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ELECTRONS ON THE SURFACE OF LIQUID HELIUM
David Kay Lambert

Materials and Molecular Research Division
Lawrence Berkeley Laboratory and Department of Physics
University of California
Berkeley, California 94720

ABSTRACT

We have used spectroscopic techniques to study transitions of
electrons between bound states in the potential well near a helium surface.
The charge density distribution of electrons on the surface was indepen-
dently obtained from electrical measurements. From our measurements we
have obtained information both about the interaction of the bound state
electrons with the surface of liquid helium and about local disorder in
the positions of electrons on the surface.

In the Timit of zero surface charge density we have found that the
transition frequency from the ground state to excited states as a function
of electric field differs by a nearly constant amount from the transition
frequency calculated by assuming that the helium surface is an abrupt
change in density between the liquid and the gas. This implies that the
model of an abrupt surface gives accurate results for the change 1in
average height above the surface as electrons change from one state to

another. The nearly constant difference frequency as a function of



electric field can be obtained from first principle calculations of
fluid density near a liquid helium surface as well as from our measure-
ments. Much should be learned about the accuracy of the first principle
calculations when they are extended to make this comparison.

The presence of nearby electrons in the ground state changes the
lTocal electric field acting on an electron in an excited state. The
change is proportional to the quantity ?’[rilmg where r, is the
distance along the helium surface from the excited electron to the ith
other electron. For a given charge density, this quantity will increase
as the local disorder increases. We have defined the quantity k to be
the ratio of this measured quantity to the value it would assume if the
electrons formed a hexagonal Tattice. Using measurements taken with the
parameter T = W% n?ez/kT in the range 9 < I' < 44 we found the best Tevel
fit of x(I') to be given by v« = 1.174+0.,036. One may also calculate «(T)
from the radial-distribution function g(r) of the two-dimensional
electron gas. Qur measured k is significantly larger than one obtains
from the tables of g(r) that have appeared in the Titerature. To resolve
this discrepancy we suggest that the calculations of g{(r) be improved
and that additional measurements be taken at lower temperatures.

One additional qualitatively new result was obtained. We discovered
that the distribution of charge on the helium surface is appreciable only
within a "charge pool" that does not in general cover the entire surface
and that the distribution of charge in the charge pool can be obtained

from electrostatics.
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(If an electron does enter Tiguid helium it does not remain in a
non-Tocalized conduction band state. A "bubble" about 30 R in diameter
forms within which the electron is localized. The energy of an electron
in a bubb?e8 is believed to be about 0.1 eV above the energy at rest in
vacuum. )

The short-range nature of exchange forces suggests that as the
surface is approached from the gas there is an effective repulsive
potential which is large only within atomic distances from the surface.
Because Tiquid helium has a dielectric constant € unequal to unity, there
is an attractive potential at distances large on the atomic scale caused
by the extra electron polarizing the Tliquid and being attracted by the
polarization charge. For an electron of charge e a distance z above

the 1iquid, the resulting potential is:

oo fe-1) @
R CEA IR A ALY
(e-1) .
ior 3 i “:§ gm
Here we have defined e 5 (Té'f77> . Very accurate measurements of

e for bulk 4’He have been reported in the 1iterature,9’10

In our experiment we needed to have the charge remain on the surface.
To confine mobile charge on the surface it is necessary to use an external
electric field. At points on the surface where a static distribution of
mobile charge is present, the average total electric field along the
surface must be zero. Therefore, if the surface charge distribution is
static there will be an external electric field component F directed
out of the surface acting on the electrons in addition to the image

potential. Neglecting for the moment the electric fields of nearby



electrons, the Hamiltonian for an electron near the liquid surface (but
far ‘enough away that the effective repulsive interaction may be ignored)

is given by:

2 -2

Ho= 5 - & +efz . - (1.2)

We have measured the transition frequencies between the bound
states at the surface as a function of applied external electric field.
In the 1limit that the surface charge is small, our measurements provide
information about how, within a few R of the surface, the effective
repulsive interaction causes the potential to differ from the potential
used in Eq. (1.2). Because of a novel technique we developed that
enables us to measure the surface charge density, we are also able to
obtain information(about the ltocal positional disorder of ﬁhe surface
electrons by measuring the effect of increasing surface charge density
on the applied electric field at which resonance occurs. We measure
the surface charge density by interpreting AC capacitance measurements
made between plates that are separated by the helium surface on which
the electrons are located. To be able to interpret the AC capacitance
measurements we self-consistently solved the electrostatics of our cell.
One interesting qualitative result obtained from this calculation is that
free surface charge does not, in general, cover the entire Tiquid surface.
The free charge is contained in a “charge pool," the dimensions of which
can be altered by changing experimentally accessible potentials.

We are able to compare our measurement of the local positional
disorder with the result of theoretical calculations of the radial-

distribution function of the two-dimensional electron gas. This



comparison is meaningful since the wavefunction of an electron in the
ground state only extends on the order of 10°R above the surface while
individual electrons are separated by more than 3x10°K., A recent
pub?icationj1 has reported the measurement of a phase transition of

the surface electrons to a state of long range order and much theoretical
interest presently exists as to the nature of disorder in two-dimensional
systems.

Theoretical calculations of the local structure of the liquid
helium surface are also available. There are several competing
techniques for obtaining the density variation near the surface that
give conflicting results. It is hoped that our measurement of
transition frequency as a function of applied electric field (in the
Timit that the surface charge is small) will motivate those doing the
theoretical calculations to obtain results that can be compared with

experiment.
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IT.  EXTERNAL ELECTRON SURFACE STATES

In this chapter we discuss the bound states of electrons near,
but outside of, a helium surface (there is another set of states for
electron "bubbles" inside 1liquid helium near the surface7)e The
Hamiltonian for distances large enough away from the surface that the
effective repulsive interaction with bulk liquid may be ignored, and
neglecting the electric fields of nearby electrons, is given in Eq. (1.2).
We begin by assuming that this Hamiltonian is valid to z=0 and represent
the surface of the helium with an abrupt rise to infinite potential.

The potential in our model Hamiltonian is given by:

-2

V(iz) = - $Z~+ efz for z >0 ,

V(z) = oo for 2 <0, (2.1)

Because of the singularity in the potential at z =0 the wavefunction

must approach zero linearly in the Timit that 2z approaches zero and

will be zero for z less than zeroo12 Schrodinger's equation is solvable
only if the electric field F=0. For the case of non-zero F the problem
can be approached in several ways. One may use perturbation theory and
treat F as a small parameter,5 however, under the conditions of our

experiment this is not valid. One may use the WKB approximation513

14 except at small F where

however, this is not sufficiently accurate
it becomes exact. One may use a variational technique,S One may find

the Hamiltonian matrix (in terms of the eigenfunctions when F=0) and
diagonalize a sub-block of finite dimensionality numerically. Or finally,

one may numerically integrate Schrodinger's equation. We will discuss
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both the matrix.approach and the numerical integration technique. The
numerical integration technique was used to calculate energy eigenvalues
for F#0.

To obtain the Hamiltonian matrix we solve Schrodinger's equation
analytically for F=0 and use these eigenfunctions to calculate matrix
elements for F#0. For motion in the z direction Schrodinger's equation

has the form:
a w&)+<”‘“B>W@) = 0 (2.2)

where A = Zm§2/ﬁ2 and B = ~2mEZ/ﬁ2w We require that ¢(z)=0 at
2=0 and that f u(z)Pdz be finite. Making the substitutions p(z) =

o5 z=0
) e B

1 ) . :
z f(z , w=0z, and a=287%, the differential equation takes the

form:

F1(w) + (2 - w)f' (w) +[2’;1/2 ; 7] flo) = 0 . (2.3)

This equation is satisfied by the generalized Laguerre po?ynomiaTTS

1 .
i%ﬁ?(w) if n=A/28% for n=1,2,... . The energy eigenvalues are

then E, = - me*/2h%n® for n=1,2,... . This is a hydrogenic energy
spectrum. For electrons on 4He the Rydberg is about 159 GHz. The

normalized wavefunction is given by:

_21\3/2 - -me*z/h%n
wn(z) = §=<@g§) Lé@1 <gﬂﬁéﬂz> sz e . (2.4)
nh nho

The matrix elements <(k|z|£) are given by:

o, -] k-1 £-1 o
(lzley = (2me” 1 f 1" ke
2o = (%) 577 2. ) )
h (k&)™ 429 Geo (k= (I I - (3+1))!

(1+1)1 (§+1)1 41 31 (kep) 1 HIHE



=2\ =1
In particular <(n|z|n) = <2i§; ) «3n*. The Hamiltonian matrix for

F#0, in terms of the eigenfunctions of the problem for F=0, is then

Hop = »—f“f: S0t e Fek[z|er . (2.6)
207k ’
The eigenvalues of this matrix are the energy eigenvalues for F#0 and
the eigenvectors are the expansion of the eigenfunctions in terms of
the complete orthonormal set tpn(z)°
To use the numerical integration technique to find the energy

eigenvalues we used Schrodinger's equation in the form

W) + (L4 aE, - BuF) = 0, (2.7)

where A = h2/2ma* = 1.5709375 x107% (GHz)™ ', B = eh'/4m?&® = 1.4447871 x

107" (voit)°79 and w=az, where o = 2me’/h”, so 1/a ~ 388. Since y(w)
is a smooth square integrable function, then for any e >0 we may choose
an M such that if w>M then [Y(w)| < €. We begin with a range of EZ
which contains an eigenvalue and a value M of w at which wn(w) can be
assumed to be very small. The value of EZ which corresponds to an
eigenvalue will result in a y{w) which rises Tinearly from zero for w
near zero and is close to zero for w=M. We assume that y(w) increases
Tinearly from zero for y near zero and numericatly integrate7 the
differential equation to find yw(M). We then vary Ez untit |p(M)] < e
to find EZ(F), It is straightforward to check the accuracy of the
computation by changing M and . To interpolate between eigenvalues
computed in this way a smooth polynomial fit to the difference between

the computed eigenvalues and the eigenvalues obtained using the WKB



approximation16 was used. The calculated energy difference between the
ground state and the first ten excited states are shown in Fig. 1.

We now extend our discussion from the one-dimensional model
Hamiltonian, ¥y discussed above to the unknown physical Hamiltonian, i,
valid near the surface, which we assume to be one-dimensional. Let
uﬁ(z) and En be the eigenfunctions and eigenvalues of # and let vn(z)
and E; be the eigenfunctions and eigenvalues of He. Let V(z) be the
potential appearing in 4 and Tet V'(z) be the potential appearing in

ﬂbe Then one can ShOW17 that:

<o ) d w*
[][ u: (V(z) - V'(z)) vndz - %;~ ~g%l vn(Q)]
0 z=0 (2 8)

n_ n o
jﬁ u. v dz
non
0

If we assume that vn(z) = un(z) in this equaﬁion we obtain the result

of first order non-degenerate perturbation theory:

£, -E = { ViU(z) -V (2)) v dz (2.9)
Near the helium surface the difference between the exact potential and
the potential used in our model Hamiltonian is probably very large so
first order perturbation theory is not expected to be accurate. In the

next chapter we discuss several model calculations for the effect of the

helium surface which do not agree with Eq. (2.9).
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Fig. 1. Transition frequency from the ground state to excited state n
as calculated from the model of an abrupt liquid-gas interface.
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ITI. THE SURFACE OF LIQUID HELIUM

In this chapter we review the theoretical and experimental work
done by others that has increased our understanding of the liquid helium
surface. We begin with first principles calculations of the microscopic
structure of the liquid-gas interface. We then discuss previous attempts
to extract information about the interface from physical measurements.

By first principles calculations we refer to calculations in
which the bulk properties alone are used to calculate the surface

18 who used

properties. These were motivated by a paper by Regge
Feynman's concept of a macroscopic wavefunction. He wanted the wave-
function to decay exponentially outside the surface and to smoothly
join to the translationally invariant behavior inside the Tiguid.

This was found to imply an oscillatory density near the surface which
was damped as one went into the liquid. The predicted surface tension
was 48% greater than the measured surface tension of 4He at T=0. Soon
after, a number of papers appeared attempting to calculate the density
distribution near the Tiquid helium surface using the techniques of
quantum many-body theory. A wavefunction is assumed to be of the form:

p o= Cexp( T ulri)+ T otlz) . (3.1)

2 o

i<

Here u(rij) is the two-particle correlation function and t(zi) deter-
mines how the wavefunction depends on distance from the surface. They
differ in the exact form of the two-particle correlation function used.
In some cases it is calculated while in others it is taken from x-ray

scattering data on bulk 4Hee They also differ in the computational
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method used (analytic variation using an incomplete function space79”22

23), In some cases the functional form

19,20,22

or numerical Monte Carlo methods

of the density variation near the surface is constrained while

21,23

in other cases it is not. One problem common to all of these

calculations is that the wavefunction does not include some important

24 It neglects surface waves and other forms of

degrees of freedom.
long-range hydrodynamic motion. Even though we are interested in the
system with all of these modes in their ground state, the zero point
motion associated with these degrees of freedom is still important.

