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Abstract. A graph whose nodes have degree 1 or 3 is called a {1, 3}-graph. Liu and Osser-
man associated a polytope to each {1, 3}-graph and studied the Ehrhart quasi-polynomials
of these polytopes. They showed that the vertices of these polytopes have coordinates in
the set {0, 1

4 , 1
2 , 1}, which implies that the period of their Ehrhart quasi-polynomials is ei-

ther 1, 2, or 4. We show that the period of the Ehrhart quasi-polynomial of these polytopes
is 2 if the graph is a tree, the period is at most 2 if the graph is cubic, and the period is 4
otherwise.

In the process of proving this theorem, several interesting combinatorial and geometric
properties of these polytopes were uncovered, arising from the structure of their associated
graphs. The tools developed here may find other applications in the study of Ehrhart quasi-
polynomials and enumeration problems for other polytopes that arise from graphs. Addi-
tionally, we have identified some interesting connections with triangulations of 3-manifolds.
Keywords. Ehrhart polynomials, period collapse
Mathematics Subject Classifications. 05C30, 05C76, 52B20

1. Introduction

A {1, 3}-graph is a graph whose nodes have degree 1 or 3. If all nodes of a graph have degree
three then it is cubic. We allow all of our graphs to have loops and parallel edges. Liu and
Osserman [LO06] associated a polytope PG to each {1, 3}-graph G and studied the Ehrhart
quasi-polynomial arising from PG. They were mainly motivated by the relation of these quasi-
polynomials to the study of dormant torally indigenous bundles on a general curve, objects
arising in algebraic geometry [Moc96]. This connection was further investigated in [Wak19],
and more properties of the polytope PG were presented in [FdPAR21].
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Specifically, Liu and Osserman [LO06, Theorem 3.9] observed that Mochizuki [Moc96]
implicitly proved that the value of the Ehrhart quasi-polynomial of PG on odd primes is the
number of dormant torally indigenous bundles in a certain class of curves parametrized by the
number of nodes and edges of G. Also, they had proved that the coordinates of all vertices
of PG are in {0, 1

4 , 1
2 , 1}. This implies that the period of the Ehrhart quasi-polynomial of PG

is either 1 or 2 or 4 [BR15, Ehr77]. Using a result of Mochizuki [Moc96], they concluded
that the odd constituents of this Ehrhart quasi-polynomial are the same polynomial. Liu and
Osserman [LO06, Question 4.3] then raised questions about the period of the Ehrhart quasi-
polynomial of PG. We answer some of these questions in Theorem 1.4 if G is a tree, and in
Theorem 1.5 if G is a general {1, 3}-graph.

The polytope PG has nice geometric and combinatorial properties. For instance, Wak-
abayashi has proved [Wak19, Proposition 5.3 and Corollary 5.4] that, for cubic graphs G1 and G2,
the polytopes PG1 and PG2 are isomorphic (that is, there is an R-linear bijection f : Rd → Rd

such that PG2 = f(PG1)) if and only if the graphs G1 and G2 are isomorphic. Let T be a {1, 3}-
tree. It turns out that PT has additional interesting geometric properties that can be combinato-
rially described. The latter might provide useful and attractive insights for appealing questions
on 0/1 polytopes (that is, the convex hull of subsets of {0, 1}d, the vertices of the d-cube). All
these will be discussed in Sections 2 and 7.

Our work is also closely connected with some invariants of 3-manifolds, investigated by
Maria and Spreer [MS16]. They associated a linear system of inequalities to a triangulation T
of a 3-manifold and studied admissible colourings of the edges of T with the aim to understand
better Turaev–Viro type invariants. It turns out that admissible colourings correspond to integer
points belonging to a polytope related to one of the two central polytopes investigated in this
paper. This relationship as well as an application, with the same topological flavor as in [MS16],
on a problem concerning non-intersecting closed curves in the plane will be explained towards
the end of the paper.

1.1. Ehrhart quasi-polynomials and period collapse

Let L be a sublattice of Zd and fix u ∈ Zd. We define the discrete volume of a polytope P in Rd

with respect to the coset L + u ⊆ Zd by

volL+u(P) := |P ∩ (L + u)|.

