PTH(1-34) 12-month-old female mice. 
 
Serum Ca2+, phosphate (Pi), albumin (Alb), non-specific alkaline phosphatase (ALP), 
blood urea nitrogen/ creatinine ratio (BUN/Creat), body weight (B. Wt) from mice treated 
daily with Vehicle, increasing PTH(1-34) of 10, 40, 80 ug /kg B. wt. in combination with 
NPS-R568 for 42 days. Serum Ca2+ show the ability of injectable calcimimetics to offset 
hypercalcemic effects by PTH(1-34) (A) 3 hours post-injection with 40 and 80 ug/kg and 
(B) 24 hours post-injection with 10 and 40 ug/kg. Non-specific ALP is shown to increase 
in both acute (A) and chronic conditions (B) of PTH(1-34) with calcimimetic. N=9-10 
mice per group with each individual mouse represented by a colored circle; p-values 
labeled per comparison as determined by one-way ANOVA. NS = not significant. 
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Figure 2.3  
 
A. µCT 3D and 2D images summary  

 
 

B. µCT skeletal parameters of distal femur trabecular bone 
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C. µCT skeletal parameters of TFJ cortical bone 

 
 
D. µCT skeletal parameters of L5-vertebrae trabecular bone 

 
 
Figure 2.3. Co-injections of the calcimimetic NPS-R568 produce additive 
osteoanabolic effects in trabecular and cortical bone of 3-month-old male mice. 
 
3D and 2D µCT images (A) and their corresponding structural parameters: total volume 
(TV), bone volume (BV), bone mass (BV/TV,%), bone surface (BS), thickness (Th), 
number (N), bone mineral density (BMD), structural model index (SMI) for (B) distal 
femur trabecular bone (C) tibiofibular junction cortical bone and (D) L5-vertebrae 
trabecular bone. Skeletal parameters show synergistic effects of NPS-R568 to enhance 
osteoanabolism of PTH(1-34). N=9-22 mice per group, with each individual mouse 
represented by a colored circle; p-values labeled per comparison as determined by one-
way ANOVA. NS = not significant. 
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Figure 2.4  
 

 
 
Figure 2.4. Mice treated with combined PTH(1-34) and NPS-R568 exhibit increased 
compressive strength at the mid-femur. 
 
Ultimate compressive strength assessed in femurs from 3-month-old male mice treated 
with Vehicle (Veh), PTH(1-34) (PTH), or PTH(1-34) with calcimimetic (PTH+R568). 
Bones were loaded to failure by three-point bending on the Bose Electroforce 3200 
instrument as described in Methods section. Force is in Newtons needed to fracture 
femur at the midshaft with each individual mouse represented by a colored circle; p-
values labeled per comparison as determined by one-way ANOVA. NS = not significant. 
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Figure 2.5  
 
A.  

 
A: alizarin red 
C: calcein 
D: demecloxycin 
DI: drug interruption 
T: tissue harvest 
 
B. 

  
Figure 2.5. Mice treated with combined PTH(1-34) and NPS-R568 exhibit increased 
fluorescent labeling  
 
(A) Schedules for drug injection, bone labeling, and blood/tissue harvests. Drugs are 
injected daily. (B) Fluorescent labels of tibial periosteum at TFJs in 3-month-old male 
mice injected with PTH (40 µg/kg/day)+R568 (20 µmole/kg/day) or PTH alone for 6 
weeks using the schedule described in Figure 8A indicate distinct temporal changes in 
bone formation rates following the treatments. White numbers and arrows indicate 
sequences of the labels. White double-head arrows indicate distances between 2 
consecutive labels. Arrowheads depict potential resorbing pits. BM: Bone matrix. 
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Figure 2.6  
 
A. Distal femur trabecular bone skeletal parameters 
 

 
 
B. Tibiofibular junction (TFJ) cortical bone skeletal 
parameters 
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C. L5 – Vertebrae trabecular bone skeletal parameters  
 

 
 
Figure 2.6. Co-injections of the calcimimetic NPS-R568 produce additive 
osteoanabolic effects in trabecular and cortical bone of 12-month-old female 
mice. 
 
