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Abstract

Evaluation and Application of Machine Learning Techniques to Data Conditioning
Problems in Microseismic Data

by

Michael J. Nava

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor James W. Rector III, Chair

Hydraulic fracturing has evolved dramatically over the past decades. A number of new
techniques have emerged in order to maximize production from organic-rich shale. For ex-
ample, multistage fracturing, dynamically varying pumping parameters, horizontal drilling
and finely-tuned perforation shots have all led to incremental improvements in the indus-
try. With these engineering advancements, so too has the ability to monitor microseismic
fractures expanded. An added benefit, or potentially an unintended consequence, of this
new era of high frequency, high precision acoustic monitoring equipment is the generation
of large scale digital data. With any real data set, there will inevitably be data conditioning
problems that exist. Whether missing values, corrupt data, or poor experimental design and
execution, there will be some constraint or obstacle that inhibits the cultivation of knowledge
and insights.

The objective of this dissertation is to identify and understand where those limitations exist,
to understand the genesis of those constraints - whether they arise from some physical limi-
tation or from common data recording issues - and then apply an interdisciplinary approach
to overcome those limitations.

To this end, we identify limitations caused by a typical, cost-effective microseismic monitoring
geometry and pivot to understand and characterize microseismic events through spectral
analysis. We build features that provide insight into the nature of microseismicity present in
the data, which would otherwise elude us. Next, we incorporate information that is typically
lost in the presence of high amplitude resonance and leverage this newly found data to
identify specific microseismic attributes to make marked improvements on event location
estimates. Through the inclusion of head waves and the use of inversion techniques, we
reduce the uncertainty of microseismic event locations significantly. This is a fundamental
step toward understanding the behavior of hydraulic fractures far beneath the surface of the
earth.
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Next, we turn to data science to continue to overcome data quality issues present in the data
from a hydraulic fracturing project in the Marcellus shale. Specifically, machine learning
and deep learning methodologies are applied to the data in order to recover meaningful in-
formation. The benefits of this are twofold. First, this work provides a data-driven approach
to imputation through various learning methods. Second, it provides an understanding of
the limitations and computational time required for various learning methods. This infor-
mation will aid in the decision making of engineers who desire a more accurate solution or
an accurate solution that can be used in real-time analysis.

Finally, we culminate the dissertation with an exploration into the ability to leverage en-
semble learning methods to overcome poorly conditioned data sets with the objective of
improving automated analysis steps. Specifically, we create an extensible computational
paradigm that enables the automatic picking of waveform first arrivals. This is typically an
arduous, time-consuming analysis step that suffers from inconsistent picks based on subjec-
tive assessment. Moving away from a human-in-the-loop system enables more transparency
and reproducibility. Additionally, the total time for end-to-end analysis of first arrivals is
dramatically decreased. Given the extensibility of this framework, expanding the use of the
system to include full waveform classification is an appropriate next step.
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Chapter 1

Introduction

It is not the critic who counts, not the man who points out how the strong man
stumbled, or where the doer of deeds could have done them better. The credit
belongs to the man who is actually in the arena, whose face is marred by dust
and sweat and blood; who strives valiantly; who errs, who comes short again and
again, because there is no effort without error and shortcoming; but who does
actually strive to do the deeds; who knows great enthusiasms, the great devotions;
who spends himself in a worthy cause; who at the best knows in the end the
triumph of high achievement, and who at the worst, if he fails, at least fails while
daring greatly, so that his place shall never be with those cold and timid souls
who neither know victory nor defeat.

– Theodore Roosevelt

1.1 Motivation
Hydraulic fracturing has been used to increase permeability of unconventional reservoirs for
some time and, in recent years, has been instrumental in the shale gas revolution (King et al.,
2012). Recent technological advances have enabled the successful execution of hydraulic frac-
turing projects in a way that significantly improves the ability to capture organic-rich shale.
Specifically, the drilling of horizontal boreholes used for creating fractures in horizontally
distributed shale layers has been a critical driver for the economic feasibility of many uncon-
ventional reservoirs (Maxwell, 2014). Additionally, recent advances in microseismic analysis
through distributed surface monitoring arrays, as well as downhole and crosswell monitoring
geometries, have enabled the capturing of high resolution data.

While there certainly has been a dramatic improvement in the understanding of fracture
orientation, source mechanism, fracture network, and event location estimation, there still
exists a very real constraint in the field of hydraulic fracturing, which is primarily driven
by business needs (Eisner et al., 2007; Maxwell, 2014; Zhang et al., 2017a,b). The influence
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of global markets and predicted project viability from an economic standpoint have a very
real impact on the ability to capture real, high quality data. Although acoustic recording
and storage solutions have been rapidly improving in the digital age, there still exists an
intrinsic trade off between optimal monitoring geometry and optimal treatment geometry.
Specifically, downhole monitoring wells are typically drilled in a direction that parallels the
treatment well (the well that is pressurized in order to create hydraulic fractures) in order
to enable the reuse of the well in subsequent phases of the hydraulic fracturing project.
This is done in an effort to minimize financial losses, which accompany horizontal drilling
efforts. While this reduces overall cost and helps to improve economic viability of a given
hydraulic fracturing project, this orientation of the monitoring well generates a hard physical
constraint that negatively impacts the ability to adequately understand the physical changes
occurring in and around the treatment zone. Details of limitations such as limited aperture
are discussed in more detail in Chapter 3, and non-optimized monitoring geometries are
discussed in Chapter 4.

In an effort to overcome these limitations, we turn to the field of data science, which
leverages machine learning and artificial intelligence methodologies to recover meaningful
information and garner insights that would otherwise elude us.

1.2 Dissertation Organization
This dissertation seeks to highlight the interdisciplinary approach undertaken to understand
the essence of hydraulic fracturing and microseismic analysis and to overcome hard limita-
tions that arise from the collection of real data in an engineering arena where real world
costs and strategic planning constraints must be considered.

• Chapter 2 provides background on the goals and challenges of hydraulic fracturing,
an exploration of microseismic monitoring and analysis, and an overview of common
monitoring geometries to include downhole and surface monitoring approaches. The
following chapters build on this foundation in order to identify and understand lim-
itations that exist based on common monitoring geometries, economic constraints in
hydraulic fracturing project design, and data corruption or loss through either captur-
ing or transmission deficiencies.

• Chapter 3 investigates the use of analysis in the spectral domain to overcome the lim-
itations imposed by limited aperture, a common disadvantage to typical monitoring
geometry in hydraulic fracturing processes1. A typical microseismic monitoring con-
figuration contains two horizontally drilled boreholes – one treatment well and one
observation well. This configuration, while cost-effective, leads to an inability to ex-
ecute moment tensor inversion through traditional means. However, through careful
analysis in the spectral domain, parameters like center frequency and bandwidth can

1A version of this work was published as (Nava et al., 2015)
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be used in tandem with knowledge of process parameters to better understand micro-
seismic source characteristics (Nava et al., 2015).

• Chapter 4 focuses on microseismic data acquired from a geophone array deployed in the
horizontal section of a well drilled in the Marcellus Shale near Susquehanna County,
Pennsylvania2. Head waves were used to improve event location accuracy as a substitu-
tion for the traditional P-wave polarization method. We identified that resonances due
to poor geophone-to-borehole coupling hinder arrival-time picking and contaminate
the microseismic data spectrum. The traditional method had substantially greater
uncertainty in our data due to the large uncertainty in P-wave polarization direction
estimation. We also identified the existence of prominent head waves in some of the
data. These head waves are refractions from the interface between the Marcellus Shale
and the underlying Onondaga Formation. The source location accuracy of the mi-
croseismic events can be significantly improved by using the P-, S-wave direct arrival
times and the head wave arrival times. Based on the improvement, we have developed
a new acquisition geometry and strategy that uses head waves to improve event loca-
tion accuracy and reduce acquisition cost in situations such as the one encountered in
our study (Zhang et al., 2017a).

• Chapter 5 explores the idea of imputing corrupt or missing data through the use of ma-
chine learning methods. Corrupt or missing data, whether due to unavoidable physical
constraints or from data recording issues that lead to information loss, are prevalent
in nearly every seismic data set. There are a number of imputation techniques that
attempt to overcome this problem in general; however, there has been limited work
evaluating the applicability of machine learning methodologies for imputation on mi-
croseismic data sets. This chapter considers data from a hydraulic fracturing microseis-
mic monitoring experiment that took place in the Marcellus Shale near Susquehanna
County, Pennsylvania. One significant cause of data corruption is the presence of large
amplitude resonance energy on non-axial sensor components that inhibit the identi-
fication of first arrival times and compressional amplitudes for both direct and head
waves. We evaluated the performance of various learning techniques used to impute
missing or corrupt data. After performing k-fold cross-validation, notable improvement
is seen and a significant portion of missing values are recovered with minimal error.
As a result, a data set, complete with imputed variables, can be used to leverage a
number of machine learning and deep learning techniques to gain more insight to aid
in subsequent analysis steps (Nava et al., 2020b).

• Chapter 6 attempts to improve first arrival picking, which is a critical step in under-
standing hydraulic fracturing through microseismic monitoring. Typically, this is per-
formed by a subject matter expert and can be incredibly time intensive. Alternatively,
automatic first arrival picking techniques can be applied; however, this commonly in-
jects greater error into the analysis process. Time series classification is an area of

2This chapter presents a modified version of a previously published work.
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artificial intelligence and machine learning that has not been applied to microseismic
data until recently. Through the use of ensemble learning methods, we propose a new
method for classifying compressional waves and then applying standard picking meth-
ods to make improvements on overall accuracy. We apply this method on 249 traces
from a hydraulic fracturing project and create a unique group cross-validation method
that is well-suited for time series data. Extreme Gradient Boosting (XGBoost) with
dropout results in a classification accuracy of 94.9% and enables the reduction in mean
absolute error from 126 ms to 23.8 ms on real microseismic data from the Marcellus
Shale. Dynamic parameterization and an extensible framework enable the potential
for multiclass classification to identify shear wave arrivals with minimal effort (Nava
et al., 2020a).

While these chapters are designed to be self-contained, the overarching goal of the disser-
tation is to understand the nature of the hard constraints that exist in the field of hydraulic
fracturing and microseismic analysis that typically arise from noisy or corrupt data. Then
we attempt to apply new methods with roots in signal processing, artificial intelligence, and
data science in order to overcome those limitations. In order to accomplish this, an interdis-
ciplinary approach is necessary. As such, Figure 1.1 shows the areas of research that intersect
to form the body of this work.

• Bagging

• Boosting

• Efficiency and 
reuse

• Waveform 
Classification• First Arrival 

Picking

• Generalizable 
framework

• Hydraulic Fracturing

• Location Estimation

• Imputation via 
Learning 
Methods

• Ensemble 
Methods

• Feature 
Extraction

• Visualization

Machine 
Learning

Data 
Science

Applied Geophysics

=  This Dissertation

• Microseismic Characterization

Figure 1.1: Overview of the areas of research this dissertation explores. This work exists at
the intersection of applied geophysics, machine learning, and data science.
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Chapter 2

Background

The time will come when diligent research over long periods will bring to light
things which now lie hidden. A single lifetime, even though entirely devoted to
the sky, would not be enough for the investigation of so vast a subject... And
so this knowledge will be unfolded only through long successive ages. There will
come a time when our descendants will be amazed that we did not know things
that are so plain to them... Many discoveries are reserved for ages still to come,
when memory of us will have been effaced.

– Seneca

2.1 Hydraulic Fracturing
Hydraulic fracturing is the process of injecting fluid at pressure that exceeds the minimal
principal stress of a formation to create cracks and fractures with the purpose of capturing
natural gas and other organic-rich material (King et al., 2012). In the past, there were a
number of specific conditions that would need to be met before a potential conventional
reservoir would be considered potentially viable. For example, hydrocarbon source rocks
would need to be located, reservoir quality rocks would be identified, and surveys would be
performed in order to locate a trapping mechanism. Next, wells would be drilled in order
to capture valuable material (Alexander et al., 2011). With the introduction of hydraulic
fracturing, hydrocarbon source rocks that were previously ignored are now much more viable.

The general workflow for executing a hydraulic fracturing project is:

1. Identify organic-rich shale

2. Perform initial survey to understand geologic attributes in the area of interest

3. Drill vertically and encase vertical borehole in concrete to protect water table and other
near surface features
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4. Reach kick-off point (some vertical distance below the surface) and turn the drill bit
to drill horizontally

5. Enclose small length of the borehole (this is referred to as a “stage”) and execute
perforation shots to create initial fractures in the preferred direction. This is typically
done from the toe of the well and continues in the direction of the kick-off point.

6. Complete all stages of the hydraulic fracturing project and withdraw tooling from the
well. Retrieve hydrocarbon material.

Figure 2.1 shows an example of a typical hydraulic fracturing project that employs a
horizontal treatment well. Each grouping of yellow lines represents a single stage in the
overall project. The point at which the borehole is turned vertically is referred to as the
kick-off point, and the end of the well (at the left of the image) is referred to as the toe of
the well.

Figure 2.1: Depiction of typical hydraulic fracturing project that incorporates the use of
horizontally drilled borehole and multistage treatment design. Note the relatively small
surface footprint (Alexander et al., 2011).
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While there is some variability in the true depths of each hydraulic fracturing project, it
can be seen in Figure 2.2 that there is a great distance between the horizontal well and near
surface features like water tables. Most water tables exist at depths less than 1000 ft from
the surface (King et al., 2012). It should be noted that the average water table depth in the
area where the data were collected for this work was approximately 67 ft.

Figure 2.2: Cross-sectional view of a typical hydraulic fracturing project, drawn to scale.
Shows vertical distance between pay zone and water table (King et al., 2012).

2.2 Microseismic Monitoring
There are a number of human activities that can induce small earthquakes, or microseismic
events, in the subsurface; however, this work focuses on microseismic events caused from
hydraulic fracturing. Microseismic analysis, in this arena, is the identification and charac-
terization of these small scale earthquakes caused from the fracturing of rock in the pay zone
and surrounding areas. A number of methods exist to understand microseismics; however,
a crucial first step involves understanding microseismic event location. In this regard, there
exists a significant body of work that includes least-square traveltime inversion (Richards
and Aki, 1980; Rutledge and Phillips, 2003), time-reverse imaging (Artman et al., 2010;
Artman and Witten, 2011), simultaneous inversion with Bayesian inference (Zhang et al.,
2017b), and full-waveform inversion (Song and Toksöz, 2011).

Although event location estimation is a common processing step, which is fundamental
in understanding the nature of fracturing in the subsurface, strict limitations exist that
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diminish the ability to successfully analyze the data recorded from the hydraulic fracturing
project, a topic that is covered in the remainder of this dissertation.

Two forms of microseismic monitoring are in common practice today, surface monitoring
and downhole monitoring. The data utilized in this work come from downhole monitoring.

Surface Monitoring Geometry
Surface monitoring arrays have been used to monitor hydraulic fracturing projects for some
time. There are distinct advantages to surface monitoring over downhole monitoring. For
example, surface monitoring arrays typically have a much larger aperture through which
inversion of microseismic source mechanism is possible. This comes as a direct result from
the large azimuthal coverage that accompanies these geometries. However, these advantages
come at a cost. Specifically, surface monitoring arrays typically contain thousands to tens
of thousands of geophones, or acoustic recording sensors.

Additionally, the use of surface monitoring dramatically increases the surface footprint of
a hydraulic fracturing project. As a result, there are commonly issues regarding land permits
that limit the orientation and contiguous nature of the sensor arrays (Harris and Bacon,
2015). Figure 2.3 demonstrates both the large scale nature of surface monitoring arrays as
well as the difficulty that arises from non-permitted regions surrounding the treatment well.

