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MUSIC SKETCHNET: CONTROLLABLE MUSIC GENERATION VIA
FACTORIZED REPRESENTATIONS OF PITCH AND RHYTHM
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1 CREL, Music Department, 2 UC San Diego 3 Smule, Inc
1,2{knutchen, tberg, sdubnov}@ucsd.edu, 3cheng-i.wang@smule.com

ABSTRACT

Drawing an analogy with automatic image completion
systems, we propose Music SketchNet, a neural network
framework that allows users to specify partial musical
ideas guiding automatic music generation. We focus on
generating the missing measures in incomplete mono-
phonic musical pieces, conditioned on surrounding con-
text, and optionally guided by user-specified pitch and
rhythm snippets. First, we introduce SketchVAE, a novel
variational autoencoder that explicitly factorizes rhythm
and pitch contour to form the basis of our proposed
model. Then we introduce two discriminative architec-
tures, SketchInpainter and SketchConnector, that in con-
junction perform the guided music completion, filling in
representations for the missing measures conditioned on
surrounding context and user-specified snippets. We eval-
uate SketchNet on a standard dataset of Irish folk music
and compare with models from recent works. When used
for music completion, our approach outperforms the state-
of-the-art both in terms of objective metrics and subjective
listening tests. Finally, we demonstrate that our model can
successfully incorporate user-specified snippets during the
generation process.

1. INTRODUCTION

As a research area, automatic music generation has a
long history of studying and expanding human expres-
sion/creativity [1]. The use of neural network techniques
in automatic music generation tasks has shown promising
results in recent years [2]. In this paper, we focus on a
specific facet of the automatic music generation problem
on how to allow users to flexibly and intuitively control
the outcome of automatic music generation. Prior work
supports various forms of conditional music generation.
MuseGan [3] allows users to condition generated results
on full-length multi-track music. DeepBach [4] provides a
constraint mechanism that allows users to limit the gen-
erated results to match composer styles. Music Trans-
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International License (CC BY 4.0). Attribution: Ke Chen, Cheng-
i Wang, Taylor Berg-Kirkpatrick, Shlomo Dubnov, “Music SketchNet:
Controllable Music Generation via Factorized Representations of Pitch
and Rhythm”, in Proc. of the 21st Int. Society for Music Information
Retrieval Conf., Montréal, Canada, 2020.
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Figure 1. The music sketch scenario. The model is de-
signed to fill the missing part based on the known context
and user’s own specification.

former [5] supports a accompaniment arrangement from
an existing melody track in classical music. However, all
these approaches require the user preference to be defined
in terms of complete musical tracks.

Inspired by the sketching and patching work from com-
puter vision [6–10], we propose Music SketchNet 1 which
allows users to specify partial musical ideas in terms of
incomplete and distinct pitch and rhythm representations.
More specifically, we generalize the concept of sketching
and patching – wherein a user roughly sketches content
for a missing portion of an image – to music, as depicted
in Figure 1. The proposed framework will complete the
missing parts given the known context and user input. To
the best of our knowledge, there has been limited work on
sketching in music generation. Some work [4,11] has used
Markov Chain Monte Carlo (MCMC) to generate music
with given contexts or generate music conditioned on sim-
ple starting and ending notes [12]. The most related task is
music inpainting: completing a musical piece by generat-
ing a sequence of missing measures given the surrounding
context, but without conditioning on any form of user pref-
erences. Music InpaintNet, [13] completes musical pieces
by predicting vector representations for missing measures,
then the vector representations are decoded to output sym-
bolic music through the use of a variational autoencoder
(VAE) [14].

Our proposed music sketching scenario takes music in-

1 https://github.com/RetroCirce/Music-SketchNet.
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Figure 2. The Music SketchNet pipeline. The color pat-
terns inside Inpainter and Connector correspond to the la-
tent space transform and completion process in Figure 1.

painting a step further. We let users specify musical ideas
by controlling pitch contours or rhythm patterns, not by
complete musical tracks. The user input is optional: users
can choose to specify musical ideas, or let the system fill
in predictions without conditioning on user preferences.