3D and 2D µCT images (A) and their corresponding structural parameters: total volume 
(TV), bone volume (BV), bone mass (BV/TV,%), bone surface (BS), spacing (Sp), 
thickness (Th), connectivity density (CD), number (N), bone mineral density (BMD), 
structural model index (SMI) for (B) distal femur trabecular bone (C) tibiofibular junction 
cortical bone and (D) L5-vertebrae trabecular bone. Skeletal parameters show 
synergistic effects of NPS-R568 to enhance osteoanabolism of PTH(1-34) most 
effectively at 80 ug/kg. Mice were treated with either Vehicle, or 10/40/80 ug/kg of 
PTH(1-34) with NPS-R568. N=9-10 mice per group, with each individual mouse 
represented by a colored circle; p-values labeled per comparison as determined by one-
way ANOVA. NS: not significant. 
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Figure 2.7  
 
A. 3 hours post-injection, retro-orbital serum 
 

 
 
B. 24 hours post-injection, terminal serum 
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Figure 2.7. Co-injections of the calcimimetic NPS-R568 offset the hypercalcemic 
side-effects of analogs PTH(1-34) and Long-Acting PTH (LA-PTH) in 3-month-old 
male mice. 
 
Serum Ca2+, phosphate (Pi), albumin (Alb), non-specific alkaline phosphatase (ALP), 
blood urea nitrogen/ creatinine ratio (BUN/Creat), procollagen 1 intact N-terminal 
propeptide (P1NP), tartrate-resistant acid phosphatase 5b (TRACP 5b), body weight (B. 
Wt) from mice treated daily for 28 days with Vehicle, 40ug/kg PTH(1-34), 20umol/kg 
NPS-R568, PTH, 40 ug/kg PTH(1-34) with 20 umol/kg, 40 ug/kg LA-PTH, or 40 ug/kg 
LA-PTH with 20 mol/kg NPS-R568. (A) 3 hours post-injection, endogenous PTH was 
inhibited by PTH analogs and NPS-R568 while serum Ca2+ show the ability of injectable 
calcimimetics to offset hypercalcemic effects by PTH(1-34) and with more potent LA-
PTH. (B) 24 hours post-injection, increases in serum bone turnover markers, P1NP and 
TRAcP 5b, were comparatively higher in LA-PTH, and LA-PTH + R568 than in PTH(1-
34) treated mice, suggesting enhanced remodeling of skeletal sites and was further 
corroborated by dramatic increases in ALP. N=15-45 mice per group with each 
individual mouse represented by a colored circle; p-values labeled per comparison as 
determined by one-way ANOVA. NS = not significant. 
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Figure 2.8.  
 
A. Distal femur trabecular bone, 3D and 2D images 
 

 
 

B. Distal femur trabecular bone skeletal parameters 
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C. Tibiofibular junction cortical bone, 3D and 2D images 
 

 
 

D. TFJ cortical bone skeletal parameters  
 

 
 
Figure 2.8. LA-PTH produces more robust osteoanabolic effects in trabecular and 
cortical bone than PTH(1-34) with and without co-injection with calcimimetic NPS-
R568. 
 
3D and 2D µCT images (A) and their corresponding structural parameters: total volume 
(TV), bone volume (BV), bone mass (BV/TV,%), bone surface (BS), thickness (Th), 
spacing (Sp), number (N), bone mineral density (BMD), structural model index (SMI) for 
(B) distal femur trabecular bone (C) tibiofibular junction cortical bone and (D) L5-
vertebrae trabecular bone. Skeletal parameters show synergistic effects of NPS-R568 
to enhance osteoanabolism of PTH(1-34) and LA-PTH. LA-PTH shows more robust 
anabolic effect compared to PTH(1-34) in both trabecular and cortical bone. Increased 
bone remodeling is further evident in the endo/periosteum of the cortical bone. N=9-37 
mice per group, with each individual mouse represented by a colored circle; p-values 
labeled per comparison as determined by one-way ANOVA. NS = not significant. 
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Figure 2.9  
 
A. 12-month-old female: 3-injections/ week, terminal serum 
 

 
B. 12-month-old-male: 3-injections/ week terminal serum 
 

 
 
Figure 2.9. Co-injections of the calcimimetic NPS-R568 offset the hypercalcemic 
side-effects of Long-Acting PTH (LA-PTH) in 12-month-old female and male mice. 
 