Here we use the standard notation for the translation of any set Y ⊆ Rd by a fixed vector u ∈ Rd,
namely Y + u := {y + u : y ∈ Y } ⊆ Rd. Ehrhart [Ehr77] introduced the function

LP(t) := volZd(tP),

which is the number of lattice points in the dilated polytope tP := {tx : x ∈ P}, for a nonneg-
ative integer dilation t. Ehrhart showed that if P is an integral polytope, then this function is a
polynomial in the integer parameter t. A quasi-polynomial f(t) is a function defined by a list
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p0, p1, . . . , pα−1 of polynomials such that

f(t) =



p0(t) if t ≡ 0 (mod α),
p1(t) if t ≡ 1 (mod α),

... ...
pα−1(t) if t ≡ α − 1 (mod α).

The minimal such α is the period of f and p0, p1, . . . , pα−1 are the constituents of f . More
generally, Ehrhart also showed that if P is a rational polytope, then the function LP(t) is a
quasi-polynomial, for integer values of t, whose period divides the least common multiple of the
denominators in the coordinates of the vertices of P [BR15, Ehr77].

If a rational polytope P has a quasi-polynomial LP(t) whose period is p, we also call p the
period of P . The denominator of P is the minimum positive integer α such that the vertices of
the dilated polytope αP are integral. For a ‘generic’ rational polytope, one expects its period to
be its denominator. Regarding the complexity of computing the periods, Woods [Woo05] has
shown that, for fixed dimension d, there is a polynomial-time algorithm which, given a rational
polytope P ⊂ Rd and an integer n > 0, decides whether n is a multiple of the period of the
quasi-polynomial LP(t).

When we have a rational polytope whose period is smaller than its denominator, we refer to
this situation as period collapse. Usually, researchers [BSW08, MR18, MM17, Woo05, Woo15]
prove that the phenomenon of period collapse exists for some particular rational polytope P by
exhibiting a decomposition of P into rational simplices, and then applying a (different) unimod-
ular affine linear transformation to each simplex. If, somewhat magically, the reassembling of
all of the images of these simplices form an integral polytope, then the Ehrhart quasi-polynomial
of P is in fact a polynomial. It is an open problem to characterize those rational polytopes for
which it is possible to carry out this reassembling process [HM08]. Turner and Wu [TW21]
gave examples in R2 of rational polygons with the same Ehrhart quasi-polynomial for which
such process is not possible.

Here we develop a different technique for proving period collapse, building on an idea of Liu
and Osserman. Namely, rather than decomposing the object into smaller polytopes, and using
special types of unimodular transformations for each of them, we instead decompose the integer
lattice into a certain sublattice L, together with all of its cosets in the integer lattice. Then, for
each fixed coset of L, we count the number of points of the coset that belong to P , and show that
this number is in bijection with the number of integer points that belong to another, naturally-
defined, integral polytope. This novel technique seems interesting in itself and might be useful
in a wider context.

In this research, we have made extensive use of both of the following software packages:
LattE [BBL+14], and polymake [GHJ16, GJ06].

1.2. Liu and Osserman’s polytopes

Let G be a {1, 3}-graph. We say that a node of degree 1 is a leaf node and a node of degree 3 is an
internal node. We denote by V (G), E(G), and I(G) the set of nodes, the set of edges, and the set
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of internal nodes of G, respectively. If the graph is clear from the context we write simply V , E,
and I . A subgraph H of G is internally Eulerian if the degree in H of every internal node of G
is equal to zero or two. In particular, the empty subgraph is internally Eulerian.

If X is a finite set, we denote by 1S : X → {0, 1} the characteristic vector of a set S ⊆ X .
If S = {e} for some e in X , we write 1e. If S = E(H) for some graph H , we write 1H .

Liu and Osserman [LO06] associated to each {1, 3}-graph G a polytope PG inRE as follows.
For each internal node v of G, let a, b, and c be the three edges incident to v. If v is incident
to a loop e, then e appears twice among the three previous edges. Denote by S△(v) the linear
system of triangle inequalities defined on the variables wa, wb, and wc as follows:

wa ⩽ wb + wc

wb ⩽ wa + wc

wc ⩽ wa + wb .

