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ELECTRONS ON THE SURFACE OF LIQUID HELIUM 

David Kay Lambert 

Materials and Molecular Research Division 
Lawrence Berkeley Laboratory and Department of Physics 

University of California 
Berkeley. California 94720 

ABSTRACT 

We have used spectroscopic techniques to study transitions of 

electrons between bound states in the potential well near a helium surface, 

The charge density distribution of electrons on the surface was indepen-

dently obtained from electrical measurements, From our measurements we 

have obtained information both about the interaction of the bound state 

electrons with the surface of liquid helium and about local disorder in 

the positions of electrons on the surface. 

In the limit of zero surface charge density we have found that the 

transition frequency from the ground state to excited states as a function 

of electric field differs by a nearly constant amount from the transition 

frequency calculated by assuming that the helium surface is an abrupt 

change in density between the liquid and the gas. This implies that the 

model of an abrupt surface gives accurate results for the change in 

average height above the surface as electrons change from one state to 

another. The nearly constant difference frequency as a function of 



2 

electric field can be obtained from first principle calculations of 

fluid density near a liquid helium surface as well as from our measure-

ments. Much should be learned about the accuracy of the first principle 

calculations when they are extended to make this comparison. 

The presence of nearby electrons in the ground state changes the 

1 oca 1 electric field acting on an electron in an excited state. The 

change is proportional to the quanti ty ~'lr;I-3 where r. is the 
1 1 

distance along the helium surface from the excited electron to the ·th 
1 

other electron. For a given charge density, this quantity will increase 

as the local disorder increases. I~e have defined the quantity K to be 

the ratio of this measured quantity to the value it would assume if the 

electrons formed a hexagonal lattice. Using measurements taken with the 
1: 1: 2 parameter r ::: TI2 n 2e /kT in the range 9 < r < 44 we found the best level s 

fit of K(r) to be given by K ::: 1.174± 0.036. One may also calculate K(r) 

from the radial~distribution function g(r) of the two-dimensional 

electron gas. Our measured K is significantly larger than one obtains 

from the tables of g(r) that have appeared in the literature. To resolve 

this discrepancy we suggest that the calcula ons of g(r) be improved 

and that additional measurements be taken at lower temperatures, 

One additional qualitatively new result was obtained. We discovered 

that the distribution of charge on the helium surface is appreciable only 

within a "charge pool" that does not in general cover the entire surface 

and that the distribution of charge in the charge pool can be obtained 

from electrostatics. 
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(If an electron does enter liquid helium it does not remain in a 

non-localized conduction band stateo A "bubble" about 30 ~ in diameter 

forms within which the electron is localizedo The energy of an electron 

in a bubble8 is believed to be about 001 eV above the energy at rest in 

vacuumo ) 

The short-range nature of exchange forces suggests that as the 

surface is approached from the gas there is an effective repulsive 

potential which is large only within atomic distances from the surface. 

Because liquid helium has a dielectric constant E unequal to unity, there 

is an attractive potential at distances large on the atomic scale caused 

by the extra electron polarizing the liquid and being attracted by the 

polarization charge. For an electron of charge e a distance z above 

the liquid, the resulting potential is: 

V(z) 
-2 e - - z ( 1.1) 

'. . - e((€-l))~ Here we have deflned e = 2 Ti+-rT Very accurate measurements of 

c for bulk 4He have been reported in the literature0 9,lO 

In our experiment we needed to have the charge remain on the surfaceo 

To confine mobile charge on the surface it is necessary to use an external 

electric fieldo At points on the surface where a static distribution of 

mobile charge is present, the average total electric field along the 

surface must be zeroo Therefore, if the surface charge distribution is 

static there will be an external electric field component F directed 

out of the surface acting on the electrons in addition to the image 

potentialo Neglecting for the moment the electric fields of nearby 
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electrons, the Hamiltonian for an electron near the liquid surface (but 

far enough away that the effective repulsive interaction may be ignored) 

is given by: 

H == L 
2m 

-2 e - -z + eFz (1. 2) 

We have measured the transition frequencies between the bound 

states at the surface as a function of applied external electric field. 

In the limit that the surface charge is small. our measurements provide 

information about how, within a few A of the surface, the effective 

repulsive interaction causes the potential to differ from the potential 

used in Eq. (1.2). Because of a novel technique we developed that 

enables us to measure the surface charge density, we are also able to 

obtain information about the local positional disorder of the surface 

electrons by measuring the effect of increasing surface charge density 

on the applied electric field at which resonance occurs. We measure 

the surface charge density by interpreting AC capacitance measurements 

made between plates that are separated by the helium surface on which 

the electrons are located. To be able to interpret the AC capacitance 

measurements we self-consistently solved the electrostatics of our cell. 

One interesting qualitative result obtained from this calculation is that 

free surface charge does not, in general. cover the entire liquid surface. 

The free charge ;s contained in a l'charge pool," the dimensions of which 

can be altered by changing experimentally accessible potentialso 

We are able to compare our measurement of the local positional 

disorder with the result of theoretical calculations of the radial-

distribution function of the two-dimensional electron gas. This 
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comparison is meaningful since the wavefunction of an electron in the 

ground state only extends on the order of lo2A above the surface while 

individual electrons are separated by more than 3 x l03~, A recent 

publication1l has reported the measurement of a phase transition of 

the surface electrons to a state of long range order and much theoretical 

interest presently exists as to the nature of disorder in two-dimensional 

systems, 

Theoretical calculations of the local structure of the liquid 

helium surface are also available, There are several competing 

techniques for obtaining the density variation near the surface that 

give conflicting results, It is hoped that our measurement of 

transition frequency as a function of applied electric field (in the 

limit that the surface charge is small) will motivate those doing the 

theoretical calculations to obtain results that can be compared with 

experiment, 
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II. EXTERNAL ELECTRON SURFACE STATES 

In this chapter we discuss the bound states of electrons near, 

but outside of, a helium surface (there is another set of states for 

electron "bubbles" inside liquid helium near the surfac/). The 

Hamiltonian for distances large enough away from the surface that the 

effective repulsive interaction with bulk liquid may be ignored, and 

neglecting the electric fields of nearby electrons, is given in Eq. (1.2). 

We begin by assuming that this Hamiltonian is valid to z '" 0 and represent 

the surface of the helium with an abrupt rise to infinite potential. 

The potential in our model Hamiltonian is given by: 

V(z) = 

V(z) '" 00 

-2 

~ + eFz z for z > 0 , 

for z < 0 . 

Because of the singularity in the potential at z ::: 0 the wavefunction 

must approach zero linearly in the limit that z approaches zero and 

(2. 1 ) 

will be zero for z less than zero. 12 Schrodinger's equation is solvable 

only if the electric field F :::: O. For the case of non-zero F the problem 

can be approached in several ways. One may use perturbation theory and 

treat F as a small parameter. 5 however, under the conditions of our 

experiment this is not valid. One may use the WKB approximation. 13 

however, this is not sufficiently accurate14 except at small F where 

it becomes exact. One may use a variational technique. 5 One may find 

the Hamiltonian matrix (in terms of the eigenfunctions when F=O) and 

diagonalize a sub-block of finite dimensionality numerically. Or finally, 

one may numerically integrate Schrodinger1s equation. We will discuss 
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both the matrix approach and the numerical integration technique. The 

numerical integration technique was used to calculate energy eigenvalues 

for FrO. 

To obtain the Hamiltonian matrix we solve Schrodinger's equation 

analytically for F::: 0 and use these eigenfunctions to calculate matrix 

elements for FrO. For motion in the z direction Schrodinger's equation 

has the form: 

(2.2) 

- 2 2 2 ( wher'e A '" 2me 111 and B:::: -2mEz/11. We requi re that 1jJ z) :::: 0 at 

z=o and that /Xl 11jJ(z)12 dz be finite. ~1aking the substitutions 1jJ(z):= 
~ z=O 1 

z f(z) e- S z, w=az, and a=2S"2, the differential equation kes the 

form: 

fll{w) + (2 -w)f'(w) + [~-1] f(w) ::: 0 
213"2 

This equation is satisfied by the generalized Laguerre polynomial 15 

for n := 1 ,2, ... The energy eigenvalues are 

(2.3) 

then Ez - - me 4 /2fl 2 n2 for n '" 1 ,2,... This is a hydrogenic energy 

spectrum. For electrons on 4He the Rydberg is about 159 GHz. The 

normalized wavefunction is given by: 

-2 2 

2 (me 2 )3/2 1 ( 2mE?) -me zln n '" - - L --z -zoe 
n n2 n-l n2 

n n, 
(2.4) 

The matrix elements < klzl£.> are given by: 

-1 k-l 
(klzl£.) ::: ( 2mE?) 1 

-;2- • (k£.)5/ 2 i =0 j=O (k - (i+1)! (£. - (j+l)! 

x 2i+j+3 kj +4 £.;+4 (i +j + 3)! 

(i+1)1 (j+l)! ;ljl(k+£.)i+j+4 
(2.5) 



In particular <nlzln>:::: (2m;22) -1. 3n 2. The Hamiltonian matrix for 

F f 0, in terms of the eigenfunctions of the problem for F::: 0, is then 

(2.6) 

The eigenvalues of this matrix are the energy eigenvalues for F f 0 and 

the eigenvectors are the expansion of the eigenfunctions in terms of 

the complete orthonormal set Wn(z). 

To use the numerical integration technique to find the energy 

eigenvalues we used Schrodinger's equation in the form 

° (2.7) 

where A::: fl2/ 2me 4 :::: 1.5709375 xlO- 3 (GHzr', B:= efl 4/4m2e6 := 1.4447871 X 

10- 4 (volt)-', and w=aZ, where a:= 2mi?/fl2, so l/a ~ 38~. Since W(w) 

is a smooth square integrable function, then for any € > 0 we may choose 

an t~ such that if w > M then I W(w) I < €. We begi n with a range of Ez 

which contains an eigenvalue and a value M of w at which Wn(w) can be 

assumed to be very small. The value of Ez which corresponds to an 

eigenvalue will result in a W(w) which rises linearly from zero for w 

near zero and is close to zero for w=t~. We assume that W(w) increases 

linearly from zero for w near zero and numerically integrate7 the 

differential equation to find W(~1). \~e then vary 

to find Ez(F). It is straightforward to check the accuracy of the 

computation by changing M and E. To interpolate between eigenvalues 

computed in this way a smooth polynomial fit to the difference between 

the computed eigenvalues and the eigenvalues obtained using the WKB 



. t' 16 d approxlma lon was use . The calculated energy difference between the 

ground state and the first ten excited states are shown in Fig. 1. 

We now extend our discussion from the one-dimensional model 

Hamiltonian, Xo' discussed above to the unknown physical Hamiltonian, x, 

valid near the surface, which we assume to be one-dimensional. Let 

un(Z) and En be the eigenfunctions and eigenvalues of X and let vn(z) 
, 

and En be the genfunctions and eigenvalues of Xo' Let V(z) be the 

potential appearing in X and let V'(z) be the potential appearing in 

J{o' Then one can show l7 that: 

00 

, 
E - E n n 

u~ (V (z) 
112 

V'(z)) v dz - ~2 n m 
d * I Un 
d Vn(O 
z z=o 

. (2.8) 

If we assume that vn(z) = un(z) in this equation we obtain the result 

rst order non-degenerate perturbation theory: 

, 
-E "2' 

n o 

00 

v~(v(Z) -V'(z)) vn (2.9) 

r the helium surface the difference between the exact potential and 

the potential used in our model Hamiltonian is probably very large so 

first order perturbation theory is not expected to be accurate. In the 

next chapter we discuss several model calculations for the effect of the 

helium surface which do not agree with Eq. (2.9). 
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Fig. 1. Transition frequency from the ground state to excited state n 

as calculated from the model of an abrupt liquid-gas interface. 



III. THE SURFACE OF LIQUID HELIUM 

In this chapter we review the theoretical and experimental work 

done by others that has iocreased our understanding of the liquid helium 

surface. We begin with first principles calculations of the microscopic 

structure of the liquid-gas interface. We then discuss previous attempts 

to extract information about the interface from physical measurements. 

By first principles calculations we refer to calculations in 

which the bulk properties alone are used to calculate the surface 

properties. These were motivated by a paper by Regge18 who used 

Feynman's concept of a macroscopic wavefunction. He wanted the wave-

function to decay exponentially outside the surface and to smoothly 

join to the translationally invariant behavior inside the liquid. 

This was found to imply an oscillatory density near the surface which 

was damped as one went into the liquid. The predicted surface tension 

was 48% greater than the measured surface tension of 4He at T::: O. Soon 

after, a number of papers appeared attempting to calculate the density 

distribution near the liquid helium surface using the techniques of 

quantum many-body theory. A wavefunction is assumed to be of the form: 

C exp ( 2 u(r .. ) + 
i <j 1 J 

(3. 1) 

Here u{r .. ) is the two-particle correlation function and t(z,.) deter­
lJ 

mines how the wavefunction depends on distance from the surface. They 

differ in the exact form of the two-particle correlation function used. 