Serum Ca2+, phosphate (Pi), albumin (Alb), and non-specific alkaline phosphatase 
(ALP) from mice treated 3 times per week, every other day, for 4 weeks with Vehicle, 
LA-PTH, 40 ug/kg, or LA-PTH 40 ug/kg with 20 mol/kg NPS-R568. 12 hours post-final 
injection, the calcimimetic offset the hypercalcemic effects of LA-PTH in both (A) female 
and (B) male mice and also dampened the increased ALP. N=4-5 mice per group with 
each individual mouse represented by a colored circle; p-values labeled per comparison 
as determined by one-way ANOVA. NS = not significant. 
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Figure 2.10  
 
A. Distal femur trabecular bone skeletal parameters 
 

 
 
B. TFJ cortical bone skeletal parameters 
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C. L5 – Vertebrae trabecular bone skeletal parameters 
 

 
 
Figure 2.10. LA-PTH produces more robust osteoanabolic effects in trabecular 
and cortical bone, which is generally annulled with calcimimetics in aged female 
mice. 
 
Skeletal structural parameters: total volume (TV), bone volume (BV), bone mass 
(BV/TV,%), thickness (Th), number (N), bone mineral density (BMD), bone surface 
(BS), spacing (Sp), structural model index (SMI) for (B) distal femur trabecular bone (C) 
tibiofibular junction cortical bone and (D) L5-vertebrae trabecular bone. Female mice 
were injected 3 times per week during a 4-week course. Skeletal parameters exhibit the 
LA-PTH anabolic effect, which is generally lost except in case of L5 vertebrae trabecular 
bone. In cortical bone, LA-PTH has a catabolic effect which is rescued with co-injection 
with calcimimetics. N=4-5 mice per group with each individual mouse represented by a 
colored circle; p-values labeled per comparison as determined by one-way ANOVA. NS 
= not significant. 
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Figure 2.11  
 
A. Distal femur trabecular bone skeletal parameters  
 

 
 
B. TFJ cortical bone skeletal parameters 
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C. L5 – Vertebrae trabecular bone skeletal parameters 
 

 
 
 
Figure 2.11. LA-PTH produces more robust osteoanabolic effects in trabecular 
and cortical bone, which is generally annulled with calcimimetics in aged female 
mice. 
 
Skeletal structural parameters: total volume (TV), bone volume (BV), bone mass 
(BV/TV,%), thickness (Th), number (N), bone mineral density (BMD), bone surface 
(BS), spacing (Sp), structural model index (SMI) for (B) distal femur trabecular bone (C) 
tibiofibular junction cortical bone and (D) L5-vertebrae trabecular bone. Male mice were 
injected 3 times per week during a 4-week course. Skeletal parameters exhibit the LA-
PTH anabolic effect, which is generally lost except in case of L5 vertebrae trabecular 
bone. In cortical bone, LA-PTH has a catabolic effect, which is rescued with co-injection 
with calcimimetics. N=4-5 mice per group with each individual mouse represented by a 
colored circle; p-values labeled per comparison as determined by one-way ANOVA. NS 
= not significant. 
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Figure 2.12  
 

 
 
Figure 2.12. The osteoanabolic effects of intermittent PTH and NPS-R568 
treatment were abrogated in osteoblast-specific CaSR knockout mice. 
 
3D µCT images and their corresponding Tb bone mass (BV/TV%) on the left and % 
normalized to Vehicle controls. 2.3Col(I)CaSR∆flox/∆flox mice showed that ablation of CaSRs 
early in the OB lineage abrogated osteoanabolism induced by the combined PTH with 
calcimimetic treatment. N=5-8 mice per group, with each individual mouse represented 
by a colored circle; p-values labeled per comparison as determined by one-way 
ANOVA. NS = not significant. 
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Figure 2.13  
 
A. Changes in gene expression of PTH(1-34) vs Vehicle, 3 
hours post-injection 
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B. Changes in gene expression of PTH(1-34) + NPS-R568 vs 
Vehicle, 3 hours post-injection 
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C. Changes in gene expression of PTH(1-34) vs Vehicle, 24 
hours post-injection 
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D. Changes in gene expression of PTH(1-34) + NPS-R568 vs 
Vehicle, 24 hours post-injection 
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E. Changes in gene expression of LA-PTH vs Vehicle, 24 
hours post-injection 
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F. Changes in gene expression of LA-PTH + NPS-R568 vs 
Vehicle, 24 hours post-injection 
 

 
 
