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Holographic confinement in inhomogeneous

backgrounds

Donald Marolf and Jason Wien

Department of Physics, University of California, Santa Barbara, CA 93106, USA

E-mail: marolf@physics.ucsb.edu, jswien@physics.ucsb.edu

Abstract: As noted by Witten, compactifying a d-dimensional holographic CFT on

an S1 gives a class of (d − 1)-dimensional confining theories with gravity duals. The

prototypical bulk solution dual to the ground state is a double Wick rotation of the

AdSd+1 Schwarzschild black hole known as the AdS soliton. We generalize such ex-

amples by allowing slow variations in the size of the S1, and thus in the confinement

scale. Coefficients governing the second order response of the system are computed

for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity corre-

spondence. The primary physical results are that i) gauge-theory flux tubes tend to

align orthogonal to gradients and along the eigenvector of the Hessian with the lowest

eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for

d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where

the second derivative along the tube is large and positive but are attracted to regions

where the eigenvalues of the Hessian are large and positive in directions orthogonal

to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the

confining vacuum above its zeroth order value.
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1 Introduction

The AdS/CFT correspondence [1–3] provides elegant geometrizations of many aspects

of quantum field theory, including the phenomenon of confinement [4]. In gauge the-

ories, an order parameter for confinement is the expectation value of a “temporal”

Wilson loop around a Euclidean time circle:

〈|Tr(W )|〉 ≡
〈

1

N
Tr
(
Pe−

∮
Aτdτ

)〉
. (1.1)

The expectation is of the form e−βEq , where Eq is the energy of a probe quark. In a

confining phase this energy diverges, and so the expectation value (1.1) vanishes. But a

non-zero expectation value requires a finite probe quark energy and implies the theory

to be in a deconfined phase [5–7].

The holographic prescription [8] for computing the expectation value of a Wil-

son loop C involves considering a fundamental string in the bulk which intersects the

asymptotically AdS conformal boundary on the curve C defined by the Wilson loop.

Here we identify the (conformal) boundary of the bulk with the gauge theory space-

time. At small bulk string coupling, the semi-classical approximation to the associated

worldsheet path integral gives

〈|Tr(W )|〉 ' e−Scl , (1.2)

where Scl is the classical string action of Euclidean worldsheet. As we focus on the

vanishing or non-vanishing of (1.2), we need only determine if any worldsheets have
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finite action. When there is no bulk worldsheet with boundary C, expression (1.2)

vanishes and the theory is confined.

The bulk topology associated with the Euclidean time circle is thus of critical

importance. When this circle is non-contractible, there can be no worldsheet with

boundary C having the topology of a disk. Since other topologies are allowed only in

special cases1, it is of great interest to construct asymptotically locally AdS spacetimes

with non-contractible Euclidean time circles.

The prototypical example of a bulk geometry dual to a confining vacuum is the AdS-

soliton [4, 9]. The solution may be constructed by Wick-rotating the Schwarzschild-AdS

black hole and involves an arbitrary constant b > 0. In Fefferman-Graham gauge and

Euclidean signature the metric may be written

ds2 =
`2

z2

[
dz2 +

(
1 +

zd

bd

)4/d

dτ 2 +

(
1 +

zd

bd

)4/d

dxidx
i + α2

db
2

(
1− zd

bd

)2(
1 +

zd

bd

) 4
d
−2

dθ2

]
,

(1.3)

where i = 1, . . . d − 2 and αd = 21−2/d

d
. We take θ to be dimensionless and to have

b-independent period 2π (as required by regularity at z = b). The conformal boundary

may be taken to have metric

ds2
bndy = dτ 2 + dxidx

i + α2
db

2 dθ2, (1.4)

so that b controls the size of the θ-circle on the boundary.

Below, we generalize this solution by allowing the size of the S1 – and thus the

confinement scale – to vary slowly along the boundary. We work in Euclidean signature,

but our results define Lorentz-signature solutions via a trivial Wick rotation of τ ,

or equivalently by evolving the associated initial data at t = 0. We construct the

bulk geometries in section 2 using an adiabatic expansion. Section 3 then extracts

predictions for Wilson loops and the stress tensor in the dual gauge theory. Readers

most interested in such results may skip directly to this section. Numerical results

for interesting coefficients are given for 3 ≤ d ≤ 8. The special case d = 2 is solved

analytically in appendix A and used to check our numerical codes.