In some cases it is calculated while in others it is taken from x-ray 

scattering data on bulk 4He . They also differ in the computational 
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method used (analytic variation using an incomplete function space19- 22 

or numerical ~~onte Carlo methods 23 ). In some cases the functional form 

of the density variation near the surface is constrained 19 ,20,22 while 

in other cases it is not. 21 ,23 One problem common to all of these 

calculations is that the wavefunction does not include some important 
24 degrees of freedom. It neglects surface waves and other forms of 

long-range hydrodynamic motion. Even though we are interested in the 

system with all of these modes in their ground state. the zero point 

motion associated with these degrees of freedom is still important. 

In an attempt to avoid this pitfall, density functional theory has 

been used. 25 ,26 The total free energy of the system is expressed as a 

functional of the fluid density and its gradient. The Thomas-Fermi 

model of the atom is an example of a density functional theory. In the 

paper26 by Ebner and Saam the density functional is obtained from the 

bulk liquid structure factor and a self-consistent technique is used to 

determine the highest surface wave wavevectors allowed in the theory 

(the cutoff was set at 0.99 ~-l). 

As is also the case when similar techniques are applied to other 

simple liquids,27 the two approaches to the problem give quite different 

results. A comparison of the length over which the density distribution 

predicted by these theories falls from 90% to 10% of the bulk density 

has been given by Lekner and Henderson. 28 They find that the predictions 

range over a factor of three. There is also a qualitative difference 

between the theoretical predictions, Unless otherwise constrained the 

calculations based on the microscopic wavefunction find an oscillatory 

structure on the density profile near the surface. On the other hand, 
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the density functional approach is found to yield a monotonically varying 

density profile from the bulk liquid to the vapor, The surface tension 

calculated from the microscopic wavefunction approach agrees to within 

25% with the measured value while the agreement of the density functional 

calculation of Ebner and Saam26 is within 2%. The surface tension in the 

microscopic wavefunction approach is due to the rapid variation of the 

wavefunction in the z direction while in the density functional approach 

it is almost exclusively due to the zero point energy of the surface 

modes. There has been only one first principles calculation reported 

of the shift in the transition frequency between external surface electron 

states. 29 The predicted difference between actual transition frequencies 

and those calculated from the sharp interface model Hamiltonian was about 

a factor three larger than the measured di rence. 

In addition to theoretical efforts to find the structure of the 

4He surface and from this calculate measurable properties~ there have 

been attempts to start from the measured surface properties and obtain 

information about the surface structure. The measured surface properties 

. 30-33 h b h are surface tenslon, t e arrier t e surface provides to electrons 

passing in or out of the liquid,2,34,35 transition frequencies of external 

su ce state electrons,S and the reflection of 4He atoms from the 

" 36 surface. A measurement of the ellipticity of light reflected at 

Brewster's angle is also being attempted. 37 

The first attempt to use 4He surface tension measurements to 

obtain information about the microscopic liqui vapor interface was made 

by Atkins,38 He found that all of the surface tension at T:::: 0 could be 

explained by the zero point motion of the capillary surface waves or 

"fipp'/ons" and was also able to explain the behavior of surface tension 
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as a function of temperature at low temperatures. However, he recognized 

that this agreement could be fortuitous since there were other terms, 

both positive and negative, contributing to the surface energy. 

Atkins work was followed by several other papers which ignored 

ripplons and tried to interpret the surface tension as a result of the 

liquid surface density profile. 39,40 Although both used the same quantum 

mechanical generalization of the classical theory of the liquid-gas 

interface (where "ripp 1 ons II are damped and hence ignored) the; r results 

differ by about a factor two for the exponential decay length from the 

liquid to gas. More recently Lekner and Henderson41 put forth the point 

of view that the function t(zi) in Eq. (3.1) is unnecessary. Starting 

from this assumption the density is found to change from 90% to 10% of 

the bulk density over a distance of 3.9 ~. 

We next discuss previous work that has been done to interpret 

measured transition frequencies of external electron surface states. 

With only two exceptions these have concerned themselves with transition 

frequencies in the limit of a small external electric field. A model 

potential is constructed that differs from the image potential near the 

4He surface. The model contains one or more adjustable parameters 

used to obtain agreement with experiment. A model discussed by 

Cole 3 assumes that the image rotential is exact for Z;;;:'b. the potential 

is constant for 0 < Z ~ b and jumps to Vo for z < O. To be cons i stent 

with the data of Grimes et al the parameter b in the model is about 10~. 

To analyze their data Grimes et a,5 used a similar model except that for 

o < z < b the potential is taken to be Va. They found that to be consis­

tent with their data the parameter b in this model is about 1.04 ~. 
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The class of model used by Grimes et al was later discussed by Sanders 

and Weinreich 12 and solved exactly by Hipolito and Felicio42 who found 

that b was best fit by 1.Ol~. In contrast to the results of first order 

perturbation theory the shift in transition frequencies found by solving 

this model exactly has a different functional dependence on the parameter 

b but both predict an energy shift of the nth state proportional to n 3 

The exact solution of this model can reproduce the measured data with 

two distinct values of b, one of which is very small and is rejected 

as being unphysical. This shows that data taken in the limit as F goes 

to zero do not necessarily uniquely specify a model potential of given 

functional form with a single parameter. 

Attempts to compare data at non-zero F to model potential results 

were first carried out by Zipfel and Simons. 43 They used a model in 

which the potential is Vo for z < b-a, decreases linearly from b-a to 

b, and is equal to the image potential for z > b. They found that b 

could range from l~ to 3~ while a ranged from O~ to 6~ and still for a 

pair a and b fit Zipfel's unpublished datao Another model calculation 

is due to Stern. 44 Rather than working directly with a model for the 

potential acting on the electron, he constructed a model for the 

dielectric function near the surface with a smooth change from bulk 

to vacuum values as the liquid surface was crossed. He found best 

agreement with Zipfel's data when the effective transition layer thickness 

was about 5.7~. 

There have been experiments measuring the penetration of energetic 

electrons from the gas into the liquid2,34 and tunneling of electrons 

from bubble states in the liquid to the gas. 35 No information about the 
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surface thickness has been extracted from these measurements although 

the tunneling measurements do seem to indicate an excess barrier that 

is not explained, 

Finally, the reflection of 4He atoms from the 4He liquid surface 

has been measured. 36 Most of the incident atoms are absorbed into the 

liquid. It is found that the measured reflection depends only on the 

perpendicular momentum of the atom, is independent of temperature, and 

that the fraction of the incident beam that ;s inelastically scattered 
• - 4 
1S less than 10 . The elastic scattering was also found to be small 

but measurable. A model of Echenique and Pendry45 explains the observed 

smallness of the reflectivity if the liquid helium density at the 

surface changes from its bulk value to near zero over a distance of 

at least 5~. 

The conclusion that one draws from previous theoretical and 

experimental work with respect to the structure of the helium surface 

is that the situation is unsettled. The liquid gas density profile has 

mos t of its change over a di stance of 5 ± 3 $.., The zero poi nt mati on of 

"ripplons" is important, but how it affects the local properties of the 

surface is not completely understood, The density of the liquid may have 

some oscillatory behavior near the surface, but this could be an artifact 

of the calculations, Existing measurements are not sufficient to 

distinguish between competing theories, This is the reason why we made 

the high accuracy measurements reported here. 
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IV. THE TWO-DIMENSIONAL ELECTRON FLUID 

As discussed in the Introduction~ electrons on the surface of 

liquid helium are a very close approximation to a two-dimensional electron 

fluid. As such. it provides a way for experimental tests to be applied to 

the rapidly developing field of phase transitions in two dimensions. It 

is also an experimentally interesting system in its own right. We begin 

this chapter by giving an introduction to the theory of the two-dimen-

sional electron fluid. We then discuss some previous experimental 

results and their interpretation. 

Many of the properties of metals, which are a close approximation 

to a three-dimensional electron gas~ can be explained by assuming that 

the electrons are free particles interacting with each other only through 

the exclusion principle. We begin by discussing a quantum mechanical 

system of charge-free electrons in two dimensions. The density of 

states per unit area (includinq spin degeneracy) is: 

N(E)dE '" e(E)dE (4. 1 ) 

Here e(E) :;;'1 if E>O and e(E) =0 if E<O. The probability that a state 

is occupied is given by the Fermi-Dirac distribution function. The Fermi 

energy of a two-dimensional electron gas is 

N 
A 

(4.2) 

For electrons on bulk liquid helium there is an upper limit46 to 

the charge density that may be stably placed on the surface. If the 

density is higher than about 2 xl0 9 electrons/cm 2 the mutual repulsion 
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of the electrons causes the surface to become mechanically unstable (in 

effect it has negative surface tension). Deformations of the surface47 

occur allowing macroscopic "bubblons" of charge to be pulled through the 

bulk liquid to the source of the electric field. This yields a maximum 

Fermi energy of about 6 xlO-zoK. Most experiments 48 have used high 

enough temperatures and low enough charge densities that quantum 

corrections to classical statistics are small. 

In the classical limit the thermodynamic variable which governs 

the behavior of the two-dimensional electron gas is the ratio of (oulomb 

energy per electron to kinetic energy, where ns is the 

number density of electrons per unit area of surface. If r« 1 then the 

electrons behave like an ideal gas in two dimensions. 49- 53 As r increases 

the ordering of the electrons increases and, if r is sufficiently high, 

the electrons are expected to "crystallize" into a triangular lattice. 54- 58 

Experimentally, long-range order seems to appear when r is about 140. 11 ,59,60 

There is a proof that long-range crystalline order is impossible in the 

thermodynamic limit 61 because of fluctuations which depend logarithmically 

on the size of the system. However, long-range order of a macroscopic 

two-dimensional system is predicted and does seem to be observed 

experimentally. 

Short-range order sets in before long-range order and seems to 

gradually increase as r is increased. In a computer calculation54 

involving 10 4 interacting classical point charges itis found that before 

long-range order appears the system develops domains of local crystalline 

structure. As r increases the size of the domains increase until the 

entire system is contained in a single domain. The radial-distribution 
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function also changes gradually from delta-function-like behavior54 at 

large r until all structure is lost at small r. 52 •53 

The first experiment measuring the short-range order of electrons 

on the surface of liquid helium is reported in this thesis. The experi­

ment was carried out for 9 < r < 44. 

We next review experiments reported in the literature in which the 

two-dimensional motion of electrons on the surface of liquid helium have 

been measured. We begin with cyclotron resonance experiments. When a 

magnetic field is applied perpendicular to the helium surface the single 

electron Hamiltonian is still separable. The solution of Landau62 for 

free electrons in a magnetic field in three dimensions can be applied to 

the x-y motion, while our previous discussion applies for motion in the 

z direction. The density of states for motion parallel to the surface 

separates into a series of delta functions separated by energy ~E = enB/mc. 

The resonant absorption between different Landau levels is called cyclotron 

resonance. In the case of electrons on the surface of liquid helium, the 

frequency of the resonance is found to depend only on the component of 

B perpendicular to the surface. 6 The resonant frequency has a small 

shift which depends quadratically on the electric field pressing the 

electron toward the surface. 63 This is interpreted as a microscopic 

dimple forming under the electron which contributes to its effective mass. 

The linewidth of the absorption lines is interpreted to yield the scatter-

ing time or mobility of electrons on the surface, 

Electromagnetic energy may also be absorbed by surface electrons 

by exciting standing plasma waves in the surface charge density. Long 
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wavelength modes are only excited at wavelengths set by the size of the 

surface, Since the exciting frequency is known, one is able to verify 

the dispersion relation for a plasma in two dimensions,64 The linewidths 

of the resonances provide another way to measure the mobility of surface 

electrons. 

Long-range crystalline order makes possible resonant absorption of 

electromagnetic energy at another set of frequencies. If the wavelength 

and frequency of a surface capillary wave match a wavevector in reciprocal 

space of the electron lattice and the driving frequency, then resonant 

absorption will occur,59,60 By observing these resonances as a function 

of temperature'l long-range crystalline ordering of the surface electrons 

has been found to occur at r :: 137 ± 15. 

The lineshapes of transitions between the bound states of electrons 

normal to the surface in the presence of a large magnetic field parallel 

to the surface65 has also been interpreted to obtain information about 

motion of electrons along the surface. A moving electron is acted upon 

by a Lorentz force perpendicular to the surface which in the rest frame 

of the electron is equivalent to an extra electric field. The two-dimen-

sional equivalent of the Maxwellian velocity distribution yields a 

Gaussian lineshape of absorption versus electric field F of the form 
1 

A(F) :: Ao exp[-(F - Fo)2/202] where 0 '" (k:f f. The observed linewidths 

are smaller than this equation predicts, an effect which increases in 

importance as r increases. This was interpreted as motional narrowing 

(the scattering of the electrons into several different velocities before 

being de-excited in the z direction causes a narrowing of the lineshape 

just as NMR resonances of nuclei moving in spatially varying fields are 
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"motionally narrowed"). The amount of motional narrowing is used to 

extract a velocity autocorrelation time. This interpretation of the 

data is~ however, not universally accepted. 66 ,67 

Other experiments have attempted to measure the mobility in situations 

in which large fractions of the surface charge is mo from one place to 

another. These include time of flight measurements,68 measurements of 

the phase difference between current driving one plate and detected in 

another plate beneath a charged helium surface. 69 and the change in Q 

of a tuned RF circuit when electrons are put on a liquid helium surface 

inside of it. 70 These experiments obtained mobilities that are inconsis­

tent with the mobilities deduced from cyclotron and plasmon resonance 

experiments. The low temperature mobilities obtained from cyclotron 

and plasmon resonance experiments are many times higher and are in 

agreement with calculations based on scattering of electrons by ripplons. 