 
Figure 2.13. Nanostring confirms gene expression shift towards bone anabolism 
 
Total RNA was isolated from intact femur and tibia of mice treated with Vehicle, PTH(1-
34), LA-PTH, or LA-PTH with NPS-R568. mRNA abundance was quantified by 
NanoString nCounter using a bone specific Code of 625 genes involved in 
chrondrogenic, osteogenic, osteocytic, osteoclastic, adipogenic, inflammatory and 
metabolic pathways. X-axes indicated fold change while Y-axes measure –log of p-
value (dotted horizontal line corresponds to p = 0.05). Vertical dotted line represents no 
change in mRNA transcripts. Genes labeled on the left indicate decreased expression 
while genes on the right indicate increased expression.  
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Figure 2.14  
 

 
 
Figure 2.14. Using 3-point-bending to create closed-unfixed tibial midshaft 
fractures in mice. 
 
(A) Picture of Bone Electroforce 3200 material tester that was adapted to produce tibial 
mid-shaft fracture by 3-point bending on anesthetized mice. (B) The time course of 
fracture healing in normal mouse tibia by X-ray scans at different time points after 
fracture.  
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Figure 2.15  
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Figure 2.15. Co-injections of the calcimimetic NPS-R568 produce additive 
osteoanabolism in bony calluses. 
 
Co‐injections of calcimimetic NPS‐R568 produce synergistic osteoanabolism in bony 
calluses. µCT analyses of bony calluses in 3‐month‐old male C57/B6 male mice 
subjected to tibial fracture and daily injections of vehicle (V), PTH(1‐34) (P, 40  µg/kg 
B.Wt.), or PTH(1‐34)+R568 (P  +  R, 20  µmol/kg B.Wt) for 28  days. (A,B) 3D µCT images 
and their structural parameters (histograms) assessed with (A) 400–2100  mg HA/cm3 or 
(B)1000–2100  mg HA/cm3 thresholds, which measure total and high‐density bone, 
respectively, show the synergistic effects of R568 to increase osteoanabolism of PTH(1‐
34). Mean  ±  SEM, n = 15–17 mice/group; *p  <  0.05; **p  <  0.01 versus vehicle, two‐way 
ANOVA with Tukey's test for multiple comparisons. 
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Table 2.1 Primer sets used for Genotyping Assays 

 Primer sequences 

Tam-CartCreERT Upper: 5’-GCA AAA CAG GCT CTA GCG TTC G-3’ 
Lower: 5’-CTG TTT CAC TAT CCA GGT TAC GG-3’ 

Floxed-CaSR Upper: 5’-CTT CCC AGC TTG CTA CTC TAG G-3’ 
Lower: 5’-CAG GCT TGC AAT GAG ACA TGG G-3’ 

CaSR excision Upper: 5’-TGA GAC GTA GCG AGA TTG CTG TA-3’ 
Lower: 5’-CAG GCT TGC AAT GAG ACA TGG G-3’ 
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2.2 Discussion  

Simultaneous pharmacological activation of the PTH1R and CaSR is a novel strategy to 

enhance the potential of PTH analogs, PTH(1-34) and LA-PTH, for skeletal anabolism. 

In this dissertation, we demonstrate that a combined PTH and NPS-R568 regimen 

overcomes the complications of hyper- or hypocalcemia that can be found, respectively, 

with each compound alone, while producing a more superior osteoanabolic effect than 

targeting the PTH1R alone. The exact mechanisms normalizing serum Ca2+ by the 

combined drug treatment remains to be defined but likely involve cooperative 

calciotropic actions in multiple organs, like the parathyroid glands, kidney, intestine, and 

bone. First, blockade of endogenous PTH by synergistic activation of CaSR in 

parathyroid glands through Ca2+-elevating actions of exogenous PTH(1-34) or LA-PTH 

and positive allosteric modulation by calcimimetics could already tone down the 

associated calciotropic activities. Second, increased renal Ca2+-excretion by NPS-R568-

induced CaSR activation is expected to provide additional Ca2+-lowering action. Third, 

