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ABSTRACT OF THE DISSERTATION 

 

Leveraging the Tools and Techniques of Precision Medicine 

to Better Understand the Biological Underpinnings of  

Psychiatric Disorders and Psychotropic Treatment Effects 

 

by 

 

Lauren Catherine Seaman  

Doctor of Philosophy in Chemistry 

University of California, Los Angeles, 2019 

Professor William M. Gelbart, Chair 

Professor Erika Lynn Nurmi, Co-Chair 

 

 

The dawn of a new era of medicine has begun as clinicians and researchers shift their focus to 

more individual-centric diagnostic, treatment, and disease management strategies. Precision 

medicine is a multidisciplinary approach to human health care that takes into account a person’s 

genetic makeup, behaviors, and environmental factors when evaluating pathophysiology, 

tailoring treatments, and designing novel therapeutic moieties. In this dissertation I break down 

the critical subfields of this discipline to explain and apply the emerging tools and techniques we 

now have at our disposal to better understand the underlying biology of complex human 

psychiatric disorders. 
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We begin with pharmacokinetics and pharmacodynamics, two branches of precision medicine 

that are involved directly with the temporal dynamics of pharmaceutical therapies and aid in 

disentanglement of how the body processes drugs versus how the drugs affect our bodies. I 

discuss detailed research across three separate drugs; risperidone, methamphetamine, and 

nicotine, integrating quantitative metabolic studies, genetic assessment, neuroimaging, and 

receptor analysis to clearly define inter-patient variability in risk and response.  

 

Following this is work I accomplished in the realm of gene and environment interactions in 

young children experiencing anxiety disorders, which over time, led to what I hold as my largest 

contribution to the personalized medicine field; microbiome and host interactions. I am 

attempting to unlock a more direct, biological mechanism to something known as antipsychotic-

induced weight gain (AIWG) through the examination of bile acids and the gut microbiome and 

their crosstalk and interplay with host physiology. Results are abundant throughout this 

document and each study presented here within brings a unique piece of the precision medicine 

puzzle to the table. 

 

Pharmacokinetics, pharmacodynamics, genomic technology, gene-environment interactions, 

and the host-microbiome axis are the salient concepts in my toolbox of personalized medicine 

techniques that I believe can be leveraged in a variety of combinations to accomplish large 

goals in the medical and biotechnology fields. Whether it be through careful patient assessment 

with companion diagnostics, proper medication selection based on risk vs. reward value in 

harmony with an individual’s personal makeup, perseverance of high level disease progression 

and treatment monitoring, or even one day tailoring drug discovery to the highly specific 

receptors and biological pathways involved in these grievous diseases, it is clear precision 

medicine will pave the way for a better life for many people in the future. 



iv 
 

 

The dissertation of Lauren Catherine Seaman is approved. 

 

Erika Lynn Nurmi 

Steven G. Clarke 

William M. Gelbart, Committee Chair 

 

 

University of California, Los Angeles 

2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

DEDICATION 

 

It is my in my warmest regard that I dedicate this work to every single person that has crossed 

my path during my time in graduate school. Every soul has affected me in some way, and my 

life would not be what it is today without the support, love, kindness, challenges, pain, and 

beautiful happiness that people have shown me. 

 

Specifically, I would like to thank my parents. If my Dad hadn’t helped me save a dying tree 

sapling on the side of the road when I was just 3 years old, I’m not sure I would be here today, 

still striving to make our world a better place. If my Mother hadn’t shown me what true strength 

and intelligence in a woman looks like, coupled with a penchant for books of all kind, I might not 

have made it to the point of writing this dissertation at all! Their unwavering love has propelled 

me to this point in my journey, and I am grateful every single day. 

 

Finally, I would never have made it through this process without copious amounts of delicious 

coffee and poignant memes from the internet. Never underestimate the power of caffeine and 

friendship! I’m about to be an actual doctor, btw. 😊 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

 

LIST OF FIGURES  ...................................................................................................... viii 

LIST OF TABLES .......................................................................................................... ix 

ACKNOWLEDGEMENTS  .............................................................................................. x 

CURRICULUM VITAE  ................................................................................................. xii 

CHAPTER 1: Introduction and Overview to the World of Personalized Medicine  .. 1 

CHAPTER 2: Pharmacokinetics  ................................................................................ 10 

General Background .............................................................................................................. 10 

In Introduction to Cytochrome P450....................................................................................... 12 

Pharmacokinetic Metabolism and CYP2D6 ........................................................................... 15 

PK Case Study #1: CYP2D6, brain structure, and cognitive function in methamphetamine    
dependence ........................................................................................................................... 17 

PK Case Study #2: Genetic Determinants of Risperidone Pharmacokinetics in Children with 
Autism Spectrum Disorder (ASD): Relationship to Treatment Outcomes and Side Effects .... 28 

Chapter 2 Wrap-Up ............................................................................................................... 51 

CHAPTER 3: Pharmacodynamics  ............................................................................. 53 

General Background .............................................................................................................. 53 

Identifying and Implementing Pharmacodynamic Biomarkers  ............................................... 54 

PD Case Study #1: Effect of Cigarette Smoking on a Marker for Neuroinflammation: A 
[11C]DAA1106 Positron Emission Tomography Study .......................................................... 56 

PD Case Study #2: Effect of overnight smoking abstinence on a marker for microglial 
activation: a [11C]DAA1106 positron emission tomography study ......................................... 72 

Chapter 3 Wrap-Up ............................................................................................................... 89 

CHAPTER 4: Genomic Technology  .......................................................................... 91 

General Introduction to Genomic Technology in Precision Medicine ..................................... 91 

SNP Genotyping Methods ..................................................................................................... 92 

GWAS Technology ................................................................................................................ 92 

GT Case Study #1: Cholinergic Genetic Variation Moderates Smoking-Induced Striatal 
Dopamine Release ................................................................................................................ 95 

GT Case Study #2: Polygenic Contributions to Decision-Making on Laboratory Test of 
Reward-Base Risk-Taking ................................................................................................... 111 

Chapter 4 Wrap-Up ............................................................................................................. 120 

CHAPTER 5: Gene x Environment Interactions  ..................................................... 122 

General Introduction to Gene-Environment Interactions ...................................................... 122 

Testing Gene-Environment Interactions ............................................................................... 123 

Applying Gene-Environment Interactions to Psychiatric Research ....................................... 124 



vii 
 

GxE Case Study #1: Interactive effects of attachment and FKBP5 genotype on school-aged 
children's emotion regulation and depressive symptoms ..................................................... 125 

GxE Case Study #2: Interaction between the Opioid Receptor OPRM1 Gene and Mother-
Child Language Style Matching Prospectively Predicts Children's Separation Anxiety Disorder 
Symptoms ........................................................................................................................... 154 

Chapter 5 Wrap-Up ............................................................................................................. 178 

CHAPTER 6: Microbiota and Host Interactions  ..................................................... 179 

General Introduction ............................................................................................................ 179 

Understanding the Gut Microbiome ..................................................................................... 181 

Microbiota and Bile Acid Crosstalk ...................................................................................... 182 

Original Method: Fit-For-Purpose HPLC-MS/MS Targeted Detection and quantitation of 11 
Bile Acids and Their Biological Precursor, 7-alpha-hydroxycholest-4-en-3-one. .................. 184 

MxH Case Study #1: A Putative Development Pathway; Microbiome – Bile Acid Crosstalk in 
the Biological Mechanism of Psychotropic-Induced Weight Gain ......................................... 212 

Chapter 6 Wrap-Up ............................................................................................................. 228 

CHAPTER 7: Future Directions, Conclusions, and Final Thoughts  ..................... 227 

Future Directions ................................................................................................................. 227 

Current Study and Future Plans: The role of bile acid-microbiome crosstalk in psychotropic-
induced weight gain and cardio metabolic dysfunctions ....................................................... 228 

Overall Dissertation Conclusions ......................................................................................... 245 

My Final Thoughts ............................................................................................................... 253 

LIST OF REFERENCES  ............................................................................................ 257 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF FIGURES 

 

2-1-Artistic Metabolic Diagram .................................................................................................. 13 

2-2-Methamphetamine Metabolism ........................................................................................... 18 

2-3-CYP2D6 WCST By Genotype ............................................................................................. 23 

2-4-CYP2D6 SST By Genotype ................................................................................................ 24 

2-5-CYP2D6 Genotype effect on Cerebral gray matter volume ................................................. 25 

2-6-CYP2D6 Genotype effect on fractional anisotropy  ............................................................. 26 

2-7-CYP2D6 Activity Score Predicts RSP, 9-OH-RSP, and Active Moiety Levels ..................... 41 

2-8-Predicated RSP Activity based on CYP2D6 Genotype ....................................................... 42 

2-9-Transporter Variants are Associated with Enhanced ASD Treatment Response and Adverse               

Effect Profile ............................................................................................................................. 46 

3-1-Flow Diagram of Participants in PD Case Study #1 ............................................................ 59 

3-2-Mean positron emission tomography (PET) images from the study subgroups  .................. 68 

3-3-Scatterplot of SUVs ............................................................................................................ 86 

4-1-Chemical Structures of Acetylcholine and Nicotine  ............................................................ 96 

4-2-Structure of the most common nAChRs .............................................................................. 97 

4-3-NAChRs are Associated with Smoking-Induced DA Release ............................................ 103 

4-4-CHRNA7 and CHRNA4 Composite Score Predicts Dopamine Release in Caucasians..... 104 

4-5-NAChRs are Associated with Smoking Endophenotypes and Measures of Nicotine 

Dependence. .......................................................................................................................... 106 

4-6-Risky Decision Making as Measured by BART Performance is a Heritable, Polygenic Trait.

 ............................................................................................................................................... 116 

4-7-Mega-analysis GWAS Results for BART Performance in the Combined CNP and GIP 

sample .................................................................................................................................... 117 

4-8-Exploratory Analysis of the PRS to PGC Database ........................................................... 118 

5-1-Attachment × FKBP5 rs3800373 predicting child RSA reactivity ....................................... 142 

5-2-Attachment × FKBP5 rs3800373 predicting children’s emotion suppression ..................... 143 

5-3-Attachment × FKBP5 rs3800373 predicting children’s rumination ..................................... 144 
5-4-Attachment × FKBP5 rs3800373 predicting children’s depressive symptoms ................... 144 

5-5-Attachment × FKBP5 rs3800373 predicting children’s depressive symptoms ................... 145 

5-6-OPRM1 genotype moderates the association between mother-child LSM and T2 separation 

anxiety symptoms ................................................................................................................... 173 

6-1-Bile Acid Metabolism ........................................................................................................ 182 

6-2-Structure variations and substitutions of the 12 bile acid species measured ..................... 189 

6-3-Representative BA calibration curves ............................................................................... 198 

6-4-Extracted ion chromatogram (EIC) of the 10 human specific bile acids and their precursor 

(7α-H4C3 or C4) in Positive Ion Mode ..................................................................................... 200 

6-5-Extracted ion chromatogram (EIC) of the 10 human specific bile acids and their precursor 

(7α-H4C3 or C4) in Negative Ion Mode ................................................................................... 202 

6-6-Structure variations and substitutions of the 6 bile acid species measured ....................... 216 

6-7-RSP-Induced BA Changes ............................................................................................... 220 

6-8-Proposed Model of AIWG/MS ........................................................................................... 224 

7-1-RSP-Related Microbiome Changes .................................................................................. 230 

7-2-Proposed Model of AIWG/MS ........................................................................................... 235 

7-3-Representative Genetic sequence of B. Fragilis and R. Gnavus ....................................... 241 



ix 
 

 

LIST OF TABLES 

 

2-1-CYP Genes and Protein Summary ..................................................................................... 14 

2-2-CYP2D6 Metabolizer Statuses ............................................................................................ 16 

2-3-Neuropsychological battery of tests utilized in the reported MA study. ................................ 21 

2-4-Characteristics of the RUPP, RUPP-PI, and Combined RUPP Autism Risperidone 

Pharmacokinetic/Pharmacogenetic Samples ............................................................................ 40 

3-1-Baseline Demographics and Rating Scale Scores for the Non-Smoker and Smoker Groups 

 ................................................................................................................................................. 65 

3-2-Standardized Uptake Values (SUVs) for the Whole Brain and Smaller Regions of Interest . 66 

3-3-Baseline demographics and rating scale scores for the nonsmoker and overnight abstinent 

smoker groups .......................................................................................................................... 83 

3-4-Ratios of mean standardized uptake values (SUVs) between overnight abstinent smokers 

and nonsmokers ....................................................................................................................... 85 

4-1-Results mapping nAChR subunit polymorphisms and their published role in nicotine-induced 

dopamine release. .................................................................................................................. 102 

5-1-T-tests between Key Study Variables. .............................................................................. 132 

5-2-Zero-order Correlations between Key Study Variables. GE Case Study#1 ....................... 139 

5-3-FKBP5 Genotype × Child Attachment Predicting Child RSA Reactivity, Emotion 

Suppression, and Child Rumination ........................................................................................ 141 

5-4-FKBP5 Genotype × Maternal Attachment Anxiety Predicting Children’s Depressive 

Symptoms.  ............................................................................................................................. 144 

5-5-Narrative Examples of High and Low LSM Interviews. ...................................................... 157 

5-6-Zero-Order Correlations Between Key Study Variables. GE Case Study#2 ...................... 171 

5-7-Results of Regression Analyses Examining OPRM1 as a Moderator of the Relationship 

Between LSM and Child SAD Symptoms. ............................................................................... 172 

6-1-Compilation of four additional chromatographic conditions tested for bile acid detection 

sensitivity and separation ........................................................................................................ 190 

6-2-Positive Ion ESI HPLC gradient conditions ....................................................................... 192 

6-3-Negative Ion ESI HPLC gradient conditions ...................................................................... 193 

6-4-Positive Ion MRM transition monitoring species, product ions, and instrument source 

parameters .............................................................................................................................. 195 

6-5-Negative Ion MRM transition monitoring species, product ions, and instrument source 

parameters .............................................................................................................................. 196 

6-6-Intra-day and inter-day measured means, accuracy, and precision for each of the 12 BA 

species measured in positive ion mode ................................................................................... 205 

6-7-Intra-day and inter-day measured means, accuracy, and precision for each of the 12 BA 

species measured in negative ion mode ................................................................................. 207 

6-8-Fasting plasma BA concentrations of pediatric patients following 8 weeks of risperidone 

pharmaceutical treatment ........................................................................................................ 210 

 

 
 



x 
 

ACKNOWLEDGEMENTS 

 

 

Throughout the writing of this dissertation, I have received a great deal of support and 

assistance. I would first like to thank my supervisor and mentor, Dr. Erika Nurmi, whose 

expertise was invaluable in the formulation of these research topics and how my story would 

come together as a growing scientist. I would like to acknowledge each of my colleagues from 

the various collaborations that I will present in this work. The simplest way to do this is by going 

in order through the chapters.  

 

Chapter 2 allowed me to work with wonderfully intelligent people in the fields of drug addiction, 

autism, and pharmacokinetics.  I would like to thank Dr. Andy Dean for his extensive support 

and role as the project PI in the research with CYP2D6 and methamphetamine usage. 

Additionally, I would like to thank Dr. James McCracken as project PI for the Risperidone 

Pharmacokinetics research, as well as the RUPP Autism Network. Case study #2 is 

unpublished work currently, and all the authors are recognized in this chapter as such. 

 

Chapter 3 presented the opportunity to collaborate with Dr. Arthur Brody, the lead PI on both PD 

case studies 1 and 2. Case study one is published in the journal Neuropsychopharmacology 

(doi: 10.1038/npp.2017.48.), which has granted copyright permissions for use in dissertations. 

Case study two is published in the journal Psychopharmacology (doi: 10.1007/s00213-018-

5077-3), which also grants copyright permissions for use in dissertations. The remaining authors 

who helped with this work and contributed to these two publications are listed in the chapter. 

 

Within chapter 4 I would like to acknowledge the guidance of Dr. Arthur body once more and Dr. 

Erika Nurmi as the two head researchers of the first case study. In the second case study I 



xi 
 

received an enormous amount of support from Dr. Edythe London as she was the project head, 

and an expert on substance use disorder. I am grateful to the additional researchers who 

worked on these projects alongside me as well. 

 

Delving deeper into how our genes and environment interact would not have been possible 

without the mentorship and ideas of Dr. Jessica Borelli who was the lead PI on both case 

studies in chapter 5 in which I helped with extensive genetic analysis. I would like to thank the 

additional authors of both of these works. GxE case study 1 was published in Behavioral Brain 

Research (doi: 10.1016/j.bbr.2016.07.035.) which allows for personal use distribution of 

copyrighted materials, which included dissertations. GxE case study 2 was published in 

Research in Development Disabilities (doi: 10.1016/j.ridd.2018.03.002) which has the same 

copyright permissions, allowing me to reproduce both of these works here. 

 

Finally, in Chapter 6, I included two works that are my own personal accomplishments in terms 

of idea development and implementation. However, it is worth nothing that I would like to 

specifically express gratitude to Dr. Kym Faull for his expert guidance on the mass spectrometry 

method and Dr. Erika Nurmi for her support in the development of my final dissertation project. 

They taught me invaluable knowledge and helped propel my scientific career. Both works are 

still currently unpublished. 

 

There have been numerous funding sources to aid in the propagation of the work in this doctoral 

dissertation. I would like to thank the NIH; specifically, NIDA, NICHD, NIMH; Terry and Jane 

Semel Institute, and the University of California, Los Angeles for various grant (R21, R03, R01) 

funding throughout my graduate career. I also received a T32 fellowship (The Neuroscience of 

Addiction) award for 3 years of my training under Dr. Edythe London. 



xii 
 

CURRICULUM VITAE 

 
EDUCATION: 
Graduate: University of California, Los Angeles (2013-Present) 
     • M.S. in Organic Chemistry (2014) 
Undergraduate: Monmouth University (2008-2012) 
     • B.S. in Chemistry with a minor in Psychology, with Distinction (2012)  
 
PROFESSIONAL EXPERIENCE: 
•Teaching Assistant (9/13- present), Organic and General Chemistry Laboratory classes, UCLA Dept of 
Chemistry and Biochemistry 
• Graduate Research Assistant to E. L. Nurmi, UCLA Dept of Biobehavioral Sciences (7/14- present) 
• Research Assistant to M. Zaworotko, University of South Florida, Dept of Chemistry (6/12-8/12) 
 
HONORS AND SPECIAL AWARDS: 
• Society of Biological Psychiatry (SOBP) Early Investigator Travel Award (2017) 
• World Congress of Psychiatric Genetics (WCPG) Travel Award (2015) 
• Translational Nicotine Symposium ‘Best Speaker’ Award (2015) 
• T32 Neuroscience of Drug Abuse Fellowship (2015,2016,2018) 
• American Chemical Society Award in Analytic Chemistry (2012) 
• Magna Cum Laude, Chemistry & Physics Department Honors, Monmouth University (2012) 
• NSF Research Experience for Undergraduates (REU) Appointment, University of South Florida (2012) 
PRESENTATIONS: 
Poster Presentations: 
LC Seaman, J McElroy, FK Faull, C Calarge, CP Laughlin, EL Nurmi. A Putative Development Pathway; 
Microbiome – Bile Acid Cross Talk in the Biological Mechanism of Psychotropic-Induced Weight Gain Drug 
Discovery in Chemistry (2019) 
LC Seaman, EL Nurmi, ED London, A Dean. CYP2D6 Inactivating Polymorphisms May Protect Against Toxic 

Methamphetamine Metabolite Formation and Resultant Cognitive Dysfunction World Congress on Psychiatric 

Genetics (2015). 

LC Seaman, EL Nurmi, ED London, A Dean. CYP2D6 Impaired Metabolizer Status May Protect Against 

Neurotoxic Effects of Methamphetamine Use, Abstract for Poster Presentation Pharmacogenomics in 

Psychiatry (2015). 

LC Seaman, EL Nurmi, CP Laughlin, GS Hellemann, JJ McGough, JT McCracken, Genetic Contributions to 

Cardiovascular Tolerability of ADHD Pharmacotherapy, World Congress on Psychiatric Genetics (2015). 

LC Seaman, K.S. Mallya, K. Ta, J.L. Chartie, J.T. McCracken, A.L. Brody, E.L. Nurmi, Cholinergic Genetic 
Variation Moderates Striatal Dopamine Release. UCLA Neuroscience Integrative Center for Addiction 
Symposium. (2015) 
 
LC Seaman, K.S. Mallya, K. Ta, J.L. Chartie, J.T. McCracken, A.L. Brody, E.L. Nurmi, Cholinergic Genetic 
Variation Moderates Striatal Dopamine Release. Behavior, Biology, and Chemistry:Translational Research in 
Addiction (2015) 
 
LC Seaman, P Nyugen, M Zaworotko, Ligand Design for the Isoreticular Expansion of a Pillared Metal-Organic 

Material Platform. SEAM REU University of South Florida (2012). 

 
Oral Presentations: 
Seaman LC, Kayadibi H, Faull KF, Nurmi EL. A Role for Bile Acid Signaling in Antipsychotic Induced Weight 
Gain Society of Biological Psychiatry Annual Meeting (2018). 
 
LC Seaman, K.S. Mallya, K. Ta, J.L. Chartie, J.T. McCracken, A.L. Brody, E.L. Nurmi, Genetic Variation in 
Cholinergic Candidates Show Moderation of Striatal Dopamine Release. Translational Nicotine Research 
Group Symposium (2015) 
 
LC Seaman, The Chemistry of Wine. UCLA Department of Chemistry Organic Colloquium (2015) 
 



xiii 
 

Paper Publications: 
Partington L, Borelli JL, Smiley PA, Jarvik E, Rasmussen HF, Seaman LC, Nurmi EL. Parental Overcontrol x 
OPRM1 Genotype Interaction Predicts School-aged Children's Sympathetic Nervous System Activation in 
Response to Performance Challenge. Research in Developmental Disabilities 2018 Nov. doi: 
10.1016/j.ridd.2018.04.011 
 
Boparai S, Borelli JL, Partington L, Smiley PA, Jarvik E, Rasmussen HF, Seaman LC, Nurmi EL. Interaction 
between the Opioid Receptor OPRM1 Gene and Mother-Child Language Style Matching Prospectively Predicts 
Children's Separation Anxiety Disorder Symptoms. Research in Developmental Disabilities 2018 Nov. doi: 
10.1016/j.ridd.2018.03.002 
 
Brody AL, Hubert R, Enoki R, Garcia LY, Mamoun MS, Okita K, London ED, Nurmi EL, Seaman LC, 
Mandelkern MA. Effect of Cigarette Smoking on Neuroinflammation: A 11C-DAA-1106 Positron Emission 
Tomography Study. Neuropsychopharmacology 2017 Mar 29. doi: 10.1038/npp.2017.48 
 
Brody AL, Gehlbach D, Garcia LY, Enoki R, Hoh C, Vera D, Kotta K, London ED, Okita K, Nurmi EL, Seaman 
LC, Mandelkerm MA Effect of overnight smoking abstinence on a marker for microglial activation: a 
[11C]DAA1106 positron emission tomography study. Psychopharmacology 2018 Dec. doi: 10.1007/s00213-
018-5077-3 
 
Borelli JL, Smiley PA, Rasmussen HF, Gómez A, Seaman LC, Nurmi EL. Interactive effects of attachment and 
FKBP5 genotype on school-aged children's emotion regulation and depressive symptoms. Behav Brain Res. 
2016 Jul 30. doi: S0166-4328(16)30463-6. 
 
Zai G1, Alberry B, Arloth J, Bánlaki Z, Bares C, Boot E, Camilo C, Chadha K, Chen Q, Cole CB, Cost KT, Crow 
M, Ekpor I, Fischer SB, Flatau L, Gagliano S, Kirli U, Kukshal P, Labrie V, Lang M, Lett TA, Maffioletti E, Maier 
R, Mihaljevic M, Mittal K, Monson ET, O'Brien NL, Østergaard SD, Ovenden E, Patel S, Peterson RE, Pouget 
JG, Rovaris DL, Seaman L, Shankarappa B, Tsetsos F, Vereczkei A, Wang C, Xulu K, Yuen RK, Zhao J, Zai 
CC, Kennedy JL. Rapporteur summaries of plenary, symposia, and oral sessions from the XXIIIrd World 
Congress of Psychiatric Genetics Meeting in Toronto, Canada, 16–20 October 2015. Psychiatr Genet. 2016 
Dec;26(6):229-257. 
 
Seaman LC, Kayadibi H, Faull KF, Nurmi EL. Fit-For-Purpose HPLC-MS/MS Targeted Detection of 12 Bile 
Acids and Their Biological Precursor, 7-alpha-hydroxycholest-4-en-3-one. Nature Methods, (submitted Nature 
Methods, 2019). 
 
Nurmi EL, Chang SN, Seaman LC, Park S, Jacoby R, Faull KF, Kydikian M, Laughlin CP, Hellemann GS, Aman 
MG, McDougle, CJ, Scahill LL, Arnold LE, Handen B, Tierney E, Vitiello B, McCracken JT, and the RUPP 
Autism Network. Genetic Determinants of Risperidone Pharmacokinetics in Children with Autism Spectrum 
Disorder: Relationship to Treatment Outcomes and Side Effects, Pharmacogenomics and Personalized 
Medicine, (submitted, 2019). 
 
Nurmi EL, Seaman LC ,Mallya KS, , Ta K, La Charite J, Guze J, McCracken JT, Brody AL. Dopaminergic and 
Cholinergic Genetic Variation Moderates Smoking-Induced Striatal Dopamine 
Release. Neuropsychopharmacology, (submitted, 2019). 
 
LC Seaman, J McElroy, FK Faull, C Calarge, CP Laughlin, EL Nurmi. A Putative Development Pathway; 
Microbiome – Bile Acid Cross Talk in the Biological Mechanism of Psychotropic-Induced Weight Gain (in 
preparation, 2019). 
 
LC Seaman, JT McCracken, EL Nurmi and the RUPP Autism Collaborative, Baseline BDNF Methylation 
Predicts Antipsychotic-Induced Weight Gain in Youth with Autism, (in preparation, 2019). 
 
Nurmi EL, Laughlin CP, Seaman LC, Kohno M, Hellemann GS, Palmer A, DeWit H, London ED., Genome-wide 
vulnerability to risky decision-making, Molecular Psychiatry, (in preparation, 2019). 
 
A Dean, LC Seaman, ED London, EL Nurmi. CYP2D6 Genetic Variation Moderates Neurotoxic Effects of 
Methamphetamine Use (in preparation, 2019) 



1 
 

Chapter 1  

An Introduction and Overview of the World of Personalized Medicine 

 

Personalized medicine—two simple words with a hidden universe of meaning, potential, and 

hope. It takes other names, such as precision medicine, stratified medicine, or theranostics, but 

in the end, all represent the same overarching goal; to tailor medical decisions, pharmaceutical 

interventions, and even long-term care and disease management to each unique individual. 

While this is not a new philosophy, as Hippocrates once said, “It is more important to know what 

sort of person has a disease than to know what sort of disease a person has”, the rapid 

advancement of diagnostic and informatic technologies has pushed the field back into the 

limelight of the medical world. These novel approaches revolve around understanding the 

molecular hierarchy of disease, specifically focusing broad scope genomics, and the 

development of the personalized medicine concept was first coined in this context but continues 

to expand to encompass many specific measures. In fact, over the last 10 years, the focus of 

the medical treatment world has shifted from “reaction” to “prevention” and can be clearly 

observed in the 870% increase of personalized medicine drugs, treatments and diagnostics 

products available in the market over this time period.1  

 

This increased momentum is most dominant in the growing biotech field, and drug development 

pipelines are full of targeted treatments; 42% of all compounds have the potential to be 

personalized medicines.2 While effective and tailored drug molecules are the pot of gold at the 

end of the rainbow, we must first understand how these substances address the issue of inter-

patient variability. What better place to start than the most basic building blocks of life – our 

DNA? As every single human being differs to some extent in their genetic sequence, or 
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genome, it stands to reason that this avenue would be critical in evaluating as how we respond 

to treatment at both the population and individual levels.3 Since successful completion of the 

Human Genome Project in 2003, which encompassed complete nucleotide base pair 

sequencing as well as phenotypic linking, more than 1,800 genes directly related to disease 

have been discovered, characterized and can be targeted in condition-specific clinical testing.4 

Researchers have capitalized on this improved understanding of population history, and over 

the years, we have built on this genetic technology. Modern advances allow for further 

examination of a patient’s fundamental biology and regulatory genome variation through RNA 

expression and protein synthesis, which can lead to downstream mechanistic insights for 

treatment planning and drug development.5  

 

Since these concepts can be applied to transformative health care and are based on the 

complex dynamics of systems biology, it is necessary to first evaluate simple nucleotide genetic 

mutations and how they may be connected to certain diseases. One of the most invaluable tools 

used in precision diagnostics is the genome-wide association study (GWAS). These studies are 

based on the millions of single nucleotide polymorphisms (SNPs) and other genetic variations 

that humans display and asks if the allele of interest in one of these variants is found more 

frequently than expected in individuals with a certain disease.6 These broad scope assays are 

vital, as common and complex diseases are influenced by multiple genes, and the likelihood of 

developing certain ailments is one of the most powerful predictive measures. In addition, an 

individual’s genetic makeup partially influences how well or poorly they respond to certain 

pharmaceutical interventions, and therefore has the potential to entirely alter their course of 

treatment. 
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Interlacing a person’s genetics with their treatment response has evolved into the field known as 

pharmacogenomics (PG), which will be discussed in detail in the Genomic Technology of 

Chapter 3. Briefly, since an individual’s genetic information can be utilized in this approach, it 

aims to combat the typical “one size fits all” medication prescribing and dosing methods. The 

lynchpins of PG are the genes directly involved with drug metabolism, notably cytochrome 

P450s7, VKORC18, and TPMT,9 and their allelic variations are linked closely to how an 

individual will respond to an active compound or drug metabolite. Enzymatic structural changes 

caused by mutations in these genes can make a drug more or less effective in different 

individuals, and even minute alterations can drastically impact the safety of a pharmaceutical. 

These genetic markers display clinically important consequences in the average population, and 

are an invaluable tool being leveraged for personalized medicine. 

 

While these genomic markers are a critical foundation of the personalized medicine field, there 

are a number of factors that must be tested and considered when treating individuals with any 

type of therapy. Companion analyses and diagnostics are the remaining slices of the 

personalized medicine pie and help researchers and medical professionals understand the 

underlying biology of specific diseases and conditions. Here we must define a new term, 

“theranostics”, which is the effort to develop more specific and individualized therapies for 

various ailments, and to combine diagnostic and therapeutic capabilities into a single agent.10 

Briefly, theranostics takes advantage of both particles (x-ray, free radical, nanotechnology) and 

imaging/devices (MRI, ultrasounds, fluorescence microscopy) to provide point-of-care therapy 

delivery while being able to examine and evaluate the effects of a drug in real time. This 

approach to treatment can engender better prognoses for many morbid diseases in a wide 

range of patient subpopulations.  
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Based on the desired target, this conglomerate of strategies can be varied immensely, but 

typically include identifying unique biomarkers related to the disease of interest. These 

“biomarkers”, or biological markers, refer to objective indications of a medical state that are 

observed from outside the patient and can be measured accurately and reproducibly.11 These 

non-subjective and quantitative phenotypes related to illness are one of the most sought-after 

aspects of personalized medicine research, as they can offer unambiguous data to demonstrate 

whether interventions are effective, ineffective, safe, or unsafe. When these biomarkers are 

used as outcomes in drug trials, they can be considered surrogate endpoints for clinically 

meaningful results.12 Additionally, biomarkers have started to be incorporated in preventative 

care, for example, pre-screening for lung13  and breast cancer14 related gene mutations and the 

protein production gene linked to Alzheimer’s disease.15 In all cases, discerning biomarker data, 

either epidemiological, therapeutic, and/or pathophysiological, allows for the improvement of the 

drug development process, in addition to a deeper understanding of the biological hierarchy of 

many grievous diseases. 

 

With this arsenal of tools in place, we can finally discuss the current state of the field of 

personalized medicine, and how it is contributing directly to interventions in the biomedical 

realm. The first and foremost sector impacted by these scientific advancements is that of drug 

development, and as I briefly mentioned above, this industry has seen tremendous growth with 

the addition of personalized medicine tactics. Because of the heterogenous nature of most 

diseases, utilizing genomic information to combat one-sized-fits all drug therapies has quickly 

become one of the most effective strategies of targeted drug design. This shift has resulted in a 

boom in the biotechnology or “biotech” industry that involves living systems or organisms in the 

development of products and devices.16  And while biotech is used in numerous other sectors 

such as food production, agriculture, and fuel, it’s prevalence in medicine and pharmaceuticals  
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allows for implementation of novel genomic data and techniques. Large pharmaceutical focused 

biotech companies such as Amgen and Genetech boast missions of “curing grievous diseases” 

instead of just treating the symptoms, and believe these cures exists inside of our own unique 

biological traits. 

 

Diseases such as cancer, Alzheimer’s, asthma, diabetes, heart disease, and HIV are all heavy 

hitters when it comes to human mortality, and in conjunction with their enigmatic pathological 

mechanisms, they become prime targets in the personalized medicine field. Identifying genetic 

determinates of these common diseases through GWAS can provide valuable knowledge about 

the architecture, even though the vast majority of disease-associated loci have yet to be 

biologically explained. A vanguard example of this personalized medicine technique is that of 

cancer genomics. A total of 1,762,450 new cases of cancer, along with 606,880 unique deaths 

from cancer are expected to occur in 2019 in the United States alone.17 However, these 

fatalities are down over 27% since their peak in 1991, thanks to early detection diagnostics and 

patient tailored treatments.  Appropriately coined “oncogenomics”, high through-put sequencing 

methods are used to characterize genes,18 identify genome hybridization,19 detect copy number 

variation in oligonucleotides,20 perform karyotyping,21  and reveal chromosomal breakpoints 

(BAC-end sequencing).22 These technologies allow for a significantly better understanding of 

cancer, particularly in the realm of tumor heterogeneity, and can improve prognosis for 

thousands of individuals that may not find success in the treatments typically applied to the 

general population. 

 

Cancer certainly isn’t the only field to benefit from the proliferation of the “omics” aspect of 

precision medicine, which takes groups of biological molecules and chemicals that inform us 

about the structure, function, and dynamics of an organism and aims to collectively characterize 
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and quantify these systems. The suffix “-ome” describes a totality in biology, and large areas 

like genome, the proteome, and the metabolome encompass a plethora of knowledge that 

unless broken down can be overwhelming for researchers to utilize in personalized and targeted 

project development. We’ve already covered the importance of personal genomics, but it is 

worth mentioning that other biochemical branches such as epigenomics, which is concerned 

with chemical modification on DNA due to environmental factors,23 proteomics, the large-scale 

analysis of proteins and their structures and functions,24 and metabolomics, that systematically 

evaluates the unique chemical fingerprints of metabolites25 are helping shape the personalized 

medicine landscape. The ability of classify derangements that underlie disease is the future of 

comprehensive diagnosis, progression monitoring, and new therapeutic discovery. 

 

With these base biological foundations, the potential of the field can truly grow. So finally, to 

wrap up the current horizon of this exciting research, we can exemplify this by discussing 

artificial intelligence (AI) in precision medicine. A true paradigm shift is occurring with the 

advancement of AI, machine learning, and the development of neural networks.26 Patient 

information, such as vitals, clinical symptoms, laboratory test results, personality phenotypes, 

etc., is being collected on a near constant basis, providing millions of data that have the 

potential to be employed by both physicians and researchers. One can imagine it would require 

significant computer power and detailed algorithms to not only organize this valuable 

commodity, but also to parse it into meaningful scientific connections. The innovation of 

biostatistical methods and AI programs can improve the quality of patient care, enable cost-

effective strategies both in healthcare and drug development, increase overall efficiency in 

prescriptions and testing predictions, and reduce readmission and mortality rates.27 So while it is 

hard to say with confidence that AI is the final frontier, it is clear that there would be no 

personalized medicine without these technological wonders. 
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Unfortunately, with any wonderful area of science, there are challenges and pitfalls that while 

difficult, can also inspire us to push further into our understanding and advance the field in many 

aspects. Of course, as PM is practiced more widely and continues to grow, the main difficulty 

comes when dealing with regulations, patient privacy and confidentiality, and intellectual 

property rights, which will all be discussed in more detail in the final chapter of this thesis. 

However briefly, the Food and Drug Administration (FDA) in the United States is responsible for 

overseeing all pharmaceutical and chemically based therapeutic modalities, and in order to 

incorporate aspects such a genetic and biomarker information in clinical use and drug 

development, regulatory science standards need to be updated.28 This is of vital importance to 

ensure quality control, accuracy, precision, and reliability in our endeavors to create a better 

standard of care for many diseases. And perhaps the most critical issue with the widespread 

implementation of PM is the protection of the patients it hopes to aid. Due to the unique nature 

of individualized genetic information, this poses a significant challenge in both managing the 

psychological effects patients might experience, as well as what constitutes personal health 

information for confidentiality purposes. As the discipline continues to evolve, we are 

responsible for addressing these concerns and implementing adequate tools in order to 

accelerate the adoption of stratified medicine to further aspects and fields of generalized 

medicine.   

 

By now, you have most likely surmised that personalized medicine is a truly interdisciplinary 

area of research, bounding a variety of scientific fields and technologies. This is why I chose to 

explore the potential of a variety of individual aspects of PM in order to expand my knowledge 

as a scientist beyond just that of simply organic chemistry. I have always been conscious of our 

impact, as both scientists and humans, on the planet and its environment, and what we will be 
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able to both accomplish and leave behind to improve the quality of life of our species. As I 

began to pursue my graduate studies here at UCLA, I considered how my science might have 

real-world impact, and I quickly realized that my background in organic chemistry would provide 

a formidable foundation for translational research. Rapidly this crystallized into the realization 

that I would need to acquire a better understanding of a variety of biological sciences, and so I 

sought out mentorship from many talented individuals in a myriad of departments in order to 

nurse my desire to paint a complete picture of targeted medicine and drug design. I found 

myself in the laboratory of Dr. Erika Nurmi, a brilliant psychiatrist with a passion for helping 

others and advancing the fundamental science we use to do so. Through 6 years of intensive 

research and training, I believe I have created a cohesive story of how personalized medicine 

can be utilized to understand, treat, and change how we approach a variety of diseases. Let me 

briefly walk you through what that entailed, and what this dissertation will aim to convey. 

Chapter 2 will set the stage in the realm of pharmacokinetics (PK) – which is succinctly defined 

as the time course/movement of a drug throughout the body, examining aspects of absorption, 

distribution, metabolism, and excretion. I was able to participate in research of two separate 

drugs and their pharmacokinetic properties, methamphetamine and risperidone, specifically 

leveraging a unique cytochrome p450 enzyme genotype to better understand deleterious side 

effects, and how they might be attenuated. Chapter 3 examines the reverse side of the PK coin, 

pharmacodynamics (PD), where now we are concerned with how a drug affects the body, 

instead of how the body affects a drug. Here I learned about neurobiology, and the 

consequences of cigarette smoking and nicotine on neurochemical balances due to brain 

structure and function. While PK and PD are the bread and butter for not only personalized 

medicine, but also targeted drug design, it is also important to consider genomic technology and 

within that pharmacogenetics (PG), and I do so in Chapter 4. PG is the branch of pharmacology 

that is concerned with the effects of genetic variation on reactions to pharmaceuticals, and here 
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I was able to bring a huge component of personal genomics to the table. Continuing this theme, 

we come to Chapter 5, which is all about the work I accomplished in the realm of gene and 

environment interactions, which over time, led to what I hold as my largest contribution to the 

personalized medicine field – Chapter 6; microbiome and host interactions. Here I spent years 

attempting to unlock a more direct, biological mechanism to something known as antipsychotic-

induced weight gain (AIWG) through the examination of bile acids and the gut microbiome and 

their crosstalk and interplay with host physiology. 

 

My story ends on a hopeful note; a putative mechanism of how this unwanted side effect of 

AIWG, which also has strong ties to cardiometabolic syndrome, one of the most profound 

diseases of our era, works on a biochemical level, and how we can leverage this information to 

better inform therapeutic treatment of various psychiatric diseases with not only antipsychotics, 

but other psychotropic drugs as well. I am currently running a replication study of a promising 

preliminary finding in this area that was recently funded by the NICHD, and I cannot express 

how excited I am for the potential my work has to impact the lives of so many people that may 

suffer from similar conditions. Each chapter represents a piece of the puzzle for my own 

personalized medicine story, and each unique situation taught me invaluable science and skills 

that I will utilize as I pursue my career as a scientist and research in this paramount field. I invite 

you to buckle up, strap in, and enjoy the rollercoaster ride that is the following PhD dissertation. 
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Chapter 2  

Pharmacokinetics  

 

General Background 

In my quest to better understand and contribute to the growing field of personalized medicine, I 

worked on a variety of scientific projects in specific categories of this overarching concept. The 

roots were established first in the field of pharmacokinetics, a branch of pharmacology which is 

simply the study of drug absorption, distribution, metabolism, and excretion.29 Stemming from 

the ancient Greek pharmakon meaning “drug” and kinetikos meaning “moving, putting in 

motion”, pharmacokinetics (PK) employs a conglomerate of techniques to determine the fate of 

a pharmaceutical substance once given to a living organism, and aims to understand how the 

organism itself affects this active drug compound. In combination with pharmacodynamics, 

which will we discuss in a later chapter, PK helps inform and influence medicinal dosing levels 

to maximize therapeutic benefits while minimizing adverse side effects. 

 

One can imagine that the human body is a complex system, and a drug must undergo multiple 

steps and transformations as it is being liberated, absorbed, distributed, metabolized, and/or 

excreted (LADME). Liberation refers to the process of the release of the biologically active 

compound from the pharmaceutical formulation. Absorption is simply how that substance enters 

blood circulation, and distribution is the subsequent distribution or dissemination throughout the 

various organs, tissues, and bodily fluids. Metabolism, which can be referred to as 

biotransformation or inactivation as well, occurs when the organism recognizes the drug as a 

foreign entity and begins the irreversible transformation of the parent compound into chemically 

and structurally different metabolites. Lastly, there is excretion, where any leftover original drug 
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and its metabolites are removed from the body through avenues such as urine, feces, or 

perspiration.30 

 

All the above phases are individually susceptible to physio-chemical interactions between the 

active drug substance and the organism in question. Both compartmental and non-

compartmental mathematical modelling for these connections is used to express unique 

equations for a milieu of pharmacokinetic properties. Parameters such as dose, clearance, 

bioavailability, elimination half-life, concentration, and fluctuation are just a few of the vital 

measurements that are typically completed during the PK branch of modern drug development. 

In fact, PK is so crucial to avoid a potential compound’s attrition before or during clinical trials, 

the industry has focused countless efforts into improving the understanding of these drug 

characteristics, and candidate failure in this branch has dropped to only 5% in recent years.31 

While lack of safety or efficacy are the most common causes for a drug getting the axe, 

attempting to overcome poor bioavailability or uncover predictive kinetic behavior can dictate the 

overall success of a program32, making PK one of the first lines of defense against development 

failure. 

 

Because of the importance of PK analysis in both drug development and clinical applications, it 

is worth discussing the main avenues of measurement for this subfield. Having the ability to 

develop strong associations between drug concentrations and their pharmacological responses 

allows both doctors and personalized medicine researchers to apply PK principles to patients on 

a case-by-case basis. A drug’s active effect in the body is often directly related to its 

concentration in various peripherals or tissue. This is potential proxy of the concentration at 

inaccessible direct receptor binding sites, a concept known as kinetic homogeneity; as the 

concentration of a compound increases in plasma, serum, urine, or saliva, the concentration in 
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most tissues will increase proportionally.33 With this information, we can construct a 

concentration vs. time profile for any given pharmaceutical, and hypersensitive bioanalytical 

methods are necessary for this purpose. 

 

The gold standard analytical technique used in PK is mass spectrometry. While I will be 

discussing mass spectrometry and related methods in great detail later in chapter 6, a brief 

overview will help paint the picture of why it is such a critical component to PK in development 

settings. There are three essential steps in this type of measurement: ionization, separation, 

and mass detection.34 First, individual molecules in a small sample are broken apart, or ionized, 

in the ion source of the machine where they typically become cations through the loss of an 

electron. Because of this, the ions can be sorted and separated according to their atomic mass 

and charge state. Commonly, this is accomplished through column chromatography with either 

gas or liquid as a mobile phase and can be tailored to the specific molecular properties of the 

items of interest. Finally, as the ions pass to the detector of a machine, which measures the 

relative abundance of each species, and this data can be analyzed further to parse apart critical 

information about the compound originally injected. The high selectivity and sensitivity of mass 

spectrometry allows for detection of xenobiotics in complex bodily matrices such as those 

mentioned above at very low concentrations with reliability. 

 

An Introduction to Cytochrome P450 
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With a strong understanding of how pharmacokinetics is critical to multiple aspects of 

pharmaceuticals, I began to explore the application of these principals to different areas of 

personalized medicine. As previously discussed, there are 5 major areas of focus in PK, 

represented by LADME. When I began my graduate work, I had the opportunity to explore the 

metabolism piece of pharmacokinetics in a couple of various ways, while learning techniques 

and concepts that would help drive the story of how personalized medicine can shape our future 

endeavors. It is necessary to flesh out the 

discussion of metabolism in order to better 

understand how the upcoming studies 

function in their entirety. Metabolism, in the 

broadest definition of the word, is the sum of 

all chemical reactions that happen 

intercellularly in living organisms. To give a 

sense of how complex this collective of pathways is, Figure 2-1 demonstrates the core 

metabolic functions of just ONE eukaryotic cell.  

 And in lieu of attempting to tackle explaining this entire miniature universe, I will focus on 

catabolic metabolism, as this relates to only the reactions involved in breaking down 

compounds, providing the strongest foundation for what happens to a drug once it enters the 

body. Xenobiotics, or chemical moieties found within an organism that are not naturally 

produced by that organism, are quickly targeted by catabolic processes, mainly located in the 

Figure 2-1. An artistic diagram of the 

core metabolic pathways in a eukaryotic 

cell, such as the cells that make up the 

human body. Each line is a reaction, 

and each circle is a reactant or product. 

 

Image credit: "Metabolism diagram," by 

Zlir'a (public domain). 
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liver. Many of these molecular transformations that occur within cells require multiple steps, 

energy, and enzymes to accomplish.35  Ingested or injected drugs are either activated (or 

inactivated) by these hepatic enzymes to form metabolites, which are then conjugated and 

excreted in either bile or urine.36 Commonly, this occurs in an enzyme complex called the 

microsomal biotransformation, of which the main component is a heme containing cytochrome 

monooxygenase, also known as cytochrome P450’s. (CYPs)  

 

CYP proteins/enzymes are predominantly oxidization catalysts and membrane associated in 

nature and add one oxygen atom to a variety of small and large molecule substrates. In 

humans, the CYP family accounts for 75% of total drug metabolism, transforming thousands of 

compounds that act as substrates in a variety of tissues throughout the body.37 This is in part 

because the active site of a cytochrome P450 contains a heme-iron center that is tethered 

directly to the protein via cysteine-thiolate flanking residues38, allowing for a wide array of 

reactions to undergo catalysis. These CYP enzymes are present in most tissues of the human 

body, and additionally play critical roles in the breakdown of endogenous chemicals. There are 

57 human genes divided among 18 families of cytochrome p450 genes and the proteins they 

encode, making these loci prime functional targets for genetic evaluation and penetrance 

understanding.39  In order to avoid lengthy explanation of these salient metabolic tools, the CYP 

families are listed in detail in Table 2-1. 
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Pharmacokinetic 

Metabolism and 

CYP2D6 

And while some CYPs 

metabolize very few, or 

sometimes just even 

one, substrates, both 

CYP3A4 and CYP2D6 

account for over 34% 

and 25% of drug 

deactivation and bioactivation respectively.40 These two enzymes can be both inhibited or 

induced by pharmaceuticals, resulting in clinically significant drug-drug interactions that may 

results in unanticipated adverse reactions, but also potentially beneficial therapeutic outcomes. 

Because of this, it is of critical importance to understand the genetic variability at these loci and 

how this variance functionally impacts individual’s abilities to metabolize certain drugs; a strong 

Family Members Names

CYP1
3 subfamilies, 3 genes, 

1 pseudogene
CYP1A1, CYP1A2, CYP1B1

CYP2
13 subfamilies, 16 genes, 

16 pseudogenes

CYP2A6, CYP2A7, CYP2A13,

 CYP2B6, CYP2C8, CYP2C9,

 CYP2C18, CYP2C19, CYP2

D6, CYP2E1, CYP2F1, CYP2

J2, CYP2R1, CYP2S1, CYP2

U1, CYP2W1

CYP3
1 subfamily, 4 genes, 

2 pseudogenes

CYP3A4, CYP3A5, CYP3A7, 

CYP3A43

CYP4
6 subfamilies, 12 genes, 

10pseudogenes

CYP4A11, CYP4A22, CYP4B

1, CYP4F2, CYP4F3, CYP4F

8, CYP4F11, CYP4F12, CYP

4F22, CYP4V2, CYP4X1, CY

P4Z1

CYP5 1 subfamily, 1 gene CYP5A1

CYP7 2 subfamilies, 2 genes CYP7A1, CYP7B1

CYP8 2 subfamilies, 2 genes CYP8A1, CYP8B1

CYP11 2 subfamilies, 3 genes
CYP11A1, CYP11B1, CYP11

B2

CYP17 1 subfamily, 1 gene CYP17A1

CYP19 1 subfamily, 1 gene CYP19A1

CYP20 1 subfamily, 1 gene CYP20A1

CYP21
2 subfamilies, 1 gene, 1 

pseudogene
CYP21A2

CYP24 1 subfamily, 1 gene CYP24A1

CYP26 3 subfamilies, 3 genes
CYP26A1, CYP26B1, CYP26

C1

CYP27 3 subfamilies, 3 genes
CYP27A1, CYP27B1, 

CYP27C1

CYP39 1 subfamily, 1 gene CYP39A1

CYP46 1 subfamily, 1 gene CYP46A1

CYP51
1 subfamily, 1 gene, 3 

pseudogenes
CYP51A1

Table 2-1. Humans 

have 57 genes and 

more than 59 

pseudogenes 

divided among 18 

families of 

cytochrome P450 

genes and 43 

subfamilies. This is a 

summary of the 

genes and of the 

proteins they 

encode. 

(http://drnelson.uths

c.edu/human.P450.t

able.html) 

http://drnelson.uthsc.edu/human.P450.table.html
http://drnelson.uthsc.edu/human.P450.table.html
http://drnelson.uthsc.edu/human.P450.table.html
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foundation of pharmacokinetics and pharmacogenetics as a whole. The research opportunities I 

encountered in my early years of graduate school allowed me to dive into the world of CYP2D6 

specifically, and it is important to understand the basic science and genetics behind perhaps the 

most well-characterized metabolic enzyme. 

 

Serendipitously, CYP2D6 is primarily expressed in the liver, which is the central hub for all drug 

processing and excretion in the human body, but also has a strong presence in areas of the 

central nervous system41, allowing for pivotal drug-host interactions. Biochemically, CYP2D6 act 

through the mechanism of hydroxylation, demethylation, and dealkylation of specific functional 

groups.42 But what makes this enzyme intriguing is the fact that CYP2D6 is characterized by a 

high inter-individual variability in catalytic activity mainly caused by genetic polymorphisms43 and 

copy number variation.44 Appropriately named, the CYP2D6 allele is what mediates these 

deviations in phenotypes, and individuals possessing certain allelic variants will manifest 

normal, decreased, absent, or excessive CYP2D6 function.45 There are four distinct metabolizer 

classes, and their nomenclature, phenotypes and related genotypes can be seen in Table 2-2. 

These denominations will be used throughout the two case studies in this chapter. 

The second year of my graduate research career, I had the opportunity to be a part of a project 

examining the effects of 

Classification Genotype Phenotype

Ultrarapid Metabolizer 

(UM)

3 or more fully 

functioning genes 

(CNV)

Increased 

enzymatic activity

Extensive Metabolizer 

(EM)

2 wild type, fully 

function genes
Normal activity

Intermediate 

Metabolizer (IM)

1 wild type allele, 1 

non-

functioning/defective 

allele

Decreased 

activity

Poor Metabolizer 

(PM)

2 non-functioning 

alleles/1 or more 

deleted gene

No enzymatic 

activity

Table 2-2. The four 

metabolizer status 

classifications for the 

CYP2D6 gene and related 

enzyme. Genotype at this 

locus and functionally 

related phenotype are also 

displayed for each 

variation. Enzymatic 

activity directly impacts 

drug metabolism rate. 
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methamphetamine (MA) usage on neurodegeneration. CYP2D6 is selectively responsible for 

the metabolism of MA, thus individuals with genetic variation and therefore altered metabolizer 

classes may experience differing responses to the drug as well as to the deleterious side 

effects. Detailed information and findings from this work can be seen in the upcoming PK case 

study #1. Additionally, I was also involved in a pharmacokinetic project aimed at autistic youth in 

my 3rd year as a graduate student. Here we were interested in whether or not CYP2D6 

genotype had an effect on these patient’s response to a second-generation antipsychotic, 

risperidone, metabolized by this enzyme. This study also added CYP3A4/5 analysis into the mix 

to paint a more complete PK picture. More background and results of this research can be 

found in PK case study #2. Overall, I feel these two studies provided me with a robust 

background on pharmacokinetics, and allowed me to begin to truly apply these principles to my 

overarching goal of a better understanding of personalized medicine. 