- In an attempt to avoid this pitfall, density functional theory has

25,26 114 total free energy of the system is expressed as a

been used.
functional of the fluid density and its gradient. The Thomas-Fermi
model of the atom is an example of a density functional theory. In the
paper26 by Ebner and Saam the density functional is obtained from the
bulk Tiquid structure factor and a self-consistent technique is used to
determine the highest surface wave wavevectors allowed in the theory
(the cutoff was set at 0599vﬁ°3)°

As is also the case when similar techniques are applied to other

27 the two approaches to the problem give quite different

simple Tiquids,
results. A comparison of the length over which the density distribution
predicted by these theories falls from 90% to 10% of the bulk density
has been given by Lekner and Henderson»ZS They find that the predictions
range over a factor of three. There is also a qualitative difference
between the theoretical predictions. Unless otherwise constrained the

calculations based on the microscopic wavefunction find an oscillatory

structure on the density profile near the surface. On the other hand,
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the density functional approach is found to yield a monotonically varying
density profile from the bulk Tiquid to the vapor. The surface tension
calculated from the microscopic wavefunction approach agrees to within
25% with the measured value while the agreement of the density functional
calculation of Ebner and Saamz6 is within 2%. The surface tension in the
microscopic wavefunction approach is due to the rapid variation of the
wavefunction in the z direction while in the density functional approach
it is almost exclusively due to the zero point energy of the surface
mbdesn There has been only one first principles calculation reported
of the shift in the transition frequency between external surface electron
statesazg The predicted difference between actual transition frequencies
and thcsevcaicuiated from the sharp interface model Hamiltonian was about
a factor three larger than the measured difference.

In addition to theoretical efforts to find the structure of the
4He surface and from this calculate measurable properties, there have
been attempts to start from the measured surface properties and obtain
information about the surface structure. The measured surface properties

30-33 the barrier the surface provides to electrons

passing in or out of the Tiquid92534935

are surface tension,

transition frequencies of external

surface state e?ectronseb and the reflection of 4He atoms from the
Surface@56 A measurement of the ellipticity of light reflected at
Brewster's angle is also being attempted,3/

The first attempt to use 4He surface tension measurements to
obtain information about the microscopic Tiquid-vapor interface was made

38 He found that all of the surface tension at T=0 could be

by Atkins.
explained by the zero point motion of the capillary surface waves or

"ripplons” and was also able to explain the behavior of surface tension
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as a function of temperature at low temperatures. However, he recognized
that this agreement could be fortuitous since there were other terms,
both positive and negative, contributing to the surface energy.

Atkins work was followed by several other papers which ignored
ripplons and tried to interpret the surface tension as a result of the

39,40 Although both used the same quantum

liquid surface density profile.
mechanical generalization of the classical theory of the Tiquid-gas
interface {(where "ripplons" are damped and hence ignored) their results
differ by about a factor two for the exponential decay length from the
‘liquid to gas. More recently Lekner and Hendersom41 put forth the point
of view that the function t(zi) in Eg. (3.1) is unnecessary. Starting
from this assumption the density is found to change from 90% to 10% of
the bulk density over a distance of 3.9 R,

We next discuss previous work that has been done to interpret
measured transition frequencies of external electron surface states.
With only two exceptions these have concerned themselves with transition
frequencies in the 1imit of a small external electric field. A model
potential is constructed that differs from the image potential near the
4He surface. The model contains one or more adjustable parameters
used to obtain agreement with experiment. A model discussed by
Cole3 assumes that the image potential is exact for Z=b, the potential
is constant for 0 < Z < b and jumps to VO for z<0. To be consistent
with the data of Grimes et al the parameter b in the model is about 10 A,
To analyze their data Grimes et a15 used a similar model except that for
0 <z <b the potential is taken to be Vof They found that to be consis-

tent with their data the parameter b in this model is about 1.04 K.
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The class of model used by Grimes et al was Tater discussed by Sanders

42 who found

and weinreichiz and solved exactly by Hipolito and Felicio
that b was best fit by 1.018. In contrast to the results of first order
perturbation theory the shift in transition frequencies found by solving

this model exactly has a different functional dependence on the parameter

th 3

b but both predict an energy shift of the n-"' state proportional to n °.
The exact solution of this model can reproduce the measured data with
two distinct values of b, one of which is very small and is rejected
as being unphysical. This shows that data taken in the 1imit as F goes
to zero do not necessarily uniquely specify a model potential of given
functional form with a single parameter.

Attempts to compare data at non-zero F to model potential results
were first carried out by Zipfel and Simcnsa43 They used a model 1in
which the potential is Vo for z < b -a, decreases linearly from b-a to
b, and is equal to the image potential for z>b. They found that b
could range from 1R to 3R while o ranged from OR to 6] and still for a
pair of o and b fit Zipfel's unpublished data. Another model calculation
is due to Stern,44 Rather than working directly with a model for the
potential acting on the electron, he constructed a model for the
dielectric function near the surface with a smooth change from bulk
to vacuum values as the Tiquid surface was crossed. He found best
agreement with Zipfel's data when the effective transition layer thickness
was about 5.7R.

There have been experiments measuring the penetration of energetic

2,34 and tunneling of electrons

35

electrons from the gas into the Tiquid

from bubble states in the Tiquid to the gas. No information about the
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surface thickness has been extracted from these measurements although
the tunneling measurements do seem to indicate an excess barrier that
is not expTaineda

Finally, the reflection of 4He atoms from the 4He liquid surface
has been measuredg36 Most of the incident atoms are absorbed into the
liquid. It is found that the measured reflection depends only on the
perpendicular momentum of the atom, is independent of temperature, and
that the fraction of the incident beam that is inelastically scattered
is Tess than 107", The elastic scattering was also found to be small

45 explains the observed

but measurable. A model of Echenique and Pendry
smallness of the reflectivity if the Tiquid helium density at the
surface changes from its bulk value to near zero over a distance of
at least 5A.

The conclusion that one draws from previous theoretical and
experimental work with respect to the structure of the helium surface
is that the situation is unsettled. The Tiquid gas density profile has
most of its change over a distance of 5+3 A. The zero point motion of
"ripplons” is important, but how it affects the local properties of the
surface is not completely understood. The density of the Tiquid may have
some oscillatory behavior near the surface, but this could be an artifact
of the calculations. Existing measurements are not sufficient to

distinguish between competing theories. This is the reason why we made

the high accuracy measurements reported here.
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IV.  THE TWO-DIMENSIONAL ELECTRON FLUID

As discussed in the Introduction, electrons on the surface of
Tiquid helium are a very close approximation to a two-dimensional electron
fluid. As such, it provides a way for experimental tests to be applied to
the rapidly developing field of phase transitions in two dimensions. It
is also an experimentally interesting system in its own right. We begin
this chapter by giving an introduction to the theory of the two-dimen-
sional electron fluid. We then discuss some previous experimental
results and their interpretation.

Many of the properties of metals, which are a close approximation
to a three-dimensional electron gas, can be explained by assuming that
the electrons are free particles interacting with each other only through
the exclusion principle. We begin by discussing a quantum mechanical
system of charge-free electrons in two dimensions. The density of

states per unit area (including spin degeneracy) is:

N(EYdE = - o(E)dE ) 1]
(E) e 0(E) (4.1)

Here 6(E) =1 if E>0 and 6(E)=0 if E<0. The probability that a state
is occupied is given by the Fermi-Dirac distribution function. The Fermi

energy of a two-dimensional electron gas is

(4.2)

™
-
=
==

For electrons on bulk Tiquid helium there is an upper 1imit46 to

the charge density that may be stably placed on the surface. If the

density is higher than about 2 x 107 e1ectrons/cm2 the mutual repulsion
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of the electrons causes the surface to become mechanically unstable (in
effect it has negative surface tension). Deformations of the surface47
occur allowing macroscopic "bubblons” of charge to be pulled through the
bulk Tiquid to the source of the electric field. This yields a maximum
Fermi energy of about 6 x107%°K. Most experiments48 have used high
enough temperatures and low enough charge densities that quantum
corrections to classical statistics are small.

In the classical 1imit the thermodynamic variable which governs
the behavior of the two-dimensional electron gas is the ratio of Coulomb
energy per electron to kinetic energy, T :'ﬁénfez/kTa where Ng is the
number density of electrons per unit area of surface. If I'<<1 then the
electrons behave 1ike an ideal gas in two dimensions,49553 As T increases
tﬁe ordering of the electrons increases and, if T isbsufficient1y high,

the electrons are expected to "crystallize" into a-triangular 1attice°54”58

Experimentally, long-range order seems to appear when I' is about ]40.]1959960
There is a proof that long-range crystalline order is impossible in the
thermodynamic Timiﬁ61 because of fluctuations which depend Togarithmically
on the size of the system. However, long-range order of a macroscopic
two-dimensional system is predicted and does seem to be observed
experimentally.

Short-range order sets in before long-range order and seems to
gradually increase as I is increased. In a computer ca?cu?ations4
involving 10% interacting classical point charges it is found that before
Tong-range order appears the system develops domains of Tocal crystalline

structure. As T increases the size of the domains increase until the

entire system is contained in a single domain. The radial-distribution
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function also changes gradually from delta-function-Tlike behaviorS4 at

large T until all structure is lost at small F,SZ’SS
The first experiment measuring the short-range order of electrons
on the surface of Tiquid helium is reported in this thesis. The experi-

ment was carried out for 9 < T < 44,

We next review experiments reported in the Titerature in which the
two-dimensional motion of electrons on the surface of Tiquid helium have
been measured. We begin with cyclotron resonance experiments. When a
magnetic field is applied perpendicular to the helium surface the single
electron Hamiltonian is still separable. The solution of Landau62 for
free electrons in a magnetic field in three dimensions can be applied to
the x-y motion, while our previous discussion applies for motion in the
z direction. The density of states for motion parallel to the surface
separates into a series of delta functions separated by energy AL = ehB/mc.
The resonant absorption between different Landau Tevels is called cyclotron
resonance. In the case of electrons on the surface of liquid helium, the
frequency of the resonance is found to depend only on the component of
B perpendicular to the Surface,6 The resonant frequency has a small
shift which depends quadratically on the electric field pressing the

63 This is interpreted as a microscopic

electron toward the surface.
dimple forming under the electron which contributes to its effective mass.
The Tinewidth of the absorption lines is interpreted to yield the scatter-
ing time or mobility of electrons on the surface.

Electromagnetic energy may also be absorbed by surface electrons

by exciting standing plasma waves in the surface charge density. Long
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wavelength modes are only excited at wavelengths set by the size of the
surface. Since the exciting frequency is known, one is able to verify

64 The linewidths

the dispersion relation for a plasma in two dimensions.
of the resonances provide another way to measure the mobility of.surface
electrons.

‘Long-range crystalline order makes possible resonant absorption of
electromagnetic energy at another set of frequencies. If the wavelength
and frequency of a surface capillary.wave match a wavevector in reciprocal
space of the electron Tattice and the driving frequency, then resonant

absorption will occur.5996O

By observing these resonances as a function
of temperatureH long-range crystalline ordering of the surface electrons
has been found to occur at I' = 137 £15.

The lineshapes of transitions between the bound states of electrons
normal to the surface in the presence of a large magnetic field parallel
to the surface65 has also been interpreted to obtain information about
motion of electrons along the surface. A moving electron is acted upon
by a Lorentz force perpendicular to the surface which in the rest frame
of the electron is equivalent to an extra electric field. The two-dimen-
sional equivalent of the Maxwellian velocity distribution yields a
Gaussian lineshape of absorption versus e?ectric field F of the form
A(F) = Ao expl-(F eFO)Z/Zdzj where o = (%%)é %-, The observed linewidths
are smaller than this equation predicts, an effect which increases in
importance as I' increases. This was interpreted as motional narrowing
(the scattering of the electrons into several different velocities before

being de-excited in the z direction causes a narrowing of the lineshape

Just as NMR resonances of nuclei moving in spatially varying fields are
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"motionally narrowed"). The amount of motional narrowing is used to

extract a velocity autocorrelation time. This interpretation of the

data is, however, not universally acceptede66967
Other experiments have attempted to measure the mobility in situations

in which large fractions of the surface charge is moved from one place to

another. These include time of flight measurement3568 measurements of

the phase difference between current driving one plate and detected in

69

another plate beneath a charged helium surface, ~ and the change in Q

of a tuned RF circuit when electrons are put on a lTiquid helium surface

inside of ito70

These experiments obtained mobilities that are inconsis-
tent with the mobilities deduced from cyclotron and plasmon resonance
experiments. The Tow temperature mobilities obtained from cyclotron

and plasmon resonance experiments are many times higher and are in
agreement with calculations based on scattering of electrons by ripplons.
In the analysis of the measurements made when a large fraction of the
surface charge is moved from one place to another, it was not taken into
account that electrons need not cover the entire surface as discussed

in the next chapter. The possibility of free charge accumulating on

the helium film covering the walls of the container was also neglected.