NPS-R568 is assumed to block osteoclastic activities, according to previous report on 

the ability of calcimimetics to suppress osteoclastic differentiation and resorbing 

functions [60]. Fourth, our nCounter gene expression profiling (Figure 16) show the 

ability of NPS-R568 to acutely repress genes involved in osteocytic perilacunar 

remodeling (PLR), i.e., Ctsk [61] and Mmp13 [62], constituting another mechanism to 

prevent PTH-induced hypercalcemia. The latter osteocytic actions require future 

confirmation by direct histomorphometric assessment of PLR activities as well as 

studies of mice with osteocyte-targeted Ctsk and/or Mmp13 KO. Finally, the NPS-R568 

is assumed to promote mineralizing functions of osteoblasts to re-deposit Ca2+ into 
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bone matrix, presenting additional Ca2+-lowering action, according to our working 

models (Figure 1). The above mechanisms also provide the molecular bases for 

synergism of PTH and calcimimetics in producing skeletal anabolism.  Future 

comprehensive studies of mice with tissue-specific ablation of PTH1R and/or CaSR 

mouse models are needed to further define the actions of these receptors in mediating 

both systemic calcemic actions as well as their skeletal effects. Indeed, failure of 

combined PTH(1-34)/NPS-R568 treatment to produce anabolic effects on bone in our 

mice with Tam-induced Casr gene KO in osteoblasts provisionally supports an essential 

role of osteoblastic CaSR in mediating such skeletal synergism. 

 

In additional to its more superior bone-building actions, our combined PTH/NPS-R568 

regimens produce osteoanabolism beyond Tb elements and cause cortical expansion 

that is not impacted by treatment of PTH(1-34) alone. This cortical action is consistent 

with the increased mechanical strength assessed by 3-point bending test (Figure 7) in 

femurs from mice subjected to combined PTH/NPS-R568 regimens.  However, detailed 

actions of the latter regimens on cortical bone require future histomorphological 

assessment of both statics and dynamic bone parameters.  

 

As a first-in-mouse pharmacological attempt of our regimen, this study explored various 

doses of PTH(1-34) in the context of a fixed NPS-R568 concentration. As we screened 

for the most effective combination dose that would, at minimum, normalize the 

hypercalcemic effect of PTH(1-34), we did not change the concentration of NPS-R568. 

Although we achieved normalized serum Ca2+ at 20 ug/kg, future studies are needed to 
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elucidate the dose of NPS-R568 that achieves maximum efficacy of bone formation. For 

example, in LA-PTH treated mice, increased mineralization of newly synthesized bone 

matrices may be achieved with a higher concentration dose of calcimimetic. Similarly, 

we did not test a range of concentrations of LA-PTH, which has far more hypercalcemic 

and osteoanabolic potential than PTH(1-34). We did however decrease the amount of 

injections from 5 to 3 during a 4-week course in the pilot study with older male and 

female mice due to consideration of toxic effects that we found in healthy adult male 

mice. Future studies will involve manipulating the 1) number of doses, 2) time course, 

and 3) dosage concentration of drugs to achieve the most physiologically tolerable and 

robust osteoanabolism. The discoveries from modifications in treatment dose and 

schedule to fine-tune hormonal and mineral metabolism will provide insights in 

achieving optimal safety and efficacy. The flexible adjustments of doses in this manner 

are fundamental as we move into an age of more personalized medicine for patients. 

 

This study has several strengths in experimental design and execution. First, a robust 

number of animals ensures statistical power for the ex vivo assessments of bone 

microarchitecture and highly variable hormonal factors, like PTH. Second, mice with 

different ages and sexes were used.  Third, all experiments are performed at least twice 

with different batches of drug compounds for reproducibility. Fourth, skeletal 

assessments include multiple skeletal sites that correspond to increased fracture risk in 

aged populations and postmenopausal women for clinical relevance. This study also 

has several limitations, including the sole use of healthy animals that lack of disease 

contexts, the incomplete histomorphometry data which were prevented by laboratory 



	  
	  

117 

lock down amid COVID-19 pandemic, and lack of additional biomechanical testing at 

the vertebrae.  

 

In summary, this work is highly significant as it uncovers a novel mechanism underlying 

the skeletal actions of PTH and develops a translatable regimen that is ready for testing 

in clinical setting. Given that the PTH(1-34) (Forteo®) and oral form of calcimimetics 

(Sensipar®) are already in clinical use with abundant safety data, our proof-of-concept 

preclinical studies readily provide a blueprint for designs of clinical trials to assess 

safety and efficacies of our combined therapy in humans.  
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2.4 Materials and Methods 

Mice 

All mouse protocols were approved and performed according to guidelines by the 

Institutional Animal Care and Use Committee (IACUC), of the University of California, 

San Francisco, and the San Francisco Department of Veterans Affairs Medical Center. 

C57BL/6 mice were obtained from The Jackson Laboratory.  