 

Case Study #1: CYP2D6, brain structure, and cognitive function in methamphetamine 

dependence* 

A Dean, LC Seaman, ED London, EL Nurmi 

*This work is currently unpublished. 

Background / Specific Research Aims 

Methamphetamine (MA) use disorder is a highly prevalent public health problem, both nationally 

and worldwide. Cognitive dysfunction is a common sequela of MA use; however, individual 

susceptibility to cognitive impairment is highly variable and the mechanism of degeneration is 

largely unknown. Metabolism of MA is dependent on the cytochrome p450 2D6 (CYP2D6) 

enzyme, which is inactivated by common polymorphisms. Previous research has found that 

CYP2D6 extensive metabolizers (EMs), with two wild-type or functional alleles, have higher 

rates of cognitive impairment than intermediate/poor metabolizers (IM/PMs) with at least one 
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non-functional allele. We hypothesized that this may result from the elevated exposure of EMs 

to toxic metabolic byproducts. To evaluate this hypothesis, we examined whether EMs, relative 

to IM/PMs, display other markers of neurotoxicity such as differences in cerebral gray matter 

volume. 

 

 

This project sought to evaluate whether methamphetamine-dependent participants with different 

variants of the cytochrome P450 gene (cytochrome P450, family 2, subfamily D, polypeptide 6; 

CYP2D6) exhibit differential rates of cognitive impairment and abnormalities in brain structure. 

The CYP2D6 gene codes for one of the primary enzymes responsible for methamphetamine 

metabolism. Depending on the functionality of inherited CYP2D6 alleles, individuals vary in how 

readily they metabolize methamphetamine, ranging from poor (two non-functional alleles) to 

Figure 2-2. Methamphetamine is metabolized by the liver enzyme CP2D6. The drug can 

either undergo hydroxylation to form p-hydroxymethamphetamine or dealkylation to form 

amphetamine. These represent the two major metabolites. 
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extensive metabolism (two functional alleles). Previous research has found that CYP2D6 

extensive metabolizers have higher rates of cognitive impairment than intermediate/poor 

metabolizers.46 The authors hypothesized that, because extensive metabolizers are exposed to 

a greater load of metabolic byproducts (e.g., amphetamine, 4-hydroxymethamphetamine) than 

intermediate/poor metabolizers, metabolic byproducts may be more neurotoxic than the parent 

methamphetamine compound. Our project sought to further evaluate this hypothesis by 

examining whether extensive metabolizers display other markers of neurotoxicity relative to 

intermediate/poor metabolizers; namely, abnormalities in cerebral gray matter volume and white 

matter integrity. At the time of the grant submission, we already had structural MRI and CYP2D6 

genotype on 57 methamphetamine-dependent subjects; with this R21, we sought to add 24 

more methamphetamine-dependent subjects to this dataset to evaluate hypotheses. We 

hypothesized that: 1) methamphetamine-dependent participants who are extensive 

metabolizers (based on CYP2D6 genotype) would have significantly lower cognitive scores than 

intermediate/poor metabolizers (but not significantly different estimates of premorbid IQ); and 2) 

relative to intermediate/poor metabolizers, extensive metabolizers would have alterations in 

gray matter volume and white matter integrity which have previously been hypothesized to be 

associated with neurotoxicity (i.e., reduced cortical gray matter and reduced fractional 

anisotropy in the frontal lobe). 

 

General Methods 

Subjects:  

Otherwise healthy, adult (18-55 years old) methamphetamine-dependent individuals, n=86. 

Inclusion criteria: DSM-IV-TR MA dependence by Structured Clinical Interview. Must test 

positive for MA metabolite in urinalysis during first screen. Caucasian or Hispanic. Exclusion 
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criteria: History of Axis I psychiatric disorder other than MA dependence or nicotine dependence 

(due to high co-morbidity) or evidence of a serious neurological or medical condition. 

Imaging: 

Structural MRI was acquired on the testing day using a Siemens Sonata 1.5 tesla system with a 

standard 32-channel phased array head coil. A high-resolution whole-brain T1-weighted 

anatomical sequence (MP-RAGE) was collected for spatial normalization and voxel-based 

morphometry. Diffusion tensor imaging (DTI) data was obtained using 30 gradient directions at 

b=1000, 5 repeats of b=0 (no diffusion weighting), with 2.5x2.5x2.5 mm resolution. Scanning 

time took approximately 30 minutes. 

 

Neuropsychological Assessment: 

The neuropsychological battery shown in Table 3 was completed on the testing day after 

participants sustained 5 days of abstinence. This collection of tests was designed to tap multiple 

cognitive domains, with an emphasis on tests of executive function, memory and processing 

speed. Inclusion of normative data for performance comparison purposes. Assessment took 

approximately 2.5 hours to complete. 
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NEUROPSYCHOLOGICAL BATTERY DOMAIN 

COGNITIVE TESTS 

Wechsler Test of Adult Reading  Premorbid IQ estimation 

Rey Auditory Verbal Learning Test   Verbal learning and memory 

Brief Visuospatial Memory Test-Revised   Visual learning and memory 

Continuous Performance Test – 2   Visual attention/inhibitory control 

Stroop Test  Executive functioning/inhibitory 
control 

Finger Tapping Test  Motor speed 

Verbal Fluency   Language and executive 
functioning 

Wisconsin Card Sorting Test   Executive functioning/concept 
formation 

Trailmaking Test   Psychomotor speed and set-
shifting 

Victoria Symptom Validity Test  Effort/motivation 

INVENTORIES 

Time/date last drug use Recency of drug, cigarette & 
caffeine use 

Alcohol breathalyzer  Exclude alcohol intoxication 

Stanford Sleepiness Scale  Alertness 

Beck Depression Inventory-II  Depressive symptoms 

Amphetamine Cessation Symptom Assessment                              
Scale  

Meth withdrawal and craving 

Positive and Negative Affect Schedule  Emotional States 

  

 

Genetic Testing: 

Blood samples were collected, and genomic DNA was extracted. The two most common 

variants in Caucasian and Hispanic populations account for 94% of the genetic variation in 

CYP2D6, rs1065852 and rs3892097. TaqMan SNP genotyping assays were used to genotype 

these loci in all individuals with 93.69% sensitivity, >99% specificity, and >99% positive predict 

value. 

 

Statistical Analyses:  

Table 2-3. Neuropsychological battery of tests utilized in the reported MA study. 
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No significant differences in age, sex, ethnicity, level of education, or smoking were observed 

between the EM and IM/PM groups. Differences in performance on cognitive measures were 

assessed by t-test (one-tailed) for equivalence of the means. 

 

Studies & Results 

During the period of this grant, we completed assessments on 29 methamphetamine-dependent 

participants. The participants received a 1.5 T structural MRI scan, provided a blood sample for 

CYP2D6 genotyping and were administered a comprehensive neurocognitive battery. 

Combined with existing data from former participants, we now have CYP2D6 genotype and 

structural MRI from 86 methamphetamine-dependent subjects (extensive metabolizers n = 60; 

intermediate/poor metabolizers n = 26), with smaller subsets having been administered various 

cognitive tests.  

 

The extensive metabolizer and intermediate/poor metabolizer subjects are generally well-

matched on demographic variables. The two groups do not differ with respect to age, gender, 

education, premorbid IQ (Shipley Vocabulary Test), or ethnicity (p’s > .05). Further, the 

extensive and intermediate/poor metabolizers do not significantly differ on measures of 

methamphetamine and nicotine use, including years of heavy methamphetamine use, age of 

onset of methamphetamine use, days of methamphetamine used in the last 30 days, grams of 

methamphetamine used in the last week, cigarette smoker status (yes/no) or pack years of 

cigarette smoking (p’s > .05).  

 

Because of unavailable data in former participants, only a subset of the subjects have been 

administered cognitive tests, with the largest subsets having been administered the Stop Signal 

Test (SST; extensive metabolizers n = 47; intermediate/poor n = 23) and the Wisconsin Card 
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Sorting Test (WCST; extensive metabolizers n = 44; intermediate/poor n = 18). The extensive 

metabolizers had a significantly slower go reaction time on the SST than intermediate/poor 

metabolizers (t(68) = -2.016; p = .048); however, the two groups did not differ in stop signal 

reaction time (SSRT, p > .05). On the WCST, relative to intermediate/poor metabolizers, the 

extensive metabolizers had a higher percentage of perseverative errors (t(60) = 1.745; p = 

0.017), shown in Figure 2-3. Other WCST indices did not significantly differ between the groups 

(p’s > .10).  

 

 

 

We next compared the extensive and intermediate/poor metabolizer groups on measures of 

cerebral gray matter volume. Images were preprocessed (segmented, modulated and 

Figure 2-3. MA users who are CYP2D6 extensive (EM) vs. intermediate/poor (PM/IM) 

metabolizers show increased perseverative errors on the WCST.  

Utilizing the Wisconsin Card Sorting Task (WCST) as a measure of cognitive ability, we 

observed a significant and marked increase of percentage of perseverative errors in the EM 

participants, almost double that seen in PM/IM individuals. (p=0.014, Cohen’s d effect size = 

1.4) This data supports our prediction of greater cognitive decline in EM individuals, due to 

the increase of toxic MA metabolism byproducts that are reaching the brain. 



24 
 

smoothed) using the voxel-based morphometry (VBM) toolbox in SPM8. Statistical analyses 

were conducted using FSL’s Randomise (http://www.fmrib.ox.ac.uk/fsl/randomise, version 5.1) 

to implement voxelwise permutation-based nonparametric inference for ANCOVA with age and 

gender as covariates. Given the association of WCST performance with frontal lobe integrity in 

meta-analytic data47, statistical models were applied to data in an explicit mask of gray matter in 

the frontal lobe based on an atlas rendered in Montreal Neurological Institute (MNI) 152 space 

(see Figure 2-4).48, 49 Threshold-free cluster enhancement 50 was used to correct for multiple 

comparisons, and a statistical threshold of p < 0.05, corrected for the entire search volume, was 

applied to each of the resulting statistical maps.  

 

 

 

 

Results revealed that, relative to intermediate/poor 

metabolizers, the extensive metabolizers had less gray matter volume in the right 

cingulate/paracingulate gyri (see Figure 2-5). In contrast, there were no regions in which the 

N=23 

N=49 
Figure 2-4. MA users who are 

extensive (EM) vs. poor/intermediate 

(PM/IM) metabolizers show an 

increased median reaction time on the 

of SST, as measured by go-reaction 

response. Consistent with our 

predictions, the significant increase in 

go-reaction time displayed by EM 

individuals on the Stop Signal Task 

(SST) (p=0.036, Cohen’s d effect size = 

2.0) reflects dysfunction in response 

inhibition and impulsive action. 

Speculatively, because the SST has a 

mix of stop and go trials, a delayed 

reaction time on a go trial would indicate 

a difficulty in adaptation and executive 

functioning, potentially due to neurotoxic 

damage in the prefrontal cortex. 
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extensive metabolizers had greater gray matter volume than the intermediate/poor 

metabolizers.  

Lastly, group differences in estimates of white 

matter integrity (i.e., fractional anisotropy; FA) 

were evaluated using Diffusion Tensor Imaging 

(DTI) data processed and analyzed in FSL. Analyses were conducted using tract-based spatial 

statistics (TBSS) within a thresholded FA “skeleton” of white matter tracts. Voxel-wise statistics 

were conducted within the FA skeleton, using threshold-free cluster enhancement and 

permutation testing in FSL’s Randomise. Age and gender were included as covariates of no 

interest.  

 

At corrected thresholds, the extensive and intermediate/poor metabolizers did not exhibit 

differences in FA, regardless of contrast selection (i.e., extensive > intermediate/poor or 

intermediate/poor > extensive). At reduced statistical levels (p < .15, corrected), the most 

appreciable differences suggested that extensive metabolizers have greater FA than 

intermediate/poor metabolizers in regions of the corpus callosum, anterior commissure, and left 

Figure 2-5. MA users who are 

extensive (EM) vs. poor/intermediate 

metabolizers (PM/IM) display decreased 

cerebral gray matter volume. EMs 

(n=57) exhibited reduced gray matter 

volume in the right anterior cingulate 

gyrus relative to IM/PMs (n=26) by 

threshhold free cluster enhancement 

(p<0.05, corrected) controlled for age 

and gender. Sagittal slice (in yellow) in 

the upper left corner shows the frontal 

lobe mask used as a region of interest. 

There were no brain regions where 

EM’s displayed higher grey matter than 

PM/IM’s. These findings support our 

hypothesis that the metabolized 

products of MA, amphetamine and 4-

hydroxymethamphetamine, are more 

toxic to neuronal cells than the parent 

compound. 
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cerebral white matter (Figure 2-6). However, these differences were not observed at traditional 

levels of significance. 

 

 

Significance & Conclusions 

The present data provide some support for the hypothesis that, based on CYP2D6 genotype, 

extensive metabolizers are more susceptible to methamphetamine-induced neurotoxic effects 

than intermediate/poor metabolizers. Specifically, relative to intermediate/poor metabolizers, 

extensive metabolizers exhibited worse performance on a test of executive function (Wisconsin 

Card Sorting Test perseverative errors, p = 0.017) and had less gray matter volume in the right 

cingulate/paracingulate gyri (p<.05, corrected). Since extensive metabolizers have a higher 

degree of exposure to the metabolic byproducts of methamphetamine (e.g., amphetamine and 4-

hydroxymethamphetamine)51 than intermediate/poor metabolizers (extensive metabolizers 

readily metabolize methamphetamine while intermediate/poor metabolizers are more likely to 

excrete methamphetamine unchanged), these data may suggest that the metabolic byproducts 

Figure 2-6. Observed changes in 

fractional anisotropy between extensive 

(EM) and intermediate/poor (IM/PM) 

metabolizers. 

IM/PMs (n=23) tended to have lower 

fractional anisotropy (FA), a measure of 

white matter integrity, than EMs (n=39) 

at reduced statistical thresholds 

(p<0.15, corrected) in regions of the 

corpus callosum, anterior commissure, 

and cerebral white matter. While it might 

be contrary to initial hypotheses, when 

taken together with our results above, 

this finding suggests that FA scores 

may not be indicative of neurotoxicity 

and that low FA itself may not reflect 

neuronal damage or cognitive disability. 
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are more toxic than the parent compound. This is consistent with in vivo studies showing that 4-

hydroxymethamphetamine is more toxic to rat neuronal cells than methamphetamine. 52 Should 

these data be replicated, possible harm-reduction strategies could be explored to reduce the 

toxicity of methamphetamine for users who are engaged in the early stages of behavioral 

treatment (e.g., administration of CYP2D6 inhibitors). 

 

There were no significant differences between extensive and intermediate/poor metabolizers on 

a measure of white matter integrity (fractional anisotropy; FA). Nonsignificant trends in some 

regions were contrary to hypotheses; extensive metabolizers exhibited higher FA than 

intermediate/poor metabolizers. Although this may suggest that FA scores were not indicative of 

neurotoxicity, it should be noted that low FA may not be synonymous with neuronal damage. For 

example, cigarette smokers have been shown to have higher FA than nonsmokers in several 

white matter tracts.53 Likewise, increased FA is associated with attention- deficit hyperactivity 

disorder (ADHD;)54 and visuospatial deficits in Williams syndrome.55 In HIV+ individuals, both 

decreased and increased FA have been found relative to healthy control subjects, depending on 

the specific brain region.56 As such, current nonsignificant findings in FA may not indicate the 

absence of neurotoxicity. 

 

Our data strongly support the hypothesis that CYP2D6 extensive metabolizers are more 

vulnerable to methamphetamine-induced neurotoxic effects than those with impaired enzymatic 

activity, resulting from common gene polymorphisms. This could be due to the fact that MA 

metabolites are more toxic to the underlying neurocircuitry and neuronal cells than the parent 

compound, and future toxicity studies can now address this issue. 

 

We were unable to test for gene deletions or duplications with our methods, which decreases the 
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sensitivity of our test, so that it is possible that a small number of IM/PM individuals may have 

been missed or misclassified. While our pilot study was not powered to support correction for 

multiple testing for 10 cognitive measures, effect sizes are large and warrant replication in a larger 

population. 

 

However, by demonstrating an association between CYP2D6 genotype and cognitive decline and 

brain abnormalities, we propose an identifiable risk factor for cognitive dysfunction in MA 

dependence. Subsequently, this risk factor has the potential to be utilized by clinicians for both 

early intervention and individualized treatment planning, while also aiding in the development of 

harm reduction strategies (i.e., the use of CYP2D6 inhibitors) to prevent cognitive damage related 

to MA relapse while individuals are in treatment. 
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INTRODUCTION 

 

The antipsychotic risperidone (RSP) is safe and effective for the acute and intermediate-term 

treatment of severe and challenging behaviors such as aggression, self-injury, and extreme mood 

lability that are commonly associated with autism spectrum disorder.57, 58 Individual treatment 

benefit and adverse events, such as antipsychotic-induced weight gain (AIWG), however, are 

highly variable. Identifying predictors of therapeutic response and adverse event risk could guide 

treatment selection and may reveal fundamental mechanisms for prevention or treatment. 
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Available data support the hypothesis that drug response and risk for some adverse events is 

heritable, determined in part by individual genetic differences. For AIWG, investigations using 

family study designs show heritability for this adverse effect may be as high as 60-80%.59, 60 Both 

genome-wide and candidate gene studies have identified common genetic variants to function as 

predictors, but the amount of variance in AIWG explained by these findings remains modest. 61-63 

The strongest published associations have implicated common variants of MC4R, leptin, and 

HTR2C as partial predictors of AIWG64. Attempts to identify genetic associations for other adverse 

events such as extrapyramidal and tardive dyskinesia (TD) have only been. 65, 66 While a genome-

wide association study identified 5 potential genes impacting antipsychotic treatment response in 

schizophrenia,67 established moderators of genetic response in ASD are lacking.68   

 

A significant limitation in the vast majority of pharmacogenetic studies of antipsychotic treatment 

has been the failure to include drug pharmacokinetic (PK) information in the examination of 

genetic effects. This is especially relevant in studies of drug distribution, metabolism, excretion 

(DME), and transporter gene variants, where mutations may directly impact plasma and tissue 

drug concentrations. RSP, like most antipsychotics, undergoes extensive first-pass hepatic 

metabolism (hydroxylation) to 9-hydroxyrisperidone (9-OH-RSP, paliperidone). Hydroxylation is 

primarily catalyzed by cytochrome P450 2D6 (CYP2D6), with cytochrome P450 3A4/5 

(CYP3A4/5) representing a secondary pathway of metabolism.69 Interest in the possible effects 

of genetic variants of these drug metabolizing enzymes is heightened by the observations that 

they are both expressed in brain.70 Although 9-OH-RSP was often presumed to possess 

equivalent pharmacodynamic properties to RSP, it is now recognized that RSP has substantially 

higher affinity for 5-HT2A and α1 and α2 adrenergic receptors.71, 72 Therefore, differences in 

adverse events could be influenced by shifts in the ratio of RSP/9-OH-RSP, as well as the sum 

of plasma RSP and 9-OH-RSP (active moiety) concentrations. In addition, both RSP and 9-OH-
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RSP are substrates and inhibitors of members of the adenosine-triphosphate-binding cassette 

(ABC) superfamily of transport proteins, including the multidrug resistance-1 protein P-

glycoprotein (MDR1 or P-gp), encoded by the ABCB1 gene,73 and the breast cancer resistance 

protein (BCRP), encoded by the ABCG2 gene,74 both of which influence drug efflux across 

membranes in the intestines, blood-brain-barrier, and renal tubules. Genetic variants in ABCB1 

and ABCG2 may be additional sources of variability in therapeutic and adverse effects of 

psychotropics such as RSP. Lastly, NR1I2 encodes the nuclear receptor pregnane X (PXR) that 

is a transcriptional regulator of multiple genes involved in the absorption, distribution, metabolism, 

and extraction of drugs and other xenobiotics, including the cytochrome P450s and ABC drug 

transporters.75, 76 NR1I2 polymorphism rs7643645 (A>G) was correlated with a 2.8 fold lower 

risperidone total active moiety concentration when comparing GG to AA genotypes (p = 0.031).77  

 

Multiple mutations in relevant drug metabolism enzymes (DME) and transporter genes are 

common across all human populations, and allele frequencies vary according to genetic 

background. CYP2D6 is polymorphic, with over 100 functional variants identified. Absent CYP2D6 

metabolic capacity (“Poor Metabolizers” or PMs) occurs in 5-10% of Caucasians as a result of 

inheriting two nonfunctional alleles, with the alleles CYP2D6*3, *4, *5, *6 representing 95% of 

responsible variants underlying PMs. Decreased CYP2D6 function (“Intermediate Metabolizers” 

or IMs) can be observed in those individuals with one nonfunctional allele, or in individuals 

possessing other mutations which convey reduced enzyme activity (e.g., CYP2D6*10 allele).78  

Gene deletion and duplication occurs in approximately 7% and 5% if the American population 

respectively.44 Gene duplication (3 or more copies) of functional alleles results in ultrarapid 

metabolizer status (UMs). CYP3A4/5 is also polymorphic, but with fewer variants, although some 

6% of Caucasians, 22% of Asians, and 26% of African Americans have been found to carry the 

CYP3A4*20 variant, an insertion-mediated frameshift resulting in loss of enzyme activity. Other 
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relatively common CYP3A4 variants which also reduce enzymatic activity include the CYP3A4*1B 

and *3 alleles, found in 4-5% and 1% of Caucasians respectively. Similarly, the genes encoding 

drug transporters are known to have common variants. ABCB1 and ABCG2 have identified 

variants which influence expression and/or substrate affinity, and which can be found in as many 

as 20% of Caucasians. NR1I2 variants are also common. 

 

Studies examining the impact of differing CYP2D6 and CYP3A4/5 genotypes on RSP 

pharmacokinetics have yielded mixed findings, but most extant studies are underpowered to 

detect genetic effects, or contain confounding factors such as smoking, wide age ranges, and 

varying exposure lengths. Extensive Metabolizer (EM, or wild type) subjects did not differ from 

PM subjects in the sum of plasma RSP and 9-OH-RSP concentrations (active moiety) in several 

reports.79-84 Nevertheless, differences in RSP and 9-OH-RSP concentrations,80 and higher ratios 

of RSP/9-OH-RSP in PMs79-81, 83 have been found between CYP2D6 PMs versus EMs, in the 

absence of differences in active moiety levels. However, some contrasting reports from larger 

samples have observed higher RSP and active moiety plasma concentrations in impaired 

metabolizers (heterozygous and homozygous for inactive CYP2D6 alleles) versus EMs.85-87 Using 

population PK analyses, one of the largest studies showed that CYP2D6 allele groups linked to 

metabolizer phenotype classification predicted 52% of the variance of RSP concentrations, while 

the area under the curve (AUC) values for activity moiety concentrations were significantly (28%) 

higher for CYP2D6 PMs versus combined EM/UMs and versus IMs. 87 None of these studies 

examined downstream beneficial or adverse clinical drug effects.  

 

Few reports have examined effects of CYP3A4/5, ABC-family variants, and RSP 

pharmacokinetics to confidently establish PK or pharmacodynamic relationships. No CYP3A4/5 

effects were observed for any RSP PK parameters in three studies.79, 88, 89 However, one study 
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noted that carriers of the CYP3A4 SNP rs35599367 A-allele to have a 30% reduction in 9-OH-

RSP clearance,87 and in another report, the CYP3A5*3 allele conferred higher active moiety and 

9-9-OH-RSP concentrations,80 which remained significant even after correcting for 2D6 

genotypes.  For ABCB1, three studies have found significant effects of the ABCB1 SNP 

rs1045642 (C3435T) on active moiety concentrations;79, 84, 85 two of these studies also noted 

effects of additional ABCB1 variants. In addition, a haplotype comprised of 3 SNPs (rs1128503, 

rs1045642, and rs2032583) in ABCB1 was associated with significantly different 9-OH-RSP and 

active moiety concentrations; the haplotype predicted 11% of active moiety concentrations.79 

However, one report failed to find PK effects of ABCB1 variants. None of these studies examined 

resultant clinical drug effects in relation to PK. 

 

Studies testing associations between CYP2D6, 3A4/5, and ABCB1 genotypes and clinical effects, 

such as response and weight gain, have yielded mixed results. Reports on CYP2D6 have 

generally not found associations with clinical response.82, 85, 90, 91 In a positive cohort study of 40 

children with ASD, disruptive behaviors were rated as improved, no change, or worsened; UMs 

(n=2) showed no response or adverse effects, whereas PMs (n=2) experienced improvement and 

greater adverse effects.92 One report of a sample of 116 outpatients treated with various 

antipsychotics (including 26 receiving RSP) for psychosis noted a greater proportion of 

responders were CYP2D6 EMs versus non-responders (67% versus 46%, p = 0.023). I can’t find 

this reference In a smaller study, EMs also showed greater improvement. I can’t find this reference 

However, a monotherapy RSP study of adults with schizophrenia found CYP2D6 PMs showed 

greater PANSS-Total score reduction (p = 0.029).93 Two reports have identified associations 

between efficacy and CYP3A4/5 variants. In the Clinical Antipsychotic Trials of Intervention 

Effectiveness (CATIE) study, a marginal effect for clinical response was seen for CYP3A5  

genotypes in 175 subjects treated with RSP (p = 0.04).94 A study in 130 patients with 
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schizophrenia receiving RSP monotherapy reported minor A-allele homozygotes of CYP3A4*1G 

versus other genotypes experienced significantly less percent improvement in PANSS score 

(28% versus 42/43%, p = 0.021), however this result did not survive statistical correction.(Du et 

al., 2010) Drug transporter variants may be associated with the clinical efficacy of RSP. Greater 

reductions in behavior and sociability problems in children with autism treated with RSP were 

observed in ABCB1 1236T-allele (rs1128503) carriers (p = 0.002), although the magnitude of 

difference was small (4.7%).90 Likewise, TT homozygotes at this SNP experienced greater 

improvement of psychotic symptoms in adults with schizophrenia.95 

 

Adverse events and relationships to DME variants have also been reported. Lane et al (2006) 

found that CYP2D6*10 EMs gained 1.14 and 0.80 kg less than those heterozygous and 

homozygous for CYP2D6*10 respectively after 6 weeks of RSP exposure. Similarly, null alleles 

(*4) were also associated with weight gain in several other studies.96, 97 In contrast, a study of 45 

children with autism treated with RSP for up to 12 months found that both CYP2D6 UMs and PMs 

showed smaller increases in waist circumference than EMs; PMs did not differ from EMs in BMI 

increases.90 While other reports have noted associations between CYP2D6 and ABCB1 variants 

with adverse effects and intolerance of RSP,85, 86, 98, 99  only one study has reported an association 

between ABCB1 variants and RSP-associated weight gain only in females.100 Several studies 

have found significant relationships between RSP PK (specifically active moiety concentrations) 

and adverse events of akathisia, tremor, and other “neurologic” symptoms.87 A meta-analysis of 

20 studies with varying antipsychotics found no association between TD and CYP2D6, however 

when analyses were re-examined using prospective studies only, homozygous and heterozygous 

individuals with CYP2D6 reduced function alleles showed an increased odds ratio of 1.83 – 2.08 

for TD versus EM patients, and mutant allele carriers also possessed increased risk for 

parkinsonian symptoms (OR = 1.64).101 In a sample of 325 outpatients receiving chronic RSP, 



35 
 

CYP2D6 PMs were 3.1-fold more likely to experience moderate to severe adverse drug 

reactions98 and discontinued RSP due to adverse events at a 6-fold greater rate than EMs. 

Similarly, variants in ABCB1 have been associated with RSP-induced extrapyramidal 

symptoms.85, 99 Finally, RSP-induced prolactin elevation in children was associated with number 

of functional CYP2D6 alleles;102 however, this result was not replicated by later reports.90, 103-105  

 

Taken together, aside from some associations with adverse events such as EPS and possibly 

AIWG, the extant literature on the impact of CYP2D6, CYP3A4/5, and ABCB1 mutations on 

risperidone PK, efficacy, and adverse events is inconclusive and incomplete, given the relative 

absence of integrated analyses of RSP PK with genetic and clinical outcomes. We are unaware 

of a single study of investigating DME genetics with RSP PK and clinical response in children, 

despite its widespread clinical use in pediatric psychiatry. Given the lack of consistent and 

integrated prior data, we sought to concurrently test the impact of common PK variants on plasma 

RSP levels and treatment outcomes in a sample of children receiving standard RSP monotherapy. 

 

 

METHODS 

 

Subjects 

The research was conducted under the auspices of the National Institute of Mental Health 

(NIMH) RUPP Autism Network using two protocols approved by individual site Institutional 

Review Boards and by a NIMH Health Data Safety Monitoring Board.106, 107 Written informed 

consent (and assent from the child, when capable) was obtained from a parent or guardian prior 

to enrollment. In the earlier study, youth (ages 5 to 17 years) meeting DSM-IV criteria for autistic 

disorder accompanied by severe irritability (aggression, tantrums, and/or self-injurious 
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behaviors) defined by a score of > 18 on the Aberrant Behavior Checklist (ABC) Irritability 

subscale were treated for 8 weeks with risperidone monotherapy or placebo.(McCracken et al., 

2002) Only 10% of subjects had previously received (ineffective) antipsychotic treatment. Those 

subjects deemed non-responders who had been randomized first to placebo in the 8-week 

acute phase were offered open-label treated with risperidone according to an identical titration 

and assessment protocol. The Aman et al. study applied similar inclusion and exclusion criteria 

(except age range of 4 – 13 years) and all subjects received RSP monotherapy, titrated similarly 

to the 2002 RUPP study, with or without behavior management for up to 24 weeks. Of the 225 

total outpatients enrolled from the two trials, weekly measures of weight, height, BMI, and 

genotype data were available for a combined 184 subjects from their initial 8-week acute 

exposure to RSP. Plasma samples for RSP and 9-OH-RSP drug levels were available from 120 

subjects and were analyzed using combined liquid chromatography/mass spectrometry 

according to previously published protocols; sample loss was primarily due to inadequate 

samples and blood draw refusals.  

 

Clinical response was assessed by changes in parent-reported behavior on the Aberrant 

Behavior Checklist-Community Version (ABC).(Aman, Singh, Stewart, & Field, 1985) The ABC 

is a widely-used outcome measure in clinical trials involving individuals with intellectual and 

developmental disabilities. It contains five subscales defined by factor analysis: Irritability, 

Hyperactivity, Stereotypic Behavior, Social Withdrawal, and Inappropriate Speech. The 

Irritability subscale was one of the primary endpoints for the two clinical trials. Weight and height 

were obtained weekly, and weight was transformed to standardized z-scores using 

anthropometric indices based on the 2000 CDC growth charts using the CDC SAS program, as 

previously described.108 Adverse events were assessed using a parent-reported checklist of 

items, as well as by spontaneous report from parents to the study physicians.  
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Genotyping 

Genomic DNA was extracted from whole blood using QiaAmp DNA Blood Mini Kits (Qiagen, 

Valencia, CA). Genotyping was performed using the TaqMan genotyping platform (Life 

Technologies, Grand Island, NY) with Qiagen Type-it Fast SNP Probe PCR Kit according to 

manufacturer’s protocols. All markers were in Hardy-Weinberg Equilibrium, 10% of the dataset 

was genotyped in duplicate with perfect concordance, and allele frequencies were consistent 

with those reported by the HapMap Consortium. Genes chosen for analysis were those known 

to regulate risperidone metabolism (CYP2D6, CYP3A4/5, NR1I2) and influence absorption and 

disposition (ABCB1, ABCG2, NR1I2). The four most common functional SNPs in CYP2D6 that 

are associated with >90% of IM and PM phenotypes in Caucasian and African American 

individuals were genotyped (rs1065852 [missense], rs3892097 [splice donor], rs16947 

[missense], rs28371706 [missense]) and gene copy number variation (CNV) was determined 

using Taqman real-time PCR. Activity score was assigned by summing the number of null (0), 

partial (0.5), and wild-type (1) alleles plus or minus CNV duplication or deletion. For metabolizer 

status assignment, EMs had a score of 1.5-2, IMs 0.5-1, PMs 0 and UMs>2.109  We did not test 

for rare polymorphisms/alleles, since these, if present at all, would have represented only a tiny 

percent of our sample. Similarly, common functional variants in CYP3A4/5 (rs2740574, 

rs55785340, rs4987161, and rs776746) and NR1I2 (rs7643645, rs1523130, rs2472677) were 

selected and classified as EM, IM, or PM according to the existing literature;110 (PharmGKB, 

https://www.pharmgkb.org/view/vips.jsp). Three known functional variants in ABCB1 

(C1236T/rs1128503,  C3435T/rs1045642, rs4148740 and G2677T/rs2032582 by strong linkage 

disequilibrium (r2=0.8) with rs1128503) and 7 tag SNPs across the coding region of ABCG2 

were also included in the analyses (rs2725248, rs3114020, rs17731538, rs2231142, 

rs13137622, rs7681519, rs2725256).  
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Statistical Analysis 

Because the distributions of RSP, 9-OH-RSP, and active moiety concentrations were skewed, 

those data were log-transformed to normalize distributions to meet the assumptions of the 

statistical model. ANOVA analysis was conducted with RSP PK concentrations as the 

dependent variable and genotype as a fixed factor. Potentially confounding covariates such as 

sex, age, dose, race and ethnicity were entered in the initial model; those identified as non-

significant were thereafter dropped from the final model. Due to race effects, analyses were 

repeated within racial groups. Statistical significance was set as p <0.05. Given the exploratory 

nature of the study, p values are reported as their uncorrected value; the effects of statistical 

correction for multiple tests per hypothesis are reported in the text. To examine change in 

treatment outcome over time, a repeated measures linear mixed model was employed (e.g., 

weighted z-score from baseline and ABC subscales). Genotype, visit (as a continuous variable), 

and interaction of genotype by visit were entered as predictors. Frequency of adverse events in 

genotype groups was examine by chi square analysis. 

 

RESULTS 

 

Risperidone PK: Demographic Influences 

 

The RUPP and RUPP-PI groups were compared using the appropriate Chi-square, ANOVA, or 

t-test to ensure comparable samples. The samples were mostly comparable, with the exception 

of the mean younger age of the RUPP-PI sample (90.6 + 29.9 months versus 102.3 + 31.9 

months, p = 0.06), and a slightly higher mean daily dose for the RUPP-PI study (2.1 + 0.6 

mg/day versus 1.8 mg/day, p = 0.019), and, reflecting the above, the baseline mean body 
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weights and mean risperidone dose (mg/kg/day) were significantly different. The RUPP sample 

also contained a higher proportion of Hispanic subjects and a trend towards fewer Black 

subjects; separate analyses by ancestry are reported. All analyses included age, sex, ancestry, 

and dose as covariates. Interestingly, RSP plasma level was not correlated with age (r=0.029, 

p=0.75), sex (F=1.096, p=0.337) or dose (r=-0.053, p=0.564). As clinicians followed a protocol 

of flexible dosing, the latter may be explained by apparent implicitly detected CYP metabolizer 

phenotype. After covarying for baseline age and weight, both strong determinants of dose, 

those with at least one functional CYP2D6 or CYP3A4 enzyme received a mean dose of 0.076 

mg/kg/day or 2.1 mg daily, while those with no functional CYP2D6 or 3A4 were prescribed 

0.069 mg/kg/day or 1.8 mg daily (p=0.047). Inference of impaired metabolizer status by 

prescribing clinicians has been similarly noted in a prior report.111 

 

 

 

 

RUPP 

(n=34) 

RUPP-PI 

(n=86) 

Combined 

(n=120) 
P-value 

Gender [n (%) male]   85.3 (%)   83.7 (%) 101 (84.2%) 
2 =0.045, 

p=0.832 

Baseline age [months] 102.3 ± 31.9   90.6 ± 29.9   93.9 ± 30.8 
T=1.90, 

p=0.06 

Baseline BMI   18.3 ± 5.0   17.7 ± 3.0   17.9 ± 3.8 
T=0.89, 

p=0.37 

Ethnicity [n (%)] 

  White, non-Hispanic  

  Black, non-Hispanic  

  Native American  

  Asian or Pacific Islander  

  Hispanic 

  Black, Hispanic  

  Other 

 

21 (61.8%) 

  2 (5.9%) 

  0 

  1 (2.9%) 

  6 (17.6%) 

  0 

  4 (11.8%) 

 

61 (70.9%) 

14 (16.3%) 

  2 (2.3%) 

  4 (4.7%) 

  4 (4.7%) 

  1 (1.2%) 

  0 

 

82 (68.3%) 

16 (13.3%) 

  2 (1.7%) 

5 (4.2%) 

10 (8.3%) 

  1 (0.8%) 

  4 (3.3%) 

 

 
2 = 0.95, 

p=0.33 

X2 = 2.68, 

p=0.10 

 

 

X2 = 5.38, 

p=0.02 
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Baseline weight [mean kgs]   34.0 ± 17.9   28.9 ± 10.9   30.7 ± 14.2 
 T=2.37, 

p=0.019 

Final dose [mg/kg/d]   0.06 ± 0.03   0.08 ± 0.03   0.07 ± 0.03 
T=-4.08, 

p=6.7x10-5 

Final dose [mg/d]     1.8 ± 0.6     2.1 ± 0.6     2.0 ± 0.6 
T=-2.71, 

p=0.007 

Risperidone [nmol/L]   27.3 ± 38.9   18.5 ± 37.7   21.0 ± 38.1 
T=1.13, 

p=0.26 

9-OH-risperidone [nmol/L]   42.5 ± 30.9   51.4 ± 49.4   48.9 ± 44.9 
T=-0.98 

p=0.24 

Total Active Moiety [nmol/L] 69.8 ± 60.5 69.9 ± 81.4 69.8 ± 75.8 
T=-0.008, 

p=0.99 

Mean weight gain [kg]     2.8 ± 2.0     2.6 ± 1.5     2.7 ± 3.9 
T=1.40, 

p=0.16 

 

 

Risperidone PK: Pharmacogenetics 

CYP2D6. Concentrations for RSP, 9-OH-RSP, and total active moiety (RSP + 9-OH-RSP), as 

well as the RSP/9-OH-RSP ratio are reported in Table 1 for the separate studies and the 

combined sample. Observed mean concentrations were comparable to those reported in the 

literature;79, 83, 85 however, levels showed marked variability. CYP2D6 activity score (AS)109was 

the strongest determinant of RSP levels (see Figure 2-7). Of the 119 subjects with valid 

CYP2D6 genotypes, 24 (20%) had wildtype activity (AS = 2) at the CYP2D6 locus, having two 

normal function alleles and 6 subjects (5%) had duplications resulting supernormal activity (AS 

> 2). Two (2%) subjects were poor metabolizers with no enzyme function (AS = 0). The majority 

of subjects (N=87, 73%) had some combination of reduced function or null alleles: 13 (11%) 

with AS = 0.5, 28 (24%) with AS = 1, and 46 (39%) with AS = 1.5 (see Figure 2-8). CYP2D6 AS 

predicted RSP parent drug level (p=7.71 x 10-6) and the ratio of RSP/9-OH-RSP (p=8.71 x 10-9), 

Table 2-4. Characteristics of the RUPP, RUPP-PI, and Combined RUPP Autism 

Risperidone Pharmacokinetic/Pharmacogenetic Samples 
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controlling for age, sex, ancestry, total daily dose, and plasma processing batch. In addition to 

total daily dose (p=0.019), parent drug (RSP) level (p=8.13 x10-12) was the strongest predictor of 

9-OH-RSP concentration. Given this observation, parent drug level was added to the model, 

revealing a significant effect of AS on 9-OH-RSP (3.01 x10-4).  

 

 

 

 

 

 

 

 0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

P
la

sm
a 

C
o

n
ce

n
tr

at
io

n
 (

n
g/

m
l)

Activity Score

RSP, 9-OH-RSP and Active Moiety Levels

RSP
9-OH-RSP
Active Moiety

Figure 2-7. CYP2D6 

Activity Score Predicts 

RSP, 9-OH-RSP, and 

Active Moiety Levels. 

 

 

 

 



42 
 

 

 

 

As noted in previous literature, CYP2D6 *4 and *10 alleles resulted in the highest RSP levels. 

Consistent with prior reports suggesting substrate specificity, *17 does not appear to be a 

reduced function allele for RSP transport in our sample. In the case of two reduced function 

alleles, a duplication of one of the partial alleles was apparently able to compensate for impaired 

function with increased quantity, resulting in wildtype RSP levels. While classic UMs (AS > 2) 

showed only slightly reduced RSP levels compared to EMs, total active moiety was more than 

halved in individuals with an AS of 3. (see Figure 8).  

 

CYP3A4/5. The multiple rare CYP3A4 polymorphisms tested were invariant in our sample, and 

therefore CYP3A4 did not contribute to RSP PK variability. At the CYP3A5 locus, 25 subjects 
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(21%) possessed one allele conveying impaired function and 80 subjects (67%) possessed two 

reduced function alleles. After covarying for CYP2D6 effects in the total sample, CYP3A5 

showed a marginal contribution to only RSP parent drug level (p = 0.02). Ancestry effects, 

discussed below, were prominent.  

 

Other PK Genes. Carriers of the minor allele at NR1I2 rs1523130 show higher levels of 9-OH-

RSP (p=0.044) in a dominant pattern independent of CYP2D6 or CYP3A4 genotype. No other 

PK effects of NR1I2 variants were observed. Transporter gene variants in ABCB1 and ABCG2 

had no effect on plasma drug levels. 

 

Risperidone PK: Ancestry Effects 

 

The range of RSP level was much greater in Caucasians, with a range of 254 compared to 92 in 

non-Caucasians, likely reflecting the prevalence of CYP2D6 inactivating polymorphisms. Given 

the large differences identified in minor allele frequencies between Caucasian and non-

Caucasian populations, we performed separate exploratory analyses of the effects of CYP2D6 

and CYP3A5 variation in these two groups. Since all Caucasians (N=84) in our sample carried 

impaired activity alleles at CYP3A5, not all phenotypes were represented (N EM = 0, IM = 14 

and PM = 67), and CYP3A5 variation did not account for variability within the Caucasian sample 

(p = 0.15). In Caucasians, RSP concentrations were strongly predicted by CYP2D6 genotype 

alone (p = 1.1 x10-5). Conversely, in this underpowered sample of non-Caucasians (N=36), 

RSP concentration was determined predominantly by CYP3A5 genotype (p = 0.005), with a 

marginal influence of CYP2D6 status (p=0.035), and contrary to findings in Caucasians, a 

marginally significant effect of dose (p=0.004).  
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Risperidone PK: Clinical Outcomes 

 

Pairwise correlational analyses were performed to assess the possible relationships between 

PK concentrations and clinical outcomes. Individual values for RSP, 9-OH-RSP, total active 

moiety, and for the RSP/9-OH-RSP ratio (all log-transformed) were examined against change 

from baseline to Week 8 for the five clinical efficacy ABC subscales. Of the total of 20 tests, 

ABC-I (irritability subscale) change was positively correlated with RSP ratio (r=0.22, p=0.015) 

and negatively correlated with 9-OH-RSP level (r=-0.18, p=0.047). ABC-III (stereotypy subscale) 

was also negatively correlated with 9-OH-RSP level (r=-0.22, p=0.016). None of the PK values 

were significantly correlated with RSP-associated weight gain (BMI Z-scores, all p values >0.3). 

From the Adverse Events Report Form, we examined relationships between RSP PK 

concentrations and the presence or absence of side effects. In 23 children with reported 

extrapyramidal symptoms (EPS), symptoms were positively associated with levels of 9-OH-RSP 

(p=0.021) and total active moiety (p=0.014). Sedation, which was commonly reported in 95 

children, was positively associated with RSP Ratio (p=0.047). Drooling was positively 

associated with higher daily RSP doses (2.16 ± 0.59 mg/d vs. 1.92 ± 0.62 mg/day, p=0.015). 

 

Risperidone Pharmacogenomics: Clinical Outcomes 

 

Genotype groups at each locus were analyzed as possible predictors of clinical efficacy and 

adverse event outcomes. Neither CYP2D6 nor CYP3A4/5 metabolizer status was significantly 

associated with changes on treatment response endpoints, as measured by the five ABC 

subscales, or side effects, including weight gain, sedation, EPS, tremor, and drooling. While not 
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significant, our data suggests that CYP2D6 PMs may show both attenuated response and 

increased side effects; however, these analyses were severely underpowered given only 2 PMs 

in our sample. CYP2D6 PMs showed half to one quarter the improvement in ABC-I, -II, and IV 

compared to IM/EMs (Cohen’s D effect sizes = 0.8-0.9). Similarly, PMs had nearly twice the 

degree of weight gain as IM/EMs (BMI-Z score 1.1 verses 0.6 respectively, D = 0.8). 

Variant rs7681519 in the ABCG2 transporter gene is the only genetic variant globally associated 

with dimensional ABC score. Homozygotes for the minor allele showed an enhanced response 

(ABC-I p = 0.07, D = 0.5; ABC-II p=0.04, D = 0.6; ABC-III p = 0.03, D = 0.6; ABC-IV p = 0.02, D 

= 0.6; ABC-V p = 0.001, D = 0.9). Consistent with the direction of effects discussed above, 

minor allele ABCG2 homozygotes were also protected from AIWG (p=0.04). The C-allele at 

NR1I2 rs1523130 was associated with enhanced ABC-I response (p=0.02, dominant pattern, D 

= 0.5). ABCB1 rs4148740 minor alleles showed greater weight gain (p = 0.002, recessive 

pattern, D = 1.6). With regard to other adverse effects, all participants who reported tremor 

(14/14) were carriers of the C-allele at NR1I2 rs1523130 (p=0.039) and 92% of those reporting 

EPS (p=0.017) and 86% of those reporting drooling (p=0.044) were common allele 

homozygotes at ABCG2 rs2231142. 
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This study represents one of the most comprehensive attempts to delineate the role of multiple 

DME and drug transporter genes on antipsychotic pharmacokinetics and clinical effects of 

treatment and is especially unique given our sample of children and adolescents. There are 

several main findings.  

 

Plasma RSP levels showed only weak association with clinical outcomes. With the exception of 

marginal effects of 9-OH-RSP on irritability, stereotypy and EPS, no efficacy or side effect 

associations, including with weight gain, were evident. Speculatively, negative effects of 9-OH-

RSP on outcome and adverse effects may imply that paliperidone may not achieve equal 

efficacy to RSP for ASD irritability and stereotypy and may be more likely to produce EPS. In 

line with these data, NR1I2 rs1523130 was associated with both 9-OH-RSP levels and 

irritability. Sedation, on the other hand, was associated with RSP to 9-OH RSP ratio, suggesting 

the opposite relationship. BMI changes were independent of RSP plasma levels.  

 

The paucity of association between RSP PK values and clinical outcomes we observed is 

surprising but in agreement with literature reports. Extant data has suggested possible 

relationships between drug level and the presence of neurologic symptoms. We speculate that, 

given the mechanism of action of RSP as an antagonist of dopamine 2 and serotonin 2A 

receptors, PK values, especially of active moiety, above a certain threshold are sufficient for 

inducing clinical change, and that a “dose-response” relationship between exposure and other 

clinical effects, positive or negative, may require much higher exposures to be detected.  

 

Despite some contradictory findings in the literature, our data confirms the primary and 

significant role of CYP2D6 in determining RSP concentrations, especially in Caucasians. The 

CYP2D6 poor metabolizer genotype group displayed 702% higher RSP and 133% higher total 
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active moiety concentrations. Significant but more modest associations were also observed for 

the effects of CYP3A5 genotypes on RSP and active moiety concentrations, which 

predominated over CYP2D6 in non-Caucasian subjects in predicting drug levels. RSP 

metabolism appears to be handled by different CYP metabolic pathways across ancestry. As 

fully functional CYP3A5 alleles are apparently rare in Caucasians but CYP2D6 variation is 

common, the finding that CYP2D6 variation is the primary driver of RSP variability is not 

surprising. Inactive copies of CYP3A4 are common in populations of African ancestry, 

emphasizing the importance of compensation by CYP3A5. Since CYP2D6 PM alleles are less 

common in non-Caucasian populations, CYP2D6 contributes less to non-Caucasian variation. 

Larger and more diverse samples would be needed to further stratify effects according to 

ancestry. These findings are consistent with prior reports of the predominant role of CYP2D6 

genotype on RSP concentration85-87 and contribution of CYP3A5 variants to RSP and active 

moiety concentrations80, 87 in adults, suggesting that conflicting studies may have been 

underpowered or influenced by population background differences, especially with regard to 

genetic ancestry.79, 88, 89   

 

Contrary to a few other published reports, we found no impact of ABC-family gene variants on 

RSP pharmacokinetics. The absence of associations between variants in ABCB1 with RSP PK 

endpoints is difficult to reconcile with the two reports finding effects of multiple ABCB1 variants 

on 9-OH-RSP and active moiety concentrations,79, 85 even though we genotyped at least one of 

the SNPs (rs1045642, C3435T) found previously to be predictive of PK differences. The fact 

that other groups have also been unable to identify RSP PK effects of ABCB1 genotypes 

suggests that any true effects are relatively small.87  It is conceivable that developmental 

differences may influence the relationship between these gene variants and RSP PK, given the 

pediatric age range of our sample.  
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Despite a strong effect of CYP2D6 on plasma RSP, CYP2D6 genotype did not predict outcome. 

Given the few relationships noted between RSP PK and clinical effects, this is not surprising. 

Genetic predictors of RSP response outcomes are undoubtedly far more complex than genetic 

determinants of plasma concentration, requiring sample sizes in the tens of thousands for 

unequivocal discovery. PMs in our study may have in fact suffered worse outcomes and 

adverse effects; however, our study was underpowered to statistically test this relationship. 

While neither of the metabolic CYP genes were related to outcomes, transporter proteins were 

nominally associated. One possible interpretation of this finding is that plasma concentration, 

which is largely related to CYP enzymes, is less important than brain exposure, which is 

dependent on transporter proteins, in determining outcomes. The consistent association of 

NR1I2 and transporter variants across measures of efficacy and adverse effects in the absence 

of RSP PK associations might reflect their potential role in influencing brain exposure. The fact 

that the same genes and variants (ABCG2 and NR1I2) were associated with therapeutic 

outcomes and adverse effects adds credence to these results.  

 

ABCG2 intronic SNP rs7681519 and NR1I2 5’UTR SNP rs1523130 appear to tag regulatory 

DNA blocks, as evidenced by numerous promoter and enhancer marks, evidence of DNase 

protection and regulatory protein binding, and functional gene regulation based on eQTL 

databases (haploreg). Interestingly, the G-allele of ABCG2 rs7681519 is in strong LD (r2=0.78, 

D’=0.99) with the C-allele of rs2725263, empirically shown to produce increased expression of 

ABCG2.112 Based on this strong association, carriers of the G-allele of rs7681519 should have 

reduced brain exposure to RSP given the increased ABCG2 efflux pump expression at the BBB. 

Similarly, the T-allele of NR1I2 rs1523130 has also been previously shown to increase RSP 

clearance and in our sample was observed to predict reduced response and greater side 
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effects.87 ABCG2 rs2231142 is a missense variant resulting in an amino acid change from 

glutamine to lysine; common alleles have been previously associated with higher RSP levels 

and greater adverse effects,113 which we also observed in our analysis. Linkage disequilibrium 

(LD) between SNPs within ABCG2 is <0.4, reflecting independent associations. ABCB1 

rs4148740 is an intronic variant tagging enhancer marks, sites of protein binding and motif 

changes. Minor alleles, associated with increased AIWG in our sample and have previously 

been associated with remission of major depression and increased adverse effects of 

antidepressants transported by ABCB1, suggesting that it is a functional variant producing 

greater psychotropic exposure.114-116  

 

These data add to extant knowledge of moderators of RSP pharmacokinetics in humans. 

Consistent with in vitro and in vivo studies, we confirmed the importance of CYP2D6 and 

CYP3A5 genetic variants in determining steady state concentrations of RSP and active moiety. 