Music SketchNet consists of three component, as de-
picted in Figure 2: (1) SketchVAE is a novel variational
autoencoder that converts music measures into high dimen-
sional latent variables. By the use of a factorized infer-
ence network, SketchVAE decouples latent variables into
two parts: pitch contour and rhythm, which serve as the
control parameters for users. (2) SketchInpainter contains
stacked recurrent networks to handle the element-level in-
painting prediction in the latent space. (3) SketchConnec-
tor receives users’ sketches of pitch, rhythm, or both, com-
bines them with the prediction from SketchInpainter, and
finalizes the generation.

In this paper, we show that the proposed Sketch-
VAE is capable of factorizing music input into la-
tent variables meaningfully, and the proposed SketchIn-
painter/SketchConnector allows users to control the gen-
erative process. The novel training and evaluation method-
ologies of the SketchConnector are also presented.

2. MUSIC SKETCHING

We formalize the music sketching task as solving the fol-
lowing three problems: (1) how to represent music ideas or
elements, (2) how to generate new materials given the past
and future musical context and (3) how to process users’
input and integrate it with the system. A visualization of
the sketching scenario is depicted in Figure 1.

We propose three neural network components to tackle
the three problems. The SketchVAE encodes/decodes the
music between external music measures and the learned
factorized latent representations. The SketchInpainter pre-
dicts musical ideas in the form of the latent variables given
known context. And the SketchConnector combines the
predictions from SketchInpainter and users’ sketching to
generate the final latent variables which are sent into the
SketchVAE decoder to generate music output. A diagram

showing the proposed pipeline is shown in Figure 2.

2.1 Problem Definition

More formally, the proposed sketch framework can be de-
scribed as a joint probability model of the missing musi-
cal content, Xm, conditioned on the past, future, and user
sketching input. The joint probability breaks down into a
product of conditional probabilities corresponding to sub-
components of the framework:

Pφ,ε,γ,θ,τ (X
m, Z, S|Xp, Xf , C) =

Pφ(X
m|Zm) (SketchVAE Decoder)

∗ Pε(Zm|Sm, C) (SketchConnector)

∗ Pγ(Smpitch|Z
p
pitch, Z

f
pitch) (SketchInpainter)

∗ Pγ(Smrhythm|Z
p
rhythm, Z

f
rhythm) (SketchInpainter)

∗Qθ(Zppitch, Z
f
pitch|X

p
pitch, X

f
pitch)

∗Qτ (Zprhythm, Z
f
rhythm|X

p
rhythm, X

f
rhythm)

(SketchVAE Encoders)

X indicates the input/output music sequence, Z is the se-
quence for {z} the latent variable , S is the SketchIn-
painter’s predicted sequence, C is users’ sketching input.
The superscripts, p, m, f indicate the past, missing and
future context. The subscripts, pitch and rhythm indi-
cate the pitch and rhythm latent variables. Qθ, Qτ , Pφ
are the SketchVAE pitch/rhythm encoders and decoder pa-
rameters, Pγ represents the SketchInpainter, and Pε is the
SketchConnector.

2.2 SketchVAE for Representation

MusicVAE [15] is one of the first works applying the vari-
ational auto-encoder [14] to music. MeasureVAE [13] fur-
ther focuses on representing isolated measures and utilizes
a hierarchical decoder to handle ticks and beats. EC2-
VAE [16] factorizes music measures with separate vectors
representing pitch and rhythm by a single encoder and two
decoders. Our proposed SketchVAE aims to factorize rep-
resentations by introducing a factorized encoder that con-
siders pitch and rhythm information separately in the en-
coder channels. Different from EC2-VAE, it could al-
low users to enter parts of the information (rhythm and/or
pitch) optionally.

SketchVAE aims to represent a single music measure
as a latent variable z that encodes rhythm and pitch con-
tour information in separate dimensions (zpitch, zrhythm).
It contains (1) a pitch encoder Qθ(zpitch|xpitch), (2) a
rhythm encoder Qτ (zrhythm|xrhythm), and (3) a hierar-
chical decoder Pφ(x|zpitch, zrhythm) as shown in Figure
4.