 

Floxed‐CaSR (CaSRflox/flox) mice were bred with Cart‐CreERT mice, which carry a 

tamoxifen (Tam)‐inducible CreERT transgene under the control of Col1a1 gene 

promoter for chondrocyte‐specific expression, to produce Tam‐CartCaSRflox/flox mice that 

developed normally in the absence of Tam. Tam‐CartCaSRflox/flox mice were injected daily 

with Tam (2  mg/25  g body weight, in corn oil [Millipore Sigma, Burlington, MA, USA; 

#C8267]) through the intraperitoneal (IP) route according to specified schedules to 

induce Casr gene KO in the resulting 2.3Col(I)CaSR∆flox/∆flox mice. CaSRflox/flox mice without 

expression of Cart‐CreERT transgene were injected with Tam to serve as controls. All 

mutant mice were in C57/B6 background. Mouse genotypes were determined by PCR 

analyses of genomic DNAs from tail snips with primer sets for the Cre transgene and 

the loxP sequence flanking the exon 7 of Casr gene. 

  

Mice were ear‐tagged for identification, randomly assigned to groups, and 

subcutaneously injected daily, or as specified in results, with the drugs individually or in 

combination with specified doses for 4-6  weeks. All mice were kept in a climate‐

controlled room (22°C; 45% to 54% relative humidity) with a 12‐hour light/12‐hour dark 
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cycle. Water and standard chow (1.3% calcium and 1.03% phosphate) were given ad 

libitum. All experiments are performed on 3‐month‐old adult male mice to avoid 1) pre‐ 

and perinatal developmental defects due to early ablation of Casr gene and 2) female‐

specific side‐effects of Tam on hormonal and reproductive systems, which could 

complicate data interpretation and prevent a definitive conclusion from our study. All 

animal experiments (Protocol #18–013) were approved and performed according to 

guidelines of the Institutional Animal Care and Use Committee at the San Francisco 

Department of Veterans Affairs Medical Center. 

Drugs 

- Parathyroid Hormone PTH(1-34) (rat) (Bachem, Torrance, CA, USA; Cat# H‐5460), 

was dissolved in 1mM hydrochloric acid solution containing 2% BSA, and stored at -

80°C. 

- NPS-R568 hydrochloride (Tocris, Minneapolis, MN, USA; Cat# 3815), a positive 

allosteric modulator of human extracellular Ca2+-sensing receptor (CaSR), was 

dissolved in DMSO and stored at -80°C.  

- Long-Acting PTH, or LA-PTH, a hybrid of ([Ala1,3,12,Gln10, Arg11,Trp14]PTH(1-

14)/[Ala18,22,Lys26]PTHrP(15-36)COOH), was gifted from Dr. Jean-Pierre Vilardaga from 

the University of Pittsburgh.  

 

Ex-vivo Micro-computed Tomography (µCT)  

To assess mineral content and structure, we performed µCT scans at two sites: distal 

femur and L5-vertebrae for trabecular (Tb) bone and tibio-fibular junction (TFJ) for 
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cortical (Ct). Briefly, femurs and tibiae were fixed in 10% phosphate-buffered 

formaldehyde (PBF) for 24 hrs, stored in 70% ethanol, and scanned by a SCANCO µCT 

50 (SCANCO Medical AG, Basserdorf, Switzerland) with 10.5 µm voxel size and 55 kVp 

X-ray energy. For Tb bone in the distal femoral metaphysis, 100 serial cross-sectional 

scans (1.05 mm) of the secondary spongiosa were obtained from the end of the growth 

plate extending proximally. For Tb bone in L5 vertebrae, trabecular bone was obtained 

end-to-end within the vertebral body. For Ct bone, 100 serial cross-sections (1.05 mm) 

of the tibia were obtained from the TFJ extending proximally. Linear attenuation was 

calibrated using a µCT hydroxyapatite phantom. µCT image analysis and 3D 

reconstructions were done using the manufacturer’s software to obtain the following 

structural parameters: Tb tissue volume (Tb.TV), Tb bone volume (Tb.BV), Tb.BV/TV 

ratio, Tb number (Tb.N), Tb connectivity density (Tb.CD), Tb thickness (Tb.Th), Tb 

spacing (Tb.Sp), Ct tissue volume (Ct.TV), and Ct thickness (Ct.Th).  