Figure 2.3: Satellite imagery showing a common surface monitoring geometry. While ef-
fective in monitoring microseismic activity, the overall area is large and number of sensors
required is much greater than downhole monitoring. Limitations such as permitting exist in
surface monitoring and areas in red denote where this occurs (Harris and Bacon, 2015).
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Downhole Monitoring Geometry
Downhole monitoring is another method of recording acoustic signals from a hydraulic frac-
turing project and has been widely used for microseismic analysis. There are distinct ad-
vantages to downhole monitoring. For example, a common pitfall encountered in surface
monitoring is an inability to capture meaningful signal from lower magnitude microseismic
events. This phenomenon stems as a direct result from the poor signal-to-noise ratio (S/N)
due to the combination of large source-receiver distances, low magnitude seismic signal, and
scattering. Conversely, in downhole monitoring, S/N is significantly better due to the fact
that the source-receiver distance is drastically smaller. Many monitoring approaches move
the geophone array to remain perpendicular from the current treatment stage in order to
further minimize the source-receiver distance to improve S/N . This orientation can be seen
in Figure 2.4. Here, it can be seen that for a given fracturing stage, the geophone array,
which is located in an observation well that parallels the treatment well, is located directly
across from the stage being monitored. Also note that the typical source-receiver distance
is 500 - 1500 ft. This approach to optimizing S/N was employed in the hydraulic fracturing
project under consideration in this dissertation.

Figure 2.4: Depiction of typical microseismic downhole monitoring geometry. The injection
well, also known as treatment well, is located on the right of the image. Parallel to this well
is the observation well, which is where acoustic sensors called geophones are located. Note
that each microseismic event is recorded on multiple geophones at different times. This is
a fundamental requirement for understanding microseismic location and source mechanism
(Warpinski et al., 2009).
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Microseismic Uncertainty
A disadvantage of downhole monitoring is directly related to the small source-receiver dis-
tance. Namely, because the geophones are located perpendicular to the stage being moni-
tored, and at a relatively short distance, there is a loss of azimuthal coverage. This leads
to the problem of limited aperture, where the ability to perform analysis tasks like moment
tensor inversion is no longer possible due to the small solid angle (Vavryčuk, 2007).

Additionally, despite efforts to improve S/N with downhole monitoring geometries, poor
S/N remains an ever-present issue in real data collected from hydraulic fracturing projects.
Moreover, inaccurate velocity models, insufficient azimuthal coverage of geophones, as well as
general data transmission and recording issues all lead to uncertainty in microseismic analysis
(Eisner et al., 2009; Maxwell, 2009). The effects of these uncertainties are significant and
motivate the following chapters in this dissertation. Figure 2.5 shows how uncertainties in
event locations increase with distance from the monitoring well (Warpinski et al., 2009).
This phenomenon is common in downhole monitoring geometries and is present in the data
that are investigated in this dissertation. Chapter 4 discusses methods we investigated
and developed to decrease event location uncertainties in hydraulic fracturing microseismic
events.

Figure 2.5: Depiction of microseismic location uncertainty that is common in microseismic
analysis. Uncertainty can be attributed to a velocity structure that is inaccurate, data
quality issues, low magnitude microseismic events, or in general, the presence of non-unique
solutions (Warpinski et al., 2009).
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Chapter 3

Characterization of Microseismic
Events through Spectral Analysis

Those who dare to fail miserably can achieve greatly

– John F. Kennedy

3.1 Introduction
In this chapter1, we begin with an investigation into data loss due to a physical constraint that
stems from a common microseismic monitoring geometry used in the hydraulic fracturing
industry. There has been a significant increase in the amount of hydraulic fracturing projects
in the United States as a result of a number of technical and economic factors. One of the
main technological advances that has enabled hydraulic fracturing projects to be completed,
which were previously economically infeasible, is the ability to drill horizontal boreholes.
There are many advantages to this approach over the traditional vertical borehole method.
For example, a much larger treatment zone in an area of interest can be produced as a direct
result of the project geometry. Specifically, due to the orientation of shale formations, a
much larger pay zone can be realized by drilling for a greater distance within a horizontal
formation.

In order to monitor the microseismic activity resulting from these types of hydraulic
fracturing processes, surface arrays or crosswell monitoring arrays are utilized. Surface arrays
can be an effective tool for monitoring microseismic activity since they can provide large
azimuthal coverage. However, given that the magnitudes of events resulting from hydraulic
fracturing typically range from -1 Mw to -4 Mw, and that the depth of fracturing is usually
one or more miles below the surface, signal-to-noise (S/N) can become a difficult problem to
overcome. As such, there is usually the need for both a very large number of acoustic sensors

1A version of this work was published as (Nava et al., 2015)
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(6,000-24,000 geophones) and a large area at the surface (1-3 miles) to achieve coherent
monitoring of microseismic events (Duncan and Eisner, 2010).

Downhole monitoring with a horizontal observation well requires significantly fewer acous-
tic sensors to achieve good S/N ; however, there are also a number of disadvantages to this
approach. For example, there is increased uncertainty when determining microseismic event
location. This comes as a direct result of the survey geometry. Specifically, since the moni-
toring array is parallel to the treatment well, location estimates rely on hodogram angle of
inclination for depth determination (Maxwell, 2014). The main disadvantage of crosswell
monitoring, however, is an inability to perform moment tensor inversion with a single mon-
itoring well (Vavryčuk, 2007). This constraint is due to the small solid angle as a result
from the close proximity of geophones and accompanying limited azimuthal coverage of the
treatment zone. This is referred to as the limited aperture problem. In an effort to overcome
this restriction, we turn to the spectral domain.

3.2 Hydraulic Fracturing Project Overview
The hydraulic fracturing project was performed in Susquehanna County, Pennsylvania in the
Marcellus shale formation using the horizontal drilling technique previously discussed. Two
horizontal boreholes were drilled – one treatment well and one observation well. The treat-
ment well was used to inject fracture fluid at high pressure in order to exceed the treatment
zone’s minimum principal stress in an attempt to create new fractures. The newly created
fractures increase the permeability and porosity of the zone of interest for the retrieval of
hydrocarbon-rich material. A second horizontal borehole was drilled parallel and approxi-
mately at the same depth in order to house an array of geophones for measuring acoustic
emissions. The treatment well was approximately 5,600 ft in length; the observation well
was approximately 4,400 ft in length and the distance between the wells was approximately
720 ft.

There were eighteen fracturing stages in the project progressing from the toe of the well to
the heel of the well (Figure 3.1). In order to monitor the acoustic emissions from microseismic
events, the geophone array was moved six times in an effort to minimize viewing distance
(Table 3.1).

Reducing the viewing distance by moving the geophone array is important as it improves
S/N ; however, reducing the distance between source and receiver also limits the azimuthal
coverage of the events. As such, there is a reduced ability to perform moment tensor inversion
as a result of the basic monitoring geometry.

3.3 Methods
Analysis of raw data showed many instances of large amplitude ringing. Given that the
geophones were not locked into place, or clamped to the borehole casing, these high frequency
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Table 3.1: Description of geophone locations and associated stages.

Hydraulic Fracturing Stage Geophone Array Location
1-9 1

10-11 2
12-13 3
14-15 4
16-17 5

18 6

artifacts were likely caused by tube waves propagating through the borehole (Gaiser et al.,
1988). In order to minimize the negative effects of this artifact, low pass and band pass
Butterworth filters were applied and a location-based noise characterization and removal
schema was developed. This approach considered the root mean square (rms) of each channel
of the geophone array for all events. Then the average rms was found for each location of the
geophones by only considering the events that occurred at each monitoring location. This is
an important step because with each move of the geophone array, the noise signature changes
due to a number of factors. For instance, at the first location the geophones could all be
oriented in the same manner; however, after being pulled to the next monitoring location,
any of the geophones could have shifted in transit. A location-specific approach to noise
minimization accounts for these inconsistencies (Figure 3.2).

After processing the raw data in order to minimize noise from poor coupling of geophones,
first arrivals were picked and a 100 ms Tukey (tapered cosine) window was applied to the data
in order to capture various waveforms. Specifically, a window to capture compressional waves,
a window to capture shear waves, and also a combined window capturing both waveforms
were applied to the processed data. This approach gives information regarding the spectral
content of each waveform and also the overall event for later analysis.

A Fourier Transform was performed on the three windowed wave types for each trace,
which yielded a spectral response for each of the eleven geophones. In order to reduce the
amount of data to interpret, an average spectral response of all traces for each event was
calculated to show a representative spectral response on a total event basis.

With a representative spectral response for each event, we begin to focus on properties
like bandwidth and center frequency to gain some intuition regarding relationships between
event spectra and source mechanism. In order to classify bandwidth, the global maximum
of each signal was identified and the associated prominence calculated. At one-half the
prominence, the width of the signal is noted. This is done for all event spectra and we
are left with a relative measure of bandwidth for the three wave types. An example of a
broadband event is shown in Figure 3.3.

Additionally, the center frequency for each event was determined using the centroid
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Figure 3.1: Map view of hydraulic fracturing project in the Marcellus shale. The blue line
indicates the treatment well and the red line indicates the observation well. Diamonds
represent the average locations of perforations for each of the eighteen stages. Inverted
triangles represent the six locations of the geophone array.

method (Bracewell and Bracewell, 1986). In order to find the frequency at which the ma-
jority of the signal energy is located, the first moment, or centroid, of the event spectra is
found by:

fc := 〈x〉 =
∫∞
−∞ xf(x)dx∫∞
−∞ f(x)dx (3.1)

An understanding of where the signal energy is located in the frequency domain is im-
portant as it can give information about slip distance, Q determination, and other source
parameters (Beresnev, 2001; Brune, 1970; Eaton, 2011, 2014; Maxwell and Cipolla, 2011).
With bandwidth and center frequency measurements for windowed compressional waves,
windowed shear waves, and also a combined window, event characteristics can be seen.
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Figure 3.2: Seismogram showing raw data containing large amplitude artifact believed to be
tube wave energy (left) and processed data capturing the same microseismic event (right).

3.4 Results
As a preliminary step, the mean center frequency and mean bandwidth were calculated in
order to see if there were apparent statistical trends in the data. Compressional wave mean
center frequency and bandwidth are lower then the shear wave parameters. Furthermore,
the combined window mean center frequency and bandwidth are both closer to the mean of
the shear wave (Table 3.2). As such, it can be inferred that the majority of microseismic
energy may be associated with shear openings and less from tensile events.

Table 3.2: Mean values of bandwidth and center frequency for the three types of applied
windows.

Mean Bandwidth (Hz) Mean Center Frequency (Hz)
Compressional Wave 61.9 86.0
Shear Wave 72.5 92.3
Combined Window 66.0 886

Considering the event spectra, we see that there is a large amount of variation between
events throughout the hydraulic fracturing project (Figure 3.4a). After sorting these event
spectra by bandwidth, it can be seen that there is still variation within narrowband events
(Figure 3.4b). Finally, after sorting event spectra by center frequency, less variation can be
seen (Figure 3.4c). Moreover, in this last view, it is evident that the majority of broadband
events are located near the middle of the range. This is due to the fact that the centroid
method considers the frequency at which the majority of signal energy is located. As such,
broadband events typically have center frequencies near the mean.



CHAPTER 3. CHARACTERIZATION OF MICROSEISMIC EVENTS THROUGH
SPECTRAL ANALYSIS 16

Frequency (Hz)
0 50 100 150 200 250

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Methodology of Bandwidth Determination

signal
peak
prominence
width (half-prominence)

Figure 3.3: Determination of bandwidth. Inverted triangle represents global maximum, ver-
tical line shows prominence of the signal, and horizontal line represents the width measured
at one-half the prominence.

In an effort to more effectively interpret the data, scalar values of center frequency and
bandwidth were plotted as a function of time. This enabled correlation between spectral
properties and process parameters like surface pressure, slurry flow rate, and proppant con-
centration. Figure 3.5 shows spectral and process parameters as a function of time.

Interesting relationships can be seen between both bandwidth and center frequency when
compared to event magnitude in the seventh stage of the hydraulic fracturing project. For
example, there is an indication that bandwidth has an inverse relationship with event mag-
nitude. As such, there is an implication that narrowband events are accompanied by greater
magnitude. Additionally, center frequency appears to vary proportionally to magnitude.
Consequently, it seems that events with the largest magnitude are narrowband events with
high center frequencies.
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Figure 3.4: Combined window event spectra for all events in the hydraulic fracturing project.
Color represents normalized amplitude where blue is lowest and yellow is greatest. Unsorted
events (top) show large variation between neighboring events. Bandwidth-sorted events
(bottom left) show variation between narrowband events. Center frequency-sorted events
(bottom right) show broadband events located in the middle – near the mean.
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Figure 3.5: Bandwidth (blue diamond) and event magnitude (red plus) as a function of
time shown on top. Note that at the end of the stage, it is clear that there is an inverse
relationship between bandwidth and magnitude. Process parameters are same as above.

Another method of analysis is similar to the S/P amplitude ratio method traditionally
used to understand source mechanism. Here, the event bandwidth is considered. In an effort
to determine the main component of source energy, we investigate the ratio of windowed shear
wave bandwidth to windowed compressional wave bandwidth. Since the mean bandwidth
was higher for shear waves and lower for compressional waves, we conclude that a larger
bandwidth ratio indicates a shear wave dominated event. Conversely, a lower bandwidth
ratio would indicate that the event is dominated by compressional energy. A spatial plot
displaying the locations of microseismic events is shown where color and size both indicate
S/P bandwidth ratio (Figure 3.6).
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Figure 3.6: Map view of treatment zone. Diamonds indicate locations of microseismic events.
Color and shape both represent S/P bandwidth ratio, where blue is smallest and yellow is
largest. Large, yellow diamonds represent shear-dominated events.

While it may be difficult at this stage to determine whether high shear regions exist, it is
possible to better understand fault plane orientation in the area of interest (Warpinski et al.,
2010). Despite the limitations imposed on source mechanism determination as a result
of survey geometry, shear and compressional wave-dominated events are seen distributed
throughout the treatment zone.

3.5 Conclusion
In an effort to overcome the restrictions imposed on moment tensor inversion as a result
of a single monitoring array configuration, analysis in the spectral domain is performed.
Preliminary analysis reveals relationships between spectral parameters and both source and
process characteristics. For example, after windowing compressional and shear waves, com-
pressional waves are, in general, more narrowband in nature. Shear waves are predominately
broadband events with a higher center frequency. Considering the ratio of these determined
parameters gives an indication of events dominated by shear energy, which may lead to a
better understanding of shear opening events in the treatment zone.
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Chapter 4

Location Estimation in the Marcellus
Shale

I can live with doubt and uncertainty and not knowing. I think it is much more
interesting to live not knowing than to have answers that might be wrong. If we
will only allow that, as we progress, we remain unsure, we will leave opportunities
for alternatives. We will not become enthusiastic for the fact, the knowledge, the
absolute truth of the day, but remain always uncertain . . . In order to make
progress, one must leave the door to the unknown ajar.