It is quite possible that there was no free charge on the helium surface

during these experiments.
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V. THEORY OF CHARGE DENSITY AND ELECTRIC FIELD MEASUREMENTS

In this chapter it is shown how capacitance measurements, voltage
measurements, and a knowledge of the dimensions of the experimental ce??
are used to calculate the surface charge density and electric field
acting on external surface state electrons. In the chapter on data
analysis we discuss the dipole electric field from other nearby electrons,
how the magnitude of this field is extracted from our measurements, and
how it is related to the local disorder in the surface electron lattice.

In Fig. 2 we give the dimensions of the cylindrical cell within
which electrons are confined on a helium surface in our experiment. The
cell has a radius a and height H. The gap s separates the bottom
plate from the grounded cell body. The top plate of diameter D2 is in a
circular hole of radius Di in the cell body. The top plate is insulated
from the cell body by a 0.084 mm gap and has effective radius b =(D]+D2)/4.
The cell is filled to a depth ¢ with Tiquid helium. The depth is obtained
by measuring AC capacitance between top and bottom plates before and after
filling takes ptace. A positive potential applied to the bottom plate
causes an electric field normal to the surface to act on surface electrons.
Fringing fields confine the electrons on the surface. Free charge is
put on the surface by briefly heating a filament and allowing the
thermionically emitted electrons to pass through a small hole in the
center of the top plate while a confining positive potential is present
on the bottom plate. Free charge on the helium surface screens the top
and bottom plates from one another and causes the measured AC capacitance
between them to decrease. This AC capacitance change is a function of

the positive bias potential applied to the bottom plate. By measuring
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the AC capacitance after charge is placed on the surface we are able to
calculate the surface charge distribution as a function of radius and
bottom plate voltage. Knowing the surface charge diétributiOh we are

also able to calculate electric field acting on the external surface state
electrons as a function of radial distance and bottom plate voltage.

We begin by discussing how the Tiquid helium height is calculated
from the capacitance measurements. The result is obtained from Gauss'
law. However, to justify the approximation involved in using Gauss'
law and because we will need the results later, we begin by solving
the boundary value problem of a potential Vo applied to the bottom
plate in Fig. 2 with the other conducting surfaces at ground potential.

A set of functions satisfying Laplace's equation inside the cavity is:

LS4
i

AO-+BOZ

s
£

[Ak cos(kz) + B, sin(kz)] Io(kr) . (5.1)

k

71

Here Io(x) is the zeroth order imaginary Bessel function. From these

functions and the techniques of Fourier analysis, we find the following

function which satisfies the boundary conditions:
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(5.3)

Here Il(x) is the first order imaginary Bessel function. For the

dimensions of our cell and z/H=0.5 we have plotted EiXﬁ

(r,z) in Fig. 3.
It is found that the lines of flux which pass from the bottom plate to

the top plate are almost parallel. The ratio of the capacitance between
the top and bottom plates and to that calculated in the absence of fringing
fields is for our cell £=0.998729 where:

b/H -

2sin(nm %ﬂ(m])n I
a

(nm %) Io(nﬂ EJ

O(nwx)

‘Hence the neglect of fringing fields is accurate to order (e-1)x107°
in predicting the fractional change in the capacitance when the cell
is partially filled with liquid helium. We will use the va?uega?o

e = 1.057233 for the dielectric constant of Tiquid helium in the
calculations that follow. Neglecting fringing fields, where Co is
the capacitance of the cell empty of liquid helium and C' is the
capacitance when filled to a depth Z, with no charge on the surface,
we use Gauss' Taw to find
z, = Eg§7‘<] w*%9> . (5.5)

We next discuss how the surface charge density as a function of

radius and bottom plate voltage may be obtained from capacitance

measurements. When charge is in equilibrium on a surface of liquid

nelium the electrochemical potential of the electrons is constant across
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Fig. 3. Plot of the external electric field in the plane of helium
surface (which confines charge in the charge pool) as a
function of radial distance. The plot is normalized to
the electric field along the axis of the cell.
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the entire surface. ‘Howeverg the electrical potentials which maintain
the electrons on the surface are of the order of volts while the kinetic
energy of an electron at 1°K is only 8.6 x107° eV, Hence, with the
exception of a slight amount of fuzzing caused by thermal motion of
electrons we may use electrostatics to calculate the surface charge
distribution. The surface is divided into two regions. One region is
a circular charge pool at the center of the cell containing almost all
of the charge. The electrical potential across the charge pool is
uniform. The other region is an annular ring between the charge poo]
and the walls of the cell. The annular ring contains no charge and the
electric potential is not uniform across it. We solve the problem by
first finding the capacitance change and surface charge density distri-
bution as a function of charge pool radius and bottom plate voltage.
Since the capacitance change is a monotonic function of charge pool
radius these results may be used to obtain the surface charge density
distribution as a function of capacitance change.

Given the charge pool radius and the bottom plate potential we wish
to find a charge distribution which gives zero radial electric field
along the surface within the charge pool. We do this by dividing the
charge pool up into concentric rings. The radial field acting on an

th

electron in the i ring is the sum of the field from external potentials

EiXt(r,z) given in Eq. (5.3), the electric field from each of the other

rings, and the electric field from the other charge in the ith

ring
itself. Requiring that the radial electric field at each ring be zero
gives a system of Tinear equations for charge density at the rings with

a unique solution.
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We calculate the radial electric field at a given ring of radius p

due to charge q distributed on another ring of radius r. Using the

Green's function of a point charge in cylindrical coordinates72 we

find for p<r:

R (2T, a,r) 1 (MIR)sin® (IS
oG aor) LU sin () (5. 62)

nma
L)

V(p,r) =

(5.6b)

Here ¢ is the depth of helium in the cell, and Ro(ksx,y) = Ko(kx)fo(ky)

- Io(kx)Ko(ky) where Io(x) and KQ(x) are modified Bessel “'Functi’ons.,"7'1i
The charge q on the ring of radius r is given by q = 27 (Ar)ro(r).
where  Ar 1is the distance separating the rings. The radial electric
field for p <y is given by
E;<j'(pgr) _ 8"”2(32)1"0(?) nRo(ﬁéfE 9a9r> Il(v—%@»)sinz(ﬁgj&).
(5.7a)

We also find for p>r:

nmy

E1>J(p Y') - 8W2(AT)PG’(Y‘) | nIO<T>
p ’ H 2 L] I ( n T a

ol )

X

652 1) 5 12 () 5.

th

The electric field acting on an electron in the i~ ring from the other
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th

charge in the i”" ring must be obtained more carefully. If the charge

on the ith ring were on a line the electric field would be infﬁniiee73

We avoid this difficulty by obtaining the electric field at p="r resulting
from a surface charge density constant from r-Ar/2 to r+Ar/2. This
can be done by replacing Ar by dr in Eq. (5.7) and integrating r from

P -Ar/2 to p+Ar/2 while keeping p fixed. We find

The charge density as a function of radius is obtained by solving

Eizj(p~)
0 i

Ei<j(p~sp°)
(iw-lmsl Oj+EeXt(p.,5c) = 0 . (5.9)

the system of equations:

>3

a(r) i

4 a(r)
J=i+1

The surface charge density distribution as a function of charge pool
radius R may be obtained by solving the above set of equations as jmax
is decreased one ring at a time. The behavior of o(p) for several values
of R for a cell of the dimensions used in our experiment and for ¢/H=0.5

is shown 1in Fig. 4.

In the case in which R=a,s0 the charge pool covers the entire
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Plot of the calculated surface charge density for several values
of the charge pool radius. The plots are normalized to the
surface charge density at the center of the cell when the entire
surface is covered with charge. The oscillatory structure at
the center of the charge pool is an artifact of the finite
element approximation.
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surface, the potential must be zero over the entire Tiquid helium surface.

In this case Laplace's equation may be solved explicitly to yield:

(5.10)

This provides a useful check of the accuracy of the numerical calculation.
We next discuss the caiculation of the change in AC capacitance

between the top and bottom plates when there is free charge on the

Tiquid helium surface. In the Timit of small AC voltage this is the .

partial derivative of total charge on one plate with respect to voltage

on the other plate with total surface charge on the helium held constant.

As discussed in Appendix 1, Green's reciprocation theorem may be used to

show that the result is independent of whether we vary the voltage on

the top plate Vtop and measure the change in charge on the bottom plate

Qbot§ or vice versa, so:

) o
5%299 ; 5§§9§ e (5.11)
bot Qg urf top QSL&Y"?

The calculation may be done by varying the potential on either
the top plate or the bottom plate with a given fixed potential on the
bottom plate. We will discuss both approaches to the problem.

If we vary the potential of the top plate from ground potential
to AV then there is an additional term added to EiXt(pigc) in Eq. (5.9)
given by:

ZbAV
a2

sinh(xn g) Jl(Xn'%) Jz<xn'%>

sinh(xn»%> Jf(x )

EXP(p,0) = (5.12)

n
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Here b 1s the radius of the top plate, Jl(x) is the ordinary Bessel

th zero of the ordinary Bessel

function of order one, and Xy is the n
function of order zero. For given values of R and ¢, Eq. (5.9) may
then be solved the same as before.

The change 1in AC capacitance from the AC capacitance measured with
no charge on the Tiquid helium surface is a result of the surface charge
moving and changing the induced charge. (If the surface charge were
frozen in place there would be no capacitance change, by the principle

of superposition.) The total induced charge on the bottom plate from

a ring of radius r with total charge g 1s found to be:

) e ), 5|

)1, 52) , (22220
(5.73a)

To find the induced charge on the top plate of radius b we must

distinguish between the cases r<b and r>b. If r<b, then:

sin Q%Q (-="})n

o)

qtop(r9C)

If r>b, then:

R
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s1n<nwc> (-1)" Il<ﬂ%§>

L")

wmm>10(ﬂgﬁ> ) IO<E%§) Ko(ﬁgg>j . (5.13¢c)

The total induced charge on the top and the bottom plates, Qtop and Qboi

respectively, is given by:

Jmax

| (pysc)
Qtop = Z'np=i Arc(pi) ( wmiaggiﬂ, ) ,
qp,..(04sC)
Qbot = Z'Tfp,i APG(pi)(M;lQ%-—Lm)' . (5.14)

We wish to calculate the partial derivatives of these quantities with
respect to the appropriate perturbing voltage while constraining the
total surface charge to be constant. It is easy to find the derivatives
with respect to voltage while constraining the charge pool radius R to
be constant, and the derivatives with respect to charge pool radius while
constraining the perturbing voltage to be zero. We use the theorem of
vector calculus that, given a pair of differentiable functions F(x,y)

and G(x,y), where 3G/3x # 0, then:

(5.15)

We find that:
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aotog y
Nop o Wop| | NOgypr| R Ubot
3Vbot q 3\!bct R aVbot R aquPf
surf oR v
bot
8Qbot
8Qbot _ ngot aqurf oR Vtop -
5V Y Y 5 (5.16)
top Q top R top g surf
surf 2R v
top

The quantity calculated here is the change in AC capacitance from the
presence of free charge on the Tiquid helium surface. The total AC
capacitance is found by adding to this the ordinary linear capacitance
which exists in the absence of free surface charge.

In Fig. 5 we have plotted the fractional change in capacitance when
free charge is placed on the surface of Tiguid helium with the bottom
plate at a fixed potential V0 versus the ratio Vsat/vo (where Vsat is the
voltage at which the free charge on the surface would be just sufficient
to cover the surface)for the case in which ¢/H=0.5. In Fig. 6 we
compare the measured fractional capacitance change with the result of
our calculation. The discontinuity in slope occurs at V ;Vsat at which
point the charge pool exactly covers the helium surface. As the voltage
is reduced further, charge moves onto the helium film covering the walls.
Only a small fraction of charge that has moved to the walls returns to the
surface of the bulk Tiquid if the bottom plate potential is increased
to its former value. This causes hysteresis in curves of AC capacitance
versus voltage if the voltage on the bottom plate is reduced below Vsat’
It is also found that-if the voltage on the bottom plate is reduced
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max
covering the entire surface with the charge pool.
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below Vsat that lineshapes of resonance transitions of the bound states
discussed in Chapter 2 become distorted. Similar effects were seen by

Volodin, Khaikin, and Ede‘i'man74

when measuring the loss of Q 1in an RF
circuit caused by electrons on the helium film above a metal and above
a dielectric. It has been theoretically predictedg that electrons on a
helium film several hundred & thick will be "self-trapped" and have
greatly reduced mobility.