In the analysis of the measurements made when a large fraction of the 

surface charge is moved from one place to another, it was not taken into 

account that electrons not cover the entire surface as discussed 

in the next chapter. The possibi-lity of free charge accumulating on 

the helium film covering the walls of the container was also neglected. 

It is quite possible that there was no free charge on the helium surface 

during these experiments. 
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V, THEORY OF CHARGE DENSITY AND ELECTRIC FIELD MEASUREMENTS 

In this chapter it is shown how capacitance measurements, voltage 

measurements, and a knowledge of the dimensions of the experimental cell 

are used to calculate the surface charge density and electric field 

acting on external surface state electrons, In the chapter on data 

analysis we discuss the dipole electric field from other nearby electrons, 

how the magnitude of this field is extracted from our measurements, and 

how it is related to the local disorder in the surface electron lattice, 

In Fig. 2 we give the dimensions of the cylindrical cell within 

which electrons are confined on a helium surface in our experiment. The 

cell has a radius a and height H, The gap s separates the bottom 

plate from the grounded cell body, The top plate of diameter 02 is in a 

circular hole of radius D, in the cell body, The top plate is insulated 

from the cell body by a 0.084 mm gap and has effective radius b:::: (°,+°2)/4. 

The cell ;s filled to a depth c with liquid helium. The depth ;s obtained 

by measuring AC capacitance between top and bottom plates before and after 

filling takes place. A positive potential applied to the bottom plate 

causes an electric field normal to the surface to act on surface electrons. 

Fringing fields confine the electrons on the surface. Free charge is 

put on the surface by briefly heating a filament and allowing the 

thermionically emitted electrons to pass through a small hole in the 

center of the top plate while a confining positive potential is present 

on the bottom plate, Free charge on the helium surface screens the top 

and bottom plates from one another and causes the measured AC capacitance 

between them to decrease. This AC capacitance change ;s a function of 

the positive bias potential applied to the bottom plate. By measuring 
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Fig. 20 Cross section drawing of the cylindrical cell within 

which electrons are confined on the helium surface. 
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the AC capacitance after charge is placed on the surface we are able to 

calculate the surface charge distribution as a function of radius and 

bottom plate voltage. Knowing the surface charge distribution we are 

also able to calculate electric field acting on the external surface state 

electrons as a function of radial distance and bottom plate voltage. 

We begin by discussing how the liquid helium height is calculated 

from the capacitance measurements. The result is obtained from Gauss' 

law. However, to justify the approximation involved in using Gauss' 

law and because we will need the results later, we begin by solving 

the boundary value problem of a potential Vo applied to the bottom 

plate in Fig. 2 with the other conducting surfaces at ground potential. 

A set of functions satisfying Laplace's equation inside the cavity is: 

<Po ::: A + B z o 0 

<P ::: 
k (5. 1) 

Here I (x) is the zeroth order imaginary Bessel function. 71 From these o 

functions and the techniques of Fourier analysis, we find the following 

function which satisfies the boundary conditions: 

00 

V(r,z) ::: V + V • (!:.) + 
2V o sin (T) sin (T)Io(T) 

(A) (nn) 2 I 0 ( n~a ) o 0 H 
n= 

The electric field inside the cell is: 

sin (T) sin (y) II (T) 
( n~s) 10 ( n~r ) 

(5.2) 
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ext ( ) Ez r,z 
2V 

00 

Vo 0 
'" - - ~ 

H s 
n"'l (5.3) 

Here I
1
(x) is the first order imaginary Bessel function. For the 

dimensions of our cell and z/H:::: 0.5 we have plotted E~xt(r9Z) in Fig. 3. 

It is found that the lines of flux which pass from the bottom plate to 

the top plate are almost parallel. The ratio of the capacitance between 

the top and bottom plates and to that calculated in the absence of fringing 

fields is for our cell t; '" 0,998729 where: 

b/H [ 00 

1 + 
n'" 

(n'ITx) 
x dx , (5.4 ) 

Hence the neglect of fringing fields is accurate to order (s-l) xlO-
3 

in predicting the fractional change in the capacitance when the cell 

is partially filled with liquid helium. We will use the value9 ,lO 

E = 1,057233 for the dielectric constant of liquid helium in the 

ca-Iculations that follow, Neglecting fringing fields, where Co is 

the capacitance of the cell empty of liquid helium and C' is the 

capacitance when filled to a depth z with no charge on the surface, o 
we use Gauss' law to find 

Zo =: sH (1 _ ~o) 
s - C' (5.5) 

We next discuss how the surface charge density as a function of 

radius and bottom plate voltage may be obtained from capacitance 

measurements. When charge is in equilibrium on a surface of liquid 

helium the electrochemical potential of the electrons is constant across 
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Fig. 3, Plot of the external electric field in the plane of helium 
surface (which confines charge in the charge pool) as a 
function of radial distance, The plot is normalized to 

the electric field along the axis of the cell. 
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the entire surface. However. the electrical potentials which maintain 

the electrons on the surface are of the order of volts while the kinetic 

energy of an electron at 10 K is only 8.6 x 10- 5 eV. Hence, with the 

exception of a slight amount of fuzzing caused by thermal motion of 

electrons we may use electrostatics to calculate the surface charge 

distribution. The surface is divided into two regions, One region is 

a circular charge pool the center of the cell containing almost all 

of the charge. The electrical potential across the charge pool is 

uniform. The other region is an annular ng between the charge pool 

and the walls of the cell. The annular ring contains no charge and the 

ectric potential is not uniform across it. We solve the problem by 

first finding the capacitance change and surface charge density distri-

bution as a function charge pool radius and bottom plate voltage. 

Since the capacitance change is a monotonic function of charge pool 

radius these results may be used to obtain the surface charge density 

distribution as a function of capacitance change. 

Given the charge pool radius and the bottom plate potential we wish 

to nd a charge distribution which gives zero radial electric field 

along the surface wHhin the charge poolo We do this by dividing the 

charge pool up into concentric rings. The radial field acting on an 

electron in the ith ring is the sum of the field from external potentials 

Eext( )" . E (5 3) th 1 J • f" ld f h f th th 'r r,z glven 1n q. . , e e eccrlC le rom eac a - e 0 er 

ngs, and the electric field from the other charge in the ith ring 

itself. Requiring that the radial electric field at each ring be zero 

gives a system of linear equations for charge density at the rings with 

a unique solution. 
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We calculate the radial electric field at a given ring of radius p 

due to charge q distributed on another ring of radius r. Using the 

Green1s function of a point charge in cylindrical coordinates 72 we 

find for p < r: 

00 

Ro ( nH'IT , a, r ) 10 (n~p ) sin 2 ( n~c ) 
V(p,r) :;;: _il:9. 

H Io(n~a) n=l 
(5.6a) 

We also find for p < r: 

00 I (n'ITr) R (n'IT ). 2(n'ITC) 
V(p,r) :::: -~ o H 0 H ,a,p Sln H 

H Io( n~a ) n=l 

(5.6b) 

Here c is the depth of helium in the cell, and Ro(k,x.y)::: Ko(kx)Io(ky) 

- Io(kx)Ko(ky) where Io(x) and Ko(x) are modified Bessel functions. 71 

The charge q on the ring of radius r is given by q:::: 2'IT (i'>r)ra(r). 

where i'>r is the distance separating the rings. The radial electric 

field for p < r is given by 

We also find for p > r: 

00 

The e1ectric field acting on an electron in the ith ring from the other 
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charge in the ith ring must be obtained more carefully, If the charge 

on the ith ring were on a line the electric field would be infinite,73 

We avoid this difficulty by obtaining the electric field at p= r resulting 

from a surface charge density constant from r-6r/2 to r+6r/2, This 

can be done by replacing M by dr in Eq, (5,7) and integrating r from 

p -M/2 to p+6r/2 while keeping p fixed, We find 

The 

the 

00 sin
2 (T) }. M 

10 ( n'~ a. ) r (p - 2- ) 

x [Ko(n~a)rl(n~Q) + Io(n~a) Kl(~W-)J +(p+ 1r)Il(n~p) 

x (mT ( + 6r)) K (niTa) + I (n1Ta) K (mT ( + 6r ))] l 
1 H P 2 oH oH IH p 2 ) 

(5,8) 

charge density as a function of radi us is obtained by solving 

system of equations: 