2 Adiabatically Varying Confining Vacua

In any local theory, one may use a solution with continuous free parameters to build

new solutions by promoting constant such parameters to slowly varying functions. The

1When the bulk has additional boundaries not associated with the original CFT spacetime. Such

boundaries typically lie at the end of an infinite throat related to an extreme horizon in the bulk
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explicit functional form will then require corrections, but these may be found by solving

the equations of motion in an adiabatic expansion. In particular, this procedure has

been used extensively in the fluid-gravity correspondence [10] to construct holographic

duals of conformal fluids near thermal equilibrium; see [11, 12] for reviews. Indeed,

because (1.3) is the double-Wick rotation of an AdS-Schwarzschild black hole, our so-

lutions below could have been constructed as double Wick-rotations of appropriately

static and symmetric instances of the fluid-gravity correspondence that satisfy certain

regularity conditions. However, we nevertheless find it useful to construct the rele-

vant equations and study regularity directly in terms of coordinates adapted to our

symmetries (as opposed to the ingoing Eddington-Finkelstein black hole coordinates of

[10–12]).

To be more explicit, suppose that we begin with a bulk geometry having free

parameters {cα}. We promote each constant to a slowly varying function by making

the replacement cα → cα(εx) to define a new metric g̃
(0)
AB. Here ε is a dimensionless

book-keeping parameter that controls the adiabatic expansion.

Our g̃
(0)
AB no longer solves Einstein’s equation exactly, but we can use it to construct

a solution by considering the ansatz

ds2 = g̃
(0)
AB dx

AdxB + ε g̃
(1)
AB dx

AdxB + ε2 g̃
(2)
AB dx

AdxB + · · · . (2.1)

Inserting (2.1) into the Einstein equation gives, at each order n, a set of equations for

the metric correction g̃
(n)
AB. In general, at each order n there may also be consistency

conditions that impose relations between the cα and their derivatives. However, no

such conditions will arise in the setting studied below.

We will use this method to construct a class of confining geometries which approach

the AdS-soliton (1.3) in the limit as ε→ 0. Our solutions are constructed in Euclidean

signature and have a τ translation symmetry. As a result, they are bulk stationary

points of the path integral that computes the vacuum of the dual gauge theory. As in

the discussion of [4, 9] we assume this saddle to dominate. Wick rotating to Lorentz

signature or evolving initial data from t = 0 will then give Lorentz-signature solutions

dual to the gauge theory vacua.

2.1 Ansatz and boundary conditions

We begin with the AdS-soliton (1.3) and promote b to a slowly varying function of a

single spatial coordinate x, i.e. b → b(εx). The effect on the boundary metric is to

make the size of the S1 fibers vary with x. Although for simplicity we will allow this

size to vary only along a single coordinate direction, we describe at the end of section

2.2 below how at order ε2 this seemingly-special case in fact suffices to determine the

response to completely general slow variations of b in the (d− 1) directions (τ, xi).
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Since the dual CFT will have a ground state on any static spacetime, one expects

no restrictions on the functional form of b(εx). We will verify below that no constraints

arise within the adiabatic expansion. A key point will be that adding x-dependence

in the above way will allow us to preserve regularity everywhere in the bulk, and in

particular at the fixed points of the rotational Killing field ∂θ.

It will be convenient to let x = x1, y1 = τ , and yi = xi for i ≥ 2. With these

definitions, the boundary coordinates are given by xµ = (θ, x, yi) where again i =

1, . . . , d− 2. Below, we use rotational invariance among the yi to write gyiyj = gyyδij.

Working in Fefferman-Graham gauge, we consider solutions of the form

ds2 =
`2

z2
gABdx

AdxB =
`2

z2

(
g

(0)
AB dx

AdxB + ε g
(1)
AB dx

AdxB + ε2 g
(2)
AB dx

AdxB + · · ·
)
,

(2.2)

so that in the notation of (2.1) we have g̃
(n)
AB = `2

z2
g

(n)
AB. The explicit form of our zeroth

order ansatz is

g
(0)
AB dx

AdxB = dz2 + α2
db

2

(
1− zd

bd

)2(
1 +

zd

bd

) 4
d
−2

dθ2

+

(
1 +

zd

bd

)4/d

dx2 +

(
1 +

zd

bd

)4/d∑
i

dyidyi. (2.3)

Using the Fefferman-Graham gauge condition g
(n)
Az = 0 for n ≥ 1 as well as reflection

symmetry in both θ and yi, shows that all g
(n)
AB remain diagonal. Similarly, only the zz,

zx, xx, yy, and θθ components of the Einstein tensor can be non-zero.

We wish to satisfy the vacuum Einstein’s equation with a negative cosmological

constant:

0 = EAB := RAB −
1

2
RgAB + Λ gAB . (2.4)

As in [10], at each order in the adiabatic expansion we have d(d+1)
2

equations E
(n)
µν = 0

involving second derivatives with respect to z; we refer to these equations as dynamical.