Our sample was larger than the majority of similar reports and participants demonstrated 

excellent treatment compliance, were mostly treatment-naive, and were all non-smokers and 

medically healthy, which presumably aided our ability to discern important but subtle effects of 

gene variants on RSP pharmacokinetics and outcome.  

 

Our study has several limitations. Although our sample is larger than the majority of similar 

studies, it still lacks sufficient power to test variants of low frequency or small effect, as well as 

interactions between multiple loci. As a sample of children with ASD, the clinical effects under 

observation may not extrapolate to the treatment of psychosis or other clinical conditions. Our 

RSP PK estimates are only based on single trough samples, which may be insufficient to fully 

capture the range of actual exposures as compared to repeated sampling studies. A large 

number of tests were performed (tests of 14 genetic variants, 4 (not independent) plasma 
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measures, 5 treatment outcomes and 5 adverse effects). Few of these findings would survive 

correction for multiple testing.   

 

There have been considerable efforts to identify clinically significant moderators and predictors 

of benefits and adverse effects of RSP and other antipsychotics, which in theory could yield 

more personalized and effective management. However, the results of these efforts have been 

mostly disappointing. Moderator analyses of clinical benefit in the two RSP studies of children 

with ASD that formed the sample studied in this report only identified one significant moderator, 

baseline severity of irritability, out of 33 variables tested. Similar attempts to identify genetic 

predictors of antipsychotic response have not yet uncovered significant predictors of outcome, 

with the possible exception of studies of AIWG, where prior studies have noted replicated and 

robust associations with variants in MC4R and other genes involved in energy balance. In 

theory, genetic variants that directly impact the distribution and metabolism of the drug 

represent reasonable candidates to test for their impact on clinical outcomes. Although we 

demonstrated significant associations with RSP PK values and identified several nominal 

associations between gene variants and clinical outcomes, additional studies are needed to 

confirm these associations. More research on the mechanisms and magnitude of clinical effects 

of drug transporter gene variants is especially needed. Overall, the prediction of clinical effects 

of medications such as RSP are complex, and will require considerably more effort to achieve 

clinical application. These important efforts, however, may eventually help to identify patients 

who would benefit most from RSP therapy or are at highest risk for adverse outcomes. 

 

 

Chapter 2 Wrap-Up 
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Overall, the completion of these two projections based heavily in pharmacokinetics not only 

taught me in-depth knowledge of LADME principles, but also helped me learn an enormous 

amount of the liver-based metabolism of pharmaceutical drugs. Specifically, cytochrome p450 

enzymes are invaluable tools in our working knowledge of drugs and xenobiotic treatments for 

human diseases, and I believe that with this strong PK foundation at the base of my 

personalized medicine pyramid, I will truly be able to apply sound scientific reasoning to my 

future targeted strategies for biological mechanistic evaluation and drug design. 
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Chapter 3  

Pharmacodynamics 

 

General Introduction 

As we saw in chapter 2, one of the most powerful tools we have in understanding 

pharmaceuticals is that of pharmacokinetics; because being able to identify the ways our own 

body will process and affect the drug is over half of the battle. The second piece to this puzzle 

comes in the form of a field known as pharmacodynamics (PD). I touched briefly on these 

principles in chapter 1, but we can consider PK and PD a sort of yin and yang relationship. 

Where PK is in the most basic sense how the body will affect a drug or drug like substance, PD 

is how that substance or its metabolites will interact with and affect the human body. 

 

Pharmacodynamics stems from two Greek words: pharmakon, meaning drug, and dynamikos, 

representing force or power. Whether or not we are talking about pharmaceutical moieties or 

even drugs of abuse, people take these substances to achieve a desired biological, 

physiological, and/or pharmacological responses. Because of this, most drugs are developed 

based on the PD theory that the compound will interact with a native biological structure (i.e. a 

receptor, an enzyme, a transporter, etc.) and that this interaction manifests as a specific effect 

on the body.117  The majority of drugs either mimic or inhibit normal biochemical processes or 

inhibit pathological processes of microbial organisms, and there are 7 main drug interactions 

that researchers consider when developing a novel drug.118 

1. Stimulating action / receptor agonism 

2. Depressing action / receptor agonism 

3. Blocking / antagonizing action 
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4. Stabilizing action 

5. Exchanging / replacing native substance action 

6. Direct beneficial chemical reaction 

7. Direct harmful chemical reaction 

 

In general, PD endpoints and measures are essential for establishing the benefit-to-risk ratio for 

any therapeutic intervention. These systematically evaluate a drug’s activity in the body using 

biomarkers and or clinical outcomes to quantify both efficacy and safety.119  Pharmacodynamics 

places emphasis on dose-response relationships, which is the direct cause and effect of drug 

concentration and represents a large sphere of the temporal dynamics involved in this field. As 

we consider drugs as ligands for their biochemical receptors, it is also possible to measure the 

receptor binding and consequent effect, informing about the therapeutic window and duration of 

action of a constituent.120  

 

Identifying and Implementing Pharmacodynamic Biomarkers 

 

The bulk of pharmacodynamics is focused around the concept of biomarkers, which are most 

commonly endogenous macromolecules that can be measured in bodily fluids. These provide a 

more direct biological link to disease and clinical response, but pose significant challenges due 

to heterogeneity, varying levels of activity, and immunoreactivity.121  However, they are vital in 

the bigger picture of personalized medicine, as they allow for earlier and more robust drug 

safety and efficacy measures as well as accurate patient stratification.122 They propel our 

understanding of how drugs, both novel and already established, work on a cellular level, and in 

combination with targeted bioanalytics and PK/PD modelling, can ensure proper 
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pathophysiological validation of various human diseases and improve the way medicine 

approaches and treats these issues.  

 

My graduate advisor, Dr. Erika Nurmi, worked closed with a researcher who was deeply 

interested in the effects that nicotine has on neuroinflammation, Dr. Arthur Brody. I had the 

opportunity in my 3rd and 4th years of graduate school to work closely with both of them on two 

separate but related pharmacodynamic projects focusing on cigarette smoking. We can 

consider nicotine the drug in these scenarios, as although it is derived from the tobacco plant, it 

is still a stimulant and potent parasympathomimetic alkaloid that acts as a receptor agonist as 

most nicotinic acetylcholine receptors.123 It is the main psychoactive compound in cigarettes 

currently available on the market and has a high addiction liability in the general population, but 

this mechanism of action is still somewhat poorly understood.124   

 

We leveraged a biomarker for neuroinflammation, the expression of translocator protein 

(TSPO), which is quantifiable through positron emission topography (PET) imaging to better 

understand nicotine’s direct effects on the brain after individuals smoke a cigarette. In the first 

study, represented below as PD Case Study #1, we demonstrated that smokers have impaired 

inflammatory functioning compared with non-smokers and that the extent of this effect could be 

determined by an individuals genotype at the TSPO locus. To better understand how this 

mechanism operated on a more neurochemical level, the second study, PD Case Study #2, 

evaluated the effect of overnight smoking abstinence on this same TSPO biomarker, 

implementing dynamic imaging of both satiated and abstinent smokers for comparison. Results 

showed that chronic cigarette smoking was indicative of global impairment of microglial 

activation that can persist throughout the duration of a smoker’s life. More background 

explanation, PD details, results, and discussion can be found directly below in each case study. 



56 
 

 

 

PD Case Study #1 : Effect of Cigarette Smoking on a Marker for Neuroinflammation: A 

[11C]DAA1106 Positron Emission Tomography Study * 

 

*This study is currently published in Neuropsychopharmacology 125 

 

Brody AL, Hubert R, Enoki R, Garcia LY, Mamoun MS, Okita K, London ED, Nurmi EL, Seaman 

LC, Mandelkern MA. 

 

INTRODUCTION 

 

Inflammation is a critical component of normal tissue repair and is fundamental to the body’s 

defense against infection. 126 In the brain, microglia continuously scan the surrounding 

extracellular space127 in order to respond swiftly to damage or infection by becoming activated 

and participating in neuroinflammation128. In this context, activated microglia participate in 

functions such as clearance of apoptotic cells and extracellular pathogens, removal of 

degenerating neurons and extracellular proteins, and cytokine/chemokine production.128 When 

activated, microglial cellular morphology changes and the expression of the translocator protein 

(TSPO) 18 kDa is increased, thereby making the expression of TSPO a marker for 

neuroinflammation. 

 

The radioligand N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl) acetamide labeled with 

carbon-11 (abbreviated as [11C]DAA1106) has emerged as a reliable second-generation 
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radiotracer for labeling TSPO129-131 with high affinity132-135 for positron emission tomography 

(PET) scanning in vivo. Because [11C]DAA1106 and other newer radiotracers have higher 

affinity for TSPO than previously used radiotracers (eg, [11C]PK11195), they are more useful 

for quantifying PET data by having the sensitivity to account for genetic TSPO predispositions 

(discussed in more detail below)136 and smaller changes in neuroinflammation.135 TSPO was 

originally called the ‘peripheral benzodiazepine receptor131’ because it was identified by 

benzodiazepine binding but was renamed to acknowledge its many potential functions and 

location in the central nervous system (as well as in the periphery).137 Specific binding of 

DAA1106 correlates with the presence of activated microglia identified by 

immunohistochemistry in situ135 and immunohistochemistry combined with autoradiography in 

brain tissue.138 

 

PET studies using [11C]DAA1106 and similar radiotracers have examined a range of conditions 

thought to be associated with neuroinflammation. This method was used recently to 

demonstrate increases in radiotracer binding in patients with Alzheimer’s disease139-144, Lewy 

body dementia145, amyotrophic lateral sclerosis146, stroke147, and non-smokers with major 

depression148, but not Parkinson’s disease149 or normal aging150. Increases in this marker have 

also been demonstrated in animal models of brain injury134, 151-153 and stroke154, along with 

subsequent normalization with time after a brain insult152, 154, 155. In contrast, a decrease in the 

marker for neuroinflammation was found with administration of propofol anesthesia (Hines et al, 

2013). 

 

Over the past 30+ years, a large body of research has addressed the effects of cigarette 

smoking on inflammation in the body126. A driving force behind this research is the known 

impairment of wound healing by smoking. Comprehensive literature reviews have 
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recommended preoperative and postoperative abstinence periods of >4 weeks in smokers 

undergoing surgical procedures157, 158. Though the mechanism by which smoking impairs wound 

healing has not been fully elucidated, cigarette smoke contains >250 toxins, many of which are 

known to affect healing158, and studies of laboratory animals exposed to cigarette smoke have 

demonstrated significant alterations (both decreases and increases) in markers of 

neuroinflammation159. Reviews of this literature indicate that the inflammatory healing response 

is attenuated in smokers by reduced inflammatory cell chemotactic responsiveness, diminished 

migratory function, and increased oxidative stress.160, 161 

 

In the absence of studies directly examining the effect of human cigarette smoking on 

neuroinflammation in vivo, we used PET scanning to determine whether cigarette smokers have 

altered binding of [11C]DAA1106, a marker for neuroinflammation, compared with non-smokers. 

We hypothesized that non-smoker vs smoker effects would occur globally throughout the brain, 

as prior research by our group162-165 and others166, 167 demonstrates widespread effects of 

smoking when studying systems (eg, the nicotinic cholinergic system) that are widely 

distributed. We also sought to examine the effect of menthol, as menthol cigarette smoking is 

common (~1/3 of US smokers) (SAMHSA, 2009) and menthol smokers have more difficulty 

quitting in standard treatment programs168-170, elevated serum nicotine/cotinine/exhaled carbon 

monoxide (CO) levels (in some171, but not all 172, 173, studies), and more severe upregulation of 

brain nicotinic acetylcholine receptors165 when compared with non-menthol cigarette smokers. 

Therefore, we also hypothesized that effects of smoking on [11C]DAA1106 binding would be 

greater in menthol than in non-menthol smokers. 

 

 

MATERIALS AND METHODS 
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Forty-five participants (30 smokers and 15 non-smokers) completed the study and had usable 

data. These participants underwent telephone and in-person screening, a bolus [11C]DAA1106 

PET scanning session, blood draws during PET to determine TSPO affinity genotype and 

plasma nicotine (and metabolite) levels, and a structural magnetic resonance imaging (MRI) 

scan, as described below. An additional 6 participants underwent PET scanning but were 

excluded due to genotype (n=4, see below) or technical PET scanning issues (n=2) (Figure 11). 

 

Participants were veterans who were recruited through Internet (eg, Craigslist) advertisements 

and posted flyers. Inclusion criteria were: (1) healthy adult (18–65 years) cigarette smokers (10–

40 cigarettes per day) who met DSM-IV criteria174 for Nicotine Dependence or non-smokers 

(<100 cigarettes lifetime and none within the past year), (2) smoking primarily  

 

(>80%) either menthol or non-menthol 

cigarettes (for the smoker group), (3) 

ability to read, write, and give voluntary 

informed consent, and (4) an exhaled CO 

⩾ or <8 ppm (and urine cotinine ⩾ or 

<200 ng/ml) during the study screening 

visit to support smoking or non-smoking 

status, respectively. Exclusion criteria 

Figure 3-1. Flow diagram showing the 

number of potential and actual 

participants at each step of the study, 

including reasons for potential 

participants being screened out of 

participation. 
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were: (1) any Axis I diagnosis (including mood, anxiety, psychotic, and substance abuse 

disorders) within the past year, (2) any current medication or history of a medical condition that 

might affect the central nervous system at the time of scanning (eg, current treatment with a 

psychotropic medication or history of severe head trauma with loss of consciousness, epilepsy, 

or other neurological diseases), (3) regular use (>1 × /week) of anti-inflammatory medication, 

such as steroidal or non-steroidal anti-inflammatory medications (eg, corticosteroids, ibuprofen, 

naproxen, aspirin, or celecoxib (Celebrex)), (4) unstable cardiovascular disease, severe liver 

disease, or renal insufficiency, which might make tolerating study procedures difficult, or (5) 

pregnancy. Occasional drug/alcohol use not meeting criteria for abuse or dependence was not 

exclusionary, but participants were instructed to abstain from drug/alcohol use for at least 48 h 

prior to PET scanning. 

 

For the telephone screening, a thorough smoking history, including age of first cigarette, 

maximum smoking habit, menthol or non-menthol cigarette use, length and dates of abstinence 

periods, previous treatments used, and current smoking habit, was obtained. A brief medical, 

psychiatric, and substance use history was also obtained during the telephone screening. 

During a subsequent in-person visit, eligibility criteria were confirmed and general 

demographics, smoking history, and symptom ratings were obtained with screening questions 

from the SCID for DSM-IV, the Smoker’s Profile Form, the Fagerström Test for Nicotine 

Dependence (FTND)175, 176 (to assess severity of Nicotine Dependence), Shiffman–Jarvik 

Withdrawal Scale (SJWS)177 (to measure craving and withdrawal), and Spielberger State Trait 

Anxiety Index (STAI)178 and Beck Depression Inventory (BDI)179 (to confirm the absence of 

potentially confounding psychiatric symptoms). A brief medical review of systems and chart 

review were also performed by a study physician (ALB or MSM), along with an exhaled CO 

measurement (Micro+ Smokerlyzer Breath CO Monitor; Bedfont Scientific, UK), urine cotinine 
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screen (The Accutest NicAlert; Jant Pharmacal, Encino, CA), breathalyzer (AlcoMatePro), urine 

toxicology screen (Test Country I-Cup Urine Toxicology Kit), and urine pregnancy test (Test 

Country Cassette Urine Pregnancy Test) to verify inclusion/exclusion criteria. 

 

Participants meeting inclusion/exclusion criteria who wished to participate underwent a 

[11C]DAA1106 PET scanning session 1 week later, using a procedure similar to the one 

developed in previous studies.144, 180, 181 At 1400 hours on the day of PET scanning, participants 

arrived at the VA Greater Los Angeles Healthcare System PET Center and underwent a brief 

clinical interview, breathalyzer, and urine cotinine, toxicology, and pregnancy screens, in order 

to verify continued meeting of inclusion/exclusion criteria (including confirmation of reports of 

drug abstinence at the time of scanning). From 1430 to 1445 hours, smokers smoked to satiety 

(2–3 cigarettes, favorite brand) in an outdoor area adjacent to the PET center. From 1445 to 

1500 hours, participants were positioned on the PET scanner and a venous line was placed. At 

1500 hours, participants received a bolus injection of 377 (±62) MBq of [11C]DAA1106 and 

underwent dynamic PET scanning of the brain for the next 90 min. PET scans were obtained 

using the Philips Gemini TruFlight PET Scanner (Koninklijke Philips Electronics N.V., 

Eindhoven, The Netherlands). [11C]DAA1106 was prepared by an established method (Wang 

et al, 2012). An investigational new drug (IND) approval from the Food and Drug Administration 

(IND 122041) was obtained to use the radiotracer [11C]DAA1106 for the study described here. 

 

A 5-ml blood sample was drawn prior to the initiation of PET scanning for genotyping of each 

individual’s TSPO affinity subtype (high [C/C], medium [C/T], or low [T/T]), because these 

affinity subtypes have been shown to affect radiotracer binding for all currently used radiotracers 

determining TSPO availability.136, 182, 183 For this sample, venous blood was drawn via a port in 

the catheter placed for radiotracer injection. Genomic DNA was extracted from whole blood 
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using the QiaAmp DNA Blood Mini Kits (Qiagen, Valencia, CA) by study collaborators (EN and 

LS) and TSPO single-nucleotide polymorphism (rs6971) genotyping using the TaqMan Allelic 

Discrimination (Thermo Fisher Scientific, Canoga Park, CA) platform was performed in 

duplicate, according to the manufacturer’s specified protocol. Quality control was ensured by 

perfect concordance of replicate samples, expected minor allele frequencies, and adherence to 

Hardy–Weinberg equilibrium. Only scans from participants with the high- or medium-affinity 

genotypes (known to be >90% of North Americans;184) were included in study analyses in order 

to avoid a potential confound. The exclusion of low-affinity binders from data analysis is 

standard practice in recent research in this field.146, 149, 185, 186 

 

In addition, blood samples were drawn 10 and 60 min after the initiation of PET scanning for 

determination of plasma nicotine/cotinine levels. Afternoon plasma cotinine has been shown to 

be a good measure of nicotine exposure for the past 24 h187. Samples were centrifuged to 

obtain plasma, packed on dry ice, and shipped to the Clinical Pharmacology Laboratory at the 

University of California, San Francisco for assay by gas chromatography by Peyton Jacob and 

colleagues. 

 

One week after the PET scanning session, an MRI scan of the brain was obtained on a 3.0-T 

scanner (Signa; GE Medical Systems, Milwaukee, WI) in order to aid in localization of regions 

on the PET scans. The MRI had the following specifications: three-dimensional Fourier-

transform spoiled-gradient-recalled acquisition with TR=30 ms, TE=7 ms, 30-degree angle, 2 

acquisitions, and 256 × 192 view matrix. The acquired volume was reconstructed as roughly 90 

contiguous 1.5-mm thick transaxial slices. 

 



63 
 

As in previous research by our group162, 188-190 , MRI/PET co-registration was performed using 

the Statistical Parametric Mapping software (FIL Methods Group, UK), and automated volumes 

of interest (VOIs) were determined on MRI using FSL tools for structural MRI. These automated 

VOIs were transferred from each participant’s MRI to his/her co-registered PET scan and 

visually inspected using PMOD (PMOD Technologies, Zurich, Switzerland). The primary VOI 

was whole brain (including gray and white matter) for reasons cited in the Introduction section. 

However, as automated volumes are easily attained and regional differences are possible, VOIs 

were also determined for the amygdala, caudate, hippocampus, nucleus accumbens, putamen, 

and thalamus, similar to VOIs obtained in prior research (Takano et al, 2010; Yasuno et al, 

2012). 

 

In order to obtain a quantitative measurement of VOI binding to TSPO in the brain, standardized 

uptake values (SUVs) were calculated using the standard definition of SUV=mean tissue activity 

concentration (Bq/ml)/(injected dose (Bq)/body weight (g)). Mean tissue activity concentration 

from 20 to 40 min postinjection was used, based on time activity curves demonstrating stable 

activity during this time period. SUV was used as the primary outcome measure because it 

avoids invasive arterial blood sampling and has been shown to strongly correlate with total 

volume of distribution (Vt) values191, 192, has good test–retest reproducibility, and has less 

intersubject variability than Vt for a similar radiotracer. 

 

For statistical analysis of data, an analysis of variance (ANOVA) was performed, with whole-

brain SUV as the measure of interest and both group (smokers vs non-smoker) and TSPO 

genotype (mixed or high affinity) as between-subject factors141, 142. To determine whether group 

differences were due to differences in particular brain regions, a multivariate ANOVA 

(MANOVA), using the smaller automated VOIs, was performed with the same structure as the 
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preceding ANOVA, followed by univariate ANOVAs for the individual VOIs. To quantify 

between-group differences, percentage of difference was calculated as: 100 × (SUVnon-

smokers−SUVsmokers)/SUVnon-smokers. Based on prior research reporting greater brain 

exposure to cigarette smoke in menthol than in non-menthol cigarette smokers, we also 

performed an ANOVA for whole-brain SUV with the same structure as the above test, using 

non-smoker vs menthol vs non-menthol cigarette preference as a between-subject factor. As an 

exploratory analysis, linear analyses were performed for the smoker group, with whole-brain 

SUV value as the dependent variable and independent variables related to smoking, controlling  
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Variable Non-smoker 
group (n=15) 

Whole 
smoker 

group (n=30) 

Non-menthol 
smoker 

subgroup 
(n=15) 

Menthol 
smoker 

subgroup 
(n=15) 

Age, years 47.6 (±13.8) 52.1 (±8.1) 49.9 (±8.4) 54.4 (±7.4) 

Sex (% female) 26.7 20.0 20.0 20.0 

Race/ethnicity 
(%) 

 African 
American 

26.7 46.7 33.3 60.0 

 Asian 26.7 10.0 6.7 13.3 

 Hispanic 26.7 13.3 13.3 13.3 

 White 20.0 30.0 46.7 13.3 

          

Height (inches) 68.9 (±4.0) 68.2 (±4.0) 68.3 (±4.7) 68.2 (±3.5) 

Weight (kg) 88.1 (±23.4) 84.0 (±16.2) 83.9 (±17.9) 84.1 (±14.9) 

Cigarettes per 
day 

0 (±0) 13.9 (±3.8) 13.5 (±3.8) 14.4 (±3.9) 

Exhaled carbon 
monoxide (ppm) 

1.6 (±0.6) 13.3 (±4.7) 13.0 (±4.2) 13.5 (±5.2) 

Fagerström Test 
for Nicotine 
Dependence 
(FTND) 

0 (±0) 4.0 (±2.3) 4.1 (±2.1) 3.9 (±2.4) 

Beck Depression 
Inventory 

1.0 (±1.3) 1.7 (±2.3) 1.3 (±1.8) 2.1 (±2.8) 

State Trait 
Anxiety Inventory 

58.5 (±15.0) 66.7 (±17.8) 68.3 (±18.1) 65.1 (±18.0) 

Caffeine use 
(coffee cup 
equivalents/day) 

1.1 (±1.3) 2.0 (±1.6) 2.0 (±1.7) 1.9 (±1.5) 

Alcohol drinks 
per day 

0.6 (±1.4) 1.0 (±2.1) 0.7 (±1.6) 1.3 (±2.5) 
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for TSPO genotype. Statistical tests were performed using the statistical software program  

SPSS/PASW version 24 (SPSS, Chicago, IL). 

RESULTS 

 

Study groups had no significant differences in age, sex, race/ethnicity, height, weight, 

depression/anxiety levels, or caffeine, alcohol, or marijuana use (Table 3-1). On average, the 

groups were middle-aged, mostly male, and had generally low levels of depression/anxiety and 

drug/alcohol use. No significant between-group differences were present for body weight or 

injected dose of radiotracer, which were used to calculate SUV. 

Brain region SUV values—

non-smokers 
(n=15) 

SUV values—

smokers 
(n=30) 

SUV values—

non-menthol 
smoker 

subgroup 

(n=15) 

SUV values—

menthol 
smoker 

subgroup 

(n=15) 

Whole brain 0.20 (±0.03) 0.17 (±0.04) 0.18 (±0.04) 0.16 (±0.02) 

Accumbens 

 R 0.20 (±0.03) 0.17 (±0.04) 0.17 (±0.04) 0.16 (±0.03) 

 L 0.21 (±0.03) 0.17 (±0.04) 0.17 (±0.04) 0.16 (±0.03) 

          

Amygdala 

 R 0.18 (±0.03) 0.15 (±0.04) 0.16 (±0.04) 0.13 (±0.02) 

Marijuana 
cigarettes per 
week 

0.0 (±0.0) 0.3 (±1.3) 0.5 (±1.8) 0.1 (±0.4) 

1. Table 3-1. Baseline Demographics and Rating Scale Scores for the Non-Smoker and 
Smoker Groups All values are presented as means (±SD) or percentages. Using χ2 tests for 
categorical variables and Student’s t-tests for continuous variables, no between-group (or 
between-subgroup) tests were significant, other than differences in measures of smoking 
(cigarettes per day, exhaled carbon monoxide, and FTND scores) between the smoker 
groups/subgroups and the non-smoker group (all P-values<0.0005). 
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 L 0.17 (±0.03) 0.15 (±0.04) 0.16 (±0.04) 0.14 (±0.02) 

          

Caudate 

 R 0.18 (±0.04) 0.14 (±0.03) 0.15 (±0.03) 0.14 (±0.02) 

 L 0.18 (±0.03) 0.15 (±0.03) 0.15 (±0.03) 0.14 (±0.02) 

          

Hippocampus 

 R 0.19 (±0.03) 0.16 (±0.03) 0.17 (±0.04) 0.15 (±0.02) 

 L 0.19 (±0.03) 0.15 (±0.03) 0.16 (±0.04) 0.14 (±0.02) 

          

Putamen 

 R 0.23 (±0.03) 0.19 (±0.05) 0.21 (±0.06) 0.18 (±0.03) 

 L 0.23 (±0.03) 0.19 (±0.04) 0.20 (±0.05) 0.18 (±0.03) 

          

Thalamus 

 R 0.22 (±0.04) 0.19 (±0.04) 0.20 (±0.04) 0.18 (±0.03) 

 L 0.22 (±0.03) 0.18 (±0.04) 0.19 (±0.04) 0.17 (±0.03) 

 

PET data analysis comparing smokers and non-smokers revealed a significant effect of group 

for whole-brain SUV values (ANOVA, F=8.3; df=1,41; P=0.006), due to smokers having mean 

2. Table 3-2. Standardized Uptake Values (SUVs) for the Whole Brain and Smaller 
Regions of Interest for Non-smokers and Smokers (and the Non-Menthol Smoker and 
Menthol Smoker Subgroups) Abbreviations: L=left; R=right. All values are mean±SD. All regions 

were analyzed using analysis of variance, with group (non-smoker vs smoker or non-smoker vs non-
menthol smoker vs menthol smoker) and genotype as between-subject factors. All regions were 

significant for the non-smoker vs smoker comparison at the P 0.05 level, except for the right and 

left accumbens, which approached significance (P-values=0.08 and 0.06, respectively). Similarly, all 

regions were significant for the three group comparisons (non-smoker vs non-menthol smoker vs 

menthol smoker) at the P 0.05 level. The automated regions listed here were generated using the 

FSL toolkit. 
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16.8% lower values than non-smokers (Table 3-2). Consistent with this global finding, in the 

analysis of the smaller VOIs, a significant multivariate effect of group was found (MANOVA; 

F=2.8, df=12,30; P=0.01), with all VOIs having a significant (or trend-level) between-group effect 

on univariate analysis (Table 3-2), owing to smokers having lower SUV values than non-

smokers (range 14.6–19.7%) in all VOIs studied. 

 

 

For the three-group comparison (non-smokers vs non-menthol cigarette smokers vs menthol 

cigarette smokers), the whole-brain SUV comparison was significant (ANOVA, F=6.1; df=2,39; 

P=0.005), owing to a range of values from non-smokers (highest) to non-menthol cigarette 

smokers (middle) to menthol cigarette smokers (lowest) (Table 3-2). In the multivariate analysis 

3. Figure 3-2. Mean positron emission tomography (PET) images from the study subgroups 
(non-smokers, non-menthol cigarette smokers, and menthol cigarette smokers) 
demonstrating higher [11C]DAA1106 standardized uptake values (SUVs) for non-smokers 
than the two smoker subgroups. The first three columns consist of mean SUV PET images 
(transaxial, sagittal, and coronal from top to bottom) for the three study groups/subgroups 
(n=15 each) and the far right column shows the group mean magnetic resonance image. For 
this figure representation of study results, the PET scans were spatially normalized into 
standard Montreal Neurological Institute (MNI) template space. 
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of smaller VOIs, a significant effect of group was found (MANOVA; F=1.8, df=24,56; P=0.03), 

with all VOIs having a significant between-group effect, owing to the range (from high to low) of 

SUV values from smokers to non-menthol smokers to menthol smokers (Table 3-2). In 

comparing only the non-menthol with the menthol cigarette smokers, the whole-brain SUV 

comparison did not reach significance (ANOVA; F=3.6; df=1,26; P=0.07), and similar results 

were found for the smaller VOIs (ANOVAs; Ps=0.03–0.21), possibly owing to the smaller 

samples used for comparing the non-menthol with the menthol cigarette smoker subgroups. 

 

In the exploratory analysis of smoking-related variables, a significant relationship was found 

between cigarettes per day and whole-brain SUV (F=6.3; P=0.02), indicating that higher levels 

of reported smoking were associated with lower levels of TSPO availability. Similarly, a 

significant relationship between the stimulation subscale scores of the SJWS and whole-brain 

SUV was also found (F=5.6; P=0.03), indicating that higher levels of withdrawal stimulation were 

associated with lower levels of TSPO availability. No significant associations were found for 

FTND scores, CO levels, plasma nicotine/cotinine levels, or other subscales on the SJWS. 

 

 

DISCUSSION 

 

Cigarette smokers have less [11C]DAA1106 binding than non-smokers throughout the brain, 

indicating less TSPO availability. Though several explanations for this finding are possible, a 

straightforward one is that smoking results in global impairment of microglial activation. This 

explanation is consistent with much prior research demonstrating that smokers have impaired 

inflammatory functioning in other parts of the body, which leads to compromised wound 

healing126, 156. Furthermore, the inverse correlation between [11C]DAA1106 binding and 
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participant reports of cigarette use per day indicates that the severity of impaired microglial 

activation may be related to the amount of current cigarette usage. Of note, the fact that study 

results were global (rather than regional) is also consistent with prior research demonstrating 

widespread effects of smoking on brain receptors.162, 163, 165-167, 190 These global effects of 

smoking are in line with known properties of cigarette smoke, namely, that it rapidly enters the 

body and brain due to high permeability through lung, vasculature, and brain cells.193 Taken 

together, study results may demonstrate a significant widespread brain abnormality in smokers 

in the satiated state. 

 

The negative association between SUV values and cigarettes per day, but not plasma nicotine 

levels (or other measures of smoking behavior), may indicate that components of cigarette 

smoke other than nicotine are responsible for the low level of microglial activation found here. 

Laboratory studies support this theory, with several studies demonstrating that whole tobacco 

smoke administration results in greater alterations in inflammatory markers than nicotine 

alone.194, 195 However, given the evidence that nicotine indeed impairs196, 197 or attenuates198 

some inflammatory processes, and the relatively small sample of smokers studied here in the 

correlational analysis, the exact relationship between nicotine and neuroinflammation in human 

smokers remains to be confirmed. 

 

Although impairment of neuroinflammation by smoking is a straightforward explanation of the 

study results, other explanations are possible, given the complex effects of cigarette smoking on 

the brain. Cigarette smoke contains thousands of constituents,199 with hundreds having known 

toxic effects. 200, 201 It is possible that one or more of these constituents directly interfered with 

[11C]DAA1106 binding to TSPO, which would have resulted in the difference in binding 

between smokers in the satiated state and non-smokers found here. Additionally, acute smoking 
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is known to disrupt blood–brain barrier function,202 which could have created differences in 

radiotracer binding for smokers and non-smokers for the PET time period of interest used here. 

 

In addition to the overall difference between smokers and non-smokers, the menthol cigarette 

smoker subgroup had less [11C]DAA1106 binding than the non-menthol cigarette smoker 

subgroup. This finding is consistent with prior research by our group165 showing greater 

upregulation of nicotinic acetylcholine receptors throughout almost all brain regions in menthol 

than in non-menthol cigarette smokers. Also, research by others demonstrates that menthol 

cigarette smoking is associated with more severe biological abnormalities in some171, but not 

all,172, 173 studies that have examined this issue. Therefore, as in prior research, the present 

finding may be due to greater brain exposure to cigarette smoke (leading to greater impairment 

of microglial activation) in menthol cigarette smokers, a direct effect of menthol flavoring, or 

some other mechanism. 

 

The primary limitation of this study was the absence of arterial blood sampling such that total 

distribution volume (Vt) was not ascertained. Vt may control for the potential confounds of 

between-subject differences in radiotracer metabolism and binding to vascular endothelium and 

plasma protein.149, 203, 204 Although Vt is a common outcome measure in PET studies examining 

TSPO in conditions other than tobacco dependence,205-207 recent research demonstrates that 

the less invasive SUV measure tends to correlate well with Vt within individual PET studies191, 

208 and has high test–retest reliability209. Other similar studies have used pseudo-reference 

regions for PET data analysis146, 205, 210-213 to minimize potential confounds, but this method 

would not have been appropriate here due to the hypothesized and confirmed effect of smoking 

throughout the brain. Additional limitations included a modest sample size and the fact that 

smokers were scanned in the satiated state, such that we did not determine whether results 
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were due to acute or chronic cigarette smoking. Future research could examine smokers in the 

abstinent state to determine the relationship between decreased [11C]DAA1106 binding and 

recency of smoking. 

 

In summary, cigarette smokers in the satiated state have decreased TSPO availability, which is 

related to participants’ current smoking level (higher levels of smoking were associated with less 

TSPO availability). This effect appeared to be greater for menthol than for non-menthol cigarette 

smokers. Future research could examine the time course of recovery of TSPO availability upon 

smoking cessation and the interplay between smoking, neuroinflammation, and the progression 

of diseases thought to be mediated by neuroinflammation. 

 

 

 

 

 

 

 

 

 

 

PD Case Study #2: Effect of overnight smoking abstinence on a marker for microglial 

activation: a [11C]DAA1106 positron emission tomography study.* 

 

*This study is currently published in Psychopharmacology.214 
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INTRODUCTION 

 

Microglia are the main innate immune cells in the central nervous system (CNS).215 Under 

homeostatic conditions, they continuously monitor the surrounding environment for signs of 

infection or homeostasis-perturbing events.216, 217 Microglia react to counteract such 

perturbations in order to protect neurons, which have a limited capacity to regenerate, leading to 

elevated levels of activated microglia in neurodegenerative diseases.218, 219 In this context, 

activated microglia participate in various functions, such as clearance of apoptotic cells and 

extracellular pathogens, removal of degenerating neurons and extracellular proteins, and 

cytokine/chemokine production.128 When activated, microglial cellular morphology changes and 

expression of the translocator protein (TSPO) 18 kDa is increased, thereby making expression 

of TSPO a marker for neuroinflammation. 

 

Epidemiological studies have shown that cigarette smokers have a lower risk of 

neurodegenerative diseases than the general population,220, 221 and much research has 

examined the mechanism by which smoking could diminish neuroinflammation, which 

contributes to neurodegenerative damage. Extensive pre-clinical work has shown that nicotine 
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and/or other agonists at nicotinic acetylcholine receptors (nAChRs) protect against neuronal cell 

damage222 via binding to α7 nAChRs and inhibition of microglial activation.220, 223-225 

 

The radioligand N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl) acetamide labeled with 

carbon-11 ([11C]DAA1106) has emerged as a reliable second-generation radiotracer for 

labeling TSPO129-131 with high affinity132, 133, 135, 138  for positron emission tomography (PET) 

scanning in vivo. Specific binding of DAA1106 is reported to be greater than previously used 

ligands (e.g., PK11195) but less than at least one recently developed ligand (PBR28). 136 

Specific binding of DAA1106 correlates with the presence of activated microglia identified by 

immunohistochemistry in situ135 and immunohistochemistry combined with autoradiography in 

brain tissue.138 [11C]DAA1106 was chosen for use here because of these favorable properties 

and previous experience by our group with this radiotracer.125, 226 

 

Our group recently used [11C]DAA1106 with PET scanning to compare smokers who had 

smoked to satiety (~ 15 min prior to scanning) with nonsmoking controls.125 The groups differed 

in whole brain standardized uptake values (SUVs) for the radiotracer, with smokers having 

16.8% lower values than nonsmokers (and lower mean SUVs in menthol- than nonmenthol-

cigarette smokers). Smokers also had lower SUVs (by 14.6–19.7%) in a range of smaller brain 

volumes of interest. In addition, whole-brain SUV was negatively correlated with participant-

reported cigarettes per day. These study findings were consistent with much prior research 

demonstrating that smokers have less inflammatory functioning than nonsmokers. 

 

For the study presented here, we sought to determine if the reduction in [11C]DAA1106 SUV 

(the marker for neuroinflammation) found in satiated smokers was still present in early 

(overnight) smoking abstinence. In order to study smokers in a state with potentially significant 
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differences from nonsmoking controls, overnight (> 12 h) abstinence from smoking was chosen 

as the time point of interest because nicotine would be expected to be recently eliminated from 

the body at that time (plasma half-life of ~ 2 h;124 and withdrawal symptoms (e.g., urge to smoke 

and anxiety/irritability) would be expected to be elevated.227, 228 As in our prior study, we 

hypothesized that smoker vs. nonsmoker effects would occur globally, based on prior research 

demonstrating that cigarette smoke is rapidly absorbed229 and results in saturation (or near 

saturation) of nicotinic acetylcholine receptors throughout the brain.162, 163, 190, 230 We also sought 

to examine the effect of menthol, because menthol smoking is common (~ 1/3 of US smokers) 

(SAMHSA 2009), menthol smokers have more trouble quitting in standard treatment programs 

than nonmenthol-cigarette smokers,157, 168, 169 menthol smoking has been found to lead to 

elevated serum nicotine/cotinine and exhaled carbon monoxide levels171 (though not all studies 

agree on this point;231, 232 and menthol smokers had lower mean [11C]DAA1106 SUVs than 

nonmenthol smokers in our prior study of smokers in satiety.125 

 

METHOD 

 

Forty participants (22 cigarette smokers and 18 nonsmokers) completed the study and had 

usable data. These participants underwent telephone and in-person screening, overnight 

smoking abstinence prior to the PET session (for the smoker group), a bolus [11C]DAA1106 

PET scanning session, a blood draw to determine TSPO affinity genotype, and a structural 

magnetic resonance imaging (MRI) scan, as described below. Four additional participants were 

enrolled, but were excluded because they were homozygous for the low affinity TSPO 

genotype. All participants provided written informed consent on forms approved by the 

Institutional Review Boards of either the VA San Diego Healthcare System or VA Greater Los 
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Angeles Healthcare System. A subset of the nonsmoker group in the analysis presented here 

consisted of participants who were included in our previous report (n = 13). 

 

Participants were recruited through posted flyers and the Internet (e.g., Craigslist). Inclusion 

criteria were healthy adult (18 to 65 years old) daily cigarette smokers (range 2–25 

cigarettes/day and evidence of tobacco dependence on the Fagerström test for nicotine 

dependence (FTND)) or nonsmokers (< 100 cigarettes lifetime and none within the past year), 

smoking primarily (> 80%) either menthol or nonmenthol cigarettes (for the smoker group), 

ability to give voluntary informed consent, and an exhaled CO > or < 8 ppm (and urine cotinine > 

or < 200 ng/mL) during the study screening visit to support smoking or nonsmoking status, 

respectively. Exclusion criteria were any psychiatric diagnosis (including mood, anxiety, 

psychotic, and substance abuse disorders other than tobacco use disorder) within the past 6 

months; any current medication or history of a medical condition that might affect the central 

nervous system at the time of scanning (e.g., current treatment with a psychotropic medication, 

or history of severe head trauma with loss of consciousness, epilepsy, or other neurological 

diseases); regular use (> 1×/week) of anti-inflammatory medication, such as steroidal or 

nonsteroidal anti-inflammatory medications (e.g., corticosteroids, ibuprofen, naproxen, aspirin, 

or celecoxib (Celebrex®)); unstable cardiovascular disease, severe liver disease, or renal 

insufficiency, which might make tolerating study procedures difficult; or pregnancy. Occasional 

drug/alcohol use not meeting criteria for abuse or dependence was not exclusionary, but 

participants were instructed to abstain from drug/alcohol use for at least 48 h prior to PET 

scanning. 

 

For the telephone screening, a thorough smoking history, including age of first cigarette, 

maximum smoking habit, menthol- or nonmenthol-cigarette use, length and dates of abstinence 
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periods, previous treatments used, and current smoking habit, was obtained. A brief medical, 

psychiatric, and substance use history was also obtained. During a subsequent in-person visit, 

eligibility criteria were confirmed and general demographics, smoking history, and symptom 

ratings were obtained with the FTND175, 176 (to assess severity of nicotine dependence), 

Spielberger State Trait Anxiety Index (STAI)178 , and Beck Depression Inventory (BDI)179 (to 

confirm the absence of potentially confounding psychiatric symptoms) for all participants, and 

Smoker’s Profile Form and Shiffman–Jarvik Withdrawal Scale (SJWS)177 (to measure craving 

and withdrawal) for participants scanned at UCSD. A brief medical review of systems and chart 

review were also performed by a study physician, along with an exhaled carbon monoxide (CO) 

measurement (Micro+ Smokerlyzer Breath CO Monitor; Bedfont Scientific, Ltd., UK), urine 

cotinine screen (The Accutest® NicAlert™; Jant Pharmacal Corp., Encino, CA), breathalyzer 

(AlcoMatePro), urine toxicology screen (Test Country I-Cup Urine Toxicology Kit), and urine 

pregnancy test (Test Country Cassette Urine Pregnancy Test), in order to determine if 

participants met inclusion/exclusion criteria. 

 

Participants who met inclusion/exclusion criteria and wished to participate underwent a 

[11C]DAA1106 PET scanning session 1 week later at either the University of California at San 

Diego (UCSD) Center for Molecular Imaging (n = 15; 10 overnight abstinent smokers and 5 

nonsmokers) or VA Greater Los Angeles Healthcare System (VAGLAHS) PET Center (n = 25; 

12 overnight abstinent smokers and 13 nonsmokers), using a procedure similar to the one 

developed in previous studies.143, 144, 180, 181 Smokers were instructed to abstain from cigarettes 

and other nicotine-containing products from prior to midnight on the night before PET scanning. 

The PET session was initiated in the afternoon with participants undergoing a brief clinical 

interview, breathalyzer, exhaled CO level, and urine toxicology and pregnancy screens, in order 

to verify continued meeting of inclusion/exclusion criteria (including drug abstinence at the time 
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of scanning). An exhaled CO of < 6 ppm was considered consistent with overnight abstinence. 

Following these procedures, participants were positioned on the PET scanning bed and a 

venous line was placed. They then received a bolus injection of 350 (± 53) MBq of 

[11C]DAA1106 and underwent dynamic PET scanning of the brain for the next 90 min. PET 

scans were obtained using either an ECAT HR+ PET scanner (CTI PET systems, Knoxville, TN) 

(UCSD) or a Philips Gemini TruFlight PET Scanner (Koninklijke Philips Electronics N.V., 

Eindhoven, the Netherlands) (VAGLAHS). [11C]DAA1106 was prepared by an established 

method.233 All scans consisted of eighteen 5-min frames. For the UCSD scanner, a 20-min 

transmission scan from a Ge-68 rod source was performed for attenuation correction following 

the dynamic scan. The reconstruction used a manufacturer’s OSEM algorithm with 4 iterations 

and 16 subsets. For the VAGLAHS scanner, CT scanning was performed for attenuation 

correction following the dynamic scan, and the manufacturer’s RAMLA algorithm was used for 

image reconstruction. Investigational new drug (IND) approvals from the Food and Drug 

Administration (INDs 133984 (UCSD) and 122041 (VAGLAHS)) were obtained to use the 

radiotracer [11C]DAA1106 for the studies described here. 

 

A 5-ml blood sample was drawn prior to the initiation of PET scanning for genotyping of each 

individual’s TSPO affinity subtype (high (C/C), medium (C/T), or low (T/T)), because these 

affinity subtypes affect radiotracer binding of all currently used radiotracers determining TSPO 

availability.136, 182, 183 Genomic DNA was extracted from whole blood using QiaAmp DNA Blood 

Mini Kits (Qiagen, Valencia, CA) (by E.N. and L.S.) and TSPO single-nucleotide polymorphism 

(rs6971) genotyping using the TaqMan Allelic Discrimination (Thermo Fisher Scientific, Canoga 

Park, CA) platform was performed in duplicate, according to the manufacturer’s specified 

protocol. Quality control was ensured by perfect concordance of replicate samples, expected 

minor allele frequencies, and adherence to Hardy–Weinberg equilibrium. Only scans from 
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participants with the high- or medium- affinity genotypes, present in > 90% of North 

Americans,184 were included in study analyses, in order to avoid a potential confound. The 

exclusion of homozygous low-affinity binders from data analysis is standard practice in recent 

research in this field.146, 149, 185, 186 

 

Within 1–2 weeks of PET scanning, an MRI scan of the brain was obtained, in order to facilitate 

localization of regions on the PET scans. At UCSD, high-resolution T1-weighted 3D MRIs were 

obtained on a Siemens 3 T Skyra scanner (Erlangen, Germany), with the following 

specifications: TR = 2300 ms, TE = 3 ms, 9° angle, 2 acquisitions, and 160 × 256 × 256 matrix. 

Participants who received PET scans at VAGLAHS had MRI scans with the following 

specifications: 3 T GE Medical Systems Signa scanner (Milwaukee, WI) three-dimensional 

Fourier-transform (3DFT) spoiled-gradient-recalled acquisition with TR = 30 ms, TE = 7 ms, 30° 

angle, 2 acquisitions, and 256 × 192 view matrix. 

 

As in previous research by our group, MRI/PET co-registration was performed using Statistical 

Parametric Mapping software (FIL Methods Group, UK), and automated volumes of interest 

(VOIs) were determined on MRI using FSL tools for structural MRI. These automated VOIs were 

transferred from each participant’s MRI to his/her co-registered PET scan and visually inspected 

using PMOD (PMOD Technologies Ltd., Zurich, Switzerland). The primary VOI was whole brain 

(including gray and white matter) for reasons noted above. However, since automated volumes 

are easily attained and regional differences are possible, VOIs were also determined for the 

amygdala, caudate, hippocampus, nucleus accumbens, putamen, and thalamus, similar to VOIs 

obtained in prior research.144, 181 
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In order to obtain semi-quantitative measurements of radiotracer binding to TSPO in brain, 

SUVs were calculated using the standard definition of SUV = mean tissue activity concentration 

(Bq/mL)/(injected dose (Bq)/body weight (g)). Mean tissue activity from 20 to 40 min post-

injection was used, based on time-activity curves from our previous study demonstrating stable 

activity during this time period. SUV was used as the primary outcome measure because it 

avoids invasive arterial blood sampling. 

 

For the statistical analysis of data, demographic and rating scale variables were compared 

between groups using Student t tests for continuous variables and Chi-square tests for 

categorical variables, in order to determine if groups were similar on these variables. For the 

central study analysis, an analysis of covariance (ANCOVA) was performed, with whole-brain 

SUV as the measure of interest and both group (overnight abstinent smoker vs. nonsmoker) 

and TSPO genotype (heterozygous or homozygous for the high affinity allele) as between-

subject factors.142, 148 Research site (UCSD vs. VAGLAHS) was included in the model as a 

nuisance covariate, in order to control for possible systematic differences in SUVs related to the 

different PET scanners or other differences in methodology at the two sites (which were 

somewhat, but not significantly, different). To determine if group differences were due to 

regional effects, a multivariate ANCOVA (MANCOVA), using the smaller automated VOIs, was 

performed with the same structure as the preceding ANCOVA, followed by univariate ANCOVAs 

for the individual VOIs. The use of an overall MANCOVA for determination of main effect of 

group (nonsmoker vs. overnight abstinent smoker) controls for multiple comparisons. For the 

smaller VOIs, means of left and right SUVs were used. For descriptive purposes, percent 

difference between study groups for both sites was calculated as: 100 * 

(SUVnonsmokers − SUVsmokers) / SUVnonsmokers. Based on prior research reporting greater 

brain exposure to cigarette smoke in menthol- than nonmenthol-cigarette smokers, we also 
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performed an ANCOVA for whole brain SUV with the same structure as the above test, using 

nonsmoker vs. menthol- vs. nonmenthol-cigarette preference as a between-subject factor, 

followed by the same analyses for smaller automated VOIs as for the preceding analysis. For 

the exploration of associations between PET data and smoking-related behavioral symptoms, 

correlations were determined for the smoker group between whole brain SUV and smoking-

related ratings (for smokers with completed rating scales), while controlling for genotype. For 

exploratory associations between SUVs and demographic variables, correlations or tests for 

associations with the same structure as in the preceding analyses were performed for age, sex, 

and race/ethnicity for the whole study sample. Statistical tests were performed using the 

statistical software program SPSS version 24 (SPSS Inc., Chicago, IL). 

 

RESULTS 

 

The nonsmoker and overnight abstinent smoker groups did not differ significantly in age 

(P = 0.24), sex (P = 0.71), race/ethnicity (P = 0.50), height (P = 0.18), weight (P = 0.25), 

depression (P = 0.16) or anxiety (P = 0.94) levels, or caffeine (P = 0.23), alcohol (P = 0.27), or 

marijuana (P = 0.29) use (Table 3-3). On average, participants were middle-aged, mostly male, 

and had generally low levels of depression/anxiety and drug/alcohol use. On the scan day, 

participants had low levels of exhaled CO (1.9 ± 0.8 ppm for the nonsmoker group and 3.3 ± 1.4 

ppm for smokers), and smokers had a mean of 17.9 ± 2.3 h abstinence at the time of radiotracer 

injection (due to overnight abstinence and availability of PET scanning for research at our 

institutions in the mid-to-late afternoon). 
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Variable Nonsmoker 
group 
(n = 18) 

Whole smoker 
group (n = 22) 

Nonmentho
l-smoker 
subgroup 
(n = 16) 

Menthol-
smoker 
subgroup 
(n = 6) 

Age 46.9 (± 13.4) 41.9 (± 13.2) 41.5 (± 12.6) 43.0 (± 16.7) 

Sex (% female) 22.2 27.3 25.0 33.3 

Race/ethnicity 
(%) 

 African 
American 

22.2 36.4 37.5 33.3 

 Asian 22.2 9.1 12.5 0 

 Hispanic 22.2 13.6 12.5 16.7 

 White 33.3 40.1 37.5 50.0 

TSPO 
genotype (% 
high affinity) 

83.3 77.2 87.5 50.0 

Height (in.) 69.7 (± 4.2) 68.0 (± 3.4) 68.5 (± 3.5) 66.6 (± 2.6) 

Weight (kg) 89.8 (± 23.8) 82.3 (± 16.5) 86.8 (± 15.8) 70.1 (± 12.1) 

Cigarettes/day 0 (± 0) 11.2 (± 6.7) 11.1 (± 6.7) 11.7 (± 7.3) 

Exhaled carbon 
monoxide 
(ppm) at 
screening visit 

1.7 (± 0.7) 12.7 (± 9.0) 11.6 (± 8.7) 15.7 (± 9.6) 

Fagerström 
Test for 
Nicotine 
Dependence 
(FTND) 

0 (± 0) 4.3 (± 2.9) 4.6 (± 3.0) 3.5 (± 2.6) 

Beck 
Depression 
Inventory 

1.1 (± 1.4) 2.1 (± 2.9) 2.3 (± 2.8) 1.8 (± 3.5) 

Trait Anxiety 
Inventory 

30.9 (± 9.1) 31.2 (± 11.6) 31.4 (± 12.0) 30.4 (± 11.8) 
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Variable Nonsmoker 
group 
(n = 18) 

Whole smoker 
group (n = 22) 

Nonmentho
l-smoker 
subgroup 
(n = 16) 

Menthol-
smoker 
subgroup 
(n = 6) 

Caffeine use 
(coffee cup 
equivalents/ 
day) 

0.9 (± 1.0) 1.3 (± 1.0) 1.2 (± 1.0) 1.6 (± 1.0) 

Alcohol 
drinks/week 

0.2 (± 0.5) 1.0 (± 1.7) 1.2 (± 1.9) 0.6 (± 0.8) 

Marijuana 
cigarettes/week 

0.1 (± 0.5) 0.5 (± 1.6) 0.7 (± 1.8) 0.2 (± 0.6) 

 

PET data analysis comparing overnight abstinent smokers and nonsmokers revealed a 

significant effect of group for whole brain SUVs (ANCOVA, P = 0.004), due to the overnight 

abstinent smokers having lower values than nonsmokers. Mean whole brain SUVs were 0.87 for 

nonsmokers and 0.73 for overnight abstinent smokers at UCSD and 1.00 for nonsmokers and 

0.83 for overnight abstinent smokers at VAGLAHS (15.5% lower at UCSD and 17.0% lower at 

VAGLAHS). Consistent with these global findings, a significant multivariate effect of group was 

found (MANCOVA, P = 0.002) for the smaller VOIs, with all VOIs having a significant between-

group effect on univariate analysis (range of P values < 0.0005 to 0.026), due to overnight-

abstinent smokers having lower SUV values than nonsmokers (range 6.8 to 29.5%) in all VOIs 

studied. 