– Douglas Adams

4.1 Introduction
The previous chapter presented an approach that attempted to create features from the
data considered that were otherwise unavailable in order to recover meaningful information
for analysis. This chapter 1 follows a similar methodology in the sense that we overcome
poorly conditioned data in order to recover geophysical attributes that enable additional
analysis and improved results. Microseismic monitoring has been widely used for hydraulic
fracturing monitoring and characterization since its initial implementation (Cipolla et al.,
2011; Eisner et al., 2007; Maxwell, 2014; Warpinski et al., 2009). Microseismic acquisition
can use either surface or downhole deployments (Duncan and Eisner, 2010; Maxwell et al.,
2010). Shallow wells (typically below the water table) are also used for situations where
downhole monitoring is inadequate (Cladouhos et al., 2013). For downhole microseismic
monitoring, it is common to have only one nearby well available for microseismic monitoring
(Warpinski et al., 2009). To assist in overcoming the aperture limitations imposed by the
acquisition geometry, three-component geophones are deployed, which makes polarization

1A version of this work was published as (Zhang et al., 2017a)
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analysis feasible (Yuan and Li, 2016, 2017). Moreover, multiple phase identification, and full-
waveform inversion of microseismic signal are also possible in some environments (Belayouni
et al., 2015; Song and Toksöz, 2011; Zhang et al., 2015). In a borehole seismic survey, a
geophone can record the ground motion accurately only if it is well-coupled to the well
borehole. Unfortunately, this is usually not the case due to a lack of locking force (Gaiser
et al., 1988; Sleefe et al., 1995). The poor coupling may lead to severe resonance in seismic
waveforms and is common in microseismic surveys (Sleefe et al., 1995). Gaiser et al. (1988)
conducted an experiment to study the resonance of geophones in a vertical well used for
vertical seismic profiling (VSP). In their experiment, a geophone was locked in borehole
with a horizontal locking force to imitate a typical VSP condition. They found that the
geophone was subject to severe resonance issues in the horizontal (radial with respect to
the borehole axis) component that is perpendicular to the locking arm and the locking force
direction when there are only two points of contact with the borehole well. In the cases
where cylindrical geophones are deployed in horizontal wells, as is common in microseismic
monitoring, there is only one point of contact with the borehole wall. The only coupling
force between the geophone and borehole in this situation is usually the gravitational force
of the geophone. As such, the resulting waveform shows even more severe resonance due
to the lack of locking force. Bandpass filters have been designed and applied in previous
research to mitigate the effect of downhole geophone resonance (Nava et al., 2015); however,
this is based on the assumption that the resonance frequency is known and different from
the microseismic spectrum.

Microseismic surveys with a single monitoring well and location estimation with only P-
and S-wave arrival times result in event locations with ambiguity due to the limited cov-
erage of acquisition geometry (Warpinski et al., 2005). An additional constraint on event
location usually comes from direct P-wave polarization (Dreger et al., 1998; Eisner et al.,
2009; Li et al., 2014). Three-component data are necessary for P-wave polarization direc-
tion estimation. The major challenges in using three-component data are the unknown
orientation of downhole geophones, poor coupling between geophone and borehole wall, and
anisotropic/multiple arrival effects in the P-wave polarization estimation (Coffin et al., 2012;
Du et al., 2013; Gaiser et al., 1988; Maxwell, 2014). These challenges make the uncertainty
in the P-wave polarization estimation relatively large and is usually a major source of micro-
seismic event location uncertainty (Eisner et al., 2009; Maxwell, 2009). A perforation cluster,
each of which usually consists of four to five shots and spread around 0.3 m (1 ft) length,
can be treated as point source and used for geophone orientation calibration. In this chap-
ter, we refer to perforation cluster as perforation shot, which is considered infinitely small
in dimensions when compared with the microseismic event location uncertainty. However,
depending on the stimulation design, perforation may not have been conducted or recorded
by the geophones.

When the seismic source and receiver are both located at nearly the same depth in low
velocity shale, head wave arrivals can often be observed (Coffin et al., 2012; Zimmer, 2010).
Researchers have recognized the possible presence of head waves before direct arrival. There
are numerous examples in the crosswell (Dong and Toksöz, 1995; Parra et al., 2006, 2002) and
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microseismic (Maxwell, 2010; Zimmer, 2010, 2011) literature where the head wave arrival
is the first arrival. However, the head wave is often of weak amplitude and is commonly
regarded as contamination of the direct arrival since it can impact the polarization estimation
of the direct P-wave or be misinterpreted as the direct P-wave (Wilson et al., 2003). Synthetic
studies using head waves have been conducted; however, there are few studies using field data
on the improvement in event location obtained by using available head waves (Zimmer, 2010,
2011). Our analysis on microseismic data acquired in the Marcellus Shale shows that head
waves convey useful information and can be used to constrain microseismic event location
as a substitution for the P-wave polarization.

In this chapter, we first present the theoretical background of this study. We then give
an overview of the microseismic survey in the Marcellus Shale. Next, we present and analyze
the resonance in microseismic data acquired in the downhole survey. Subsequently, we show
the head waves observed in the Marcellus Shale and use them to constrain microseismic
event location as a substitution for direct P-wave polarization. Finally, we propose a new
acquisition geometry to improve the traditional microseismic acquisition practice based on
the location accuracy improvement due to the use of head wave arrival times.

4.2 Methods

Resonance Due to Poor Coupling
Geophone-borehole coupling is a concern in borehole geophysics surveys. The ground motion
can be accurately recorded only if the geophone has no internal resonance and is well coupled
to the borehole (Gaiser et al., 1988). However, due to operational limitation, this ideal
situation is usually not achieved. In a borehole seismic survey, a geophone is coupled to
the borehole with a locking mechanism, which is usually a locking arm in one direction.
According to Gaiser et al. (1988), in a vertical well bore, the impulse response of a geophone
is related to the contact width of a geophone with the borehole wall, the locking force, and the
weight of the geophone. The resonance is usually most severe in the horizontal component
that is perpendicular to the locking force direction. For a geophone placed in a horizontal
well, the only coupling force between the geophone and wellbore is usually the gravitational
force of the geophone itself. This can make the resonance due to poor geophone-borehole
coupling even more severe.

The recorded noise-free seismogram due to a microseismic event or perforation shot can
be expressed as the convolution of source wavelet, earth impulse response, and geophone
response (including resonance due to poor coupling):

x(t) = w(t) ∗ e(t) ∗ r(t), (4.1)

where x(t) is the recorded seismogram, w(t) is the source wavelet, e(t) is the earth impulse
response, and r(t) is the receiver (geophone) response.
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Its equivalent form in the frequency domain is

X(ω) = W (ω)E(ω)R(ω), (4.2)

where X(ω), W (ω), E(ω), and R(ω) are the frequency domain representation of x(t),
w(t), e(t), and r(t), respectively.

Deconvolution of Microseismic Signal
The effect of a receiver resonance can be attenuated with receiver channel consistent de-
convolution (Claerbout, 1992; Yilmaz, 2001). The deconvolution improves the compactness
of a seismic wavelet and can help in the identification of seismic phases by recovering the
impulse response of the earth. Under the assumption that the impulse response of the earth,
e(t), is random (|E(ω)| is constant in the frequency domain), the seismogram has the same
amplitude spectrum, |X(ω)|, with the amplitude of the convolution of the source wavelet
and the geophone response, |W (ω)R(ω)|. An additional minimum phase assumption enables
the determination of an optimum Wiener filter, which can recover the impulse response of
the earth from the recorded seismogram (Yilmaz, 2001). This can be used to remove the
geophone resonance, thus, improve the identification of the multiple arrivals.

Head Wave
The generation mechanism of head waves in the Marcellus can be seen in Figure 4.1, which is
a common acquisition configuration in shales. If the velocity of a nearby layer (the Onondaga
Formation in this case) is larger than the shale, and assuming both source and receiver are
located in the shale, head waves will be generated when the angle of incidence is equal to a
critical angle arcsin(V1

V2
), where V1 and V2 are the velocities of the low and high velocity layer,

respectively, as shown in Figure 4.1. The head wave will then travel along the formation
interface until the point where it refracts back to the original low velocity layer with angle of
emergence at the critical angle. P-P-P, S-S-S, and S-P-P, and P-P-S converted head waves
are potentially identifiable. In practice the three latter head waves are difficult to identify
because they occur after the first arrival. Also, a dip-slip microseismic focal mechanism,
which is often thought to be the dominant rock breaking mechanism, will preferentially gen-
erate P-P-P arrivals (Rutledge and Phillips, 2003). The direct arrival amplitude is inversely
proportional to the distance that the seismic ray traveled from the source due to geometrical
spreading, while head wave amplitude is approximately inversely proportional to the square
of this distance (Červenỳ and Ravindra, 1971). Thus, the head wave will decay faster than
the direct arrival and usually has smaller amplitude. As in refraction seismology, though the
head wave travels a longer path than the direct arrival, it arrives before the direct arrival
past the cross-over distance. Figure 4.2 shows traveltime versus source/receiver separation
for the configuration in Figure 4.1.
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Figure 4.1: A common configuration for a head wave. Due to the low velocity nature of
shale, the head wave is commonly identified when there is a nearby high velocity layer.

Figure 4.2: Arrival time of various phases as a function of the source-receiver distance. When
the source-receiver distance is larger than the crossover distance, the head wave can overtake
the direct arrival to be the first arrival. Perforation A and Perforation B are two shots with
a source-receiver distance larger and smaller than the crossover distance, respectively.
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Event Location Estimation and Velocity Model Calibration
The velocity model calibration and microseismic event location estimation were conducted
with a microseismic event location program we previously developed (Zhang et al., 2017b).
It aims to minimize the misfit between the observations, which include arrival times and po-
larization directions, and the model predictions of these observations. An objective function
is minimized iteratively with a Gauss-Newton method (Zhang et al., 2017b). The standard
deviation of arrival time picking uncertainties is assumed to be 1 ms for all phases and P-wave
polarization uncertainty is assumed to be 6o. Similarly, the velocity model can be calibrated
with perforation data by minimizing the objective function with respect to velocity model
parameters instead of the microseismic event locations and origin times.

4.3 Hydraulic Fracturing Project Overview
The hydraulic fracturing project was carried out in the Marcellus Shale in Susquehanna
County, Pennsylvania, within the Susquehanna River Basin. The Marcellus Shale is a Middle
Devonian age unit of marine sedimentary shale that contains largely untapped natural gas
reserves. It underlies the Mahantango Formation (siltstone and shale) and overlies the
Onondaga Formation (limestones and dolostones). Its natural gas trend is the largest source
of natural gas in the United States. The Marcellus Shale in the studied area has a thickness of
roughly 46 m (150 ft) and the average porosity and permeability are 0.08 and 600 nanodarcy,
respectively.

A multiple well pad that includes seven nearly parallel horizontal wells is the site of
field acquisition (Salehi et al., 2013). The trajectories of the lateral wells are normal to
the maximum in situ horizontal stress orientation. The horizontal distances between two
nearby lateral wells are approximately 152 m (500 ft) and the average horizontal wellbore
length is 1109 m (3640 ft). The true vertical depths (TVDs) of the wells are approximately
1981 m (6500 ft). The target zone of the wells lies along the lower portion of the Marcellus
Shale. One of the major purposes of the hydraulic fracturing project was to evaluate the
potential to increase stimulation efficiency (increased production, reduced water consumption
per unit of gas produced, and reduced environmental footprint) by varying the pump rate.
Microseismic data has been acquired and analyzed. Surface microseismic tools were deployed
in an approximately 7.8 km2 (3 square miles) area and 93 stimulation stages were monitored.
Downhole geophones were placed in one of the horizontal wells and 62 stimulation stages were
monitored. A previous study observed increased microseismicity during hydraulic fracturing
in stages with frequent pump rate changes, which suggests better stimulation efficiency
(Ciezobka et al., 2016).

Our study is focused on two wells, a monitor well and a stimulation well, as shown by
Figure 4.4. The lengths of the horizontal portion of the two wells are 1350 m (4430 ft) and
1700 m (5577 ft), respectively. The average distance between the horizontal portions of the
two wells is around 220 m (722 ft). The stimulation started from the toe and continues until
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Figure 4.3: Microseismic survey geometry. The microseismic event locations (dots) were
located conventionally using P-, S-wave arrival times and P-wave polarization directions.
The alternating white and blue geophone arrays are different locations of the same array that
is used to monitor the stimulation. The stimulation stages and their corresponding geophone
array positions are shown in Figure 3.1. Microseismic events are color-coded according to
their associated stimulation stages.

reaching the heel of stimulation well. It consists of 18 stages with an interval of 91 m (300
ft), as shown by Figure 4.4. We refer to the stimulation stages as Stage 1 to Stage 18 from
the toe to the heel of the well. Among these stages, nine were designed to have variable
pump rate and nine used the traditional constant rate design. Each stage consists of four
perforation shots with a perforation interval of 21 m (70 ft). We refer to the shot on the
side of the toe as Perforation 1 and the shot on the side of the heel as Perforation 4 in each
stimulation stage. The fracture stages alternated along the horizontal wellbore to account
for changes in the reservoir and natural fractures.

The microseismic survey was conducted with an array of 11 three-component 10 Hz
geophone tools. The tool spacing in the array was 15.2 m (50 ft). The geophone on the side
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Figure 4.4: Map view of the acquisition geometry. The stimulation was performed in 18
stages and the microseismic signal was recorded by an array of 11 geophones in the nearby
monitoring well. The geophone array was moved according to the stimulation stage location
to reduce errors due to large event to receiver distances.

of the toe is referred to as Geophone 1 and the geophone on the side of the heel is referred
to as Geophone 11. The tools were deployed via tractor in the horizontal section of the
borehole, and the only coupling between the tool and the borehole wall was due to gravity.
As is typical in these types of surveys, the tool array was moved along the monitor well bore
to be roughly across from the stimulated zone in the treatment well, thereby reducing travel
path length to improve S/N and event location accuracy.

A total of 1842 events were detected and processed during the 18 stimulation stages. The
number of events in each stage is shown in Table 4.1. In addition to these microseismic events,
perforation shots from Stage 2, 6-9, 12-14, and 17-18 were recorded by the geophone array
and used for velocity model calibration and location uncertainty analysis. An isotropic 1D
velocity model was created based on a sonic log from the vertical section of the stimulation
well and then calibrated with perforation shots, as shown in Figure 4.3. The geophone
orientations were estimated using the P-wave polarization directions from the perforation
shots. P-, S-wave arrival times were manually picked and used for the initial microseismic
event location. P-wave polarization directions were also used to constrain microseismic event
locations. The microseismic event locations obtained from this analysis are shown in Figure
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4.3 and are color-coded with their corresponding stimulation stages.

Table 4.1: Number of microseismic events in each stage.

Stage Number of Events Stage Number of Events
1 11 10 224
2 66 11 168
3 63 12 94
4 93 13 141
5 130 14 101
6 106 15 120
7 141 16 80
8 120 17 70
9 80 18 34

4.4 Data Analysis
Figure 4.5 and Figure 4.6 show a typical perforation shot (the second perforation shot) and
a typical microseismic event waveform from stimulation Stage 6, respectively. Examination
of the microseismic data acquired in this survey shows frequency resonance in both the axial
(with respect to the borehole) and radial components of the data. The perforation shot
data are also affected by channel-dependent resonances. By visual inspection, it can be seen
that the characteristic of the resonance is dependent on the channel instead of the source
mechanism.
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Figure 4.5: Waveforms of a typical perforation shot from stimulation Stage 6. The wave-
forms of a perforation shot are usually P-wave dominated due to the source mechanism of
perforation shot. Severe resonance effect in waveforms can be observed, especially in the
axial component.