Here µ, ν range over all boundary coordinates. We also obtain d+1 equations involving

no more than first derivatives in z, and which we call constraints. The latter divide

themselves into E
(n)
zµ = 0 and E

(n)
zz = 0. Rotational symmetry in the yi requires

E
(n)

yiyj
= E

(n)
yy δij, so at each order we have only three distinct dynamical equations

E
(n)
xx , E

(n)
θθ , and E

(n)
yy for the three undetermined metric functions g

(n)
θθ , g

(n)
xx , and g

(n)
yy .

Moreover, each derivative ∂x adds another factor of ε, so the dynamical equations for

g
(n)
AB are ultra-local in the boundary directions. We are left with three coupled second

order ordinary differential equations in z.
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The dynamical equations require two boundary conditions to fix the solution uniquely.

The first is given by fixing the induced metric on the boundary to be given by (1.4)

with b→ b(x). The zeroth order ansatz satisfies

lim
z→0

g(0)
µν dx

µdxν = dx2 + α2
db

2dθ2 + dyidy
i, (2.5)

and so gives the correct boundary metric to all orders. We therefore impose

lim
z→0

g(n)
µν = 0 (2.6)

for all n > 0.

The second boundary condition is determined by regularity at the fixed points of

∂θ. This occurs at some z = b̃(x) where the associated S1 shrinks to zero size. At

zeroth order one finds b̃ = b, though there are corrections at higher orders. To impose

regularity, it suffices to construct coordinates R(z, x) and X(z, x) such that gθθ vanishes

at R = 0 and the metric takes the form

ds2 = gRR|R=0

(
dR2 +R2dθ2

)
+ gXX |R=0dX

2 + gY Y |R=0

d−2∑
i=1

dY idY i +O(R2) (2.7)

where gRR|R=0, gXX |R=0, gY Y |R=0 are positive (and thus non-vanishing) functions of X.

Expanding the zeroth-order ansatz (2.3) in powers of z−b(x) shows that it satisfies

regularity as previously claimed. One may then check that the full ansatz (2.2) satisfies

(2.7) to order ε2 with

z = (1−R)b− ε2 1

3
16−1/db

(
b′

2
+

2

α2
dd

2
∂2
zg

(2)
θθ

∣∣∣
z=b

)
+O(ε4)

x = X + ε 16−1/d b b′
(
R +

1

2
R2 − 1

6
(d− 2)R3

)
+O(ε4, R4), (2.8)

so long as we impose the boundary conditions

0 = g
(1)
θθ

∣∣∣
z=b

0 = ∂zg
(1)
xx

∣∣
z=b

0 = ∂zg
(1)
yy

∣∣
z=b

0 = ∂zg
(2)
θθ

∣∣∣
z=b
− 1

6
b
(
α2
dd

2b′
2

+ 2 ∂2
zg

(2)
θθ

∣∣∣
z=b

)
0 = 2 d b g(2)

xx

∣∣
z=b

+ 2α−2
d ∂zg

(2)
θθ

∣∣∣
z=b
− d b2 ∂zg

(2)
xx

∣∣
z=b

+ 2 d b2 b′′

0 = 2 d b g(2)
yy

∣∣
z=b

+ 2α−2
d ∂zg

(2)
θθ

∣∣∣
z=b
− d b2 ∂zg

(2)
yy

∣∣
z=b
− 2 d b b′

2
. (2.9)

We emphasize that we have chosen the period of θ to remain precisely 2π at all x at

each order in ε.
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2.2 Adiabatic solutions

We have now specified two boundary conditions at each order for each of the dynami-

cal variables g
(n)
xx , g

(n)
θθ , and g

(n)
yy . This is enough to uniquely determine solutions to the

dynamical equations Eµν = 0 at each order. It turns out that any such solution auto-

matically satisfies the constraints EzA = 0 or, equivalently, ERA = 0. For A = θ, Y i

this is clear from the reflection symmetries θ → −θ and Y i → −Y i. For A = X,R, we

proceed by noting that the Bianchi identities ∇AE
AB imply first order evolution equa-

tions for the constraints ERA. Using (2.7), one finds that imposing Eµν = 0 requires

ERR = CRR (R−1 + . . . ) and ERX = CRX (R−1 + . . . ) where CRR, CRX are constants

and the dots (. . . ) represent terms that vanish as R → 0. But regularity requires2

ERR, ERX to be finite at R = 0. This sets CRR = 0 = CRX , so that the constraints hold

identically everywhere in the bulk. It thus suffices to solve the dynamical equations

Eµν = 0 alone subject to (2.5) and (2.9). At least in the adiabatic expansion, this

verifies the expectation that bulk solutions exist for all profiles b(εx).