 

Table 3-3. Baseline demographics and rating scale scores for the nonsmoker and 
overnight abstinent smoker groups. All values are presented as means (± standard 
deviation) or percentages. Using χ2 tests for categorical variables and Student t tests for 
continuous variables, no between-group (nonsmoker vs. smoker) tests were significant, 
other than differences in measures of smoking (cigarettes per day, exhaled carbon 
monoxide, and FTND scores; all P values < 0.0005) 

4.  
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For the three-group comparison (nonsmokers vs. nonmenthol-cigarette smokers vs. menthol-

cigarette smokers), the whole brain SUV comparison was significant (ANCOVA, P = 0.001), due 

to nonsmokers having the highest values, followed by nonmenthol-cigarette smokers, and then 

menthol-cigarette smokers. In the multivariate analysis of smaller VOIs, a significant effect of 

group was found (MANCOVA, P < 0.0005), with all VOIs having a significant between-group 

effect, due to the range (from high to low) of SUV values from smokers to nonmenthol smokers 

to menthol smokers. In comparing only the nonmenthol- with the menthol-cigarette smokers, the 

whole brain SUV comparison was significant (ANCOVA, P = 0.02), and similar results were 

found for the smaller VOIs (ANOVAs; P = 0.02 to 0.07), possibly less highly significant than the 

overall analysis due to the smaller samples used for comparing the nonmenthol- with the 

menthol-cigarette smoker subgroups. In comparing results from the two study sites, ratios of 

smoker to non-smoker SUVs were similar (Table 3-4). 

 

Region Ratio of mean 
SUVs between all 
overnight abstinent 
smokers and 
nonsmokers by 
site 

Ratio of mean 
SUVs between 
overnight abstinent 
nonmenthol 
smokers and 
nonsmokers by 
site 

Ratio of mean 
SUVs between 
overnight abstinent 
menthol smokers 
and nonsmokers 
by site 

UCSD VAGLAHS UCSD VAGLAHS UCSD VAGLAHS 

Whole brain 0.84 0.83 0.92 0.85 0.73 0.71 

Accumbens 0.73 0.80 0.80 0.83 0.63 0.69 

Amygdala 0.87 0.80 0.95 0.82 0.75 0.69 

Caudate 0.85 0.85 0.93 0.88 0.73 0.71 

Hippocampus 0.89 0.79 0.97 0.81 0.77 0.70 

Putamen 0.73 0.78 0.80 0.80 0.63 0.66 
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Region Ratio of mean 
SUVs between all 
overnight abstinent 
smokers and 
nonsmokers by 
site 

Ratio of mean 
SUVs between 
overnight abstinent 
nonmenthol 
smokers and 
nonsmokers by 
site 

Ratio of mean 
SUVs between 
overnight abstinent 
menthol smokers 
and nonsmokers 
by site 

UCSD VAGLAHS UCSD VAGLAHS UCSD VAGLAHS 

Thalamus 0.70 0.79 0.76 0.80 0.60 0.71 

 

In the exploratory analysis of smoking-related behavioral variables, a significant inverse 

relationship was found between depth of inhalation of cigarettes (as rated by participants on the 

smoker’s profile form) and whole brain SUV (correlation = −0.74, P = 0.02), suggesting that 

higher levels of cigarette smoke exposure were associated with lower levels of TSPO availability 

(Figure 3-3). No significant associations were found for cigarettes per day, FTND, SJWS scores, 

age, sex, or race/ethnicity. 

Table 3-4. Ratios of mean standardized uptake values (SUVs) between overnight 
abstinent smokers and nonsmokers for the two study sites. Ratios of mean 
standardized uptake values (SUVs) for whole brain and smaller volumes of interest (VOIs) 
between overnight abstinent smokers and nonsmokers for the two study sites, 
demonstrating that results from the two sites were consistent with one another. All values 
were less than 1, indicating lower [11C]DAA1106 binding on positron emission tomography 
scans for overnight abstinent smokers (and subgroups of smokers based on cigarette type) 
than nonsmokers for all VOIs and both study sites 

UCSD, University of California at San Diego; VAGLAHS, VA Greater Los Angeles 
Healthcare System 

 



86 
 

 

 

 DISCUSSION 

 

Cigarette smokers who underwent overnight abstinence had less [11C]DAA1106 binding than 

nonsmokers throughout the brain, indicating less TSPO availability (and less neuroinflammatory 

function). Furthermore, menthol-cigarette smokers had lower levels of [11C]DAA1106 binding 

than nonmenthol-cigarette smokers. These findings are remarkably similar to those of our 

previous study of smokers in the satiated state, and indicate that chronic cigarette smoking 

leads to reduced TSPO availability found in satiety and persisting into early (overnight) 

abstinence. In addition, the global (rather than localized) effect found here is consistent with 

prior research demonstrating global effects of smoking on other molecules (such as nAChRs) 

that are located throughout the brain.28, 163, 165-167, 189, 190 

 

Figure 3-3. Scatterplot showing inverse correlation (− 0.74, P = 0.02) between whole brain 
standardized uptake values and smokers’ ratings of depth of inhalation (for study smokers 
who filled out this questionnaire). The correlation value controlled for translocator protein 
genotype (high vs. medium affinity). 
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A straightforward explanation for the central study finding is that chronic cigarette smoking leads 

to global impairment of microglial activation in early abstinence. This explanation is consistent 

with much prior research demonstrating that smokers have impaired inflammatory functioning in 

other parts of the body, an effect that leads to compromised wound healing and lasts for 

weeks.126, 156-158 It is also consistent with basic science research demonstrating that microglial 

cells express nAChRs225  and that pre-treatment with nicotine (or acetylcholine) inhibits 

microglial activation. 225, 234, 235 Similarly, in an animal study of autoimmune encephalomyelitis, 

nicotine administration was found to decrease microglial activation,198 although other 

condensate of cigarette smoke was found to increase it. In addition, the inverse correlation in 

this study between [11C]DAA1106 binding and participant self-reports of depth of inhalation 

indicates that severity of impaired microglial activation may be related to the amount of 

exposure to cigarette smoke (since depth of inhalation is known to affect absorbed constituents 

of tobacco smoke).124 

 

Other explanations for study findings are possible. For example, cigarette smoking has been 

shown to reduce numbers of resident microglial cells,236 which would presumably lead to less 

radiotracer binding. Cigarette smokers are also known to have higher metabolism of some 

medications than nonsmokers,223 which (if applicable to [11C]DAA1106) would be expected to 

lessen radiotracer uptake and binding. In addition, cigarette smoking may result in inflammation 

in parts of the body other than brain,237 which could lead to sequestration of the radiotracer and 

less binding in brain. 

 

In addition to the overall difference between smokers and nonsmokers, the menthol cigarette 

smoker subgroup had less [11C]DAA1106 binding than the nonmenthol-cigarette smoker 

subgroup. This finding is consistent with prior research by our group showing greater up-
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regulation of nicotinic acetylcholine receptors throughout almost all brain regions in menthol- 

than nonmenthol-cigarette smokers, along with a similar finding for TSPO availability in our prior 

study with [11C]DAA1106 PET and smokers in satiety. Also, research by others demonstrates 

that menthol-cigarette smoking is associated with more severe biological abnormalities in 

some,171 but not all,172, 173 studies that have examined this issue. Therefore, as in prior research, 

the present finding may be due to greater brain exposure to cigarette smoke (leading to greater 

impairment of microglial activation) in menthol-cigarette smokers, a direct effect of menthol 

flavoring or some other mechanism. 

 

The primary limitation of this study is the absence of arterial blood sampling, precluding the 

determination of total distribution volume (Vt), which is the gold standard outcome measure for 

this type of research. Vt may control for the potential confounds of between-subject differences 

in radiotracer metabolism and binding to vascular endothelium and plasma protein149, 203, 204. 

While Vt is a common outcome measure in PET studies examining TSPO in conditions other 

than tobacco dependence,205-207 the SUV measure was used because it is less invasive than 

methods that include arterial blood sampling and arterial sampling was not feasible. Other 

similar studies have used pseudo-reference regions for PET data analysis146, 205, 210-213 to 

minimize potential confounds, but this method would not have been appropriate here due to the 

hypothesized and confirmed effect of smoking throughout the brain. Additional limitations 

included scanning at two sites with different model scanners (though results were similar at the 

two sites), a modest sample size, the absence of measurement of brain nAChR levels, and the 

fact that smokers were scanned in early abstinence, such that we did not determine whether 

TSPO availability normalizes with prolonged abstinence. Associations between TSPO 

availability and brain nAChR availability as determined with PET or single photon emission 

computed tomography imaging (as we and others have done in prior research) or evaluation of 



89 
 

normalization of TSPO availability with prolonged abstinence could be addressed in future 

research. 

 

In summary, cigarette smokers in the overnight abstinent state have lower TSPO availability 

than nonsmoking controls, similar to our recent finding in satiated smokers. The effect was 

global and greater for menthol- than nonmenthol-cigarette smokers. Future research could build 

upon this and our previous125 initial studies and directly compare TSPO availability in smokers in 

satiety with those undergoing short-term and prolonged abstinence. This approach could 

provide direct information about the time course of normalization of available TSPO levels in 

smokers who maintain abstinence. Additional future studies could focus on the interplay 

between smoking, neuroinflammation, and the progression of diseases thought to be mediated 

by neuroinflammation. 

 

 

Chapter 3 Wrap-Up 

 

The ability to identify clinically relevant biomarkers and quantify them in a meaningful manner is 

one of the most critical skills I have learned as a scientist in the last six years. The application 

for this field of pharmacodynamic research is endless, and can easily be combined with 

thorough pharmacokinetics, detailed pharmacogenetics, and eventually host and environmental 

interactions in order to paint an entire picture for a specific pharmaceutical candidate or 

treatment. When I had the chance to design my own research study later in my career, I 

proposed a biomarker forward hypothesis in hopes of solving an enigmatic drug side effect 

problem, which will be discussed in depth in chapter 6. Being exposed to neurobiology, 

genetics, imaging, and drugs of abuse over the course of the two salient case studies above 
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pushed me to learn more about fields that I was uncomfortable in calling my own, and I began to 

be able to implement a truly multidisciplinary approach to my own research.  
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Chapter 4  

Genomic Technology 

 

General Introduction to Genomic Technology in Precision Medicine 

 

Finally, there is the third piece of the pharmacology triforce: genetics. Because of the heavy 

presence of genomic technology (GT) in precision medicine, this branch of research is one of 

the most critical to understanding how we can impact clinical care for unique individuals as 

opposed to perpetuating a “one-size-fits-all” model. And while chapter 1 scratched the surface 

on a variety of these genetic or pharmacogenetic concepts, there are complex inner workings 

worth discussing and applying. 

 

By now, we understand the word pharmacogenetics has Greek roots, stemming from 

pharmakon (drug) and genesis, regarding origin, which was first adapted to the biological word 

for genetics in 1860. There are an estimated 30,000-40,000 genes in the human genome, both 

protein-coding and non-coding, representing a huge untapped market for medical and disease 

innovation.238 This is why a core component of personalized medicine is based on utilizing an 

individual’s genetic profile to curate the best therapeutic choices by facilitating predictions about 

whether that person will experience benefits or suffer serious side effects. There has been a 

distinct shift away from empirical and average-based medicine since the mid 2000’s as the 

technology and processing of genetic data continues to improve exponentially. In 

pharmacogenetics, human genomic information is used to study individual responses to 

pharmaceutical treatments, and connections are made between specific drugs, gene variants, 
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and physical response. When fabricating these ties, researchers utilize two main areas of 

genetic profiling: SNP genotyping for candidate genes or genome-wide association studies. 

 

SNP Genotyping Methods 

Single nucleotide polymorphisms, or SNPs for short, represent the bulk of our knowledge in 

common genetic variation among people. Each SNP is a difference in a single DNA building 

block, the nucleotide, for example, replacing cytosine (C) with a thymine (T) in a certain stretch 

of DNA sequence.239 These changes occur normally throughout a person’s DNA, and there are 

roughly 4-5 million SNPs in an individual’s genome. While the majority of SNPs tend to exist in 

non-coding regions, when they manifest within a gene or in a regulatory region, they may play a 

more direct role in disease by affecting the gene’s function. As just one SNP can have a direct 

biological effect, the process of selecting a “candidate” gene to study direct disease hierarchy is 

a popular method in pharmacogenetics.  Candidate gene studies rely on a set of determinates 

based on a priori hypothesis about the role of a selected gene, a group of pathway related 

genes, or a phenotype.240 However, overall the scientific community’s experience with these 

types of studies has been disappointing due to the large variance contribution to disease and 

genetic heterogeneity seen within and between populations. This is not to say this method of 

genotyping does not have merit; there are many functionally defined genetic loci that are used 

as biomarkers for direct pharmacokinetic and pharmacodynamic parameters as well as known 

genes encoding receptors and transcription factors directly involved in disease etiology. 

 

GWAS Technology 

The boom of genetic technology is allowing researchers to branch off from candidate gene 

studies. Rapid, affordable, and accurate genomic analyses such as next-generation sequencing 

and whole genome/exome sequencing harbor the potential to provide profound amounts of data 
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for millions of variants at a time. Stemming from these are genome-wide association studies 

(GWAS), which are a relatively new way for scientists to identify genes involved in human 

disease. Instead of only examining one or two SNPs in a candidate gene, this technique 

leverage millions of SNPs at a time. As most cate241gorical diseases are complex in nature, 

biostatistical methods can be employed to parse the significant associations and help pinpoint 

variations that occur more frequently in people with these ailments, indicating potential 

knowledge about genes that may contribute to a person’s risk of developing a certain disease. 

GWAS allows us to capture the cumulative effects of many variants with small penetrance, but 

that still change the manifestation of a disease.242 Multifactorial and grievous illnesses, such as 

Parkinson’s Disease,243 Type 2 Diabetes244 and Schizophrenia245 have all benefited in the last 

year from in-depth GWAS research. And while we still have much to uncover about how human 

disease works on the level of our macromolecules such as DNA and RNA, there has been 

incredibly progress that has allowed for new pharmacogenetic diagnostic tests to be 

implemented in clinical care and directly impact treatment outcomes. 

 

I was extremely lucky to be able to partake in pharmacogenetic and genomic pathway analysis 

research that leveraged both SNP genotyping as well as GWAS techniques. They were focused 

in an area of growing concern for psychiatry: addiction. Substance Use Disorder (SUD) is a 

highly prevalent and debilitating public health issue, both nationally and worldwide, affecting 

more than 600 million people.246 This can include alcohol, nicotine, cannabis, opioids, 

stimulants, and various recreational drugs. As the disorder persists, physical and mental 

sequelae are common and often result in profound functional impairment. Despite the clear 

importance to public and individual health, therapies are few and only partially effective, in part 

due to the rudimentary current understanding of the underlying genetic and biological 

underpinnings of addiction. The significant heritability of SUD suggests a moderate to strong 
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genetic basis, but the failure to identify specific risk alleles indicates that the underlying 

mechanisms are multifactorial and heterogeneous.247 The limited utility of traditional therapy has 

led the field of complex genetics to explore dimensional measures of functional neurocognitive 

phenotypes as more proximal to brain biology. Below, GT case study #1 is a candidate gene 

study of the influence of genetic variation in cholinergic receptors, nicotine’s direct target in the 

brain, on striatal dopamine release after smoking a nicotine containing cigarette and 

subsequently confer addiction risk. GT case study #2 applied advanced genetic techniques 

such as GWAS and polygenic risk scores to better understand the stark difference in the 

impulsivity trait as seen in addicts versus the general population and how it might be related to 

their susceptibility to developing a substance related disorder. Both are excellent examples of 

how pharmacogenetics can be an invaluable tool moving forward in psychiatric diagnoses and 

individualized treatments. 
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GT Case Study #1 : Cholinergic Genetic Variation Moderates Smoking-Induced Striatal 

Dopamine Release* 

*This work is currently unpublished. 

 

L.C. Seaman, K.S. Mallya, K. Ta, J.L. Chartie, J.T. McCracken, A.L. Brody, E.L. Nurmi 

 

Introduction 

 

Smoking is the leading preventable cause of mortality in the United States, formally established 

as the cause of 21 diseases encompassing cancer, cardiovascular diseases, and respiratory 

diseases.248 These smoking-related diseases account for an excess of 480,000 deaths each 

year in the United States alone. While there are currently several FDA-approved 

pharmacological treatments for smoking cessation, these approaches have limited efficacy, and 

even with the best treatments, nicotine abstinence rates at 1 year are only 23%.249 Given the 

high heritability (0.75)250 of nicotine dependence, genetic variability of nicotine receptors may 

explain the significant interindividual variability in clinically relevant smoking-related phenotypes 

including differences in the rewarding properties of smoking and response to smoking cessation 

treatments. 

 

The rewarding effects of nicotine, the addictive compound in tobacco smoke251, 252, are due to 

activation of the mesolimbic dopamine tract in the brain.253 Dopaminergic neurons within this 

tract project their axons from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) 

and release dopamine in response to nicotine binding to nicotinic acetylcholine receptors 

(nAChRs).254, 255 This well-known reward pathway has been implicated in nicotine dependence 

and many other drugs of abuse.256 Variations in smoking-induced dopamine release within this 
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pathway may underlie differences in individual sensitivity to the reinforcing properties of 

smoking257 and other clinically important smoking-related phenotypes.  

 

 

 

nAChRs are transmembrane homopentameric or heteropentameric non-selective cation 

channels composed of subunits encoded by nine α-subunits and three β-subunit genes.258 The 

various nAChR combinations differ in localization as well as their pharmacologic and kinetic 

properties.258 Within the brain, the two main types or nAChRs are the α7 homo-oligomer and the 

α4β2 hetero-oligomer.258 To date, the majority of research investigating the link between 

nicotine dependence and specific nAChR subunits has focused primarily on the α4β2 subunit 

based on its high affinity for nicotine, widespread distribution in the brain, and the success of 

varenicline, a partial α4β2 agonist, as a smoking cessation therapy.249 Another well-studied 

genetic risk region for heaviness of smoking, defined by cigarettes smoked per day (CPD), is 

the chromosome 15 cluster of CHRNA3, CHRNA5, and CHRNA4 which showed significant 

association with CPD in 3 genome-wide association studies.259 While these regions have 

yielded promising effects, recent research has shown the importance of other nACHR genes in 

nicotine-dependence phenotypes including CHRNB4, CHRNA7, CHRNA6, and CHRNB3 loci.260 

Of specific interest is CHRNA7, which has been implicated by a strong body of work to be 

Figure 4-1. The chemical 

structure of the neurotransmitter 

acetylcholine and the exogenous 

stimulant nicotine. Both activate 

the nicotinic acetylcholine 

receptors in the human brain. 
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involved in nicotine reward, dependence, and withdrawal phenotypes in both animals and 

humans.261-263 

 

 

α7 subunits may also play a role in short-term nicotine reward through a modulatory effect on β2 

activation.264 Within the VTA, single recordings of dopaminergic neurons demonstrate two types 

of neuronal firing rhythms in vivo which occur spontaneously and in response to nicotine: a 

slow, regular single-spike firing and bursting mode.265, 266 When α7 -/- mice were injected with IV 

nicotine there was a large and rapid increase in the firing rate of DA neurons that was short-

lasting and followed by a plateau at a slightly lower firing rate.264 These findings suggest that α7 

normally masks an inhibitory effect of GABAergic neurons in wild-type mice, and taken together, 

this data also suggests that β2 nAChRs may be responsible for switching neurons from a 

resting to excited state, with α7 nAChRs finely tuning this state after β2 nAChR activation. In 

this way, both α7 and β2 may be involved in the neurobiochemical events underlying nicotine 

reinforcement 

 

To briefly highlight the importance of human studies on CHRNA7, several groups have shown 

an association between CHRNA7 in nicotine dependence, smoking risk, and smoking cessation. 

In a sample of 710 African Americans, CHRNA7 and CHRNA10 both showed a modest 

Figure 4-2.  Structure of the most 

common nAChRs, (α7)5 and 

(α4)2(β2)3. nAChRs are 

homomeric or heteromeric 

pentamers of α and β subunits 

including α2-α10 and β2-β4. 
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association with nicotine dependence risk.267 Similarly, in a study of 501 female Israeli students 

(ages 20-30) a nominally significant (p<0.05) genotypic association was shown in SNPs in 

CHRNA7 (rs1909884), CHRNA9 (rs4861065), and CHRNB3 (rs9298629) with nicotine 

dependence.267 In yet another sample of 177 patients with schizophrenia an association was 

shown between the homozygous 113 bp allele in CHRNA7 and smoking risk (p=0.015).268 

CHRNA7 also appears to play a role in smoking cessation. In a randomized, double-blind, 

placebo-controlled study comparing the efficacy of varenicline and buproprion (n=1175), 

rs6494212 in CHRNA7 was associated with continuous abstinence from nicotine (p=0.0038) 

(weeks 9-12).269 

 

In our previous work we demonstrated a relationship between smoking-induced dopamine 

release in the VTA/NAc pathway and functional genetic variants within the dopamine system. In 

a study of 45 tobacco-dependent smokers, smoking-induced dopamine release was measured 

using positron emission tomography (PET) screening in patients who either smoked a cigarette 

or did not smoke a cigarette while screening. Smoking-induced dopamine release in the 

VTA/NAc was measured using the radiotracer raclopride, a competitive D2 dopamine receptor 

antagonist, labeled with radioactive carbon (11C), which revealed an association between gene 

variants in the dopamine transporter variable number tandem repeat (VNTR), D2 receptor Taq 

A1/A2, D4 receptor VNTR, and catechol-O-methyltransferase Val158Met polymorphisms and 

smoking-induced dopamine release.269 While these findings suggest that genetic variation in the 

DA system plays a salient role in smoking related behaviors, variation in DA dynamics in 

cigarette smokers remains only partially explained. 

 

Given recent evidence for the possible role of other nAChR genes in nicotine dependence, we 

tested common genetic variation in 6 nAChR genes (CHRNA3, CHRNA4, CHRNA5, CHRNA7, 
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CHRNB2, CHRNB4) as additional potential moderators of smoking-induced DA release. We 

hypothesized that more direct moderators of DA signaling in the striatum would include genetic 

polymorphisms in the nAChRs, as they are both the downstream targets of synaptic DA as well 

as the proximal site of nicotine action in the brain. Utilizing PET imaging with the same 11C 

raclopride radiotracer as described above, we were able to visualize in humans how smoking a 

tobacco cigarette directly impacts dopamine release in our pathways of interest and how this 

subsequently is related to, or affected by functional genetic variations in the corresponding 

nAChRs. Our research and findings are described here within.  

 

METHODS  

 

One hundred and two otherwise healthy adult smokers who met DSM-IV criteria for nicotine 

dependence completed the study. Subjects were adults (age 21-65 years) initially screened 

during a telephone interview in which medical, psychiatric, and substance abuse histories were 

obtained. Subjects who passed this screening were then assessed in person using screening 

questions from the Structured Clinical Interview for DSM IV. [First MB, JBW: Structured Clinical 

Interview for DSM-IV Axis I Disorders…] Subjects with a history of any axis I disorder other than 

nicotine dependence were excluded. Subjects were also excluded if they had a history of 

medications that might affect the central nervous system (e.g. current treatment with a beta-

blocker or analgesic medication, history of head trauma with loss of consciousness, history of 

epilepsy). Subjects who did not meet the criteria for abuse or dependence but were occasional 

users of alcohol, caffeine or other drugs were allowed to participate but were instructed to 

abstain from these substances for 24 hours before scanning. Subjects who experienced 

caffeine withdrawal symptoms or consumed more than two cups of coffee per day (200 to 300 

mg/day caffeine) were also excluded. Pregnant women were excluded due to potential risk to 
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the fetus of radiation exposure. After a complete description of the study, written informed 

consent was obtained.  

 

During the initial visit, additional screening data were obtained including smoking history data, 

current smoking   level, years smoked, brand of cigarette smoked, and quit periods. Fagerstrom 

Test for Nicotine Dependence (FTND)175, the Beck Depression Inventory176, the Spielberger 

State-Trait Anxiety Inventory270, and the Shiffman-Jarvik Withdrawal Scale were included in the 

psychological assessment battery. An exhaled carbon monoxide (CO) level was obtained using 

the MicroSmokerlyzer (Bedfont Scientific Ltd, Kent, England) at the initial visit to verify smoking 

status (subjects were considered to be active smokers if a CO level of >8 ppm was obtained). 

 

Study Overview 

On a single afternoon visit participants were interviewed with standardized questions; completed 

rating scales related to cigarette usage, mood, and personality; had blood drawn for genetic 

testing; and underwent [11C]raclopride PET scanning and either smoked a cigarette or did not 

smoke during the scan. On a separate morning, patients underwent structural MRI within 1 

week of PET scanning.  

 

PET Scanning 

Subjects underwent a pre- and post-cigarette smoking single [11C]raclopride bolus-plus-

continuous-infusion PET session190 and structural magnetic resonance imaging (MRI) to aid in 

interpretation of the PET scans. Subjects abstained from smoking for 3 hours prior to scanning 

and scanned <1 minute after smoking a cigarette. 

 

Genetic Testing 
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Whole blood samples were collected and genomic DNA was extracted using the Gentra 

Puregene Blood Kit according to the manufacturer’s protocol (Qiagen, Valencia, Calif.).  

 

Genotyping was performed using the Thermo Fisher TaqMan genotyping platform (Thermo 

Fisher Scientific, Waltham, MA, USA) with Qiagen Type-it Fast SNP Probe PCR Kit (Qiagen, 

USA) according to manufacturer’s protocols. Tag SNPs (tSNPs) were selected using Broad 

Tagger software, capturing all common variability >5% in most and >10% in all cases at an 

r2>0.8 in most and 0.6 in all cases. For quality control purposes, a subset of data was run in 

duplicate, demonstrating perfect concordance. All markers were in Hardy-Weinberg Equilibrium 

and minor allele frequencies (MAF) were similar to those previously published by the HapMap 

Consortium. 

 

Statistical Analysis 

 

Univariate analysis of variance (ANOVA) was performed with the percentage change in ventral 

caudate/nucleus accumbens binding potential as the dependent variable and the marker 

genotype as a between-subject factor with ethnicity and age as covariates. Because sex was 

not a significant predictor of binding potential, it was removed from the model. 

 

In post-hoc analysis, a combined risk measure of two significant variants (CHRNA7 rs12915695 

and CHRNA4 rs2236196) was constructed to determine whether each conferred independent, 

additive effects. Genotype at each locus was given a score of 0 or 1, with 1 denoting the 

presence of at least one allele associated with enhanced binding potential. Scores were 

summed across the two loci and each subject received an overall risk score from 0 to 2. A one-

way ANOVA was applied as above.  
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Genetic variants and imaging data were also tested for correlation with behavioral measures of 

craving, dependence (FTND), number of cigarettes per day, number of years smoking, and 

exhaled CO levels. 

 

RESULTS  

 

Table one displays the results that map the various nAChR subunit genetic variants and their 

role in nicotine-induced dopamine release. Two independent gene variants were associated 

with percentage change in VTA/NAc binding potential (Figure 18). Prominently, homozygotes 

for the common allele (GG) at an intro 2 polymorphism in CHRNA7 (rs12915695) demonstrated 

a greater than three times reduction in radiotracer binding potential (BP), corresponding to a 

significant increase in smoking-induced dopamine release, compared to minor A-allele carriers 

Table 4-1. Results mapping nAChR subunit polymorphisms and their published role in 

nicotine-induced dopamine release. 
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(-10.8% vs. -3.0% respectively, p=0.001, d=0.97). This finding survived multiple comparison 

corrections (p=0.009, Caucasian). PET brain images from this set of subjects confirm a larger 

reduction in raclopride binding in the striatum (resulting from greater dopamine release) after 

smoking a cigarette. (Figure 18) It is 

important to note that  

 

raclopride BP in both genotype 

groups was even at baseline. 

Additionally, a variant in the 3’ UTR 

Figure 4-3. NAChRs are Associated with Smoking-

Induced DA Release 

A. CHRNA7 Genotype Predicts Smoking-Induced 

Striatal DA Release. Homozygotes for the common 

allele (GG) at an intron 2 polymorphism (rs12915695) 

showed greater than 3X reduction in radiotracer 

binding potential after smoking a cigarette, indicating 

significantly greater DA release, compared to minor A-

allele carriers (-10.8% vs. -3.0% respectively, 

p=0.001, d=0.97), surviving multiple comparison 

correction (p=0.009 in caucasians). 

B. CHRNA7 Genotype Differences in Striatal 

Dopamine Release after Smoking.  PET brain images 

are shown with highest levels of raclopride binding in 

red and lowest in blue. A larger reduction in raclopride 

binding (resulting from greater dopamine release) 

after smoking a cigarette is evident in the striatum 

(red) of GG homozygotes (top) vs. A-allele carriers 

(bottom). 

C. CHRNA4 Genotype Predicts Smoking-Induced 

Striatal DA Release. A complex race by genotype 

interaction was observed at a variant in the 3’ UTR of 

the alpha 4 subunit (CHRNA4, rs2236196) where 

significant reduction in radiotracer binding was shown 

for Caucasian GG homozygotes, but African American 

carriers of the A-allele (interaction p=0.001, d=2.17). 

CHRNA7 rs12915695 

A. 

C. 

B. 
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of the CHRNA4 subunit (rs2236196) showed a complex race by genotype interaction. In 

Caucasians, a significant reduction in radiotracer binding was shown for common allele GG 

homozygotes whereas African American carriers of the minor A-allele showed a greater 

reduction in radiotracer binding (p=0.001, d=2.17).  

 

In order to test for independent or additive effects between these two variants we calculated a 

composite score for each subject by assigning one point for the presence of each allele 

associated with reduced BP. This  model and concurrent analysis demonstrated that each “risk” 

allele additively contributes to greater dopamine release in a dose-dependent manner; subjects 

with 0 alleles displayed little to no change in BP, subjects with one allele showed an 

intermediate reduction in BP, and subjects with two alleles showed close to double the reduction 

in BP as individuals with just one contributing allele, and therefore the greatest nicotine-induced 

dopamine release (p=0.007 ). (Figure 4-4) 

 

Auxillary cholinergic receptor variants 

were discovered to have significant 

effects in other smoking related endophenotypes. An individual’s genotype at a polymorphism 

just distal (3’) to the CHRNB2 gene (rs4845652) was able to predict a change in urge to smoke 

Figure 4-4. CHRNA7 and CHRNA4 Composite 

Score Predicts Dopamine Release in 

Caucasians. 

As shown previously in the Caucasian subset, 

homozygotes for the common allele (GG) at an 

CHRNA7 polymorphism (rs12915695) and carriers 

of the minor allele (G) at a CHRNA4 polymorphism 

(rs2236196) show significant reduction in 

radiotracer binding potential, corresponding to a 

much greater dopamine release than their 

counterparts. Composite analysis demonstrates 

that each risk allele additively contributes to 

greater dopamine release (p=0.007). Individuals 

with both variants display the greatest release, 

those with neither have almost no release, and 

those with only one are intermediate. 
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(UTS). Minor T-allele carriers of this polymorphism displayed close to twice a greater reduction 

in nicotine craving after smoking a tobacco cigarette than homozygotes for the common allele 

(CC) as measured by the change in UTS (p=0.003). (Figure 4-5) 

 

Craving, as measured by self-report, was found to be affected by two nAChR variants, one at 

the CHRNA7 gene locus as well as the same variant as above, located on CHRNB2 (rs8834373 

and rs4845652 respectively.) GG homozygotes at CHRNA7 rs8834373 and T-allele carriers at 

CHRNB2 rs4845652 have greater baseline nicotine craving before (p<0.01 & p<0.001) and 

greater reduction of craving after (p<0.05 & p<0.001) smoking a cigarette as compared to A-

allele carriers and CC homozygotes, respectively. (Figure 4-5) 

 

Finally, an individual’s genotype from a single variant located in the promoter region of the 

CHRNA4 gene (rs755203) showed correlations with both the number of years said individual 

had smoked cigarettes as well as their score on the Fagerstrom Test for Nicotine Dependence 

(FTND). Homozygotes for the common allele (CC) at this SNP has a significantly longer 

smoking history in years (22.3 ±1.6 vs. 17.6±1.69, p<0.05) and greater FTND scores, indicating 

a greater dependence for nicotine from cigarettes, (6.5 ±0.3 vs. 5.5 ±0.3) than T-carriers 

(p<0.01). (Figure 4-5) 
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Figure 4-5. NAChRs are 

Associated with Smoking 

Endophenotypes and Measures of 

Nicotine Dependence. 

A. CHRNB2 Genotype Predicts 

Change in Urge to Smoke 

(UTS). Minor T-allele carriers at a 

polymorphism (rs4845652) just 

distal (3’) to the CHRNB2 gene 

displayed close to 2X greater 

reduction in nicotine craving after 

smoking a cigarette than 

homozygotes for the common 

allele (CC), as measured by the 

change in urge to smoke, 

(p=0.003). Both Caucasians and 

African Americans show the 

same direction of effects. 

B. Variation in Subunits CHRNA7 

and CHRNA4 is Associated 

with Craving. GG homozygotes 

at CHRNA7 rs8834373 and T-

carriers at CHRNB2 rs4845652 

have greater baseline craving 

before (p<0.01 & p<0.001) and 

greater reduction after (p<0.05 & 

p<0.001) smoking a cigarette as 

compared to A-carriers and CC 

homozygotes, respectively.  

C. CHRNA4 Genotypes that 

Predict DA-Release are 

Associated with Measures of 

Nicotine Dependence. CC 

homozygotes at rs755203 show 

greater DA release and had a 

longer smoking history (22.3 ±1.6 

vs. 17.6±1.69, p<0.05) and 

greater Fagerstrom Test for 

Nicotine Dependence (FTND) 

scores, indicating a greater 

dependence for nicotine from 

ciagrettes, (6.5 ±0.3 vs. 5.5 ±0.3) 

than T-carriers (p<0.01). 

 

 

C. 

B. 

A. 
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DISCUSSION 

 

Overall, in a broad picture, these data suggest that structural and/or functional variation in 

midbrain nAChRs contributes to differential smoking-induced striatal dopamine release. Most 

notably, smokers with a homozygous common allele genotype (GG) at CHRNA7 locus 

rs12915695) consistently and significantly demonstrated close to triple the reduction in BP for 

11C raclopride, when measured with PET, than their A-allele carrying counterparts. As the 

radiotracer raclopride is a selective antagonist for dopaminergic D2 receptors in the striatum, 

DA will competitively bind in the same locations. When the brain is flooded with nicotine from 

cigarette smoke, and subsequent high dopamine release for GG individuals, the radiotracer will 

essentially be forced out of these receptor spots, causing large decreases in binding potential. 

On the other hand, it appears that individuals carrying an A allele (either homozygous AA or 

heterozygous AG) have a stunted reaction to nicotine in the same neurological regions, and less 

dopamine is released into the VTA/NAc. One can speculate, based on the salient role of 

dopamine in reward271, 272, that the majority of the population might be at risk for positive 

biological feedback from cigarette smoking. 

 

Interestingly, we observed a complex race by genotype interaction at CHRNA4 rs2236196 in 

regards to smoking-induced dopamine release. Caucasian smokers with a GG genotype and 

African Americans with either an AA or AG genotype experienced much greater striatal 

dopamine release after smoking a cigarette. While a finding such as this may be difficult to 

interpret accurately, it is critical to take note of. Pharmacotherapies for smoking cessation are 

commonly a “one size fits all” category of treatment. Interventions such as nicotine gum, the 

nicotine patch, bupropion, and more recently varenicline have wildly varying degrees of 

success, and perhaps this CHRNA4 finding can begin to help explain why this might occur. 
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Factors such as age, sex, race, and ethnicity may significantly alter the efficacy of treatment for 

an individual attempting to quit smoking in part because of their level of nicotine-induced 

dopamine release. Future work needs to be done to attempt to disentangle the many diversities 

of an individual, their genetic makeup, and their pharmacological responses to classic smoking 

cessation treatments. Additionally, it is our hope that findings such as this will engender the 

movement to more individualized treatments for nicotine dependence and perhaps inform small 

molecule drug targets in the specific nicotinic receptor subtypes. 

 

Our genetic findings at both nicotinic α4 and α7 cholinergic receptor subunits are consistent with 

animal and in vitro studies that have previously implicated these subunit types in DA-mediated 

reinforcement associated with cigarette smoking. However, it is worth discussing that past 

animal studies have revealed conflicting evidence for the role of CHRNA7 in nicotine 

dependence and withdrawal. A study by Laviolette and van der Kooy (2003) showed that 

following direct intra-VTA administration of methyllycaconitine (MLA), a nAChR antagonist 

considered to be relatively selective for α 7 pentameric nAChRs, a decrease was seen in the 

conditioned rewarding effects of nicotine in rats.263 In a similar investigation, Markou and 

Paterson (2001)273 demonstrated that MLA reduced intravenous nicotine self-administration, 

also in rats, suggesting that α7 nAChRs do in fact play a role in nicotine reinforcement. In 

contrast, a study by Walters, et. al274 found that treatment with the α4 α2 antagonist dihydro-

beta-erythroidine (DH, E) blocked nicotine conditioned place preference while the α7 antagonist 

MLA had no effect on this behavior, insinuating that the α2 subunit, but not the α7 subunit, is a 

critical component in nicotine reward systems. It will be vital to clearly define accepted nAChR 

subunit effects in smoking for future research before beginning to move studies of selective 

agonists and antagonists to a human population. 
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Putative effects on nicotine dependence and nicotine craving were observed in nAChR variants 

that did not correlate with smoking-induced striatal dopamine release, but were nonetheless 

consistent with previous research findings, indicating their relevance in future smoking-related 

investigations. Our data at CHRNA7 rs883473 implicating GG homozygotes as experiencing 

higher baseline cigarette craving and more robust satisfaction from consequently smoking a 

cigarette than A-allele carrying individuals are supported by minimal, but strong findings at this 

same locus related to smoking cessation275 as well as severity of nicotine dependence.276 

 

Of additional interest is the SNP located on the promoter region of CHRNA4 (rs755203) where 

we observed that smokers with a CC common allele genotype had spent significantly more 

years smoking as well as had displayed greater FTND test scores, indicating elevated nicotine 

dependence. A study in 2013 communicated that this SNP has a significant connection to the 

pathophysiology of nicotine dependence as well as the related phenotype being a critical 

component in the level of verbal memory and executive functioning in schizophrenia patients.277 

Taken together, we can surmise that this variant is not only consequential in identifying and 

addressing nicotine dependence, but also an important factor to examine in other psychiatric 

ailments, as many mood disorders include very high co-morbidities of smoking.  

 

As CHRNB2 is one of the most studied nicotinic receptor genes, it is reassuring that we also 

found significant results at a specific locus in this region (rs4845652). Individuals carrying the 

minor T-allele reported significantly elevated baseline nicotine craving and then subsequently 

less craving after smoking one cigarette of their choice. While this finding can be interpreted in a 

few different ways, a unique perspective is to consider the implications for the bulk of the 

smoker population – or the individuals with a common CC genotype. These people are still 

reporting high craving, but are in turn experiencing much less satisfaction from smoking their 
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cigarette than carriers of the T variation. We can look at this in two differing ways; one is that 

these individuals might be less at risk for developing nicotine dependence, as cigarettes are not 

as rewarding to them. However, it could manifest itself as these smokers engage in smoking 

even more tobacco cigarettes than their counterparts to achieve the same level of relief from 

craving. The latter, and more concerning view point, is supported by recent findings that 

CHRNB2 rs4845652 T-allele carriers may be associated with lower levels of nicotine 

dependence.278 We believe further examination of this locus is necessary to expand upon how 

this finding can be utilized for components such as early intervention and treating planning. 

 

An important limitation of the current study is the small sample size. We were only able to 

successfully image and genetically test 102 individual smokers for this work. Promisingly, 

Cohen’s D effect sizes at both variants are significant and large, and each variant confers 

unique, additive effects. We believe this warrants larger exploration in upcoming research 

studies of smoking populations that may include neuroimaging. 
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GT Case Study #2:  Polygenic Contributions to Decision-Making on a Laboratory Test of 

Reward-Based Risk-Taking* 

Nurmi EL, Laughlin CP, Seaman LC, Kohno M, Hellemann GS, Palmer A, DeWit H, London ED 

*This work is currently unpublished. 

 

INTRODUCTION 

 

The ability to make decisions in uncertain conditions that involve the balance between risk and 

reward is fundamental to personal development as well as survival. Heightened risk-taking 

behavior, however, has been linked to neuropsychiatric disorders, such as Attention Deficit-

Hyperactive Disorder (ADHD), addictions, and mood disorders279-284. For these reasons, the 

biological bases of risk-taking behavior, including their neural underpinnings285, 286 and genetic 

architecture287, 288 have been a subject of recent interest. A twin study that estimated the 

contributions of genes and environment across seven risk taking domains revealed additive 

genetic but individually unique environmental influences; heritability estimates from a meta-

analyses of twin studies ranged from 29% in financial risk taking to 55% in safety288. In a twin 

study using the Iowa Gambling Task, which evaluates reward-based decision-making in the 

presence of risk, a latent "decision-making'' factor was identified, explaining between 20%-46% 

of the variance across task administration timepoints289. A genome-wide association study 

(GWAS) on risk preferences, focusing on risk aversion, used a sample of 10,455 adults, and failed 

to identify single-nucleotide polymorphisms (SNPs) reaching genomewide significance290. The 

results suggested that risk aversion is a complex trait that is highly polygenic, likely to be driven 

by many genetic variants, each with a small effect size. 
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In this study, we evaluated the propensity for risk-taking, using the Balloon Analog Risk Task 

(BART), 284 a laboratory test of reward-based, risky decision-making, in two relatively large, 

independent samples. Using a youth-adapted variant of the BART, a candidate gene study of 223 

youths (average age 11.3 years) indicated that females, but not males, who are carriers of 

the COMT 158Met allele had higher risk-taking propensity compared to Val homozygotes. 287 A 

version of the BART adapted for administration to rats was used in a study of inbred strains, 

indicating a moderately heritable pattern of risk-taking behavior in rats, with about 55% of the 

variance in risk-taking behavior attributable to heritable factors, and data consistent with a 

polygenic model.291    

 

In summary, risky decision-making can profoundly influence well-being, and has been associated 

with several psychiatric disorders. Genetic factors appear to contribute to risk taking, but the 

underlying genetic architecture remains unknown. The goals of the present study were to develop 

and test a polygenic model to estimate the variability in risky decision-making that is explained by 

common genetic variation. Furthermore, we sought to apply our polygenic model to ADHD and 

bipolar samples available in the public domain, to estimate shared genetic risk for and risky 

decision making in psychiatric disorders characterized by risk-taking behavior. In our final 

analyses, we will similarly test shared genetic variation between risky decision making and 

substance use disorder and smoking cessation. 

 

METHODS 

Participants: 

Data for this study came from two projects. One was the Consortium for Neuropsychiatric 

Phenomics (the CNP project), a study performed at the Semel Institute of the University of 

California Los Angeles, to examine the underlying genetic and neural factors, such as memory, 
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and their link to three target neuropsychiatric illnesses, schizophrenia, bipolar disorder, and 

attention-deficit hyperactivity disorder. The other project was the Genetics of Impulsivity, 

performed at the University of Georgia and the University of Chicago, in Georgia and Illinois, 

respectively (the GIP project).   

 

CNP Sample292  

Subjects, ages 21-50, were recruited by community advertisements in the Los Angeles area and 

were only included if they identified as either “Caucasian, not of Hispanic or Latino descent,” or 

“Hispanic or Latino, of any race,” as per NIH racial and ethnic minority group guidelines. Exclusion 

criteria included neurological disease, history of head injury with loss of consciousness, use of 

psychoactive medications, substance dependence within the past six months, and a positive drug 

screen on the day of testing. Diagnoses for all individuals were verified using structured clinical 

interviews (SCID-IV;174). Included subjects underwent a neuropsychological battery and 

submitted blood samples for genotyping. All subjects gave written informed consent in line with 

the procedure approved by the Institutional Review Board at UCLA. In total, 1,600 healthy 

individuals, 58 patients with schizophrenia, patients with bipolar disorder, and participant-

hyperactivity disorder were evaluated for this study. However, due to substantial population 

stratification, only Caucasian healthy individuals were included in the polygenic score generation 

(N = 837;).   

 

GIP Sample293, 294  

934 Caucasian ancestry participants 18-30 years of age were recruited from Athens, GA and 

Chicago, IL. Subjects with recent psychiatric treatment for psychiatric illness or substance use 

were excluded. Participants completed assessments individually in a behavioral laboratory. DNA 
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was collected via a saliva sample for DNA collection in an Oragene DNA kit (DNA Genotek Inc., 

Kanata, ON, Canada). 

 

Balloon Analog Risk Task.  The BART is a computerized behavioral measure of risky decision-

making.284 Virtual balloons are presented on a computer screen, one balloon per trial, and the 

participant can “pump” the balloons up by pressing a response key, virtually inflating the balloons.  

Each pump produces a set increase in an amount of money (e.g., 5 cents per pump) or points 

earned on that trial. However, after a certain number of pumps, determined probabilistically, the 

balloon explodes and no money or points are earned on that trial. The participant must decide 

when to “cash out” of a given trial, by pressing a response key, to retain earnings in a cumulative 

bank. The objective is for the participant to earn as much money or points as possible across the 

task. Versions of the BART vary with respect to the number of trials/balloons used, as well as the 

probability of explosions [e.g., some tasks have used balloons with a single probability of 

explosion,282 while others have used different-colored balloons with different probabilities of 

explosion. 284, 295 The primary dependent variable of the task is the mean or total number of pumps 

on trials in which the balloon did not explode; these have been termed '''adjusted pumps'''. 

Adjusted pumps are preferred to absolute pumps because explosions artificially restrict the range 

of pumping behavior for evidence of the bias associated with absolute pumps see 296.  

Genetic Analyses. Genotyping was performed using the Omni Illumina 500,000 SNP chip. For all 

genotype data, markers were excluded for quality control if they had less than a 95% genotyping 

rate, a minor allele frequency less than 1%, deviated significantly from Hardy Weinberg 

equilibrium (p < 10-6), or were identified as having non-random genotyping failure (p < 10-10). 

Individuals were excluded for missing genotypic data (<2% genotypes), missing phenotypic data, 

or deviation from expected autosomal heterozygosity (Fhet < .2). GWAS was performed on each 

of the CNP (OMNI only) and GIP datasets as follows. Principal component analysis (PCA) was 



115 
 

performed within study as well as joint with the 1000 Genomes (1KG) ancestry informative 

markers for use in QC and modeling efforts. Partial correlations ere used to control for variability 

in population structure. Plink297 was used to perform two linear regressions with Mean Adjusted 

Pumps as the dependent variable of interest and Total Adjusted Pumps as (expected) negative 

control, supplying sex, age and the first five PCA dimensions as covariates (Mean Adjusted 

Pumps ~ sex + age + D1:5, Total Adjusted Pumps ~ sex + age + D1:5). Each set of summary 

statistics was clumped and, along with the paired genotypes from its complement study, used to 

create polygenic scores for each individual in the target sample.298 These scores were then 

compared using a partial correlation analysis that controlled for the same covariates in the target 

dataset as in the source's GWAS.  Outlier detection and removal was conducted on the polygenic 

scores via Cook’s distance to remove any egregiously anomalous scores. Imputation to 1KG 

Phase 3 was also performed on each dataset and the same methodology was applied. A MEGA 

analysis GWAS was performed on the merged raw genotypes of the CNP and GIP datasets. After 

stand QC measures (see methods above), PLINK, as used to perform a linear regression, was 

run using the following model (Mean Adjusted Pumps ~ gt + sex + age + dataset_code + D1:D5). 

A quantile-quantile (Q-Q) plot of observed vs. expected p-values and Manhattan plot of the linear 

regression results was performed in R. PRS where then derived and the best MEGA PRS was 

then tested against the public ADHD and bipolar disorder datasets using PRS methods above.  

 

RESULTS 

 

When a PRS for risky decision-making is constructed based on BART performance in the CNP 

sample, this PRS predicts BART performance in the GIP sample (r2=0.11, p=0.00094) and 

remains significant when corrected for multiple comparisons made in empirically determining the 

optimal p-value threshold for SNP inclusion in the model (FDRp=0.0057). Likewise, when the 
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PRS is derived from the GIP dataset and applied to the CNP sample, an identical correlation is 

observed at a similar level of significance (CNP   r2=0.11,  p=0.0012,   FDRp=0.011).  

 

When 135 Caucasian individuals with psychiatric disorders impacting risk-taking behavior, bipolar 

disorder, ADHD, and schizophrenia, are added to the CNP sample, significance is improved, 

suggested that risk-taking is a continuous trait across healthy individuals and those diagnosed 

with these disorders. An ANOVA of group membership (healthy, schizophrenia, bipolar, and 

ADHD) was significant (p<0.05) and followed an expected 

pattern where groups 

characterized by prominent impulsivity (ADHD and bipolar disorder) showed an increased mean 

adjusted pumps compared to healthy individuals, whereas mean adjusted pumps in the 

schizophrenia group were decreased (p=0.01).  

 

 

The MEGA analysis linear regression identified two variants rs12023073 and rs6891903 that were 

approaching genome-wide significance. Both SNPs (rs6891903 and rs12023073) are intronic and 

Figure 4-6. Risky 

Decision Making as 

Measured by BART 

Performance is a 

Heritable, Polygenic 

Trait.  

Top Panel: PRS for BART 

performance derived in 

the CNP sample predicts 

BART performance in GIP 

participants. Bottom 

Panel: PRS for BART 

performance derived in 

the GIP sample predicts 

BART performance in the 

CNP sample. 
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map within the catenin delta 2 (CTNND2) and immunoglobulin superfamily member 21 (IGSF21) 

genes. The Q-Q plot demonstrates that the principle components correct for any ancestry effects.  

 

An exploratory analysis applying the PRS derived from the MEGA analysis to large samples from 

the Psychiatric Genomics Consortium public datasets, we observed a significant association with 

the bipolar disorder phenotype (best p=0.00066, pFDR=0.018). but only a marginal association 

with the ADHD phenotype (best p=0.048, pFDR=0.28). 

GWAS Q-Q Plot

IGSF21 CTNND2 

Figure 4-7. Mega-analysis GWAS Results for BART Performance in the Combined 

CNP and GIP sample. Left Panel: Q-Q Plot show excellent correction for population effects 

and two SNPs with lower than expected p-value. Right Panel: Manhattan plot showing the 

location of two SNPs with suggestive lower than expected p-values. Blue line represents 

genome-wide significance. 
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DISCUSSION 

 

In line with the few previous rodent and human studies, our findings confirm a heritable, polygenic 

component to risky decision-making explaining 11% of the variance in BART performance. The 

bidirectionality of similar effect size and significance level is compelling. The PRS model performs 

best when additional individuals with psychiatric diagnoses impacting risk-taking behavior are 

included. These data are in line with prior studies demonstrating that both individuals with ADHD 

and bipolar disorder demonstrate increased impulsivity scores on behavioral tasks and more 

conservative BART performance is seen in individuals with schizophrenia.299 The improvement in 

PRS performance when psychiatric samples are included provides support for the 

conceptualization of a spectrum of risky decision-making throughout the population with more 

Clumped: 

pTbest=0.31

r2=0.048

p=0.041

pFDR=0.28

Clumped: 

pTbest=0.31

r2=0.045

p=0.054

pFDR=0.32

Pruned: 

pTbest=0.35

r2=0.04

p=0.093

pFDR=0.37
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Clumped: 

pTbest=0.17

r2=−0.04
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Figure 4-8. An exploratory analysis applying the PRS derived from the MEGA analysis to 

large samples from the Psychiatric Genomics Consortium public datasets, we observed a 

significant association with the bipolar disorder phenotype (top panel) (best p=0.00066, 

pFDR=0.018). but only a marginal association with the ADHD phenotype (bottom panel) (best 

p=0.048, pFDR=0.28). 
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extreme phenotypes in individuals with mental illness.  