Figure 4.6: Waveforms of a typical microseismic event from stimulation Stage 6. The wave-
forms of a microseismic event are usually S-wave dominated.
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Spectrum of the Resonance
The spectrum of the resonance can be seen from a short-time Fourier transform (STFT) of
the three component waveforms recorded by Geophone 5 as shown by Figure 4.7. For the
axial component, the resonance frequency is around 420 Hz. The first radial component has
resonance frequencies of 120 Hz and 440 Hz. The second radial component resonates at 120
Hz and 340 Hz. Gaiser et al. (1988) show that the resonance due to poor geophone-borehole
coupling is mainly on the radial component instead of the axial component. This is the
character of the resonances at frequencies around 120 Hz and 340 Hz. The fact that the only
coupling force between the geophone and the wellbore is the gravitational force of the geo-
phone in the horizontal well is likely the reason for the resonance in both radial components.
The resonance above 400 Hz is polarized on the axial and the first radial components and
may result from the resonance of the geophone themselves. Resonance will create problems
for tasks such as Q value estimation, waveform inversion, and P-wave polarization direc-
tion estimation. In the presence of resonance, additional processing procedures should be
performed such as the relative spectrum analysis introduced by Zhang et al. (2016).

Figure 4.7: STFT of a typical three-component waveform generated by a perforation shot.
For the axial component, the resonance frequency is around 420 Hz. The first radial compo-
nent has resonance frequencies of 120 Hz and 440 Hz. The second radial component resonates
at 120 Hz and 340 Hz. The resonance around 120 Hz may be due the poor coupling be-
tween geophone and wellbore. The resonance above 400 Hz may result from the geophone
themselves.
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Deconvolution of Microseismic Signal
The presence of resonances in microseismic signals may negatively impact the identification
of seismic phases. We performed a spiking deconvolution to remove the receiver signatures in
these waveforms. An optimum Wiener filter was designed using the average autocorrelation
of the four perforation shots in Stage 6. The waveforms before and after deconvolution
are shown in Figure 4.8. From the comparison, we can see a significant suppression of the
resonance following the P- and S-wave arrivals after the deconvolution. This suppression
prevents the later phases from being contaminated by resonance due to earlier arrivals. For
instance, it can be difficult to determine the S-wave arrival times on Geophone 5 and 9 in
Figure 4.8a due to their preceding resonance. After the removal of the resonance (Figure
4.8b), it is significantly easier to pick those arrivals on Geophone 5 and 9. In addition,
we also find two weak, yet clear phases after the deconvolution denoted by multiple 1 and
multiple 2 in Figure 4.8b. These two arrivals can hardly be identified in the original data.

Figure 4.8: Deconvolution result of the axial component. The deconvolution successfully
suppressed the resonance in the original data. In addition, it enhances multiple arrivals that
are hardly identified in the original waveform.
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4.5 Event Location Result
Due to the azimuthal ambiguity in microseismic event location using only P- and S-wave
arrival times, P-wave polarization is commonly used to constrain the azimuthal direction
of microseismic events. However, the effect of resonance on the downhole geophones may
result in large uncertainty in P-wave polarization estimation. In addition, the orientations of
downhole geophones will require calibration using information from perforation shots, which
may be unavailable. Due to the low velocity nature of shale, the head wave is commonly
identified in microseismic surveys (Maxwell, 2010; Zimmer, 2010, 2011). Like many other
microseismic surveys, we observed head waves in the Marcellus Shale. Figure 4.9a shows the
axial component of the waveforms for perforation shot 4 in Stage 2 (Perforation A in Figure
4.10). The head wave arrivals have low amplitude and high velocity moveout as annotated
by the yellow picks in Figure 4.9a. However, as shown by Figure 4.9b, the waveform for
perforation shot 3 in Stage 6 (Perforation B in Figure 4.10) shows no identifiable head wave
since its source-receiver distance is smaller than the cross-over distance. In this section, we
use the head wave arrival times as a substitution for the P-wave polarization to constrain
the microseismic event locations.

For a microseismic event at a distance of L from the observation geophone array, the
location uncertainty due to uncertainty in polarization will be on the order of αL, where α is
the uncertainty of P-wave polarization estimation. A common value of α = 6o and L = 400
m (1312 ft) will result in a location uncertainty of 42 m (138 ft). This is a value significantly
larger than the location uncertainty resulting from arrival time picking uncertainty, which is
usually on the order of several meters. Additional uncertainty usually comes from velocity
model uncertainty; however, it is common for both methods.

Velocity Model Calibration
Since the original velocity model is a model based on sonic logs and calibrated with perfo-
ration shots, it is limited to the TVD of the kickoff point (sonic logs are not typically run
in the horizontal section). According to this provided model, the head wave will not take
over the direct P-wave to be the first arrival as observed in the waveform within the offset
ranges in this study. To calibrate the velocity model, perforation shots were used and P-,
S-, and head wave arrival times were picked. From the calibrated velocity model, we found
that Marcellus velocities near the stimulated interval were close to the one provided by the
contractor. The calibration also reveals the existence of a high velocity (Vp = 6.01km/s)
formation, Onondaga Formation, underlies approximately 70 m (230 ft) below the geophone
array. However, there was no velocity information in the original model due to lack of sonic
logs.
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Figure 4.9: The axial component of the waveforms of perforation shots after (a) and before
(b) the cross-over distance. Head waves can be easily identified based on their low amplitude
and high velocity moveout from waveform (a). The head waves arrive after the direct P-
wave; thus, cannot be identified in waveform (b). The location of the perforation shots are
shown in Figure 4.10.

Finite Difference Simulation
To further verify the existence of head waves and the calibrated velocity model, we conducted
a finite difference simulation to investigate the wave propagation of microseismic signals
with SW4, a 3D elastic forward modeling code (Petersson and Sjogreen, 2013). The code
implements a fourth order accurate method in space and time. The focal mechanism of the
source is assumed to be a vertical crack with a moment tensor proportional to

1 0 0
0 1

ν
− 1 0

0 0 1

 (4.3)

where ν is Poisson’s ratio.
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Figure 4.10: The locations of two perforation shot whose waveforms are shown by Figure
4.9.

The source time function is assumed to be a Ricker wavelet with peak frequency at
100 Hz. The existence of head waves can be verified by the comparison between field and
synthetic waveform as shown by Figure 4.11. The arrival time of the head wave in field data
matches that of the synthetic result well. In addition, the low amplitude ratio between P-
and head wave is also verified by the synthetic simulation. The differences in the S-wave in
the Vx and Vy components may be due to the lack of knowledge of the source mechanism of
the actual event for the finite difference simulation.
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Figure 4.11: Comparison between synthetic and field waveform. The synthetic waveform
matches the field data relatively well, which verifies the existence of head wave. The difference
between the S-wave in the x and y components may be due to the unknown source mechanism
of the actual event for simulation.

Perforation Shot Location
To quantify our event location estimation uncertainty, we located the perforation shots in
Stage 2 with a Jackknife technique (Miller, 1974). That is, for each perforation shot, its
location is estimated with the velocity model calibrated with the other three perforation
shots. Since the velocity model was not calibrated with the perforation shot to be located,
these perforation shots in Stage 2 can be treated as normal microseismic events and used for
location uncertainty analysis. Our location result of the four perforation shots along with
their true location is shown in Figure 4.12. What is also shown is the location result with
the traditional method, which used direct arrivals and P-wave polarization directions.
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Figure 4.12: Comparison of estimated perforation shot locations and the true perforation
locations. Location estimation using head wave arrival times gives a RMS error of 19 m
while the traditional method using P-wave polarizations gives a RMS error of 52 m.
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From the comparison, we found the method using head wave arrivals instead of P-wave
polarizations gives a root mean square (RMS) error of 19 m (62 ft) while the traditional
method with P-wave polarizations and P-, S-wave arrival times gives a RMS error of 52 m
(171 ft). Given the limited acquisition geometry and relatively large source-receiver distance
in this survey, the method using head wave arrival times gives a plausible result while the
traditional method using P-wave polarization directions leads to relatively large location
uncertainty.

Relocation of Events in the Second Stage
A map view of the microseismic event locations estimated with the traditional P-wave po-
larization method is shown in Figure 4.13. Note that the microseismic event locations in
Stage 2 are significantly more scattered than those in later stages. One possible explanation
to this scattering is because of the larger stimulated reservoir volume associated with Stage
2 stimulation. However, an alternative explanation is simply because of the larger event
location uncertainties in Stage 2 events due to the longer travel paths of seismic rays.

Figure 4.13: Map view of microseismic event locations processed using P-, S-wave arrival
times and P-wave polarizations. The event locations in Stage 2 are much more scattered
than those in later stages.

We relocated these events using direct P-, direct S- and head wave arrivals without
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polarization as shown in Figure 4.14. The relocated events are much less scattered than the
result estimated with the traditional location method. This pattern is more consistent with
the microseismic event patterns in the later stimulation stages and indicates the effectiveness
of using head wave arrival times in microseismic event locations to improve event location
accuracy.

Figure 4.14: The microseismic event locations estimated with P-, S-, and head wave arrival
times are less scattered and more consistent with other stimulation stages when compared
with the microseismic event locations processed using the traditional location method.

4.6 Discussion
The microseismic event location methodology developed in this study relied on head wave
availability. However, the head waves exist only if a high velocity layer is present in the
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vicinity of the stimulation zone and the observation geophones. Even so, they can hardly be
identified if they arrive after the direct arrivals, which is the case when the source-receiver
distance is smaller than the cross-over distance.

When the source-receiver distance is smaller than the cross-over distance such as the data
in Figure 4.9b, which comes from perforation shot B in Figure 4.10, head waves will arrive
after the direct P-waves (Figure 4.2). In this case, it will be more difficult to pick head wave
arrivals, and conventional methods of event location using P-wave polarization directions
may be required to constrain the event locations. Traditional acquisition practices place the
geophone array as close as possible to the stimulation zone. However, our analysis shows this
practice may result in loss of information with multiple arrivals. We would propose to place
the geophone array farther than a cross-over distance for single horizontal well monitoring
as shown by Figure 4.15. This acquisition geometry will enable the identification of multiple
arrivals and will therefore improve microseismic event location accuracy. Moreover, fewer
moves (perhaps no moves whatsoever) may be required to provide accurate location infor-
mation. Significant reductions in acquisition cost and wellbore risk might be achieved with
this geometry without sacrificing accuracy and in some situations perhaps improve location
accuracy.

Figure 4.15: Traditional acquisition geometry aims at improving S/N by decreasing source-
receiver distance (white geophone array). Our study shows that one can monitor hydraulic
stimulation with geophone array that is farther than a cross-over distance (blue geophone
array) for head wave observation. This acquisition practice will be able to avoid large location
uncertainty due to using P-wave polarization as well as to reduce acquisition cost.
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4.7 Conclusion
Resonance due to poor geophone-borehole coupling is commonly observed in downhole mi-
croseismic surveys. Deconvolution is successful in removing resonance and improves the
identification of multiple arrivals. However, it will not help to improve the P-wave polariza-
tion estimation, which is traditionally used to constrain microseismic event location in single
monitoring well observation. The existence of head waves in microseismic survey of Marcellus
Shale is observed and verified. The location result of perforation shots using the developed
method verified that, whenever available and identifiable, accounting for head wave arrival
time as a substitution for P-wave polarization indeed improves the microseismic location
accuracy. Based on the developed method, we propose an improved acquisition geometry
for single horizontal well hydraulic fracturing monitoring, which enables us to improve the
identification of multiple arrivals, utilize the head wave as the first arrival, and improves
microseismic event location accuracy as well as reduce acquisition cost.
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Chapter 5

Recovering Compressional Wave
Amplitudes via Machine Learning

I must study politics and war, that my sons may have the liberty to study mathe-
matics and philosophy. . . in order to give their children the right to study painting,
poetry, and music.

– John Adams

5.1 Introduction
In this chapter, as well as Chapter 6, we continue to strive for understanding of where poorly
conditioned data negatively impact our ability to garner insights. However, we incorporate
a more interdisciplinary approach through the use of machine learning and artificial intelli-
gence. Here, we rely on the knowledge gained from previous work in order to shift focus to
data-driven solutions while relying on data science to augment our work that relied on more
purely geophysical techniques.

Recent advances in drilling technology have led to a significant increase in the explo-
ration of unconventional resources via hydraulic fracturing (fracking) in shale plays in order
to recover natural gas and other hydrocarbons. Monitoring of microseismic events can be
performed downhole or at the surface. Downhole monitoring provides significantly better res-
olution and signal-to-noise ratio (S/N) than surface monitoring approaches (Maxwell et al.,
2010). However, one of the limitations of downhole monitoring is that in order to minimize
the source-receiver distance, and thereby improve S/N , it is necessary to sacrifice azimuthal
coverage of the monitoring area. As such, moment tensor inversions have significant uncer-
tainty (Nava et al., 2015). Furthermore, when a single observation well is used, there is a
large reliance on multiple compressional (P) and shear (S) wave arrival times for location
estimation and other analytic objectives (Warpinski et al., 2009). Moreover, it has been
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shown that the P-wave amplitude is fundamental to invert focal-plane mechanisms in cases
where azimuthal coverage is limited (Kuang et al., 2017).

While there are a number of works on imputation and the use of machine learning models
for imputation tasks, there are a limited number of papers focusing on geophysics and far
fewer on microseismic analysis (Gill et al., 2007; Haukoos and Newgard, 2007; Kondrashov
and Ghil, 2006). Cawley and Talbot (2010) explore interpolation of missing data in seismic
traces with nonstationary prediction-error filters (PEF). The PEFs are first estimated and
are then used to fill missing trace bins as part of linear least squares. This approach also
enables the separation of noise and real signal. Kondrashov and Ghil (2006) focus on the use
of Singular Spectrum Analysis (SSA) to fill in missing information in both space and time
in a number of synthetic data sets as well as data sets from oceanographic, hydrology, and
space physics. Multiple methods were compared and an effective cross-validation method
was employed to validate the results of the gap-filling approach on various signals. Gill
et al. (2007) employ artificial neural networks (ANN) and support vector machines (SVM)
to predict groundwater levels over a short-term period at a specific well field and explore the
overall impact of missing data on these learning algorithms. A local least squares method of
imputation was used and the effect of varying amounts of missing data was explored. Finally,
performance of each learning algorithm was compared over the range of missing data, up
to 30% of the overall data set. The results showed that for groundwater estimation, the
SVM algorithm performed well despite large amounts of missing data. However, a known
drawback to SVM algorithms, like other kernel methods, is the risk of sensitivity to over-
fitting, which makes reuse of a model difficult across various data sets (Cawley and Talbot,
2010). Additionally, SVM algorithms are typically employed for classification problems and
not regression tasks for estimation of continuous variables.

Ensemble methods like random forest are particularly robust to overfitting and can be
used for classification, regression, and survival analysis (Breiman, 2001). Moreover, random
forest models are one of the few machine learning techniques that can be successfully exe-
cuted with input data that contain missing values. Additionally, recurrent neural networks,
particularly long short-term memory networks (LSTM), have the advantage over traditional
ANN in that they are well-equipped to deal with nonlinear, time-dependent data (Monner
and Reggia, 2012). Multivariate Imputation by Chained Equations (MICE) is an incredibly
powerful method of imputation, and an open-source package in R, that enables imputation
of more than one variable for both categorical and numerical data (Buuren and Groothuis-
Oudshoorn, 2010). These methods are data-driven and are agnostic regarding the nature of
the data. As such, these learning models can be used for a number of learning objectives to
include imputation of microseismic parameters.