We next discuss how the Tocal electric field acting on electrons
in external surface states is calculated (except for the dipole field
from nearby electrons). From Eq. (5.10) we see that near the center of
the cell the charge density is almost constant. The Tines of flux are
therefore very nearly parallel in this region and the local electric
field may be found from an argument based on Gauss' Tlaw. The local
electric field acting upon a surface electron near the cenier of our
cell is the same as the field that would be found in the following
situation. We compute the electric field at the center of a small
circular hole of radius r<<H in a sheet of uniform charge density
focated just above the surface of a dielectric. The dielectric fills
an infinite plane parallel capacitor to é depth z. If the bottom plate
of the capacitor has potential V and the top plate is maintained at
ground potential we find that the local electric field acting on

electrons near the center of the charge pool in our cell is to be

given by:

O e

The z which appears in this equation is the height of liquid
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helium at the center of the cell. This is not exactly equal to z,
calculated from Eq. (5.5) The helium surface is depressed by the

electric field acting on the surface charge and is slightly raised

because a non-zero electric field causes more liquid to enter the cell.
Hydrostatic pressure dominates over surface tension in determining the
surface shape for distances large in comparison to the capillary constant
which for liquid helium is (Zoc/gp)l/2 = 0.073 cm. Here o is the surface
tension discussed earlier, g 1is the acceleration of gravity, and p is the
density of liquid helium. Since R>>0.073 cm and since the charge density
is almost constant over most of the charge pool we make the approximation
that the helium depth under the charge pool changes by a uniform amount.
The equilibrium value of z can then be obtained by minimizing the
thermodynamic potentia175 at constant bottom plate voltage:

Foe ek en2h, +n2n,) - {1 G vn A )ER - iR

FE + Fo .

(5.18)
Here A, is the area of bulk 1igquid surface in the cell not covered by

the charge pool, A, is the area of Tiquid outside the cell, h, and h,

3

are the depth of Tliquid under A, and As respectively above the bottom

plate of the cell, Of is the free surface charge density at the center

~

of the cell, and FO is the value of E when E=0 and OF =0. The
variation is subject to the constraint 'ZO(A1+A2+A3) = zA +h,A, +h A,

We find that:

Fo A +A (e-1) E*A
z-z, = F( 2 32> + ° . (5.19)
PI AR, +A, + 7R 8rpg (A, + A, + TR?)
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Both of these terms are small under the conditions of our experiment.
The first term gives an effect in z/H as large as order 107° while the
second term gives ap effect as large as 107",

The change in local electric field acting on electrons near the
edge of the charge pool may be obtained using Laplace's equation if the
holes in the top used to couple light in and out are ignored. However,
this calculation was not used in our data analysis which relied on the
fact that the center of the cell is a point of symmetry — hence the
density of electrons per unit electric field interval will become
infinite at the electric field corresponding to the center. In the
absence of other sources of broadening this would cause a singularity
in the Tineshape function.

Our discussion to this point has assumed that the helium surface
is flat and parallel to the top and bottom plates. We examine the
effect of tilting the cavity axis through an angle A6 away from being
parallel to the helium surface normal. For small A® this causes an
extra electric field parallel to the helium surface of magnitude E;XtAe
where E§Xt is given by Eq. (5.3). The distance the charge pool moves
in response to this field is approximately:

RECXE(0,c)n0

AX = z ) (5.20)

ext
E. (R,c)

The derivative of charge density with respect to position near the center

of the charge pool is given approximately by

EeXt(Oac)Ae

do | z . : 5.27
dx 4re ( )

For our preceding analysis to be valid we require that Ax <<R, Ax <a-R,
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and R %%-<< 0.

Another source of inaccuracy in our calculated electric field
arises from the shape of the cell not exactly matching the shape
we have used in our analysis. The cell used in our experiment is
constructed so that the lack of flatness of the walls, the gap between
the top plate and the cell body, and the hole in the center of the top
plate all change the electric field at helium surface by less than a
few parts in 1OQ~F The holes to let far infrared 1ight in and out of
the cell are unavoidable. However, since they are near the edge of

the cavity their influence should decay away as we move to the center

of the cavity just as the other edge effects do.
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VI.  EXPERIMENTAL TECHNIQUES

Qur purpose in measuring the far infrared absorption of electrons
on liquid helium is to learn about the microscopic behavior of the system.
A number of obstacles have been overcome to do this. In the preceding
chapter we described how the charge density and Tocal electric field are
obtained from capacitance and voltage measurements. Another problem is
that of measuring the absorption lines caused by transitions between
electron surface states in the presence of noise., The lines are only a
few GHz wide and the absorption at line center is only of order 107° of
the light reaching the detector.

A block diagram of the apparatus used to make the optical measure-
ments is shown in Fig. 7. The Tight source is an optically pumped
molecular laser. We measure absorption as a function of electric field.
The molecular laser has many possible lasing frequencies between 300 GHz

and 10" GHz.’®

By selecting the molecular laser gas (CHgoH)g

cavity Tlength, and the C02 pump laser frequency we cause it

to lase at one of these frequencies. We identify the lasing transition
by approximate frequency measurement. The exact frequency is then known
to within a few MHz (the width of the molecular laser gain curve) from

77 Light from the

heterodyne measurements reported in the Titerature.
laser is brought through light pipes to the cell containing the electrons,
and a light pipe is also used to carry light from the cell to the detector.
The electric field in the cell is the sum of a slow Tinear ramp and a
square wave of frequency vy = 60 KHz. The output of the laser is also

opticéiiy chopped at Ve = 100 Hz to enable the power reaching the

detector to be measured. The output signals from two Tock-in amplifiers
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Fig. 7. Block diagram of the apparatus used for optical measurements.
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synchronized to vy and v and the DC voltage on the bottom plate are
recorded about once per second. After repeating with several square
wave voltage amplitudes the data are computer-processed to yield optical
absorption by the electrons as a function of bottom plate voltage.

We discuss the 1ight source in detail first. The CO2 pump laser
is an Apollo Lasers model 550 modified to allow the cavity length to
be set with a piezoelectric transducer. The output power varies with
transition used but is typically about 10W. The Tasing transition is
monitored with a grating spectrometer (Optical Engineering, Inc., model
16-A) which accepts reflected Tight when the optical chopper blocks the
beam. The output power of the COZ laser during alignment is measured
with a detector based on the thermoelectric effect.

The molecular laser is of our own design and uses flowing gas.
The cavity is 92 cm long and uses machined aluminum mirrors 4.95 cm in
diameter. The mirrors have 50 cm focal length which yields stable

resonator modes,79

Light from the CO2 laser is coupled into the cavity
through a NaCl vacuum window and a 1.0 mm diameter hole. Far infrared
Tight is coupled out of the cavity through a 1.6 mm diameter hole and

a crystalline quartz vacuum window. The cavity length is varied with a
hollow differential screw mechanism. Pump Tight is coupled into the
Taser through an axial hole in the screw. The cavity is contained in

a fused quartz tube (chosen for Tow thermal expansion). No mirror
adjustments are needed. The molecular laser is found to remain at the
peak of the gain curve even after not being used for several months.

The frequency output of the CO, pump laser is kept at the peak of

2
the molecular laser gain curve with a feedback loop. A 4.2 um thickness



mylar beam splitter directs part of the output of the molecular laser
to a pyroelectric detector (Molectron Corp., model P4-71). The COZ
laser cavity length is modulated at Vg = 30Hz and the synchronous signal
from the detector is measured with a lock-in amplifier. The output from
the lock-in amplifier is proportional to the rate of change of molecular
laser output with C02 laser frequency. It is used as the error signal
applied to the piezoelectric transducer which sets the CO2 laser
frequency. The time constant used in the feedback loop is 100 sec.
If the feedback loop is not used, thermal drifts in the CO2 laser will
typically quench the molecular laser output in 5 to 15 minutes.

The approximate frequency at which the molecular laser is operating
is measured with a Fourier transform Michelson interferometer of the type

79

originally suggested by Martin and Puplett. The theory of this

80 and a technique to use a two-beam interferometer to

interferometer
measure the optical transfer function as a function of optical and
spatial Frequency81 resulted from our work and have been published.
Occasionally we have observed several transitions at widely spaced
frequencies to lase simutataneously but this has not proved to be a
problem when using the laser to measure the absorption lines.

We next discuss the noise limitations of our optical system.
For several of the laser lines used the dominant source of noise was
fluctuations in the output power of the laser. The noise power spectrum
of laser amplitude noise is found to have a 1/f spectral density from
about 1 kHz to 20 kHz. For frequencies below 1 kz the noise spectrum

has large peaks at harmonics of the Tine frequency but is otherwise

relatively flat. From 20 to 100 kHz the noise decreases by less than
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a factor two. The noise spectrum we have observed from our molecular
laser agrees with that measured directly from a COZ laser similar to

our pump laser with a HgCdTe deﬁector,gz The exact source of the noise
is not known but is presumed to originate in the COZ laser gas discharge.
There is an established 'f:heoryg3 of noise in a Taser oscillator based

on spontaneous emission perturbations to the Van der Pol oscillator model.
The theory has been experimentally verified for lasers operating very

84

close to threshold " where the noise power spectrum is predicted to be

a Lorentzian with width inversely proportional to Taser output. For

our CO2 laser the theory predicts a linewidth of order 1077 Hz.  This

is clearly not the source of our observed laser noise. Other previously
observed noise sources in laser oscillators are fluctuations in the gas

85 86

vibration of end mirrors, ~ fluctuations in Tight coupled

87

discharge,
back into the laser, ' and fluctuation of the distribution of power among
several lasing modes while the total power remains relatively constant.
It has recently become possible to obtain bandwidths of less than 10 Hz
in the methane-stabilized 3.39-micron He-Ne 7aser88 by giving careful
attention to each of these sources of noise. We have taken several
e?ementary steps to reduce the Taser noise, such as carefully shielding
and grounding the system, isolating the mechanical vacuum pump from the
laser cavity, using a vibration-isolated table to support the laser,

and regulating the current in the discharge with a fast feedback Toop.
The next Togical step would be to redesign the discharge tube which is
found to oscillate electrically at a pressure-tuned frequency near 50 MHz

and harmonics and to be a source of electrical noise spikes that occur

at irregular intervals. An optical ﬁso?atorgg could also be placed



45

between the COZ laser and the molecular Taser to eliminate fluctuations
from reflected light. It is observed that the magnitude of the noise
from the molecular laser depends upon where on the gain curve the CO2
laser is pumping. This is probably a result of the molecular laser gain
curve converting FM noise of the pump laser to AM noise.

When the optical power detected by the detector drops about one
order of magnitude from that of the strongest laser lines, then detector
noise becomes the dominant noise source. Our detector is an InSb hot
electron boiometer.go It has uniform response to optical frequencies
below about 15 cm=19 drops by a factor two at 20 cmmls by a factor six
at 30 cm™ ' and is down to 107% at 50 cm '. The response time of the
detector is of order 1077 sec (the electron-phonon relaxation time) and
the response as a function of frequency should be flat from a few Hz
(the thermal relaxation time) to nearly one MHz. At frequencies above
about 200 Hz the detector has a 1/f noise power spectra with a coefficient
which varies as a function of bias current. At about 50 KHz the detector
noise becomes less than noise from the other sources which have a flat |
frequency noise power spectra of 7 nv//Hz at higher frequencies.

For investigation of absorption using weak laser lines the best way to
increase the signal-to-noise ratio would be to increase the fraction of
power from the laser absorbed by the detector. At the present time this
is of order 10™".  The loss occurring between the output of the molecular
laser and the top of the dewar insert is measured to be about a factor 15,
which could be eliminated by focusing the Tight with a concave mirror
rather than using the brass light pipe with right-angle bands which is

employed at present.
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When observing large absorption signals without using the pneumatic
vibration-isolation system a modulation of about 10% of the signal was
observed from waves on the helium surface. The vibration-isolation
system reduces this source of noise by about two orders of magnitude.

We next focus our attention on the dewar insert shown in Fig. 8.
The vacuum-tight can containing the experimental cell is submerged 1in
a liquid helium bath. Laser light is brought down the dewar to the cell
through a 1.27 cm diameter stainless steel light pipe. Before entering
the cavity the Tlight passes through a FTuorogo?dTM filter which transmits
Tight of frequency less than 50 cm ' but does not transmit room tempera-
ture blackbody radiation coming down the Tight pipe. A Winston reflective

Tight concentrator91

is used to change the angular distribution of the
1ight coming down the light pipe from being unidirectional to a distri-
bution with intensity proportional to cos® where 6 1is the off-axis angle.
After reflecting a number of times in the cavity, part of the light

exits through a hole in the top of the cell. Light Teaving the hole is
recollimated with another Winston light concentrator, passes up a light
pipe through a mylar vacuum window, and is concentrated again onto the
InSb detector.