 

The MEGA analysis provided additional power and identified two intronic SNPs that approach 

genomewide significance, rs12023073 and rs6891903. The genes containing these SNPs are 

both good biological candidates for risk-taking and relevant phenotypic associations have been 

published. CTNND2 (Catenin delta 2) is known to be involved in neuronal development, 

specifically maintenance of dendritic spines and synapse.300 CTNND2 is among the genes 

affected by CNVs found in ADHD and, along with other cell adhesion genes, GWAS-associated 

SNPs in addiction. An intronic CTNND2 variant (rs11133644) was recently associated with social 

conformity.301 CTNND2 is often deleted in Cri-du-Chat syndrome, which commonly manifests in 

hyperactivity and impulsivity phenotypes. Associations with impulsivity and excitement seeking 

have been observed with SNPs in family member CTNNA2 in a Native American sample302 and 

a meta-analysis of GWAS respectively.303 A population level GWAS using the UK Biobank 

identified a sex-specific (males) genome-wide intronic SNP (rs140089781) in CTNNA2 to be 

associated with alcohol consumption.304 High drug use has been shown to associate with SNPs 

in family member CTNNA3. 

 

The second most significant association from the MEGA analysis was rs12023073, which is an 

intronic variant in IGSF21 (immunoglobulin superfamily member 21). This gene encodes a protein 

that is part of the immunoglobulin super family that multiple human tissue analysis has identified 

that it is most highly expressed in the brain and is believed to play an integral role in inhibitory 

synaptic development. Tanabe et al. (2017) through an unbiased expression screen and 

proteomics in mice identified postsynaptic IgSF21 to interact with presynaptic neurexin2α.305  

Igsf21 knockout mice from that safe study were found to have a number of phenotypic 

abnormalities including: impaired inhibitory presynaptic organization, diminished GABA-mediated 
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synaptic transmission in hippocampal CA1 neurons, and deficits in sensory gating.  

 

This study represents the first genome-wide assessment of heritability of risky decision-making 

based on BART performance. It benefits from comparing similar objective behavioral 

measurements in moderately sized, healthy, genetically homogenous samples. The ability to 

include a smaller number of subjects with psychiatric diagnoses assessed with the same protocol 

extends the implications of the results. The main limitation of this study is limited power. Given 

the highly complex phenotypes being evaluated, it is possible that a much larger sample could 

definitively identify genes associated with risky decision making at the genomewide significant 

level and that an association with ADHD diagnosis could be demonstrated. Additionally, a 

replication sample to confirm the MEGA PRS would be useful to further validate the findings. 

In conclusion, we demonstrate for the first time that polygenic scores derived from a genome-

wide association study of a risk-taking phenotype successfully predict the same phenotype in an 

independent sample. We found that 11% of the variance in performance on the BART was 

captured by common genetic variation, consistent with the idea that risk-taking behavior is a 

polygenic trait. A MEGA-analysis GWAS combining the two samples, while underpowered, 

produced suggestive association at two functionally relevant genes. A PRS derived from this 

MEGA-analysis successfully predicted categorical bipolar diagnosis in a large public sample. A 

marginal trend was seen when applied to an ADHD population. 

 

 

Chapter 4 Wrap-Up 

 

With the advent and continuous growth of the genomic revolution, it becomes possible to study 

individual genetic variation throughout the whole genome on an unprecedented scale. The study 
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of pharmacogenetics and genetics as a whole embody all of these new technologies, and while 

I have only been able to scratch the surface during my time in graduate school, I know both the 

wet-lab, such as various forms of genotyping, and biostatistical, such as high-throughput 

genomic data pruning, techniques I was able to acquire will be indispensable in my future; I will 

be able to understand how human diseases operates on the fundamental biological level and 

derive meaningful knowledge from human genetics. 
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Chapter 5  

Gene x Environment Interactions 

 

General Introduction to Gene-Environment Interactions 

 

After traversing the pertinent fields of pharmacology, the more subtle details of personalized 

medicine begin to take shape in the form of the applied combinations of these principles. While 

the underlying biochemistry of how our bodies function in response to pharmaceuticals is both 

fascinating and paramount, it is important to zoom out and examine how the world around us 

can both affect and change this delicate homeostasis. Because we just covered how critical 

human genetics is to keeping the machine that is precision medicine well-oiled in Chapter 4, I 

will first discuss how the environment can interact with our genes.  

 

Not surprisingly, we refer to this equilibrium as gene-environment interaction, and it is important 

for improving both accuracy and precision in the assessment of both influences, as one cannot 

usually exist without the other. Gene-environment interaction or GxE as I will refer to it 

throughout this work, is defined as “a different effect of an environmental exposure on disease 

risk in persons with different genotypes” or alternatively, “a different effect of a genotype on a 

disease risk in persons with different environmental exposures.”306 A simply way to approach 

this is to consider an environmental risk factor as a “high-risk genotype” and can be things such 

as physical exposure (e.g. radiation, extreme temperature), chemical (e.g. polycyclic aromatic 

hydrocarbons, free radicals), biological (e.g. viruses), a behavior pattern (e.g. late age at first 

pregnancy), or a life event (e.g. job loss, car accident, injury).307 Research assume the variables 

to be dichotomous in these scenarios in order to facilitate ease and clarity of measurement and 
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discussion. Subtle differences in genetic variation cause people to respond in distinct and 

differing ways when exposed to the same environmental agent. Using statistical methods and 

thorough phenotyping assessments, researchers can classify predictions about disease risk in 

individual patients, stratifying a large amount of unique health information.  

 

Testing Gene-Environment Interactions 

 

In order to test these associations, individuals must be classified by the presence or absence of 

both the exposure and the high-risk genotype. Exposures are relatively facile to uncover and 

quantify, while the genetic component can be more of an obstacle. The most common strategies 

to evaluate GxE involve identifying a susceptibility gene, implementing ecogenetic or candidate 

genes, measuring a linked genetic marker, or evaluating positive vs. negative family history.306 

Overall, the identification of subsets of populations with high disease risks due to particular 

combinations of environmental stressors and genetic mutations with allow development of more 

targeted screening, interventions, preventative strategies, as well as improved maintenance of 

everyday health.308 

 

There is a pocket in this field of research that focuses on the effects of early childhood 

development. Studies are indicating that gene-environment interactions during this period of 

development may have long lasting and penetrating effects on health that do not manifest until 

adulthood. One can imagine “risk” factors such as those encountered during the beginning of 

our lives would have resounding implications in psychological health and well-being. In fact, 

researchers have seen that the behaviors of rat moms towards their newborn pups changes the 

lifelong responses of those offspring to stress. The parental behavior patterns change the 

activity of genes in the pup’s brains, specifically genes that are involved in the response to 
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stress hormones such as cortisol.309 Considering there is a myriad of adult psychiatric disorders 

that operate through complex mechanisms that are not entirely understood, GxE interactions 

represent a valuable pathway for studying long term effects of childhood life events. 

 

Applying Gene-Environment Interactions to Psychiatric Research 

 

Through a long-standing collaboration with Dr. Jessica Borelli, I had a golden opportunity to 

incorporate my growing database of genomic science into her work with childhood attachment 

patterns and future psychiatric disorder risk and susceptibility. I present two case studies that 

revolved around GxE interactions in a diverse community of school-aged children. The first, 

GxE Case Study #1, we examined moderating effects of a SNP in the FKBP5 gene, which 

encodes for FK506 binding protein 5 and plays a role in immunoregulation and basic cellular 

processes310 on the links between parenting intensity (overcontrol) and child attachment. We 

assessed whether this genetic variation moderates the links between maternal and child 

attachment, and subsequently children’s emotional regulation. Detailed results can be seen 

below. Secondly, GxE Case Study #2, we expanded upon what is known about children’s 

genetic and environmental risk for anxiety by examining the unique and interactive effects of 

mother-child language style matching and a specific OPRM1 polymorphism on children’s 

separation anxiety disorder symptoms. OPRM1 is a µ-opioid receptor encoding gene, and these 

neuronal receptors can mediate acute changes in neuronal excitability via suppression of 

presynaptic release of GABA.311 Findings from this study provide support for a differential 

susceptibility model of childhood separation anxiety and are detailed below. 
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GxE Case Study #1: Interactive effects of attachment and FKBP5 genotype on school-

aged children's emotion regulation and depressive symptoms. * 

 

*This work is currently published in Behavioral Brain Research312 

 

Borelli JL, Smiley PA, Rasmussen HF, Gómez A, Seaman LC, Nurmi EL. 

 

1. Introduction 

A large body of research demonstrates that child attachment insecurity and genetic factors are 

each associated with elevated risk for emotion dysregulation and psychopathology.313, 314 

However, few studies have examined associations between these two factors [6] and even 

fewer have evaluated their interaction in predicting child outcomes. Using a developmental 

psychopathology framework,315 in a middle childhood community sample, we examine 

interactions of parenting and genes in predicting child attachment security, as well as 

attachment security (both children’s and mothers’) and genes in predicting children’s emotion 

regulation and depressive symptoms. 

 

1.1. Emotion regulation and depressive symptomatology 

Emotional reactions are multilayered experiences comprised of psychological, physiological, 

and behavioral components.316 Emotion regulation (ER) refers to the conscious or unconscious 

processes by which individuals modulate their emotions; some ER strategies result in worsened 

distress and poor psychological outcomes. Emotion suppression – a conscious process of 

pushing negative emotions away – is, ironically, associated with increases in negative 

emotion.317, 318 Rumination, another maladaptive ER strategy,319 involves a passive and 
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repetitive focus on the origins, meaning, or future implications of negative emotion;320 it is a well-

established risk factor for childhood depression.321 

 

Because multiple systems are involved in emotions and their regulation, multi-method 

assessment of ER is essential.322 Whereas traitlike ER strategies such as suppression and 

rumination are typically assessed via self-report, momentary emotional changes inaccessible 

through self-report can be measured physiologically.323 Respiratory sinus arrhythmia (RSA), 

which indexes parasympathetic vagal influences on the heart,324 is one such measure. Although 

the meaning of task-related RSA changes has been debated, generally speaking, greater 

decreases in RSA signify an adaptive response, namely, recruitment of additional resources to 

adequately cope with stress on ER capacity.324-327 Indeed, greater task-related decreases in 

children’s RSA are associated with fewer behavior problems, greater social competence, and 

more adaptive ER strategies,326, 328, 329 but see 330, for conflicting effects). 

 

1.2. Attachment insecurity, emotion dysregulation, and depressive symptoms 

One of the core tenets of Bowlby’s attachment theory is that attachment and ER are inextricably 

intertwined.331, 332 Attachment security develops through interactions with attachment figures 

(typically caregivers) who fulfill two central functions, serving as a secure base from which the 

child can explore (i.e., promoting the child’s autonomy) and serving as a safe haven to which 

the child can return in times of need (i.e., providing comfort); Caregivers who consistently fulfill 

these functions promote the child’s confidence that his/her emotional needs can be expressed 

and resolved within close relationships.333 In contrast, children exposed to caregiving that fails to 

provide comfort (e.g., rejecting the child for showing emotion) develop attachment avoidance,334 

which involves learning to deactivate their emotional responses and adopting a strategy of self-

reliance,335 responses that are phenotypically similar to emotion suppression.336 Similarly, 
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children whose parents are unable to promote children’s autonomy (e.g., by engaging in 

intrusive or overcontrolling parenting), or who respond inconsistently to children’s attachment 

needs, develop anxious attachment.337 Indeed, parental overinvolvement, a construct 

theoretically related to overcontrol, is associated with attachment insecurity in school-aged 

children.338 Like other forms of parental insensitivity,339 overcontrol may teach children that their 

environment is chaotic and unpredictable.340 Children parented this way adopt hyperactivating 

ER strategies336 such as rumination that prolong and intensify negative emotions in order to 

increase the likelihood of eliciting a caregiver response.341 

 

The theoretical claim that attachment insecurity is associated with suboptimal ER throughout the 

lifespan is now supported by a large body of research (see 342 for a review). Even in middle 

childhood, until recently a relatively understudied developmental phase in the attachment 

literature,343 links between attachment and ER abound: Attachment insecurity is associated with 

greater parent-reported child emotion dysregulation343  and with physiological indices of emotion 

dysregulation, including cortisol reactivity,344 startle magnitude,345 event-related potentials,346 

galvanic skin response,347 and cardiovascular reactivity.348 Although less research has 

examined links between parental attachment security and children’s ER (see 349), it is thought 

that attachment transmits across generations,350 and it follows that parental attachment 

insecurity should also be associated with impaired child ER. 

 

In theory, children’s insecure attachment also predisposes them to affective pathology such as 

depression because children’s lack of emotional security results in emotional (e.g., poor ER;351 

and cognitive (a sense of loss and uncontrollability) risk factors for depression.352 Consistent 

with these predictions, associations between attachment insecurity and depression have been 

documented at various stages of development, including middle childhood.353 Research 
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expanding our understanding of factors that contribute to the development of depression in 

middle childhood is particularly important given the dramatic rise in depression prevalence in 

adolescence.320 

 

1.3. FKBP5, emotion dysregulation, and depressive symptoms 

In addition to environmental risk factors, children’s ER and risk for depressive symptomatology 

may also be influenced by their genes. The hypothalamic-pituitary-adrenal (HPA) axis links the 

nervous and endocrine systems in the regulation of the human stress response. Hypothalamic 

corticotropin-releasing hormone, the main activator of the HPA axis, regulates the release of 

adrenocorticotropic hormone from the pituitary, in turn triggering adrenal secretion of cortisol, a 

glucocorticoid and key stress hormone.354 Cortisol, through its action at glucocorticoid receptors, 

has widespread effects throughout the body, diverting resources to cope with acute stressors. 

The stress response is limited by cortisol feedback on the hypothalamus. This negative 

feedback loop is regulated by the glucocorticoid receptor co-chaperone, FKBP5, which 

modulates glucocorticoid receptor sensitivity [30]. Functional polymorphisms in the FKBP5 

gene, however, alter FKBP5 expression and result in downstream glucocorticoid receptor 

resistance and dysregulation of the neuroendocrine stress-response. 

 

The two most studied polymorphisms, rs3800373 and rs1360780, map to the 3′ untranslated 

region and intron 2 respectively. Since they are in near-perfect linkage disequilibrium (r2 > 0.9), 

genetic effects cannot be independently differentiated; however, functional effects of the 

rs3800373-rs1360780 haplotype may be conferred by the rs1360780 variant, which maps to a 

glucocorticoid response element in intron 2 and results in a hyperactive allele,310.355 Minor 

alleles at these loci (rs3800373 C-allele, rs1360780 T-allele) present at a frequency of 20–40% 

across racial groups, result in poor regulation of the stress response system following exposure 
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to stress.310 Not surprisingly, these FKBP5 minor alleles have been associated with mental 

illnesses such as major depression, bipolar disorder and post-traumatic stress disorder.310, 356 

Additionally, environment by gene effects have been repeatedly observed, with FKBP5 minor 

alleles conferring risk for harmful psychological effects specifically in the context of childhood 

trauma exposure.357 During childhood, FKBP5 minor alleles also predispose individuals to 

stress-mediated epigenetic changes that further dysregulate the FKBP5 negative feedback loop, 

thus moderating the long-term impact of environmental stressors.358 Given that emotion 

dysregulation and depression have been associated with both attachment insecurity and genetic 

vulnerability as well as the fact that some research suggests an association between 

attachment insecurity itself and genetic variation,359 a comprehensive assessment must 

examine both factors simultaneously. Designs involving both predictors are able to determine if 

one is a more proximal correlate of the outcomes of interest than the other, and they are also 

able to explore the impact of their interaction. Two dominant theoretical perspectives regarding 

gene-environment interactions in predicting psychological outcomes are the diathesis-stress 

and the differential susceptibility models. The diathesis-stress model360 suggests that minor 

alleles will be associated with negative outcomes in the presence of negative parenting and/or 

attachment insecurity. In contrast, the differential susceptibility theory posits that genetic factors 

are markers of plasticity, or openness to environment inputs361, 362– children with genetic 

sensitivity may demonstrate worse outcomes in the context of negative environmental 

circumstances, but enjoy more optimal outcomes than expected in favorable environments. 

Evidence for the differential susceptibility theory continues to mount, as scholars reinterpret data 

from prior studies previously conceptualized as evidence for diathesis and conduct new studies 

to test the model.363 

 



130 
 

Studies show that interactions of parenting behaviors and monoaminergic gene variants predict 

attachment security, ER, and depressive symptoms.347, 359, 364-367 HPA axis candidate genes 

have also been studied for genetic influences on these phenotypes, including mineralocorticoid, 

glucocorticoid and oxytocin receptors.368, 369 The most replicated genetic findings occur at the 

FKBP5 locus. FKBP5 minor alleles interacted with chronic low family support in predicting child 

mental health status in 255 children with comorbid depression and disruptive behaviors.370 The 

interaction of FKBP5 gene variants and adverse life events predicted first episode depression 

onset in a large-scale 10-year prospective community study of adolescents and young adults371 

and symptoms of anxiety, depression, anger, and dissociation in adolescents.372 Similarly, 

FKBP5 variants demonstrated significant interactions with mild to moderate life events in 

predicting anxiety and depression in preschoolers.373 Finally, consistent with the differential 

susceptibility model, post-institutionalized girls with FKBP5 minor alleles exhibited more 

depressive symptoms at higher levels of peer victimization, but fewer depressive symptoms at 

lower levels of victimization,374 suggesting that gene variants confer openness to experience 

rather than simple risk for negative outcomes.375 Thus, based on the reliability of previous 

findings in independent samples, well-described impact of functional variation, and clearly 

demonstrated interaction with environmental stressors, we examine genetic influences of the 

FKBP5 risk haplotype (tagged by the rs3800373 variant) on attachment, ER, and depressive 

symptoms. 

 

1.4. Current investigation 

Using a diverse, community-based sample of school-aged children, we build upon prior work 

and examine interactive associations between attachment and genes to predict child ER 

outcomes. Using multimodal measurement of ER and incorporating assessments representing 

both mother and child perspectives, we evaluate four hypotheses. 



131 
 

 

First, we examine whether parenting behavior (operationalized as parental overcontrol), 

moderated by genes (FKBP5 genotype), predicts quality of children’s attachment (Hypothesis 

1). Consistent with the differential susceptibility hypothesis,361 we predict that the greatest 

variability in child attachment will occur among children with FKBP5 minor alleles; among these 

children, low parental overcontrol will be associated with the highest attachment security and 

high parental overcontrol with the lowest attachment security. 

 

Next, we examine whether children’s attachment security, which we propose represents the 

internalization of parenting behavior, moderated by children’s genes (FKBP5 genotype), 

predicts ER as measured by three indices – stressor-related RSA, emotion suppression, and 

rumination (Hypothesis 2) – and depressive symptoms (Hypothesis 3). We predict that in 

children with FKBP5 minor alleles, high attachment insecurity will be associated with the 

greatest degree of emotion dysregulation/depression and low attachment insecurity with the 

least. 

 

Finally, we investigate whether maternal attachment, moderated by child genes, predicts the 

same three indicators of emotion dysregulation and depression. We expect that among children 

with minor alleles only, maternal attachment insecurity will be associated with greater emotion 

dysregulation and depression (Hypothesis 4). 

 

2. Method 

2.1. Participants 

School-aged children (N = 106, 49% girls) and their mothers (see Table 5-1 for sample 

descriptors) were recruited from the community using various methods, including online 
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postings and flyers. In order to participate, mothers had to be proficient in English and have at 

least one child between the ages of 9 and 12. The sample was diverse socioeconomically (48% 

reported an annual income of less than $60,000), racially (63% Caucasian, 22% African 

American, 10% Asian, and 5% other racial category or mixed race), and ethnically (22% 

Hispanic, 78% non-Hispanic). 

 

2.2. Procedure 

The study was approved by the 

Institutional Review Board. Upon 

arriving at the laboratory, mothers 

and their children provided 

informed consent and assent. Then, in separate rooms, mothers and children completed self-

report measures of attachment. Children also reported on their emotion suppression, 

rumination, and depressive symptoms. Mothers self-reported their use of overcontrol. Finally, 

children participated in the performance challenge task (PCT) while their cardiovascular 

reactivity was monitored. 

 

2.3. Measures 

2.3.1. Maternal attachment style 

Table 5-1. T-tests between 

Key Study Variables. 

 

a - Values represent item-level 

mean scores. 

 

* - p < .05. 
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The Experiences in Close Relationships-Revised scale (ECR-R;376) is a self-report measure 

assessing individual differences with respect to attachment-related anxiety (e.g., I often worry 

my partner doesn’t really love me) and avoidance (e.g., I prefer not to show a partner how I feel 

deep down) as they occur in the context of adult romantic relationships. Each subscale consists 

of 18 items rated on 7-point scales, with higher values signifying greater insecurity. Item-level 

scores were averaged to yield attachment avoidance and anxiety scores. The ECR-R’s 

reliability and validity have been extensively demonstrated.373 In this study, αanxiety = 0.92 and 

αavoidance = 0.94. 

 

2.3.2. Maternal overcontrol 

Mothers completed the USC Parental Overcontrol Scale (USC-POS;), a 10-item questionnaire 

designed to measure parental overcontrol (e.g., I expect my child to tell me everything that 

happens when he/she is away from home) among parents of school-aged children. Parents rate 

each item on a 5-point scale (from 0, Not at all descriptive, to 4, Extremely descriptive); item 

scores were summed to create a total score. The USC-POS’s validity has been demonstrated in 

two prior studies (see 368, 377). Discriminant validity was shown in this sample by a nonsignificant 

association between USC-POS scores and social desirability as measured by the Balanced 

Inventory of Desirable Responding questionnaire, r = −0.13, ns. Cronbach’s alpha was 

comparable to reports in prior studies, α = 0.64. 

 

2.3.3. Child attachment security 

Children completed the Security Scale, a 15-item questionnaire presented in the form of self-

esteem questionnaire (e.g., Some kids find it easier to trust their mom but other kids are not 

sure if they can trust their mom). After selecting which group of children they are most like, 

respondents indicate how true that statement is for them (sort of true or really true). Responses 
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to the items are averaged to create a mean score, with higher scores suggesting higher security 

(range: 1–4). The measure has strong reliability and validity.378 In this study, Cronbach’s alpha 

was 0.88. Note that the Kerns Security Scale does not differentiate between anxiety and 

avoidance, two dimensions of insecurity. 

 

2.3.4. Child genetic plasticity 

Saliva was collected and DNA isolated using DNA Genotek’s (Ontario, Canada) Oragene Saliva 

Collection Kit (OG-500). FKBP5 variant rs3800373 was genotyped using Life Technologies’ 

(Carlsbad, CA) TaqMan platform according to the manufacturer’s protocol. To ensure quality 

control, a subset of the sample was genotyped in duplicate with perfect concordance. Minor 

allele frequencies were similar to expected published values and Hardy-Weinberg Equilibrium 

was satisfied. In line with existing literature, the minor C-allele was considered the risk/plasticity 

allele, with CC homozygotes at greatest risk/plasticity. Since the minor allele is present at 

similar frequencies across racial groups and race was not a significant predictor of the 

dependent variables, race was not expected to be a confound. There was insufficient saliva to 

allow for genotyping of n = 5 children and n = 2 children had undetermined genotypes; therefore 

we report findings on n = 99 children. 

 

2.3.5. Child emotion suppression 

The Emotion Regulation Questionnaire for Children and Adolescents (ERQ-CA;379 is a 10-item 

measure probing responses to happiness, sadness, and anger. The items are grouped into two 

subscales: emotion suppression and cognitive reappraisal. The current investigation utilized the 

emotion suppression subscale, comprised of 4 items that describe conscious forms of masking 

experienced emotion (e.g. When I am feeling happy, I am careful not to show it). Children 

respond using a 5-point scale (1 = strongly disagree, to 5 = strongly agree). Internal consistency 
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and convergent validity of the measure have been reported.379 Cronbach’s alpha for the emotion 

suppression subscale was 0.74 for this sample. 

 

2.3.6. Child rumination 

Children completed the Children’s Response Style Questionnaire (CRSQ;), comprised of 25 

items that assess rumination in response to feeling sad. There are three subscales: ruminative 

responses, distracting responses, and problem-solving. We utilized the total score of the 13-

item ruminative responses scale; items prompt children to describe how often they employ a 

passive, self-focused response to sad mood (e.g., think about how alone you feel). Children 

respond on a 0 (almost never) to 3 (almost always) scale, with higher scores indicating greater 

rumination. The ruminative responses subscale has good psychometric properties, including 

high internal consistency and test-retest reliability.380 Cronbach’s alpha for the ruminative 

response subscale was 0.84 in this sample. 

 

2.3.7. Child depression symptoms 

Children completed the Children’s Depression Inventory (CDI;381), a 27-item measure of 

depressive symptomatology. The CDI prompts children to choose the statement from a series of 

three statements that best describes how they felt over the past two weeks (e.g., “I am sad once 

in a while,” “I am sad many times,” or “I am sad all the time”). These responses are converted to 

a 0–2 scale; a mean score across 27 items was computed, with higher scores indicating more 

depressive symptoms. The CDI has good test-retest reliability, internal consistency, and 

validity.381 Cronbach’s alpha in this sample was 0.84. 

 

2.3.8. Performance challenge task 
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Children completed the Performance Challenge Task (PCT;382). Mothers, who were told their 

children should complete the task independently, sat in a chair placed a few feet behind the 

child and observed. The task consisted of solving six geometric puzzles adapted from the Block 

Design task in the Wechsler Intelligence Scale for Children, 3rd edition. For each puzzle, the 

screen displayed a reduced-size picture of the completed puzzle, and ten pieces that could be 

moved into an empty frame. Children were instructed to move the pieces to complete the 9-

piece puzzle. Puzzles were made impossible by only including eight of the nine correct pieces, 

along with two extraneous pieces. Each puzzle was displayed to the child for 50 s, after which a 

cartoon frown face appeared, indicating the child’s failure to solve the puzzle. For the next 10 s, 

a progress bar appeared, showing the child’s progress in comparison to other imaginary 

children, who supposedly got 5 out of 6 puzzles correct. 

 

Children sat approximately 20 inches in front of a computer monitor on which stimuli were 

presented and used a computer mouse to move the puzzle pieces. The screen was connected 

to an experimenter-controlled computer located in an adjacent room. Experimenters used the 

computer to present experimental stimuli using E-Prime 2.0 software (Psychology Software 

Tools, Pittsburgh, PA), which sent recording signals to the physiological data collection 

program, BioLab (Mindware Technologies, Gahanna, OH). 

 

2.3.9. Child cardiovascular reactivity 

Prior to the PCT, research assistants connected children to HRV equipment and tested the 

signals to make sure the electrodes were functioning well. Disposable Mindware 1.5-inch foam 

electrodes with 7% chloride wet gel and touchproof snap leads were connected to a BioNex 8-

slot chassis equipped with an impedance cardiograph (Mindware Technologies, Gahanna, OH). 

HRV data were collected using BioLab 2.5 acquisition software and later edited for peak errors 
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and noise due to movement using the BioLab HRV 2.0 application (Mindware Technologies, 

Gahanna, OH). 

 

Children were instructed to remain as still as possible. Children first completed a 5-min resting 

baseline during which they watched a nature video while their physiological activity was 

recorded. During the PCT, a 60-s segment of physiological data was recorded for each of the 

six unsolvable puzzles. For this study, we calculated mean scores across the five-minute 

baseline nature video (baseline RSA) and across the six unsolvable puzzles for each child 

(stressor-related RSA). RSA data from n = 7 children were lost due to equipment malfunction. 

To assess RSA reactivity, we created a standardized residual score (stressor-related RSA 

controlling for baseline RSA), which we used as the dependent variable in hypothesis testing. 

 

2.4. Data analytic plan 

Hypotheses were tested using hierarchical linear regressions, controlling for demographic 

variables that were significantly associated with dependent variables. Due to the strong 

association between rumination and depression,380 we initially included rumination in the 

regression predicting depressive symptoms; the pattern of effects was unchanged, therefore we 

present the results of the more parsimonious analyses not including rumination. Since the AA (N 

= 47) and AC (N = 38) genotype groups produced identical patterns across all analyses, we 

determined that the C-allele was acting in a recessive manner and therefore combined A-allele 

carriers (AA and AC) into a single group that was compared with CC homozygotes (N = 14). 

 

In order to adopt a conservative data analytic strategy that minimizes the number of analyses 

conducted to avoid type I error inflation, we tested all attachment × gene interaction effects 

simultaneously in each of the models, and subsequently performed post-hoc analyses of 
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interactions that emerged as statistically significant in these more complex omnibus models. 

Initial analyses revealed that attachment × gene interactions were not statistically significant for 

avoidance; therefore, in the models presented here, we included two interaction terms (child 

attachment security × FKBP5 and maternal attachment anxiety × FKBP5). As is customary in 

attachment research (e.g.,383), we controlled for maternal attachment avoidance when 

attachment anxiety was a predictor variable. 

 

We used the PROCESS macro for SPSS384 to test moderation by FKBP5 of associations 

between child and mother attachment and outcome variables. The PROCESS macro tests 

significance by creating 95% bias-corrected confidence intervals using 1000 bootstrapped 

samples. In the moderation models, the independent variable is the environmental factor 

(mother overcontrol, child attachment, mother attachment) and the moderator is the level of 

genetic risk/plasticity, treated as a dichotomous variable (AA and AC = lower risk/plasticity; CC 

= higher risk/plasticity). Dependent variables include child attachment security, measures of ER, 

and depression. For each individual hypothesis, a significance threshold of p < 0.05 was 

assumed. 

 

After conducting analyses, we followed the guidelines proposed by Roisman et al.385 for 

evaluating whether statistically significant moderation effects fit diathesis-stress or differential 

susceptibility models . Following their recommendations, we examined the simple slopes of the 

association between X and Y among children with low risk/plasticity (AA or AC) and high 

risk/plasticity (CC) alleles. For all significant moderation effects, we then determined the 

percentage of cases that fell past the crossover point, termed the proportion affected (PA) 

index. The crossover point in an interaction is the first value of X at which the regression lines 

cross. Roisman et al. recommend that when 16% or more cases fall beyond the crossover point, 
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the interaction can be interpreted as providing evidence of differential susceptibility, but when 

between 2 and 16% of cases fall beyond this point, the conclusion is less clear. 

 

3. Results 

Compared to girls, boys reported greater use of expressive suppression to regulate emotion, 

t(98) = −2.46, p = 0.016, but no other gender differences emerged (see Table 10). As shown in 

Table 5-2, child age was negatively associated with emotion suppression. Both maternal 

attachment anxiety and avoidance were positively associated with maternal overcontrol, and 

maternal attachment anxiety was positively correlated with child depressive symptoms. Maternal 

overcontrol was negatively associated with child attachment security and positively with child 

depressive symptoms. Child attachment security was inversely associated with children’s 

emotion suppression and children’s depressive symptoms. FKBP5 minor alleles were correlated 

with lower stressor RSA and positively associated with children’s depressive symptoms, but 

were not significantly associated with any of the environmental variables. A repeated-measures 

t-test suggested that for the 

sample as a whole, RSA 

decreased from baseline to PCT, 

t(90) = 4.79, p = 0.0001. 

 

 

Table 5-2. Zero-order 

Correlations between Key 

Study Variables. 

 

* - p < 0.05. 

 

** - p < 0.01 
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3.1. Predictors of child attachment security 

Beyond the variance explained by the covariates and the main effects of maternal overcontrol 

and FKBP5 genotype alone, R2 = 0.16, p = 0.009, the interaction between maternal overcontrol 

and FKBP5 genotype did not significantly add to the prediction of child attachment security, ΔR2 

= 0.01, p = 0.50 (i.e., the simple slopes were not significantly different from each other and a 

model with only one slope would be more parsimonious). However, we describe the simple 

slopes as descriptive statistics. The negative association between maternal overcontrol and 

child attachment security was statistically significant when children were heterozygous for the 

FKBP5 minor allele (AC), b = −0.04, p = 0.001, or homozygous for risk/plasticity (CC), b = 

−0.05, p = 0.01, but not when children had low genetic risk/plasticity (AA), b = −0.03, p = 0.05. 

 

3.2. Predictors of children’s emotion regulation and depressive symptoms 

Beyond the variance explained by the covariates and the main effects of child attachment 

security, maternal attachment avoidance, and FKBP5 genotype alone, R2 = 0.15, p = 0.03, the 

two interactions of child and maternal attachment with FKBP5 together yielded no significant 

improvement in the prediction of RSA reactivity, ΔR2 = 0.06, p = 0.07 (see Table 5-3). When 

decomposing this combined effect into the two separate interaction effects – the interaction 

between child attachment and FKBP5 by itself significantly improved prediction, ΔR2 = 0.04, p = 

0.048, whereas that between maternal attachment anxiety and FKBP5 did not, ΔR2 = 0.005, p = 

0.50. Fig. 5-1 depicts the 2-way interaction effect. For the significant interaction effect, child 

attachment security was inversely associated with RSA among children with high risk/plasticity 

(CC), b = −1.21, p = 0.01, but not among children with low risk/plasticity (AA or AC), b = −0.10, 

p = 0.64. According to the PA index, 100% of cases fell beyond the crossover point (2.22 on 

attachment security), providing evidence of minor alleles acting exclusively as a protective factor 

whose impact is enhanced when attachment security is high. 
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Beyond the variance explained by the covariates, including child gender, and the main effects, 

R2 = 0.17, p = 0.018, the two interactions between attachment and FKBP5 did not significantly 

contribute to the prediction of emotion suppression, ΔR2 = 0.06, p = 0.057 (see Table 5-3). 

When decomposing this combined effect into the separate interaction effects, the interaction 

Table 5-3. FKBP5 Genotype × Child Attachment Predicting Child RSA Reactivity, Emotion 

Suppression, and Child Rumination. Child gender was only significantly associated with 

emotion suppression; therefore we included it as a covariate only in the analysis in which 

emotion suppression was a dependent variable. PROCESS generates unstandardized b 

values, which are reported here. 

 

t - p < 0.10. 

 

* - p < 0.05. 

 

a - Standardized residual of mean RSA during insolvable puzzles controlling for baseline 

RSA. 
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between child attachment and FKBP5 significantly added to the prediction, ΔR2 = 0.06, p = 

0.018, whereas the interaction between maternal attachment anxiety and FKBP5 did not, ΔR2 = 

0.009, p = 0.75. For the significant interaction, child attachment security was inversely 

associated with emotion suppression among children with high risk/plasticity (CC), b = −1.19, p 

= 0.004, but not among children with low risk/plasticity (AA or AC), b = −0.22, p = 0.18 (see Fig. 

5-1). The PA index showed that 25.53% of cases fell beyond the crossover point (a value of 

3.14 on attachment security), providing strong evidence for differential susceptibility. 

 

Beyond the variance explained by the covariates and the main effects, R2 = 0.16, p = 0.015, the 

combined interactions between attachment and FKBP5 significantly added to the prediction of 

rumination, ΔR2 = 0.06, p = 0.041 (see Table 12). Decomposing this joint effect showed that the 

interaction between child attachment and FKBP5 was significant, ΔR2 = 0.04, p = 0.039, 

whereas that between maternal attachment anxiety 

and FKBP5 was not, ΔR2 = 0.008, p = 0.37. Child 

attachment security was inversely associated with 

rumination among children with high risk/plasticity 

(CC), b = −9.96, p = 0.004, but not among children 

with low risk/plasticity (AA or AC), b = 0.15, p = 

0.92, (see Fig. 5-2). The PA index revealed that 

22.34% of cases fell beyond the crossover point 

(3.14 on attachment security), providing evidence 

of differential susceptibility. 

 

 

Figure 5-1. Attachment × FKBP5 

rs3800373 predicting child RSA 

reactivity. The C-allele of FKBP5 

rs3800373 is believed to confer 

sensitivity to environmental stress. 
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Beyond the variance explained by the covariates 

and the main effects, R2 = 0.30, p =0.00001, the 

interactions between attachment and FKBP5 

genotype jointly added to the prediction of 

depressive symptoms, ΔR2 = 0.12, p = 0.001 (see 

Table 5-4). Decomposing this joint effect showed 

that the interaction between child attachment and 

FKBP5 added significantly to the prediction, ΔR2 = 

0.06, p = 0.005, whereas that between maternal 

attachment anxiety and FKBP5 did not, ΔR2 = 

0.03, p = 0.07. Attachment security was more 

strongly inversely associated with depressive 

symptoms among children with high risk/plasticity (CC), b = −0.43, p = 0.0001, as compared to 

those with low risk/plasticity (AA or AC), b = −0.09, p =0.03 (see Fig. 5-3). According to the PA 

index, 15.95% of cases fell beyond the crossover point (3.65 on child attachment security), 

providing tentative evidence for differential susceptibility. 

We interpret the trend-level effect for the interaction between maternal attachment anxiety and 

FKBP5 – of note is that when analyzed separately from the first interaction effect (i.e., without 

Figure 5-2. Attachment × FKBP5 

rs3800373 predicting children’s 

emotion suppression, controlling for 

child gender and maternal attachment 

avoidance. 
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controlling for the first interaction effect), the finding 

is statistically significant, p = 0.01. Maternal 

attachment anxiety was positively associated with 

depressive symptoms among children with high 

risk/plasticity (CC), b = 0.13, p = 0.01, but not 

among those with low risk/plasticity (AA or AC), b = 0.03, p = 0.25 (see Fig. 5-5). The PA index 

revealed that 7.21% of cases fell beyond the crossover point (1.64 on maternal attachment 

anxiety), providing weak evidence for differential 

susceptibility.   

 

It is 

important to note that in computing the PA indices, 

we examined single interactions in isolation (e.g., 

child attachment security × FKBP5). 

 

Table 5-4. FKBP5 Genotype × Maternal Attachment Anxiety Predicting Children’s 

Depressive Symptoms.  

t - p = 0.06. 

a - Pattern of effects remains the same when controlling for children’s rumination. 

PROCESS generates unstandardized b values, which are reported here. 

Figure 5-5. Attachment × FKBP5 

rs3800373 predicting children’s 

depressive symptoms, controlling for 

maternal attachment avoidance. The 

pattern remains unchanged when also 

controlling for rumination. 

Figure 5-4. Attachment × FKBP5 

rs3800373 predicting children’s 

rumination, controlling for maternal 

attachment avoidance. 
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We sought to advance the state of knowledge pertaining to the interactive associations of 

attachment and genetic risk with children’s ER and depressive symptoms. Our findings are 

supportive of the notion that relationship factors and children’s genotype interact in predicting 

child outcomes, and can be understood within a differential susceptibility framework. 

 

Importantly, in our sample, FKBP5 was not 

significantly associated with any of the variables 

representing environmental factors, suggesting the 

absence of gene-environment correlations. In 

combination with our other findings, these non-

significant associations suggest that while minor 

alleles may make children vulnerable to the effects 

of maternal attachment, children with these alleles 

do not have mothers with greater attachment 

insecurity. 

 

4.1. Predictors of child attachment security 

Although parental overcontrol was negatively associated with child attachment security, the 

FKBP5 genotype was not. Further, although the effect of the interaction between overcontrol 

and FKBP5 genotype on attachment security was not itself statistically significant, we noted that 

higher overcontrol predicted lower attachment security and lower overcontrol predicted higher 

attachment security among children with minor alleles. Prior work reports a link between 

parental over involvement and attachment insecurity,338 but here we found that this link only 

holds for children with minor alleles. We present this pattern of effects to facilitate future 

examination of these associations with larger samples. 

Figure 5-6. Attachment × FKBP5 

rs3800373 predicting children’s 

depressive symptoms, controlling for 

maternal attachment avoidance and 

child attachment security. The pattern 

remains unchanged when also 

controlling for rumination. M = maternal 

attachment. 
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4.2. Children’s attachment security as a predictor 

Although we identified few main effects between attachment or FKBP5 and children’s ER, the 

interaction between these two factors predicted all outcomes. With respect to state-like 

reactivity, we found that among children with the CC genotype, children’s attachment security 

was associated with a greater decrease from baseline RSA, suggesting readiness to respond to 

the stressor. In contrast, there was no association between attachment security and RSA 

reactivity in children with the AC or AA genotypes. This pattern, where genetic susceptibility is 

associated with more optimal functioning in positive environments, is consistent with a 

differential susceptibility framework. Importantly, however, the meaning of task-related 

decreases in RSA has been a topic of debate. Some scholars argue that decreases in RSA in 

response to a task, referred to as RSA withdrawal, represent readiness to engage the 

autonomic nervous system in mounting a response to a stressor.386 This may be true for 

community samples, for which decreases in RSA are more likely to suggest adaptive readiness. 

In support of this assertion, task-related decreases in RSA are associated with fewer 

externalizing problems, more prosocial behavior, and less sadness.328 Others argue that greater 

decreases in RSA in response to a stressful task indicate that the stimulus poses a greater 

regulatory challenge to the individual than can be easily handled. Indeed, associations between 

RSA decreases and rumination, internalizing and behavioral problems, and poorer executive 

functioning have been reported (e.g., 330). Given these competing perspectives, our 

interpretation of this finding – that attachment security is associated with greater adaptive 

decreases in RSA among CC children – is tentative. 

 

With respect to the traitlike measures of ER (suppression, rumination), children’s attachment 

was associated with ER for children homozygous for the minor C-allele, but not among children 
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with AA or AC alleles. Both rumination and suppression are considered maladaptive forms of 

ER – rumination can be conceptualized as a hyperactivating form of ER and suppression, a 

deactivating one. Our results show that children with CC genotypes had less optimal ER when 

security was low, but more optimal ER when security was high, as compared to children without 

minor alleles, providing evidence for differential susceptibility.385 

 

With respect to depressive symptoms, there was a negative association between children’s 

attachment security and depressive symptoms only for CC children, with modest evidence for 

differential susceptibility. However, because those with high child attachment security reported 

very low depressive symptoms regardless of genotype, trend-level protective effects seen for 

children with FKBP5 minor alleles and positive environments may be limited in significance by 

floor effects (i.e., pathology rating scales cannot capture improvement beyond the absence of 

symptoms). 

 

When considering these four interaction effects of child attachment security and child genotype 

on ER and depression, the findings provide strong support for differential susceptibility: Minor 

alleles predict more maladaptive ER/depression when children’s attachment security is low and 

more optimal ER/depression when attachment security is high. That is, minor alleles may confer 

sensitivity to the influence of the environment rather than exclusively conferring risk. 

 

4.3. Maternal relationship variables as predictors 

In comparison to the dependence of the associations between child attachment and children’s 

ER on genetic plasticity, associations between maternal attachment and ER did not depend on 

FKBP5 genotype, nor were there main effects of maternal attachment on children’s ER reactivity 

or strategies. Although contrary to theoretically-based predictions, the lack of significant effects 
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is unsurprising in that few studies have reported main effects between parent attachment and 

child ER (but see387, for an example of main effects of interview-based maternal attachment), 

and to our knowledge no studies have examined these links using parents’ self-reported 

attachment style. Further, in the present study, parents reported on attachment in the context of 

romantic relationships. Although emerging research shows that attachment security measured 

in the context of romantic relationships is associated with parenting behavior and emotion388, we 

would not expect parents’ romantic attachment security to be as strongly linked to children’s ER 

strategies as caregiving behavior. 

 

Maternal attachment anxiety interacted with children’s FKBP5 genotype in predicting children’s 

depressive symptoms; when maternal attachment anxiety is high, children with minor alleles 

report higher depressive symptoms, whereas when anxiety is low, children with minor alleles 

report lower depressive symptoms. Importantly, the nature of these associations varies as a 

function of children’s attachment security; children with CC genotypes and low security have the 

strongest positive association between maternal attachment anxiety and children’s depressive 

symptoms. Overall, with respect to depressive symptoms, minor alleles may confer openness to 

both the negative and positive influence of the caregiving environment (in this case, maternal 

attachment anxiety). 

 

Maternal avoidance did not interact with children’s genotype to predict outcomes. There are at 

least two possible explanations for this pattern, one conceptual and the other, methodological. 

Conceptually, parents higher in attachment anxiety may parent in a way that heightens the 

child’s attachment needs, for example, by catastrophizing when the child is afraid, which in turn, 

could intensify and prolong negative emotional experiences. Elevated reactivity may then 

enhance children’s risk for affective forms of pathology, such as depression and anxiety.389 If 
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parents do not heighten children’s attachment needs, children may be better at regulating their 

emotion in the face of ordinary stressors. High avoidance parents may treat children in a way 

that results in children suppressing emotion, which may more likely result in externalizing rather 

than internalizing problems.390 

 

From a methodological perspective, the absence of interactive associations between maternal 

attachment avoidance and child genotypes with child-reported reactivity and depression could 

also be explained by reporter biases.335 Self-reported attachment is only weakly associated with 

attachment representations as derived from interviews,391 and avoidance in particular may be 

the dimension least likely to correspond across measurement modalities. For these reasons, it 

is impossible to ascertain whether the absence of interaction effects with avoidance reflects a 

true lack of association, or whether interview-based, but not self-reported, assessments of 

avoidance would yield effects. 

 

4.4. Implications 

In the present study, multiple interactive associations between attachment and FKBP5 in the 

prediction of ER and depression provide evidence for differential susceptibility.361, 362 Children 

with this genotype had the most optimal psychological profiles (lower emotion suppression and 

rumination, greater RSA response) in positive caregiving contexts (i.e., when they reported high 

attachment security) and the most maladaptive outcomes (greater emotion suppression and 

rumination, higher depression) in negative caregiving contexts (i.e., low child attachment 

security or high maternal attachment anxiety). 

 

These effects lead us to wonder about the developmental period of plasticity of children with 

FKBP5 minor alleles – is their plasticity time-limited or are they open to the influence of their 
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environments throughout their lives? In future studies it will be interesting to examine parenting 

by gene interactions, measuring parenting constructs at different points in the child’s 

development. This would enable researchers to assess whether FKBP5 minor alleles confer 

plasticity during a sensitive or critical period, or whether children carrying minor alleles have 

greater plasticity throughout development. 

 

If replicated and extended using longitudinal designs, these findings could have implications for 

understanding which children are most at risk for emotion dysregulation and depressive 

symptomatology. One of the central predictions of attachment theory is that insecure attachment 

confers risk for emotion dysregulation351 and internalizing pathology,353 and these claims are 

supported in middle childhood for both dysregulation346 and internalizing pathology.353 Similarly, 

FKBP5 minor alleles have been linked to emotion dysregulation and depression in prior 

studies.310, 356 In contrast, our findings suggest that associations between attachment security in 

the mother-child dyad and self-reported and physiological emotion reactivity and with 

depressive symptoms, depend on FKBP5 genotype sensitivity. These findings imply that in 

future work researchers should evaluate the contributions of both attachment and FKBP5 

genotype, individually and interactively, to child outcomes. 

 

If replicated, these findings could have implications for intervention as well. If we assume that a 

causal mechanism underlies the findings, then it follows that for children with the CC genotype, 

attachment insecurity has the strongest impact on ER and depression. Translating these 

findings into the realm of prevention/intervention, then, it might make sense to identify CC 

children with histories of attachment-related adversity (e.g., youth in foster care) for treatment, 

or to target parents carrying minor alleles for engagement in parenting programs grounded in 

attachment theory during pregnancy. Alternatively, infants could be screened for FKBP5 



151 
 

genotype; the parents of infants with the CC genotype could then receive parenting 

interventions. Further, depending on the developmental specificity of plasticity, minor allele 

homozygotes may also be more receptive to the impact of interventions, making the potential 

gain from interventions targeted towards these populations greater. 

 

4.5. Limitations and strengths 

It is important to contextualize this study’s findings in light of its limitations. First, the 

interpretation of genetic findings is limited by the relatively small sample size (N = 106), which 

constrains our ability to draw conclusions regarding effects that were non-significant.369 In order 

to reduce the likelihood of inflation of Type I error due to multiple testing, we conducted joint 

analyses of both interaction effects with each outcome measure. However, this analytic 

approach may have resulted in inflated Type II errors. Many of the interactions involving 

maternal attachment anxiety and FKBP5 were statistically significant when examined in 

isolation, but were not significant after controlling for child attachment and its interaction with 

FKBP5. Accordingly, our findings warrant replication in larger independent samples with greater 

power to detect effects. Second, given the limited statistical power, we only considered one 

strong candidate gene variant in this study; however, many variants are likely to interact with 

one another and with environmental factors to contribute to stress phenotypes. Similarly, a 

larger study would allow researchers to include measures of potential confounding factors that 

cannot be ruled out here. 

 

In addition, this study was cross-sectional, limiting to some extent the conclusions we can draw. 

It is impossible to know if the measures of overcontrol and maternal and child attachment 

security solely reflect current conditions (i.e., current overcontrol), or instead reflect variability in 

these constructs that emerged when the child was younger. Answers to these questions would 
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provide information regarding the developmental timing of the influence of parent-child 

relationship quality and child genotypes on child outcomes. Further, the correlational nature of 

the study makes it challenging to infer the direction of effects among the environmental 

variables and outcome measures (e.g., does attachment insecurity cause depression or does 

depression cause attachment insecurity?) as well as to rule out the influence of unmeasured 

confounding factors. 

 

There are also limitations with respect to measurement. Our measure of children’s attachment 

security does not differentiate between attachment anxiety and avoidance, two dimensions of 

attachment insecurity. Therefore, we were unable to examine whether anxiety and avoidance 

were associated with our measures of emotion hyperactivation (rumination) and deactivation 

(suppression), respectively. In recent years, investigators have worked to develop the first self-

report attachment measures for school-aged children that differentiate between these 

dimensions;392 using this measure in future research may help generate and test more targeted 

hypotheses. Further, we used a self-report measure of child attachment security and three of 

the four dependent variables in the analyses with child attachment as a predictor were also 

measured with child self-report. Shared method variance may have contributed to these effects. 

On the other hand, these effects were entirely consistent with the findings using an objective, 

physiological measure as the outcome. 

 

Finally, in this study we assessed mothers’ self-reported attachment anxiety and avoidance in 

romantic relationships. Although to our knowledge no self-report measures of attachment-based 

caregiving systems exist, in future studies it would be interesting to examine children’s 

genotypes as moderators of the links between behavioral measures of parenting sensitivity or 
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parental reflective functioning, two constructs thought to promote secure attachment in children, 

in predicting child outcomes. 

 

This investigation also has significant strengths – our use of a multimethod approach to 

assessing ER-related constructs enhances confidence in our findings. Further, incorporating 

both parent- and child-reports of attachment and parenting provides a multilayered assessment 

of the parent-child relational context. Few studies examine the interrelations between factors 

across genetic, relational, subjective, physiological, and clinical levels of analysis − as such, our 

study has the potential to speak to the complexity of intersecting patterns of risk in the prediction 

of internalizing psychopathology. 

 

4.6. Conclusion 

In sum, using a cross-sectional design involving a community sample, we found that children 

with high attachment insecurity and homozygous FKBP5 minor alleles manifested the greatest 

signs of maladaptive ER and depressive symptoms, whereas children with high attachment 

security and minor alleles showed the most positive ER outcomes. These findings provide 

preliminary evidence for the genetic sensitivity or plasticity of children with FKBP5 minor alleles 

− when immersed in a positive caregiving environment, they show the best outcomes, whereas 

in a negative caregiving context, they manifest the greatest risk. 
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GxE Case Study #2: Interaction between the Opioid Receptor OPRM1 Gene and Mother-

Child Language Style Matching Prospectively Predicts Children's Separation Anxiety 

Disorder Symptoms. * 

*This work is currently published in Research in Development Disabilities  

 

Boparai S, Borelli JL, Partington L, Smiley P, Jarvik E, Rasmussen HF, Seaman LC, Nurmi EL.  

 

1. Introduction 

 

While experiencing distress in response to separation from caregivers is typical and adaptive for 

young children, separation distress normatively decreases between the ages of three and 

five.393 However, four to five percent of children take longer to outgrow these developmentally-

typical worries, developing separation anxiety disorder (SAD).393, 394 For children aged nine to 

twelve, SAD commonly manifests as excessive distress when separating from caregivers. Once 

apart, children with SAD experience sadness, withdrawal, and poor concentration. Adolescents 

with SAD report greater somatic complaints and school refusal.393 Importantly, SAD in children 

is a risk factor for future maladjustment; participants’ retrospective reports of childhood SAD 

predict both current and future adult psychopathology, including anxiety, panic, and depressive 

disorders.395, 396 Children with SAD who are treated for school refusal may return to school, but 

many continue to experience social and emotional difficulties in adulthood, suggesting that the 

psychological effects of the disorder extend far beyond presenting symptoms.397 Given the 

strong links between early SAD diagnosis and later pathology, identifying factors that confer risk 

for SAD is important for developing prevention and intervention efforts. Further, consistent with 

a developmental psychopathology framework, examining prospective predictors of SAD 

symptoms within community samples is necessary in the identification of risk factors. 
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2.2. Predictors of separation anxiety 

Various genetic and environmental factors have been suggested as candidate risk factors for 

the development of SAD symptoms, both individually and in interaction with one another. Two 

prevailing theories exist regarding interactions between genetic and environmental influences 

on development. According to the diathesis stress hypothesis, possession of certain “risky” 

alleles is thought to increase vulnerability to pathology when combined with life stress (e.g. 