jot ([i>j( . ) + ( E~"j (P~) ~P~':l' 
0; 0, 

o(r) o(p) 1 

jmllx (Ei<j( .. J) 
+ ~~~~~ ext{ ) 0 (5,9) o. + E p. ,c ::;: 

.. 1 o(r) J r 1 

J=l+ 

The surface charge density distribution as a function of charge pool 

radius R may be obtained by solving the above set of equations as jmax 

is decreased one ring at a time, The behavior of o(p) for several values 

of R for a cell of the dimensions used in our experiment and for c/H '" 0,5 

is shown in Fig, 4, 

In the case in which R '" a, so the charge pool covers the entire 
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surface, the potential must be zero over the entire liquid helium surface. 

In this case Laplace's equation may be solved explicitly to yield: 

o(p) '" ,-~ [1 
41TC 

00 

(5.10) +~2_ 

(%) n=l 

This provides a useful check of the accuracy of the numerical calculation. 

We next discuss the calculation of the change in AC capacitance 

between the top and bottom plates when there is free charge on the 

liquid helium surface. In the limit of small AC voltage this is the· 

partial derivative of total charge on one plate with respect to voltage 

on the other plate with total surface charge on the helium held constant. 

As discussed in Appendix 1, Green's reciprocation theorem may be used to 

shoVJ that the result is independent of whether we vary the voltage on 

the top plate Vtop and measure the change in charge on the bottom plate 

Qbot' or vice versa, so: 

(5.11) 

The calculation may be done by varying the potential on either 

the top plate or the bottom plate with a given fixed potential on the 

bottom plate. We will discuss both approaches to the problem, 

If we vary the potential of the top plate from ground potential 

to M then there is an additional term added to E~xt(Pi .c) in Eq. (5.9) 

given by: 

00 sin h (x -<::,.) J ( x ~) J (x .2. ) na 1 na 1 na 
(5.12) 
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Here b is the radius of the top plate, J1(x) is the ordinary Bessel 

function of order one, and xn is the nth zero of the ordinary Bessel 

function of order zero. For given values of Rand c, Eq. (5.9) may 

then be solved the same as before. 

The change in AC capacitance from the AC capacitance measured with 

no charge on the liquid helium surface is a result of the surface charge 

moving and changing the induced charge. (If the surface charge were 

frozen in place there would be no capacitance change,by the principle 

of superposition.) The total induced charge on the bottom plate from 

a ri ng of radi us r with tota 1 charge q 1 s found to be: 

00 

sin (T) {I (mfa) I (mTr)[(~)K (nna)_(Q) K (nnr)~ 
10 (n~a ) 0 H 0 H H . 1 H H 1 H ~ 

~ (IT) Io(n~r) Ko(n~a) Il(n~a) -(Tf) lo(n~a) Ko(n~r)I,(n~r)} 
(50 1 3a ) 

To find the induced charge on the top plate of radius b we must 

distinguish between the cases r < band r > b. If r < b, then: 

x h(n~a) Il(n~s) + lo(~~a)Kl(n~s)J - rlo(n~a) 

x [I,(n~r) Ko(n~r) + Kl(n~r) lo(n~r)Ji (S.13b) 

If r > b, then: 
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n=l 

The total induced charge on the top and the bottom plates, Qtop and Qbot 

respectively, is given by: 

Jmax 
(qto (p1'e)) 

Qtop = 2nPi 6rcr(Pi) Pq .. 
i '" 1 

jmax 
Cbot(Pj'c) ) 

Qbot ::::: 2np; 6rcr(Pi) q (5014) 

i=1 

We wish to calculate the partial derivatives of these quantities with 

respect to the appropriate perturbing voltage while constraining the 

total surface charge to be constanto It is easy to find the derivatives 

with respect to voltage while constraining the charge pool radius R to 

be constant, and the derivatives with respect to charge pool radius while 

constraining the perturbing voltage to be zeroo We use the theorem of 

vector calculus that, given a pair of differentiable functions F(x,y) 

and G(x,y). where ClG/Clx :f 0, then: 

ClF I 
dy G 

ClF 
::: 

oy 
(l[) (~) Clx oy 

(~~ ) 

We find that: 
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~Qtopl 
aR !Vbot 

aQsurf\ 
aR V 

bot 

aQbot I 
aQbot aQbot I - aQsurf aR Vtop 

(5,16) '" 
aQsurf I av top av avtop Qsurf 

top R R aR Vtop 

The quantity calculated here is the change in AC capacitance from the 

presence of free charge on the liquid helium surface, The total AC 

capacitance is found by adding to this the ordinary linear capacitance 

which exists in the absence of free surface charge, 

In Fig. 5 we have plotted the fractional change in capacitance when 

free charge is placed on the surface of liquid helium with the bottom 

plate at a fixed potential Vo versus the ratio Vsat/Vo (where Vsat is the 

voltage at which the free charge on the surface would be just sufficient 

to cover the surface) for the case in which c/H:::: 0,5, In Fig, 6 we 

compare the measured fractional capacitance change with the result of 

our calculation. The discontinuity in slope occurs at V =Vsat at which 

point the charge pool exactly covers the helium surface, As the voltage 

is reduced further, charge moves onto the helium film covering the walls, 

Only a small fraction of charge that has moved to the walls returns to the 

surface of the bulk liquid if the bottom plate potential is increased 

to its former valueo This causes hysteresis in curves of AC capacitance 

versus voltage if the voltage on the bottom plate is reduced below Vsat ' 

It is also found that-if the voltage on the bottom plate is reduced 
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below Vsat that lineshapes of resonance transitions of the bound states 

discussed in Chapter 2 become distorted. Similar effects were seen by 

Volodin, Khaikin, and Edel i man 74 when measuring the loss of Q in an RF 

circuit caused by electrons on the helium film above a metal and above 

a dielectric, It has been theoretically predicted8 that electrons on a 

helium film several hundred ~ thick will be ilself-trapped ii and have 

greatly reduced mobility. 

We next discuss how the local electric field acting on electrons 

in external surface states is calculated (except for the dipole field 

from nearby electrons), From Eq. (5.10) we see that near the center of 

the cell the charge density is almost constant, The lines of flux are 

therefore very nearly parallel in this region and the local electric 

eld may be found from an argument based on Gauss i law. The local 

electric field acting upon a surface electron near the center of our 

cell is the same as the field that would be found in the following 

situation. We compute the electric field at the center of a small 

circular hole of radius r« H in a sheet of uniform charge density 

located just above the surface of a dielectric. The dielectric fills 

an infinite plane parallel capacitor to a depth z. If the bottom plate 

of the capacitor has potential V and the top plate is maintained at 

ground potential we find that the local electric field acting on 

electrons near the center of the charge pool in our cell is to be 

given by: 

(5,17) 

The z which appears in this equation is the height of liquid 
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helium at the center of the cell. This is not exactly equal to Zo 

calculated from Eq. (5.5) The helium surface is depressed by the 

electric field acting on the surface charge and is slightly raised 

because a non-zero electric field causes more liquid to enter the cell. 

Hydrostatic pressure dominates over surface tension in determining the 

surface shape for distances large in comparison to the capillary constant 
!:: 

which for liquid helium is (2ajgp) 2 ~ 0.073 cm. Here a ;s the surface 

tension discussed earlier, g is the acceleration of gravity, and p is the 

density of liquid helium. Since R »0.073 cm and since the charge density 

is almost constant over most of the charge pool we make the approximation 

that the helium depth under the charge pool changes by a uniform amount. 

The equilibrium value of z can then be obtained by minimizing the 

thermodynamic potentia1 75 at constant bottom plate voltage: 

F ::::: Z 2 2 2 (£-1 ) 2 z 
(z °TfR + hzA z + h3 A3) - 8Tf (zA 1 + hzAz)E - 'ITR 0FE + F 0 

(5.18) 

Here Az is the area of bulk liquid ~urface in the cell not covered by 

the charge pool, A3 is the area of liquid outside the cell " h2 and h3 

are the depth of liquid under Az and A3 respectively above the bottom 

plate of the cell, OF is the free surface charge density at the center 
~ ~ 

of the cell, and F 0 is the va 1 ue of F when E=O and of:::: O. The 

variation is subject to the constraint zo(A/Az+A
3

)::: ZAl + hzA z +h3A3" 

We find that: 

z - z o (5.19) 
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Both of these terms are small under the conditions of our experiment. 

The first term gives an effect in z/H as large as order 10- 3 while the 
-I; 

second term gives an effect as large as 10 . 

The change in local electric field acting on electrons near the 

edge of the charge pool may be obtained using Laplace's equation if the 

holes in the top used to couple light in and out are ignored, However, 

this calculation was not used in our data analysis which relied on the 

fact that the center of the cell is a point of symmetry - hence the 

density of electrons per unit electric field interval will become 

infinite at the electric field corresponding to the center. In the 

absence of other sources of broadening this would cause a singularity 

in the lineshape function. 

Our discussion to this point has assumed that the helium surface 

is flat and parallel to the top and bottom plates. We examine the 

effect of tilting the cavity axis through an angle 66 away from being 

parallel to the helium surface normal. For small 66 this causes an 

extra electric field parallel to the helium surface of magnitude Eext66 z 

where E~xt is given by Eq. (5.3). The distance the charge pool moves 

in response to this field is approximately: 

RE~xt(O,C)M 

r (R,c) 
(5.20) 

The derivative of charge density with respect to pOSition near the center 

of the charge pool is given approximately by 

do 
:::: 

(0.C)66 

dx 4nc 

For our preceding analysis to be valid we require that 6x«R, 6X < a-R, 
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do and R dx « 0, 

Another source of inaccuracy in our calculated electric field 

arises from the shape of the cell not exactly matching the shape 

we have used in our analysis. The cell used in our experiment is 

constructed so that the lack of flatness of the walls. the gap between 

the top plate and the cell body, and the hole in the center of the top 

plate all change the electric field at helium surface by less than a 

few parts in 10 4
. The holes to let far infrared light in and out of 

the cell are unavoidable. However, since they are near the edge of 

the cavity their influence should decay away as we move to the center 

of the cavity just as the other edge effects do. 
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VI. EXPERIMENTAL TECHNIQUES 

Our purpose in measuring the far infrared absorption of electrons 

on liquid helium is to learn about the microscopic behavior of the system. 

A number of obstacles have been overcome to do this. In the preceding 

chapter we described how the charge density and local electric field are 

obtained from capacitance and voltage measurements. Another problem is 

that of measuring the absorption lines caused by transitions between 

electron surface states in the presence of noise. The lines are only a 

few GHz wide and the absorption at line center is only of order 10-
5 

of 

the light reaching the detector. 

A block diagram of the apparatus used to make the optical measure­

ments is shown in Fig. 7. The light source is an optically pumped 

molecular laser. We measure absorption as a function of electric field. 

The molecular laser has many possible lasing frequencies between 300 GHz 
4 76 and 10 GHz. By selecting the molecular laser gas (CH 30H), 

cavity length, and the CO2 pump laser frequency we cause it 

to lase at one of these frequencies. We identify the lasing transition 

by approximate frequency measurement. The exact frequency is then known 

to within a few MHz (the width of the molecular laser gain curve) from 

heterodyne measurements reported in the literature,?7 Light from the 

laser is brought through light pipes to the cell con ining the electrons, 

and a light pipe is also used to carry light from the cell to the detector. 

The electric field in the cell is the sum of a slow linear ramp and a 

square wave of frequency vm = 60 KHz. The output of the laser is also 

optically chopped at Vc = 100 Hz to enable the power reaching the 

detector to be measured. The output signals from two lock~in amplifiers 
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Fig. 7. Block diagram of the apraratus used for optical measurements. 
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synchronized to vm and Vc and the DC voltage on the bottom plate are 

recorded about once per second. After repeating with several square 

wave voltage amplitudes the data are computer-processed to yield optical 

absorption by the electrons as a function of bottom plate voltage. 

We discuss the light source in detail first. The CO2 pump laser 

is an Apollo Lasers model 550 modified to allow the cavity length to 

be set with a piezoelectric transducer. The output power varies with 

transition used but is typically about 10 W, The lasing transition is 

monitored with a grating spectrometer (Optical Engineering, Inc .• model 

16-A) which accepts reflected light when the optical chopper blocks the 

beam. The output power of the CO2 laser during alignment is measured 

with a detector based on the thermoelectric effect. 

The molecular laser is of our own design and uses flowing gas. 

The cavity is 92 cm long and uses machined aluminum mirrors 4.95 cm in 

diameter. The mirrors have 50 cm focal length which yields stable 

resonator modes. 79 Light from the CO2 laser is coupled into the cavity 

through a NaCl vacuum window and a 1.0 mm diameter hole. Far infrared 

light is coupled out of the cavity through a '.6 mm diameter hole and 

a crystalline quartz vacuum window. The cavity length is varied with a 

hollow differential screw mechanism. Pump light is coupled into the 

laser through an axial hole in the screw. The cavity is contained in 

a fused quartz tube (chosen for low thermal expansion). No mirror 

adjustments are needed. The molecular laser is found to remain at the 

peak of the gain curve even after not being used for several months. 

The frequency output of the CO2 pump laser is kept at the peak of 

the molecular laser gain curve with a feedback loop. A 4.2 vm thickness 
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mylar beam splitter directs part of the output of the molecular laser 

to a pyroelectric detector (Molectron Corp., model P4-71). The CO2 

laser cavity length ;s modulated at v.R, := 30 Hz and the synchronous signal 

from the detector ;s measured with a lock-in amplifier. The output from 

the lock-in amplifier is proportional to the rate of change of molecular 

laser output with CO2 laser frequency. It is used as the error signal 

applied to the piezoelectric transducer which sets the CO2 laser 

frequency. The time constant used in the feedback loop is 100 sec. 

If the feedback loop is not used, thermal drifts in the CO2 laser will 

typically quench the molecular laser output in 5 to 15 minutes. 

The approximate frequency at which the molecular laser is operating 

is measured with a Fourier transform Michelson interferometer of the type 