The experimental cell (shown in detail in Fig. 2) is partially
filled with Tiquid helium by condensing pure helium gas into the vacuum
can through a small tube while monitoring the capacitance across the
cell with a capacitance bridge. The cell was machined from stress-

92

relieved 6061 aluminum alloy, and coated with gold by evaporation.

The bottom plate is insulated from the top plate by mylar spacers and is
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attached with nylon screws. The bottom plate is flat to within 1 um
and the top is flat to within 2 um, except near the edges of the two
Tight coupling holes on the top where there is a lip that rises by

about 10 um. The dimensions of the cell at room temperature were
measured with a microscope and calibrated Tead screw. The total height
from the top of the cell to the bottom plate at Tiquid helium temperature
is used in calculating the electric field in the cell and is obtained

in two ways. The first is to calculate the thermal contraction using

93 of the materials used and

published thermal expansion coefficients
including the elastic compression of the mylar spacers as the nylon
screws contract. The second is to use the capacitance measured between
the top and bottom plates together with the dimensions of the cavity at
liquid helium temperature. These results are given in Fig. 2 (pg. 22).
The height of the cavity is given by:

Hlcm] = 2 rz[CTj 4 . (6.1)
(2.99793)% C[pf]

nNo

Here r 1is the average of the radius of the top plate and the radius of
the circular hole containing it, C is the measured capacitance, and &
is given in Eq. (5.4).

Electrons are put on the helium surface by thermionic emission
from a 13 pm diameter thoriated tungsten filament. The filament is
contained in a small chamber in the top plate. Free electrons pass
from this chamber into the cell through a circular hole about 0.46 mm
in diameter and about 0.2 mm deep. As the filament is heated for the
few seconds necessary to put charge on the surface, the surface charge

is monitored by measuring the AC capacitance between top and bottom
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plates. To prevent charge from reaching the walls as the filament is
heated we gradually increase and decrease the filament current but keep
it hot enough to emit substantial amounts of charge for only a short
time. (If the filament current is suddenly pulsed while charge is on

the surface, all the charge is observed to leave the surface.) Large gaps
were Teft between the spacers separating the bottom plate of the

cell from the cell body so as to avoid filling the cell by the fountain
effect when the filament was heated. The fluid Tevels inside and outside
the cell equilibrate in about one second.

The temperature of the helium bath is obtained by measuring the
gas pressure and comparing with published tables to calibrate a carbon
resistor as a thermometer. The carbon resistor is used for direct
measurements. The temperature is near 1.2°K during all of our runs.

As discussed at the end of the Tast chapter it is important that
parallelism between the helium surface and the surfaces of the cell be
maintained if the experimental results are to have a simple interpretation.
We have been able to maintain this parallelism to within #2 x107" rad
by comparing the direction a He-Ne laser beam is reflected from a
reference mirror, attached to the top of the can which surrounds the
experimental apparatus, with the direction in which the laser beam is
reflected from the surface of a pool of water.

We had hoped to also be able to use the variation of AC capacitance
measured across our cell as the cell is tilted, to adjust the cell to be
parallel with the helium surface since a minimum in the AC capacitance
is expected when parallelism is achieved. The observed minimum is

displaced from the axis of parallelism, however, because the cell is
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slightly offset from the axis of the can surrounding the apparatus.
The observed offset of the capééitance minimum is understood quantita-
tively (it arises because the average height of the charge pool above
the bottom plate chénges as the cell is tilted) but it destroys the
usefulness of using AC capacitance measurements to adjust for parallelism,
We next discuss how our data are processed to yield the optical
signal as a function of voltage on the bottom plate. Referring back
to Fig. 7 we see that in the 1imit that the peak to peak amplitude of
the square wave voltage AV applied to the bottom plate is small then our
data, the modulation signal at vy divided by the modulation signal at Ve
are proportional to the derivative of light intensity transmitted by the
cell as a function of bottom plate voltage. However, a small AV reduces
the modulation signal in comparison to the noise. We give the data
reduction technique that allows us to use a large AV so the signal will
be Targe in relation to the noise while avoiding the distortion that
would occur if we obtained the optical response from the data by simple
integration.
To begin, we Took at the response of a single data point to a
delta function optical response when the bottom plate voltage is VO,
The data point is obtained by integrating the optical response as the
voltage applied to the bottom plate is increased from VO to VO<%SV,

We find the integrated response to be given by:

. AV AV
Aif -(ov e SH) <v-v < 5
_ . AV , AV
R(V“Vo) = ~A if v ’§V<V9VO<“§‘” (62)

0  otherwise

N
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The measured data points are given by the convolution of R(V ~VO)
with the optical transmission of the cavity as a function of the voltage
V on the bottom plate,which we call T(V). Then, in the absence of noise,

the measured signal is:

S(v.) = jR(V—VO) T(V) dv . (6.3)
Given T(V) over a voltage range I, of Tength AV we may recover T(V) over
any voltage range I, containing I, from the values of S(VO) on I, to

within a resolution 8V by using the relation

T(v+a¥) = T(v) - 2 s(v+ A2E0Y (6.4)
The effect of noise in the data on T(V) recovered in this way is
most easily seen using Fourier transforms. We define:

=2miuy
) e dv . (6.5)

We similarly define r(u) and t(u) from R(V) and T(V) respectively.
Since the Fourier transform of the convolution of the two functions is
the product of the Fourier transform of each function, then, in the

absence of noise, s(u) = r(u)t(u). We find that

Ir(u)| = %%-]sin(wéVu) sin(mAVu)| . (6.6)

Our process of recovering T(V) from measurements of S(V) is equivalent
in u-space to t{u) = s(u)/r(u). In practice, s(u) = so(u)+=n(u)g

where n{u) 1is the result of noise and so(u) is the result of a changing
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optical signal from electrons on the helium surface. If we represent
the recovered optical transmission by TR(V) and 1ts Fourier transform

by tR(u), then:

tew) = M) (6.7)

Since we sample at voltage intervals dV then s{u) will be non-zero
only for u 1in the range -m/dV < u < w/dV. For a given non-zero u the
effect of noise may be minimized by choosing &V = u/(2m+1) and

AV = u/(2n+1) where m and n are integers. However it is impossible
to minimize the effect of noise at all frequencies simultaneously. In
particular, the effect of noise becomes very Targe near the zeros of
r(u). To minimize the effect of noise we measure S(V) several times
using different values of AV. For each measurement Si(V) we compute
T;(V) using an algorithm based on Eq. (6.4) and compute t;(u)a If we

assume that the noise is a stationary random process then the most

probable value of t(u) is given by:

Zﬁ;(u) < el ()|
t(u) = — n : (6.8)
u 3 (v )]
1

We use this equation to compute t{u) for each u and then Fourier
transform back to find T(V). For this procedure to be effective one
must choose the values of AV used so that the denominator of Eg. (6.8)
is small only for u near zero. In practice, we have used &V = 0.224
volt and AV between &V and 5 volt. The Si(V) for each voltage ramp is
the output from the lock-in amplifier synchronized to Vi divided by

the output from the Tlock-in amplifier synchronized to v, (in order to
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minimize the errors resulting from changes in the laser output power).

i
Each TR

function {which would arise from a small offset in the zero of the

(V) computed using Eq. (6.4) has subtracted from it a linear

lock-in amplifier at vm) so that the first and last computed points as
a function of V are zero.

Data collection is done with a *10V 16-bit AD converter with three
multiplexed inputs that is controlled by a PDP 11-23™ minicomputer.
In a single integration cycle the computer first digitally integrates
the output of the lock-in amplifier synchronized to v, for 531 msec.
After waiting 100 msec, it integrates the output of the lock-in amplifier
synchronized to Ve for 100 msec. Finally, after waiting another 100 msec
it integrates a DC voltage proportional to the voltage applied to the
bottom plate for 100 msec. The cycle then starts over. Data are
transferred to magnetic tape and processed using a program coded in
FORTRAN that runs on the CDC-7600 computer at the LBL computer center.
The computed optical signal as a function of bottom plate voltage is
plotted, and stored on magnetic tape to await the further processing
described in the next chapter. |

The Tinear voltage ramp is generated digitally with a 16-bit DA
converter, and is applied to the bottom plate using the circuit shown
in Fig. 9. The resistive divider used to measure the ramp voltage is
calibrated with a Fluke 343A voltage calibrator, so the absolute accuracy
of the meésurement of the voltage of the bottom plate is limited only by
the resolution and Tinearity of the AD converter. (During a run the
zero of the AD typically drifts by a few bits which Timits the absolute

accuracy to #0.05V.)
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Fig. 9. Circuit used to apply modulation voltage to the bottom
plate of the cell.



55

The height of helium in the cell and the charge density on the
helium surface are obtained from measurements made with an AC capacitance
bridge using the theory described in the previous chapter. Measurements
are made using a General Radio type 1615-A capacitance bridge with PAR 124A
Tock-in amplifier for oscillator and detector. Measurements are taken at
1 KHz, although it was verified that the measured AC capacitance was
independent of oscillator frequency as expected. The liquid height

determination is done using 5 Vrm to drive the bridge. The surface

S

charge determination is done using 0.5 vrm to drive the bridge. The

S
capacitance measurements used to measure the liquid height are reproduc-
ible to a few parts in 107° pf. Not all the measured capacitance arises
from geometric capacitance between the top and bottom of the cell

however. When the cell was filled with liquid helium the capacitance
increased slightly less than one calculates it should using the most
accurate measurement of the dielectric constant of liquid helium reported
in the 7iteratureng From our measurement we calculate a stray capacitance
of 0.00160 pf at liquid helium temperatures. This value of the stray
capacitance brings our mechanical measurement of the cell height,
corrected for thermal contraction, into better agreement with the
capacitance measurement using Eq. (6.1) than the errors involved in

the separate measurements predict. At room temperature the stray
capacitance measured by grounding the bottom plate and disconnecting

the lead attached to it is found to be 0.00020 pf. This also causes

the room temperature mechanical measurement of the cell height to agree
very well with the cell height obtained from measuring the capacitance.

One explanation that may be given for the observed increase of stray
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capacitance that occurs when the cell is cooled from liquid helium
temperature is that the surface oxide barrier could cause strands of
wire in the single braid separating the two leads as they go to the top
of the dewar to become electrically isolated when the temperature is

Towered.
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VII. DATA ANALYSIS

In the previous chapter we discussed the spectroscopic techniques
used to observe external electron state transitions from the ground
state to various excited states. We obtain two physically distinct
quantities from our measurements. The first of these is a measure of
the local positional disorder of electrons along the plane of the surface.
This is obtained because the electric dipole field of nearby ground state
surface electrons changes the external electric field that must be
appTied to bring a given transition into resonance with a given laser
frequency. The shift in applied field is related to the radial-
distribution function of the external surface electrons. The second
physically distinct quantity is the transition frequency as a function
of applied electric field in the 1imit of zero surface charge density.
The difference between the measured transition frequency and the frequency
calcuiated from a model which assumes an abrupt potential change at the
surface [Eq. (2.1)], contains information about deviations from the
image potential near the surface.

This chapter is divided into a number of sections. In Section A
we present the theory of the change in transition energy caused by the
electrostatic interaction between a surface electron in an excited state
and nearby surface electrons in the ground state. In Section B we
discuss the source of a dispersive component observed in our measured
Tineshapes and explain how it is removed by deconvolution. Section C
describes how for each observed resonance we obtain from our data the

surface charge density at the center of our cell and the external



-58-

electric field acting on the surface electrons at the center of our cell.
In Section D we describe how we statistically analyzed our data to
obtain a measure of the local positional disorder of the surface
electrons and the external electric field that must be‘app1ied to cause
the observed transition resonances to occur at the laser frequency in

the 1imit as the surface charge density approaches zero. Finally, in

Section E we discuss the implications of our measured values.

A. Effect of the Electric Field of Nearby Electrons

In this section we discuss the theory of the change in transition
energy caused by the dipole electric field of nearby surface electrons
in the ground state. We first consider the case in which the surface
electrons are arranged into a perfect hexagonal lattice and then generalize
to include the effects of disorder.