 

Von Kossa (VK), Goldner, and tartrate-resistant acid phosphatase (TRAP) staining 

and dynamic fluorescent bone labeling. 

For bone histomorphometry, femurs and cortical bone at TFJ were isolated from 3-

month-old mice, fixed overnight in 10% PBF, dehydrated with ethanol, defatted with 

xylene, and embedded in methyl methacrylate (MMA) (Sigma, St. Louis, MO). Adjacent 

sections (5 or 10 µm in thickness) were cut and mounted on gelatin- coated slides for 

different staining procedures. Bone images were acquired by Zeiss AXIO Imager M1 

Microscope with an automated stage and analyzed using BioQuant computer stations 

with BioQuant OSTEO 2009 software (Version 9.00, BIOQUANT Image Analysis Co., 
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Nashville, TN). The region of interest starts ≈ 150 µm below the femoral growth plate, 

extends 1 mm distally, and flanks the two sides that are 100 µm apart from cortical 

bone. Three sections (≈50-100 µm apart) from each bone sample were analyzed per 

stain, and averages were reported. The terminology and units used are those 

recommended by the Histomorphometry Nomenclature Committee of the American 

Society for Bone and Mineral Research. VK staining was performed to detect the 

phosphate-containing minerals and calculate static bone parameters: Tb.TV, Tb.N, and 

Tb.Sp. To quantify structural parameters of unmineralized osteoid and osteoclast (OC)-

positive resorbing surface, sections were stained with Goldner trichrome and TRAP 

staining solutions, respectively. The deduced indices include osteoid volume (OV), 

OV/BV, osteoid surface (OS), OS/BS, osteoid thickness (Mean O.Th), ratios of 

O.Th/Tb.Th, erosion surface (ES), ES/BS, N.Oc/BS and N.Oc/ES. For dynamic bone 

formation indices, mice were injected with calcein (15 mg/kg body wt.) and 

demeclocycline (15 mg/kg body wt.) 7 and 2 days before sample collection, 

respectively. Unstained MMA-embedded bone sections were obtained as described 

above and used to quantify mineralizing surface (MS), MS/BS, mineral apposition rate 

(MAR), and bone formation rate per bone surface (BFR/BS).  

Serum Measurements 

Blood was drawn from mice at two time-points. Firstly, for acute drug responses, 3 

hours after the last injection through the retro-orbital route under anesthesia and 

isoflurane inhalation. Secondly, at the end of designated drug treatment, usually 24 

hours after the last treatment injection, blood was collected by heart puncture after 

euthanasia by isoflurane inhalation followed by tissue harvests. The blood was allowed 
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to clot for 30 minutes at room temperature, and sera were collected after centrifugation 

for 10 minutes at 6000 rpm. Serum samples were separated by a microtainer serum 

separator tube then aliquoted and frozen at -80°C. Total serum albumin, alkaline 

phosphatase, blood urea nitrogen, Ca2+, creatinine, inorganic phosphate, and 

magnesium were measured by an automated ACE Alera/ Axcel Clinical Chemistry 

bioanalyser (Alfa Wassermann, Inc., West Caldwell, NJ). Serum intact PTH and 1,25-D 

levels were assessed using commercial ELISA kits made by Immutopics (San 

Clemente, CA) and Immunodiagnostic Systems Inc. (Scottsdale, AZ), respectively. 

Tartrate-resistant acid phosphatase (TRAP) 5b and N-terminal propeptide of type I 

procollagen (P1NP) were assayed using the MouseTRAP enzyme immunoassay (EIA; 

SB-TR103) and rat/mouse P1NP EIA (AC-33F1) kits from Immunodiagnostic Systems 

(Fountain Hills, AZ), respectively.  

 

Whole bone mechanical strength testing 

Excised bones free of all soft tissue were fresh frozen at -80C. Prior to testing, bones 

are rehydrated overnight in 0.9% NaCl at RT. Whole bones are loaded to failure in 

three-point-bending performed on a Bose Electroforce 3200 material tester using 

custom fixtures. The lower support is set at 10 mm apart for femurs and 11.2 mm apart 

for tibiae. The testing cross-head speed is 0.2 mm/s and force-displacement data are 

collected every 0.01 s using manufacturer’s software (WinTest, Bose). From the 

collected raw data, a force-displacement curve is created and standard properties are 

calculated using custom software (Matlab, MathWorks): ultimate force (FU, N), yield 

force (FY, N), stiffness (S, N/mm), and energy to failure (UPY, mJ). The yield point is 
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defined using a 0.015 mm offset parallel to the slope of the linear portion of the force-

displacement curve. 