From S△(v), one can derive that wa, wb, and wc are nonnegative. We denote by SP
t (v) the

linear system of inequalities, at each internal node v of G, resulting from adding to S△(v) the
perimeter inequality

wa + wb + wc ⩽ t .

Now, consider the union of all the linear systems SP
1 (v), taken over all internal nodes v of G.

Add the constraint 0 ⩽ we ⩽ 1/2 for every edge e in G that alone is a component of G. The
set PG consists of all real solutions for this linear system [LO06, Definition 2.3]. The constraints
defining PG imply that 0 ⩽ we ⩽ 1/2 for every edge e in G, hence PG is a polytope. We denote
the Ehrhart quasi-polynomial of PG by

LP
G(t) := volZd(tPG),

where d = |E(G)|.
If G has connected components H and J , then PG would be the Cartesian product of PH

and PJ , and thus LP
G(t) = LP

H(t) · LP
J (t) for all t. Therefore, henceforth we assume that G is a

connected graph.
In order to derive properties of LP

G for a {1, 3}-graph G, Liu and Osserman considered a
polytope QG in RE × RI closely related to PG, where I is the set of internal nodes of G. To
define QG, for each internal node v of G, with a, b, and c being the three edges incident to v,
consider an auxiliary variable zv and let SQ

t (v) be the previous linear system S△(v), together
with the additional parity constraint:

wa + wb + wc = 2 zv (1.1)
zv ⩽ t .

We now consider the union of all the linear systems SQ
1 (v), taken over all internal nodes v of G.

We add the constraint 0 ⩽ we ⩽ 1 for every edge e in G that alone is a component of G. The
polytope QG consists of the solutions for this linear system [LO06, Definition 3.1]. For each
nonnegative integer t, the number of integer points in the polytope tQG is denoted by LQ

G(t), the
Ehrhart quasi-polynomial in t, associated to the polytope QG. That is,

LQ
G(t) := volZd(tQG),
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where d = |E| + |I|. Figure 1.1 shows an example.
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G
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bv

u

LP
G(t) = 1

24t3 + 1
4t2 +

{ 5
6t + 1, if t is even
11
24t + 1

4 , if t is odd

LQ
G(t) = 1

6t3 + t2 + 11
6 t + 1

tPG =



w3 ⩽ 2w1
w3 ⩾ 0

2w1 + w3 ⩽ t
w3 ⩽ 2w2

2w2 + w3 ⩽ t

tQG =



w3 ⩽ 2w1
w3 ⩾ 0

2w1 + w3 = 2zv

zv ⩽ t
w3 ⩽ 2w2

2w2 + w3 = 2zu

zu ⩽ t

Figure 1.1: A cubic graph G, its polytope PG, the linear systems of tPG and tQG,
and the Ehrhart quasi-polynomials LP

G(t) and LQ
G(t) [BBL+14]. The polytope QG lies in

R3 × R2. The points in tPG have coordinates (w1, w2, w3) and the points in tQG have coor-
dinates ((w1, w2, w3), (zv, zu)).

Example 1.1. For the graph G in Figure 1.1, LP
G(t) has period 2 and LQ

G(t) has period 1, therefore
the number of integer points in the polytope PG is LP

G(1) = 1
24 + 1

4 + 11
24 + 1

4 = 1 and the
number of integer points in the polytope QG is LQ

G(1) = 1
6 + 1 + 11

6 + 1 = 4. Indeed, the unique
integer point in PG is (0, 0, 0) and the integer points in QG are ((0, 0, 0), (0, 0)), ((0, 1, 0), (0, 1)),
((1, 0, 0), (1, 0)), and ((1, 1, 0), (1, 1)). □

We denote the constituent polynomials of LP
G(t) by p0(t), p1(t), p2(t), and p3(t), where

pk(t) = LP
G(t), for t ≡ k (mod 4) .