In this chapter, we explore the applicability of machine learning and deep learning meth-
ods for the explicit purpose of imputing missing information from a real microseismic data
set. The main motivation is to realize the benefit of data-driven approaches in the hydraulic
fracturing domain that do not rely on signal processing techniques, but rather identify re-
lationships from aggregate parameters common to typical microseismic workflows in use
today. We begin with an overview of the hydraulic fracturing project where the data set
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under investigation was gathered, provide a short discussion on common sources of data cor-
ruption in microseismic data sets, and explore traditional imputation methodologies. Then,
four imputation approaches are presented: stage-specific median imputation, random forest
imputation, Multivariate Imputation by Chained Equations (MICE), and long short-term
memory networks (LSTM). Model performance for each imputation approach is presented
and compared when applied to a real data set. Finally, we conclude with a discussion of the
various applications of the best performing methods investigated.

5.2 Microseismic Survey in Marcellus Shale
The hydraulic fracturing project considered in this chapter was executed in the Marcellus
Shale located in the Susquehanna River Basin in Pennsylvania, where the principal material
found is Middle Devonian aged sedimentary shale. The Marcellus Shale is flanked by the
Mahantango Formation (above), which is mostly siltstone and shale, and the Onondaga
Formation (below), which is limestones and dolostones (Zhang et al., 2017a). It is one of the
largest in the world in both volume and production content. As such, it is one of the greatest
sources of natural gas in the United States. The average thickness of the Marcellus Shale in
the survey area was approximately 46 m (150 ft) with a porosity of 0.08 and permeability of
600 nanodarcy.

Survey Geometry
Figure 5.1 shows two horizontal wells that were considered, a treatment well and an observa-
tion well with horizontal lengths of 1700 m and 1350, respectively. There were 18 stimulation
stages beginning at the toe and ending at the heel of the treatment well with an interval of
91 m. Stage two is considered for analysis based on the survey geometry and data quality
(Zhang et al., 2017a).

The downhole monitoring array consisted of 11 three component, 10 Hz geophones with
11.2 m (50 ft) spacing between each geophone. In order to accommodate the relocation of the
sensor array, the geophones were deployed by tractor, which allowed for subsequent moves
for the last nine stages of the project. This is common in downhole monitoring projects in
order to improve S/N by locating the geophones perpendicular to the current stage, thereby
minimizing the source-receiver distance. There were a total of 1842 contractor-identified
microseismic events over 18 stages. While all of these events satisfied some threshold for
quality and are categorized as microseismic events, it is clear that there is a non-negligible
amount of missing data.

5.3 Sources of Data Loss
There are many causes of data loss inherent to microseismic monitoring processes. For ex-
ample, scattering of microseismic energy due to near field and far field effects is a naturally
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Figure 5.1: Map view of hydraulic fracturing geometry showing fracture stages and geophone
locations. Inverted triangles show the different locations of the geophone array in the obser-
vation well, shown in red. The locations of microseismic events are shown around the blue
treatment well color-coded for each stage.

occurring phenomenon that physically inhibits the recording of fracture events (Schoenberg,
1980). Additionally, shear waves, unlike compressional waves, cannot propagate through
fluid-filled regions. As such, microseismic energy from a fracture occurring on the far side
of a fracture network filled with fracking fluid will lose the majority of the shear component
when recorded (Quintal et al., 2012).

The orientation of geophones can also have a significant impact on data loss and this
effect may be amplified during each relocation of the geophone array. Moreover, resonance
due to poor coupling between the geophone and borehole has been shown to reduce data
quality, shown in Figure 5.2. Specifically, there is an inverse correlation between locking force,
or the force exerted in order to maximize contact between the geophone and borehole wall,
and the presence and amplitude of resonance (Gaiser et al., 1988). Furthermore, the area
of contact between geophone and borehole wall, as well as geophone weight, are significant
factors in the presence of resonant energy. Resonance is a destructive signal that is captured
in (5.1) as part of the geophone response. Equation (5.1) describes a noise-free microseismic
event and is the convolution of source wavelet, impulse response of the earth, and finally,
geophone response as follows:

x(t) = w(t) ∗ e(t) ∗ r(t) (5.1)
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Figure 5.2: Real microseismic event recorded from the Marcellus Shale. Raw event (left)
shows presence of resonant noise. Processed event (right) shows that this noise is effectively
removed.

where x(t) represents the recorded seismogram, w(t) denotes the source wavelet, e(t) denotes
the earth impulse response, and r(t) is the receiver response. Here, it is important to note
again that the receiver response, or geophone response, contains the resonance due to poor
coupling. An example of noise added from this resonant signal and the absence of resonance
after processing can be seen in Figure 5.2. There are sophisticated methods for overcoming
resonance due to poor geophone coupling in downhole monitoring; however, these methods,
while powerful, are still limited by monitoring geometries (Zhang et al., 2017a).

5.4 Machine Learning Model Selection
While there are numerous machine learning techniques that are widely available, few are
specifically designed for imputation tasks. To determine the best approach, we follow the
workflow described in Figure 5.6. Four methods are considered in this study; however, we
omit specific details regarding Long Short-Term Memory network (LSTM) since the results
are similar to that of random forest. Results are included for completeness.

Data Preparation
In order to establish ground truth for examining performance of the imputation methods,
it is necessary to first understand the distribution of missing values, Figure 5.3, and then
remove them. Next, we systematically remove known values from the remaining data set
and consider these in later steps for testing. Here, it is critical to ensure that the synthetic
missing values have a proportional distribution with respect to the real missing values. This
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Figure 5.3: Percent of missing values for P and S wave amplitudes. Note that for every
stage, there are more missing values of P wave amplitudes than S wave amplitudes. This
leads to the likely conclusions that these values are not captured due to the relatively lower
amplitudes of that wave type.

newly created data set with artificially missing values is used to train and test the selected
learning methods. This approach is necessary due to the nature of the problem, since it is
impossible to reliably assess performance on missing data and can be seen in Figure 5.4.

Stage-Specific Median Imputation
One of the most basic techniques used to impute missing information is to simply choose a
value statistically derived from the whole data set that aims to minimize bias (Haukoos and
Newgard, 2007). Typically, the mean, median, or mode is used to replace missing values in a
given data set. However, due to the non-stationarity of the complete data set, it is necessary
to segment values into homoscedastic subsets with stable statistical measures over time to
minimize error. Given that each stage occurs in a different location, which leads to changing
source-receiver pathways, it is important to consider each stage as a new data set with new
real conditions that may lead to missing data. It can be seen in Figure 5.5 that median values
vary significantly between each stage of the hydraulic fracturing project. As such, each stage
was considered for the determination of median values for imputation.

Programmatically, this approach is straightforward, requires little computational over-
head, and executes quickly. A disadvantage to this approach is that, though reduced dra-
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Figure 5.4: Visual description of process for developing synthetic missing data.

matically from the full data set, there is still variability over each stage. As a result, it is
necessary to complete an entire stage before computing the median value to be used for
imputation. Thus, despite extremely fast computation time, this approach is limited in its
ability to be used for real-time decision tasks like early warning or identification of fault
reactivation.

Random Forest Imputation
The random forest ensemble learning method is built from a number of decision tree pre-
dictors that depend on randomly sampled vectors that are both independent and identi-
cally distributed for all trees in the ensemble (Breiman, 2001). It is capable of performing
classification, regression, and survival analysis, though in this chapter, the focus is purely
regression. In order to optimize performance, an iterative approach was used to tune random
forest hyperparameters. One of the advantages of random forest modeling techniques is its
resilience in the face of over-fitting. However, there are still key parameters that can improve
the overall performance. One important parameter, mtry, denotes the number of randomly
selected candidate variables that are considered at each split when growing a specific tree
(Breiman, 2001). As such, mtry was varied in order to determine the best performing model
for overall comparison.

The random forest algorithm typically follows the following steps:

1. Perform bootstrap sampling on the original data set.
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Figure 5.5: Median values per stage, size represents the standard deviation of values per
stage.

2. For each sample, a decision tree is grown. Each decision tree is slightly modified where
at each node, mtry number of predictors are randomly sampled and the best split from
those variables is chosen.

3. Aggregation of predictions from all the decision trees leads to new data predictions
through majority voting.

4. Performance metrics are calculated and error relates are obtained by aggregating out-
of-bag (OOB) predictions.

Multivariate Imputation via Chained Equations (MICE)
The current state-of-the-art approach for imputation of complex data sets relies on a time-
consuming implementation of Fully Conditional Specification (FCS), also known as Mul-
tivariate Imputation by Chained Equations (MICE). There are many advantages to this
technique; however, one of the most valuable attributes of MICE is its ability to perform
imputation tasks on both numerical and categorical data with high accuracy when there are
missing values in more than one variable of interest. This is accomplished by the use of a
modular approach that enables comparison of imputed values at each iteration.

Three main phases of the algorithm are imputation, analysis, and pooling. In the impu-
tation phase, a user-configurable number of data sets are generated in parallel and each of
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Figure 5.6: Overall workflow for calculating performance metrics for selected imputation
methods.

these has different imputed values. It is important to note that although the imputed values
differ, the non-missing values remain the same. The next step is the analysis phase where a
model of imputed values is created for each version of the data set. Finally, in the pooling
phase, the estimates from all the data sets are pooled and variance is estimated. The result
of this approach should generate a complete data set that preserves the relationships present
in the data as well as the associated uncertainty (Buuren and Groothuis-Oudshoorn, 2010).

5.5 Model Output and Performance
Scale-dependent measures are particularly useful when comparing different learning meth-
ods applied to the same data (Hyndman and Koehler, 2006). Another advantage of scale-
dependent measures is that they are typically more interpretable due to the fact that the units
of the measure and the units of the predicted variable are equivalent. Three measures used
for understanding model performance include Mean Absolute Error (MAE), Mean Square
Error (MSE), and Root Mean Square Error (RMSE).

The basic premise for understanding model performance begins with quantifying error.
Specifically, model error (et) is defined as the difference between actual (At) and predicted
values (Pt) for an observation at time t as seen in (5.2).

et = At − Pt (5.2)
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Mean Absolute Error is a straightforward approach to quantify model error and is defined
by (5.3). MSE (5.4) and RMSE (5.5) are included to better quantify model accuracy.

MAE = mean(|et|) (5.3)

MSE = mean(e2
t ) (5.4)

RMSE =
√
MSE (5.5)

Table 5.1 shows summary statistics for the different wave amplitudes in stage 2 of the
hydraulic fracturing project. Table 5.2 describes the measures that were applied to various
models to determine overall performance. Additionally, Figure 5.7 shows a visual comparison
between model performance based on MAE.

Table 5.1: Summary Statistics

Amplitude Min Q1 Median Mean Q3 Max

P 1594 3068 4408 9690 7569 134485
S 1734 4119 6562 12487 12114 132919

SH 1302 3431 5686 11202 10482 115685
SV 805 1963 3066 4807 5355 65456

Table 5.2 shows that imputation with the MICE package outperforms all other machine
learning and deep learning methods. However, there is also the consideration of computation
time and overhead. Random forest and LSTM have slightly greater error rates; however,
both of these methods have near equal performance to one another and require significantly
less computation time than MICE. Since missing data is a problem that effects all aspects
of modeling, a decision should be made regarding the value of imputation before choosing
MICE over random forest or LSTM. For example, if the intention is to perform offline
analysis and modeling tasks, then the time required for the implementation of MICE is
reasonable. If, however, the purpose of imputation is to help inform real-time decisions
like the identification of fault reactivation in early warning systems deployed on-site, then
random forest and LSTM are the better choice. Due to the fact that early warning systems
rely on the ability to quickly identify potentially dangerous phenomena and help inform
operational decisions, the time required to implement MICE is prohibitive (Bao and Eaton,
2016). The error rates produced from the implementation of random forest and LSTM
are slightly greater than MICE; however, the information gained is an improvement on the
traditional methods of rudimentary imputation or the removal of what could be informative
data.
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Figure 5.7: Comparison of model performance. Mean Absolute Error (MAE) is the measure
of the average of the absolute difference between actual value and predicted value. An
advantage of MAE, as well as other scale-dependent metrics is that they work well when
comparing performance between different learning models on the same data set. Optimal
learning methods minimize absolute error, then, MICE has the best performance.

Table 5.2: Model Performance

Imputation Method MAE MSE RMSE

Median Imputation 59800 2.69e08 16400
Random Forest 9640 4.61e08 21500

MICE 3320 4.83e07 69502
LSTM 9940 4.74e08 21800

5.6 Conclusion
Any real data set will likely contain missing or unreliable information. Microseismic data
recorded with downhole sensors from a hydraulic fracturing project in the Marcellus Shale is
an example of a data set where a significant portion is missing or contaminated with noise.
In an attempt to recover this missing information, a number of machine learning and deep
learning methods were explored. As a first step, data cleaning and exploratory data analysis
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tasks were performed to reveal that more than 30% of compressional wave amplitudes were
missing from the original data set. The creation of synthetic missing values enabled the use
of proven machine learning and deep learning techniques like random forest and long short-
term memory networks to validate their use for imputation of missing data. Additionally,
Multivariate Imputation by Chained Equations (MICE), the current state of the art package
for imputation, as well as a stage-specific median imputation technique, were implemented.
Standard performance metrics for regression methodologies were calculated for comparison of
model performance. While MICE outperforms other learning techniques, the computational
time is significantly higher for even a small subset of the data set. As such, the clear choice
for imputation tasks depends heavily on the specific goal of the analysis objectives.
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Chapter 6

Arrival Time Picking with Ensemble
Methods

Because learning takes practice, we are more likely to get things right at small
stakes than at large stakes. This means critics have to decide which argument they
want to apply. If learning is crucial, then as the stakes go up, decision-making
quality is likely to go down.

– Richard Thaler, Misbehaving: The Making of Behavioral Economics

6.1 Introduction
In this final chapter, we culminate our work with the application of data science methodolo-
gies applied to a time-intensive, manual analysis task. The objective is to offer relief from
manual arrival time picking through a data-driven, extensible framework. The value of the
work presented in this chapter, or an extension of this work, would help to improve the
results of all previous chapters in this dissertation.

The identification of arrival times is a critical component of microseismic and seismic
analysis that enables and informs subsequent analysis tasks like source location estimation,
focal mechanism, and moment tensor inversion, as well as fracture network reconstruction
(Álvarez et al., 2013; Galiana-Merino et al., 2008; Li and Dong, 2014; Xiantai et al., 2011;
Yue et al., 2014). There are a number of methodologies that enable the identification of
arrival times; however, each has accompanying limitations. For example, manual picking
of arrival times requires a significant amount of time to manually identify waveforms and
pick arrival times. A confounding effect of this manual work is that the picking accuracy is
highly subjective and is influenced by and susceptible to human error. The automation of
this time-intensive step is an area of focus in the geophysics community. As such, there are
a number of methods that have been created to automate this picking process; however, we
focus on Short-Time Average over Long-Time Average for a comparison of performance.
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Short-Time Average over Long-Time Average (STA/LTA) is an approach that considers
a short window that represents instantaneous energy and a long window that represents
temporal amplitude of the seismic noise. When the ratio of these two windows of energy
overcome a predefined threshold, the approach is able to identify an arrival. There are a
number of parameters that can be used to improve picking accuracy; however, this approach
does have limitations that should be considered when using it in various applications. For
example, STA/LTA performs well in seismically quiet sites where the dominant source of
noise is natural seismic noise. Additionally, it is useful in strong motion seismicity since the
presence of a seismic event is typically represented by energy that is much greater than nom-
inal background noise. Moreover, STA/LTA is not as effective in the presence of man-made
seismicity (Li et al., 2016; Jones and van der Baan, 2015; Trnkoczy, 1999). As such, tuning
of the STA/LTA trigger often requires a tradeoff between detection rate and false triggers.
In a hydraulic fracturing project, there is typically a high level of background noise, over-
lapping microseismic events in time and space, noise due to resonance, and relatively lower
amplitude events in general. These limitations are the motivation for leveraging machine
learning methods to understand how time series classification can aid in the identification of
compressional waves and improve automated arrival picking.