 

RNA Isolation and Nanostring nCounter Analysis  

Whole femurs and tibias were harvested after drug treatments, placed in pre-chilled 

sterilized foil, and frozen in liquid nitrogen then stored at -80°C. Whole bones were 

pulverized, total RNA isolated using RNeasy Mini Kit (Qiagen; Germantown, MD), and 

quantitated via a Nanodrop ND-1000 spectrophotometer (Thermo Scientific; Waltham, 

MA). Nanostring nCounter system (Nanostring Technologies; Seattle, WA) was used for 

gene expression profiling of selected mRNA using a custom nCounter CodeSets 

composed of 625 probes including 8 housekeeping controls (b-actin, b-2-microglobulin, 

Gilz, Gusb, Ibsp, GAPDH, Rpl19, and Rplp0). With Nanostring technology fluorescent 

single strand oligonucleotide probes are hybridized to complimentary target strands of 

mRNA and quantified based on the fluorescence of each target gene within each 

sample. Briefly, the Nanostring reporter probe CodeSet was suspended in 70uL of 

hybridization buffer and 8uL aliquots were combined in sterile microfuge tubes with 5uL 

of RNA sample (60 ng/uL) and 2uL of the capture probe. Tubes were then centrifuged, 

and then incubated at 65°C in a thermocycler for 16-18 hours. Hybridized RNA samples 

were collected and analyzed using the nCounter Max and Digital Analyzer according to 

manufacturer’s instructions.  
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Tibial Midshaft Fracture   

Closed unfixed bone fractures were created unilaterally in the right mid-tibia by three-

point bending using a Bose Electroforce 3200 Material Testing System under general 

anesthesia with locally injected analgesics. The downward middle test probe, positioned 

exactly at the tibial midshaft by an investigator, was controlled by an automated 

actuator, which retrieved the test probe immediately after the bone was fractured (as 

detected by an accelerated downward probe movement) to minimize soft tissue 

damage. X-ray radiography was performed, immediately after the procedure, to ensure 

fracture consistency and mice with inadequate fractures were excluded from high 

resolution microCT scanning and analyses. The mice were monitored daily and allowed 

to ambulate freely in their cages following successful fracture. Fracture calluses were 

collected after 28 days and analyzed.  

 

Statistics  

Results were organized using PRISM 8 for MacOS software (Graphpad Software, Inc., 

San Diego, CA) and are shown as grouped graphs that show both individual points and 

bar with error bar. Statistical significance was identified by one-way ANOVA or unpaired 

Student’s t-test. P-values of less than 0.05 were considered significant.  
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2.5 Conclusion and Future Directions 

This dissertation provides novel insights into the osteoanabolic actions of concurrently 

targeting the PTH1R and CaSR. Here we provide a possible anabolic treatment with 

less resorptive stimulation to address the unmet needs of a large group of osteoporotic 

patients who warrant more potent treatment. Consequently, this work pioneered a first-

in-human combination therapy for osteoporosis that has recently been approved for 

clinical trials and currently recruiting patients from the VA population. PTH(1-34), 

Teriparatide (Forteo®), and the calcimimetic, Cincalcet (Sensipar®), will be used in the 

trial. Both have been FDA approved for many years and used to treat hundreds of 

thousands of patient worldwide: Forteo for the treatment of osteoporosis and Cinacalcet 

for the treatment of various forms of hyperparathyroidism. Dr. Dolores Shoback, an 

endocrinologist with affiliations with UCSF and the San Francisco VA Medical Center, 

will oversee this randomized double-blind, placebo-controlled trial of the combination 

Teriparatide with the calcimimetic, Sensipar, compared to monotherapy with 

Teriparatide in 48 men with low bone mineral density. The time frame of treatment is 12-

13 months with primary outcomes that measure lumbar spine and femoral neck BMD.  

The study will also assess acute and chronic serum [Ca2+] and intact PTH as well as 

biochemical markers of bone turnover and vitamin D metabolites (i.e. serum P1NP, 

CTX, bone specific alkaline phosphatase, OPG, RANK-L and 1,25-(OH)2 Vitamin D). 

This clinical trial will help to understand whether our effective combination therapy in 

mice will prove to be effective in men and guide future translational work. 
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