originally suggested by Martin and Puplett. 79 The theory of this 

. f 80 d h' t b· f t t lnter erometer an a tec nlque ·0 use a two- eam lnter erome er 0 

measure the optical transfer function as a function of optical and 

spatial frequency81 resulted from our work and have been published. 

Occasionally we have observed several transitions at widely spaced 

frequencies to lase simulataneously but this has not proved to be a 

problem when using the laser to measure the absorption lines. 

We next discuss the noise limitations of our optical system. 

For several of the laser lines used the dominant source of noise was 

fluctuations in the output power of the laser. The noise power spectrum 

of laser amplitude noise is found to have a l/f spectral density from 

about 1 kHz to 20 kHz. For frequencies below 1 kz the noise spectrum 

has large peaks at harmonics of the line frequen-cy but is otherwise 

relatively flat. From 20 to 100 kHz the noise decreases by less than 
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a factor two. The noise spectrum we have observed from our molecular 

laser agrees with that measured directly from a CO2 laser similar to 

our pump laser with a HgCdTe detector. 82 The exact source of the noise 

is not known but is presumed to originate in the CO2 laser gas discharge. 

There is an established theOry83 of noise in a laser oscillator based 

on spontaneous emission perturbations to the Van der Pol oscillator model. 

The theory has been experimentally verified for lasers operating very 

close to threshold84 where the noise power spectrum is predicted to be 

a Lorentzian with width inversely proportional to laser output. For 

our CO2 <laser the theory predicts a linewidth of order 10- 7 Hz. This 

is clearly not the source of our observed laser noise. Other previously 

observed noise sources in laser oscillators are fluctuations in the gas 

discharge,85 vibration of end mirrors,86 fluctuations in light coupled 

back into the laser,87 and fluctuation of the distribution of power among 

several lasing modes while the total power remains relatively constant. 

It has recently become possible to obtain bandwidths of less than 10 Hz 

in the methane-stabilized 3.39-rnicron He-Ne laser88 by giving careful 

attention to each of these sources of noise. We have taken several 

elementary steps to reduce the laser noise, such as carefully shielding 

and grounding the system, isolating the mechanical vacuum pump from the 

laser cavity, using a vibration-isolated table to support the laser, 

and regulating the current in the discharge with a fast feedback loop. 

The next logical step would be to redesign the discharge tube which is 

found to oscillate electrically at a pressure-tuned frequency near 50 MHz 

and harmonics and to be a source of electrical noise spikes that occur 

t . 1 . J 1 At' 1 . 1 t 89 1 d 1 b 1 d a lrregu ar lncerva s. n op lca lSO a or cou a so e pace 
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between the CO2 laser and the molecular laser to eliminate fluctuations 

from reflected light, It is observed that the magnitude of the noise 

from the molecular laser depends upon where on the gain curve the CO2 

laser ;s pumping, This is probably a result of the molecular laser gain 

curve converting FM noise of the pump laser to AM noise. 

When the optical power detected by the detector drops about one 

order of magnitude from that of the strongest laser lines, then detector 

noise becomes the dominant noise source. Our detector is an InSb hot 

electron bolometer,gO It has uniform response to optical frequencies 

- 1 - 1 below about 15 cm • drops by a factor two at 20 cm • by a factor six 
-1 -2.-1 at 30 cm and is down to 10 at 50 cm . The response time of the 

detector is of order 10- 7 sec (the electron-phonon relaxation time) and 

the response as a function of frequency should be flat from a few Hz 

(the thermal relaxation time) to nearly one MHz. At frequencies above 

about 200 Hz the detector has a llf noise power spectra with a coefficient 

which varies as a function of bias current. At about 50 KHz the detector 

noise becomes less than noise from the other sources which have a flat 

frequency noise power spectra of 7 nv/!l{Z at higher frequencies. 

For investigation of absorption using weak laser lines the best way to 

increase the signal-to-noise ratio would be to increase the fraction of 

power from the laser absorbed by the detector" At the present time this 
-4 is of order 10 . The loss occurring between the output of the molecular 

laser and the top of the dewar insert is measured to be about a factor 15. 

which could be eliminated by focusing the light with a concave mirror 

rather than using the brass light pipe with right-angle bands which is 

employed at present. 
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When observing large absorption signals without using the pneumatic 

vibration-isolation system a modulation of about 10% of the signal was 

observed from waves on the helium surface. The vibration-isolation 

system reduces this source of noise by about two orders of magnitude. 

We next focus our attention on the dewar in shown in Fig. 8. 

The vacuum-tight can containing the experimental cell is submerged in 

a liquid helium bath. Laser light is brought down the dewar to the cell 

through a 1027 em diameter stainless steel light pipeo Before entering 

the cavity the light passes through a Fluorogold™ filter which transmits 

light of frequency less than 50 em 1 but does not transmit room tempera­

ture blackbody radiation coming down the light pipe. A Winston reflective 

light concentrator91 is used to change the angular distribution of the 

light coming down the light pipe from being unidirectional to a distri­

bution with intensity proportional to cose where e is the off-axis angleo 

After reflecting a number of times in the cavity, part of the light 

exits through a hole in the top of the cell. Light leaving the hole is 

recollimated with another Winston light concentrator, passes up a light 

pipe through a mylar vacuum window, and is concentrated again onto the 

InSb detector. 

The experimental cell (shown in detail -in Fig. 2) is partially 

filled with liquid helium by condensing pure helium gas into the vacuum 

can through a small tube while monitoring the capacitance across the 

cell with a capacitance bridge. The cell was machined from stress­

relieved 6061 aluminum alloy, and coated with gold by evaporation. 92 

The bottom p'Jate is insu"lated from the top plate by mylar spacers and is 
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attached with nylon screws. The bottom plate is flat to within ±l vm 

and the top is flat to within ±2 vm. except near the edges of the two 

light coupling holes on the top where there is a 1ip that rises by 

about 10 vm, The dimensions of the cell at room temperature were 

measured with a microscope and calibrated lead screw. The total height 

from the top of the cell to the bottom plate at liquid helium temperature 

is used in calculating the electric field in the cell and is obtained 

in two ways, The first is to calculate the thermal contraction using 

published thermal expansion coefficients 93 of the materials used and 

including the elastic compression of the mylar spacers as the nylon 

screws contract, The second is to use the capacitance measured between 

the top and bottom plates together with the dimensions of the cavity at 

liquid helium temperature, These results are given in Fi g, 2 (pg, 22), 

The height of the cavity is given by: 

H[cmJ 5 r2[cmJ S (6, 1) ::: -
2 (2,99793)2 C[pf] 

Here r is the average of the radius of the top plate and the radius of 

the circular hole containing it, C is the measured capacitance. and 1; 

is given in Eq, (5.4), 

Electrons are put on the helium surface by thermionic emission 

from a 13 vm diameter thoriated tungsten filament. The filament is 

contained in a small chamber in the top plate, Free electrons pass 

from this chamber into the cell through a circular hole about 0,46 mm 

in diameter and about 0.2 mm deep, As the filament is heated for the 

few seconds necessary to put charge on the surface, the surface charge 

is monitored by measuring the AC capacitance between top and bottom 
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plates. To prevent charge from reaching the walls as the filament is 

heated we gradually increase and decrease the filament current but keep 

it hot enough to emit substantial amounts of charge for only a short 

time, (If the filament current is suddenly pulsed while charge is on 

the surface, all the charge is observed to leave the surface.) Lar!)e gaps 

were left between the spacers separating the bottom plate of the 

cell from the cell body so as to avoid filling the cell by the fountain 

effect when the filament was heated. The fluid levels inside and outside 

the cell equilibrate in about one second. 

The temperature of the helium bath is obtained by measuring the 

gas pressure and comparing with published tables to calibrate a carbon 

resistor as a thermometer. The carbon resistor is used for direct 

measurements. The temperature is near '.2°K during all of our runs. 

As discussed at the end of the last chapter it is important that 

parallelism between the helium surface and the surfaces of the cell be 

maintained if the experimental results are to have a simple interpretation. 

We have been able to maintain this parallelism to within ±2 xlO- 4 rad 

by comparing the direction a He-Ne laser beam is reflected from a 

reference mirror, attached to the top of the can which surrounds the 

experimental apparatus, with the direction in which the laser beam is 

reflected from the surface of a pool of water. 

We had hoped to also be able to use the variation of AC capacitance 

measured across our cell as the cell is tilted, to adjust the cell to be 

parallel with the helium surface since a minimum in the AC capacitance 

is expected when parallelism is achieved, The observed minimum is 

displaced from the axis of parallelism, however, because the cell is 
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slightly offset from the axis of the can surrounding the apparatus" 

The observed offset of the capacitance minimum is understood quantita-

tively (it arises because the average height of the charge pool above 

the bottom plate changes as the cell is tilted) but it destroys the 

usefulness of using AC capacitance measurements to adjust for parallelism" 

We next discuss how our data are processed to yield the optical 

signal as a function of voltage on the bottom plate" Referring back 

to Fig. 7 we see that in the limit that the peak to peak amplitude of 

the square wave voltage 6V applied to the bottom plate is small then our 

data, the modulation signal at ~m divided by the modulation signal at vc' 

are proportional to the derivative of light intensity transmitted by the 

cell as a function of bottom plate voltage" However, a small 6V reduces 

the modulation signal in comparison to the noise" We give the data 

reduction technique that allows us to use a large 6V so the signal will 

be large in relation to the noise while avoiding the distortion that 

would occur if we obtained the optical response from the data by simple 

integration. 

To begin, we look at the response of a single data point to a 

delta function optical response when the bottom plate voltage is Va' 

The data point is obtaihed by integrating the optical response as the 

voltage applied to the bottom plate is increased from Va to Vo + aV. 

We find the integrated response to be given by: 

A i f - (6V + 6
2
V) < V - V 0 < _ 6 V 

-A if 6V 

o otherwise 

cV < V - V < 6V o 2 (6.2) 
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The measured data points are given by the convolution of R(V - V ) 
o 

with the optical transmission of the cavity as a function of the voltage 

V on the bottom plate,which we call T(V). Then, in the absence of noise, 

the measured signal is: 

(15.3) 

Given T(V) over a voltage range 11 of length ~V we may recover T(V) over 

any voltage range I2 containing 11 from the values of S(Vo) on 12 to 

within a resolution 6V by using the re1ation 

(6.4) 

The effect of noise in the data on T(V) recovered in this way is 

most easily seen using Fourier transforms. We define: 

-2niuV 
s (u) ::: s (V) e dV (6.5) 

-co 

We similarly define r(u) and t(u) from R(V) and T(V) respectively. 

Since the Fourier transform of the convolution of the two functions is 

the product of the Fourier transform of each function, then, in the 

absence of noise, s(u) :::: r(u) t(u). We find that 

I r(u) I :::: ~ Isin(noVu) sin(n~Vu)1 nu (6.6) 

Our process of recovering T(V) from measurements of S(V) is equivalent 

in u-space to t(u)::: s{uJ/r(u). In practice, s(u) :::: so(u) + n(u), 

where n(u) is the result of noise and so(u) is the result of a changing 
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optical signal from electrons on the helium surface, If we represent 

the recovered optical transmission by TR(V) and its Fourier transform 

by tR (u ). then: 

tR(u) =: n(u) + t(u) rTUT (6.7) 

Since we sample at voltage intervals dV then s(u) will be non-zero 

only for u in the range -'1T/dV < u < '1T/dV, For a given non-zero u the 

effect of noise may be minimized by choosing oV:::: u/(2m+n and 

/:"V =: u/(2n + 1) where m and n are integers, However it is impossible 

to minimize the effect of noise at all frequencies simultaneously, In 

particular, the e of noise becomes very large near the zeros of 

r(u). To minimize the effect of noise we measure S(V) several times 

using different values of /:"V, For each measurement Si(V) we compute 

T~(V) using an algorithm based on Eq, (6,4) and compute t~(u), If we 

assume that the noise is a stationary random process then the most 

probable value of t(u) is given by: 

t(u) (6,8) 
(u) I 

i 

We use this equation to compute t(u) for each u and then Fourier 

transform back to find T(V), For this procedure to be effective one 

must choose the values of /:"V used so that the denominator of Eq, (6,8) 

is small only for u near zero, In practice. we have used OV '" 0.224 

volt and /:"V between 8V and 5 volt, The Si(V) for each voltage ramp is 

the output from the lock-in amplifier synchronized to vm divided by 

the output from the lock-in amplifier synchronized to Vc (in order to 
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minimize the errors resulting from changes in the laser output power). 

Each T~(V) computed using Eq. (6.4) has subtracted from it a linear 

function (which would arise from a small offset in the zero of the 

lock-in amplifier at v ) so that the first and last computed points as 
m 

a function of V are zero. 

Data collection is done with a ±lOV 16-bit AD converter with three 

multiplexed inputs that ;s controlled by a PDP 11-23™ minicomputer. 

In a single integration cycle the computer first digitally integrates 

the output of the lock-in amplifier synchronized to vm for 531 msec. 

After waiting 100 msec, it integrates the output of the lock-in amplifier 

synchronized to Vc for 100 msec. Finally, after waiting another 100 msec 

it integrates a DC voltage proportional to the voltage applied to the 

bottom plate for 100 msec. The cycle then starts over. Data are 

transferred to magnetic tape and processed using a program coded in 

FORTRAN that runs on the CDC-7600 computer at the LBL computer center. 

The computed optical signal as a function of bottom plate voltage is 