Let us now examine in more detail the equations E
(n)
µν = 0 that result from expand-

ing Eµν in powers of ε . In general, the lower order terms g
(n)
AB in (2.2) lead to sources

for the higher order terms. As noted above, each boundary derivative contributes an

explicit power of ε. Covariance requires each term in Eµν to contain an even number of

such derivatives, so evaluating Eµν on the zeroth-order ansatz (2.3) alone can provide

source terms only for g
(n)
AB with n even.

In particular, there can be no source terms at order ε so that the dynamical equa-

tions for g
(1)
AB are homogeneous. Since the boundary conditions (2.5) and (2.9) are also

homogeneous at this order, the unique solution is g
(1)
AB = 0.

The story is more interesting at second order. Explicit computation gives the

following lengthy dynamical equations:

0 =4(d− 2)zd+2
(
(d+ 1)bd + (d− 2)zd

)
b′

2 − 4 b(d− 2)zd+2
(
bd + zd

)
b′′

− 4 b2(d− 4)z2dg(2)
xx − 4 b2(d− 4)(d− 2)z2dg(2)

yy

+ b2z
(
bd + zd

) (
(d− 7)zd − (d− 1)bd

)
∂zg

(2)
xx

+ b2(d− 2)z
(
bd + zd

) (
(d− 7)zd − (d− 1)bd

)
∂zg

(2)
yy

+ b2z2
(
bd + zd

)2
∂2
zg

(2)
xx + b2(d− 2)z2

(
bd + zd

)2
∂2
zg

(2)
yy ,

0 =4 (d− 2)zd+2
(
zd − bd

)3 (
b2d + (d+ 1)bdzd + (d− 2)z2d

)
b′

2

− 4α−2
d z2d

(
bd + zd

)2 (−(2d2 − 5d+ 4)b2d − 2(3d− 4)bdzd + (d− 4)z2d
)
g

(2)
θθ

2A simple argument notes that TrE2 := EABECDgDAgBC is a positive definite quadratic form that

must be finite at R = 0. Explicitly, the leading terms at R = 0 are (gRRE
RR)2 + 2gRRgXX(ERX)2.
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− 4 b2(d− 2)z2d
(
zd − bd

)3 (
(d+ 4)bd + (d− 4)zd

)
g(2)
yy

− α−2
d z

(
bd − zd

) (
bd + zd

)3 (
(d− 1)b2d − 2(3d− 4)bdzd + (d− 7)z2d

)
∂zg

(2)
θθ

+ b2(d− 2)z
(
bd − zd

)2 (
z2d − b2d

) (
(d− 1)b2d + 8bdzd + (d− 7)z2d

)
∂zg

(2)
yy

+ α−2
d z2(bd − zd)2(bd + zd)4∂2

zg
(2)
θθ + b2(d− 2)z2

(
bd − zd

)4 (
bd + zd

)2
∂2
zg

(2)
yy ,

0 = 4zd+2
(
bd − zd

)2 (
zd − bd

) (
d b2d + ((d− 2)d− 6)bdzd + (d− 3)(d− 2)z2d

)
b′

2

+ 2 b z2
(
bd − zd

)3 (
bd + zd

) (
b2d + 4bdzd + (2d− 5)z2d

)
b′′

− 4α−2
d z2d

(
bd + zd

)2 (−(2d2 − 5d+ 4)b2d − 2(3d− 4)bdzd + (d− 4)z2d
)
g

(2)
θθ

− 4 b2z2d
(
zd − bd

)3 (
(d+ 4)bd + (d− 4)zd

)
g(2)
xx

− 4 b2(d− 3)z2d
(
zd − bd

)3 (
(d+ 4)bd + (d− 4)zd

)
g(2)
yy

− α−2
d z

(
bd − zd

) (
bd + zd

)3 (
(d− 1)b2d − 2(3d− 4)bdzd + (d− 7)z2d

)
∂zg

(2)
θθ

+ b2z
(
bd − zd

)2 (
z2d − b2d

) (
(d− 1)b2d + 8 bdzd + (d− 7)z2d

)
∂zg

(2)
xx

+ b2(d− 3)z
(
bd − zd

)2 (
z2d − b2d

) (
(d− 1)b2d + 8 bdzd + (d− 7)z2d

)
∂zg

(2)
yy

+ α−2
d z2

(
bd − zd

)2 (
bd + zd

)4
∂2
zg

(2)
θθ + b2z2

(
bd − zd

)4 (
bd + zd

)2
∂2
zg

(2)
xx

+ b2(d− 3)z2
(
bd − zd

)4 (
bd + zd

)2
∂2
zg

(2)
yy . (2.10)

As a check, we can use (2.10) to analytically compute the asymptotic expansion of

g
(2)
xx , g

(2)
θθ , g

(2)
yy in powers of z. Solving (2.10) via the Frobenius method near z = 0, for

d ≥ 3 we find

g
(2)
θθ = α2

d

b b′′

d− 1
z2 + cθz

d +O(zd+1),

g(2)
xx =

b′′

b (d− 1)
z2 + cxz

d +O(zd+1),

g(2)
yy = − b′′

b (d− 1)(d− 2)
z2 + cyz

d +O(zd+1), (2.11)

where the coefficients of zd are determined by the boundary conditions at the horizon.