If LP
G(t) has period 1, then p0 = p1 = p2 = p3. If LP

G(t) has period 2, then p0 = p2 and p1 = p3.
Similarly, we denote by q0(t) and q1(t) the constituent polynomials of LQ

G(t), where

qk(t) = LQ
G(t), for t ≡ k (mod 2) .

If LQ
G(t) has period 1, then q0 = q1.

Example 1.2. For the graph G in Figure 1.1, we have that

p0(t) = p2(t) = 1
24t3 + 1

4t2 + 5
6t + 1 and p1(t) = p3(t) = 1

24t3 + 1
4t2 + 11

24t + 1
4 ,
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so that here LP
G(t) has period 2. The quasi-polynomial LQ

G(t) has period 1 because

q0(t) = q1(t) = 1
6t3 + t2 + 11

6 t + 1 .

The vertices of QG are its integer points and the point ((1
2 , 1

2 , 1), (1, 1)). The least common
multiple of denominators in the coordinates of the vertices of PG is 4 and of QG is 2, giving us
examples of period collapse. □

1.3. Hightlighting context of our main results

Liu and Osserman [LO06, Proposition 3.5] proved that, in general, the coordinates of all vertices
of PG are in {0, 1

4 , 1
2 , 1}, while the coordinates of all vertices of QG are in {0, 1

2 , 1}. Therefore,
the period of LP

G(t) is either 1 or 2 or 4 and the period of LQ
G(t) is either 1 or 2. In particular, Liu

and Osserman [LO06, Question 4.3] posed some questions related to the period of the Ehrhart
quasi-polynomials LP

G(t) and LQ
G(t), restated as follows.

Question 1.3 ([LO06, Question 4.3]).

(a) Is it true that if G is cubic then the period of the Ehrhart quasi-polynomial LP
G(t) is 2?

(b) For which {1, 3}-graphs G is the period of LP
G(t) smaller than the least common multiple

of the denominators of the vertices of PG?

(c) Is the period of the Ehrhart quasi-polynomial LQ
G(t) always half the period of LP

G(t) for every
{1, 3}-graph G?

This paper gives a partial answer to some of these questions. We say that T is trivial if it has
no internal node. We prove the following.

Theorem 1.4 (the period for {1, 3}-trees). If T is a {1, 3}-tree, then

(a) QT is integral and hence LQ
T (t) has period 1.

(b) PT is half-integral and LP
T (t) has period equal to 2.

Theorem 1.4 (a) implies that {1, 3}-trees do not have the property addressed by Ques-
tion 1.3(b), and that Theorem 1.4 (b) answers positively Question 1.3(c) for {1, 3}-trees.

Theorem 1.5 (the period for {1, 3}-graphs). If G is a connected {1, 3}-graph then the period of
the Ehrhart quasi-polynomial LP

G(t) associated to the polytope PG is at most 2 if G is a tree or
a cubic graph, and it is equal to 4 otherwise.

Theorem 1.5 partially answers Question 1.3(a) and is one of the main contributions of this
paper. Liu and Osserman [LO06, Lemma 3.3] proved that the constituent polynomials p1 = p3
by showing that, for every {1, 3}-graph G, q1(t) = NG p1(t) = NG p3(t), where NG is the
number of internally Eulerian subgraphs of G.
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Example 1.6. For the graph G in Figure 1.1, the internally Eulerian subgraphs are induced by
the edge sets ∅, {1}, {2}, and {1, 2}, so NG = 4, and we have

q1(t) = 1
6t3 + t2 + 11

6 t + 1 = NG p1(t) = 4
( 1

24t3 + 1
4t2 + 11

24t + 1
4

)
. □

Their proof [LO06, Lemma 3.3] is based on a partition, for every nonnegative odd integer t,
of the LQ

G(t) = q1(t) integer points of the polytope tQG into NG parts of size LP
G(t). So,

answering Question 1.3(a) boils down to deciding whether we have equality between the two
constituent polynomials p0 and p2 for cubic graphs.