MAOA gene polymorphism;398, 399 this hypothesis holds that in the absence of the risky alleles or 

the life stressor, individuals will not be as likely to exhibit pathology. Thus, negative 

environmental factors may serve as a catalyst for the development of psychopathology among 

individuals who possess the diathesis allele. 

 

An alternative theory of gene by environment interactions is the differential susceptibility 

hypothesis. It holds that some genes can affect individuals’ sensitivity to all environmental 

influences, both negative and positive.400 Belsky (2005) argues that it may be evolutionarily 

beneficial for siblings to differ in their degree of susceptibility to environmental influence.361 If 

children experience maladaptive parenting, those with lower plasticity will be less affected by it, 

but, if they experience supportive parenting, those with higher plasticity will maximally reap the 

benefits of parental support. In support of this theory, there is evidence for a number of genetic 

factors promoting differential susceptibility, rather that rendering individuals vulnerable to risk, 

such as the serotonin transporter polymorphism 5HTTLPR401, 402 and dopamine receptor gene 

D4 (DRD4;402). In the current study, we will examine the interaction between genetic and 

environmental influences on children’s SAD symptoms. We aim to distinguish whether the 

OPRM1 polymorphism A118G confers greater SAD symptoms in combination with an adverse 

environmental context (diathesis stress), or whether children with the allele have greater SAD 
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symptoms in a negative context, but fewer symptoms than those without the allele in a positive 

context (differential susceptibility). 

 

2.2.2. Environmental predictors of separation anxiety 

Due to the highly relational nature of SAD symptoms, interpersonal factors have been 

hypothesized to predict risk for SAD.332 For instance, both attachment insecurity and harsh 

parenting predict greater separation anxiety in school-aged children.403-406 

 

The manner in which individuals impact one another’s behaviors and emotions, referred to as 

co-regulation, may be another interpersonal factor involved in SAD development. Co-regulation 

between parents and infants is considered to be highly important for the emergence of 

children’s emotional self-regulation.407, 408 In co-regulated interactions, parents respond in a 

contingent and matched way to their infants’ emotional displays. Seeing their internal states 

mirrored by their parents provides infants with a visual representation of their internal states and 

conveys the powerful message that their caregivers understand their emotions and are available 

to help them regulate their emotions.409 Over time, a consistent pattern of co-regulated 

interactions teaches children how to regulate their emotions independently, while fostering a 

sense of security that their caregivers are there for them in times of distress.409, 410 

 

Co-regulation can be measured in terms of the patterning or matching of facial expressions 

(Fogel, 1994), language, vocal tonality, or physiology. Greater matching is linked with more 

optimal functioning, such as stronger parent-infant bonds,411 secure infant attachment,412 

increased vagal tone in response to an emotional stressor,413 lower externalizing symptoms,414 

increased emotion regulation in early childhood,415, 416 higher obedience to parental 

instructions,417 and lower negative emotionality.418 The majority of studies on co-regulation have 
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explored this construct during infancy, when co-regulation may predominantly occur through 

facial affect matching. However, in early and middle childhood, language becomes an 

increasingly important tool for communication and, thus, may be involved in the dyadic co-

regulation process. Like affect matching, higher linguistic matching within a parent-child dyad 

may reflect greater parental sensitivity and co-regulation.348, 419-421 

 

A novel method of assessing dyadic co-regulation that has emerged in the literature is language 

style matching (LSM;422, 423), a metric quantifying the similarity of function word use between 

individuals.422 Function words express grammatical relationships in a sentence and lack clear 

lexical meaning (e.g., the, and, of, have, could). Variability in the use of function words, which 

comprise more than half of colloquial speech,424 is not affected by the content of the speech,422 

and individuals tend to be unaware of their own and others’ function word use.425 Thus, 

comparing the use of function words allows us to examine matching that the participants 

themselves are unaware of and that is unrelated to the topic of their speech. 

 

The results of extant studies reveal that higher LSM is associated with more positive relational 

outcomes. In speed-dating conversations, LSM predicted mutual romantic interest, even when 

controlling for perceived similarity, and higher LSM in couples’ instant messages predicted 

greater relationship stability after three months.423 Additionally, bloggers with illnesses reported 

feeling more social support when LSM was greater between comments on their blog posts and 

the posts themselves.426 Thus, early evidence hints that LSM is a valuable indicator of 

relationship quality. 

 

Prior work also suggests that LSM is a noninvasive measure of the dyadic matching involved in 

parent-child co-regulation; scholars argue that dyads who have a history of behavioral matching 



158 
 

may also have more closely aligned speech patterns.427 Although research on LSM is in its 

infancy, preliminary work suggests that higher LSM between parents and children is associated 

with greater child attachment security, lower children’s galvanic skin response in anticipation of 

a reunion with their parents, and less self-reported negative emotion in response to a stressful 

task.348, 427 These findings have lead scholars to contend that LSM may tap into a history of 

parent-child co-regulation that has become ingrained linguistically. 

 

Given the influence of co-regulation on parent-child relationship quality and emotional 

development, it seems plausible that the absence of co-regulation could elicit the emergence of 

separation anxiety. Indeed, LSM is associated with factors that have been found to influence 

separation anxiety, such as attachment quality and physiological dysregulation,348, 427 but has 

never been directly examined for its association with separation anxiety. Prior research on SAD 

etiology has focused on individual-level variables (e.g., attachment security, parenting 

behavior), rather than on measures of dyadic-level processes. Since LSM reflects the level of 

matching between parent and child, it may constitute a more robust predictor of risk for 

relationship-focused psychopathology, allowing us to explore the influence of parent-child 

interaction on separation anxiety in a novel manner. 

 

The links between LSM and SAD symptoms may be especially important to investigate in 

middle childhood, an understudied developmental stage.343 As it is developmentally appropriate 

for children in this age range to experience separations from their parents and engage in greater 

autonomy-seeking, symptoms of SAD may indicate a lack of security in the parent-child 

relationship and a failure to express developmentally-expected autonomy striving. Children 

exhibiting maladaptive responses to hypothetical separation from parents have been found to 
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have poorer academic performance and lower self-esteem, indicating that symptoms of SAD in 

this age range may be cause for clinical concern.428 

 

1.1.2. Genetic predictors of separation anxiety 

Genetic factors may also increase risk for SAD symptoms. Forty-seven percent of children with 

SAD in one sample had mothers with an anxiety disorder and a meta-analysis of twin studies on 

SAD estimated moderate heritability (43%), suggesting the important role of shared genetic 

risk.429-431 

 

Research regarding the impact of specific genes on SAD is limited,432 although one study found 

an association between the duplication of gene GTF2I and increased SAD symptoms, possibly 

through its role in downregulating calcium entry into cells, which could affect downstream 

signaling pathways.433 Other genes have been associated with generalized anxiety in human 

and animal studies, such as the rs2254298 polymorphism in the oxytocin receptor gene 

(OXTR;)434 and the 5HTTLPR polymorphism in the serotonin transporter gene (SLC6A4435). 

 

One genetic factor that has not been previously examined for its association with children’s 

separation anxiety is the gene encoding the μ opioid receptor (OPRM1), which is involved in the 

HPA axis, the brain’s reward and stress response systems, as well as in physical and social 

pain processing via the anterior insula and dorsal anterior cingulate cortex.436-439 OPRM1 has 

been extensively researched,439 and a functional, nonsynonymous single nucleotide 

polymorphism in the first exon of this gene, called A118G or rs1799971, has been linked to 

psychological outcomes.440-443 
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The presence of the minor G-allele, in about 15–30% of those with European ancestry, 40–50% 

of those with Asian ancestry, and 1–3% of Latinos and African Americans,444-446 results in a non-

conservative amino acid substitution from asparagine to aspartic acid,447 altering gene 

expression, ligand sensitivity and signal transduction.439, 448 Because the μ opioid receptor 

system inhibits the HPA axis, individuals with the minor allele may have altered HPA axis 

functioning, impacting their stress response.437, 439, 449 G-allele carriers were found to have 

higher resting cortisol and a blunted cortisol response to a psychosocial stressor.439, 450 A recent 

study also showed an association between G-allele possession and neuroticism, the tendency 

to experience negative emotions in stressful situations.451 

 

Further, gene by environment interactions have been observed for OPRM1 in both human and 

rodent models. Genetically altered mice lacking the Oprm1 gene show abnormal maternal 

separation and attachment,452 an effect reversed by enhanced maternal care.453 Although 

candidate gene studies in humans suggest that the A118G polymorphism interacts with 

environmental factors to affect stress reactivity, there are varied findings on the nature of this 

interaction. Among psychiatric patients, A-allele homozygotes had greater susceptibility to the 

effects of maternal caregiving on their levels of fearful attachment, while those with the minor 

allele had similarly high levels of fearful attachment regardless of caregiving.443 However, 

studies involving other populations have found that G-allele carriers were more sensitive to 

stress.440 For example, one study conducted with African American adolescents found that 

individuals with the minor allele and high life stress had greater depression symptoms than A-

allele homozygotes.442 While these studies are limited in scope and complexity, they 

preliminarily suggest that children’s susceptibility to environmental risk factors may be 

influenced by their OPRM1 genotype, but are varied in terms of their support for the differential 

susceptibility or diathesis stress hypothesis. The majority of evidence among community 
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samples indicates that the OPRM1 minor allele is associated with increased stress sensitivity, 

so it may be particularly difficult for children with this genotype to regulate distress. When 

combined with maladaptive parent-child relationship quality, minor allele carriers may be at 

greater risk for relationship-focused psychopathology, such as SAD; however, it is unclear if 

possession of the minor allele may be associated with lower SAD symptoms among dyads with 

high co-regulation. 

 

1.2. Current study 

Here we provide the first exploration of the interaction between parent-child LSM and OPRM1 to 

predict children’s concurrent and future SAD symptoms. We test the following four hypotheses: 

First, based on findings on the link between parent-child relationship quality and SAD, we 

predict that LSM will be negatively associated with concurrent and future SAD symptoms.403-406 

 

Second, we hypothesize that the OPRM1 118G allele will be associated with greater concurrent 

and future SAD symptoms, in line with previous findings linking the allele with greater stress 

reactivity.439-441, 450, 451 

 

Third, we predict that these two factors will interact such that low LSM will have a stronger 

association with SAD symptoms among children who possess the 118G allele. This reflects 

previous findings on interactions between the A118G polymorphism and environmental 

factors.440-443, 453 Importantly, current research does indicate whether the role of the 

polymorphism follows the diathesis stress or differential susceptibility hypothesis for 

psychopathology, so we are unable to make any predictions in that respect. 

 



162 
 

Our fourth hypothesis concerns the potentially unique and important role of LSM as a measure 

of parent-child interaction quality. While previous research has examined the effects of intra-

individual level variables on separation anxiety, our study aims to utilize LSM to capture the 

influence of dyadic matching above and beyond the contribution of individual-level 

characteristics of the members of the dyad. We expect that this measure will provide additional 

nuance in our understanding of the development of SAD and the importance of dyadic factors. 

Specifically, since LSM has previously been associated with attachment security (Borelli et al., 

2016), we will control for mothers’ and children’s self-reported attachment in our analyses to 

study the role of their interactions independently of each dyad member’s perception of their 

relationship. We predict that the effects of LSM, both separately and in conjunction with genetic 

risk, will remain after controlling for the attachment styles of the mother and child. 

 

2. Method 

 

2.1. Participants 

Participants were recruited from Southern California via online postings, flyers displayed in 

community gathering sites (e.g., coffee shops), and word-of-mouth to participate in a study of 

child development. Forty-five children aged between nine and twelve (49% females, 

Mage = 10.37 years, SDage = 1.09) and their mothers (Mage = 40.24, SDage = 6.70) took part in 

this longitudinal study, which was an extension of a larger study. The sample was diverse in 

terms of race (53.3% Caucasian, 17.8% African American, 8.9% Asian American), ethnicity 

(17.8% Hispanic), and family income (median: $61,000–$80,000 annually, with 17.8% reporting 

under $40,000). Mothers needed to be proficient in English to be eligible for participation and all 

children were fluent in English. 
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2.2. Procedure 

Prior to data collection, the study was approved by the Institutional Review Board. The Time 1 

assessment (T1) was conducted in a laboratory. After providing consent (mothers) and assent 

(children), children reported their symptoms of SAD and provided a saliva sample to a trained 

research assistant, later used to determine OPRM1 genotype. The children then completed a 

standardized Performance Challenge Task (PCT) in which they attempted to complete a series 

of six unsolvable puzzles on a computer while their mothers observed. The puzzles in this 

standardized task were adapted from the Block Design task in the Wechsler Intelligence Scale 

for Children-III 454 and were a slightly modified version of a task used in a previous study.348 In 

each puzzle, children had 50 s to recreate an image of a completed puzzle by dragging red and 

white square tiles into an empty nine-piece puzzle frame. Unbeknownst to the participants, 

some of the tiles needed to solve the puzzle were missing (children are given ten tiles, of which 

two are incorrect). For ten seconds after each of the six puzzles, children were presented with a 

progress bar indicating that other children who had taken part in the study got five of the six 

puzzles correct, while the child had not completed any correctly. During this task, the mother’s 

chair was placed six feet behind the child and the mother was asked not to help her child unless 

necessary. Following this task, mothers and children were taken into separate rooms and 

interviewed about their own and the other’s experiences during the PCT. These interviews, 

described below, were used to compute the LSM score of the dyad. 

 

At the outset of the data collection, we only anticipated collecting data from families at a single 

time point. However, two years later (Time 2 [T2] assessment; range: 2 years, 3 months to 3 

years, 5 months), we obtained additional funding to conduct an online assessment of the youth 

in the study. At this time, we re-contacted T1 participants via phone and email. Due to the fact 

that we had not planned for a longitudinal follow-up, we had not made any attempts to maintain 
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relationships with the participants in the study, and therefore were only able to successfully 

reenroll 42% of the original T1 sample. Importantly, the participants who did and did not 

participate in the T2 data collection did not significantly differ in T1 measures of SAD symptoms, 

LSM, OPRM1, age, gender, or attachment security (child or mother). However, those who 

completed the follow-up T2 data collection reported significantly higher household income at T1 

than those who did not, t(45) = −2.56, p = 0.01. Consequently, we controlled for income in further 

analyses. In the T2 data collection, youth again reported on their SAD symptoms though an at-

home online survey. 

 

2.3. Measures 

 

2.3.1. Language style matching 

Following the PCT, the child and mother independently completed semi-structured interviews 

about their experiences during the stressor task. At the start of the interview, mother and child 

were shown the same two-minute video clip of the child working on the fifth and sixth impossible 

puzzles. This visual prompt was designed to reinstate their emotions at the end of the puzzle 

task. The mother and child were asked four parallel questions regarding their own and the other 

person’s thoughts and feelings during the puzzle task. Participants’ responses to the questions 

in the interview formed the corpus for the LSM calculation (mean child word count = 365, 

SD = 245; mean mother word count = 894, SD = 458). 

 

The interviews were transcribed verbatim, and research assistants were trained to manually 

review and edit transcripts according to the procedures outlined by Pennebaker, Francis, and 

Booth (2001). The edits allowed the participants’ speech to be analyzed by the Linguistic Inquiry 

and Word Count system (LIWC455). For example, editors removed interviewer speech from 
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transcripts so that it was not included in measures of participant speech and flagged “filler” 

words and “nonfluencies” (e.g., “um,” “like”) to ensure that the program would not mistake those 

words for meaningful word production. The LIWC program calculates the percentages of words 

in the text sample that fall within certain categories. Nine function-word categories are used in 

calculating LSM: auxiliary verbs (e.g., might), articles (e.g., the), common adverbs (e.g., 

naturally), personal pronouns (e.g., you), indefinite pronouns (e.g., someone), prepositions and 

relative pronouns (e.g., of, which), negations (e.g., not), conjunctions (e.g., and), and quantifiers 

(e.g., most).422 

 

To produce the LSM metric, we followed the procedures of Gonzales et al. (2010), a method 

used in a number of other studies.423, 426, 427, 456, 457 We first calculated the proportions of words in 

each function word category out of the total number of words in the responses and took the 

absolute difference of the proportions within each dyad (i.e., |Mother − Child|). Next, we divided 

this value by the sum of the dyad’s proportions of that function word category (i.e., 

(|Mother − Child|)/(Mother + Child)). This provides the difference between mother and child word 

usage adjusted for combined word usage in that category. Finally, we subtracted this value from 

1 in order to determine the level of similarity in the frequency of certain types of words in the 

dyad’s speech. The equation is shown below: 

LSMwordcategory = 1 − [(|Mother − Child|)/(Mother + Child)] 

 

To illustrate the computation of this metric, we provide an example for one function word 

category: The auxiliary verb category generated by LIWC provides the proportion of auxiliary 

verbs used by a speaker out of the total number of words uttered by the speaker (e.g., 457 

auxiliary verbs/10,000 words = 0.0457 for mother; 80 auxiliary verbs/6000 words = 0.0133 for 

her child). Using the proportional values generated by LIWC (Maux = 0.0457; Caux = 0.0133), 
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we computed the absolute value of the difference between mother and child auxiliary word 

usage as a proportion of the total auxiliary word usage: 

(|Maux − Caux|)/(Maux + Caux) = (|0.0457 − 0.0133|)/(0.0457 + 0.0133) = 0.5520. We then 

subtracted this value from 1, yielding LSMaux = 0.4480 for this particular dyad. 

 

We performed the same calculation for each of the nine function word categories for each dyad. 

Then, we averaged the nine individual word category LSM calculations to look at matching 

across all function words, as validated by of Gonzales et al. (2010). This creates an overall LSM 

score for each mother-child dyad. 

LSMTotal = (LSMwordcategory1 + LSMwordcategory2 + … + LSMwordcategory)/(9) 

 

Overall, the algorithm used to compute LSM is thought to measure the degree of linguistic 

matching within a dyad independently from the content of their speech. LSM scores range 

between 0 and 1, with higher scores signifying greater verbal matching (Gonzales et al., 2010). 

We provide narrative responses from dyads with high and low LSM scores in Table 5-5i98. 

 
High LSM Low LSM 

Child Mother Child Mother 

Questions 
about 

child’s 
thoughts 

I was thinking about 
um, like, like how I 
was supposed to do 
the puzzles, 
because once, once 
I got it right, well not, 
well I ha-had a 
triangle, but I was 
flipping it inside the 
thing 

Um initially he was 
probably excited and 
happy. After he got 
the first one wrong 
he’s like, “What oh 
okay okay I did 
something wrong I 
gotta refocus.” 

I was thinking 
that I was really 
gonna 
accomplish it. I 
was thinking I did 
really well and 
that I almost had 
it and I almost 
finished the 
whole thing. 

He probably was 
thinking about 
finishing in the 
allotted time also. 
I'm sure he 
probably figured by 
looking at it he 
knew exactly what 
to do, but once he 
started, you know, 
and then having to 
turn the pieces 
around it changed 
his outlook. 



167 
 

Questions 
about 

child’s 
feelings 

I was curious about 
how to do it. I was 
wondering if when I 
put the block – put it 
down to see if it that 
actually was right. 

Um he probably felt 
um excited in the 
beginningand then 
after probably 
frustrated. Yeah. 

I felt really good 
and I enjoyed 
that. I did pretty 
good and I’m 
proud of myself. 

Um I think he knew 
that he didn’t do 
good, you know, 
because he didn’t 
get any of them 
right. But it wasn’t 
like a devastating 
thing. It was more of 
an excitement to try 
to get the next one 
finished. 

Questions 
about 

mother’s 
thoughts 

She might have 
been thinking that − 
she might have 
been thinking about 
the correct answer 
in her head, but she 
couldn’t really just 
say it out loud. I 
think she was 
thinking uh— 
thinking about how I 
did. 

Um, initially I was 
thinking um that he 
would get them all 
right because I know 
that he’s really good 
at kind of stuff. Um 
and then after a 
while I just figured 
um … the point was 
for him to get them 
wrong. 

Maybe she was 
thinking about 
how good I was 
doing it and how 
she was helping 
me. She might 
have thought I 
was doing pretty 
good and she 
might have been 
proud of me. 

That I hoped he 
would make it in the 
allotted time um and 
that it wasn’t too 
hard for him. He did 
good for his first 
time seeing those 
types of puzzles. So 
now I think he will 
probably want to do 
more puzzles like 
that. 

Questions 
about 

mother’s 
feelings 

I mean, a little 
disappointed. I kept 
on getting them 
wrong. Maybe, is 
this really how he’s 
– is this really how 
my son is doing? 
‘Cause I was getting 
them wrong. 

Um…I felt…I don’t 
know I guess 
content or happy or 
yeah. I like watching 
him do you know 
things you know that 
may be a challenge 
so. 

She might have 
thought that I was 
doing really good 
and she tried to 
help me really 
hard. I think she 
felt really good 
that I almost had 
it and I had one 
more puzzle 
piece to 
complete. 

It felt good. He was 
interested in doing 
it, you know, so I 
always like just to 
watch him do 
things. I love it, I 
love it. I mean that it 
was nice, it went by 
well, and it was 
great. 

 

2.3.2. OPRM1 

Trained research assistants collected saliva samples immediately following consent procedures. 

We isolated DNA using DNA Genotek’s (Ontario, Canada) Oragene Saliva Collection Kit (OG-

500). The OPRM1 genotype was then determined using Life Technologies’ (Carlsbad, CA) 

TaqMan platform, following the manufacturer’s protocol. To ensure quality, we genotyped a 

subset of the sample a second time, which yielded perfect concordance with the original results. 

The minor allele frequency in our sample was similar to that reported in previous studies and 

Table 5-5. Narrative Examples of High and Low LSM Interviews. 



168 
 

satisfied Hardy-Weinberg Equilibrium. There was insufficient saliva to allow for the genotyping 

of one sample out of the 45 who participated in the T2 data collection, so we report on 44 

children. 

 

2.3.3. Separation anxiety 

Children reported their anxiety symptoms in the Multidimensional Anxiety Scale for Children at 

both time points (MASC458). The scale has 39 items that are divided into four subscales: 

Physical Symptoms, Social Anxiety, Harm Avoidance, and Separation/Panic. Children rated 

how much each item applied to them (e.g., from the Separation/Panic subscale: “I try to stay 

near my mom and dad”) on a 4-point Likert-type scale from 0 (“never true about me”) to 3 

(“often true about me”). The MASC is a reliable and valid measure of anxiety symptoms in 

community samples.459 The 9-item Separation/Panic subscale was used to assess SAD 

symptoms. It has been found to significantly predict the presence and severity of SAD among 

children aged 7–17.460, 461 Internal consistency for the Separation/Panic scale in this sample was 

0.78 at T1 and 0.80 at T2. 

 

2.3.4. Dyad-level covariates 

To assess attachment, mothers completed the Experiences in Close Relationships Scale 

Revised at T1 (ECR-R376), a 36-item measure consisting of an attachment anxiety scale (e.g., I 

often worry my partner doesn’t really love me; α = 0.92) and an avoidance scale (e.g., I prefer 

not to show a partner how I feel deep down; α = 0.94). Children completed the 15-item Kerns 

Security Scale at T1378; e.g., Some kids find it easy to trust their mom but other kids are not sure 

if they can trust their mom; α = 0.88). We included these variables as controls in our analyses. In 

this way, we were able to test whether our dyadic-level matching variable (LSM) predicted SAD 

symptoms above and beyond the contributions of mother and child attachment. 
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2.4. Data analytic plan 

After examining the distributions of our key variables, we determined whether demographic 

factors (age, race/ethnicity, gender, income) should be included as covariates in subsequent 

hypothesis testing through t-tests and zero order correlations. To aid the interpretation of our 

data, we also performed a t-test to examine differences in separation anxiety levels at the two 

time points. 

 

To test our hypotheses, we first conducted four linear regressions to examine the main effects 

of LSM and OPRM1 genotype on T1 and T2 SAD symptoms. OPRM1 was analyzed as a 

dichotomous variable, with 1 indicating that the child possessed at least one G allele. We 

controlled for T1 separation anxiety when examining T2 separation anxiety scores. In all four 

regressions, we controlled for child age, gender, and family income. 

 

We next analyzed the effectiveness of the interaction between LSM, and OPRM1 genotype, 

measured at T1, in predicting T1 and T2 SAD symptoms, using Hayes’ publicly available, free 

statistical PROCESS macro software.462 PROCESS operates by using 1000 bootstrapped 

samples to estimate 95% bias-corrected confidence intervals for the interaction coefficient and, 

in moderation analysis, provides estimates of simple slopes for the conditional effects. We 

performed four moderation analyses, testing both LSM and OPRM1 as moderators of the 

relation between the other independent variable and T1 and T2 separation anxiety. We 

controlled for child age and gender, family income, and the main effects of LSM and OPRM1 in 

all four moderations. When predicting T2 separation anxiety, we controlled for T1 symptoms. 

We also controlled for maternal and child attachment to isolate the effects of dyadic linguistic 

matching on SAD symptoms from individual-level factors. 
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After conducting analyses, we followed guidelines proposed by Roisman et al. for evaluating 

whether significant moderation effects fit diathesis-stress or differential susceptibility models.385 

This entails examining the simple slopes of the association between X and Y among children 

with low risk/plasticity (AA) and high risk/plasticity (AG and GG) alleles. For significant 

moderation effects, we determined the percentage of cases that fell past the crossover point, 

termed the proportion affected (PA) index. The crossover point in an interaction is the first value 

of X at which the regression lines cross. According to Roisman et al. (2012), when 16% or more 

cases fall beyond the crossover point, the interaction can be interpreted as providing evidence 

of differential susceptibility, but when between 2 and 16% of cases fall beyond this point, the 

conclusion is less clear. 

 

3. Results 

 

Prior to hypothesis testing, we examined the distributions of our study variables and their 

associations with demographic factors. The results of initial analyses revealed that all study 

variables were normally distributed. Twenty-four percent of the children possessed at least one 

G-allele. An independent samples t-test indicated that girls endorsed significantly more 

symptoms of SAD than boys at T1, t(44) = 2.36, p = 0.02, but no other gender differences were 

observed. Zero-order correlations revealed that younger children had greater SAD symptom 

severity at both time points (Table 5-6). On average, children reported significantly greater SAD 

symptoms at T2, t(44) = −9.55, p = 0.001. 
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3.1. Hypothesis testing 

Through regression analyses, we explored the main and interactive effects of LSM and OPRM1 

genotype in the prediction of T1 and T2 SAD, including simple slopes analyses to gain further 

information on significant interactions. As shown in Table 5-6, the LSM x OPRM1 interaction 

was not a significant contributor to the model predicting T1 SAD symptoms after controlling for 

child age child gender, income, mother and child attachment, and the main effects of LSM and 

OPRM1 on T1 SAD symptoms. 

 

However, a parallel regression analysis (see Table 5-7) revealed that the LSM x OPRM1 

interaction was a significant contributor to the model predicting T2 SAD symptoms with a large 

Table 5-6. Zero-Order Correlations Between Key Study Variables. 

Note: Ma= Maternal, Anx = Anxiety, Avoid = Avoidance, C = Child, Sep = Separation. 

*p < 0.05, ***p < 0.0001. 
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effect size after controlling for T1 SAD symptoms, child age, child gender, income, mother and 

child attachment, and the main effects of LSM on T2 SAD symptoms. 

 

A simple slopes analysis revealed that among homozygous AA allele children, LSM was 

positively associated with T2 SAD symptoms after controlling for T1 SAD symptoms, b = 6.73, 

p = 0.03. However, among children who possessed at least one G allele, LSM was negatively 

associated with T2 SAD symptoms, controlling for T1 SAD symptoms, b = −52.38, p = 0.004 

(see Fig. 5-7). The PA index revealed that 18.18% of the cases fell beyond the crossover point 

(.90 on LSM), providing evidence for differential susceptibility. 

 

 

 

 

Table 5-7. Results of 

Regression Analyses 

Examining OPRM1 as 

a Moderator of the 

Relationship Between 

LSM and Child SAD 

Symptoms. 

Note: C = child 
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Reversing the independent and 

moderator variables revealed that among 

children in dyads with high LSM, 

b = −3.94, p = 0.05, and mean level LSM, b = 2.50, p = 0.06, OPRM1 minor allele possession 

was not associated with T2 SAD symptoms, although the slopes approached significance. 

Among children with low LSM, those with minor alleles had significantly higher T2 SAD 

symptoms than A-allele homozygotes, b = 0.63 p = 0.002. 

 

4. Discussion 

This study examined the independent and interactive roles of OPRM1 genotype and mother-

child LSM, a form of behavioral matching measured at T1, in the prediction of children’s self-

reported T1 and T2 SAD symptoms. Both LSM and OPRM1 had significant main effects on T2, 

but not T1 SAD symptoms. In addition, as hypothesized, the interaction between LSM and 

OPRM1 genotype predicted T2 SAD symptoms, controlling for T1 SAD symptoms. Specifically, 

the G-allele was significantly associated with greater T2 SAD symptoms among low LSM dyads 

only. Approaching significance, the G-allele was also associated with higher separation anxiety 

in dyads with medium levels of LSM, but with reduced SAD symptoms among high LSM dyads. 

Our findings are consistent with previous research linking the OPRM1 minor allele with greater 

sensitivity to environmental effects.440-442 They are also consistent with findings on the negative 

association between LSM and factors that play a role in separation anxiety, including 

physiological stress reactivity and attachment insecurity.348, 403-406, 427 

Figure 5-7. OPRM1 genotype 

moderates the association between 

mother-child LSM and T2 separation 

anxiety symptoms, controlling for T1 

separation anxiety symptoms. 
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Moreover, our findings support a differential susceptibility model of the relation between OPRM1 

genotype and T2 SAD symptoms. Possession of the OPRM1 minor G allele is non-significantly 

associated with fewer SAD symptoms when LSM is high and significantly associated with 

greater SAD symptoms when LSM is low; for AA homozygotes, LSM and SAD symptoms are 

significantly positively related with a much smaller coefficient. The lack of a significant difference 

between the genotypes for the high LSM group may be due to the limited statistical power from 

our small sample size. It is possible that, with more power, we would have found significant 

evidence that the G-allele is associated with reduced SAD symptoms among children who 

experience greater behavioral matching. The PA analysis confirms the differential susceptibility 

interpretation, suggesting that possession of the minor allele confers greater plasticity or 

openness to environmental influence. This is a novel finding, as the roles of the A118G 

polymorphism and LSM in human SAD have not yet been examined. However, our conclusions 

are tentative given the small sample size, resulting in limited statistical and external validity. In a 

study among psychiatric patients, the AA homozygous allele conferred greater plasticity to the 

effect of maternal caregiving on levels of fearful attachment, suggesting that the role of the 

polymorphism may differ in clinical populations.443 Further research with larger samples is 

required to reach more definite conclusions. 

 

Given that the gene by environment effect held after controlling for maternal and child 

attachment, we propose that LSM is linked to T2 SAD symptoms beyond the effects of 

individual attachment style because it is an indicator of ongoing co-regulation between dyad 

members. Increased co-regulation among dyads with higher LSM may be related to children’s 

greater emotion regulation and security in their relationships. For children who are particularly 

sensitive to stress, which the minor genotype seems to engender, co-regulation may be 
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especially crucial for them to learn how to deal with their negative emotions. When the parent-

child relationship is characterized by low LSM, indicating low co-regulation, the child may not 

develop the coping skills needed to independently handle separation from parents or other daily 

stressors. 

 

On the other hand, some of our findings did not support our hypotheses. Although the 

interaction between OPRM1 genotype and LSM predicted future SAD symptoms, the variables 

were not associated with concurrent symptoms. Given that LSM is theorized to reflect a dyad’s 

long-term history of co-regulation, we would expect LSM to be associated with both concurrent 

and future SAD symptoms. Similarly, we would expect the role of OPRM1 to remain stable with 

time. Future study could investigate whether the factors affecting SAD development vary with 

age. Secondly, among AA homozygotes, LSM was positively associated with T2 SAD 

symptoms. However, the slope for this effect is substantially smaller than that for G allele 

carriers and the SAD scores fall within a lower range. Thus, homozygous children with higher 

LSM may be more willing to be open about their fears, resulting in higher, but still relatively low 

SAD symptoms. 

 

A further unexpected finding was that, contrary to previous research indicating that separation 

anxiety decreases with age,393 the mean level of SAD symptoms was higher at T2, when the 

children were aged twelve to fifteen, than at T1, when the children were aged nine to twelve. 

One possible explanation is that the T2 data collection period occurred around the time that 

most children start middle school, a transitional period has been associated with greater 

psychological distress.463, 464 Increased independence and academic and social demands may 

act as additional stressors that heighten children’s levels of separation anxiety. Additionally, the 

T2 data collection occurred during the six months following the 2016 U.S. Presidential election, 
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which spurred increases in anxiety particularly among Latino/a populations.465 The increase in 

T2 SAD symptoms could reflect a general increase in anxiety among vulnerable populations 

within the United States (about half of our sample was non-White). Children with the OPRM1 

minor allele may be especially sensitive to these stressors (transition to middle school or the 

election), particularly if they have not developed effective emotion coping skills through co-

regulation. Further research could investigate this possibility by examining how children’s 

current stressors interact with genetic and relational factors. 

 

4.1. Strengths and limitations 

This study is characterized by a number of strengths. The longitudinal design allowed us to 

examine the prospective predictive effects of LSM and OPRM1 in a racially and ethnically 

diverse sample. Further, LSM is an unobtrusive metric of behavioral matching that allows us to 

examine subtle variation in the synchrony of dyadic relationships. It is worth noting that this 

matching occurred even though we interviewed mothers and children separately, suggesting 

that they were carrying a co-regulatory mental representation of their relationship. Additionally, 

the fact that the gene by environment effect occurred independently of mother and child self-

reported attachment highlights the importance of investigating dyadic interactions beyond each 

individual’s perception of the relationship. 

 

There are also important limitations to the current design. Participants elected to take part in the 

study in response to our recruitment methods, introducing possible sampling bias. Those willing 

to participate in a study on parent-child relationships may systematically differ from the general 

population, such as by having greater interest in the topic, and our study did not include fathers. 

Additionally, there was variability in the time interval between T1 and T2 for participants 
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because the T1 data collection took several months to complete, affecting the amount of time 

between data collections for different participants. 

 

This is a small candidate gene by environment study that requires replication in larger samples 

to provide definitive results. Our hypotheses test only one genetic and one environmental factor 

in a complex system that leads to anxiety symptoms. Although we have proposed some 

possible explanations, the mechanism through which LSM and the OPRM1 minor allele affect 

separation anxiety remains unclear. Additionally, even though we employed a longitudinal 

design, we cannot test for causal relations between our variables. In particular, because the 

environmental factor that we are measuring cannot be separated from the genetic contributions 

of the participants, we are not examining a true gene by environment interaction. That is, 

variability in LSM may itself be related in part to other genetic factors of the dyad, rather than 

representing a purely environmental influence. Further, since we only assessed SAD symptoms 

in this study, it is also possible that children with the minor OPRM1 allele and high LSM are at 

heightened risk for less relational forms of anxiety-related problems. In future studies, it will be 

important to explore whether the proposed protective effects of LSM apply to multiple forms of 

anxiety or just to separation anxiety. Finally, with respect to our sample, although the first step in 

a developmental psychopathology study involves exploring correlates of risk in community 

samples, it would be advantageous to study these constructs within a clinical sample. 

 

5. Conclusion 

 

Children who carry the minor 118G allele of the OPRM1 gene experience more symptoms of 

SAD than those who are AA homozygous in the context of low parent-child dyadic behavioral 

matching (LSM), but they experience fewer SAD symptoms in high LSM contexts. Since SAD is 
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most common in children from low-income backgrounds393 who face multiple forms of adversity, 

future studies should assess the relative roles of LSM and OPRM1 in the context of additional 

risks. Greater knowledge of the factors that contribute to the development of SAD can inform 

both treatment and preventative measures. If the effects identified in the current study are 

replicated, this could point toward the importance of testing whether interventions designed to 

strengthen the parent-child relationship reduce the risk of developing SAD symptoms in children 

who carry the minor OPRM1 allele. 

 

Chapter 5 Wrap-Up 

Obtaining a deeper understanding of how the environment affects the lives of people every day 

has extreme value in personalized medicine. In the above studies I specifically contributed the 

genetic component of the gene-environment interactions, but through this process I was able to 

learn a significant amount about a large portion of environmental effects and their implications in 

human health and disease. It is often overlooked that the world around us can have such a 

profound impact on our daily lives, our physical health, and even more importantly, our mental 

health. By leveraging this knowledge, we can integrate it and develop and apply genome-based 

strategies for the early detection, diagnosis, and treatment of psychiatric disease. It aids us in 

predicating disease rates and provides a formidable foundation for well-information 

recommendations of therapeutic strategies as the medical community shifts their focus to more 

stratified approaches. Additionally, public health can be significantly impacted as we uncover 

more about these unique GxE interactions, as policy-makers could design more “user-friendly” 

living conditions, allowing for a delay or even prevention of many diseases. 
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Chapter 6  

Microbiota and Host Interactions 

 

General Introduction  

We have slowly inched our way through the trenches of the multitude of personalized medicine 

tools and techniques to finally reach this point. My final 2 chapters will not only attempt to 

leverage the most salient components I’ve covered but will also present a unique and novel 

research project that I was able to develop utilizing the in-depth knowledge I have acquired 

through a diverse graduate school career. First, let’s get started by discussing the general basis 

for this area of research – host biological interactions. 

 

The term host might spur a small amount of negative connotation, sometimes associated with a 

parasitic relationship, but in biology it simply means an organism that harbors a guest, whether 

it is parasitic, mutualistic, or symbiotic.466  A biological interaction is the effect that a pair of 

organisms have on each other. And although it is typically forgotten, humans play host to the 

large collective bacterial population in our bodies, and I will be specifically focusing on those 

found in the gut, appropriately named the gut microbiome. These human-bacterium interactions 

are long-term in nature, strongly influencing the evolution of our species as a whole and are 

therefore considered symbiotic and mutualistic. 

 

Understanding the Gut Microbiome 

In humans, the gut microbiota has the largest number of bacteria and the highest number of 

unique species compared to other areas of the body; a complex and dynamic ecosystem of 

approximately 200 bacterial species exists in the gastrointestinal tract.467 It is important to 
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differentiate between the gut microbiota and the gut microbiome, even though these terms are 

typically interchangeable. The microbiota / flora are the actual organisms while the microbiome 

is their collective of genes, which number roughly over 2 million, and is vastly greater than the 

human genome itself.468 Due largely to rapid advancements in analytical techniques in 

microbiology, molecular genetics, and bioinformatics, the true diversity of these microorganisms 

is quickly being revealed and its contributions to homeostasis in both health and pathogenesis 

are continuously emerging. This field of study is one of the most active and exciting in both 

biology and medicine and stands to be one of the greatest contributors to precision health care 

to date. 

 

The gut microbiota have four general roles in the human body that are imperative to regular 

biological function. First, there is the clear metabolic role; bacteria aid in salvaging calories,469 

producing short-chain fatty acids,470 synthesize vitamin K and folic acid,471 as well as participate 

in certain drug metabolic pathways. Next, the gut bacterium have the exclusive ability to 

deconjugate bile acids through the production of an enzyme known as bile salt 

hydrolase.472Third, interestingly, these bacteria play a major role in the prevention of host 

colonization by foreign pathogens. (28856738) And lastly, the gut microbiome stimulates 

immunologic effects through avenues such as immonuglobulin A production, promotion of anti-

inflammatory cytokines, and induction of regulatory T cells.473 We can see that this diverse 

microbial community has an extensive repertoire and is a key factor in shaping the human 

biochemical profile, and therefore has a direct impact on our health. This has stimulated an 

exciting amount of research in the past 5-10 years, and scientists are striving to identify the 

functionality of many microorganisms and their relationship with implicit human biology, 

signaling, and pathways and how the composition of this unique body can influence disease 

pathology. 
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With over 1000 identified species of bacteria, it can be difficult to classify distinct enterotypes of 

the human gut microbiota, however the improvement of genomic technologies such as 16S 

ribosomal RNA sequencing and shotgun metagenomics has allowed for a detailed look at the 

composition of diversity between individuals.474 A general consensus of the phylum level 

composition in the human gut is emerging and is focused around the Firmicutes and 

Bacteroidetes classifications to represent the dominant bulk of variable bacteria.475 A variety of 

populations, whether it be children vs. adults, healthy individuals vs. disease states, or obese 

vs. lean persons, have quantifiable and distinct differences in gut microbiota compositions, 

pointing to a more direct biological link to certain human archetypes. But in order to elucidate 

these connections to disease we must also understand how the bacteria communicate to the 

host directly. 

 

Microbiota and Bile Acid Crosstalk 

As mentioned above, one of the primary functions of the gut microbiota is to influence the 

chemical structure of a major class of endogenous signaling molecules, the bile acids. These 

species are examples of trans-genomic metabolites arising from the interactive metabolism 

between the host genome and the gut microbiome.476 Outlined in Figure 30, bile acids (BA) are 

synthesized in the liver from the nutrient cholesterol. The two primary BAs, cholic acid (CA) and 

chenodeoxycholic acid (CDCA) undergo amidation and subsequent conjugation by either 

glycine or taurine, and therefore present downstream as molecules that are fully ionized at 

physiological pH.477 This enhances the amphipathic and detergent properties which facilities 

lipid digestion and absorption. Only a small fraction (1-5%) of all BAs escape reabsorption into 

the distal ileum and enterohepatic circulation, however these are the few that enter the colon 

and are subjected to the transformative powers of the gut microbiota. It is here that a 
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bidirectional relationship exists, whereas unique bacterial enzymes can structurally and 

functionally modify the BAs, but the bile acids can also exert antimicrobial selection pressures 

on the community of bacteria. It is this host-based relationship that builds the blocks for a 

potential feedback mechanism that can control bacterial populations while also influencing 

hormonal signaling, lipid and glucose homeostasis, and disease perturbations and warrants 

further explanation in a multitude of fields, but specifically in those revolving around weight-gain 

and metabolic syndrome. 

478

 

The Gut Microbiota, Bile Acids, and Psychotropic-Induced Weight Gain 

 

After extensive research into both the fields of the gut microbiome and bile acids, I took the ball 

and ran with it. I had spent many years deep in the thralls of psychiatric medicine and 

therapeutics, however one question always lingered; why do a large percentage of individuals 

experience such adverse and weight related side effects on a variety of psychotropic 

medicines? In my third year, I had a serendipitous opportunity to delve into the world of bariatric 

surgery in the same sense, and I learned a large amount about how both salient biological 

Figure 6-1. Bile acid metabolism 

(Modeled after a previously 

published figure REF 478). 
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components can play a significant role in weight-loss. I became fervent in my quest to better 

understand how human metabolism is controlled on a biochemical level, and because of Dr. 

Nurmi’s previous work in the genetics of antipsychotic-induced weight gain, we were able to sit 

down and brainstorm a completely novel idea – elucidating a more direct, biological mechanism 

of this deleterious side effect. You can read more about how antipsychotic induced-weight gain 

(AIWG) works in the case study presented in this chapter below. I had to work from the ground 

up, and I spent a large amount of time developing a novel method for detecting human bile 

acids in plasma utilizing high performance liquid chromatograph tandem mass spectrometry. I 

truly felt that this was one of the crowning chemistry jewels of my chemistry PhD, and the entire 

method is presented here. Being cognizant of the backbones of precision medicine is rewarding 

as a scientist but being able to implement them in a way that has the potential to change 

people’s lives is rewarding to my soul. In both this chapter and the next, chapter 7, I would like 

to share the preliminary results and continuing project I have developed during the last 2 years 

of my graduate career that brings a new viewpoint to the enigma that is weight gain following 

pharmaceutical treatment. 
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Original Method: Fit-For-Purpose HPLC-MS/MS Targeted Detection and quantitation of 11 

Bile Acids and Their Biological Precursor, 7-alpha-hydroxycholest-4-en-3-one* 

* This work is currently unpublished 

 

Lauren C Seaman, Hüseyin Kayadiḃi, Kym F Faull, Erika L Nurmi 

 

Introduction 

 

Classically viewed as the simple “dish-detergent” molecules of the digestive system, bile acids 

(BAs) are quickly gaining recognition as critical metabolic signaling compounds, hormone 

regulators, and disease state clinical biomarkers. BAs are the major component of bile, and are 

synthesized from cholesterol through a hepatic cytochrome p450 7A1-mediated enzymatic 

pathway479. They are powerful dietary lipid emulsifiers, allowing for solubilization and 

subsequent digestion of fats and oils through a mixed-micellular surfactant process.480 Bile acids 

regulate their own synthesis, utilizing a negative feed-back loop that spans  across the liver and 

the gut481, where they can additionally act as antimicrobial agents.482 Interestingly, recent 

research has begun to uncover the role of BAs as salient biological signaling molecules, acting 

as hormonal ligands for nuclear receptors such as the farnesoid X receptor (FXR), pregnane X 

receptor (PXR), and cell-surface G-protein coupled receptors (GPCRs),483 which have all been 

implicated in glucose and lipid homeostasis in humans484-486 . Stemming from this, BAs are now 

increasingly being identified as markers for hepatic disease states487, chronic inflammation488, 

and cancer489, 490, making them a desirable, measurable target for many fields of work. 
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Bile acids obtain their robust structural diversity from cholesterol catabolism and amino acid 

conjugation in the liver, as well as enzymatic transformations by bacteria found in the gut491. 

Additionally, bile acids can become charged and associate with alkali metal cations such as Na+ 

or K+ to form bile salts, which can act as electron acceptors in intestinal homeostasis.492 

Importantly, they lend themselves to cross-talk between the human (or host) and gut microbial 

metabolism493. While the overall bile acid pool may contain close to 150 unique species494, 

generally speaking this collection is composed of two primary BAs (cholic acid [CA] and 

chenodeoxycholic acid [CDCA] in humans, and CA and β-muricholic acid [BMCA] in rodents 

which are synthesized in hepatocytes, as well as 4 major secondary BAs (deoxycholic acid 

[DCA], lithocholic acid [LCA], ursodeoxycholic acid [UDCA], and hyocholic acid [HCA])495. These 

secondary bile acid species are produced through structural modifications of primary BAs in the 

small intestines and colon following interaction with present microbial populations. Various 

enzymes produced by these bacterial species have the capabilities to deconjugate, hydroxylate, 

dehydroxylate, and epimerize491, 496-498 both primary and secondary BAs altering their chemical 

properties and binding affinities, indicating microbial importance in host enterohepatic 

circulation. Moreover, each of the individual BAs has the potential to further become conjugated 

at their terminal acetyl junction with either glycine or taurine499, yielding an overall wide range of 

molecular variants. This provides an interesting analytical challenge for both sensitive and 

selective measurement of BAs.  

 

While this challenge has been attempted by numerous researchers over the past decade, many 

of the published analytical methods suffer various shortcomings based on specific measurement 

needs. Liquid chromatography tandem mass spectrometry (LC-MS) has been frequently utilized 

for the separation and concurrent detection of BAs in both human and animal biological 

samples. However, successful methods often contain a plethora of pitfalls – making application 
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of these techniques to broad research studies, both clinical and laboratory based, an arduous 

task. Involved and tedious sample preparation500, long analytical cycles500, 501, lack of complete 

chromatographic separation502, a requirement for expensive equipment or reagents494, 503-505, 

and negative ion selectivity494, 506, 507 seem to permeate the bulk of currently available BA 

measurement methods. It can be frustrating to attempt to successfully reproduce an analytical 

method with very narrow parameters. In fact, many clinical measurements of bile acids are 

accomplished through a blanket enzymatic assay that can only measure relative bile acid pool 

size508, 509 completely circumventing the potential for these compounds as biomarkers in many 

metabolic and non-metabolic studies alike. This was the driving motivation for the method 

development described herein.  

 

High performance liquid chromatography coupled with mass spectrometry (HPLC-MS) is the 

analytical foundation of this method, allowing for coverage of the diverse range of bile acid 

hydrophobicity510 as well as a multitude of isobaric species. Given the range in chemical 

structures, a one-size-fits all approach is not the optimal way to present a method, which is why 

various MS parameters, sample preparations and chromatographic options were tested and 

presented as viable and reproducible options. Facile biological sample preparation for both 

human and rodent plasma was combined with a medium throughput analytical cycle (45 min) 

with both positive and negative ion ESI mode detectability options. Utilization of reversed-

phased C18 separation via column chromatography provided excellent coverage of the main bile 

acid pool constituents, as well as 7-alpha-hydroxy-4-cholesten-3-one (C4) (a predictive and rate 

limiting marker for bile acid synthesis),511 while still  effectively separating isobaric conjugates 

and species. Multiple reaction monitoring mode was implemented to identify and track unique 

fragments of the BAs of interest, validating accurate measurement of 11 unique compounds in a 

lipid-rich biological matrix. Additionally, classically troublesome samples, such as pediatric, 
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disease state, and older (>10 years’ storage) plasma collections were successfully measured. 

We feel the HPLC-MS parameters and options presented within provide an excellent starting 

point for a wide array of research goals involving BAs, and hopefully present others with the 

ability to incorporate these important molecules in more and growing studies. 

 

Materials and Methods 

 

Chemical Materials 

All organic solvents used in biological sample preparation and mobile phases were prepared 

with LC-MS grade solvents and chemicals obtained from Sigma-Aldrich (St. Louis, MO). This 

included methanol, acetonitrile, formic acid, triethylamine, and ammonium acetate. Nine bile 

acid standards (cholic acid, taurocholic acid, glycocholic acid, chenodeoxycholic acid, 

taurochenodeoxycholic acid, deoxycholic acid, taurodeoxycholic acid, ursodeoxycholic acid, and 

lithocholic acid) were also purchased from Sigma-Aldrich (St. Louis, MO). One rodent-dominant 

bile acid (β-muricholic acid) was purchased from Cayman Chemical (Ann Arbor, MI). 

Additionally, one deuterated internal standard (chenodeoxycholic acid-2,2,4,4-d4 [CDCA-D4]), 

which was chosen due to its predominance in the human bile acid pool512 and shared molecular 

weight with two other unique BAs, and 7-alpha-hydroxy-4-cholesten-3-one, were also procured 

from Sigma-Aldrich (St. Louis, MO). The structures of all the BA species measured can be seen 

in Figure 6-2. 

 

Collection of Human Plasma 

Samples were collected from pediatric patients with autism spectrum disorder, pediatric and 

adult healthy controls for use in the bile acid profiling method application.  Blood was initially 

taken into Vacutainer blood collection tubes (Becton, Dickinson and Company, Franklin Lakes, 
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NJ) which were treated with 7-10 mg of K2EDTA to prevent erythrocyte clotting. Venous blood 

samples were stored immediately at 4oC until further processing could occur – within 1 week. All 

specimens were centrifuged at 2000xg, 4oC for 10 minutes in a Beckman Coulter Allegra 6R 

(Beckman Coulter, Indianapolis, IN) to separate red blood cells from what is deemed “blood 

plasma”. This resulting plasma sample was aliquoted into 500 µL fractions for long term storage 

at -80oC. The oldest of the plasma samples used in the following measurements dated back to 

1999, representing 18 years of -80oC storage with viable detection of bile acids, while the 

newest plasma sample was collected 1 week before LC-MS analysis, indicating a robust 

method application timeframe.  

 

Plasma Sample Preparation 

Prior to profiling analysis, samples were thawed at 4oC, and 100 µL aliquots were transferred 

to 1.5 mL Eppendorf microcentrifuge tubes (Eppendorf, Hauppauge, NY), spiked with the 

internal standard (CDCA-D4, in a final concentration of 5 pmol/µL [5 uM] (5 µL addition of 20 

pmol/µL in methanol). For a liquid-liquid based extraction, 300 µL of 100% methanol was 

added (1:3 v/v), before 1 min of high speed vortexting, followed by a 15-minute incubation at 

room temperature (RT). Following centrifugation (16,000xg, 5 min, RT) the resulting 

supernatant was transferred to a clean microcentrifuge tube. This supernatant was dried  
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down in a vacuum centrifuge (Savant 

SpeedVac Concentrator, ThermoFisher, 

Waltham, MA) for 2 hours, and the 

pellet was re-dissolved in 20 µL of 

60/40% MeOH/H2O. A final round of high speed vortexing for 30 seconds, accompanied by 

centrifugation (16,000xg, 5 min, RT), provided a clear supernatant which was transferred to 

300 µL polypropylene HPLC vials (American Chromatography Supplies, Vineland, NJ) for 

subsequent analytical examination. 