On the other hand, for any boundary metric γ
(0)
µν , it is known (see e.g. [13]) that

for d ≥ 3 the z2 coefficient in the expansion of gµν is given by

γ(2)
µν = − `2

d− 2

(
Rµν −

1

2(d− 1)
Rγ(0)

µν

)
, (2.12)

where Rµν is the Ricci tensor of γ
(0)
µν . Furthermore, the terms znγ

(n)
µν with 3 ≤ n < d

involve higher numbers of derivatives and so vanish to order ε2 (and similarly for the
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zd log z2 term for even d > 2; for d = 2 the z2 log z2 term vanishes identically). As the

boundary curvature is given by

Rθθ = −ε2α2
d b b

′′, Rxx = −ε2 b
′′

b
, R = −2 ε2

b′′

b
, (2.13)

we see that (2.12) agrees with (2.11).

While the equations (2.10) are highly coupled, they are also linear and can be

solved numerically using the collocation methods described in [14]. By linearity, and

dimensional analysis the solutions take the form

g(2)
xx (z, x) = (b′(x))

2
g(b′)2

xx (z/b) + (b(x)b′′(x)) g(bb′′)
xx (z/b),

g(2)
yy (z, x) = (b′(x))

2
g(b′)2

yy (z/b) + (b(x)b′′(x)) g(bb′′)
yy (z/b),

g
(2)
θθ (z, x) = α2

d

[
(b(x) b′(x))

2
g

(bb′)2

θθ (z/b) + b(x)3 b′′(x) g
(b3b′′)
θθ (z/b)

]
, (2.14)

where the functions g
(b′)2
xx (z/b), etc have no further dependence on b(x). Results for

these dimensionless coefficient functions are shown in figures 1 - 3.

1 z/b

-0.4

-0.3

-0.2

-0.1

0.1

g(bb')
2

θθ

3

4

5

6

7

(a)

1 z/b

0.1

0.2

0.3

gb
3 b''

θθ

3

4

5

6

7

(b)

Figure 1: (Color online) Numerical solutions for (a) g
(bb′)2

θθ and (b) g
(b3b′′)
θθ as functions

of z/b for d = 3 to d = 7 using the notation (2.14). In each case the left endpoint is

the asymptotic boundary z = 0 and the right endpoint is the fixed point of ∂θ (where

gθθ = 0).

Although we have thus far allowed dependence only on a single coordinate x, the

results above in fact determine the O(ε2) response of our system to general slow vari-

ations of b in the (d − 1) directions (x, yi). In particular, since the metric at each

order εn and each bulk point (z, x, yi, θ) is locally determined by the boundary metric

at (x, yi, θ), in computing the response to gradients we are free to simply define x at

each such boundary point to run in the direction of any gradient of b, so long as we

then take the yi to label the orthogonal directions. We may then separately consider

the response to the matrix of second derivatives of b (the Hessian). Here it is useful
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1 z/b

-0.25

0.25

g(b')
2

xx

3

4

5

6

7

(a)

1 z/b

0.5

1.

g(bb'')xx

3

4

5

6

7

(b)

Figure 2: (Color online) Numerical solutions for (a) g
(b′)2
xx and (b) g

(bb′′)
xx for d = 3

to d = 7 using the notation (2.14). In each case the left endpoint is the asymptotic

boundary z = 0 and the right endpoint is the fixed point of ∂θ (where gθθ = 0).

1 z/b

-1.