We answer Question 1.3(a) positively by also presenting, for every cubic graph G and non-
negative even integer t, a partition of the LQ

G(t) = q0(t) integer points of the polytope tQG. This
partition has NG parts, one part of size LP

G(t) and NG − 1 parts of size LP
G(t) − ( t

2 + 1)k−1,
where m and n are the number of edges and nodes of G, respectively, and k = m − n + 1 is the
cyclomatic number of G. From this it follows that

q0(t) = NG p0(t) − (NG − 1)
(

t

2 + 1
)k−1

= NG p2(t) − (NG − 1)
(

t

2 + 1
)k−1

,

implying that p0 = p2 and that the period of LP
G(t) is at most 2. This also shows that the class

of cubic graphs is a class of {1, 3}-graphs as sought-after in Question 1.3(b).
Example 1.7. Inspecting the example in Figure 1.1 a bit further, we see that k = 3 − 2 + 1 = 2
and, because NG = 4, we have that

q0(t) = 1
6t3 + t2 + 11

6 t + 1

= NG p0(t) − (NG − 1)
(

t

2 + 1
)k−1

= 4
( 1

24t3 + 1
4t2 + 5

6t + 1
)

− 3
(

t

2 + 1
)

. □

We were not able to show that, for a cubic graph G, the period of LP
G(t) is exactly 2, that is,

that p0 ̸= p1. However, we point out that the periods of LP
G(t) and LQ

G(t) are different. Indeed,
from the above,

q0(1) = NG p0(1) − (NG−1)
(3

2

)k−1
= 2k p0(1) − (2k − 1)

(3
2

)k−1
and

q1(1) = NG p1(1) = NG = 2k.

Therefore, if LQ
G(t) has period 1, then q0 = q1, hence q0(1) = q1(1), which implies that

p0(1) = 1 + 2k−1
2k (3

2)k−1 ̸= 1 = p1(1), because k ⩾ 2, thus LP
G(t) has period 2. Similarly,

if LP
G(t) has period 1, then LQ

G(t) has period 2. This tackles Question 1.3(c).
Finally, we derive that the period of LP

G(t) is 4 for any {1, 3}-graph G that is not a tree or
a cubic graph, applying the same strategy used for cubic graphs. This shows that cubic graphs
are the only ones that satisfy Question 1.3(b). Together with Theorem 1.4, this result leads to
Theorem 1.5.

Although our approach allows us to control the behavior for the difference of polynomials,
we were not able, despite much effort, to find a method to compute the desired polynomials ex-
plicitly. This seems a challenging task even for {1, 3}-trees as stated in [FdPAR21, Problem 6.5].
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1.4. Paper organization

The paper is organized as follows. In Section 2, we show that, for every {1, 3}-tree T , the coordi-
nates of all vertices of PT are in {0, 1

2} (Theorem 2.4). We also derive that QT is a 0/1 polytope
(Theorem 2.5) yielding Theorem 1.4. In Section 3 we carry out the decomposition of the integer
points of the polytope QG that will lead to Theorem 1.5. We do so by studying LQ

G via cosets of
certain lattices and based on internally Eulerian subgraphs of G. The latter allows us to establish
a connection with LP

G through a simple class of representative trees called caterpillars. To this
end, we use the NNI machinery (an easy local move performed on the edges of G). Section 4
presents the proof of Theorem 1.5 using two main technical lemmas that are proved in Sections 5
and 6. Finally, in Section 7, we discuss further geometric properties of the polytopes PT and a
related topological connection.

2. The structure and period for {1, 3}-trees

Let T be a {1, 3}-tree. We say that T is trivial if it has no internal node. Hence, a trivial {1, 3}-
tree is formed by an edge connecting two distinct nodes. A leaf-edge is an edge that is incident
to a leaf. A path in T is a leaf-path if its extreme edges are leaf-edges. An internally Eulerian
subgraph in T is simply a (possibly empty) collection of disjoint leaf-paths. If x is a point in PT ,
then 0 ⩽ xe ⩽ 1

2 for each edge e. Suppose that all coordinates of x are in {0, 1
2}. If a, b, and c

are edges incident to a node, then either zero or two of xa, xb, and xc are equal to 1
2 . This implies

that the support of x is the set of edges of a collection of disjoint leaf-paths. We shall prove
that VPT

:= {1
21H : H is a collection of disjoint leaf-paths in T} is the set of vertices of PT .