2.2.1 Music Score Encoding

Similar to [15], we encode the monophonic midi melody
by using [0, 127] for the note onsets, 128 for holding state,
and 129 for the rest state. We cut each measure into 24
frames to correctly quantize eighth-note triplets like [13],
and encode the midi as described in the previous sentence.
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Figure 3. An example of the encoding of a monophonic
melody.

As Figure 3 shows, we further process the encoded 24-
frame sequence x into xpitch and xrhythm, the pitch and
rhythm token sequences respectively. The pitch token se-
quence xpitch is obtained by picking all note onsets in x
with padding (shown by "•" in Figure 3) to fill 24 frames.
The rhythm token sequence xrhythm is obtained by replac-
ing all pitch onsets with the same token (shown by "O"
and "_" in Figure 3). A similar splitting strategy is also
used in [17]. Our motivation is to provide users with two
intuitive music dimensions to control, and to help enforce
better factorization in the latent representation for later pre-
diction and control.

2.2.2 The Pitch Encoder and Rhythm Encoder

After pre-processing x, xpitch only contains the note value
sequence, while xrhythm only has the duration and onset
information. xpitch and xrhythm are then fed into two
different GRU [18] encoders for variational approxima-
tion. The outputs of each encoder are concatenated into
z = [zpitch, zrhythm].

2.2.3 The Hierarchical Decoder

After we obtain the latent variable z, we feed it into the hi-
erarchical decoder. This decoder is similar to the decoder
used in MeasureVAE [13]. As shown in the bottom part in
Figure 4, it contains an upper "beat" GRU layer and a lower
"tick" GRU layer. This division’s motivation is to decode z
into n beats first and then decode each beat into t ticks. As
a result, the note information in each measure will be de-
coded in a musically intuitive way. For the tick GRU, we
use the teacher forcing [19, 20] and auto-regressive tech-
niques to train the network efficiently. The output is condi-
tioned frame-by-frame not only on the beat token but also
on the last tick token.

2.2.4 Encoding the Past, Missing and Future Musical
Context

The latent variable sequences Zp, Zm, and Zf are then ob-
tained by processing the music input in measure sequences
Xp, Xm, and Xf . Both Xm and Zm are masked during
training. This encoding part is shown in the left block of
Figure 5.

2.3 SketchInpainter for Initial Prediction

Next, we describe the model component that performs the
music inpainting to predict latent representations for the
missing measures. The SketchInpainter accepts Zpitch
and Zrhythm as two independent inputs from SketchVAE.

..................................................
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Figure 4. SketchVAE structure: pitch encoder, rhythm en-
coder and hierarchical decoder. Rhythm tokens: the upper
dashes denote the onsets of note, and the bottom dashes
denote the hold/duration state. We use pitch symbols to
represent the tokens numbers for better illustration.

Then only the past and future Zpitch and Zrhythm are fed
into the pitch/rhythm GRU groups respectively. The out-
put from each GRU group is the hidden state h, as shown
in the middle of Figure 5.

Then we combine the past/future hidden states h from
both the pitch and rhythm GRU groups and use them as the
initial states for the pitch/rhythm generation GRUs. The
generation GRUs then predict the missing latent variables
by Sm = (Spitch, Srhythm), as shown in the green box in
Figure 5. Each generation GRU is trained with the teach
forcing and auto-regressive techniques.

Each output vector sm from Sm has the same dimension
as the latent variable z from Z. We first build a model with
only SketchVAE and SketchInpainter that directly predicts
the missing music material,Xm. As the right block of Fig-
ure 5 shows, Sm is sent into the SketchVAE decoder and
we compute the cross entropy loss between the predicted
music output and the ground truth. This is the stage I train-
ing in our model, detailed in Section 3.3.

2.4 SketchConnector for Finalization

The predicted Sm from SketchInpainter can already serve
as a good latent representation for the missing part
Xm. We continue by devising the SketchConnector,
Pε(Z

m|Sm, C), to modify the prediction with user con-
trol. To make up for the lack of correlation between
pitch and rhythm in current predictions, we introduce the
SketchConnector as a way to intervene/control the genera-
tive process, that also leads to a wider musical expressivity
of the proposed system.
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Figure 5. SketchInpainter structure. We feed the music tokens into the SketchVAE and obtain the latent variable sequences.
And we feed the sequences into the pitch GRU and the rhythm GRU groups to generate the initial prediction S.