-0.75

-0.5

-0.25

g(b')
2

yy

3

4

5

6

7

(a)

1 z/b

-0.6

-0.4

-0.2

g(bb'')yy

3

4

5

6

7

(b)

Figure 3: (Color online) Numerical solutions for (a) g
(b′)2
yy and (b) g

(bb′′)
yy for d = 3

to d = 7 using the notation (2.14). In each case the left endpoint is the asymptotic

boundary z = 0 and the right endpoint is the fixed point of ∂θ (where gθθ = 0).

to choose coordinates that diagonalize the Hessian. Furthermore, since the O(ε2) re-

sponse to second derivatives is linear, it suffices to separately compute the response

to each eigenvalue λα of the Hessian. And for studying any particular eigenvalue, we

can choose the x coordinate to run in the corresponding direction. As a result, letting

α, β run over directions corresponding to eigenvectors of the Hessian and denoting the

the second order response to the Hessian of gAB in the direction associated with some

particular eigenvalue λβ by g
(2,Hess)
ββ , we have

g
(2,Hess)
ββ = b

[
g(bb′′)
xx (z/b)λβ + g(bb′′)

yy (z/b)
∑
α 6=β

λα

]
(2.15)

in terms of the functions g
(bb′′)
xx (z/b), g

(bb′′)
yy (z/b) computed above.
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3 Gauge Theory Implications

We now use the above solutions above to extract physical data about the confining

gauge theory. In particular, the quark/anti-quark potential V (xq, xaq) can be studied

by computing the expectation value of rectangular Wilson loops extending along e.g.

x and τ = y1. For ∆τ � ∆x = xq − xaq, one expects from (1.1) that

W (C) ∼ e−V (xq ,xaq) ∆τ . (3.1)

Using the holographic prescription (1.2), we see that V (xq, xaq) is proportional to the

(renormalized) area of the string world-sheet per unit time ∆τ . If we further take

∆x (and thus also ∆τ) much larger than the scale b, this renormalized area can be

approximated by that of the corresponding rectangle on the hypersurface where ∂θ = 0;

we follow standard practice in referring to this surface as the IR floor. In the coordinate

system (2.7), the IR floor lies at R = 0. Transforming to Fefferman-Graham coordinates

using (2.8) and taking into account (2.9), it also lies at z = b̃ with

b̃ = b− ε2

2
b2 α−2

d ∂zg
(2)
θθ

∣∣∣
z=b

+O(ε4). (3.2)

Here we assume d ≥ 3 so that there is at least one y direction. The special case d = 2

is discussed separately in appendix A, where it is solved analytically and used to check

our numerical codes.

We denote by Cfloor the corresponding rectangular loop on this IR floor. Since

τ = y1, the loop Cfloor has area

ACfloor ≈ `2

∫
dx dy1

(
1

b2
161/d +

ε2

2b2

(
h(2)
xx + h(2)

yy

))
, (3.3)

where `2hµν is the induced metric on the IR floor. Similarly, for loops extending along

τ and a y direction, we have

ACfloor ≈ `2

∫
dy2 dy1

(
1

b2
161/d +

ε2

b2
h(2)
yy

)
. (3.4)

The second order contributions to hµν are listed in the table in figure 4 using notation

analogous to (2.14). Here we extend the calculations to d = 8 due to an interesting

change of sign for h
(b′)2
yy between d = 6 and d = 7.

The factors in parentheses in (3.3), (3.4) describe an effective tension for the gauge-

theory flux tube whose stretching between the quark and anti-quark provides the con-

fining potential. Supposing for the moment that we allow b to vary only in spatial

directions (x and yi for i ≥ 2), the spacetime remains static and any flux tube will tend
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d h
(b′)2
xx h

(bb′′)
xx h

(b′)2
yy h

(bb′′)
yy

3 -0.333 1.06 -1.06 -0.667

4 0.00 0.673 -0.571 -0.551

5 0.200 0.475 -0.272 -0.468

6 0.333 0.358 -0.0688 -0.406

7 0.429 0.282 0.0778 -0.358

8 0.500 0.231 0.189 -0.320

Figure 4: The coefficients h
(b′)2
xx , h

(bb′′)
xx , h

(b′)2
yy , and h

(bb′′)
yy for the induced metric on

the IR floor for various dimensions. Though we display only a few significant figures,

estimating the numerical precision by comparing results for 100 and 150 lattice points

suggests that our numerics are accurate to around a part in 1020. We note that h
(b′)2
xx

agrees with (d− 4)/d to the stated precision.

to orient itself to minimize this effective tension. As described at the end of section

2.2, the coefficients above can be used to deduce the O(ε2) response to general slow

variations of b across (x, yi). The fact that h
(b′)2
xx > h

(b′)2
yy for all d in the table in figure

4 thus implies that the flux tube tends to orient itself orthogonal to gradients. In the

same way, using (2.15) and comparing directions associated with different eigenvalues

of the Hessian, one sees that flux tubes also tend to align themselves with the lowest

eigenvalue of the Hessian.

Interestingly, the change of sign of h
(b′)2
yy between d = 6 and d = 7 means that a

flux tube that succeeds in aligning itself orthogonal to gradients is attracted to strong

gradients for d ≤ 6 but repelled from strong gradients for d ≥ 7. In all dimensions,

flux tubes are repelled by regions where the second derivative along the tube would be

large and positive but are attracted to regions where the eigenvalues of the Hessian are

large and positive in orthogonal directions.