The x-y coordinates of a hexagonal lattice of electrons are given

by the points:

Y

g = e [Gep)Re W] 71

2
We consider the case in which all of the electrons are in the ground
state except one. The one-electron Hamiltonian for this electron includes

a term arising from the electrostatic interaction with the other surface

state electrons given by:

H' = , where u = z-(z) .
(7.2)
Here r.,. = lfijl in Eq. (7.1) and the summation excludes the case where

iJ
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both i=0 and j=0. We have implicitly assumed that the nearby electrons
do not tend to fill the hole an excited electron leaves as it moves
away from the surface, which will be a very good approximation if

u<<a. We may rewrite Eq. (7.2) in the form:

. L2
e 1 U

-1 , Where x,.= — . (7.3)
. rij [(-} +X§j)1§ } 1\] o

We are interested in the case in which X33 << 1. The Taylor expansion

=1 . .
of f(x) = (1+x*)”% about the point Xy neglecting terms of order xgs

2 2 3 o . . .
XX o XXy Xy and higher order terms in x and o5 1S given by:

(T+x%) = 1 - (x*-5x%) . | (7.4)

Hence

To find the change in transition energy from the ground state to excited
state n caused by the nearby external surface state electrons, we use
first order perturbation theory. We calculate (1|H'|1) with H' expanded

about z = (z), and also (n|H'[n)> with H' expanded about (z),. MWe find:

“_?«é_)g((z)n - <Z>1)2 - 1*2(<22>n B <Z>;>

+ %((z:z)1 - <z>f)j . (7.6)

In obtaining this result we have assumed that (<z>n - <z>1)/a << 1. For
the rij of a hexagonal lattice the summation appearing in Eq. (7.6) has
been done numerically. Using the fact that for the hexagonal lattice

the charge density o = 2e/(v3 a®), we find that:
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3
e = 8.8927 |o|? &F . (7.7)

The actual arrangement of the surface state electrons is not exactly
a hexagonal Tattice. Even at zero temperature there will be some disorder

due to the zero point motion of the e‘iectrons,g4

In the presence of
disorder the analysis which Ted to Eq. (7.6) is still correct but the

r.. appearing in the coefficient must be interpreted as the distance

1J
from the excited electron to each of the other electrons. Because the
other electrons are moving, then C(o) is a fluctuating quantity. To
obtain the thermal average of C(o) we use the radial-distribution
function g(r) where g(r) is the probability per unit area of finding

a second electron a distance r away from a given electron. We find

that:

(7.8)

If we Tet k = (C(d))/CO(U) where Coﬁj) is the value obtained for a
hexagonal lattice with the same charge density o from Eq. (7.7), then

we find

= 0.70656 (»«% (7.9)

The dimensionless quantity « is the measure of local positional disorder
we obtain from our data. Because in the classical Timit the only thermo-
dynamic variable which governs the behavior of the two-dimensional
electron gas is the ratio of Coulomb energy per electron to kinetic

Lo L . .
energy, I' = WE ngez/kT, then Kk is a function only of I'. In general,
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k=1 and «(I') is monotonically decreasing with T.

52,95 have appeared giving tabulated

Several recent publications
values of g(r) for various values of I'. We used these to compute values
of k(') which we will compare with experiment. We also computed a

consistency parameter W from the tabulated values of g(r) given by:

1
3

W = 2@5(1 ~g(r'))rtde’ where r'= (nsﬂd ro. (7.10)

Physically W is the number of particles removed before looking at the
positions of the other particles to find g(r) and so W=1. Inaccuracies
in the tabulated values of g(r) will cause W, as calculated from Eg.
(7.10), to differ from unity. The computed results for «(I') and W are
given in Table 1. The results with W>1 come from Ref. 95 while those
with W<1 come from Ref. 52. The computed results are in agreement with
the general result that k> 1, but the error in «(I') that results from

using the tabulated values of g(r) is unknown.

TABLE 1.
T k() W
5 1.323 0.779
7 1.248 0.388
15.81 1.137 0.407
22.36 1.7104 0.532
36 1.066 1.047
50 1.059 0.769
90 1.032 1.300

Qur final result for the change in transition energy from the

ground state to excited state n caused by a distribution of surface
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electrons in thermal equilibrium is:

- where
- 2 2 2 2 2
D(F) = (<2% - (z))) uagﬂ<z>na<zn>)a(<z>lm<z>lﬂ
(7.11)
To understand this result we consider the change in transition energy
caused by changing the external electric field F by an amount AF.

Using first order perturbation theory we find that:

AB ., = efF ((z) - <z)) . (7.12)

The expectation value of the dipole electric field acting on an electron

in the state n from the other external surface state electrons is given

by:

. C(o)
<az>ﬂ = “7;"‘(<Z>n - <z>1) . (7.13)

Hence Eq. (7.11) may be interpreted as the transition energy shift from
Eq. (7.12) caused by the average microscopic electric field from Eq.
(7.13) plus a small correction to account for the variation of electric
field with z.

| We wish to use the observed quantity E?mn to obtain «(r) from
Eq. (7.11). To do so it is necessary that D(F) be well known. From

Eg. (7.12) we obtain

j%:(f1mn) = e(<z>n - <z>l) . (7.14)

As we will show, our experimental results indicate that in the Timit of

zero surface charge density, E differs from the value of Eu]'=

1-n n

obtained from the abrupt interface model discussed in Chapter 2 by an
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amount that is almost independent of F. Hence it is a very good approx-
imation to obtain A = (<z>n - <z>1)2 from the results of our calculation
discussed in Chapter 2. The remainder of D(F) can be expressed as

= 1/2[<(za<z>1)2>1 -z - <z>n)2>nj, In Fig. 10 we plot the ratio
B/A as a function of F, as calculated from the abrupt interface model
of Chapter 2. Although B may be somewhat different for the physical
system the error is probably small, and since B/A is also small, our
calculated values of D(F) are probably accurate to at least 1%.

Because our measurements are taken at constant Ey., rather than
at constant applied external electric field it is more convenient to
analyze our data in terms of the change in applied field necessary to
maintain a constant E,_ = as o is changed, rather than the change in

E at a constant applied field. From Eqs. (7.11) and (7.12) the

1-n
change in applied external electric field necessary to compensate for
the dipole electric field of the nearby ground-state external surface

electrons is:

AF

% (C22) ~(2)%) - ((2% - (2)?) |
R = 88927‘J"’*‘L‘;"K E(z) w(Z)l) - n n ! ! a
e’ E .

2(¢z) - (2),)

(7.15)
The final term of Eq. (7.15) is plotted in Fig. 11 as a function of

the applied external electric field F.

B. Analysis of Lineshapes

Our data analysis depends fundamentally upon our being able to
determine the external electric field FR applied to the surface electrons,

which brings a given transition into resonance with a given laser
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frequency. We begin by discussing how FR is obtained from our data.
We then discuss how FR is used to obtain the physical quantities of
interest.

We obtain FR from measurements of optical response versus the
voltage applied to the bottom plate of the cell (henceforth called the
cell voltage). In Appendix 2 we give plots of the data contributing to
our final results. Molecular laser frequencies of 428.628 GHz, 525.4275
GHz, 639.185 GHz, and 764.6426 GHz were used to observe 19 distinct
combinations of frequency and final state.

To determine FR we need to understand the functional form of
optical response as a function of cell voltage. One source of line
broadening is thé inhomogeneous broadening caused by the spatial variation
of electric field on the helium surface. As discussed previously, if
this were the only source of broadening and if the Tiquid surface were
parallel to the top and bottom of the cell, then from symmetry there
would be a singularity in the optical response as a function of cell
voltage as the electrons at the center of the cell are brought into
resonance. By itself this is not a Timitation. Knowing the cell voltage
at the singularity and the surface charge density at the center of the
cell we could use Eq. (5.17) to calculate FR for electrons near the axis
of the cell.

Unfortunately, there is another source of line broadening (caused
by the interaction of helium gas atoms with the external surface state
electrons) which removes the singularity from the lineshape. Because of
the way the experiment is done we are sensitive to the dispersive part

of the homogeneous broadening as well as the absorptive part. We discuss
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the cause of the dispersive contribution to optical response and how it
is deconvolved from our data.

The microscopic theory of absorption near the resonant frequency
of transitions between external electron surface states has been given

by Ando,67

In the range of temperatures in which our experiment is
carried out he finds the absorption lineshape to be Lorentzian with

FWHM v proportional to the helium gas atom concentration. The propor-
tionality factor increases by a small fractional amount as the external
electric field normal to the surface increases. For our purposes, the
external surface state electrons have the same optical response as'a
collection of harmonic oscillators oriented in the z direction with
resonant frequency w, set by the local electric field. Given the
oscillator strength f of the transition and vy, we Took at the response
of ng such oscillators per unit area to an electromagnetic plane wave of
amplitude Eo polarized with electric field in the plane of incidence and
incident at an angle 8 with respect to the surface. The surface

electrons radiate a wave both in the direction of the incident Tlight

and in the reflected direction of amplitude:

21 sin0 ezns fl-w?y + “iw(u)g+w2)j : )
E' = E . 7.16
0 cos6 mc[(mg==w2)°%w2Y2]

The ¢ which appears in this equation is the speed of Tlight. The

wave emitted in the forward direction cancels the power Tost by the
electronic absorption and causes a slight phase shift. The reason that
a dispersive component can be observed in the optical response is that
the light emitted in the reflected direction, which will interfere at

the detector with the beam which passes through the surface, has a
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definite phase relation at the detector with respect to Tight that
passed through the surface. Similar dispersive contributions to line-
shapes are observed in NMR396
| A detailed explanation for the observed dispersive component can
be given by treating Eq. (7.16) as a perturbation acting on the optical
field in the cell. Since it is small we need only consider the first
order term. Let El(gﬁt) be the optical field in the 1limit that E'
is zero. We Fourier analyze El(ggt) into propagating plane waves near
the helium surface. We use Eq. (7.16) to compute the perturbation field
in the forward and reflected direction from each Fourier component.
We keep these two contributions separate and Fourier transform back to
real space. Let Ez(fst) be the first order term from El(fst) in the
forward direction and let Ea(r,t) be the first order term from gl(f,t)
in the reflected direction. Since the source of gz(fgi) is the mirror
image of the source of gg(f,t) and since most of the wave amplitude is
reflected from the top and bottom of the cell to return through the
surface, then the amplitudes [E,| and |E,| will be nearly equal when
averaged over a volume in the cell with dimension Targe relative to a
wavelength. Since Ez(rgi) comes from waves emitted with the same
direction and phase as those in gl(ﬁgt) (but with a different angular
weight), then averaged over a large volume <§1(f)e E,(r)y will be
non-zero to account for the loss of energy density by absorption.
The Tight from the molecular laser is spatially and temporally coherent.
Therefore, El and gg have a definite phase relation at each point in the

cell which is a function of position but independent of time. If the

relative phase is not zero or 7 then <E1(t) eEB(t)> will contain a term
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proportional to the imaginary part of Eq. (7.16) that is typically a
lTarge fraction of the absorptive part from (E (t)<E,(t)). The InSb
detector we used is about T mm x 1 mm x 2 mm; it is not large enough to
spatially average the interference between E; and E,. Therefore we
expect to observe a dispersive component in the homogeneous Tineshape.

In analyzing our data we have assumed that the homogeneous lineshape

as a function of cell voltage that is convolved with the line broadening

caused by a spatially varying electric field is of the form:

a, + B(V-a,)
D(V) = A E j . (7.17)

(V-OLZ)Z + oci

In situations in which the electric field normal to the surface is
expected to vary only a small amount for points in the charge pool,
this provides a good fit to our data. Here o, is related to vy through
the rate of change of resonant frequency with respect to cell voltage,
a, is the cell voltage at which resonance occurs, A is proportional
to the strength of the transition, and B is the fraction of the imaginary
part of Eq. (7.16) that contributes to the optical response. As one would
expect from our analysis it is found that B can be either positive or
negative and B tends to be smaller as the frequency increases. The
largest magnitude of |B| observed was 0.747 using the 428 GHz CHBOH
laser transition.

For each set of surface electron transitions observed with a
single laser frequency in a given run we choose a transition with good

signal-to-noise ratio and small distortion from spatially inhomogeneous

electric field and use a least squares fitting routine to find o, a,, A
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and B in Eq. (7.17). From our knowledge of change in transition frequency
with respect to electric field we then obtain a, for the other transitions.
Having determined the functional form of the asymmetric homogeneous
lineshape we next proceed to remove the dispersive contribution from the
experimentally determined lineshape. Let TR(V) be the measured optical
response as a function of cell voltage, let A(V) be the inhomogeneous
Tineshape, and let G(x) = (a14«8x)/(x2%=a§)“ Let tR(u)g a(u) and g(u)
be the Fourier transforms of TR(V)S A(V) and G(V) respectively, as defined
in Eq. (6.5). The Tineshape function is the convolution of A(V) and G(V)
S0 tR(u) = a(u) glu) + n(u), where n(u) is the Fourier transform of the
noise. We deconvolve our data using a fast Fourier transform algorithm

that can be written symbolically:

1| R

Here éfé? symbolizes the operation of taking the inverse Fourier transform,
and hs(u) is the Fourier transform of H(x) = (SQul)/[xz-k(Seocl)Zi]° If

s =2 it corresponds to convolving TR(V) with G(V), which can be shown to

be the optimum procedure to detect that there really is an absorption

97 If s=11it corresponds to

Tine of the form G(V) in white noise.
removing the asymmetry from the homogeneous lineshape but leaving the
linewidth unchanged. As s decreases to zero the noise from n(u) at
1§rge u begins to dominate AS(V)o

We calculate AS(V) for s=2,1, and 0.25. In going from large to
small s the resonance starts as a broad smooth curve, sharpens up at

the peak, and is finally drowned in noise. For most transitions we used

s =1 to find the cell voltage VR at which the deconvolved optical response
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is a maximum. In a few cases of Tow signal-to-noise ratio we used s =2.
And in one case of exceptionally good signal-to-noise ratio we used
s =0.25. The best way to increase the resolution would be to lower the

temperature of the cell and thereby reduce the helium gas atom density.