Microseismic arrival picking is an area of research that has long been dominated by
traditional signal processing techniques (Capilla, 2006; Gibbons et al., 2012; Gibbons and
Ringdal, 2006; Senkaya and Karsli, 2014). However, this chapter explores the application
of machine learning methods to help improve arrival time picking accuracy. The arena of
artificial intelligence, which includes machine learning and deep learning, is generally split
into two main areas: classification of categorical data and forecasting or regression of time
series data. This chapter seeks to bring attention to the benefits of applying sophisticated
learning methods to time series data with the objective of classifying waveforms.

The method proposed in this chapter considers raw, real data from the Marcellus Shale
and relies on a subset of the data to be processed in order to establish known arrival times.
From here, the traces are segmented into signal partitions, or chunks, that act as the foun-
dation of the time series classification approach. These chunks aid in identifying where the
compressional wave exists within the input signal. Features are created and analyzed for
overall importance. Final feature selection is performed based on statistical tests that help
inform feature relevance. Next, the known arrival times are used to window the compres-
sional wave, and this step informs the creation of the target variable, which is essential in
any supervised learning technique. Lastly, the features and target variable are used to ex-
plore the performance of various machine learning and deep learning methods. Standard
automated arrival picking methods are employed to understand overall performance gains in
arrival time picking.

This chapter begins by presenting the monitoring geometry utilized in the microseismic
monitoring project that took place in the Marcellus Shale whose real data are considered
here. Next, the methodology is presented that was used to train and test the performance
of various learning methods. Then, the final model specification is described with additional
information regarding the use of bagging and boosting to improve overall classification perfor-
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mance as well as a listing and description of the most important features that were considered
for this modeling endeavor. Finally, we summarize the results of our approach and compare
them to performance of STA/LTA on the same data and conclude with potentially valuable
next steps.

6.2 Survey Geometry
Real data are considered from a hydraulic fracturing project that took place in the Marcellus
Shale located in the Susquehanna River Basin in Susquehanna County, Pennsylvania. The
Marcellus Shale lies on top of the Onondaga Formation, which is primarily limestones and
dolostones. Above the Marcellus Shale is the Mahantango Formation, which is mostly silt-
stone and shale. The Marcellus Shale is one of the largest shale formations in the world and
is thus one of the largest sources of natural gas in the United States. The average thickness
of the Marcellus Shale in the local survey area is approximately 46 m with a porosity of 0.08
and permeability of 600 nD (Zhang et al., 2017a).

Although the multiple-well pad held seven parallel horizontal wells, the data considered
in this investigation was recorded from one observation well with a lateral distance of ap-
proximately 220 m (722 ft) from the treatment well considered (Salehi et al., 2013). The
overall project was significant in scale and execution. The average wellbore length in the
horizontal direction was 1109 m (3640 ft). Additionally, the wells were located in the lower
portion of the Marcellus Shale with a true vertical depth (TVD) of approximately 1981 m
(6500 ft). The trajectories of the wells were in the direction normal to the maximum in situ
horizontal stress orientation, as is common in horizontal well projects.

The scientific objective of the hydraulic fracturing project was to determine if a change
in pump rate would lead to an appreciable change in stimulation efficiency. Namely, to es-
tablish a link between rapidly changing pump rates and increased production, reduced water
consumption per unit of gas produced, and an overall reduction in environmental impact. In
an effort to understand these characteristics, both surface monitoring and downhole moni-
toring tools were employed. The surface monitoring array spanned an area of approximately
7.8 km2 (3 mi2) and monitored 93 stimulation stages while the downhole monitoring array
was placed in a single horizontal well and monitored 62 stimulation stages. The outcome
of this study was considered successful as an increase in microseismicity was observed with
frequent pump rate changes (Ciezobka et al., 2016).

While surface monitoring tools were deployed, this investigation focuses solely on down-
hole monitoring data. Two horizontal wells are considered, a treatment well and an observa-
tion well with horizontal lengths of 1700 m (5577 ft) and 1350 (4430 ft), respectively. There
were 18 stimulation stages beginning at the toe and ending at the heel of the treatment well
with an interval of 91 m (300 ft), Figure 6.1. Nine of the stimulation stages were executed
with constant pump rate, and the remaining nine stages employed a variable pump rate.
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Figure 6.1: Map view of hydraulic fracturing geometry showing fracture stages and geophone
locations. Inverted triangles show the different locations of the geophone array in the obser-
vation well, shown in red. The locations of microseismic events are shown around the blue
treatment well color-coded for each stage.

Downhole monitoring was conducted with an array of three component, 10 Hz geophones.
There were 11 geophones in this array with spacing of approximately 11.2 m (50 ft). As is
common in downhole monitoring that requires relocation of sensors, the array was towed via
tractor for each relocation. Relocation of monitoring sensor arrays is a common practice in
downhole monitoring that helps to improve the Signal-to-Noise Ratio (S/N) by minimizing
the source-receiver distance.

There were 1842 microseismic events that were identified through standard processing
techniques. These events all satisfied some threshold for overall quality; however, there are
a number of events that have high noise content, demonstrate the presence of resonant noise
in the form of tube waves, or are missing compressional wave arrivals (Nava et al., 2020b).

6.3 Methodology
The method proposed in this chapter follows the workflow in Figure 6.2. Broadly, execution
of this method requires the following steps:

1. Manually pick a subset of events

2. Establish initial arrival window and signal partition (chunk) schema
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3. Create relevant features for signal chunks

4. Train classification model

5. Implement automatic first arrival technique

6. Tune dynamic parameters and select final model

Raw 
Data

Manually 
Pick 

Arrivals

Establish 
Arrival 

Window

Establish 
Chunk 
Length

Create 
Relevant 
Features

Train 
Models

Optimize 
Window 

and Chunk

Compute 
Performance

Final Model

Figure 6.2: The overall workflow of this modeling endeavor begins with raw data. Minimal
preprocessing is required with this approach since only a small subset of the events are
picked. Manual picking can be employed or automatic picking methods can be utilized if
strict quality control steps are taken to ensure the picks are accurate. Next, initial arrival
window and chunk lengths are chosen. From here, relevant features are selected and models
are trained. An iterative approach is used that incorporates performance of the overall
metrics with a feedback loop that varies arrival window and chunk length until optimal
performance is achieved.
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Preprocessing
Like any other machine learning endeavor, this classification approach requires some amount
of preprocessing of input data. Here, the initial effort is establishing ground truth by picking
arrival times of a subset of events. This can either be done manually through a subject
matter expert physically interpreting some small number of events or through an automatic
picking algorithm. It is important to note, however, that it is critical to verify the quality
of automatic picks in order to ensure that the subsequent steps do not lead to inaccurate
results.

For the purposes of this chapter, we use contractor-provided estimates of arrival times
for events with high S/N . The decision to use contractor-provided arrival times was made
in order to evaluate the approach’s ability to improve on industry standard microseismic
processing techniques. Due to the fact that the data set under consideration contained a
large number of events that were effected by interference from ringing artifacts, an example
of which can be seen in Figure 6.3, the events were sorted by S/N and only events that
demonstrated low noise were chosen for model training (Nava et al., 2015). It is important
to identify microseismic events with low noise content, specifically, low noise content sur-
rounding the compressional wave to allow the model to accurately identify attributes that
are representative of the true signal rather than noise content. If this step were omitted, the
predictive power of the model would rapidly diminish due to poor quality training data.
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Figure 6.3: Real microseismic event recorded with eleven geophones that shows ringing
artifact. Ringing due to resonant tube wave energy propagating down the borehole adds
noise throughout the hydraulic fracturing process and is likely caused through insufficient
clamping force between geophone and borehole casing. The highlighted artifact is completely
removed through traditional processing and is considered noise.
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Feature Engineering and Selection
After selecting appropriate events and establishing first arrival picks with high confidence, a
set of features that can be used for classification must be created. However, before this step
can be effectively executed, it is necessary to window around the first arrival times in order
to capture the full compressional wave. Additionally, an appropriate signal partition length,
or chunk length, must be chosen. These two steps can be viewed as independent in the
sense that the arrival window is bound by the physical properties of the compressional wave,
whereas the chunk length is bound by the desired granularity of the estimation approach.

Windowing compressional wave arrivals

There are strict constraints on the arrival window that must be considered in order to min-
imize error in subsequent estimates. First, if the window length is too small, then there
will not be clean distinction between what should be considered a compressional wave and
what is simply noise or a non-event signal. Failure to appropriately window the target phe-
nomena in the input signal will likely result in degradation of predictive power. Conversely,
an arrival window that is too long will likely carry with it the negative effect of capturing
both compressional wave and shear wave attributes (Figure 6.4). This will also result in an
inability to effectively classify a compressional wave and distinguish it from the shear wave.
Due to the fact that the shear wave energy is typically much greater than the compressional
wave energy, this would result in classifying a shear wave arrival rather than a compressional
wave arrival (Aki and Richards, 2002). Thus, the error between actual compressional wave
arrival times and predicted arrival times would be quite large.

Partitioning signal

Chunk length is the number of samples that are considered when generating aggregate fea-
tures as part of the feature engineering phase of model development. In order to perform
time series classification, relevant features are created for a time series under consideration.
Because the intent of this approach is to identify a specific attribute within a time series, it
is necessary to appropriately determine the optimal level of granularity. Unlike the arrival
window, the chunk length is not bound by a physical constraint. Here, the main constraint in
choosing chunk length is the model performance. If the chunk length is prohibitively small,
then execution time increases and overall classification accuracy decreases. Conversely, if the
chunk length is too large, overall execution time will be much shorter and classification ac-
curacy may be improved; however, this is a misleading result. The objective of this approach
is to classify a compressional wave within a given trace with high accuracy. If the chunk
length is too large, the overall value of the approach is low due to the fact that there is still
high uncertainty regarding the location of the compressional wave arrival. Then, the next
step will show only marginal improvement when compared to traditional automated picking
techniques. As such, the chunk length should be tuned such that the overall classification
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accuracy is high and the chunk length is also small enough to give a sense of where the
compressional wave exists within the complete trace.
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Figure 6.4: Example of non-optimal compressional wave arrival windows. The first window
(a) shows an arrival window that is too small and demonstrates an inability to capture
compressional wave attributes. The second window (b) shows an arrival window length
that is too large that captures compressional wave as well as shear wave energy. Both of
these arrival windows lead to sub-optimal predictive performance. Window (a) leads to a
significantly higher rate of false negatives and window (b) leads to the model misclassifying
the shear wave as the first arrival.

Creating relevant features

Traditionally, feature extraction and engineering is a time-consuming step in the model
building process. Recently, there has been significant effort in automating this step (Katz
et al., 2016; Severyn and Moschitti, 2013). More specifically, there have been a number of
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packages created with the explicit purpose of engineering features from time series data for
classification tasks (Cabrera et al., 2017; Mierswa and Morik, 2005; Naul et al., 2016). Due
to its fast execution speeds through built-in parallelization, rigorous feature selection and
filtering process, and clean integration through standard APIs, we used the Python package
Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh).

Tsfresh is quite robust and, by default, uses 63 characterization methods which produce
794 time series features (Christ et al., 2018). It is important to note that not all the features
created are relevant to the classification objective. As a result, one of the core components
of tsfresh is the identification of relevant features through statistical tests. Specifically, each
feature is evaluated independently to understand its ability to accurately predict the target
variable. In this case, the target is a binary classification of whether or not the compressional
wave arrival window is observed. The result of this step is a vector of p-values that represent
the significance of each extracted feature. Finally, the computed p-values are used in the
Benjamini-Yekutieli procedure, which determines which features are relevant (Benjamini
et al., 2001).

Model Training
Through an iterative process of evaluating classification performance, the final model is de-
termined. We examined the classification performance of a number of modeling approaches.
Table 6.1 describes the models and overall prediction accuracy. It is important to note that
in cases where there are imbalanced classes, overall accuracy must be compared to the No
Information Rate (NIR). In the case of a binary classification problem, the NIR is the pro-
portion of the majority class (Kuhn et al., 2008). The NIR associated with this model is
85.4%, and thus any model that provides an accuracy less than the NIR actually performs
very poorly.

Table 6.1: Comparison of Classification Performance

Model Accuracy ( % ) Time (min)
XGBoost 94.9 10
Bagged AdaBoost 94.7 14
Random Forest 94.3 7
AdaBoost 93.8 18
Stochastic Gradient Boosting 93.2 1
Bagged CART 88 1
Naive Bayes 87 1
Stacked AutoEncoder Deep NNet 71 3
Self-Organizing Maps 71 5
Linear Discriminant Analysis 68 1
Neural Network 62 1
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Group K-Fold Cross-Validation

An important aspect of model development is maximizing predictive power while avoiding
the negative effect of overfitting. One widely accepted method to accomplish this is to in-
corporate cross-validation in the training phase of development (Hastie et al., 2009). There
are a number of cross-validation techniques that can be applied to categorical and time
series data. Common methods utilized for classification tasks are k-fold, v-fold, and strati-
fied k-fold cross-validation. Additionally, there are cross-validation methodologies that are
typically employed for forecasting tasks that rely on time series data. For example, forecast
evaluation with rolling origin has been used as a means of improving forecasting performance
for some time (Fildes, 1992). Furthermore, nested cross-validation enables cross-validation
techniques to be applied to time series data in an effort to preserve temporal associations
(Bergmeir and Beńıtez, 2012; Tashman, 2000; Varma and Simon, 2006). These methods
significantly improve model performance and lead to more robust classification and forecast-
ing implementations of machine learning applications. However, these methodologies fail to
appropriately handle the task of time series classification as it is used in this chapter.

In this chapter, we attempt to identify where a compressional wave exists within a mi-
croseismic trace. Although the input data are time series in nature, this approach is not a
forecasting methodology. As such, cross-validation techniques that are applied to forecasting
tasks are not applicable. Furthermore, typical cross-validation techniques that are used in
more traditional classification endeavors are not applicable here due to the very real risk
of data leakage. Data leakage occurs when related data exists in both the training and
testing sets used for model development (Kaufman et al., 2012; Kuhn et al., 2008; Nisbet
et al., 2009). Standard k-fold cross-validation randomly samples observations and separates
the input data into two separate data sets - training and testing/validation sets. If each
observation were independent, this would be appropriate; however, since the input data are
time series in nature, randomly sampling from all traces would effectively downsample and
split each signal between the testing and training sets (Figure 6.5). This would inevitably
lead to high performance on training data, but incredibly low performance on unseen data.
This behavior is commonly referred to as overfitting.
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Figure 6.5: Data leakage occurs when information from the same observation is present in
both the training and testing data sets. The negative effect is an overly optimistic sense
of model performance and the subsequent inability to handle new data. This is commonly
known as overfitting. The microseismic event in (a) is the full signal. The two signals in (b)
and (c) represent the effect of traditional cross-validation techniques when applied to time
series data. The overall effect is random downsampling of the signal. While the signals are
not exactly the same, the arrival times remain unchanged and will lead to overfitting.