2.4.1 Random Unmasking

With Sm obtained from SketchInpainter, we concatenate it
with Zp and Zf again. However, before we feed it back
into the network, we randomly unmask some of the miss-
ing parts to be the ground-truth (simulating user providing
partial musical context). The masked Sm are shown by the
red boxes in Figure 6. We replace some s from Sm to be
the real answer in Zm, denoted as C. We observe that this
optimization is very similar to BERT [21] training. The
difference is that BERT randomly masks the ground truth
labels to be unknown, but SketchConnector randomly un-
masks the predictions to be truths. The unmasking rate is
set to 0.3.

Intuitively, this allows the model to learn a more close
relation among current rhythm, pitch tokens, and the near-
est neighbour tokens. In the sketch inference scenario, the
randomly unmasked measures will be replaced by the user
sketching information, which allows a natural transition
between the training and testing process.

2.4.2 Transformer-based Connector

Then with Sm and the random unmasking data C, we feed
them into a transformer encoder with absolute positional
encoding. In contrast to [5], we do not use relative posi-
tional encoding because our inputs are vectors represent-
ing individual measures, whose length is far shorter than
midi-event sequences.

The output of the SketchConnector, Zm, will be the fi-
nal prediction for the missing part. We feed it into the
SketchVAE decoder, and compute the cross entropy loss
of the output with the ground-truth.

3. EXPERIMENT

3.1 Dataset and Baseline

To evaluate the SketchVAE independently, we compare
our model with two related systems: MeasureVAE [13]
and EC2-VAE [16]. For SketchNet, we compare our
generation results with Music InpaintNet [13], which has
shown better results than the earlier baseline [12]. Similar
to [13], we use the Irish and Scottish monophonic music
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Figure 6. The SketchConnector: the output of SketchIn-
painter is randomly unmasked and fed into a transformer
encoder to get the final output.

Dataset [22] and select the melodies with a 4/4 time signa-
ture. About 16000 melodies are used for training and 2000
melodies for testing.

3.2 SketchVAE Measurements

3.2.1 Reconstruction

For SketchVAE, MeasureVAE and EC2-VAE, the dimen-
sion of latent variable |z| is set to 256, half for the pitch
contour, and the other half for the rhythm. We set the learn-
ing rate to 1e-4 and use Adam Optimization with β1 = 0.9
and β2 = 0.998. Three models achieve the accuracy (the
reconstruction rate of melodies) 98.8%, 98.7%, 99.0% re-
spectively. We can clearly conclude that all VAE models
are capable of converting melodies to latent variables by
achieving the accuracy around 99%. SketchVAE is capa-
ble of encoding/decoding musical materials in SketchNet.



Irish-Test Irish-Test-R Irish-Test-NR

Model loss ↓ pAcc ↑ rAcc ↑ loss ↓ pAcc ↑ rAcc ↑ loss ↓ pAcc ↑ rAcc ↑

Music InpaintNet 0.662 0.511 0.972 0.312 0.636 0.975 0.997 0.354 0.959

SketchVAE + InpaintRNN 0.714 0.510 0.975 0.473 0.619 0.981 1.075 0.374 0.964

SketchVAE + SketchInpainter 0.693 0.552 0.985 0.295 0.692 0.991 1.002 0.389 0.977

SketchNet 0.516 0.651 0.985 0.206 0.799 0.991 0.783 0.461 0.977

Table 1. The generation performance of different models in Irish and Scottish monophonic music dataset. The InpaintRNN
is the generative network in Music InpaintNet.

Model Complexity↑ Structure↑ Musicality↑

Original 3.22 3.47 3.56

InpaintNet 2.98 3.01 3.09

SketchNet 3.04 3.29 3.26

Table 2. Results of the subjective listening test.