C. Calculation of Charge Density and Electric Field

We use VR as an estimate of the cell voltage that would cause a
singularity in the optical response in the absence of homogeneous
broadening. From VR we wish to calculate the external electric field
FR acting on surface electrons near the axis of the cell. To do so we
must first obtain the depth z of liquid helium in the cell and the free
surface charge density at the center of the cell Of- We begin by calcu-
lating the depth Z, of helium in the cell at zero cell voltage and before
charge ié placed on the surface from Eq. (5.5). (The capacitance used
in this equation has subtracted from it the small stray capacitance
discussed earlier.) Since |z azo[/H << 1, where H is the cell height,
we may assume the Tiquid depth to be Z, while calculating O To obtain
op we need some preliminary results. From Eq. (5.16) and Eq. (5.4) we
obtain the function fl(R)= (cbmca)/cb of fractional capacitance screening
from the free surface charge as a function of charge pool radius R. From
Eg. (5.9) and (5.10) we obtain the function f (R} = Q/Qmax where Q is
the total free surface charge when the charge pool radius is R and Qmax
is the total free surface charge that would be present if the cell voltage
were held fixed and just enough free surface charge were added to the

charge pool so that R=a. It should be noted that f (R) is independent

of cell voltage. As can be seen from Fig. 4 (pg 29), near the center of
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the cell, the solution to Eq. (5.9) begins to oscillate. This is a

consequence of the finite element approximation we have used. We average

the computed charge density over ring 3 to ring 8 of the 100 rings used

in our numerical calculation and renormalize using the solution to Eq.

(5.9) in conjunction with the solution to Eq. (5.10), when R=a, to obtain

f3(R) = op(r =0,R)/o.(r=0,R=a). Each of the functions f,, f, and f, are

monotonically increasing functions of R. Hence there exists unique |
inverse functions f;l and f;l, We measure fl(R) = AC/C when the cell

voltage is Voo When the cell voltage is changed from \/O to \!R the total

free surface charge Q remains fixed while Q is changed by the factor

max
VR/VOG Hence f, changes by a factor VO/VR° Then at cell voltage VR:

v
o{r=0) = o(r=0, V:VR, R=a) ef3<F;1 <§£3 f, (le (%§)>>> . (7.19)

0

We obtain o(r=0, V=V,, R=a) from Eq. (5.10). Knowing o(r=0) and z, we

R®
obtain z/H from Eq. (5.19). We then use Eq. (5.17) to compute FRs the
external electric field applied to the surface electrons that brings the
observed transition into resonance with the known laser frequency.

Before discussing how we have used the measured values of FR we
should mention the sources of systematic error involved in the measurement.
One of these is the uncertainty in our knowledge of the cell height H
given in Fig. 2. Another possible source of systematic error is the
difference between the cell voltage at which fhe deconvolved optical

response function is a peak and the cell voltage that would correspond

to a singularity in the optical response in the absence of homogeneous

broadening. If Q/Qmax is small and the helium surface is parallel to the

top and bottom of the cell this is not expected to be important since the
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applied electric field is then almost constant over the entire charge
pool. (We computed this variation, ignoring the distortion of the
electric field caused by light-coupling holes in the cell, and found it
to be Tess than 1 part in 10* for the conditions of some of our measure-
ments.) In any case, this source of systematic error could be eliminated
by decreasing the temperature of the cell. Some possible sources of
systematic error that were investigated and found to be small relative
to the random error are the change in dielectric constant of liquid helium
with temperature and the uncertainty in our measurement of the stray
capacitance. One source of concern is the possibility that there could
be some free charge on the helium film covering the walls of our cell.
We have observed that if free charge is intentionally allowed to reach
the cell walls that the lineshapes are distorted and the AC capacitance
measured between the top and bottom plates at a fixed cell voltage is
time-dependent. The precautions we used to minimize the likelihood of
free charge on the helium film are described in the last chapter. When
they are taken we observed nothing that indicated that there was free
charge on the helium film. If free charge is accidentally allowed to
reach the walls during a run, either by reducing the cell voltage until
the charge pool begins to flow off the surface or by a large mechanical
disturbance to the dewar, then all subsequent data are ignored.

There may also be some systematic error in the value of o(r=0)
that we obtain from Eq. (7.19). If there were it could contribute to
the value of the disorder parameter k(I') we obtain from our measurements.
Because we measure the total charge on the helium surface with V/V

sat
slightly greater than unity (see Fig. 5 and 6, pgs. 34,35), where the
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capacitance changes rapidly as a function of charge, we do not expect
errors in the capacitance measurements themselves to be significant. Of
more concern is the possibility that the helium surface could be distorted
in some way as the cell voltage is increased. There is no good way to

be certain that something of this nature does not occur from our measure-
ments. There is, however, good evidence that it is not important since
the AC capacitance change we calculate is in agreement with the measured

capacitance change as shown in Fig. 6.

D. Statistical Analysis

We next discuss how our data, which includes random error, is used
to obtain x(r) and the applied electric field F; which brings the ith
observed combination of laser frequency and ground to final state
transition into resonance in the limit that o approaches zero. The
measured values of 609 c', Cb’ Ca9 and VO for each of the runs used in
our data analysis are given in Table 2. In Table 3 we give the values
of VR9 z/H, and the charge density o(r=0) which we used to compute FRg

as well as FR and the estimated standard deviation of our measurement of

F The standard deviation is constrained to be no smaller than the

R-
change in electric field during the integration to obtain a single data
point. Subject to this constraint we estimate the standard deviation
from the s dependence of the V at which AS computed from Eq. (7.18) is
a maximum, and from the observed increase in scatter among the measured
FR as the linewidth increases.

For the purposes of discussion, we label the jth value of FR

measured with the combination of laser frequency and final state that we
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TABLE 2.

Run Date CO C Cb Ca VO
[pf] [pf] [pf] [pf] [volt]
1 20-Jan-79 0.45902  0.47220 0.47177  0.44724  34.38
2 23-Jan-79 0.45896  0.47209  0.47147  0.45922  34.38
3 27-Jan-79 0.45901 0.47293  0.47185  0.43655 34.38
4 26-May-79 0.45958  0.47229  0.47229  0.41006  81.03
5  26-Jun-79 0.45937  0.47230  0.47220  0.43080  41.92
6  3-Jul-79 0.4597] 0.47251 0.47281 0.39361 122.03
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TABLE 3.
Date Laser  |Trans- Vp z/H | o(r=0) F P Y r
freq. ition R I 1
[GHgﬁ [volt] [esu/em®]  [V/em] |[V/em]l [v/cm)
20-JAN=T9| 525428 | 1= 3 | 259061 5171 | = 016& | 503,07 | 76| 46 |léob
20=JAN=79] 5250428 | 1= & | 15318 |o5172|~00151 | 296,48 | .42| 70 |13.8
20-JAN=79|525:428 | 1=~ 5 | 107045 |o5173| <o 0143 | 207.73 | 79| o091 |13.4
20~JAN=79| 525,428 | 1= 6 | B2e23|e5173|=c0137| 158,79 | 38| 1042 [13.2
20-JAN=T9] 525,428 |1~ 7| 6T7.06|e5173|~c0133| 129,36 | .38 1033 |13.0
20-JAN=T9[ 525,628 | 1~ 8 | 56035|e5173|=.0129| 108.58 | o38| 1652 |12.8
20~JAN=79] 5256428 | 1= 9 | 4Bo54 |o5173|=00126| 93043 | 38| 1070 |[12.7
20=JAN=T79525:426 | 1=10 | 42.7% |eB173|=00124 | 82,19 | .38| 1.86 [12.5
20=JAN=T9| 5250428 | 1= 2 | 688.78 |o5168|=00194 (1336,27 | 67| 22 |15,7
20-~JAN=T9| 4286628 | 1~ 2 | 462.09|o5170|~c 0181 | 896015 | 65| 23 |15.1
20=JAN=T9] 4260628 | 1= 3 | 170305172 =0153 | 329,71 | 78| <49 |13.9
20-JAN=T9| 4260628 | 1~ 4 | 99057 |o5173|=s 0141 | 192,43 | 75| o764 |[13.4
20=JAN=T79 428:628 | 1= 5 | 69.57|o5173|~00134 | 134,23 | 57| 97 |13.0
23=JAN=~79 525,428 | 1= 3 | 25947 | 25154 | <0 0093 | 503,27 | 76| 20 [10.8
23~JAN=T9| 525,428 | 1= & | 153,21 |.5154|-. 0085 | 296,99 | o42| <29 |10.4
23~JAN=T79| 525.428 | 1= 5 | 106049 |.5155|~.0080 | 20631 | 79| 38 [10.1
23=JAN=79| 5250428 | 1= 6 | 81096 |o515%|~o0077| 158,869 | 38| &7 | 9,9
23-JAN=~T9| 525,428 | 1= 7 | 650905155 ~20074 | 12753 | »38| 56 | 9,7
23~JAN=T79| 525,428 | 1= 8 | 55.42|,5155|~.0072 | 107,19 | 38| 63 | 9.6
23<JAN=T9] 525,428 | 1= 9 | 4B.06|0o5158=.0070| 9291 | 38| =71 | 9.5
23=JAN=T79| 525,426 | 1= 2 | 688695 25153 | =0 0110 [1337.08 | 1.01| 09 |11.8
2T=JAN=T9] 6390185 | 1= 2 | 990,30 | 5444 | ~s0278 |1921.30 |4<28| 32 [18.8
2T-3AN=T9| 6392185 | 1~ 3 | 380064 |o5451|~00236| 73629 | o57| 69 |17.3
27=JAN~79] 6390185 | 1= 4 | 226063 |25453 | =o 0217 | 437,07 | 76| 106 |16.6
27~JAN=T9] 525,428 | 1= 3 | 260030 |.5453|«.0222 | 502.47 | 1.01| 73 [16.8
273 AN=T9| 525.428 | 1= 4 | 1542505454 | =0 0204 | 29699 | 63| 110 |16.1
27-JAN=T9| 525,428 |1~ 5 | 10880 |05455|=00194 | 208029 | «79| Lokl 15,7
27=iAN=T9| 525,428 |1~ € | 83.72|+5455|=,0186| 15964 | 38| 178 [15.4
2 =79 5250428 | 1= 7 | 68.25|o5455|~o 0180 | 129.65 | .38 2040 [15.1
2 525,428 | i= 2 | 69000 |o5447|=00261 [1337.55 | 67| o3 |18.2
2é 79 7640643 | 1~ 3 | 532.76|.6966|-,0851 |1034.46 |1.01| 419 [32.9
2 CTohevd3 | = & | 31TeT1|o4976|=o0788 | 618,99 [2061| 6436 [31.6
3 525,428 |1~ 2 | 688.12|.8958|~.0886 [1336.06 |1.35| 212 [33,5
52504628 | 1= 3 | 261045 |.4979|~00766 | 507077 | 76| bab? |31e2
79 525,428 | b=~ 4 | 15607004983 |~s0T10 | 304,42 | 42| 7elS |30.0
26~MAY=-T9| 525,428 | 1= 5 | 112,60 4985 |~ 0676 | 218,81 | 79| 925 |29.3
26=JUN=T9525.428 | 1= 3 | 261036 |e5070|=00322 | 506039 |1.06] 127 [20.2
26 =JUN~-79] 5250428 | 1= 2 | 689620 (5062 |~00376 |1336,64 |1.36| 59 [21.9
3= JUL=T9 | 639,185 |1= 2 | 98609006948 |~o1504 [1917.01 [1.49| Lel7 (43,7
3-JUL=TY | 639185 | 1= 3 | 385.54 |o6998 =0 1308 | 748,06 [1e57| 901 |40.7
3oJUL=T9 |639:185 |l= & | 2326595009 |-e121% | 450,86 |1.57|13.66 39,2
3=JUL=79 [ 6396185 [1= 5 | 16642 5013 |~.1153 | 322.32 (4,28 |17-95 |38.2
3eJUL=T9 | 5256428 (1= 2 |691.90 |o4973|=,1425 |1343,54 |2.36| 4032 |%42.5
FeJUL=79 | 525,628 |1~ 3 |26%5.95 5006 |=01237 | 515,67 |2.26| 953 [39.6
3JUL=T79 | 525,428 | 1= 4 | 159505013 |~01145 | 308,88 |1.86 1436 (38,1