In order to avoid overfitting while maximizing predictive performance, a more rigorous
cross validation schema is required. Below is a general approach to implementing our cross-
validation method.

Time Series Group K-Fold Cross-Validation Method:

1. Create list of Event IDs and randomly sample

a) 67% are assigned to training set
b) 33% are assigned to test set

2. Retain test set for validation purposes

3. Implement Group K-Fold schema based on Trace ID

a) This indexes the folds based on Trace ID
b) Each trace is then viewed as an independent observation
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Through the application of group k-fold cross-validation where each event is treated as
an independent observation, the disadvantage of data leakage is effectively overcome by
preventing features from a single event from being present in both test and train sets. The
temporal associations that are present within time series data are preserved and model
performance and robustness are improved.

Final Model Specification
Based on the nature of the data from the Marcellus Shale hydraulic fracturing project, the
model that had the best classification performance was XGBoost, which is a tree-based
ensemble method that incorporates optimized gradient boosting (Chen and Guestrin, 2016).

Bagged AdaBoost, which is a tree-based ensemble method that incorporates bagging
from the R package adabag also performed very well (Alfaro et al., 2013). It is important to
note that there was only a very small decrease in performance between Bagged AdaBoost,
AdaBoost, and Random Forest. This indicates that this problem is well-suited for both
adaptive boosting and bagging methods. Furthermore, the top six machine learning methods
tested all relied on either bagging or boosting as a core component of implementation. While
the poorest performing models have dramatically faster execution speeds, the fact that their
accuracies are lower than the NIR indicates that the models actually perform worse that
naive estimation.

Bagging

Boosting and bagging are both ensemble methods that generate base classifiers that are
both relatively precise and as different as possible (Alfaro et al., 2013). While it is typically
disadvantageous to incorporate features that have high variance, with boosting and bagging,
this high variance leads to performance gains. In a single decision tree, if the training set
contains samples at random, which is common in typical cross-validation approaches, even
small differences in the selection of training observations will likely have a significant impact
on the classification accuracy. Because of this attribute, an abundance of caution should be
exercised when attempting to understand feature importance since this can change signifi-
cantly with slightly different input data. Boosting and bagging leverage this phenomenon to
increase performance while protecting against overfitting. Breiman (1996) comments, “The
vital element is the instability of the prediction method. If perturbing the learning set can
cause significant changes in the predictor constructed, then bagging can improve accuracy.”

Bagging, or more specifically, bootstrap aggregating, is a technique that generates multi-
ple versions of a predictor through random sampling with replacement (bootstrap) and then
these predictors are used to determine an aggregate predictor (Breiman, 1996; Quinlan et al.,
1996). Base classifiers are created on the bootstrap observations and then voting occurs to
determine the final classifier. Specifically, for a given set of N observations, each of which
belongs to one of K classes. Here, K can either describe a binary classification task where
K = 2 or a multi class classification task where K > 2. The number of trials, T , indicates
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the number of repetitions and may be either a static parameter or determined through the
specific cross-validation method employed in model development (Quinlan et al., 1996) .
Then, for trial t = 1, 2, . . . , T , bootstrap sampling is performed on the set of N observations.
Here, bootstrap sampling describes sampling with replacement independently from the orig-
inal set. A key attribute of sampling with replacement is that although N remains the same
for each trial, each observation may appear multiple times or not at all in any particular
replicate set. This attribute is a fundamental aspect that enables the creation of different
training sets and its value relies on the use of classification methods that yield highly varying
outcomes when the input data are perturbed. Breiman (1996) notes that bagging has the
potential to degrade the performance of stable procedures or on highly invariant data sets.
As such, this indicates that the data used in this chapter are well-suited for ensemble meth-
ods like bagging and boosting. Classifiers for each trial, Ct, are created and then majority
voting is used to form C∗, which is the aggregate, or bagged, classifier that likely leads to
performance gains.

Boosting

Bagging and boosting both create a number of base classifiers; however, where bagging cre-
ates base classifiers through independent resampling of the original data, boosting maintains
a distribution or set of weights over the training set (Freund et al., 1999). An initial weight
wt(i), i = 1, 2, . . . , n where i is the training observation is created and updated on each suc-
cessive iteration through T . Then, for t = 1, 2, . . . , T , a classifier is fit using weights wt(i)
on the resampled data set. Next, the error of the classifier et is calculated:

et =
n∑

i=1
wt(i)I(Ct(xi) 6= yi) (6.1)

where I(·) represents an indicator function that generates a 1 if true, and 0 otherwise.
Additionally, a constant αt is calculated:

αt = 1/2 ln((1− et)/et) (6.2)

In the next trial, the weight is updated to:

wt+1(i) = wt(i) exp(αtI(Ct(xi) 6= yi)) (6.3)

Next, the weights are normalized to sum to 1. Here, the weights associated with mis-
classified observations are increased and the weights of the correct classified observations
are decreased. This results in a classifier in the following iteration that is more focused on
the more difficult to classify observations. Then, a final classifier is produced that can be
represented by:

Cf (xi) = arg max
j∈Y

T∑
t=1

αtI(Ct(xi) = j) (6.4)



CHAPTER 6. ARRIVAL TIME PICKING WITH ENSEMBLE METHODS 66

where Y is the set of outcome classes from the classifier (binary classification would result
in Y = 2). T is the number of trials, and αt is the constant (6.2).

Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is a scalable and efficient implementation of the gra-
dient boosting structure proposed by (Friedman et al., 2000). XGBoost relies on a regularized
learning objective, can incorporate shrinkage, column subsampling, or dropout to improve
overall performance while avoiding overspecialization, and is easily parallelizable. We will
present a brief derivation of the regularized learning objective and gradient tree boosting;
however, a full accounting can be found in (Chen and Guestrin, 2016) and (Friedman et al.,
2000).

A tree ensemble method incorporates K additive functions to predict an outcome.

ŷ = φ(xi) =
K∑

k=1
fk(xi), fk ∈ F (6.5)

where F = {f(x) = wq(x)}(q : Rm 7→ T,w ∈ RT ) describes the regression tree space. q
represents the structure of each tree that maps an observation to the corresponding leaf. T
represents the number of leaves and w represents the weights. Each fk is an independent
tree structure. The regularized objective is then:

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk) (6.6)

where Ω(f) = γT + 1/2λ‖w‖2 penalizes the complexity of the method. l is a differentiable
convex loss function that considers the prediction ŷi and actual value yi. It is important
to note that XGBoost can use a number of loss functions that may be appropriate for the
modeling objective at hand. Chen and Guestrin (2016) further describe the discretization of
the regularized objective function to enable its use in Euclidian space.

Another aspect that is incorporated in order to minimize the risk of overfitting is the
use of shrinkage (Friedman, 2002). More specifically, the main objective of shrinkage is to
prevent over-specialization, which occurs when trees trained earlier in the modeling process
have a significantly greater impact on the outcome than later trees. Over-specialization is
typically encountered in boosting approaches due to the fact that boosting, unlike bagging,
sequentially adds predictors that seek to improve performance. Since subsequent iterations
in boosting algorithms are trained on smaller subsets of the data, the overall impact of
later predictors decreases. Here, the negative effect of over-specialization is overfitting based
on early iterations in the training process. The introduction of shrinkage aims to apply a
scaling factor to each tree in a given iteration so that subsequent iterations continue to have
a significant impact on predictors.
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DART booster

An alternative method that XGBoost can utilize to prevent overfitting via over-specialization
is the DART booster (Rashmi and Gilad-Bachrach, 2015; Friedman et al., 2000; Friedman,
2002). Dropouts meet Multiple Additive Regression Trees (DART) incorporates the act of
dropping trees in order to combat over-specialization. Shrinkage is useful in a number of
modeling endeavors; however, it has been shown that as the size of the ensemble increases,
the negative effect of over-specialization tends to return even with shrinkage. As such, in
certain cases, DART leads to superior performance. This is the case with the data set
considered in this chapter. In a sense, the DART booster creates a version of XGBoost that
is more similar to a bagging algorithm like random forests (Breiman, 2001).

DART relies on a parameter that controls the dropout rate between iterations and if
this parameter is minimized, no trees are dropped and the boosting algorithm executes
normally. However, if the parameter is maximized, then a boosting algorithm like XGBoost
more closely resembles random forests. This change occurs because random forests will only
consider a random subset of the ensemble at each step. Where DART diverges from a typical
random forest approach is that it also performs a normalization step on new trees in order
to prevent overtraining. The net result of using DART in combination with XGBoost is that
overall classification performance is increased over traditional XGBoost.

Variable importance

Given the fact that the original signal is not directly used in model training, only the features
created from the signal are, it is important to understand the relative importance for the
features directly. As such, the variable importance is considered here. Figure 6.6 shows the
top 10 features in descending importance. It can be seen that there is a variety of feature
types that have a high impact on the performance. Energy ratio by chunks is shown to
be the most important feature. This calculates the sum of squares of a given chunk and is
represented as a ratio with the sum of squares over the whole time series. Next, the sample
entropy represents a measure of complexity by comparing the conditional probability that a
short epoch, or template, is repeated during the time series (Richman and Moorman, 2000;
Richman et al., 2004). Specifically,

SampEn = − log(
∑
Ai∑
Bi

) = − log(A
B

) (6.7)

where Ai represents the matches of length m + 1 with the ith template, and Bi represents
the matches of length m with the ith template. Then, it can be seen that this feature is
important because it likely aids in the identification of compressional wave energy, or the
change in average amplitude, within a given chunk. Similar to energy ratio by chunks,
sample entropy enables the model to distinguish between a compressional waveform and
general seismic noise.
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trace__agg_linear_trend__f_agg_.max.__chunk_len_50__attr_.slope.

trace__ratio_beyond_r_sigma__r_0.5

trace__energy_ratio_by_chunks__num_segments_10__segment_focus_1

trace__index_mass_quantile__q_0.1

trace__agg_linear_trend__f_agg_.min.__chunk_len_50__attr_.slope.

trace__sample_entropy

trace__energy_ratio_by_chunks__num_segments_10__segment_focus_0

0 20 40 60 80 100

Figure 6.6: Feature, or variable, importance is critical in understanding the impact of model
inputs. The top 10 features used in XGBoost are shown. Note that the most important
feature incorporates a ratio of energy between a subset of the chunk and the total chunk.
Next, the sample entropy indicates overall complexity of the chunk, which likely enables the
model to differentiate between a chunk with an arrival versus a chunk that contains pure
seismic noise.

Next, the aggregate linear trend calculates a linear least-squares regression for values of
the input signal that were aggregated over chunks under the assumption that the signal is
uniformly sampled. It can consider a number of attributes, for example, p value, r value,
slope, standard error and so on. Additionally, the aggregation function can be minimum,
maximum, mean or median. Further, the index mass quantile represents the relative index
where some percent of the mass of the time series resides to the left. Ratio beyond r
sigma considers the ratio values that are more than r ∗ sd(x) away from the mean of x,
where x is the time series in a given chunk. These features all offer some understanding
of local signal information with respect to the full time series, which is intuitively useful
given that the objective of this approach is to identify where a specific phenomenon, the
compressional wave, exists along the full signal. Binned entropy and Fast Fourier Transform
(FFT) coefficients are also included in the list of most important features.

In contrast, Figure 6.7 shows the top 10 features for Bagged AdaBoost, the second-best
performing approach. Here, it can be seen that there are fewer unique features present. In
fact, aggregate linear trend accounts for half of the top 10 features. Given that both of these
modeling techniques incorporate boosting, it is an indicator that a more diverse feature set
leads to a higher performing aggregate predictor.
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Bagged AdaBoost
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Figure 6.7: Feature importance for the second best performing modeling technique, Bagged
AdaBoost. Note that there is less diversity among the most important features than those
presented in Figure 6.6.

6.4 Results
Real data were generated from the microseismic monitoring project at the Marcellus Shale
and are considered here. A linear array consisting of eleven three-component geophones
were deployed. As is common in real microseismic data, there were varying levels of noise,
missing information, and a number of events that were negatively impacted due to ringing
which was likely caused by insufficient clamping force between the sensor and the borehole
casing (Gaiser et al., 1988). There were 1842 microseismic events recorded; however, a
number of these events exhibited high noise and the absence of compressional wave arrivals.
As such, it is important to incorporate events that have a relatively high compressional wave
S/N in the training data. 249 traces were considered for model training and testing from
multiple stages throughout the hydraulic fracturing project (Figure 6.8). This is important
in order to train the model on a variety of source mechanisms and source-receiver paths.
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Figure 6.8: While noise content was present throughout the hydraulic fracturing process,
it is still important to analyze microseismic events from as many stages as possible. Based
on the overall level of noise present, the distribution of events on a stage-basis is shown
here. Earlier stages contained more noise, likely due to a significantly greater source-receiver
distance and accompanying scattering effects.

Approximately 63% of the data were used for model training and 37% were used for
model validation. It is important to note here that this split is done on a trace-specific
basis based on event identifier and geophone level in order to avoid data leakage. Group K-
Fold cross-validation is also used during the training phase in order to improve performance
while minimizing the risk of overfitting from data leakage. The classification performance,
as well as accompanying statistical information, is presented via the confusion matrix, which
is produced from the test data in Figure 6.9. Here, it is important to note that there is
a class imbalance and the majority class is the non-arrival class (85.4%). Downsampling
of the majority class was performed; however, sensitivity and specificity are still important
classification performance metrics that should be considered along with overall accuracy
above the NIR. Figure 6.10 demonstrates this class imbalance and Figure 6.11 demonstrates
the overall classification performance with respect to specificity and sensitivity. Here, the
Area Under the Curve (AUC) is a measure of the overall predictive power of the model. The
maximum value for an ideal learner is 100% and random guessing will produce an AUC of
50%, which is represented by the diagonal line in the chart. It can be seen that the AUC for
this method is 90.4%.



CHAPTER 6. ARRIVAL TIME PICKING WITH ENSEMBLE METHODS 71

Confusion Matrix: XGBoost (DART)
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Figure 6.9: Standard classification performance measures are presented in the confusion
matrix. Blue rectangles represent optimal predictions (true positive and true negative),
while the orange rectangles represent misclassifications (false positive and false negative). In
this modeling endeavor, false positives lead to higher overall error given the nature of the
subsequent first arrival picking step. Statistical information is also included. Note that the
No Information Rate (85.4%) must be considered when evaluating overall accuracy due to a
large class imbalance.



CHAPTER 6. ARRIVAL TIME PICKING WITH ENSEMBLE METHODS 72

0.0

2.5

5.0

7.5

0.000.250.500.751.00

Probability Threshold

D
en

si
ty Ground Truth

0

1

Figure 6.10: A large class imbalance is present in the real microseismic data considered in
this chapter. This is illustrated by the significantly larger “no arrival” class that is shown in
blue versus the “arrival” class that is shown in orange. It is also important to note that for
the arrival class (orange), a bimodal distribution can be inferred by the increase in density
between 0.25 and 0.00. This is likely an artifact of the disparity between compressional
wave window length and chunk length. This likely impacts the number of misclassifications
present in the overall predictions.
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Figure 6.11: ROC plot shows that the overall classification performance is good. Area Under
the Curve (AUC) is calculated to be 90.4% which indicates positive results. It is important
to note that this plot relied on bootstrap sampling and the confidence bands are shown to
represent that fact.