plotted, and stored on magnetic tape to await the' further processing 

described in the next chapter. 

The linear voltage ramp is generated digitally with a 16-bit DA 

converter, and is applied to the bottom plate using the circuit shown 

in Fig. 9. The resistive divider used to measure the ramp voltage is 

calibrated with a Fluke 343A voltage calibrator, so the absolute accuracy 

of the measurement of the voltage of the bottom plate ;s limited only by 

the resolution and linearity of the AD convertero (During a run the 

zero of the AD typically drifts by a few bits which limits the absolute 

accuracy to ±0.05Vo) 
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The height of helium in the cell and the charge density on the 

helium surface are obtained from measurements made with an AC capacitance 

bridge using the theory described in the previous chapter, Measurements 

are made using a General Radio type 1615-A capacitance bridge with PAR 124A 

lock-in amplifier for oscillator and detector, Measurements are taken at 

1 KHz, although it was verified that the measured AC capacitance was 

independent of oscillator frequency as expected, The liquid height 

determination is done using 5 V to drive the bridge, The surface rms 
charge determination is done using 0,5 Vrms to drive the bridge, The 

capacitance measurements used to measure the liquid height are reproduc­

ible to a few parts in 10- 5 pf, Not all the measured capacitance arises 

from geometric capacitance between the top and bottom of the cell 

however, When the cell was filled with liquid helium the capacitance 

increased slightly less than one calculates it should using the most 

accurate measurement of the dielectric constant of liquid helium reported 

in the literature,9 From our measurement we calculate a stray capacitance 

of 0,00160 pf at liquid helium temperatures, This value of the stray 

capacitance brings our mechanical measurement of the cell height, 

corrected for thermal contraction, into better agreement with the 

capacitance measurement using Eq, (6,1) than the errors involved in 

the separate measurements predict, At room temperature the stray 

capacitance measured by grounding the bottom plate and disconnecting 

the lead attached to it is found to be 0,00020 pf, This also causes 

the room temperature mechanical measurement of the cell height to agree 

very well with the cell height obtained from measuring the capacitance, 

One explanation that may be given for the observed increase of stray 



-56-

capacitance that occurs when the cell is cooled from liquid helium 

temperature is that the surface oxide barrier could cause strands of 

wire in the single braid separating the two leads as they go to the top 

of the dewar to become electrically isolated when the temperature is 

lowered. 
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VII. DATA ANALYSIS 

In the previous chapter we discussed the spectroscopic techniques 

used to observe external electron state transitions from the ground 

state to various excited states. We obtain two physically distinct 

quantities from our measurements. The first of these is a measure of 

the local positional disorder of electrons along the plane of the surface. 

This is obtained because the electric dipole eld of nearby ground state 

surface electrons changes the external electric field that must be 

applied to bring a given transition into resonance with a given laser 

frequency. The shift in applied field is related to the radial­

distribution function of the external surface electrons. The second 

physically distinct quantity is the transition frequency as a function 

of applied electric field in the limit of zero surface charge density. 

The difference between the measured transition frequency and the frequency 

calculated from a model which assumes an abrupt potential change at the 

surface [Eq. (2.1)J, contains information about deviations from the 

image potential near the surface. 

This chapter is divided into a number of sections. In Section A 

we present the theory of the change in transition energy caused by the 

electrostatic interaction between a surface electron in an excited state 

and nearby surface electrons in the ground state. In Section B we 

discuss the source of a dispersive component observed in our measured 

lineshapes and explain how it is removed by deconvolution. Section C 

describes how for each observed resonance we obtain from our data the 

surface charge density at the center of our cell and the external 
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electric field acting on the surface electrons at the center of our cell. 

In Section D we describe how we statistically analyzed our data to 

obtain a measure of the local positional disorder of the surface 

electrons and the external electric field that must be applied to cause 

the observed transition resonances to occur at the laser frequency in 

the limit as the surface charge density approaches zero. Finally, in 

Section E we discuss the implications of our measured values. 

A. Effect of the Electric Field of Nearby Electrons 

In this section we discuss the theory of the change in transition 

energy caused by the dipole electric field of nearby surface electrons 

in the ground state. We first consider the case in which the surface 

electrons are arranged into a perfect hexagonal lattice and then generalize 

to include the effects of disorder. 

The x-y coordinates of a hexagonal lattice of electrons are given 

by the poi nts: 

r .. 
~lJ [ (. j) A ,,13 .AJ 

a 1 + '2 x + -2- JY (7.1) 

We consider the case in which all of the electrons are in the ground 

state except one. The one-electron Hamiltonian for this electron includes 

a term arising from the electrostatic interaction with the other surface 

state electrons given by: 

e2 2 
H' ::: e where Z-(Z)l u :::;: . 

(2 2 r· . r· . + u lJ (7.2) lJ 

Here r .. ::; I r .. , in Eq. (7. 1 ) and the summation excludes the case where 
lJ ~lJ 
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both ;=0 and j=O. We have implicitly assumed that the nearby electrons 

do not tend to fill the hole an excited electron leaves as it moves 

away from the surface, which will be a very good approximation if 

u« a. We may rewrite Eq. (7.2) in the form: 

HI::: i _e_
2 

[ ___ -,;-

r. . (1 2 iJ' 1J +x .. , 1 J 

where X .. ., ::: 
1J 

u 
r .. 

1J 
(7.3) 

We are interested in the case in which xij « 1. The Taylor expansion 
2 -~ 3 of f(x)::: (1 +x ) 2 about the point xo; neglecting terms of order xo' 

xx~, x2 x
O

' x 3
, and higher order terms in x and xo; is given by: 

Hence 

:::; 1 - (x 2 _ ~ Xl) 
o (7.4) 

(7.5) 

To find the change in transition energy from the ground state to excited 

state n caused by the nearby external surface state electrons, we use 

fi rst order perturbation theory. We ca 1 cul ate (11 H 111) with H I expanded 

about z::::: (Z)l and also <nIHlln) with HI expanded about <Z}n' We find: 

6E 1_n :::; -( 3~:.)[«Z)n - <z>J
2

- ~(Z2)n - <Z>~) 
. . r 1 J , , J 

In obtaining this result we have assumed that «z>n - < z>l)/a «1. For 

the r ij of a hexagonal lattice the summation appearing in Eq. (7.6) has 

been done numericallY. Using the fact that for the hexagonal lattice 

the charge density a :::; 2e/(i:3 a2
), we find that: 
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C(o) 
I e2 

-3 :::: 8.8927 lol~ e1z (7.7) 
.. r·. 
1 ,J 1 J 

The actual arrangement of the surface state electrons is not exactly 

a hexagonal lattice. Even at zero temperature there will be some disorder 

due to the zero point motion of the electrons. 94 In the presence of 

disorder the analysis which led to Eq. (7.6) is still correct but the 

r ij appea ng in the coefficient must be interpreted as the distance 

from the excited electron to each of the other electrons. Because the 

other electrons are moving, then C(o) is a fluctuating quantity. To 

obtain the thermal average of e(o) we use the radial-distribution 

function g(r) \tJhere g(r) is the probability per unit area of finding 

a second electron a distance r away from a given electron. We find 

that: 

00 

(e(o» :: (7.8) 

r=Q 

If we let K::: (C(o) >/Co(o) where Co(o) is the value obtained for a 

hexagonal lattice with the same charge density 0 from Eq. (7.7). then 

we find 

K '" 0.70656 (7.9) 

The dimensionless quantity K is the measure of local pOSitional disorder 

we obtain from our data. Because in the classical limit the only thermo-

dynamic variable which governs the behavior of the two-dimensional 

electron gas is the ratio of Coulomb energy per electron to kinetic 
:k :k 2 energy. r = ofr2 n;e /kT. then K is a function only of r. In general. 
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K~l and K(r) is monotonically decreasing with r, 

S 1 bl " 52,95 h d" tbltd evera recent pu lcatlons ave appeare glvlng a u a e 

values of g(r) for various values of r. We used these to compute values 

of K(r) which we will compare with experiment, We also computed a 

consistency parameter W from the tabulated values of g(r) given by: 

00 

W '" 2f (1 - g(rl ))r'dr' 
o 

},; 
where r'''' (n 'IT)2r s ' (7.10) 

Physically W is the number of particles removed before looking at the 

positions of the other particles to find gtr) and so W:: 1, Inaccuracies 

in the tabulated values of g(r) will cause W. as calculated from Eq, 

(7,10), to differ from unity, The computed results for K(r) and Ware 

given in Table 1, The results with W > 1 come from Ref, 95 while those 

with ~J < 1 come from Ref. 52. The computed results are in agreement with 

the general result that K~ 1, but the error in K(r) that results from 

using the tabulated values of g(r) is unknown, 

TABLE 1, 

r K(r) W 

5 1,323 0,779 

7 1,248 0,388 

15,81 ',137 0.407 

22,36 1,104 0,532 

36 1,066 1.047 

50 1.059 0,769 

90 1,032 1,300 

Our final result for the change in transition energy from the 

ground state to excited state n caused by a distribution of surface 
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electrons in thermal equilibrium is: 

where 

D(F) '" (z / 
1 

(7.11) 

To understand this result we consider the change in transition energy 

caused by changing the external electric field F by an amount LlF. 

Using first order perturbation theory we find that: 

LlE 1-n := ef,F « Z ) n - < Z > 1 ) (7.12) 

The expectation value of the dipole electric field acting on an electron 

in the state n from the other external surface state electrons is given 

by: 

(8, > '" - C(o') «z> - (z> ) 
z n e n 1 

(7.13) 

Hence Eq. (7.11) may be interpreted as the transition energy shift from 

Eq. (7.12) caused by the average microscopic electric field from Eq. 

(7,13) plus a small correction to account for the variation of electric 

field with z. 

We wish to use the observed quantity E, to obtain K(r) from -n 
Eq. (7. n). To do so it is necessary that D(F) be well known. From 

Eq. (7.12) we obtain 

~! (E, ) ;:: e«z> - (z) ) dF - n n 1 
(7.14) 

As we will show, our experimental results indicate that in the limit of 

zero surface charge density. E1- n differs from the value of E1-n 

obtained from the abrupt interface model discussed in Chapter 2 by an 
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amount that is almost independent of F, Hence it is a very good approx­

imation to obtain A = (z>n - (Z)1)2 from the results of our calculation 

discussed in Chapter 2, The remainder of D(F) can be expressed as 

B::: ~[«z-(z) )2) - «z - (z) )2)], In Fig, 10 we plot the ratio 
1 1 n n 

BfA as a function of F, as calculated from the abrupt interface model 

of Chapter 2, Although B may be somewhat different for the physical 

system the error is probably small, and since BfA is also small, our 

calculated values of D(F) are probably accurate to at least 1%, 

Because our measurements are taken at constant E1- n rather than 

at constant applied external electric field it is more convenient to 

analyze our data in terms of the change in applied field necessary to 

maintain a constant E'_n as a is changed, rather than the change in 

E
1
- n at a constant applied field, From Eqs, (7,11) and (7,12) the 

change in applied external electric field necessary to compensate for 

the dipole electric field of the nearby ground-state external surface 

electrons is: 

3~ 

'" 8,8927 101 2 K(r) 
~ 

e 2 
r(z> - (z») -l n 1 2(z>n - <Z>l) 

(7,15) 

The final term of Eq, (7,15) is plotted in Fig, 11 as a function of 

the applied external electric field F, 

B, Analysis of Lineshapes 

Our data analysis depends fundamentally upon our being able to 

determine the external electric field FR applied to the surface electrons, 

which brings a given transition into resonance with a given laser 
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frequency. We begin by discussing how FR ;s obtained from our data. 

We then discuss how FR is used to obtain the physical quantities of 

i nteres t. 

We obtain FR from measurements of optical response versus the 

voltage applied to the bottom plate of the cell (henceforth called the 

cell voltage). In Appendix 2 we give plots of the data contributing to 

our final results. Molecular laser frequencies of 428.628 GHz, 525.4275 

GHz, 639.185 GHz. and 764.6426 GHz were used to observe 19 distinct 

combinations of frequency and final state. 

To determine FR we need to understand the functional form of 

optical response as a function of cell voltage. One source of line 

broadening is the inhomogeneous broadening caused by the spatial variation 

of electric field on the helium surface. As discussed previously, if 

this were the only source of broadening and if the liquid surface were 

parallel to the top and bottom of the cell. then from symmetry there 

would be a singularity in the optical response as a function of cell 

voltage as the electrons at the center of the cell are brought into 

resonanceo By itself this is not a limitation. Knowing the cell voltage 

at the singularity and the surface charge density at the center of the 

cell we could use Eq. (5017) to calculate FR for electrons near the axis 

of the cell 0 

Unfortunately, there is another source of line broadening (caused 

by the interaction of helium gas atoms with the external surface state 

electrons) which removes the singularity from the lineshape. Because of 

the way the experiment is done we are sensitive to the dispersive part 

of the homogeneous broadening as well as the absorptive part. We discuss 
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the cause of the dispersive contribution to optical response and how it 

is deconvolved from our data. 

The microscopic theory of absorption near the resonant frequency 

of transitions between external electron surface states has been given 

by Ando. 67 In the range of temperatures in which our experiment is 

carried out he finds the absorption lineshape to be Lorentzian with 

FWHM y proportional to the helium gas atom concentration. The propor-

tionality factor increases by a small fractional amount as the external 

electric field normal to the surface increases. For our purposes, the 

external surface state electrons have the same optical response aSia 

collection of harmonic oscillators oriented in the z direction with 

resonant frequency Wo set by the local electric field. Given the 

oscillator strength f of the transition and y, we look at the response 

of ns such oscillators per unit area to an electromagnetic plane wave of 