3.2.2 Comparison with EC2-VAE

EC2-VAE [16] is also capable of decoupling the la-
tent variable into rhythm and pitch contour dimensions.
However, SketchVAE’s encoders can accept pitch con-
tour/rhythm inputs separately. Rhythm and pitch controls
can be manipulated independently in the sketching sce-
nario where the user might not specify an entire musical
measure (e.g., just a rhythm pattern). By contrast, EC2-
VAE requires a completed measure before encoding. If
users want to specify either rhythm or pitch controls, the
model must first fill in the other half part before inputting
it, which prohibits the possibility of the separate control.

3.3 Generation Performance

3.3.1 Training Results

The SketchNet’s training is separated into stage I and II. In
stage I, after training the SketchVAE, we freeze its param-
eters and train the SketchInpainter as shown in the right
block of Figure 5. In stage II, with the trained Sketch-
VAE and SketchInpainter, we freeze both, concatenate Sm

with the past/future latent variables, and feed them to the
SketchConnector for training.

We compare four models by using 6 measures of past
and future contexts to predict 4 measures in the middle (i.e.
np = nf = 6, and nm = 4 ). Music InpaintNet [13] is
used as the baseline, along with several variations. Early
stopping is used for all systems.

We compute three metrics: loss, pitch accuracy, and
rhythm accuracy to evaluate the model’s performance.
The pitch accuracy is calculated by comparing only the
pitch tokens between each generation and the ground truth
(whether the model generates the correct pitch in the cor-
rect position). And the rhythm accuracy is calculated
by comparing the duration and onset (regardless of what
pitches it generates). The overall accuracy and loss are

negatively correlated.
For this part of the experiment, we also use two special

test subsets. We compute the similarities between the past
and future contexts of each song in the Irish test set, pick
the top 10% similar pairs (past and future contexts are al-
most the same) and bottom 10% pairs (almost different),
and create the Irish-Test-R (repetition) and Irish-Test-NR
(non-repetition) subsets.

From Table 1, we can see that SketchNet beats all other
models for all test sets. The performance improved more
for pitch then for rhythm. The accuracy is almost the same
between the 1st and 2nd model. Accuracy is slightly bet-
ter if we use SketchInpainter to treat rhythm and pitch in-
dependently during generation. Lastly, with the power of
transformer encoder and random unmasking process done
in SketchConnector, we can achieve the best performance
by using SketchNet (bottom row in Table 1). We further
follow [23] to use the Bootstrap significance test to ver-
ify the difference between each pair’s overall accuracy for
models in the whole Irish-Test set (Four models, i.e. six
pairs in total). The sample time is set to 10000. After
calculation, all p-values except the fist and second model
pair (p-value = 0.402) are less than 0.05, which proves that
SketchNet is different from the left three models.

In the repetition test subsets, the loss of Music Inpaint-
Net is 0.312, which is lower enough to capture repetitions
in the musical context and fill in the missing part by copy-
ing. In most cases, copying is the correct behaviour be-
cause the original melody has repetitive pattern structures.
The loss is a measurement to evaluate if the model can
learn the repetitive pattern and copy mechanism from the
data. the SketchNet slightly outperforms InpaintNet.

3.3.2 Subjective Listening Test

However, the more interesting result is the generation with
non-repetition subset. In this case, models cannot merely
copy because original melodies do not repeat its content.
We see higher losses in all models in this subset compared
to the repetition subset. Intuitively, it means that repetitive
patterns are essential to the reconstruction task, not nec-
essarily the expressivity of the generated output would be
less.

To further evaluate the proposed SketchNet, we con-
duct an online subjective listening test to let subjects judge
the generated melodies from the non-repetition subset.
Each subject will listen to three 32-second piano-rendered



Past	Context Future	ContextGeneration

{Ab5,	Db6,	Eb6,	Gb6} {C6,	Eb6,	Db6,	F6,	Db6}  {F6,	Gb6,	Ab6,	Ab6,	F6} {Db6,	F6,	Ab6,	Bb6,	Db6}

{Ab5,	Db6,	Eb6,	Gb6}

Original

Control
Pitch

Control
Rhythm

Control
Both

No	Sketch

Figure 7. An example of sketch generation. From top to bottom: original, pitch/rhythm/mixture control. The blue pitch
texts denote pitch controls, and the pink segments denote rhythm controls.