 

Compound R1 (α) 
R2 

(α) 

R3 

(β) 

R4 

(α) 
R5 

Figure 6-2. Structure variations and substitutions of the 11 bile acid species measured with 

their corresponding abbreviations. Tauro-conjugates have the amino acid taurine connected 

by the N terminus at the R5 position. Glyco-conjugates have glycine connected by the N 

terminus at the R5 position. Underneath the table is the structure of the 12th species 

evaluated, the bile acid synthesis precursor: 7-alpha-hydroxy-4-cholesten-3one. 
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HPLC-MS Analysis – Positive & Negative ESI Conditions 

Analysis was performed by an Agilent 1260 Infinity high performance liquid chromatograph 

(HPLC) (Agilent, Santa Clara, CA) coupled to an Agilent 6460 triple quadrupole mass 

spectrometer equipped with an electrospray ionization source operating in either the negative 

ion mode (ESI-) or the positive ion mode (ESI+) for targeted detection options. While the  

conditions described below produced the most sensitive and reliable BA detection results, 

additional chromatographic conditions were tested, and they are summarized in the Table 6- 

Cholic acid (CA) H OH H OH OH 

Chenodeoxycholic acid (CDCA) H OH H H OH 

Deoxycholic acid (DCA) H H H OH OH 

Lithocholic acid (LCA) H H H H OH 

Ursodeoxycholic acid (UDCA) H H OH H OH 

Taurocholic acid (TCA) H OH H OH NHCH2CH2SO3H 

Taurochenodeoxycholc acid 

(TCDCA) 

H OH H H NHCH2CH2SO3H 

Taurodeoxycholic acid (TDCA) H H H OH NHCH2CH2SO3H 

Glycocholic acid (GCA) H OH H OH NHCH2COOH 

Glycochenodeoxycholic acid 

(GCDCA) 

H OH H H NHCH2COOH 

β-Muricholic acid (BMCA) OH 

(R1β) 

H OH H OH 
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1. 

 

 

 

The chromatographic methods were reverse-phase in nature, utilizing a long alkyl chain 

stationary phase (C18) paired with differing mobile phase systems for each positive and 

negative ion modes to facilitate both dampening of adduct effects, elution of widely varying 

hydrophobicity levels, as well as separation of isobaric  

Ion Mode Column 
Mobile Phase 

A 
Mobile Phase 

B 
Gradient 
Length 

Separation 
of BAs 

Positive Kinetex C18 
1.7 uM, 150 
x 2.1 mm 

10 mM 
Ammonium 
Acetate in 
H2O 

100% MeOH 70 mins 9 out of 11 

Positive Luna Omega 
polar C18 
1.6 uM 100 x 
2.1 mm 

0.1% Formic 
Acid in H2O 

100% MeOH 60 mins 7 out of 11 

 Negative Kinetex C18 
2.6 uM, 150 
x 2.1 mm 

10 mM 
Ammonium 
Acetate in 
H2O 

100% MeOH 62 mins 6 out of 11 

Negative Hypercarb 
Porous 
Graphite 
Carbon 3 
uM, 100 x 1 
mm 

0.1% 
Triethylamine 
in water 

0.1% 
Triethylamine 
in ACN 

62 mins 9 out of 11 

Table 6-1. Compilation of four additional chromatographic conditions tested for bile 

acid detection sensitivity and separation. 
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BA species. For ESI+, a Cadenza CD-C18 column (3.0 µm, 250 x 2 mm, Imtakt, Portland, OR) 

was selected for use due to its high 

steric selectivity, as CDCA and UDCA only differ by an inversion at a single stereocenter. The 

column was heated (55oC) for the entire gradient program, allowing for consistent and reliable 

retention times as well as avoidance of lipid content buildup on the column matrix that might 

have been leftover in the samples from earlier plasma preparation.513 The aqueous mobile 

phase solvent A consisted of a volumetric preparation of 1 L of ultrapure water with 1 mL of neat 

formic acid (100/0.1 v/v). Organic mobile phase solvent B was comprised of a volumetric 

preparation of 1 L of acetonitrile with 1 mL of neat formic acid (100/0.1 v/v). 

The gradient separation is described in Table 17. The injection volume of prepared biological 

samples was 8 µL. To minimize injector carry-over, a complete gradient wash cycle with a 

strong solvent (methanol) was performed sporadically throughout sample analysis as 

“blanks”. 

 

Time 

(min) 

%A %B Flow 

Rate 

(µL/min) 

Pressure 

 0 99 1 200 400 

3.5 99 1 200 400 

38 0 100 250 400 

40 0 100 250 400 

42 99 1 250 400 

45 99 1 250 400 

Table 6-2. Positive Ion ESI 

HPLC gradient conditions. 

Solvent A consisted of 100% / 

0.1% ultrapure water to neat 

formic acid. Solvent B 

consisted of 100% / 0.1% 

acetonitrile to neat formic acid. 

Pressure represents maximum 

instrument threshold. The 

column utilized with this 

gradient was a Cadenza CD-

C18 reverse phase (3.0 µm, 

250 x 2 mm). 
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For ESI-, a Kinetex EVO C18 column 

(1.7 µm, 150 x 2.1 mm) 

(Phenomenex, Torrance, CA) was selected for use for base stable capabilities along with 

high selectivity due to small particle size. The column was again heated to a constant 

temperature of 55oC for the entire duration of the chromatographic run. The aqueous mobile 

phase solvent A consisted of a volumetric preparation of 1 L of ultrapure water with 1 mL of 

triethylamine (TEA) (100/0.1 v/v) as a higher pH was observed to improve chromatographic 

separation of isobaric BA species. The organic mobile phase solvent B was prepared as a 

volumetric solution of 500 mL of ultrapure water, 375 mL of acetonitrile with 125 mL of 

methanol and an addition of 1 mL of TEA (50/37.5/12.5/0.1 v/v/v/v). The gradient separation 

is detailed in Table 6-3. The injection volume of patient samples was 8 µL. To minimize 

injector needle contamination, a complete wash cycle with a high polarity solvent (methanol) 

was performed occasionally throughout sample analysis as “blanks”. 

Time 

(min) 

%A %B Flow 

Rate 

(µL/min) 

Pressure 

0 99 1 70 400 

2 99 1 70 400 

7 50 50 70 400 

11 25 75 70 400 

32 0 100 70 400 

35 0 100 70 400 

37 99 1 70 400 

45 99 1 70 400 

Table 6-3. Negative Ion ESI HPLC 

gradient conditions. Solvent A 

consisted of 100% / 0.1% ultrapure 

water to triethylamine. Solvent B 

consisted of 

50%/37.5%/12.5%/0.1% water to 

acetonitrile to methanol to 

triethylamine. Pressure represents 

maximum instrument threshold. The 

column utilized with this gradient 

was a Kinetex EVO C18 reverse 

phase column (1.7 µm, 150 x 2.1 

mm), requiring a decreased flow 

rate. 
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MS/MS Conditions & Optimization 

As mentioned above, the highest sensitivity results were obtained with an Agilent 6460 series 

triple quadrupole mass spectrometer (QQQ). However, both positive and negative ESI 

methods were replicated and confirmed on an LCQ DecaXP Plus mass spectrometer 

(ThermoFisher, Waltham, MA). Mass spectrometry parameters for the QQQ were as follows: 

capillary voltage was set to 4000 V, gas flow was adjusted to 8 L/min, the gas temperature 

was 300 oC, the nebulizer pressure was set at 15 psi, and the delta electron multiplier voltage 

(EMV) was set to +200/-0 for ESI+ and +0/-200 for ESI-. All the 12 BA species in this 

assessment yielded characteristic fragments when subjected to collision-induced dissociation 

and were therefore assayed using multiple reaction monitoring (MRM). The noted transitions 

for each of the 12 standards and 1 deuterated internal standard are provided in Table 6-4 

(ESI+) and Table 4 (ESI-).  Source parameters of fragmentor voltage and collision energy 

were optimized for each bile acid transition by direct flow injection at the HPLC flow rate and 

appropriate solvent composition (HPLC MS/MS conditions listed above). These optimizations 

were automatically performed using Agilent MassHunter Optimization software, and tested in 

duplicate before finalizing the values, and are also included in Table 6-5 & 6-6.  

Method Validation 

The finalized method presented above was further tested according to certain parameters set 

forth by the FDA for bioanalytical method validation.514 Linearity was evaluated over a 

concentration range of 20 pM to 2 mM with a 5-point calibration curve. Samples designated 

as quality controls were prepared for each of the 12 species in MeOH/H2O (60/40 v/v) and 

utilized for both linearity assessment and matrix effect testing; QC1 (2mM) QC2 (200nM) 
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QC3 (20nM) and QC4 (2nM) QC5 (200pM). The limit of detection (LOD) was determined with 

a signal-to-noise (S/N) ratio greater than 3. Additionally, the lower limit of quantification 

(LLOQ) was determined with a S/N ratio greater than 5. Evaluation of the matrix effect from 

plasma biological fluids allowed for an assessment of reliability and selectivity of the 

proposed HPLC MS/MS method. This was accomplished by comparing the integrated peak 

area of the deuterated standard (CDCA-D4) in both spiked solvent (60% methanol) and in 

spiked plasma samples of fixed volumes. Potential for injector or column carry-over was 

tested by direct comparison of blank solvent samples versus QC1 and QC5.  

Compound Molecular 
Weight 
(g/mol) 

Monitoring 
Species 

Precursor 
Ion 

Product 
Ion 

Fragmentor 
(V) 

Collision 
Energy 

(V) 

TCA 515.7 (M+H)-H2O 498 462 75 12 

TCDCA 499.7 (M+H)-
2H2O 

464 125 125 44 

TDCA 499.7 (M+H) 500 464 105 8 

GCA 465.6 (M+H) 466 412 95 12 

GCDCA 449.6 (M+H)-
2H2O 

432 414 100 15 

CA 408.6 (M+H)-
2H2O 

373 355 95 12 

CDCA 392.6 (M+H)-
2H2O 

357 357 90 0 

DCA 392.6 (M+H)-
2H2O 

357 357 90 0 

LCA 376.6 (M+H)-H2O 359 177 75 16 

UDCA 392.6 (M+H)-
2H2O 

357 357 90 0 

BMCA 408.6 (M+H)+17 426 355 100 10 

C4 400.7 (M+H) 401 177 135 20 

CDCA-D4 396.6 (M+H)-
2H2O 

361 261 132 23 

Table 6-4. Positive Ion MRM transition monitoring species, product ions, and instrument 

source parameters. Bile acid acronyms can be found in Appendix 1. The majority of (M+H) 

ions were undetectable, or existed only at minimal levels, and dominating charged species 

consistently experience the loss of 1 or 2 water molecules. 
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Percent error of accuracy and precision of the described method were analyzed by 

measuring QC1, QC3, and QC5 on 3 intra-day (analyzed on the same day) replicates as well 

as an inter-day (measured on 3 separate days) replicate. Finally, the recovery of the 

deuterated standard (CDCA-D4) was evaluated. Control plasma was spiked with CDCA-D4 

before sample preparation, and additionally in a sample after preparation was complete. 

Recovery was calculated as: area under the peak of the pre-spiked sample divided by the 

area under the peak of the post-spiked sample. This was repeated in 3 replicates of fixed 

volume and concentration. 

 

Data Processing and Statistical Analysis 

Compound Molecular 
Weight 
(g/mol) 

Monitoring 
Species 

Precursor 
Ion 

Product 
Ion 

Fragmentor 
(V) 

Collision 
Energy 

(V) 

TCA 515.7 (M-H) 514 80 270 75 

TCDCA 499.7 (M-H) 498 80 280 80 

TDCA 499.7 (M-H) 498 80 270 70 

GCA 465.6 (M-H) 464 74 220 45 

GCDCA 449.6 (M-H) 448 74 200 45 

CA 408.6 (M-H) 407 289 290 40 

CDCA 392.6 (M-H) 391 391 240 0 

DCA 392.6 (M-H) 391 391 240 0 

LCA 376.6 (M-H) 375 369 190 11 

UDCA 392.6 (M-H) 391 391 240 0 

BMCA 408.6 (M-H)+46 452 406 110 5 

C4 400.7 (M-H) 399 177 155 18 

CDCA-D4 396.6 (M-H)+46 441 359 142 35 

Table 6-5. Negative Ion MRM transition monitoring species, product ions, and instrument 

source parameters. Bile acid acronyms can be found in Appendix 1. βMCA was 

undetectable in negative ESI. Product ions for glycine and taurine conjugates are classic 

fragments of these charged amino acids and consistent across species. 
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Raw data files were interpreted using MassHunter qualitative analysis software (Agilent). 

Integration of bile acid chromatographic peaks was accomplished both by automatic 

integration as well as manual integration in the case of the more difficult to detec t BA signals 

(LCA, GCA). 

In order to determine bile acid concentration in patient and control plasma samples, a 

standard curve of the previously measured QC samples was included with each sample 

batch, also eliminating the majority of errors that may occur due to batch effects. As the 

concentrations of each QC sample is known, linear regression was utilized to determine 

unknown sample concentrations by graphing integrative peak area vs. sample concentration. 

An example of the linear standard curve for all BAs can be seen in Figure 6-3. Dilution 

factors were taken into account to arrive at the final concentration of each BA in plasma.  
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Figure 6-3 
A. A representative BA calibration 
curve in positive mode detection; 
graph shows chenodeoxycholic acid 
(CDCA) which is the most dominant 
primary BA in humans. Six points in 
the lower range were examined, 0 nM, 
2 nM (0.785 ng/mL), 20 nM (7.85 
ng/mL), 80 nM (31.4 ng/mL), 120 nM 
(47.1 ng/mL), and 160 nM (62.8 
ng/mL). This curve was created for all 
12 species measured in the method 
and utilized for calculations of LOD 
and LLOQ. Linearity was high, with an 
R2 of 0.99. The standard curves were 
utilized in final concentration 
calculations of human samples. 
 
B. A representative BA calibration 
curve in positive mode detection; 
graph shows chenodeoxycholic acid 
(CDCA) which is the most dominant 
primary BA in humans. Eight points 
over a large range were examined, 0 
nM, 2 nM (0.785 ng/mL), 20 nM (7.85 
ng/mL), 80 nM (31.4 ng/mL), 120 nM 
(47.1 ng/mL), 160 nM (62.8 ng/mL), 
200 nM (78.5 ng/mL), and 2 uM (785 
ng/mL). This was also generated for 
all 12 BA species, to confirm accuracy 
and precision at higher 
concentrations, and that the ULOQ 
was not passed. 
 
C. A representative BA calibration 
curve in negative mode detection; 
graph shows chenodeoxycholic acid 
(CDCA) which is the most dominant 
primary BA in humans. Five points 
over a large range were examined, 0 
nM, 2 nM (0.785 ng/mL), 20 nM (7.85 
ng/mL, 200 nM (78.5 ng/mL), and 2 
uM (785 ng/mL). This was also 
generated for all 12 BA species, and 
higher concentrations were more 
accurate in the negative ion mode. 
Linearity was high at an R2 of 0.99, 
similar to that of ESI+.  
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Results and Discussion 

Chromatographic Optimization and Application 

In order to produce and maintain adequate chromatographic separation and overall peak shape 

for all BA species in positive ion detection mode, it was necessary to lower the pH of the mobile 

phases. Both 10 mM ammonium acetate and ~24 mM formic acid (or 0.1% v/v) solutions were 

tested in aqueous (water) and organic (acetonitrile or methanol) with the presented MRM 

method. While both were sufficient to achieve sharp peaks and stable retention times, it was 

found that the presence of ammonium acetate caused both predominant ammonium adducts in 

electrospray as well as bile salt build up in the column due to the high percentage of organic 

phase needed to move the compounds off. Formic acid addition did not produce formate 

adducts while still lowering the pH of both mobile phases to between 2-4 and positively 

impacted the sensitivity of the assay. These findings correlating pH and BA retention are 

consistent with previously published work.494, 515, 516  

  

In contrast, we found it was necessary to increase the pH during negative ion detection of BA 

species. This was mainly due to the fact that utilizing ammonium acetate or formic acid in a 

buffer would tend to protonate one of the various hydroxyl sites on the unconjugated bile acids 

and allow for easier coupling with acetate and formate adducts while hindering the ability to 

ionize the steroidal backbone efficiently. We found through the addition of 0.1% triethylamine 

(TEA) in both mobile phases, the pH increased sufficiently to allow for proper ion formation and 

unique fragmentation. This constituent also allowed for a greater magnitude of sensitivity as well 

as improved resolution for the isobaric BA species. This effect also has been reported in 

previous literature describing superior BA separation methods with high-pH anion exchange 
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chromatography.517 Partial addition of the stronger eluent methanol in the acetonitrile organic 

phase also helped to prevent bile salt formation in the column and machine.  

The sensitivity of both systems was found to be sufficient for the detection of selected BA 

species in normal human and rodent plasma despite a large concentration range in biological 

fluids. Although the majority of the bile acids observed in both healthy controls and disease 

sample analysis can be distinguished by the targeted method below, there are a multitude of 

both unidentified as well as additional secondary and tertiary species that could potentially 

act as differential markers of certain diseases. This warrants further translational exploration.  

Targeted MS/MS Analysis of 12 Bile Acid Species with Positive ESI 

Overall, 11 unique bile acid species and one bile acid precursor were targeted in a single 

HPLC-MS/MS method operating in the positive ion mode of detection. Utilization of the above 

optimized chromatographic conditions for ESI+ allowed for detection of all compounds in 

biological samples with a high 

level of separation. While 

MRM was implemented due to increased sensitivity and 

unique fragmentation options, chromatography and the 

Figure 6-4. Extracted ion 

chromatogram (EIC) of the 10 

human specific bile acids and 

their precursor (7α-H4C3 or 

C4) measured in one mixture, 

separated by the described 

HPLC method and positive 

ESI. All species give unique 

retention times with 

quantitative peaks, including 

isobaric compounds, during a 

45-minute gradient. As the 

column utilized is C18 reverse 

phased based, it can be 

concluded that 7α-H4C3 is the 

strongest retainer and most 

likely displays the highest non-

polar character. 
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length of the method alone was sufficient to separate even isobaric BA species. (Figure 6-4) 

Due to conjugation with either taurine or glycine which significantly alters the thermodynamic 

properties of a BA, we observed a decreased retention time for these species across the board, 

allowing for a facile distinction between conjugated and unconjugated variants. It is worth noting 

that although conjugated BA species do not comprise the majority of bile that is reabsorbed 

through the portal vein due to bile salt hydrolase activity in the ileum518, the amino acid addition 

has been shown to change the physiological activity of these molecules519 and is relevant in 

clinical applications. 

Combining superior LC separation with optimized MRM transitions offered significant 

sensitivity for the bile acids examined. Coupling this with consistent reproducibility allows us 

to confidently report positive-ion monitoring as a feasible approach for biological analysis of 

these compounds. 

 

Targeted MS/MS Analysis of 12 Bile Acid Species with Negative ESI 

Additionally, the same 11 BA species and BA precursor were targeted in a single HPLC-

MS/MS method operating in the negative ion mode of detection. As described above, 

differing chromatographic conditions were used for ESI- and adequately allowed for detection 

of all compounds in biological matrixes (specifically EDTA treated blood plasma). Alternating 

the variant of C18 particle column used in this polarity allowed for complete LC separation of 
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these molecules and produced unique retention times to that of positive ion detection (Figure 

6-5). MRM ions, fragmentations, and parameters for this method are listed in Table 6-5. 

 

Comparison of Positive Ion vs. Negative Ion MS Detection 

It is worth discussing the main differences between ESI+ and ESI- detection of bile acids, as 

both methods were sufficient for identification and quantification of all targeted species. The 

multitude of univariate mass spectrometry methods for the detection of bile acids was 

previously discussed in the introduction, and we are unaware of a report that discusses both 

applicable methods for immediate use in research endeavors. 

The most notable variance between positive and negative modes of detection is the bile acid 

ions and adducts that are formed and subsequently monitored. Comparing Figures, one can 

clearly see that the predominant fragment species in each mode are quite unique, and differ 

from the classically observed (M+H) and (M-H) peaks. While no significant difference in 

Figure 6-5. Extracted ion 

chromatogram (EIC) of 10 bile 

acids measured in one mixture, 

separated by the described HPLC 

method and negative ESI. All 

species give unique retention times 

with quantitative peaks, including 

isobaric compounds, during a 45-

minute gradient. As the column 

utilized is C18 reverse phased 

based, it can be concluded that β-

MCA (a rodent dominant BA) is the 

most polar bile acid measured, 

likely due to its unique 

stereochemistry at C-6. It can be 

seen that negative ESI detection 

produced slightly broader peaks 

than ESI+ with less defined 

retention times but is still suitable 

for sensitive measurement. 
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sensitivity based on peak integration was seen between these differing transition fragments, 

ESI+ tended to produce more robust signals and lower detectable ranges for all BA species; 

ESI- excelled at detecting toxic secondary bile acid species (i.e. LCA and DCA) that are not 

as dominant in peripheral blood. 

 

We were able to confidently confirm that BAs are susceptible to changes in pH, altering the 

ionization and detection patterns based on mobile phase selection. There are significant 

differences in this application for either ESI+ or ESI-. Greatest sensitivity was achieved with 

lower pH (acidic spiked) mobile phases in positive detection MS, while the opposite was true 

for negative detection, and a higher than neutral pH produced improved resolution. These 

differences can partially be explained by the steroidal backbone of the examined species, 

where hydroxyl substitutions greatly vary both the lipophilicity and hydrophilicty of BAs. This 

variation is ideal for specific method development that may include media or additional 

species that thrive in a particular pH, allowing for complete optimization.  

Method Validation 

To ensure the maximum signal detection for each bile acid species measured, optimization of 

MRM ion transitions was completed with Agilent MassHunter software. It was found that 

although isobaric variants CDCA, DCA, and UDCA produced unique fragments, a higher 

sensitivity was achieved when monitoring a loss of the same two water fragments with no 

collision energy, where separation was achieved through chromatography and retention time 

verification. Similar methodology was also used for internal standard (IS) monitoring, as it 

was a deuterated form of CDCA. This ensured specific and reproducible results across both 

method applications. According to FDA guidelines, the HPLC-MS/MS method was validated 
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for accuracy and precision on intra- and inter-day injections, as well as linearity in both 

detection ion modes. 

In positive ESI, the limit of detection (LOD) for the 12 compounds detected ranged between 

1.9-3.1 ng/mL for primary BAs (CA,CDCA), 3.6-11.6 ng/mL for secondary BAs 

(DCA,LCA,UDCA,BMCA), 0.73-5.6 ng/mL for conjugated BAs 

(GCA,GCDCA,TCA,TCDCA,TDCA) and was 15.4 ng/mL for C4,final concentration. ; in 

negative ESI the LOD’s ranged between 22.4-27.4 ng/mL for primary BAs,17.6-27.3 ng/mL 

for secondary, 12.3-24.0 ng/mL for conjugated BAs and was 26.8 ng/mL for C4. Linearity was 

explored over a broad range of concentrations as discussed above; 20 pM to 2 uM, due to 

the fact that there are various concentrations of BA present in bile, blood, urine, and feces, 

and although molarity concentrations can be utilized for reporting standard measurements, 

we found that individual BAs were better represented in final data using ng/mL, particularly 

for clinical applications. Tables 6-6 and 6-7 show the accuracy and precision of both intra- 

and inter-day measurements of the 11 BAs and 1 precursor targeted. As the limit of detection 

in measurement was approached, there was a marked decrease in accuracy for all species. 

However, negative ESI was superior in combating this variance, and further exploration of 

this effect would be warranted. While the range of extraction recovery of all analytes was 

averaged out to be 70.1%, the lowest percentage contributors are due to the more toxic, 

secondary BA species (particularly LCA) as the human body is efficient in removing these 

from the bloodstream before reabsorption and can experience stronger matrix effects.  520 
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Sample (+) Spiked (ng/mL) 
Measured 

(mean ± SD) 
Accuracy (%) 

Precision 
(RSD%) 

CA 

Intra-day 

8.17 10.8±0.7 112.9 6.9 

81.7 78.8±0.6 96.5 0.8 

817 817.3±5.9 100.0 0.7 

Inter-day 

8.17 14.0±2.1 171.0 15.4 

81.7 75.3±2.1 92.2 2.8 

817 817.6±0.2 100.1 0.0 

CDCA 

Intra-day 

7.85 11.6±2.1 117.7 18.4 

78.5 74.3±0.7 94.7 0.9 

785 785.4±21.2 100.0 2.7 

Inter-day 

7.85 13.1±1.7 167.0 12.8 

78.5 72.7±2.2 92.6 3.0 

785 785.5±13.3 100.1 1.7 

DCA 

Intra-day 

7.85 8.2±5.0 103.9 61 

78.5 78.2±1.2 99.6 1.5 

785 785.0±6.9 100.0 0.9 

Inter-day 

7.85 12.8±4.6 163.3 36.0 

78.5 73.0±4.5 93.0 6.2 

785 785.5±6.4 100.1 0.8 

LCA 

Intra-day 

7.53 5.7±0.0 76.1 0.0 

75.3 77.3±5.6 102.6 7.3 

753 752.8±5.4 100.0 0.7 

Inter-day 

7.53 13.4±5.4 178.1 40.4 

75.3 68.8±8.3 91.4 12.1 

753 753.6±4.7 100.1 0.6 

UDCA 

Table 6-6. Intra-day (same day in triplicate, n=3) and inter-day (3 separate days in triplicate, n=9) measured 

means (±standard deviation), accuracy, and precision for each of the 12 BA species measured in positive ion 

mode. The spiked concentrations are shown in ng/mL and vary based on the molecular weight of the compound, 

as original QC samples were prepared in molarities; 20 nM, 200 nM, 20 uM are the respective concentrations. 

Ng/mL concentrations were calculated using the calibration curve. Precision >35% for inter-day measurements 

is ideal, indicating acceptable machine variability and robust method application. It is worth noting that overall, 

samples closer to the LOD (20nM set) had lower accuracies across the board. This could be improved by fine 

tuning methods at lower concentrations. Both TCDCA and C4 were not detectable at the 20 nM concentration 

during this experiment, as this fell close to if not below the LOD. ESI+ provided the greater sensitivity and 

precision. 
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Intra-day 

7.85 9.4±0.3 120.0 3.2 

78.5 76.1±0.6 96.9 3.4 

785 785.2±10.2 100.0 12.7 

Inter-day 

7.85 12.7±3.5 162.3 27.8 

78.5 73.1±3.9 93.1 5.3 

785 785.5±6.9 100.1 0.9 

TCA 

Intra-day 

10.3 17.3±0.2 168.0 4.5 

103 95.3±2.5 92.5 2.6 

1030 1030.7±20.6 100.1 2.9 

Inter-day 

10.3 - - - 

103 93.6±3.6 90.9 3.9 

1030 1030.9±13.2 100.1 1.3 

TCDCA 

Intra-day 

9.97 - - - 

99.7 96.4±3.3 96.9 3.4 

997 997.3±127.0 100.0 12.7 

Inter-day 

9.97 12.0±8.6 120.0 71.7 

99.7 97.5±11.4 97.8 11.7 

997 997.2±72.6 100.0 7.3 

TDCA 

Intra-day 

9.97 11.8±0.7 118.5 6.0 

99.7 96.7±3.9 97.0 4.0 

997 997.2±6.1 100.0 0.6 

Inter-day 

9.97 14.4±2.7 144.3 18.5 

99.7 94.8±3.8 95.1 4.0 

997 997.4±19.0 100.0 1.9 

GCA 

Intra-day 

9.31 11.2±0.5 120.6 4.3 

93.1 89.9±0.6 96.6 0.7 

931 931.2 100.0 0.5 

Inter-day 

9.31 13.0±1.6 140.1 11.9 

93.1 89.0±1.4 95.6 1.6 

931 931.4± 100.0 1.3 

GCDCA 

Intra-day 

8.99 11.0±0.3 122.4 2.9 

89.9 86.6±0.6 96.3 0.7 

899 899.2±6.7 100.0 0.7 

Inter-day 

8.99 11.6±0.8 129.0 6.8 

89.9 87.0±0.6 96.8 0.7 

899 899.3±9.9 100.0 1.1 

BMCA 
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Intra-day 

8.17 9.8±0.7 119.4 7.4 

81.7 84.0±2.1 102.8 16.3 

817 817.2±7.0 100.0 0.9 

Inter-day 

8.17 10.2±3.0 125.1 29.8 

81.7 79.4±3.8 97.2 4.8 

817 817.2±5.9 100.0 0.7 

C4 

Intra-day 

8.01 - - - 

80.1 76.2±10.4 95.2 13.7 

801 803.2±47.3 100.3 5.9 

Inter-day 

8.01 - - - 

80.1 66.9±15.7 83.6 15.7 

801 802.2±52.2 100.1 6.5 

 

Sample (-) Spiked (ng/mL) 
Measured 

(mean ± SD) 
Accuracy (%) 

Precision 
(RSD%) 

CA 

Intra-day 

8.17 8.8±0.1 108.1 0.8 

81.7 81.0±5.1 99.1 6.3 

817 817.1±6.5 100.0 0.8 

Inter-day 

8.17 5.0±1.5 61.1 30.6 

81.7 85.2±5.9 104.3 7.0 

817 816.7±5.0 100.0 0.6 

CDCA 

Intra-day 

7.85 12.0±1.9 125.7 16.2 

78.5 73.9±1.7 94.2 2.3 

785 785.4±3.6 100.1 0.5 

Table 6-7. Intra-day (same day in triplicate, n=3) and inter-day (3 separate days in triplicate, n=9) measured 

means (±standard deviation), accuracy, and precision for each of the 12 BA species measured in negative ion 

mode. The spiked concentrations are shown in ng/mL and vary based on the molecular weight of the compound, 

as original QC samples were prepared in molarities; 20 nM, 200 nM, 20 uM are the respective concentrations. 

Ng/mL concentrations were calculated using the calibration curve. Precision >35% for inter-day measurements 

is ideal, indicating acceptable machine variability and robust method application. It is worth noting that overall, 

samples closer to the LOD (20nM set) had lower accuracies across the board. This could be improved by fine 

tuning methods at lower concentrations. Both TCDCA and TDCA were not seen at the lowest concentration 

(20nM). However, C4 still had stable measurements in this range, showing that negative ESI is preferable to 

measure this bile acid precursor, likely due to its unique chemical structure that differs from the typical steroid 

backbone of the other 11 bile acids. ESI- had slightly lower inter-day precision than ESI+ overall. 
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Inter-day 

7.85 9.7±6.4 124.2 65.4 

78.5 76.4±14.3 97.3 18.7 

785 785.2±38.4 100.0 4.9 

DCA 

Intra-day 

7.85 11.3±4.4 143.8 38.6 

78.5 74.7±0.2 95.2 0.2 

785 785.3±18.6 100.0 2.4 

Inter-day 

7.85 8.5±6.8 108.3 79.4 

78.5 77.8±14.6 99.1 18.7 

785 785.1±46.7 100.0 5.9 

LCA 

Intra-day 

7.53 13.3±3.9 134.0 29.0 

75.3 68.9±4.6 91.5 6.7 

753 753.6±2.4 100.1 0.3 

Inter-day 

7.53 8.9±4.2 117.5 47.5 

75.3 73.8±5.1 98.1 6.9 

753 753.1±2.4 100.0 0.3 

UDCA 

Intra-day 

7.85 11.3±1.6 89.3 14.0 

78.5 74.7±3.1 95.2 4.2 

785 785.3±8.7 100.0 1.1 

Inter-day 

7.85 8.3±3.0 106.3 35.9 

78.5 78.0±13.5 99.3 17.3 

785 785.0±7.6 100.0 1.0 

TCA 

Intra-day 

10.3 18.7±0.5 143.9 2.4 

103 123.5±8.1 95.0 6.6 

1030 1030.7±12.3 100.1 1.2 

Inter-day 

10.3 22.5±4.4 173.4 19.4 

103 119.2±9.0 91.7 7.6 

1030 1031.2±8.5 100.1 0.8 

TCDCA 

Intra-day 

9.97 10.7±1.0 107.0 9.7 

99.7 99.2±4.5 99.2 4.5 

997 1000.1±13.7 100.0 1.4 

Inter-day 

9.97 - - - 

99.7 110.4±4.3 110.4 3.9 

997 999.1±19.8 99.9 2.0 

TDCA 

Intra-day 

9.97 10.8±0.7 108.0 6.5 

99.7 98.8±9.6 99.1 9.8 

997 997.1±18.5 100.0 1.9 
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Finally, to confirm the scientific application of this analytical method, plasma samples from a 

pediatric autistic population (n=14) that had been taking the antipsychotic medication 

Risperidone (RSP) 521  were processed and measured according to the ESI+ parameters 

described above. These samples represent a unique challenge for method validation, as 

many of them were over 15 years old at the time of measurement, having been stored long 

Inter-day 

9.97 - - - 

99.7 112.0±8.0 112.3 7.1 

997 995.9±18.1 99.9 1.8 

GCA 

Intra-day 

9.31 8.2±1.5 88.5 18.3 

93.1 94.3±5.8 101.3 6.2 

931 930.9±4.2 100.0 0.5 

Inter-day 

9.31 5.7±2.9 61.8 50.6 

93.1 97.0±5.7 104.2 5.9 

931 930.6±9.8 100.0 1.1 

GCDCA 

Intra-day 

8.99 9.7±0.3 108.2 2.7 

89.9 89.1±5.3 99.1 6.0 

899 899.1±7.2 100.0 0.8 

Inter-day 

8.99 6.7±2.6 74.6 38.7 

89.9 92.4±4.6 102.8 5.0 

899 898.8±7.9 100.0 0.9 

BMCA 

Intra-day 

8.17 10.0±0.5 117.6 5.4 

81.7 79.6±0.5 97.5 0.7 

817 817.2±8.8 100.0 1.1 

Inter-day 

8.17 7.4±2.3 90.2 30.6 

81.7 82.6±2.1 101.1 2.5 

817 816.9±6.5 100.0 0.8 

C4 

Intra-day 

8.01 8.5±0.1 108.1 0.8 

80.1 77.8±5.0 99.1 6.3 

801 785.1±6.3 100.0 0.8 

Inter-day 

8.01 10.7±4.8 136.7 44.9 

80.1 75.3±24.8 96.0 32.9 

801 785.3±9.5 100.0 1.2 
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term at -80°C. It is also important to quantitate BAs in child populations such as these, as 

current data is limited, but has the potential to represent critical clinical indications early in 

life. The children in the study underwent an 8-week time course of RSP, at which point their 

final fasting BA concentrations were measured. The average concentrations of the 5 main 

bile acids that exist in plasma can be seen in Table 6-8. Interestingly, overall significant 

changes were observed in BA concentrations before and after taking this medication. This 

alone demonstrates the clinical importance of better understanding enterohepatic circulation 

patterns and contributors through targeted analytical methods.  

 

n = 28, Following Treatment 

All values in ng/mL 

Bile Acid Average Median Min Max 

CA 16.81 13.5 1.86 51.09 

CDCA 25.91 18.23 5.04 65.22 

DCA 39.94 35.6 6.99 78.79 

UDCA 42.92 18.79 6.2 150.52 

TCA 8.81 4.62 1.35 47.02 

 

Table 6-8. Fasting plasma BA concentrations of pediatric patients (aged 4-17 years old) 

following 8 weeks of risperidone pharmaceutical treatment, displaying the average, median, 

minimum, and maximum concentrations for each of the 5 main BA species occurring in 

humans as a test for method application. Values are represented in ng/mL, and sample 

preparation allowed for detection below the limit of quantitation from liquid concentration 

before injection. 
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Conclusion 

Increasing awareness and importance of bile acids as signaling molecules in both basic and 

translational research spurs a need for reliable and facile quantitative methods. BA diversity 

and challenging chemical properties make fit-for-purpose mass spectrometry the most 

straightforward approach to many related quantitative and qualitative measurements. 

Targeted detection through reversed-phase HPLC coupled with MS allows for sensitive and 

reliable determination of unconjugated, glycine, and taurine conjugated BAs in human and 

rodent plasma fluids in either positive or negative ion modes. 

 

Measurement of these species, along with the indicative precursor 7a-hydroxycholest-4-en-3-

one can generate detailed profiles that have the potential to be vital components of clinical 

testing for disease states including metabolic syndrome, inflammation, psychiatric disorders, 

and liver problems. We believe having a wide array of equipment and procedural choices 

when developing a targeted bile acid MS/MS detection workflow will be invaluable for 

translational and clinical research alike. It is the hope that this understudied field of BAs and 

their related biological and pathological mechanisms will become more accessible to many 

laboratories. 
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MxH Case Study #1: A Putative Development Pathway; Microbiome – Bile Acid Cross 

Talk in the Biological Mechanism of Psychotropic-Induced Weight Gain* 

*This work is currently unpublished. 

Lauren Seaman, Chadi Calarge, Kym Faull, Jude McElroy, Gerhard Helleman, James 

McCracken, Erika Nurmi 

 

Introduction 

Antipsychotic (AP) medications are critical for the stabilization of psychotic, mood, and 

behavioral disorders.522 APs are prescribed to 1-2% of adults (~7M)523 and 0.8-1.2% of youth 

(~1M).524, 525 Prescribing rates have been steadily rising for decades (increasing 750% in the 

first decade of the millennium),526 and is greatest in the demographic groups most vulnerable to 

adverse effects—the underprivileged, elderly and very young.527-530 While effective, 

antipsychotics carry serious risks—most commonly, weight gain and cardiometabolic 

abnormalities, which affect up to 60% of patients531 and present a major obstacle to long-term 

treatment.532-534 An increased susceptibility to and magnitude of AIWG has been repeatedly 

documented in children.533, 535, 536 Within a period of only 11 weeks, youth starting risperidone 

(RSP) may gain up to 3 kg. Associated abnormalities such as central obesity, insulin resistance, 

dyslipidemia, and systemic inflammation537-539 reach sufficient magnitude in childhood to trigger 

and accelerate atherosclerosis.537, 539-543 Cardiovascular disease accounts for the largest 

proportion of premature deaths in the severely mentally ill, whose life expectancy is dwarfed by 
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that of the general population by as much as 20 years—a gap that has increased over recent 

decades, paralleling antipsychotic prescribing.544, 545 

 

Little is known about the mechanism of AIWG and its subsequent influence on metabolic 

syndrome (MS). Differential risk across the drug class is not explained by simple receptor 

binding profiles at contributing sites such as the muscarinic system, but other mechanistic 

links are lacking. A few supported risk genes explain only a small percentage of the risk.62, 546, 

547 Novel, testable hypotheses are sorely needed that examine how these APs and other 

similar psychotropic medications interact with our underlying biology. We asked ourselves 

where a logical place to begin the search for fundamental links to AIWG might be and began 

to uncover relevant research in opposite situations – bariatric surgery patients who were 

losing significant amounts of weight.  

While it has long been suggested that the various benefits of bariatric surgery are simply a 

result of mechanical restriction of the stomach and malabsorption of nutrients caused by 

intestinal changes, contemporary studies are beginning to uncover more contributing factors. 

Based on alterations in the flow and anatomic routing of ingested nutrients following surgery, 

hypotheses have emerged implicating bile acids as key molecules in this avenue of weight-

loss.548 Classically viewed as the simple “dish-detergent” molecules of the digestive system, 

bile acids (BAs) are quickly gaining recognition as critical metabolic signaling compounds, 

hormone regulators, and disease state clinical biomarkers. BAs are the major component of 

bile and are synthesized from cholesterol through a hepatic cytochrome p450 7A1 (CYP7A1) -

mediated enzymatic pathway.479 They are powerful dietary lipid emulsifiers, allowing for 

solubilization and subsequent digestion of fats and oils through a mixed-micellular surfactant 

process.480 
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BAs have been found to regulate lipid, glucose and cellular energy homeostasis by acting as 

signaling molecules at nuclear hormone receptors in the liver and intestines known as 

farnesoid X (FXR).549 Systemic levels of BAs are significantly elevated in patients following 

both major bariatric procedures, Roux-en-Y gastric bypass and sleeve gastrectomy, 

suggesting a critical role for these molecules in the mechanism of weight regulation. 

Interestingly, in a study of human BA profiles, total plasma BA concentrations were higher in 

both obese and diabetic subjects than in healthy controls550, indicating there are complex 

interactions between the host and these regulatory compounds that can change how they 

affect metabolic states. This can potentially be delineated by the differing agonist and 

antagonist properties of various primary and secondary BAs at FXR. Primary (1o) BAs (cholic 

acid [CA] and chenodeoxycholic acid [CDCA]) are potent agonists for FXR, while the 

secondary (2o) BA ursodeoxycholic acid (UDCA) is an FXR antagonist.   

As the binding potential for BAs changes in accordance to their relative lipophilicity and 

hydrophilicity, this study aims to measure the concentrations of a set of primary and 

secondary BAs in a specific population that has undergone treatment with an antipsychotic 

medication utilizing high performance liquid chromatograph tandem mass spectrometry 

(HPLC-MS), and test whether or not the relative makeup of a person’s bile acid pool can 

provide us with significant biological clues to explain how weight-gain following treatment 

occurs on a molecular level. A better understanding of this complex mechanism will provide 

the foundation for targeted treatment and drug development strategies for pharmaceutical-

induced and, potentially, other-cause weight gain and metabolic dysfunction. 

 

Materials and Methods 
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Collection of Human Plasma & Vital Metrics 

Samples were collected from pediatric patients with autism spectrum disorder, n=30, after 

initiating and sustaining a second-generation antipsychotic Risperidone (RSP) treatment for 

an 8-week trial, fasting at two timepoints: baseline and after 2 months on medication.  Blood 

was initially taken into Vacutainer blood collection tubes (Becton, Dickinson and Company, 

Franklin Lakes, NJ) which were treated with 7-10 mg of K2EDTA to prevent erythrocyte 

clotting. Venous blood samples were stored immediately at 4oC until further processing could 

occur – within 1 week. All specimens were centrifuged at 2000xg, 4oC for 10 minutes in a 

Beckman Coulter Allegra 6R (Beckman Coulter, Indianapolis, IN) to separate red blood cells 

from what is deemed “blood plasma”. This resulting plasma sample was aliquoted into  500 µL 

fractions for long term storage at -80oC.  

All participants underwent baseline clinical evaluation by the study psychiatrist including 

general health, diet, and body measurements (height, weight, body mass index [BMI]. At both 

visits, repeated body measurements, medication dose and adherence since the prior 

session, any new treatments received (with special focus on antibiotics), and the occurrence 

and reason for any protocol deviations were recorded. 
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Compound 
R1 

(α) 

R2 

(α) 

R3 

(β) 

R4 

(α) 
R5 

Type of  

BA 

Cholic acid (CA) H OH H OH OH 1o 

Chenodeoxycholic acid 

(CDCA) 

H OH H H OH 1o 

Deoxycholic acid (DCA) H H H OH OH 2o 

Lithocholic acid (LCA) H H H H OH 2o 

Ursodeoxycholic acid 

(UDCA) 

H H OH H OH 2o 

Taurocholic acid (TCA) H OH H OH NHCH2CH2SO3H 2o 

Figure 6-6. Structure variations and substitutions of the 6 bile acid species measured with 

their corresponding abbreviations. For bile acids as a whole, tauro-conjugates have the 

amino acid taurine connected by the N terminus at the R5 position. Glyco-conjugates have 

glycine connected by the N terminus at the R5 position.  
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Chemical Materials for Mass Spectrometry Analysis 

All organic solvents used in biological sample preparation and mobile phases were prepared 

with LC-MS grade solvents and chemicals obtained from Sigma-Aldrich (St. Louis, MO). This 

included methanol, acetonitrile, formic acid, triethylamine, and ammonium acetate. 6 bile acid 

standards (cholic acid, taurocholic acid, chenodeoxycholic acid, deoxycholic acid, 

ursodeoxycholic acid, and lithocholic acid) were also purchased from Sigma-Aldrich (St. 

Louis, MO). Additionally, one deuterated internal standard (chenodeoxycholic acid-2,2,4,4-d4 

[CDCA-D4]), which was chosen due to its predominance in the human bile acid pool 512 and 

shared molecular weight with two other unique BAs, was also procured from Sigma-Aldrich 

(St. Louis, MO). The structures of all the BA species measured can be seen in Figure 6-6. 

 

Plasma Sample Preparation 

Prior to BA profiling analysis, samples were thawed at 4oC, and 100 µL aliquots were 

transferred to 1.5 mL Eppendorf microcentrifuge tubes (Eppendorf, Hauppauge, NY), spiked 

with an internal standard (CDCA-D4, in a final concentration of 5 pmol/µL [5 uM] (5 µL 

addition of 20 pmol/µL in methanol). For a liquid-liquid based extraction, 300 µL of 100% 

methanol was added (1:3 v/v), before 1 min of high speed vortexting, followed by a 15-minute 

incubation at room temperature (RT). Following centrifugation (16,000xg, 5 min, RT) the 

resulting supernatant was transferred to a clean microcentrifuge tube. This supernatant was 

dried down in a vacuum centrifuge (Savant SpeedVac Concentrator, ThermoFisher, 

Waltham, MA) for 2 hours, and the pellet was re-dissolved in 20 µL of 60/40% MeOH/H2O. A 

final round of high speed vortexing for 30 seconds, accompanied by centrifugation (16,000xg, 

5 min, RT), provided a clear supernatant which was transferred to 300 µL polypropylene 
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HPLC vials (American Chromatography Supplies, Vineland, NJ) for subsequent analytical 

examination. 

HPLC-MS Analysis – Positive ESI Conditions 

Analysis was performed by an Agilent 1260 Infinity high performance liquid chromatograph 

(HPLC) (Agilent, Santa Clara, CA) coupled to an Agilent 6460 triple quadrupole mass 

spectrometer equipped with an electrospray ionization source operating in the positive ion 

mode (ESI+) for targeted detection options. The conditions described below were developed 

by our lab for a personalized method and produced the most sensitive and reliable BA 

detection results in-house. 

The chromatographic method was reverse-phase in nature, utilizing a long alkyl chain 

stationary phase (C18) paired with a mobile phase system to facilitate both dampening of 

adduct effects, elution of widely varying hydrophobicity levels, as well as separation of 

isobaric BA species. For ESI+, a Cadenza CD-C18 column (3.0 µm, 250 x 2 mm, Imtakt, 

Portland, OR) was selected for use due to its high steric selectivity, as CDCA and UDCA only 

differ by an inversion at a single stereocenter. The column was heated (55oC) for the entire 

gradient program, allowing for consistent and reliable retention times as well as avoidance of 

lipid content buildup on the column matrix that might have been leftover in the samples from 

earlier plasma preparation.513 The aqueous mobile phase solvent A consisted of a volumetric 

preparation of 1 L of ultrapure water with 1 mL of neat formic acid (100/0.1 v/v). Organic 

mobile phase solvent B was comprised of a volumetric preparation of 1 L of acetonitrile with 

1 mL of neat formic acid (100/0.1 v/v). The injection volume of prepared biological samples 

was 8 µL. To minimize injector carry-over, a complete gradient wash cycle with a strong 

solvent (methanol) was performed sporadically throughout sample analysis as “blanks”.  
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All the 6 BA species in this assessment yielded characteristic fragments when subjected to 

collision-induced dissociation and were therefore assayed using multiple reaction monitoring  

(MRM). The finalized method presented above was further tested according to certain 

parameters set forth by the FDA for bioanalytical method validation for properties such as 

linearity, limit of detection, limit of quantitation, precision, and accuracy. 514 

 

Data Processing and Statistical Analysis 

Raw data files were interpreted using MassHunter qualitative analysis software (Agilent). 

Integration of bile acid chromatographic peaks was accomplished both by automatic 

integration as well as manual integration in the case of the more difficult to detect BA signals 

(LCA). 

In order to determine bile acid concentration in patient and control plasma samples, a 

standard curve of the previously measured QC samples was included with each sample 

batch, also eliminating the majority of errors that may occur due to batch effects. As the 

concentrations of each QC sample is known, linear regression was utilized to determine 

unknown sample concentrations by graphing integrative peak area vs. sample concentration. 

Dilution factors were taken into account to arrive at the final concentration of each BA in 

plasma. 

 

Results 
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First and foremost, it is important to quantitate BAs in child populations such as the ones 

described above, as current data is limited, but has the potential to represent critical clinical 

indications early in life, particularly in the case of monitoring and attenuating psychotropic 

side effects.  The children in the study initiated and sustained an 8-week time course of RSP, 

at which point their final fasting BA concentrations were measured. The average 

concentrations of the 5 main bile acid that exist in plasma (LCA, a toxic secondary BA 

species, was too low of a concentration to reliably detect across samples) can be seen in 

Table 6-8. 

In this pilot dataset of 30 children from the RUPP RSP trial, we also observed marked 

changes in the total BA pool and diversity, with predominant increases in 1° BAs. Primary  

BAs were significantly more pronounced in those with high versus low AIWG (p=0.01, Fig. 

35A). This pattern was replicated in 4 subjects started on RSP with moderate weight gain 

recruited at Baylor College of Medicine, a collaborator’s site, with a 1° BA increase of 960 

nmol/L, similar to 1,374 nmol/L in the RUPP sample.  
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Figure 6-7. RSP-Induced BA Changes. A. 1° BAs increase to 

a greater degree (p=0.01) in those with (green) compared to 

those without (blue) weight gain. B. In those with BA changes 

on RSP (12/28), the ratio of CDCA change to UDCA change 

differentiates those with (green) and without (blue) AIWG 

(p=0.001). All 28 subjects shown. Units are nmol/L. 
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Both CDCA and UDCA measures at baseline and 8 weeks were available for 28/30 RUPP 

participants. 12 of these 28 displayed a significant change (from baseline to 8 weeks) in 

either CDCA or UDCA (>0.5 SD). In this subset showing BA change with RSP, the ratio of 

the change in CDCA to the change in UDCA differentiated those with AIWG 

(∆CDCA/∆UDCA>1) from those without (∆CDCA/∆UDCA<1). This algorithm correctly predicts 

AIWG status in 11/12 (92%) participants whose ratios change (p=0.001, Fig. 35B), with a 

sensitivity of 100% and specificity of 86%. Sex, age, race/ethnicity, and RSP dose/plasma 

level were tested but did not contribute to BA differences. Test-Retest reliability of CDCA, 

UDCA, and 1° BA repeated measurements in the same individual (N=2) were precise within 4 

nmol/L. 

 

Discussion 

While previous studies have described AIWG and resulting metabolic syndrome (MS), and 

even searched for genes conferring risk, mechanistic approaches are lacking. As far as we 

are aware, this examination of peripheral bile acids in pediatric patients taking psychotropic 

medications is the first to demonstrate that significant changes are occurring in the BA pool 

following treatment. There are multiple factors that make these findings potentially so 

significant. Within the last few decades, it has been discovered that bile acids and bile salts 

have the ability to activate specific nuclear receptors, expressed in liver and GI tract cells, 

such as farnesoid X receptor (FXR) and G protein coupled receptor TGR5.11 Binding and 

subsequent activation of these receptors alter the expression of multiple genes that encode 

protein or enzyme products involved in the regulation of glucose, fatty acids, metabolism, bile 

acid synthesis, metabolism, and even energy metabolism.486, 551, 552 In more recent years, it 

has also been shown that bile acids can stimulate the expression of endocrine L-cells553 
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which are implicated in secretion of satiety hormones peptide YY (PYY) and glycogen-like 

protein 1 (GLP-1). This provides elucidative connections for BA quantification and the 

biological mechanism of AIWG/MS. 

We can strengthen these tenuous links by examining a similarly growing field of study – the 

gut microbiome. Recent evidence has fueled a growing enthusiasm for the role of the 

collective bacterial population in the human gastrointestinal tract in host metabolism and 

energy harvest,554 glucose homeostasis,491 and pharmaceutical breakdown.555 Preclinical 

studies of the antipsychotics olanzapine (OLZ) and RSP link AIWG with obesogenic 

microbiome changes in mice, including an increased Firmicutes to Bacteroidetes (F/B) phyla 

ratio.556-559 Moreover, preclinical studies have also demonstrated that gut bacteria are 

necessary for AIWG. In the only translational study published to date, our team confirmed 

that AIWG is associated with microbiome changes in children.560 

The relationship between the microbiome and BA pool is bidirectional. The microbiome 

regulates BA synthesis and reabsorption and shapes the BA pool.561 Both gram positive and 

negative bacteria produce intracellular enzymes such as bile salt hydrolase and hydroxysteroid 

dehydrogenase (HSDH) that can deconjugate taurine and glycine adduct bile salts562 as well as 

hydroxylate 1° BAs to form 2° and 3° forms.563 This deconjugation and epimerization results in 

an increase in BA hydrophilicity, affecting membrane permeability and efficiency of lipid 

solubilization. While almost all BAs are natural ligands for the hepatic FXR receptor, binding 

affinity and activity are substantially altered by BA modifications.564 For example, the 1° BA 

CDCA is hepatically synthesized and excreted into the intestinal lumen in bile. Gut bacteria then 

convert CDCA to UDCA, which has opposing effects on downstream FXR signaling.565-569  

 

Since FXR signaling is promoted by 1° BAs (CDCA and CA) but inhibited by the 2° BA UDCA, 
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the microbiome could influence metabolism by shifting the balance between these BA species. 