amplitude Eo polarized with electric field in the plane of incidence and 

incident at an angle e with respect to the surface. The surface 

electrons radiate a wave both in the direction of the incident light 

and in the reflected direction of amplitude: 

(7.16) 

The c which appears in this equation is the speed of light. The 

wave emitted in the forward direction cancels the power lost by the 

electronic absorption and causes a slight phase shift. The reason that 

a dispersive component can be observed in the optical response is that 

the light emitted in the reflected direction, which will interfere at 

the detector with the beam which passes through the surface, has a 
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definite phase relation at the detector with respect to light that 

passed through the surface, Similar dispersive contributions to line­

shapes are observed in NMR. 96 

A detailed explanation for the observed dispersive component can 

be given by treating Eq. (7.16) as a perturbation acting on the optical 

field in the cell. Since it is small we need only consider the first 

order term. Let E (r,t) be the optical field in the limit that E' 
~ 1 ~ 

is zero, We Fourier analyze E (r,t) into propagating plane waves near 
~ 1 ~ 

the helium surface. We use Eq. (7.16) to compute the perturbation field 

in the forward and reflected direction from each Fourier component. 

We keep these two contributions separate and Fourier transform back to 

real space. Let ~2(~.t) be the first order term from L(r,t) in the 

forward direction and let g3(~,t) be the first order term from gl (~,t) 

in the reflected direction. Since the source of E (r,t) is the mirror 
~2 ~ 

image of the source of g3(r,t) and since most of the wave amplitude is 

reflected from the top and bottom of the cell to return through the 

surface, then the amplitudes 1~21 and 1~31 will be nearly equal when 

averaged over a volume in the cell with dimension large relative to a 

wavelength, Since g2(r,t) comes from waves emitted with the same 

direction and phase as those in E1(r,t) (but with a different angular 

weight), then averaged over a large volume < E (r) • E (r) wi 11 be 
~l ~ ~2 ~ 

non-zero to account for the loss of energy density by absorption. 

The light from the molecular laser is spatially and temporally coherent. 

Therefore, ~l and ~3 have a definite phase relation at each point in the 

cell which is a function of position but independent of time. If the 

relative phase is not zero or 1T then (~l (t) • ~3 (t)) wi 11 contain a term 
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proportional to the imaginary part of Eq, (7.16) that is typically a 

large fraction of the absorptive part from <El(t)·E2(t) >. The InSb 

detector we used is about 1 mm x mm x 2 mm; it is not large enough to 

spatially average the interference between El and E3' Therefore we 

expect to observe a dispersive component in the homogeneous lineshape. 

In analyzing our data we have assumed that the homogeneous lineshape 

as a function of cell voltage that is convolved with the line broadening 

caused by a spatially varying electric field is of the form: 

D (V) (7,17) 

In situations in which the electric field normal to the surface is 

expected to vary only a small amount for points in the charge pool, 

this provides a good fit to our data. Here a 1 is related to y through 

the rate of change of resonant frequency with respect to cell voltage, 

a2 is the cell voltage at which resonance occurs, A is proportional 

to the strength of the transition, and B is the fraction of the imaginary 

part of Eq, (7.16) that contributes to the optical response. As one would 

expect from our analysis it is found that B can be either positive or 

negative and B tends to be smaller as the frequency increases. The 

largest magnitude of IBI observed was 0.747 using the 428 GHz CH 30H 

laser transition, 

For each set of surface electron transitions observed with a 

single laser frequency in a given run we choose a transition with good 

signal-to-noise ratio and small distortion from spatially inhomogeneous 

electric field and use a least squares fitting routine to find a
1

, a2, A 
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and B in Eq, (7,17), From our knowledge of change in transition frequency 

with respect to electric field we then obtain a 1 for the other transitions. 

Having determined the functional form of the asymmetric homogeneous 

lineshape we next proceed to remove the dispersive contribution from the 

experimentally determined lineshape, Let TR(V) be the measured optical 

response as a function of cell voltage, let A(V) be the inhomogeneous 

lineshape, and let G(x) '" (a 1 +Bx)/(x2+a~). Let tR(u), a(u) and g(u) 

be the Fourier transforms of TR(V), A(V) and G(V) respectively, as defined 

in Eq. (6.5). The lineshape function is the convolution of A(V) and G(V) 

so tR(u) '" a(u) g(u) + n(u), where n(u) is the Fourier transform of the 

noise. We deconvolve our data using a fast Fourier transform algorithm 

that can be written symbolically: 

(7.18) 

Here 1 symbolizes the operation of taking the inverse Fourier transform, 

and hs(u) is the Fourier transform of H(x) "" (s o a
1
)/[x2 + (s o a 1 )2]. If 

s::::2 it corresponds to convolving TR(V) with G(V), which can be shown to 

be the optimum procedure to detect that there really is an absorption 

line of the form G(V) in white noise. 97 If s:;: 1 it corresponds to 

removing the asymmetry from the homogeneous lineshape but leaving the 

linewidth unchanged. As s decreases to zero the noise from n(u) at 

large u begins to dominate As(V). 

~Je calculate As(V) for s =2,1, and 0.25. In going from large to 

sma 11 s the resonance s ta rts as a broad smooth curve, sharpens up at 

the peak, and is finally drowned in noise. For most transitions we used 

S :::: 1 to find the cell voltage VR at which the deconvolved optical response 
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is a maximum. In a few cases of low signal-to-noise ratio we used s :::: 2. 

And in one case of exceptionally good signal-to-noise ratio we used 

s =0.25. The best way to increase the resolution would be to lower the 

temperature of the cell and thereby reduce the helium gas atom density. 

C. Calculation of Charge Density and Electric Field 

We use VR as an estimate of the cell voltage that would cause a 

singularity in the optical response in the absence of homogeneous 

broadening. From VR we wish to calculate the external electric field 

FR acting on surface electrons near the axis of the cell. To do so we 

must first obtain the depth z of liquid helium in the cell and the free 

surface charge density at the center of the cell of. We begin by calcu­

lating the depth Zo of helium in the cell at zero cell voltage and before 

charge is placed on the surface from Eq. (5.5). (The capacitance used 

in this equation has subtracted from it the small stray capacitance 

discussed earlier.) Since Iz - zol/H « 1, where H is the cell height, 

we may assume the liquid depth to be Zo while calculating of' To obtain 

of we need some preliminary results. From Eq. (5.16) and Eq. (5.4) we 

obtai n the functi on f 1 (R):= (Cb - Ca )/Cb of fracti ona 1 capacitance screen; ng 

from the free surface charge as a function of charge pool radius R. From 

Eq. (5.9) and (5.10) we obtain the function f
2
(R) :: Q/Qmax where Q is 

the total free surface charge when the charge pool radius is Rand Qmax 

is the total free surface charge that would be present if the cell voltage 

were held fixed and just enough free surface charge were added to the 

charge pool so that R '" a. It should be noted that f
2
(R) is independent 

of cell voltage. As can be seen from Fig. 4 (pg 29), near the center of 
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the cell, the solution to Eq. (5.9) begins to oscillate. This is a 

consequence of the finite element approximation we have used, We average 

the computed charge density over ring 3 to ring 8 of the 100 rings used 

in our numerical calculation and renormalize using the solution to Eq. 

(5.9) in conjunction with the solution to Eq. (5. lO)~ when R '" a, to obtain 

f 3 (R) ~ 0F(r O,R)/oF(r=O,R=a). Each of the functions fl' fz and fs are 

monotonically increasing functions of R. Hence there exists unique 

inverse functions f;l and f;l. We measure fl (R) '" f:,C/C when the cell 

voltage is Vo' When the cell voltage is changed from Vo to VR the total 

free surface charge Q remains fixed while Qmax is changed by the factor 

VR/Vo ' Hence f2 changes by a factor YO/YR' Then at cell voltage VR: 

*"0) , o(r"O, V'V R, R"a) 'f,(f~l(~;f, (/(~C)))) . (7.19) 

We obtain o(r=O, V=VR, R::::a) from Eq. (5,10). Knowing o(r=O) and Zo we 

obtain z/H from Eq. (5.19). We then use Eq. (5.17) to compute FR, the 

external electric field applied to the surface electrons that brings the 

observed transition into resonance with the known laser frequency. 

Before discussing how we have used the measured values of FR we 

should mention the sources of systematic error involved in the measurement. 

One of these is the uncertainty in our knowledge of the cell height H 

given in Fig. 2. Another possible source of systematic error is the 

difference between the cell voltage at which the deconvolved optical 

response function is a peak and the cell voltage that would correspond 

to a singularity in the optical response in the absence of homogeneous 

broadening. If Q/Q is small and the helium surface is parallel to the max 
top and bottom of the cell this is not expected to be important since the 
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applied electric field is then almost constant over the entire charge 

pool, (We computed this variation, ignoring the distortion of the 

electric field caused by light-coupling holes in the cell, and found it 

to be less than 1 part in 10 4 for the conditions of some of our measure­

ments.) In any case, this source of systematic error could be eliminated 

by decreasing the temperature of the cell, Some possible sources of 

systematic error that were investigated and found to be small relative 

to the random error are the change in dielectric constant of liquid helium 

with temperature and the uncertainty in our measurement of the stray 

capacitance. One source of concern is the possibility that there could 

be some free charge on the helium film covering the walls of our cell, 

We have observed that if free charge is intentionally allowed to reach 

the cell walls that the lineshapes are distorted and the AC capacitance 

measured between the top and bottom plates at a fixed cell voltage is 

time-dependent. The precautions we used to minimize the likelihood of 

free charge on the helium film are described in the last chapter. When 

they are taken we observed nothing that indicated that there was free 

charge on the helium film. If free charge is accidentally allowed to 

reach the walls during a run, either by reducing the cell voltage until 

the charge pool begins to flow off the surface or by a large mechanical 

disturbance to the dewar~ then all subsequent data are ignored. 

There may also be some systematic error in the value of cr(r=O) 

that we obtain from Eq. (7.19). If there were it could contribute to 

the value of the disorder parameter K(r) we obtain from our measurements. 

Because we measure the total charge on the helium surface with V/Vsat 
slightly greater than unity (see Fig. 5 and 6, pgs. 34,35). where the 
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capacitance changes rapidly as a function of charge, we do not expect 

errors in the capacitance measurements themselves to be significant. Of 

more concern is the possibility that the helium surface could be distorted 

in some way as the cell voltage is increased. There is no good way to 

be certain that something of this nature does not occur from our measure-

ments. There is. however, good evidence that it is not important since 

the AC capacitance change we calculate is in agreement with the measured 

capacitance change as shown in Fig. 6. 

D. Statistical Analysis 

We next discuss how our data, which includes random error, is used 

to obtain K(r) and the applied electric field F; which brings the ;th 

observed combination of laser frequency and ground to final state 

transition into resonance in the limit that cr approaches zero. The 

measured values of Co' C', Cb, Ca , and Vo for each of the runs used in 

our data analysis are given in Table 2. In Table 3 we give the values 

of VR, z/H, and the charge density cr(r=O) which we used to compute FR, 

as well as FR and the estimated standard deviation of our measurement of 

FR. The standard deviation is constrained to be no smaller than the 

change in electric field during the integration to obtain a single data 

point. Subject to this constraint we estimate the standard deviation 

from the s dependence of the V at which As computed from Eq. (7.18) is 

a maximum, and from the observed increase in scatter among the measured 

FR as the linewidth increases. 

For the purposes of discussion, we label the jth value of FR 

measured with the combination of laser frequency and final state that we 



-75-

TABLE 2. 

Run Date Co c' Cb Ca Vo 
[pfJ [pfJ [pfJ [pfJ [volt] 

20-Jan-79 0.45902 0.47220 0.47177 0.44724 34.38 

2 23-Jan-79 0.45896 0.47209 0.47147 0,45922 34.38 

3 27-Jan-79 0.45901 0.47293 0.47185 0.43655 34.38 

4 26-May-79 0.45958 0.47229 0,47229 0.41006 81.03 

5 26-Jun-79 0,45937 0.47230 0.47220 0.43080 41.92 

6 3-Jul-79 0.45971 0,47251 0,47281 0,39361 122,03 
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TABLE 3. 
~~ 

Date Laser Trans- VR z/H a(r""O) 
fre~ iti on 
[GHz [vo ltJ 

20-J '9 5 428 1- :3 .. 5171 - .. 
AN-19 525., 8 1- 4 ... 5172 -.. 
AN '9 5 .. 428 1- 5 

'9 5 .. 428 1- 6 " .. -' 
2 79 525 .. 428 I- i .,5113 -,. 
20-JAN-79 52S,,428 1- 8 .. 5 3 - " lO-JAN '9 525.,428 1- '9 ., ,,5173 
20-JAN-79 5 .. 428 1 0 " .,~173 - .. 

JAN-79 5.25 .. 428 1- 2 688.,78 t!;: ".' 8 -.. 
20-JAN-7'9 428 .. 628 1- 2 462 .. 09 ,,5170 -., 

4.25 .. 628 1- :3 170,,30 .,5112 -", 

428,,028 - 4 99.,57 .. 5173 -" 
426 .. 628 1 :5 69 .. 57 .,5173 .. 

1- .3 259 .. 47 .. 5154 
1- 4 153 .. 21 5154 
1 5 106.,49 .. 5155 
I- e 81",96 .. 
1 7 ., 
1- 8 
1 9 .. 
1- 2 688., 
1- 2 990 .. 30 " 

9 .. 1 1 .3 380.,64 .. 
6~9"i85 1- 4 226.,63 .. 
525 .. 428 1- .3 260 .. 30 " 
525,,428 1- 4 1 .. 50 " '" 
525 .. 428 1- 5 1 08 .. 80 .. 5 

') 
&. 52 ",42 t 83.,72 .. 5455 

7 68 .. 25 .,5 5 -" - 2 690.,00 ,,5441 - .. 
.3 532,,76 -" 
4 317,,71 -" -.. 

" -.. 
5 -", 

0 '" 2 .. 
8 

639" 1 ., 
639.,185 

3-J 639 .. 185 
UL -., 

a Note that 6ij does not include the uncertainty in our measured value of 

cell height H. The systematic error in the measured value of FR that 

Y'esults is 5.7 x 10- 4 FR' 
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previously labeled by the indexi as Fij . We label the standard devia­

tion of this measurement as 6ij~ and from the charge density o(r=O) which 

we calculated in obtaining F .. we use Eq. (7.15) to calculate 6FR/K(r) 
1J 

which we label as 6F;j' Because the errors in this quant-ity are presumed 

to be small they will be neglected in our statistical analysis. The 

computed values of 6Fij are also given in Table 3. We define eij from 

the equation: 

F.. ::: F. + K(r) 6F .. + e .. 
1J 1 1J 1J 

(7.20) 

We assume that eij is a normally distributed random variable with zero 

mean and standard deviation 6ij . We wish to minimize the effect of the 