Example 2.1. For the {1, 3}-tree T in Figure 2.1 there are four collections of disjoint leaf-paths:
the empty collection, the collection with the leaf-path whose edge set is {1, 2}, the collection
with the leaf-path whose edge set is {2, 3}, and the collection with the leaf-path whose edge set
is {1, 3}. Therefore VPT

= {(0, 0, 0), (1
2 , 1

2 , 0), (0, 1
2 , 1

2), (1
2 , 0, 1

2)} is the vertex set of PT . □

In Lemma 2.2 we show that any point in PT with all coordinates in {0, 1
2} is uniquely deter-

mined by the coordinates associated to leaf-edges. In the statement of the lemma we take into
account the fact that any collection of disjoint leaf-paths of a {1, 3}-tree has an even number of
leaves.

Lemma 2.2. If T is a {1, 3}-tree, XT is the set of leaf-edges of T , and X is a subset of XT

incident to an even number of leaves, then there exists a unique point x in PT such that

xe =


1
2 if e ∈ X

0 if e ∈ XT \ X.
(2.1)

Moreover, all coordinates of x are in {0, 1
2} and its support is the set of edges of a collection of

disjoint leaf-paths.

Proof. The proof is by induction on the number of nodes of T . If T is trivial or has only one
internal node, then all edges of T are leaf-edges and x is completely defined by Equation (2.1)
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1
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b
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b

LP
T (t) = 1

24t3 + 1
4t2 +

{ 5
6t + 1, if t is even
11
24t + 1

4 , if t is odd

LQ
T (t) = 1

6t3 + t2 + 11
6 t + 1

tPT =


w1 ⩽ w2 + w3
w2 ⩽ w1 + w3
w3 ⩽ w1 + w2

w1 + w2 + w3 ⩽ t

tQT =



w1 ⩽ w2 + w3
w2 ⩽ w1 + w3
w3 ⩽ w1 + w2

w1 + w2 + w3 = 2zv

zv ⩽ t

Figure 2.1: A {1, 3}-tree T , its polytope PT , the linear systems of tPT and tQT , and the
Ehrhart quasi-polynomials LP

T (t) and LQ
T (t) [BBL+14]. The Ehrhart quasi-polynomials as-

sociated to T are equal to the Ehrhart quasi-polynomials associated to the cubic graph G of
Figure 1.1. The points in tPG have coordinates (w1, w2, w3) and the points in tQG have coordi-
nates ((w1, w2, w3), (zv)).

and satisfies all conditions of the lemma. Thus, we may assume that T has at least two internal
nodes.

Let r be an internal node of T adjacent to two leaf-edges, and let a, b, and c be the three
edges incident to r. We may assume that b is incident to a leaf u and c is incident to a leaf v.
Take T ′ := T − {u, v} and X ′ := X \ {b, c} ∪ {a} if |X ∩ {b, c}| = 1 and X ′ := X \ {b, c}
otherwise. By induction, there exists a unique point x′ in PT ′ with coordinates in {0, 1

2} such
that for each leaf-edge e of T ′ we have that x′

e = 1
2 if and only if e belongs to X ′ and such that the

support of x′ is the set of edges of a collection of disjoint leaf-paths of T ′. One can verify that x′

can be uniquely extended to a point x in PT with coordinates in {0, 1
2} satisfying the conditions

of the lemma.

Next, we show that any point in PT with coordinates in {0, 1
2} whose support is a collection

of disjoint leaf-paths is a vertex of PT .

Lemma 2.3. If T is a {1, 3}-tree and H is a collection of disjoint leaf-paths in T , then 1
21H is

a vertex of PT .

Proof. It is clear that 1
21H is in PT . Let XT be the set of leaf-edges of T and X be the edges

of H that are leaf-edges of T . The hyperplane 2∑e∈X we −2∑e∈XT \X we = |X| is a supporting
hyperplane of PT . Indeed, for each point x in PT and each edge e, we have that 0 ⩽ xe ⩽ 1

2 .
Thus, 2∑e∈X xe −2∑e∈XT \X xe ⩽ 2∑e∈X xe ⩽ |X| and equality holds if and only if xe = 1/2
for each e in X and xe = 0 for each e in XT \ X . By Lemma 2.2, 1

21H is the unique point in PT

for which equality holds and therefore it is a vertex of PT .
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Theorem 2.4. If T is a {1, 3}-tree, then VPT
is the set of vertices of the polytope PT .