Another interesting piece of physics concerns the gravitational potential (or red-

shift) on the IR floor. This is encoded in hττ = hy1y1 = ( 1
b2

24/d+ ε2 h
(2)
yy ) +O(ε4). Again

assuming a static spacetime one finds

h(2)
ττ = h(b′)2

yy |∂µb|2 + h(bb′′)
yy Tr (b ∂µ∂νb) , (3.5)

where |∂µb|2 and Tr (∂µ∂νb) respectively denote that norm of the gradient of b and the

trace of its Hessian. It is interesting that the table in figure 4 shows gradients to lower

the potential for d ≤ 6 but to raise the potential for d = 7, 8 (and presumably for

higher dimensions as well).

Note that the value of hττ at an extremum (where ∂µb = 0) is unaffected by

h
(b′)2
yy . The fact that h

(bb′′)
yy < 0 in figure 4 thus means that the O(ε2) corrections act to
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reduce the height of local maximum of hττ and to reduce the depth of local minima.

This should be no surprise, as at this order the response of the system is linear in

b′′ while on general grounds linear perturbation theory about the AdS soliton should

describe the change in hττ as a smeared version of the boundary perturbation (i.e.,

given by convolution with some appropriate kernel) over a scale ∼ b. The point here

is that smearing a maximum necessarily reduces its height, while smearing a minimum

decreases its depth. Indeed, all adiabatic coefficients associated with b′′ can in principle

be calculated from the associated linear-response Green’s functions.

Finally, we can also compute coefficients for corrections to the boundary stress

tensor. Since at order ε2 we may neglect quadratic and higher powers of boundary

curvatures, our boundary stress tensor takes the form

Tµν =
d`d−1

2κ
γ(d)
µν +O(ε4) (3.6)

for both odd and even d ≥ 3. Here κ = 8πGN/`
d−1 in terms of the bulk Newton

constant GN and γ
(n)
µν is the zn coefficient of the Fefferman-Graham expansion (not to

be confused with the g
(n)
µν in the adiabatic expansion). We expand the stress tensor as

Tµν = Tµν
(0) + ε Tµν

(1) + ε2 Tµν
(2) + · · · (3.7)

The zeroth order result is standard with

T (0)
xx =

`d−1

4πGN

1

bd
,

T (0)
yy =

`d−1

4πGN

1

bd
,

T
(0)
θθ = − `d−1

4πGN

α2
d(d− 1)

bd−2
. (3.8)

Since g
(1)
µν vanishes, so does Tµν

(1). The second order contributions can be extracted

from the numerical solutions for g
(2)
µν . The results are summarized in figure 5 using the

notation

T (2)
xx =

`d−1

8πG

[(
(b′)2

bd

)
T(b−db′2)
xx +

(
b′′

bd−1

)
T(b−(d−1)b′′)
xx

]
,

T (2)
yy =

`d−1

8πG

[(
(b′)2

bd

)
T(b−db′2)
yy +

(
b′′

bd−1

)
T(b−(d−1)b′′)
yy

]
,

T
(2)
θθ =

`d−1

8πG

[(
(b′)2

bd−2

)
T

(b−(d−2)b′2)
θθ +

(
b′′

bd−3

)
T

(b−(d−3)b′′)
θθ

]
. (3.9)
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d T
(b−(d−2)b′2)
θθ T

(b−(d−3)b′′)
θθ T

(b−db′2)
xx T

(b−(d−1)b′′)
xx T

(b−db′2)
yy T

(b−(d−1)b′′)
yy

3 0.00 0.00 0.00 0.00 0.00 0.00

4 −0.375 0.250 1.00 0.00 1.00 −1.00

5 −0.844 0.422 2.30 0.00 2.30 −1.53

6 −1.32 0.529 3.78 0.00 3.78 −1.89

7 −1.77 0.591 5.38 0.00 5.38 −2.15

8 −2.19 0.625 7.07 0.00 7.07 −2.36

Figure 5: The coefficients of the second order contributions to the boundary stress

tensor for 3 ≤ d ≤ 8. Estimating the numerical precision by comparing results for 100

and 150 lattice points suggests that our numerics are accurate to around a part in 108.

To this accuracy our results satisfy T
(b−db′2)
yy = −d−2

2
T

(b−(d−1)b′′)
yy and T

(b−db′2)
xx = T

(b−db′2)
yy .