Control Info. Rhythm Pitch
Pitch Acc. 0.189 0.881

Rhythm Acc. 0.973 0.848

Table 3. The accuracy of the virtual control experiment.

melodies: the original, the Music InpaintNet’s genera-
tion, and the SketchNet’s generation. Songs are randomly
picked from the Irish-Test-NR set. The beginning and end-
ing (past & future) are the same for the three melodies.
Since the subjective feeling of music is complicated to
quantify, we chose three criteria: the number of notes
(complexity), the repetitiveness between musical struc-
tures (structure), and the degree of harmony of the music
(overall musicality). In this way, subjects with different
levels of music skills can all give reasonable answers.

Before rating the songs, subjects will see three criteria
descriptions as we introduced below. The rating is ranged
from 1.0 to 5.0 with a 0.5 step. We collected 318 sur-
veyed results from 106 subjects (each subject listens to
three groups, nine melodies in total). The average rating of
each criteria for all models are shown in Table 2. The sub-
jective evaluations of all three criteria in SketchNet are bet-
ter for those of Music InpaintNet. Similar to section 3.3.1,
we also conduct a pairwise significance test via Bootstrap
in three criteria. All p-values except the <complexity: In-
paintNet, SketchNet> (p-value = 0.364) are less than 0.05.
It proves that three models (including original songs) are
significantly different in structure and overall musicality
(subjective feeling to a person). As for the complexity, we
believe that the results generated by the two models are
similar in terms of the richness of notes, and our model
does not significantly increase the number of notes gener-
ated.

3.4 Sketch Scenario Usage

The contribution of Music SketchNet is not only shown in
the performance of the generation in section 3.3, but can
also be shown in the interactive scenario where users can
control the generated output by specifying the rhythm or
pitch contour in each measure.

Figure 7 shows an example of a non-repetition subset
melody, where the first and last two measures are given,
and the middle parts is generated. The first track is the

original melody, the second track is generated with the
pitch contour control, the third track is generated with the
rhythm control, and the fourth track is controlled with both
pitch and rhythm. We can see that each generated melody
follows the control from users and develops music phrases
accordingly in the missing part. Moreover, each measure
is in line with the past and future measures even in the case
of scale shift.

We also provide a "virtual control experiment" to statis-
tically show that users’ control did influence the model’s
generation process. We randomly collect 3000 sample
pairs (A, B) from the Irish-Test set. And we use the
pitch/rhythm of Sample B to be the sketch information
in the same missing position of Sample A. Then we let
the model make the generation. We then compute the
pitch/rhythm accuracy 2 in the missing position between
the generation and Song B. From 3 we can see if we sketch
song B’s rhythm into the model, the generation will follow
the rhythm with 97.3% accuracy but has different (18.9%)
pitches. However, when we sketch pitches, the pitches
in the generation will be highly (88.1%) in line with the
sketching. This proves that the user’s control has a rela-
tively high guiding effect on the result of the model gener-
ated at the specified position.

4. CONCLUSION & FUTURE WORK

In this paper, we propose a new framework to explore de-
coupling latent variables in music generation. We further
convert this decoupling into controllable parameters that
can be specified by the user. The proposed Music Sketch-
Net achieves the best results in the objective and subjective
evaluations. Practically, we show the framework’s applica-
tion for the music sketching scenario where users can con-
trol the pitch contour and/or rhythm of the generated re-
sults. There are several possible extensions for this work.
Music elements other than pitch and rhythm can be applied
into the music sketching scenario by the latent variable de-
coupling. Also, how to represent a polyphonic music piece
in the latent space is another pressing issue. Both are fu-
ture works that can generalize this model to more applied
scenarios.

2 The metric to calculate the pitch accuracy is different from section
3.3.1, because the generated pitches in the new song might have different
onset positions. We leverage the Longest Common Sequence to calculate
the accuracy. The implementation is presented in the code archive.
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