Conversely, BAs alter intestinal bacterial composition by moderating oxidative and pH stress in 

the small bowel and chelating vital cellular ions, thus promoting or inhibiting the growth of certain 

species.476 Direct antimicrobial effects result from detergent-like disruption of 

bacterial membranes561 and indirect effects are  mediated by FXR activation, triggering 

upregulation of genes involved in epithelial mucosal defense.482 

 

We hypothesize that a ∆CDCA/∆UDCA<1 could occur when epimerase+ bacteria are 

unavailable to convert CDCA to UDCA, resulting in excess CDCA and AIWG. Therefore, we 

believe future experiments should examine whether relative abundance of a key bacterial 

species (B. fragilis) that can catalyze the first step in epimerization was affected by RSP 

exposure. In Figure 6-8, we have proposed a potential active biological mechanism of AIWG. 

The data presented here, while preliminary, provide the foundation for a potentially targetable 

and biological based model of AIWG. Further research is needed to replicate findings in 

larger samples, clarify links between microbiome and BA, and determine whether 

associations are causal or simply an epiphenomenon or downstream effect. Some 

weaknesses of the current student include the small sample size of participants, and while 

power  was sufficient to generate statistically meaningful results, future studies that aim to 

affix the microbiome and bile acids would benefit from at least double the sample population 

(n=60+) to help delineate downstream affects. 
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It is also worth noting that addition of more bile acid species in the analytical quantification 

would be desirable for continuing work. This study was only able to reliable detect and 

measure 5 major human BAs, however there are close to 150 unique compounds in human 

bile.494 Conversely, as more compounds are added to a MS analysis, it could potentially 

result in issues with multiple testing, spurious associations, and the need for a larger 

population size. These secondary bile acid species are produced through structural 

modifications of primary BAs in the small intestines and colon following interaction with 

present microbial populations. Various enzymes produced by these bacterial species have 

the capabilities to deconjugate, hydroxylate, dehydroxylate, and epimerize 491, 496 both primary 

and secondary BAs altering their chemical properties and binding affinities, indicating 

Figure 6-8. Proposed Model of AIWG/MS. RSP impacts BA and gut microbial composition, favoring 

more obesogenic profiles. These pathways promote FXR signaling, negatively impacting lipid and 

glucose homeostasis, adiposity, and BMI. A protective mechanism whereby CDCA is converted to 

UDCA by epimerase+ gut bacteria counteracts this pathway; UDCA blocks FXR signaling, thus 

opposing AIWG/MS. The balance between these two pathways dictates metabolic response to RSP. 
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microbial importance in host enterohepatic circulation and overall metabolic homeostasis, 

and quantifying additional variants has the potential to yield even more insightful biological 

connections to AIWG. Our team has already begun to add 10 additional BA species to the 

bioanalytical method described above for future studies. 

Finally, in order to disentangle direct BA involvement with AIWG/MS, downstream biomarkers 

for FXR activation would be an ideal target to assay in later work on this topic. FXR signaling 

results in secretion of gut-derived FGF19 and subsequent suppression of precursors of 

hepatic BA synthesis (7α-hydroxycholesterol and 7α-hydroxy-4- cholesten-3-one [C4]). Both 

of these factors can be measured successfully in blood to provide additional insight on the 

direction of the proposed mechanism.  

Conclusion 

Antipsychotics have revolutionized treatment of several severe medical conditions; therefore, 

their use is necessary despite serious side effects. We have shown that RSP treatment 

results in unfavorable bile acid changes which are significantly linked with AIWG in pediatric 

populations. This drug exposure resulted in BA pool alterations that can dif ferentiate those 

who experience AIWG from those without and has the prospective to guide clinical care 

moving forward. Additionally, due to an evolving understanding of the gut microbiome’s 

involvement with host metabolism, we have proposed an extended hypothesis and 

theoretical model for bile acid-microbiome cross talk based on chemistry and function. 

Further research is needed to replicate findings in larger samples, clarify links between 

microbiome and BA, and determine whether associations are causal or simply an 

epiphenomenon or downstream effect. Ultimately, the identification of an easily measurable 

biomarker of AIWG risk could provide clinical guidance. If proven, highly actionable treatment 

targets are clear, and potential treatments are immediately available. 
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Chapter 6 Wrap-Up 

Chapter 7 will directly continue from the conclusions of the above case study, wrapping up 

my dissertation as a whole, and presenting the current, larger replication project to validate 

my preliminary findings. 
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Chapter 7  

Future Directions, Conclusions, and Final Thoughts 

 

 

Future Directions 

 

Based on the encouraging and intriguing preliminary results just discussed in Chapter 6, and 

with the help and leadership of my PI, Dr. Nurmi, we decided to write and submit a R21 

research proposal grant to the NIH to explore our putative biological pathway of antipsychotic-

induced weight gain further. Below you fill find this document, that was just recently accepted 

and funded by the National Institute of Child Health and Human Development (NICHD). It is 

ongoing, and I will be continuing to serve as a research assistant on this grant and perform the 

pertinent bile acid measurements and statistical and quantitative analysis as we accumulate 

enough participants. I am beyond excited at the prospect this study holds to inform the world of 

adverse treatment side effects following psychotropic medication, which I will discuss further in 

the conclusions following.  
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Current Study and Future Directions : The role of bile acid-microbiome cross-talk in 

psychotropic-induced weight gain and cardiometabolic dysfunction* 

*This is a submitted and funded R21 grant proposal. 

 

I. SIGNIFICANCE.  

A. Antipsychotic-Induced Weight Gain (AIWG) & Metabolic Syndrome.  

 

Antipsychotic (AP) medications are critical for the stabilization of psychotic, mood, and behavioral 

disorders.522 APs are prescribed to 1-2% of adults (~7M)523 and 0.8-1.2% of youth (~1M).524, 525 

Prescribing rates have been steadily rising for decades (increasing 750% in the first decade of 

the millennium),526 and is greatest in the demographic groups most vulnerable to adverse 

effects—the underprivileged, elderly and very young.527-530 While effective, antipsychotics carry 

serious risks—most commonly, weight gain and cardiometabolic abnormalities, which affect up 

to 60% of patients531 and present a major obstacle to long-term treatment.532-534 An increased 

susceptibility to and magnitude of AIWG has been repeatedly documented in children.533, 535, 536 

Within a period of only 11 weeks, youth starting risperidone (RSP) may gain up to 3 kg. Associated 

abnormalities such as central obesity, insulin resistance, dyslipidemia, and systemic 

inflammation537-539 reach sufficient magnitude in childhood to trigger and accelerate 

atherosclerosis.537, 539-543 Cardiovascular disease accounts for the largest proportion of premature 

deaths in the severely mentally ill, whose life expectancy is dwarfed by that of the general 

population by as much as 20 years—a gap that has increased over recent decades, paralleling 

antipsychotic prescribing.544, 545 
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Despite this increase, very little is known about the mechanism of AIWG/MS. Differential risk 

across the drug class is not explained by simple receptor binding profiles, but other biological 

mechanistic links are lacking. A few supported risk genes explain only a small percentage of the 

risk.62, 546, 547 Novel, testable hypotheses are sorely needed. 

 

B. The Gut Microbiome & AIWG.  

Recent evidence has fueled a growing enthusiasm for the role of the collective bacterial 

population in the human gastrointestinal tract in host metabolism and energy harvest,570 glucose 

homeostasis,571 and pharmaceutical breakdown.572 Preclinical studies of the antipsychotics 

olanzapine (OLZ) and RSP link AIWG with obesogenic microbiota changes in mice, including an 

increased Firmicutes to Bacteroidetes (F/B) phyla ratio.573-576 Moreover, preclinical studies have 

also demonstrated that gut bacteria are necessary for AIWG.573-576 In fact, AIWG is absent in 

germ-free mice but can be induced by microbiome transplant.573 Similar F/B changes, increased 

adiposity, and inflammation were reported in OLZ-treated rats and could be prevented by co-

administration of an antibiotic cocktail that effectively sterilized the gut.575.574 Similarly, mice 

receiving RSP developed AIWG, mediated by decreased energy expenditure and transferrable 

by fecal transplant.576  

 

In the only translational study published to date, our team confirmed that AIWG is associated 

with microbiome changes in RSP-treated children.577 In line with preclinical studies, RSP 

treatment was associated , cross-sectionally, with elevated F/B ratio and a host of differences in 

the metabolic potential of the gut microbiota (Fig. 7-1a).578 Concurrently, a small longitudinal 

study of children enrolled within days (mean=3.2, s.d.=5.2) of starting RSP substantiated these 

findings. Within 1-3 months of RSP initiation, the F/B ratio had begun to increase, appearing to 
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plateau by 5-6 months (Fig. 7-1b). Importantly, the F/B ratio was positively correlated with the 

magnitude of AIWG (Fig. 7-1c). 

 

 

 

 

 

 

 

 

C. Bile Acids Regulate Energy Balance.  

While BAs were traditionally assigned the simple role of lipid surfactants aiding in fat absorption, 

they are now considered steroid hormones with a regulatory role in energy balance via tropism 

for specific hepatic, intestinal, and adipose tissue nuclear receptors.551, 553, 579 Primary (1°) BAs, 

chenodeoxycholic acid (CDCA) and cholic acid (CA), are synthesized from cholesterol in the 

liver.580 1° BAs are potent agonists for the liver nuclear receptor farnesoid X (FXR), involved in 

lipid and glucose homeostasis, while the secondary (2°) BA ursodeoxycholic acid (UDCA) acts 

as an FXR antagonist.565-569 In a study of human BA profiles, total plasma BA concentrations were 

higher in both obese and diabetic subjects than in healthy controls.550 Specifically, the 1° BAs 

Figure 7-1a. Cross-Sectional RSP-Related Microbiome 

Changes. Phyla-level differences between controls (green) 

and chronic RSP–treated subjects with AIWG (yellow) and 

without (blue) reveal phyla changes similar to those seen in 

obesity (increased F/B ratio).7-1b. Prospective RSP-

Associated F/B Increase. By 1-3 mo., relative abundance 

of F (blue) vs. B (red) diverges, with maximum increase in 

F/B ratio at 5-6 mo. 7-1c. F/B ratio predicts AIWG. BMI (z-

score) change is positively correlated with F (blue) to B (red) 

relative abundance. 
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CDCA and CA were associated with insulin resistance550 and CDCA was positively correlated 

with BMI. Rodent and human data suggest that oral CDCA treatment, once used to dissolve 

gallstones, results in unfavorable lipid changes (increased total cholesterol/LDL581 and decreased 

HDL).582 Conversely, the secondary BA UDCA has been shown to promote positive lipid changes 

and reduce inflammation.583-586 UDCA also reduces intestinal absorption of more toxic 1° BAs.587 

Furthermore, BA sequestrants, which disrupt BA enterohepatic circulation, lower plasma glucose 

and long-term glucose regulation marker HbA1c in hyperlipidemia clinical trials.588 

 

The relationship between the microbiome and BA pool is bidirectional. The microbiome regulates 

BA synthesis and reabsorption and shapes the BA pool.561 Both gram positive and negative 

bacteria produce intracellular enzymes such as bile salt hydrolase and hydroxysteroid 

dehydrogenase (HSDH) that can deconjugate taurine and glycine adduct bile salts562 as well as 

hydroxylate 1° BAs to form 2° and 3° forms.563 This deconjugation and epimerization results in an 

increase in BA hydrophilicity, affecting membrane permeability and efficiency of lipid 

solubilization. While almost all BAs are natural ligands for the hepatic FXR receptor, binding 

affinity and activity are substantially altered by BA modifications.564 For example, the 1° BA CDCA 

is hepatically synthesized and excreted into the intestinal lumen in bile. Gut bacteria then convert 

CDCA to UDCA, which has opposing effects on downstream FXR signaling.565-569 Rodent studies 

highlight the importance of signaling through the FXR receptor as a mechanism for microbiome 

effects on energy balance. Data from germ-free and antibiotic treated mice suggest that the 

microbiome promotes diet-induced obesity through FXR signaling,589, 590 and FXR deficiency 

reduces weight and improves glucose homeostasis in mouse models of obesity.591 Following 

bariatric surgery in rodents, hepatic FXR expression is decreased.554 However, beneficial 

metabolic effects can be achieved by reducing or increasing signaling in a context-specific 

manner. Since FXR signaling is promoted by 1° BAs (CDCA and CA) but inhibited by the 2° BA 
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UDCA, the microbiome could influence metabolism by shifting the balance between these BA 

species. 

Conversely, BAs alter intestinal bacterial composition by moderating oxidative and pH stress in 

the small bowel and chelating vital cellular ions, thus promoting or inhibiting the growth of certain 

species.476 Direct antimicrobial effects result from detergent-like disruption of 

bacterial membranes561 and indirect effects are  mediated by FXR activation, triggering 

upregulation of genes involved in epithelial mucosal defense.482 

 

D. Preliminary Data:  

 

In a pilot dataset of 30 children from the RUPP RSP trial who had initiated and sustained RSP 

treatment for an 8 week trial,107, 521, 592 we observed marked changes in the total BA pool and 

diversity, with predominant increases in 1° BAs. 1° BAs were significantly more pronounced in 

those with high versus low AIWG (p=0.01, Fig. 6-7a). This pattern was replicated in 4 subjects 

started on RSP with moderate weight gain recruited by Dr. Calarge, co-investigator,577 with a 1° 

BA increase of 960 nmol/L, comparable to 1,374 nmol/L in the RUPP sample. Both CDCA and 

UDCA measures at baseline and 8 weeks were available for 28/30 RUPP participants. 12 of these 

28 displayed a significant change (from baseline to 8 weeks) in either CDCA or UDCA (>.5 SD). 

Of note, the ratio of the change in CDCA to the change in UDCA differentiated those with AIWG 

(∆CDCA/∆UDCA>1) from those without (∆CDCA/∆UDCA<1). This pattern correctly predicts 

AIWG status in 11/12 (92%) participants whose ratios change (p=0.001, Fig. 6-7b), with a 

sensitivity of 100% and specificity of 86%. Sex, age, race/ethnicity, and RSP dose/plasma level 

did not contribute to BA differences. Test-Retest reliability of CDCA, UDCA, and 1° BA repeated 

measurements in the same individual (N=2) were precise within 4 nmol/L.  
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We hypothesized that a ∆CDCA/∆UDCA<1 could occur when epimerase+ bacteria are 

unavailable to convert CDCA to UDCA, resulting in excess CDCA and AIWG. Therefore, using 

data from the prospectively followed RSP-treated children enrolled by Dr. Calarge,577 we 

examined whether relative abundance of a key bacterial species (B. fragilis) that can catalyze the 

first step in epimerization was affected by RSP exposure. As predicted, the relative abundance of 

B. fragilis decreased over 200-fold after 1-3 months of RSP exposure.  

 

In order to explore whether these effects are specific to AIWG, we tested a small pilot sample of 

children taking SSRIs. Ten youth were selected, 5 with moderate (>1 Z-score) SSRI-induced 

weight gain (SIWG) and 5 without. Remarkably, the trends were in the same direction, with 

individuals with greater weight gain showing greater elevation in 1° BA and ∆CDCA/∆UDCA>1. 

However, given the small sample size, the differences were not significant. . Using this ratio, 

SIWG status can be correctly predicted in 6/8 (75%) of individuals with BA change on an SSRI.  

In summary, our preliminary data suggests that alterations to the BA balance may contribute to 

AIWG, a link that to our knowledge has not been previously investigated. We have shown that 

RSP-exposed children exhibit substantial changes in their BA pool, with opposite patterns of 1° 

vs. 2° BAs seen in youth at risk versus protected from AIWG. It is possible that antipsychotic 

drugs may impact BA synthesis and metabolism directly, as both first and second generation 

antipsychotics concentrate in bile,573 slow enterohepatic BA circulation, and can trigger hepatic 

cholestasis, resulting in a reduced flow and clearance of BAs and toxic accumulation of 1° 

BAs.593, 594 However, based on previous data supporting an essential role for the microbiome in 

AIWG and the fact that the key regulator of UDCA levels is bacterial conversion from CDCA, we 

propose to test a model of AIWG based on altered BA-microbiome interaction. 

 

E. Scientific Premise.  
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Integrating the prior literature reviewed above and our own pilot data, we hypothesize that (Aim 

1A) RSP treatment increases 1° BAs and that resistance to these changes is conferred by the 

ability of epimerase+ gut microbiota to convert 1° (CDCA) to the 2° (UDCA) BA, which opposes 

the downstream effects of 1° BAs at the FXR receptor. We further propose that those who 

experience significant AIWG can be differentiated from those who are protected based on RSP-

induced changes in: (Aim 1A) CDCA/UDCA>1, (Aim 1B) increased FXR activity and (Aim 2A) 

loss of epimerase+ bacterial species in the gut, reflecting an impaired ability to convert CDCA to 

UDCA to compensate for increasing CDCA. While preclinical studies from three independent 

groups, in both mice and rats exposed to two different antipsychotics, report consistent effects 

on the microbiome, translation from rodent to human is inherently problematic. Our data 

examining RSP-induced microbiome changes in humans, although unique, are largely based on 

a cross-sectional study and very small longitudinal sample. Time course of changes is not well 

defined. BAs are gaining support as a hormonal signal involved in energy balance; however, our 

pilot data, while in agreement with our theoretical model based on BA chemistry and function, is 

also based on a small sample.  

 

These data, while preliminary, provide the foundation for a compelling model of AIWG (Fig. 37). 

Further research is needed to replicate findings in larger samples, clarify links between 

microbiome and BA, and determine whether associations are causal or simply an 

epiphenomenon or downstream effect. Understanding the role BAs play in AIWG will serve 

several functions. It will lead to the identification of an easily measurable biomarker of AIWG risk 

could provide clinical guidance. If proven, highly actionable treatment targets are clear, and 

potential treatments are immediately available. UDCA is available orally as a gallstone 

treatment and epimerase+ bacteria are a chief component of probiotics. Developing approaches 

that may be relevant include drugs directly impacting FXR signaling and prebiotic strategies 
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used to shape microbial populations. The mechanisms involved in AIWG/MS may be relevant to 

other drug classes and will likely inform our overarching concept of normal and dysregulated 

metabolic balance. 

 

 

II. INNOVATION.  

 

While previous studies have described AIWG/MS, and even searched for genes conferring risk, 

mechanistic approaches are lacking. Our team’s prior work represents the only published 

examination of the role of the microbiome in AIWG in humans. We developed and will 

implement our own BA measurement assay, the details of which we will publish. An 

appreciation of the role of BAs as signaling molecules is just beginning to emerge. This project 

would be the first to include BA signaling pathways in the study of AIWG and the first to 

integrate BA and microbiome changes. Uniting preclinical and clinical data and integrating 

microbiome and BA findings, we propose to test a novel potential mechanism contributing to 

AIWG. This model has compelling hooks to actionable treatment targets and aligns with the 

goals of precision medicine. 

 

Figure 7-2. Proposed Model of 

AIWG/MS. RSP impacts BA and gut 

microbial composition, favoring more 

obesogenic profiles. These pathways 

promote FXR signaling, negatively 

impacting lipid and glucose 

homeostasis, adiposity, and BMI. A 

protective mechanism whereby CDCA 

is converted to UDCA by epimerase+ 

gut bacteria counteracts this pathway; 

UDCA blocks FXR signaling, thus 

opposing AIWG/MS. The balance 

between these two pathways dictates 

metabolic response to RSP. 
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III. APPROACH: METHODS 

 

Study Design and Procedures.  

 

60 unmedicated youth initiating RSP treatment within clinical programs at UCLA and BCM will 

be recruited, screened, and consented for participation in order to provide 52 subjects with 

complete data (additional 15% to account for attrition). UCLA will recruit 20 subjects and BCM 

10 subjects during each study year. Subjects will be paid $50 at each of 4 collection visits and 

$30 for providing written dietary information on 5 non-visit weeks. 

 

Assessments:  

 

All participants will undergo baseline clinical evaluation by the study psychiatrist including 

general health, and diet and anthropometric measurements (height, weight, blood pressure, 

body mass index [BMI], waist circumference, skinfold body fat) will be taken following standard 

procedures. The Pubertal Developmental Scale (PDS), a psychometrically sound child self-

report yielding a continuous pubertal change score and a five-level categorical classification of 

pre- to post-pubertal, will be administered.595 At each visit, repeated body measurements, 

medication dose and adherence since the prior session, any new treatments received (especially 

antibiotics), and the occurrence and reason for any protocol deviations will be recorded. Fasting 

STUDY OVERVIEW 
1. Recruit: children 
starting RSP as part of 
naturalistic treatment for 
any diagnosis 
UCLA: 20 participants/Y 
BCM: 10 participants/Y 

2. Collect (baseline, 1-, 2-, 
& 6-mo f/u): blood (fasting), 
stool, diet tracking, height, 
weight, waist circumference, 
skinfold body fat, med 
changes (including RSP 
dose, antibiotics, other 
meds) 

3. Analyze: 
Blood: BAs, 
lipids, glc 
Stool:  
Microbiome, 
epimerase 
activity, BAs 

 
4. Expected Results:  
Aim 1A: 1° BAs will increase & AIWG will 
be predicted by changes in CDCA/UDCA 
Aim 1B: Downstream markers of FXR 
signaling will increase, moreso in AIWG+. 
Aim 2A: Epimerase+ bacterial species 
will decrease in AIWG+ vs. AIWG- 
Aim 2B: Explore time course 
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blood and stool samples will be collected prior to initiation of RSP treatment and at 1-, 2- and 6-

months on RSP. 

 

Several factors support the feasibility of our recruitment target. UCLA and BCM are leading 

regional centers for the evaluation and treatment of youngsters with pediatric mental illness. The 

UCLA Child Psychiatry Division has served as home to numerous funded clinical studies and 

draws referrals from a catchment of over 16 million. The clinical operations (inpatient, partial, 

outpatient hospital services) are housed in close proximity to the research sites. At both sites, 

RSP is the antipsychotic most commonly prescribed to children and teens given the superior 

evidence base for clinical treatment of psychosis, mood stabilization, aggression, impulsivity, 

tics, OCD, and other developmental disorders. Recruiting will be facilitated by announcements 

at faculty meetings and fellow didactics; emails to faculty and fellows; and outreach to social 

work, nursing and support staff. Study staff will be available continuously on call (during 

business hours Mon. through Fri. when clinics operate and recruitment will occur) to meet with 

potential participants following their treatment visit. We have successfully completed recruitment 

for multiple funded pediatric trials, supported by a vibrant community outreach/referral network 

including UCLA-affiliated community clinics, primary care physicians, mental health providers, 

schools, churches, community organizations and centers, and an active and expanding web and 

social media presence. Of note, the ethnic minority participation rate for our similar studies is 

~40%. 

AIM 1: Methods. Whole blood will be collected in EDTA-treated Vacutainer tubes (Becton 

Dickinson, Franklin Lakes, NJ) and centrifuged at 4C at 2000 rpm for 10 minutes within 24 hours 

of collection to separate plasma. Plasma will be stored at -80C until processing. BAs will be 

measured in plasma samples using a solid-phase extraction method. We will measure the 

principal BAs found in humans, including 1°, 2°, and conjugated BAs:579, 596 Specifically, we will 
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measure CA, CDCA, UDCA, deoxycholic acid (DCA), and lithocholic acid (LCA) and their taurine 

(T) and glycine (G) conjugates (TCA, TCDCA, TDCA, TUDCA, TLCA, GCDCA, GDCA, GCA, 

GLCA), iso-epimers (isoLCA, isoDCA) and precursors (7-hydroxycholesterol, 7-hydroxy-4-

cholesten-3-one [C4]). A Cadenza CD-C18 high efficiency column (Imtak, Portland, OR) that is 

specifically designed with unique ligand density provides excellent steric selectivity for 

chromatographic separation. Separated BAs will be analyzed with an Agilent 6460 Triple 

Quadrupole LC/Mass Spectrometer with Standard ESI Source (Agilent Technologies, Santa 

Clara, CA) in the positive-ion mode. Quantitative data will be analyzed in the multiple reaction 

monitoring mode by using optimal parameters for each individual BA. In our pilot studies, the 

lower limit of quantification was 0.5 nmol/L for all BAs. Downstream indicators of FXR signaling 

and measures of inflammation (cytokine panel) will be quantified by commercially available ELISA 

assays (ThermoFisher). FXR signaling results in secretion of gut-derived FGF19 and subsequent 

suppression of prescursors of hepatic BA synthesis (7-hydroxycholesterol and 7-hydroxy-4-

cholesten-3-one [C4]). 

 

AIM 1A. To measure changes to BA composition longitudinally during 8 weeks of RSP 

treatment and compare BA pool composition in those with and without AIWG.  

 

Hypothesis: 1° BAs will increase with RSP exposure, with greater increases in those with AIWG. 

In those with RSP-induced BA changes, ∆CDCA/∆UDCA ratio>1 will identify participants who 

gain clinically significant weight compared to ∆CDCA/∆UDCA ratio<1 in those protected from 

weight gain.  

 

Analytic Plan 1A: Levels of 1° BAs will be calculated at individual time points and analyzed 

using a repeated measures mixed linear model. Covariates such as dose, age, sex, and 
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race/ethnicity will be included in the model. Sex-specific effects will be considered. Change in 

CDCA and UDCA will be calculated at individual time points. Participants with significant 

changes in either measure (>.5 SD) will be analyzed for ∆CDCA/∆UDCA ratio and ratio>1 will 

be used to predict AIWG status. Actual versus predicted assignments will be compared using a 

Chi Square test. Sex-specific effects will be considered.  

Power 1A: The effect size for increases in 1° BA’s determined in the pilot study is large (d=.74). 

The proposed sample size (n=52), with 3 within subject measurement points and 2 groups and 

assuming a within-subject autocorrelation of r=.50), provides sufficient power (81%) to detect 

changes of this magnitude. The proposed UDCA/CDCA ratio rule is only applicable to 

participants that show significant changes in those values in response to antipsychotics. Based 

on the preliminary data, ~50% of the sample is expected to change. In our pilot, the proportion 

of participants with ratio>1 who have AIWG is 100%, while those with ratio <1 who have AIWG 

is only 14%. The minimum sample size to detect a difference in proportions of this magnitude 

with sufficient power (80%) is n=14, requiring a total sample size of n=28 to be recruited to 

account for the 50% of the participants without BA changes. As these estimated proportions are 

based on small samples, this is likely to underestimate the required sample size, but as the 

sample size available (n=52) is nearly twice the estimate, we are confident that this aim is 

sufficiently powered. Additional analyses of the baseline microbiome of participants resistant to 

changes in CDCA and UDCA will be explored to assess potential protective factors for future 

study. 

 

AIM 1B. To bolster the evidence for the proposed mechanism, we will compare 

downstream markers of FXR signaling in those with and without AIWG.  
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Hypothesis: Downstream indicators of BA-induced FXR signaling will reveal suppression of BA 

synthesis and increased secreted FGF19 reflecting increased FXR activity overall. We expect 

greater FXR signaling in those with versus those without AIWG.  

 

Analytic Plan 1A: Blood levels of these markers at the three visits will be analyzed using a 

repeated measures mixed linear model. AIWG+ or – group status will be added to the model as 

a between subject variable to test for differential effects. Covariates such as dose, age, sex, and 

race/ethnicity will be included in the model. Sex-specific effects will be considered. Power 1B: 

Given the large effects seen in BA increase (d=.74) and existing literature showing that CDCA 

produces large effects on downstream markers of FXR activity in contrast to UDCA,597, 598 we 

anticipate that downstream markers will be altered by a greater magnitude than BAs themselves 

(see Power 1A), and thus the study is powered to detect these effects. 

Alternative Approach: If pilot findings do not replicate, FXR signaling indicators may provide 

clues to an alternative mechanism. Additionally, the relationship of other BAs with AIWG can be 

explored in this larger, better-powered study. 

 

AIM 2: Methods. Stool samples will be collected prior to initiation of RSP treatment and at 1-, 2- 

and 6-months on RSP. Samples will be freshly collected and transported to the Nurmi laboratory 

where they will be aliquoted and frozen within 30 minutes. If patients are unable to provide stool 

samples at the time of their visit, collection kits will be sent home with parents. Samples 

provided in a home setting will be placed on provided dry ice and picked up within 24 hours in a 

frozen state. All stabilized samples will be stored at -80C until DNA extraction. Extracted DNA 

will be subjected to multiplex paired-end whole genome sequencing on an Illumina HiSeq 

instrument (Illumina, San Diego, CA) in the UCLA microbiome core. Computational analysis will 

be performed using Qiime 2 to identify OTUs and relative abundances and to perform diversity 
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analyses. The CDCA to UDCA conversion requires two steps that can be formed by distinct but 

co-located bacteria. The first step is performed by species expressing 7-hydroxysteroid 

deyhydrogenase (HSDH) that can form oxo derivatives (ketones) of CDCA, including 

Escherichia coli, Bacteroides fragilis and Pseudomonas species. The second step is performed 

by species expressing 7-HSDH that reduces ketones to epimerized hydroxyls, including 

Collinsella aerofaciens and Ruminococcus gnavus. Bacteria that contain both − and -HSDHs 

include Clostridium limosum, and Clostridium baratii. The specific enzyme sequences are 

available for these species. The low level of homology (~50-80%) between species will allow us 

to differentiate which epimerizing bacteria are present through their enzymatic sequence 

signature. A further confirmatory functional assay will measure epimerase activity by culture of 

stool samples, followed by addition of CDCA to culture medium and LCMS measurement of 

UDCA and LCA.507, 579, 599, 600 Fresh stool samples collected can be used for both analyses. 

 

 

AIM 2A. To measure longitudinal changes in the gut microbiota during 8 weeks of RSP 

treatment and compare relative abundance of epimerase+ bacterial species in those with 

and without AIWG.  

 

Hypothesis: Epimerase+ bacterial species will be depleted in those with vs. without AIWG.  

 

B. Fragilis vs. E. Coli 7a-HSDH Alignment Representative Excerpt  
(54% identity, p<4e-12) 

R. Gnavus vs. C. Aerofaciens 7b-HSDH Alignment Representative Excerpt  
(68% identity, p<4.7e-100) 

Figure 7-3. Representative Genetic 

sequence of B. Fragilis and R. 

Gnavus. Both of these bacterial 

species produce the specific 7-βHSDH 

enzyme needed to epimerize CDCA to 

UDCA. 
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Analytic Plan 2A: The change in relative abundance of epimerase+ bacteria will be assessed 

based on both OTUs and enzyme activity using a repeated measures linear mixed model. 

Covariates such as dose, age, sex, and race/ethnicity will be included in the model. Sex-specific 

effects will be considered.  

Power 2A: The proposed sample size (n=52, ~26 expected in each group [AIWG+ and AIWG-], 

with 3 within subject measurement points and 2 groups) provides sufficient power (81%) to 

detect differences in the relative abundance of epimerase+ bacteria of the same magnitude as 

observed in the pilot data (d=.71 difference at study endpoint under the assumption that both 

groups are equivalent at study beginning and a within-subject autocorrelation of r=.50). 

Alternative Approach: If pilot findings do not replicate, other microbiome-AIWG relationships can 

be explored in this larger, better-powered study. 

 

Exploratory Aim 2B. To measure the time course of gut microbiota and BA composition 

changes during RSP exposure to help clarify the mechanism of AIWG and facilitate the 

identification of early biomarkers.  

 

Given that the earliest data previously collected for BA and microbiome changes were 8 weeks 

from baseline, the mid-point and 6-month follow-up assessments will help resolve the order and 

timing of BA and microbiome peak changes, as well as changes relative to one another. Since a 

longer time period will likely result in greater rates of attrition, loss to follow-up, RSP 

discontinuation, concomitant drug addition, and antibiotic prescription, we expect a much 

smaller of subjects to provide useable data for a 6-month follow-up, hence this timepoint will be 

observational and analyses will be exploratory. 

 

Rigor and Reproducibility:  



243 
 

 

Scientific Premise of Proposed Research (see Significance section).  

 

Rigorous Experimental Design.  

Our methods have been validated by our own prior work and independent published data. 

Multiple approaches have been enlisted to protect against bias, including independent, blinded 

data analysis and sound statistical methods. In order to facilitate transparency, we have 

described in detail our experimental protocol and other methods. Similarly, we will share the 

study design details, analytic methods, and trial data with the scientific community. 

 

Consideration of Sex and Other Relevant Biological Variables.  

Given that major indications for antipsychotic treatment in youth have a male bias, extra efforts 

will be made to recruit female subjects to ensure representation, especially in light of previous 

data indicating that female rodents are at greater risk of microbiome and metabolic effects. 

Inclusion of females will enable us to robustly test for sex effects. In our pilot studies, sex, age, 

race/ethnicity, and RSP dose/plasma level were not significant contributors to our models. 

 

Authentication of Key Biological and/or Chemical Resources. Our methodological approaches 

have been selected with attention to prior validation and shared acceptance by the field. We will 

ensure transparency in data sharing and continue to apply new methods to our data as they 

emerge to improve interpretation. 
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Timeline Preaward Y1 Y2 (mo 1-
8) 

Y2 (mo 9-11) Y2 (mo 12) 

UCLA Update IRB, 
consents, 
announcements 

 

Recruiting 
& 
Collection  

N (2/mo) 
=24 

Recruiting 
& 
Collection  

N (2/mo) 
=16 

Sample 
Processing, 
Data Analysis, 
Interpretation 

Manuscript 
preparation, 
data sharing 

BCM N (1/mo) 
=12 

N=1/mo) 
=8 
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Overall Dissertation Conclusions 

 

Precision medicine is an emerging approach for disease treatment and prevention that heavily 

weighs individual variability in genes, environment, and lifestyle for each person. It is in stark 

contrast to a one-size-fits-all approach in which both doctors and drug developers focus on 

empirical data and what works best for the “average” person in the general population. The 

importance of these techniques is so high, in 2016, President Barack Obama backed an 

initiative to fund precision medicine and accelerate this type of technology into everyday life. 

Personalized medicine has the potential to tailor therapy and inform targeted drug design for the 

best therapeutic responses and highest safety margins to overall ensure better patient care. 

Earlier diagnoses, informative risk assessments, and optimal treatments are pieces of human 

healthcare that should not be overlooked, and have the utmost potential to improve the quality 

of life for many people. 

 

By leveraging the tools and techniques I described throughout this dissertation, I feel I have had 

the opportunity to truly explore the potential that precision medicine has to change the 

landscape of scientific research and pharmaceutical manufacturing. I would like to take this 

opportunity to briefly summarize the salient findings I have presented, and touch on how I feel 

they all fit snugly together in the puzzle that is psychiatric health. 

 

We began our journey in the field of pharmacokinetics (PK), where I was able to learn a vast 

amount of both didactic knowledge and hands-on techniques for evaluating how drugs are 

processed by the human body and what this could mean for downstream effects and 

diagnostics. PK Case Study #1 was entitled CYP2D6, brain structure, and cognitive function in 

methamphetamine dependence and utilized functional genotyping at a pertinent metabolic 
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enzyme to assess whether or not MA addicts were more susceptible to neurodegredation based 

on variation at this locus’. Our data strongly support the hypothesis that CYP2D6 extensive 

metabolizers are more vulnerable to methamphetamine-induced neurotoxic effects than those 

with impaired enzymatic activity, resulting from common gene polymorphisms. This could be 

due to the fact that MA metabolites are more toxic to the underlying neurocircuitry and neuronal 

cells than the parent compound, and future toxicity studies can now address this issue. A clearly 

defined genetic risk factor such as this has the potential to be utilized by clinicians for both early 

intervention and individualized treatment planning, while also aiding in the development of harm 

reduction strategies, a lynchpin of personalized medicine. 

 

PK Case Study #2, Genetic Determinants of Risperidone Pharmacokinetics in Children with 

Autism Spectrum Disorder (ASD): Relationship to Treatment Outcomes and Side Effects, was 

my first exposure to the deleterious pharmaceutical side effect that is antipsychotic-induced 

weight gain. I was unaware back then of the implications, but this project is what truly piqued my 

interested in regard to defining pathways and mechanisms that are more closely related to our 

underlying biology, and through our examinations of the same liver based enzymatic genotype, 

we were able to understand how drug metabolites can also play a critical role in individual 

patient outcomes. The CYP2D6 poor metabolizer genotype group displayed 702% higher 

risperidone (RSP) and 133% higher total active moiety concentrations and RSP metabolism 

appears to be handled by different CYP metabolic pathways across ancestry. These data add to 

extant knowledge of moderators of RSP pharmacokinetics in humans, and while the entire 

picture is still somewhat poorly understood, this study may eventually help to identify patients 

who would benefit most from RSP therapy or are at highest risk for adverse outcomes. 
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From these promising roots in pharmacokinetics, I was able to make a smooth transition to the 

yin of this yang, pharmacodynamics (PD). Focusing efforts on how already known xenobiotic 

substances affect the human body is of great importance when considering new modality 

conception and synthesis further down the line. The comprehension I gained during my 

research in this field changed how I approach solving more complex enigmas related to a 

variety of human disease, and truly helped me learn a large amount of invaluable neurobiology. 

PD Case Study #1 was the Effect of Cigarette Smoking on a Marker for Neuroinflammation: A 

[11C]DAA1106 Positron Emission Tomography Study, a paper I was able to publish with 

fantastic collaborators and experts in the field. When activated, microglia increase the 

expression of translocator protein (TSPO) 18 kDa, thereby making the TSPO expression a 

marker for neuroinflammation, and we examined this diagnostic effect directly through 

radiochemistry in combination with genetics in a high-risk population. Cigarette smokers have 

less [11C]DAA1106 binding than non-smokers throughout the brain, indicating less TSPO 

availability, and though several explanations for this finding are possible, a straightforward one 

is that smoking results in global impairment of microglial activation which could lead to 

compromised wound healing throughout the body. As nicotine dependence is an immense and 

wide-spread public health issue, future research could examine the time course of recovery of 

TSPO availability upon smoking cessation and the interplay between smoking, 

neuroinflammation, and the progression of substance use disorder as well as other diseases 

thought to be mediated by neuroinflammation. 

 

And some of this future research came with a related pharmacodynamic study, seen in PD 

Case Study #2: Effect of overnight smoking abstinence on a marker for microglial activation: a 

[11C]DAA1106 positron emission tomography study. Again utilizing Using positron emission 
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tomography scanning, our group recently demonstrated that smokers in the satiated state had 

16.8% less binding of the radiotracer [11C]DAA1106 (a radioligand for TSPO) in the brain than 

nonsmokers. These results in overnight abstinent smokers are similar to those in satiated 

smokers, indicating that chronic cigarette smoking leads to global impairment of microglial 

activation which persists into early abstinence. Both studies were significant in the fact that they 

brought me the opportunity to discover more about theranostic platforms such as brain imaging, 

and how these can be implemented in cutting edge research to make informed choices of 

receptors in both investigatory science as well as drug delivery mechanisms. 

 

In order to lay the final brick in my formidable foundation of precision medicine repertoire, I had 

to dive deep into the world of genomic technology. At the end of the day, the true backbone of 

personalized medicine lies in DNA based understanding, applications, and manipulations. I was 

fortunate enough to participate in both major forms of human genetic evaluations currently used 

in medicine – candidate gene and genome-wide studies. GT Case Study #1 was titled 

Cholinergic Genetic Variation Moderates Smoking-Induced Striatal Dopamine Release and 

focused on a subset of nicotinic acetylcholine receptor encoding candidate genes to inform 

direct dopamine (DA) release variation in nicotine consumption. Findings at nicotinic α4 and α7 

cholinergic receptor subunits are consistent with animal and in vitro studies implicating these 

subunits in DA-mediated reinforcement associated with smoking. Correlation of these variants 

with behavioral endophenotypes suggests substantial effects on dependence and craving. 

Overall, a comprehensive understanding of genetic moderators of nicotine reward and 

dependence risk may facilitate the development and individualization of successful treatment 

strategies. 
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GT Case Study #2: Polygenic Contributions to Decision-Making on a Laboratory Test of 

Reward-Based Risk-Taking was one of the more critical projects that I had to the chance to 

develop and participate in due to its usage of genome-wide association studies and polygenic 

risk scores, two of the most pertinent genomic approaches. Heightened risk-taking behavior has 

been linked to neuropsychiatric disorders, such as Attention Deficit-Hyperactive Disorder 

(ADHD), addictions, and mood disorders, and our findings confirm a heritable, polygenic 

component to risky decision-making explaining 11% of the variance in balloon analog risk task 

(BART) performance. We demonstrated for the first time that polygenic scores derived from a 

genome-wide association study of a risk-taking phenotype successfully predict the same 

phenotype in an independent sample and revealed shared genetic underpinnings with 

categorical bipolar diagnosis. This is a succinct and effective biomarker, one of the true 

hallmarks of precision medicine. Having the confidence and grasp on the genomic technology 

involved in disentangling biomarkers such as this will be indispensable in my future career. 

 

As I moved forward and began to apply these principles to environmental factors, the story of 

my research began to take an entirely new shape. We do not live in a vacuum, and to not 

consider how profoundly the world around us affects our health on a cellular level would be 

foolish. Due to Dr. Nurmi’s strong connections with a top researcher in the field of childhood 

attachment, I was able to work on understanding how our genes and the environment interact to 

engender various disease states as well as treatment outcomes. The first endeavor, GxE Case 

Study #1: Interactive effects of attachment and FKBP5 genotype on school-aged children's 

emotion regulation and depressive symptoms, was a wonderful way to expose me to the 

intricate workings of gene-environment interactions. Research demonstrates that child 

attachment insecurity and genetic factors are each associated with elevated risk for emotion 

dysregulation and psychopathology but had not been considered in tandem. Higher levels of 
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overcontrol predicted lower child attachment security only in FKBP5 minor allele carriers, and 

these findings can be conceptualized in a differential susceptibility framework, where the FKBP5 

minor allele confers either risk or resilience, depending on the parenting environment. 

 

Following up with the same encouraging team, I worked on GxE Case Study #2: Interaction 

between the Opioid Receptor OPRM1 Gene and Mother-Child Language Style Matching 

Prospectively Predicts Children's Separation Anxiety Disorder Symptoms. Psychiatric disorders 

tend to be particularly distressing in children and adolescents, and this is especially true for 

anxiety-based disorders, yet they remain largely underexplored in this population. There is also 

considerable evidence of genetic risk for anxiety, including possession of the OPRM1 minor 

allele, 118G, and the interaction between mother-child language style matching and OPRM1 

genotype significantly predicted separation anxiety disorder (SAD) symptoms beyond the main 

effects of the two variables in our study. Greater knowledge of the factors that contribute to the 

development of SAD can inform both treatment and preventative measures, and this could point 

toward the importance of testing whether interventions designed to strengthen the parent-child 

relationship reduce the risk of developing SAD symptoms in children who carry the minor 

OPRM1 allele. As precision medicine pushes the agenda of implementing standard patient 

genotyping, studies such as these provide cardinal information on how these new and strange 

health data can be utilized and tailored based on each person’s unique situation. 

 

And finally, we come to the apogee of my doctoral research career. Through serendipitous 

events that I will discuss briefly in my final thoughts following this section, I came to discover the 

fascinating world that is that surrounding the human gut microbiome. Over the last 10 years, 

scientists have begun to unearth the almost limitless potential the gut microbiota and 

microbiome bring to elucidating human disease pathophysiology. I knew immediately when I 
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first began reading about this symbiotic presence contained within all of us that I wanted to 

incorporate it in my PhD project; so I set out to accomplish just that. The final chapter of my 

story highlights the blood, sweat, and tears that I poured into my work on bile acid and gut 

microbiome crosstalk. I stumbled into the world of bioanalytics ignorant and bright eyed, but 

quickly realized the true potential it has to inform us about biochemical moieties that could 

influence disease and adverse drug side effects. My original method: Fit-For-Purpose HPLC-

MS/MS Targeted Detection and quantitation of 11 Bile Acids and Their Biological Precursor, 7-

alpha-hydroxycholest-4-en-3-one was a labor of love, and it plays a pivotal role in my proposed 

research study. Classically, bile acids (BA) are defined as our body’s simple detergent 

molecules. They are produced in our liver from the catabolism of cholesterol and stored in the 

gallbladder. Due to their steroidal backbone, they can act as hormones and have significant 

regulatory effects in host energy metabolism. They accomplish this through binding at various 

nuclear receptors in the gut and liver, namely FXR (farnesoid X receptor) and PXR (pregnagane 

X receptor) but also G-protein coupled receptors (such as TGR5). These have serious 

downstream impact on glucose and lipid homeostasis, as well as pathway functions in disease 

states such as cirrhosis and cancer tumorogenesis. I identified an unmet need in the mass spec 

quantification of these compounds in human matrices and was able to develop a novel method 

for their robust detection. I am still adding additional bile acids to this method as I write this, and 

it has the potential for even more growth in the future! 

 

The real dessert came when I had the opportunity to apply this bioanalytic method to actual 

patient samples in my microbiota-host interaction Case Study #1: A Putative Development 

Pathway; Microbiome – Bile Acid Cross Talk in the Biological Mechanism of Psychotropic-

Induced Weight Gain. I assembled a top tier collaborative research team to aid me in my quest 

to better understand the biochemical circuitry and pathways involved in the complex weight gain 
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and metabolic syndrome that plagues the majority of patients taking psychotropic medications. 

Differential risk across the drug class is not explained by simple receptor binding profiles at 

contributing sites such as the muscarinic system, but other mechanistic links are lacking.  We 

observed marked changes in the total BA pool and diversity, with predominant increases in 

1° BAs. Primary BAs were significantly more pronounced in those with high versus low 

antipsychotic-induced weight gain (AIWG), and in this subset showing BA change with 

antipsychotic treatment, the ratio of the change in CDCA to the change in UDCA 

differentiated those with AIWG (∆CDCA/∆UDCA>1) from those without (∆CDCA/∆UDCA<1).  

Because of these strong biomarker-based findings, but the paucity of understanding on why 

this might be, we began to pull in previous data from collaborators in the same populations 

involving the gut microbiota composition. We crafted an expositive mechanism of 

psychotropic-induced weight gain leverage both of these salient factors, and with the help of 

the incredible scientists around me, I drafted a replication project grant proposal to link bile 

acid changes to gut microbiota shifts in individuals experience the deleterious effects of 

weight gain following antipsychotic medication treatment, which is currently in progress and 

explained in the future directions above this blurb. Encouragingly, a recent paper published in 

Nature Medicine reveals that metformin, a medication commonly used to treat antipsychotic-

induced weight gain, acts through the microbiome-bile acid signaling pathway that we 

identified in our study, further validating our hypothesis.601, 602 This opens the door to very 

personalized and patient centered treatment approaches, and even hopefully one day, informed 

and specific biological targets for future drug design in these areas, as I believe we have 

brought yet another piece of the AIWG puzzle to the table, and hopefully clinical implementation 

might not be far away. 
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My Final Thoughts 

 

I believe I had a truly unique and inspiring graduate school experience. There was a defining 

moment in my undergraduate career when it hit me that chemistry was my calling. I had been a 

psychology major for three years, intending to continue on to medical school to become a 

psychiatrist. Pursuing the chemistry requirements for this goal led me to discover my love and 

talent for this versatile and fascinating subject. As my chemistry professors recognized my 

aptitude and excitement, they urged me to switch my major. The decision to alter my path 

crystallized when I realized that using chemistry to design new therapeutics was the way I could 

best contribute my talents towards healing and medicine.  

 

As I pursued my studies here at UCLA, completing chemistry graduate courses and teaching 

undergraduate chemistry labs, I considered how my science might have real-world impact. 

However, I was met with an unfortunate situation; the year I matriculated, there were an 

abundance of students in the organic chemistry discipline. Combined with a tepid funding 

environment, most of the labs I was initially interested in being a part of were full or not taking 

more students due to this lack of resources. I struggle for close to a year to find somewhere that 

I might belong in the scientific community and was beginning to feel hopeless when I stumbled 

across the laboratory of Dr. Erika Nurmi. I realized that my background in organic chemistry would 

provide a solid foundation for translational research. The many opportunities to integrate my 

chemistry background with translational projects in psychiatry and clinical medicine drew me to 

her unique style of research, as she is a neuroscience PhD but also an actively practicing 

psychiatrist. To me, she has always been Wonder Woman. Not only does she attempt to do it all 

in terms of teaching, guiding new students, treating patients, running clinics, provoking novel 

research, and challenging the status quo of women in science, but she also made time to be my 
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mentor in this crazy journey. She helped me form the beautiful story that I presented to you today, 

and I could not be prouder of what I’ve accomplished under her nourishing wings.  

 

As my research has progressed, I have come to appreciate the need for biologically based, 

personalized treatments for a myriad of debilitating disorders. Specifically, in the field of 

psychiatry, targeted drug therapies are lacking, and those pharmaceuticals currently in use show 

wide variability in efficacy across individuals. I have found my niche in a personalized medicine 

field known as pharmacomicrobiomics, which aims to capture the gut microbiome’s interaction 

with human ingested xenobiotics and pharmaceuticals. My flagship dissertation project presented 

in chapters 6 and 7 embodies my passion about this subject, as I have strong personal ties to 

metabolic syndrome. My entire life I have struggled with my weight; I was obese before I even 

knew what the word medically meant. When I moved to California to attend graduate school, I left 

everything I had ever known behind on the East coast, and that negatively impacted my health 

even more. I reached almost 400 pounds my second year of education here at UCLA, and beyond 

anything else, I knew I NEVER wanted anyone else to ever feel the way that I felt in that moment. 

I spent sleepless nights and countless hours researching the gut microbiota and how they might 

influence obesity, weight-gain, weight-loss, and associated diseases. While my own journey 

swept me through losing over 230 pounds over the next 3 years, I couldn’t not confer this 

knowledge to the research community. Even if it only helped one person in the future, I knew it 

was vital that I incorporate the human microbiota and microbiome into a meaningful scientific 

study. 

 

 

My personal dissertation project and culmination of the tools and techniques I previously 

examined begins to elucidate a direct biological link to the unexplored partners of the gut 
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microbiome and bile acids. This work specifically aims to confirm the link between microbiome 

changes and antipsychotic-induced weight gain, to further define concrete biological mechanisms 

underlying this serious adverse event, and to ideally present clinically relevant biomarkers for the 

advancement of future research and treatment. I believe that my unique training and skillset offer 

a unique perspective to the pharmacomicrobiomics and precision medicine disciplines. Through 

my initial undergraduate and graduate education, I have developed the organic and analytical 

chemistry skills for a future in targeted drug design; however, the second phase of my graduate 

training provides me the necessary understanding of brain and gut biology that will inform my 

choice of drug targets. Insights about the underpinnings of complex pharmaceutical responses 

revealed by mechanistic and genetic studies, such as those I have begun to examine, will provide 

rich future opportunities to unite my inner chemist and biologist in the development of novel 

therapeutics to improve overall health and quality of life.  

 

 

While my choice to incorporate learning a whole new field into my training has made this trajectory 

lengthy and challenging, my project has already delivered publishable results that have generated 

great enthusiasm in my field. I plan to complete the confirmatory analyses that will solidify this 

project even as I move away to the next phase of my scientific career. It will also pave the way 

for this endeavor, as I integrate my interests in clinical biomarkers, psychopathology, and 

effective, individualized treatments. My work has the potential to solve a problem that has 

perplexed the field for many years, will have clear clinical implications and will highlight viable 

treatment strategies for implementation work. After completion of my doctorate, I hope to pursue 

a scientific position in the pharmaceutical industry where I can leverage the knowledge and skills 

I have acquired during my graduate training to design, develop, and deliver precision therapeutics 

for psychiatric disease. 



256 
 

 

 

I hope to not only become a shining member of the biotechnology industry with my unique 

approach to solving scientific perplexities that I garnered from the precision medicine tool box I 

put together over the last six years, but I also strive to bring passion and compassion into my 

work. This planet is a beautiful place, and life is a wonderful experience. We all deserve the best 

care, the most happiness, and the brightest of futures. I want to provide that for people that may 

have lost hope along the way. I want to transform the way we approach the treatment of grievous 

diseases. I want to change the world. And while it may sound like I’m auditioning for Miss America; 

I am beyond content to instead be receiving the title of Dr. Lauren Seaman. Thank you for your 

time and for being a part of my story. 
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