A chunk length of 200 samples was determined to be an acceptable chunk length based
on overall performance. Additionally, the final compressional wave window length was also
200 samples. Specifically, the window begins 50 samples before the known pick time and
concludes 150 samples following the pick time. This captures the signal immediately before
the first arrival and also captures the main content of the compressional wave. In order to
determine if an arrival is present within a given signal chunk, we consider the percentage
of samples within a chunk that contain the windowed arrival. Iterating through various
levels of presence, the optimal threshold for determining whether a chunk contains an arrival
was determined to be 60%. These dynamic parameters can be tuned in order to maximize
performance based on the traditional classification performance metrics in combination with
mean absolute error between the predicted arrival time and the actual arrival time. An
example of the chunk lengths and compressional window lengths can be seen in Figure 6.12.
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Figure 6.12: An appropriate compressional wave window and chunk length must be deter-
mined to create a target variable for the raw signal (a). First, the known first arrival pick
time is considered and is shown by the blue line (b). Then, an appropriate compressional
window length is determined, which is shown by the blue rectangle (c). In this case, the
window begins 50 samples before the arrival and 150 samples after the arrival. Concurrently,
a chunk length is determined and is shown by the orange lines (d). In this case, the chunk
length is also 200 samples. In order to determine if a given chunk contains an arrival, the
compressional wave and chunk must be considered together (e). If the compressional win-
dow accounts for 60% of the samples in the chunk, then that chunk is assigned the label of
“arrival” for classification via machine learning methods (f). It is important to note that
these are dynamic parameters and can be tuned to optimize performance with new data.
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STA/LTA has been shown to accurately identify arrival times in seismic and microseismic
data. STA/LTA is used to identify arrival times with real data and the performance is
compared to our proposed method. The process flow for STA/LTA can be seen in Figure
6.13. Additionally, Figure 6.14 and Figure 6.15 show a comparison of the distribution of
errors between predicted arrival time and actual arrival time for our proposed time series
classification method and the traditional STA/LTA approach. Moreover, aggregate measures
are important in understanding the overall effectiveness of these approaches. As such, the
mean absolute error (MAE) for the traditional method is 126 ms whereas the MAE for our
proposed method is 23.8 ms.

Raw 
Data

Detrend 
Signal

Filter Signal

Hilbert 
Transform

STA/LTA

Optimize 
Parameters

Store Picks

Optimal

Compare 
Picks

Figure 6.13: Raw data is first detrended, then filtered with a standard band pass filter with
cutoff frequencies at 1 Hz and 90 Hz. Then an envelope function is applied through the use
of the Hilbert transform. From here, the STA/LTA method is implemented and a list of
picks are generated. In the aggregate, the performance of these picks is considered and the
STA/LTA parameters are changed to achieve optimal performance. The output is a list of
automatically picked first arrival times.
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Figure 6.14: Density plots show a comparison of the distribution of errors between predicted
arrival time and actual arrival time for our proposed time series classification method (blue)
and the traditional STA/LTA approach (orange). There is a larger percentage of the total
errors that are centered closer to zero with our proposed method, which indicates that it
outperforms the traditional method.
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Figure 6.15: Box plots show a comparison of the distribution of errors between predicted
arrival time and actual arrival time for our proposed time series classification method (blue)
and the traditional STA/LTA approach (orange). A significantly smaller spread is seen in
the Interquartile Range (IQR), which demonstrates that our proposed method results in
generally smaller error than the traditional method.

Another method of understanding the difference in performance on a chunk-specific basis
is to consider the difference in errors between our proposed method and the traditional
method. We first calculate the absolute error between predicted time and actual time for
each chunk with our proposed method, then the same calculation is performed for each
trace with STA/LTA. Next, the difference in absolute errors is calculated. Here, the sign is
important because it indicates which approach has the greater error. If the difference in error
is positive, then it indicates that the proposed method outperforms the traditional method.
Figure 6.16 shows the difference in errors between our proposed method and the traditional
method. Note that the majority of the cases have a positive value, which indicates that our
proposed method outperforms STA/LTA on the majority of traces considered. As such, it
can be seen that the proposed approach outperforms STA/LTA.
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Figure 6.16: Error differences between our proposed method and the traditional method
on a chunk-specific basis are shown. Absolute errors are calculated for each method and
then the difference between those errors is calculated and presented. Positive values indicate
that our proposed method outperforms the traditional method for a given trace, shown in
green. Conversely, negative values show the cases where our approach does not outperform
the traditional method, shown in red. It is clear that the majority of cases lead to positive
values, which indicates superior performance through our proposed method.

Figure 6.17 shows an example of a real microseismic record. The green vertical line
represents the contractor-provided pick, the blue vertical line represents the pick from our
proposed method, and the orange vertical line represents the pick from STA/LTA. The pick
resulting from the STA/LTA approach has the greatest error, while our approach detects
the true first motion.
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Figure 6.17: Real microseismic record is presented as an example of model performance. The
green vertical line represents the contractor-provided pick, the blue vertical line represents
the pick from our proposed method, and the orange vertical line represents the pick from
STA/LTA. Our proposed method accurately identifies the time where first motion occurs.

6.5 Conclusion
There commonly exists a tradeoff between reduction in human workload through automation
of arrival picking and overall accuracy. Current automated picking techniques are limited in
the presence of man-made seismicity or high noise environments. The proposed method in
this chapter leverages machine learning methods to reduce the amount of time required to
manually pick events while improving picking accuracy. Additionally, through the selection
of ensemble methods, the impact of noise is reduced and the negative effect of overfitting
is greatly mitigated. Furthermore, this approach establishes an extensible framework using
widely-available learning packages that can be adapted for a number of microseismic data
sets. This method can be used as a stand-alone approach or to improve the outcome of
traditional automated picking methods. Finally, an extension of this approach can be used
to perform multi-class classification in order to identify first arrivals as well as shear wave
arrivals to significantly improve the overall analysis process.
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Chapter 7

Conclusion

Out of damp and gloomy days, out of solitude, out of loveless words directed at
us, conclusions grow up in us like fungus one morning they are there, we know
not how, and they gaze upon us, morose and gray. Woe to the thinker who is not
the gardener but only the soil of the plants that grow in him.

– Friedrich Nietzsche

7.1 Summary of Contributions
The unifying thread of the work presented in this dissertation is that of identifying areas
where the cultivation of knowledge is limited, attempting to identify and separate those
constraints which are immovable from those that exhibit the potential for flexibility, and then
applying methodologies in an interdisciplinary approach to overcome significant limitations.
Here, we focus primarily on data quality issues that severely limit our understanding of
hydraulic fracturing, which are ubiquitous in any engineering problem that utilizes real
data.

Whether missing values occur due to transmission and recording issues or the true content
of the signal is occluded by environmental noise, there will always be the need for improving
the collected data. While this is an arduous task, it is fundamental for any subsequent
analysis step. We explore a number of different conditions that would lead to a loss of
information in this dissertation and have developed approaches to overcome these limitations.

Engineering Solutions to Data Conditioning Problems
In Chapter 3, we explored the use of analysis in the spectral domain to overcome the limita-
tions that arise from single well downhole monitoring geometries. Here, physical placement
of monitoring arrays limit the ability to interpret and understand specific aspects of micro-
seismic events from hydraulic fracturing. While a first-order solution would be to increase
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the number of sensors and change their physical placement, economic constraints prevent
this from being a viable option. As such, we turn to the spectral domain to create features
that enable the characterization of microseismic events.

In Chapter 4, we extend this exploration to incorporate all available information to im-
prove microseismic location estimates. We reduced noise contamination by understanding
and removing the spectral content that comes from resonant artifacts in the data due to poor
coupling between the geophone and borehole wall. Additionally, through the identification
and incorporation of a geophysical phenomenon referred to as head waves, we model a more
accurate estimation of microseismic event location. Finally, we recommend an optimal mon-
itoring geometry that balances the ability to reuse the monitoring well, while also reducing
S/N and capturing head waves. This monitoring geometry will enable future analysts to
better understand the fracturing of rock due to hydraulic fracturing.

Artificial Intelligence and Machine Learning as a Means
Recovering Information
In Chapter 5, we turn to machine learning and artificial intelligence to better understand the
nature of missing or corrupt data present in the data set under consideration. Most imputa-
tion approaches seek only to enable the successful execution of machine learning techniques
and to minimize bias. However, these objectives fall short of recovering information that
can be used in subsequent analyses. Through the use of machine learning and deep learning
methods, we explore the utility of data-driven imputation.

The results illustrate that a single solution does not exist and the optimal approach
depends on the amount of available computational time as well as the intended use of the
imputation schema.

Improving Automated Analysis with Ensemble Learning
In Chapter 6, we continue to explore the utility of learning methods when applied to problems
in geophysics. Here, the objective was to leverage ensemble learning methods to overcome
the issue of noisy or corrupt data with the express goal of improving traditional automated
arrival picking - a fundamental, albeit time-consuming, first step in the journey of under-
standing hydraulic fracturing through microseismic analysis. A novel framework was created
to leverage dynamic parameterization to provide an extensible computational paradigm.

The results of this time series classification endeavor demonstrate that through the use
of ensemble learning methods, dramatic improvements can be achieved when attempting
to automatically pick arrival times in the presence of high noise content due to man-made
seismicity. Further, the execution time of this computational paradigm has the potential to
provide very real savings when compared to the arduous, time-intensive task of manually
picking microseismic events. Moreover, there is value in the use of an objective, transparent
system of analysis that eliminates the negative impact of subjective interpretation that occurs
with current human-in-the-loop analysis workflows.



CHAPTER 7. CONCLUSION 82

Finally, given the data-driven nature of this framework, minimal changes are required to
change the classification objective of the system. This attribute makes the system reusable
for many other analysis tasks in the geophysics community.

7.2 Future Research
The field of data science, which leverages machine learning and artificial intelligence method-
ologies to create data-driven solutions, is only going to continue to grow. With that in mind,
the potential for future research in the arena of hydraulic fracturing when combined with
data science is significant. The work presented in this dissertation, specifically, the compu-
tational paradigm created to improve automated arrival picking, can be extended to identify
and separate waveforms with minimal effort. The implications of this are also significant. In
Chapter 4, we discussed the value of identifying head waves in the data in order to improve
microseismic event location estimates. With the use of a system capable of classifying com-
mon waveforms, head waves can be more easily identified in the presence of noisy or corrupt
data. As a result, location estimates can be also improved in other openly available or pro-
prietary hydraulic fracturing data sets. The end result, and the true objective of analysis of
hydraulic fracturing data, is to better understand the physical changes occurring deep below
the surface in an effort to create more efficient and safer hydraulic fracturing projects. The
work presented here endeavors to contribute to that goal.
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Dong, W. and Toksöz, M. N. (1995). Borehole seismic-source radiation in layered isotropic
and anisotropic media: Real data analysis. Geophysics, 60(3):748–757.

Dreger, D., Uhrhammer, R., Pasyanos, M., Franck, J., and Romanowicz, B. (1998). Regional
and far-regional earthquake locations and source parameters using sparse broadband net-
works: A test on the ridgecrest sequence. Bulletin of the Seismological Society of America,
88(6):1353–1362.

Du, J., Warpinski, N., Waltman, C., et al. (2013). Anisotropic effects on polarization from
highly deviated/horizontal wells in microseismic monitoring of hydraulic fractures. In 2013
SEG Annual Meeting. Society of Exploration Geophysicists.

Duncan, P. and Eisner, L. (2010). Reservoir characterization using surface microseismic
monitoring: Geophysics 75. 75A139–75A146, doi, 10(1.3467760).

Eaton, D. W. (2011). Q determination, corner frequency and spectral characteristics of
microseismicity induced by hydraulic fracturing. In SEG Technical Program Expanded
Abstracts 2011, pages 1555–1559. Society of Exploration Geophysicists.

Eaton, D. W. (2014). Magnitude, scaling, and spectral signature of tensile microseisms. In
EGU General Assembly Conference Abstracts, volume 16.

Eisner, L., Duncan, P. M., Heigl, W. M., and Keller, W. R. (2009). Uncertainties in passive
seismic monitoring. The Leading Edge, 28(6):648–655.

Eisner, L., Le Calvez, J. H., et al. (2007). New analytical techniques to help improve our
understanding of hydraulically induced microseismicity and fracture propagation. In SPE
Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

Fildes, R. (1992). The evaluation of extrapolative forecasting methods. International Journal
of Forecasting, 8(1):81–98.



BIBLIOGRAPHY 86

Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14(771-780):1612.

Friedman, J., Hastie, T., Tibshirani, R., et al. (2000). Additive logistic regression: a sta-
tistical view of boosting (with discussion and a rejoinder by the authors). The annals of
statistics, 28(2):337–407.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data
analysis, 38(4):367–378.

Gaiser, J. E., Fulp, T. J., Petermann, S. G., and Karner, G. M. (1988). Vertical seismic
profile sonde coupling. Geophysics, 53(2):206–214.

Galiana-Merino, J. J., Rosa-Herranz, J. L., and Parolai, S. (2008). Seismic p phase picking
using a kurtosis-based criterion in the stationary wavelet domain. IEEE Transactions on
Geoscience and Remote Sensing, 46(11):3815–3826.

Gibbons, S. J. and Ringdal, F. (2006). The detection of low magnitude seismic events using
array-based waveform correlation. Geophysical Journal International, 165(1):149–166.

Gibbons, S. J., Ringdal, F., and Kværna, T. (2012). Ratio-to-moving-average seismograms:
a strategy for improving correlation detector performance. Geophysical Journal Interna-
tional, 190(1):511–521.

Gill, M. K., Asefa, T., Kaheil, Y., and McKee, M. (2007). Effect of missing data on per-
formance of learning algorithms for hydrologic predictions: Implications to an imputation
technique. Water resources research, 43(7).

Harris, K. and Bacon, R. (2015). Utilizing source mechanism and microseismic event location
to identify faults in real-time using wireless seismic recording systems–an eagle ford case
study. first break, 33(7).

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media.

Haukoos, J. S. and Newgard, C. D. (2007). Advanced statistics: missing data in clini-
cal research—part 1: an introduction and conceptual framework. Academic Emergency
Medicine, 14(7):662–668.

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy.
International journal of forecasting, 22(4):679–688.

Jones, J. P. and van der Baan, M. (2015). Adaptive sta–lta with outlier statistics. Bulletin
of the Seismological Society of America, 105(3):1606–1618.



BIBLIOGRAPHY 87

Katz, G., Shin, E. C. R., and Song, D. (2016). Explorekit: Automatic feature generation and
selection. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages
979–984. IEEE.

Kaufman, S., Rosset, S., Perlich, C., and Stitelman, O. (2012). Leakage in data mining:
Formulation, detection, and avoidance. ACM Transactions on Knowledge Discovery from
Data (TKDD), 6(4):15.

King, G. E. et al. (2012). Hydraulic fracturing 101: What every representative, environmen-
talist, regulator, reporter, investor, university researcher, neighbor and engineer should
know about estimating frac risk and improving frac performance in unconventional gas
and oil wells. In SPE hydraulic fracturing technology conference. Society of Petroleum
Engineers.

Kondrashov, D. and Ghil, M. (2006). Spatio-temporal filling of missing points in geophysical
data sets. Nonlinear Processes in Geophysics, 13(2):151–159.

Kuang, W., Zoback, M., and Zhang, J. (2017). Estimating geomechanical parameters from
microseismic plane focal mechanisms recorded during multistage hydraulic fracturing. Geo-
physics, 82(1):KS1–KS11.

Kuhn, M. et al. (2008). Building predictive models in r using the caret package. Journal of
statistical software, 28(5):1–26.

Li, J., Li, C., Morton, S. A., Dohmen, T., Katahara, K., and Nafi Toksöz, M. (2014).
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