“Note that Aij does not include the uncertainty in our measured value of

the cell height H.
results is 5.7 x107" Fr-

The systematic error in the measured value of FR that
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previously labeled by the index 1 as Fij’ We label the standard devia-
tion of this measurement as Aij’ and from the charge density o(r=0) which
we calculated in obtaining Fij we use Eq. (7.15) to calculate AFR/K(F)
which we label as AFijo Because the errors in this quantity are presumed
to be small they will be neglected in our statistical analysis. The
computed values of AFij are also given in Table 3. We define G from

J
the equation:

F-ij = F’,i + &(I') AFij + eij . (7.20)

We assume that e; is a normally distributed random variable with zero

J
mean and standard deviation Aij’ We wish to minimize the effect of the
€ in estimating values of k(I'), F
to have estimates of the uncertainty in the estimated value of each of

L0 ,,,an from our data. We also wish

these quantities. We do so using the principle of maximum 1ikelihood°98
Accordingly, we wish to find the values of K9F19 °°°9Fn which minimize
the sum

2

MOSGF ooy F) o= o — (7.21)

Z

1J

We begin by making the approximation that & 1is independent of I'. Setting
the partial derivatives with respect to each of the parameters equal to
zero we obtain the following system of linear equations:

1 (7.22)
=Dy + GyFy + KB,

1]

it
<
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Here
AF .
A= zi ij 213 i
i by
AF
B. = Zi N \
i 2
J ij
AF 2
C = zi LN ,
15 A‘;J
F..
D. = N
1 A2 ®
J ij
and

We find the solution to be given by:

B

) Z B0y
~ Gy
1
B.
¢ -y =
G.
i 1

(7.23)

(D; - B.Q)

1 1

G.
i

In making the approximation that « is independent of I' we are finding
the best fit horizontal straight 1ine to the curve of k(I') weighted over

our measurements. The standard deviations associated with k,F , uvvaFn
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are found from the relations:

2 2
L4 Lo-dle (7.24)
GK dK F;i dFi
We find that o = C % and o. = G. %
e in a GK = an OFu = i

i
The result of this calculation from our data is « = 1.174 £0.036.

The values of Fi and Op we have observed for the combinations of laser

Iy

i
frequency and final state are given in Table 4. Also given in Table 4

are the transition frequency calculated from the model of an abrupt
surface (with potential given by Eq. (2.1), where F :Fi)g the amount by
which the laser frequency is greater than the calculated frequency, and
the uncertainty in the calculated frequency that arises from oFia In
Fig. 12 we have plotted the laser frequency as a function of Fis On the
scale of this plot it is not possible to see either the difference between
laser freguency and the frequency calculated from the model of an abrupt
surface or the error bars associated with Fio In Fig. 13 we have plotted
the difference frequency and its associated error bar as a function of Fin
We have included two points from Ref. 5 that were obtained by extrapolating
measurements taken at low electric field with a microwave source to the
limit as the electric field is reduced to zero. The fact that the curve
of difference frequency versus external electric field has very Tittle
slope relative to the curve of transition frequency versus electric
field indicates that the model of an abrupt surface is very accurate
in calculating <Z>n°“<z>1’ as discussed previously.

In Fig. 14 we have plotted F%j‘“Fi as a function of AFi" The

J
observed consistency between the straight line passing through the origin
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TABLE 4.

Trans- Laser Fi Op Model Dif.  Std.dev. of
ition freq. i freq. freq. dif.freq.

[GHz] [V/cm] [V/em]  [GHz] [GHz] [GHz]
1- 2 4£28:63 895,89 266 422028 6035 « 18
i1- 3 $£28-63 329.13 « 80 42229 6o 34 «4%8
1- 4% $28.63 19157 « 78 422:39 bo2% 78
i- 5 428,83 133,09 61 422,58 6.0% - 86
1= 2 525+%3 1336,.39 e 39 518.83 660 e 08
i- 3 525.43 502,81 37 518.65 6.78 019
i~ & 525.43 296 . 0% 022 518,80 663 e 19
1- 5 525.43 208,76 &0 518,77 666 48
i- 6 525043 157.72 622 518.41 7.02 s 35
1- 7 525.43 127.28 22 518.53 & .90 e &3
- 8 52543 106062 e 27 518,83 6o59 s 62
i- 9 525043 91.7¢ 027 519,36 6,07 072
1-10 525+43 80,00 o4& 518626 717 le &1
i- 2 639,19 19132.18 i.%41 $29.51 967 e 25
I- 3 539,19 735,71 «5&6  $31,03 8515 0 2%
i & 63919 435,65 «68 630,70 Bo&9 51
i- 5 639,19 301.24 503 626,09 13,09 5637
I- 3 764 .64 1029.%85 1.18 156,15 8.49 48
1- % 764 .64 609,53 2088 753.67 10.97 1.92

Note that GF , from which the Tast column is caTcuTated does

not include the systematic error of 5.66 %10

1

from the uncertainty in our measured value of H.

"F. that arises
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OBSERVED TRANSITIONS

CURVES CALCULATED FROM MODEL OF AN
ABRUPT LIQUID-GAS INTERFACE
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ELECTRIC FIELD (V/CM)
XBLT7S8-6T725

Fig. 12. Piot of the laser frequency versus electric field at which
transitions are observed. The curves are the same as in Fig. 1.
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Fig. 13. Plot of the laser frequency minus the frequency calculated
from the model of an abrupt liquid-gas interface, plotted
as a function of external electric field.
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20 T T

K=1.174 £ 0036

MEASURED CHANGE OF ELECTRIC FIELD AT RESONANCE (V/CM)

=10 L L
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CALCULATED DIPOLE ELECTRIC FIELD IF K=l (V/CM)
XBL798-6724

Fig. 14. Plot of measured change of electric field at resonance

Fij'ﬂFi versus the change calculated for a hexagonal lattice
with the same charge density as the measured charge density.
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with sTope  and the plotted points indicates that the model given in
Eq. (7.20) does indeed fit the data.

In an attempt to obtain more information about k(I') than just the
best level fit when averaged over our data, and to give an idea of the
contribution of the individual values of I' to the final result, we
estimated the (') and the resulting error bar from each Fp for which
there were other measurements involving the same transition and for which

A, <L AF.. We did so by calculating F’,i and Of without using the data
i

ij ije

from the measurement we are attempting to use to find «(I'). We then use

Fij and AFij to compute « from Eq. (7.19). We compute G, as the propa-

gated error OF and Aijo These results are plotted in Fig. 15. A Tevel
i

straight line is not inconsistent with our data, although we know from
physical considerations that «(I') must be a monotonically decreasing

function that asymptotically approaches k=1 at large T.

E. Implications of Measured Quantities

In comparing our measured quantities wfth the theoretical predictions
discussed eariier the most sériking thing is their close agreement. The
results shown in Fig. 13 of frequency difference with respect to the
model of an abrupt surface indicate that at Tow electric field there is
no measurable variation of the frequency difference while at large é?ecﬁric
fields an upward slope becomes evident. The gradual interface model of
F. Stern99 predicts almost similar results. The parameters of his model
were fitted to the low field results of Grimes et al.which are consistent
with our measurements. The agreement will undoubtedly improve when our

measured values are also used in the fitting process. Another use for
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Fig. 15. Plot of the ratio «(I') as determined from individual

measurements versus I'.
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our measurements of transition frequency as a function of electric field
is to check the first principles calculations of density variation near a
free Tiquid helium surface. Such a comparison may help to resolve the
existing controversy as to whether or not the local density oscillates
near the helium surface.

In comparing our measured value of k(I') with the results given in
Table 1, that are obtained by integrating tabulated values of the radial-
distribution function g(r), we see that our measured value is larger by
a statistically significant amount. We do not know the accuracy of the
tables of g(r) from which the calculated values of k(I') were derived.
The variation of the consistency parameter W from the exact value of W=1
indicates that they may be unreliable. Two physical effects which would
make our measured value of « Targer than the calculated value are the
reconstruction of nearby electrons as the excited state electron moves
away from the surface and the zero point motion of the electrons. We
expect both of these effects to be small. There could, however, be an
additional source of disorder which is not small, such as waves on the
helium surface. If we systematically measured the charge density to be
less than its true value the same effect would arise. A good way to
check our results would be to repeat the experiment at a temperature
Tow enough so that helium gas atom scattering does not dominate the
lineshape and look at the effect of changing the temperature as well as
the charge density. (Because our Tinewidths were proportional to helium
gas atom density, which increases exponentially with temperature, we
took all of our data at the lTowest temperature we could reach in our

cryostat — about 1.2°K.)
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To our knowledge this is the first experimental check of the
computed radial-distribution function of a two-dimensional system of
free particles interacting with a 1/r potential. The theory will
undoubtedly be refined now that there are experimental results with
which it can be compared. Also, it appears that a significant improve-
ment in the accuracy of the measurement can be obtained by repeating
the experiment at a lower temperature. It would be very interesting
to experimentally resolve the I' dependence of «(I'). The theory and
experimental techniques reported in this thesis should allow one tov

make such a measurement.
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VIIT. CONCLUSION

In conclusion, we have obtained from our data both the quantity x,
defined as the ratio of %'[rilas to the same quantity evaluated for a
hexagonal Tattice with the same chérge density, and the electric field
dependence of the transition energy from the ground state to various
excited states. Our measured value for the best level fit to the function
«(r), using data with T between 9 and 44, is « = 1.174 +0.036. This is
significantly larger than the values of k(I') calculated from published
tables of the radial-distribution function of the classical electron
gas with I' in this interval. It is not clear whether this discrepancy
is a result of inaccuracies in the published tables, a possible systematic
error in our measurement, or increased disorder from some physical source
not included in the calculations such as waves on the helium surface.

The transition energy that we measure at a given applied external
field F 1is found to differ from the transition energy calculated from
the model of an abrupt liquid-gas interface by an amount that depends
very little on F. This implies that the change in average distance from
the helium surface that occurs as electrons change from one state to
another can be calculated very accurately from the model. Our data is
also consistent with a more elaborate model calculation of F. Stern.

A number of first principle theoretical calculations exist which give
incompatible results for variation of density at the surface of liquid
helium. We expect some of the controversy surrounding these calculations
to be resolved when they are extended to compare with our measured values.

Our measurement of the disorder parameter k was made possible

because we were able to measure the surface charge density. We did this
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using a novel technique that involved measuring the change in AC capacitance
between plates separated by the helium surface that occurs when charge is
put on the surface. We found that we were able to calculate the change

in AC capacitance for a given total surface charge without using the
detailed thermodynamics of a two-dimensional electron gas. A self-
consistent electrostatic calculation gives very accurate results. One
surprising result of this caiculation is that almost all of the surface
charge is confined to a "charge pool" which will, in general, only cover
part of the helium surface.

The technique we have used to measure ¥ can give greatily improved
accuracy if the temperature is iowered significantly below the 1.2°K used
in our measurements. We expect that when this 1s done it will be possible
to study the variation of k¥ as a function of T. 7This could Tead to
significant new results in the theory of two-dimensional disordered

systems.
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APPENDIX 1

We give the proof of Eq. (5.11) in the text. We use Green's
reciprocation theorem. Consider three situations: A, B and C. In all
three cases the sides of the cell are at ground potential and there is
a total charge Q0 in the charge pool on the helium surface. However, in
situation B the top plate potential is increased by AV from the ground
potential present in situation A. In situation C the top plate is at
ground potential but the potential of the bottom plate is increased by
AV from the potential V0 present in situation A. The radius of the charge
pool is RAg RB and RC for situations A, B and C. The charge on the top
plate QTs the charge on the sides QS, the charge on the bottom plate Q89
the potential as a function of position on the helium surface \lp(p)s and
the charge density in the charge pool Ip in the three situations are

denoted as in the following table:

Situation Qs Qg Qg VP(O) ap(p)
A Tl Sl X1 VA(Q) GA(Q)
B TZ 32 X1+AQB VB(Q) GB(Q)
C T, + AQT S, X, Vc(p) Gc(@)

Using Green's reciprocation theorem we obtain the following equation:



-98-

AQBAV - AVAQT

Here €1RC is 1 if (ABC) 1is an even permutation, and is -1 if it is an
odd permutation. Both of the integrals on the right-hand side of Eqg. (A2)
are of the third order of smallness in AV since Gi(p) goes continuously
to zero as p approaches Ria The left-hand side is only of second

order smaliness in AV. Hence:

tin Ay
A0 TAY AV

This completes the proof.
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APPENDIX 2

We give plots of optical response as a function of cell voltage.
The numbers from which these plots were obtained are stored in named
GSS files on the LBL Computer Center tape #35217. The files were created

by unformatted writes of the form:
WRITE(N)(K,(Y(I1),11=1,4098),
(X(12),12=1,4098),(XL(13),13=1,3),
(YL(I14),14=1,3),(TITLE(I5),15=1,6))

The first K values of X are voltages and the first K values of Y are the
associated values of the optical response. Alpha-numeric information in

"A" format is stored in XL, YL, and TITLE.
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