As in our discussion of the potential on the IR floor, the signs of T
(b−(d−3)b′′)
θθ and

T
(b−(d−1)b′′)
yy are in all cases consistent with the idea that linear response tends to simply

average over a scale of order b. As a result, the O(ε2) correction to the (negative) energy

density of the confining vacuum makes this energy less negative at a local minimum of

b but more negative at a local maximum. On the other hand, gradients always make

this energy density even more negative when the second derivatives are held fixed.

Of particular interest is the O(ε2) shift E(2) in the total energy of the vacuum. This

is given by integrating −T (2)
yy over the boundary at τ = 0. The interesting point here

is that first and second derivatives are often related when averaged over this surface.

Indeed, imposing either a boundary condition b → constant as x → ±∞ or periodic

boundary conditions in x, integrating by parts gives

E(2) = −
∫
bndy@τ=0

√
σ Tyy = −2π`d−1

8πG

∫
dxdd−2y αdb

[(
(b′)2

bd

)
T(b−db′2)
yy +

(
b′′

bd−1

)
T(b−(d−1)b′′)
yy

]

= −αd`
d−1

4G

∫
dxdd−2y

(
(b′)2

bd−1

)[
T(b−db′2)
yy + (d− 2)T(b−(d−1)b′′)

yy

]
, (3.10)

where
√
σ = αdb is the volume element on the τ = 0 slice of the boundary. As shown

in figure 6, the factor in square brackets is negative in all cases. So the net effect of

spatial variations is in fact to make E(2) positive, shifting the energy of the confined

vacuum toward zero from its negative zeroth-order value.

It would be interesting to perform a similar analysis of the deconfined state. Com-

puting the second order shift in its free energy and comparing with (3.10) would then

determine whether the net effect of gradients is to increase the deconfinement temper-
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d E(2)

3 0.00

4 −1.00

5 −2.30

6 −3.78

7 −5.38

8 −7.07

Figure 6: The coefficient E(2) = T
(b−db′2)
yy + (d − 2)T

(b−(d−1)b′′)
yy of the second order

contribution to the vacuum energy for 3 ≤ d ≤ 8. The numerical precision is as in

figure 5.

ature TD at O(ε2), or to decrease TD as our results would appear to suggest. Other

interesting extensions would be to add additional curvature on the boundary. Note

that the particularly simple class of boundary metrics of the form

ds2
bndy = dx2 + k2(εx)dyidy

i + α2
db

2(εx) dθ2, (3.11)

is related to those studied here by a combination of a conformal transformation and

a change of coordinates in the x direction (associated with dx → dx/k), so that the

adiabatic coefficients associated with (3.11) can be computed analytically from the

results given above.
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A 2+1 Dimensional Bulk

Due to the lack of local gravitational degrees of freedom in 2+1 dimensions, all com-

plete asymptotically locally AdS spacetimes are diffeomorphic to global AdS3 (or to a

quotient thereof). We can use this fact to analytically perform the d = 2 analogue of

the construction in section 2, which we can then use to check our numerical code. The
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d = 2 version of the Euclidean metric (2.3) is obtained by simply deleting the yi terms:

ds2 =
`2

z2

[
dz2 +

b2

4

(
1− z2

b2

)2

dθ2 +

(
1 +

z2

b2

)2

dx2

]
. (A.1)

The adiabatic expansion proceeds just as in section 2. We need only set d = 2 in

(2.10) to find the dynamical equations

0 =
(
b2 + z2

) (
z
(
b2 + z2

)
∂2
zg

(2)
xx −

(
z2 − 3b2

)
∂zg

(2)
xx

)
− 8b2z g(2)

xx ,

0 =
(
b2 − z2

) (
z
(
b2 − z2

)
∂2
zg

(2)
θθ +

(
z2 + 3b2

)
∂zg

(2)
θθ

)
+ 8b2z g

(2)
θθ . (A.2)

We again have the boundary conditions

lim
z→0

z2g(n)
µν = 0 (A.3)

at the asymptotic boundary, and regularity at fixed points of ∂θ requires

0 = ∂zg
(2)
θθ

∣∣∣
z=b
− 1

3
b

(
b′2

2
+ ∂2

zg
(2)
θθ

∣∣∣
z=b

)
,

0 = 2 b g(2)
xx

∣∣
z=b

+ 4 ∂zg
(2)
θθ

∣∣∣
z=b
− b2 ∂zg

(2)
xx

∣∣
z=b

+ 2 b2 b′′ . (A.4)

Solving (A.2), (A.4) yields

g
(2)
θθ =

z2 (b2 − z2) b′2

8 b2
,

g(2)
xx =

z2 (b2 + z2)
(
2 b b′′ − b′2

)
2b4

. (A.5)

Setting d = 2 in our numerical code gives solutions to (A.2), (A.4) that agree with

(A.5) to one part in 1021.
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