eij in estimating values of K(r), F
l

, •.• ,Fn from our data. We also wish 

to have estimates of the uncertainty in the estimated value of each of 

these quantities. We do so using the principle of maximum likelihood. 98 

Accordingly, we wish to find the values of K,F
1

, •• , ,Fn which minimize 

the sum 

=L 
i ,j 

2. 26 .. 
lJ 

(7.21) 

I~e begin by making the approximation that K is independent of r. Setting 

the partial derivatives with respect to each of the parameters equal to 

zero we obtain the following system of linear equations: 

-A + I B.F. + KC ::: 0 
. 1 1 
1 

-D. + G.F. + K8. = 0 
1 1 1 1 

(7.22) 
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A :: 

B. 
1 

::: 

C '" 

D. 
1 

::: 

and 

G. =: 
1 

We find the solution to be 

K ::; 

F '" 
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I 
6F. 

1 

i,j 

I 
6F .. 

lJ 
2 

j 6 .. 
1J 

~ 
6F .2. 

lJ 
2 

i,j 6· . 
1J 

~ F~j 
j 6 i j 

~ 2 

j 6· . 
1J 

given by: 

B.D. 
A -

1 1 

G· 1 

c -I~ G· i 1 

(D. - B.Q) 
1 1 

G. 
1 

(7.23) 

In making the approximation that K is independent of r we are finding 

the best fit horizontal straight line to the curve of K(r) weighted over 

our measurements. The standard deviations associated with K,F 1 •••• ,Fn 
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are found from the relations: 

We fi nd that OK::: C-:1:z and' of. :::: Gi -:1:z. 
1 

(7.24) 

The result of this calculation from our data is K :::: 1.174 ±O.036. 

The values of F. and of we have observed for the combinations of laser 
1 i 

frequency and final state are given in Table 4. Also given in Table 4 

are the transition frequency calculated from the model of an abrupt 

surface (with potential given by Eq. (2.1)' where F:::: F;). the amount by 

which the laser frequency is greater than the calculated frequency, and 

the uncertainty in the calculated frequency that arises from of.' In 
1 

Fig. 12 we have plotted the laser frequency as a function of F;. On the 

scale of this plot it is not possible to see either the difference between 

laser frequency and the frequency calculated from the model of an abrupt 

surface or the error bars associated with Fi . In Fig. 13 we have plotted 

the difference frequency and its associated error bar as a function of Fi . 

We have included two points from Ref. 5 that were obtained ~y extrapolating 

measurements taken at low electric field with a microwave source to the 

limit as the electric field is reduced to zero. The fact that the curve 

of difference frequency versus external electric field has very little 

slope relative to the curve of transition frequency versus electric 

field indicates that the model of an abrupt surface is very accurate 

in calculating (z)n - {z \ 9 as discussed previously. 

In Fig. 14 we have plotted F .. - F. as a function of .6F ... The 
1 J 1 1 J 

observed conSistency between the straight line paSSing through the origin 
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TABLE 4. 

Trans- Laser F. 
1 of. Model Dif. Std.dev. of 

ition freq, 1 freq. freq. dH.freq, 

1-

1-

l-

I-

1-

1-

1-

1-

1-

1-

I-

1-

1 

l~ 

1 

1-

1 

1-

1-

[GHz] [V/cm] [V/cm] [GHz] [GHz] [GHz] 

2 428@63 895" .. 66 422 .. 28 6 .. 35 .. 16 

3 428 .. 63 329 .. 13 .. 80 422 .. 6 .. ..48 

it 428,,63 191 .. 57 .,78 422 .. 39 6 .. .. 78 

S 428" 133 .. 09 .. 2 .. 58 6 .. .. 86 

2 525 .. 1336 .. .. 39 518 .. 83 6 .. 60 .. 08 

3 525 .. "i02 .. 81 .. 37 518 .. 65 6 .. 78 .. 19 

4 525 .. 296 .. 04 '" 22 518 .. 80 6 .. 63 .. 19 

5 5 2 " .. 518 .. 77 6 .. .. 48 

6 5 .. 157 .. 72 .. 22 518 .. 41 7 .. 02 .. 35 

7 5 ., 127 .. 28 .. 22 518 .. 53 6 .. 90 .. 43 

S 525 .. 106 .. 62 .. 27 518 .. 83 6 .. 59 .. 62 

9 525 .. 91 .. 7f: .. 27 519.,36 6" " 72 

10 525" 80.,00 .. 518., 7 .. 17 1" 41 

.2 639 .. 19 1913 .. 18 L • 629 .. 51 9 .. 67 .. 25 

3 639 .. 19 5",71 .. 54 631., 8",15 .. 
4 .. 19 5 .. 65 .. 68 630.,70 8 ,,51 

:; 639,,19 301 .. 2~ 5 .. 03 62 09 13 .. 09 5 .. 37 

.3 1 .. 1029., 1,,18 6 .. 15 8" .. 
4 764 .. 609,,~3 88 753,,61 10 .. 97 1 .. 

Note that OF_ • from wh'ich the last column is calculated, does 
1 

not include the systematic error of 5,66 x 10-'+ F; that arises 

from the uncertainty in our measured value of H, 
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o OBSERVED TRANSITIONS 

CURVES CALCULATED FROM MODEL OF AN 

ABRUPT LlQUID- GAS INTERFACE 

°0~----------~----------~1~0~0~0----------~-----------2~000 

E LE CTRI C FI ELD (V/CM) 
XBL798-6725 

Fig, 12. Plot of the laser frequency versus electric field at which 
transitions are observed, The curves are the same as in Fig, 1, 
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OBSERVED TRANSITION TO STATE N 
WITH LASER AT FREQUENCY M IS 
LABELED (N,M) WHERE: 

M FREQUEN GHz 

! 428.628 
2 525.4275 
3 639.185 
4 764.6426 

* LIMIT AS ELECTRIC FIELD 
IS REDUCED TO ZERO 
FROM REF. 5 

(2,3) ~ 

!Ii (2,1) 

500 1000 I 500 2000 
ELECTRIC FIELD (V /CM) 

XBL798-6722 

Fig. 13. Plot of the laser frequency minus the frequency calculated 
from the model of an abrupt liquid-gas interface, plotted 
as a function of external electric field, 



::: 
u 

~ 
w 
u 
Z 
<! 
Z 
o 
(f) 
w 
a::: 
I-- 10 
<! 
Cl 
-l 
W 
I.b 

U 

a::: 
I-­
U 
W 
-l 
W 

I.b 
o 
W 
(!) 

Z 
<! 
::J: 
U 

o 
w 
a::: 
:::> 
(f) 

« 
w 
::: 

o 

-83-

K= 1.174 ± 0.036 

15 5 10 
CALCULATED DIPOLE ELECTRIC FIELD IF K=I (V/CM) 

XBL 191HS724 

Fig. 14. Plot of measured change of electric field at resonance 
Fij - Fi versus the change calculated for a hexagonal lattice 
with the same charge density as the measured charge density. 
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with slope K and the plotted points indicates that the model given in 

Eq, (7.20) does indeed fit the data, 

In an attempt to obtain more information about K(r) than just the 

best level fit when averaged over our data, and to give an idea of the 

contribution of the individual values of r to the final result, we 

estimated the K(r) and the resulting error bar from each FR for which 

there were other measurements involving the same transition and for which 

6" < ~ 6F, '. We did so by calculating F
l
, and OF, without using the data 

1J 1J 1 

from the measurement we are attempting to use to find K(r), We then use 

F,. and 6F" to compute K from Eq, (7,19), We compute OK as the propa-
1J 1J 

gated error OF, and 6, .. These results are plotted in Fig. 15, A level 
1 1J 

straight line is not inconsistent with our data, although we know from 

physical considerations that K(r) must be a monotonically decreasing 

function that asymptotically approaches K:::: 1 at large r. 

E. Implications of Measured Quantities 

In comparing our measured quantities with the theoretical predictions 

discussed earlier the most striking thing is their close agreement, The 

results shown in Fig. 13 of frequency difference with respect to the 

model of an abrupt surface indicate that at low electric field there is 

no measurable variation of the frequency difference while at large electric 

fields an upward slope becomes evident, The gradual interface model of 

F, Stern99 predicts almost similar results, The parameters of his model 

were fitted to the low field results of Grimes et al, which are consistent 

with our measurements. The agreement will undoubtedly improve when our 

measured values are also used in the fitting process, Another use for 
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2.0 
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o ~ _________ ~ __________ ~ __________ L-________ -L ________ ___ 

o 10 20 30 40 50 
RATIO r 

Fig. 15, Plot of the ratio K(r) as determined from individual 
measurements versus r, 

XSL 798-6723 
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our measurements of transition frequency as a function of electric field 

is to check the first principles calculations of density variation near a 

free liquid helium surface. Such a comparison may help to resolve the 

existing controversy as to whether or not the local density oscillates 

near the helium surface, 

In comparing our measured value of K(r) with the results given in 

Table 1, that are obtained by integrating tabulated values of the radial­

distribution function g(r), we see that our measured value is larger by 

a statistically significant amount. We do not know the accuracy of the 

tables of g(r) from which the calculated values of K(r) were derived. 

The variation of the consistency parameter W from the exact value of W= 1 

indicates that they may be unreliable, Two physical effects which would 

make our measured value of K larger than the calculated value are the 

reconstruction of nearby electrons as the excited state electron moves 

away from the surface and the zero point motion of the electrons, We 

expect both of these effects to be small, There could. however. be an 

additional source of disorder which is not small. such as waves on the 

helium surface, If we systematically measured the charge density to be 

less than its true value the same effect would arise. A good way to 

check our results would be to repeat the experiment at a temperature 

low enough so that helium gas atom scattering does not dominate the 

lineshape and look at the effect of changing the temperature as well as 

the charge density, (Because our linewidths were proportional to helium 

gas atom density, which increases exponentially with temperature, we 

took all of our data at the lowest temperature we could reach in our 

cryostat - about 1,2°K.) 
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To our knowledge this is the first experimental check of the 

computed radial-distribution function of a two-dimensional system of 

free particles interacting with a l/r potential. The theory will 

undoubtedly be refined now that there are experimental results with 

which it can be compared. Also~ it appears that a significant improve­

ment in the accuracy of the measurement can be obtained by repeating 

the experiment at a lower temperature. It would be very interesting 

to experimentally resolve the r dependence of K(r). The theory and 

experimental techniques reported in this thesis should allow one to 

make such a measurement. 
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VII L CONCLUSION 

In conclusion, we have obtained from our data both the quantity K, 

defined as the ratio of ~I !ri ,-3 to the same quantity evaluated for a 
1 

hexagonal lattice with the same charge density, and the electric field 

dependence of the transition energy from the ground state to various 

excited states. Our measured value for the best level fit to the function 

K(rL using data with r between 9 and 44, is K '" 1,174 ±O,Q36, This is 

significantly larger than the values of K(r) calculated from published 

tables of the radial-distribution function of the classical electron 

gas with r in this interval. It is not clear whether this discrepancy 

is a result of inaccuracies in the published tables, a possible systematic 

error in our measurement, or increased disorder from some physical source 

not included in the calculations such as waves on the helium surface. 

The transition energy that we measure at a given applied external 

field F is found to differ from the transition energy calculated from 

the model of an abrupt liquid-gas interface by an amount that depends 

very lHtle on F, This implies that the change in average distance from 

the helium surface that occurs as electrons change from one state to 

another can be calculated very accurately from the model. Our data is 

also consistent with a more elaborate model calculation of F. Stern. 

A number of first principle theoretical calculations exist which give 

incompatible results for variation of density at the surface of liquid 

helium. We expect some of the controversy surrounding these calculations 

to be resolved when they are extended to compare with our measured values. 

Our measurement of the disorder parameter K was made possible 

because we were able to measure the surface charge density, We did this 
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using a novel technique that involved measuring the change in AC capacitance 

between plates separated by the helium surface that occurs when charge is 

put on the surface. We found that we were able to calculate the change 

in AC capacitance for a given total surface charge without using the 

detailed thermodynamics of a two-dimensional electron gas. A self­

consistent electrostatic calculation gives very accurate results. One 

surprising result of this calculation is that almost all of the surface 

charge is confined to a "charge poo-I" which will, in genera-:, only cover 

part of the helium surface. 

The technique we have used to measure K can give qreatly improved 

accuracy if the temperature is lowered significantly below the 1.2°K used 

in our measurements. \;Je expect that when this is done it will be possible 

to study the variation of K as a function of f. This could lead to 

Significant new results in the theory of two-dimensional disordered 

systems. 
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APPENDIX 1 

We give the proof of Eq. (5.11) in the text. We use Green's 

reciprocation theorem, Consider three situations: A. S and C. In all 

three cases the sides of the cell are at ground potential and there is 

a total charge 0
0 

in the charge pool on the helium surface. However. in 

situation S the top plate potential is increased by tJ.V from the ground 

potential present in situation A. In situation C the top plate is at 

ground potential but the potential of the bottom plate is increased by 

tJ.V from the potential Vo present in situation A. The radius of the charge 

poo 1 is RA, RB and RC for situations A. S and C. The charge on the top 

plate 01' the charge on the sides OS' the charge on the bottom plate °B' 
the potential as a function of position on the helium surface Vp(p), and 

the charge density in the charge pool 0 p in the three situations are 

denoted as in the following table: 

Situation °T OS Os Vp(p) 0 p(P) 

A Tl S1 Xl VA(p) 0 A(P) 

B T2 52 Xl + tJ.QS VB(p) 0 B(p) 

C T I + tJ.QT 53 X
2 VC(p) 0 C(p) 

Using Green's reciprocation theorem we obtain the following equation: 
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RB 
'" f 21TP 0 B (p ) ( VA ( p) - V C (p)) dp 

fJ"'O 

RA 
+ f 21TP 0 A (p ) ( V C ( p) - VB ( p ) ) dp 

fJ=O 

RC 

+ f 21TP 0 C (p ) (V B (p) - V A (p) dp 
p=o 

(A 1) 

(A2) 

Here EASC is 1 if (ABC) is an even permutation, and is -1 if it is an 

odd permutation. Both of the integrals on the right-hand side of Eq. (A2) 

are of the third order of smallness in ~V since 0 i (P) goes continuously 

to zero as p approaches Ri . The left-hand side is only of second 

order smallness in ~V. Hence: 

1 im 
~V-+O 

This completes the proof, 

(A3) 
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APPENDIX 2 

We give plots of optical response as a function of cell voltage. 

The numbers from which these plots were obtained are stored in named 

GSS files on the LBL Computer Center tape #35217. The files were created 

by unformatted writes of the form: 

WRITE(N)(K,(Y(Il),I 1,4098), 

(X(I2).I2=1,4098).(XL(I3).I3=1.3). 

(YL(I4).I4=1.3),(TITLE(I5).I5=1.6)) 

The first K values of X are voltages and the first K values of Yare the 

associated values of the optical response. Alpha-numeric information in 

II A" format is stored in XL. YL. and TITLE. 
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