Proof. Let RT be the set of points that are a convex combination of points in VPT
. By Lemma 2.3

we have that RT ⊆ PT . In order to prove the lemma it suffices to show the converse inclusion.
Suppose that PT ̸⊆ RT and let T be the smallest {1, 3}-tree with PT ̸⊆ RT ; that is, with

the number of nodes as small as possible. It is clear that T is nontrivial. Let x be a vertex of PT

not contained in RT .
Since x is a vertex of PT , there are |E| linearly independent inequalities among the ones that

determine PT satisfied by x with equality. As |E| = 2|I| + 1 there must exist an internal node v
such that three inequalities in SP

1 (v) are satisfied by x with equality. Let a, b, and c be the three
edges incident to v. We have two possibilities:

• either the three inequalities in S△(v) are satisfied by x with equality and therefore xa =
xb = xc = 0;

• or the perimeter inequality and two inequalities in S△(v) are satisfied by x with equality
and therefore two of xa, xb, and xc are 1

2 and the other is 0.

The tree T can be partitioned into {1, 3}-trees Ta, Tb, and Tc that share the node v and
have a, b, and c as leaf-edges, respectively. Let xTa

, xTb
, and xTc

be the corresponding ‘projec-
tions’ of x onto the edges of Ta, Tb, and Tc, respectively. One can verify that in both possibilities
(xa = 0 or xa = 1

2 ) xTa
is in PTa . Since Ta is smaller than T , it follows that xTa

is in RTa

and therefore xTa
can be decomposed as a convex combination of points in VPTa

. Similarly, we
can decompose xTb

and xTc
as a convex combination of points in VPTb

and VPTc
, respectively.

These decompositions can be easily glued together to form a decomposition of x as a convex
combination of points in VPT

, contradicting our assumption.

Using the same strategy, one can derive the following about QT . Recalling that I
is the set of internal nodes of G, let 1

′
H denote the pair (1H , zH) in ZE × ZI ,

where (zH)v = 1 if v is an internal node of a leaf-path in H , and (zH)v = 0 otherwise.
Let VQT

:= {1′
H : H is a collection of disjoint leaf-paths in T}. This discussion is summarized

in the following theorem.

Theorem 2.5. If T is a {1, 3}-tree, then VQT
is the set of vertices of the polytope QT .

Example 2.6. For the {1, 3}-tree T in Figure 2.1, we have that the vertex set of QT is
VQT

= {((0, 0, 0), (0)), ((1, 1, 0), (1)), ((0, 1, 1), (1)), ((1, 0, 1), (1))}. □

Now we can give a proof for Theorem 1.4, which characterizes the periods of the Ehrhart
quasi-polynomials for {1, 3}-trees.

Proof of Theorem 1.4 (the period for {1, 3}-trees). By Theorem 2.5, we know that QT is inte-
gral. It follows from Ehrhart’s theorem [BR15, Theorem 3.8] that LQ

T (t) has period 1, which
proves part (a) of Theorem 1.4. To prove part (b), first note that PT is half-integral by Theo-
rem 2.4, so LP

T (t) has period at most 2. Let p0 and p1 be the constituents of LP
T (t). It is clear

that p0(0) = 1 and the constant coefficient of p0 is 1. Liu and Osserman denote by q0 and q1 the
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constituents of LQ
T (t), as they address the more general case in which LQ

T (t) might have period 2.
Here, as LQ

T (t) has period 1, we have that q0 = q1 = LQ
T (t). Liu and Osserman [LO06, Proposi-

tion 3.5] proved that q1 = NT p1, where NT is the number of internally Eulerian subgraphs of T .
Therefore, the constant coefficient of p1 is 1/NT and, because NT ⩾ 2 for each {1, 3}-tree, it
follows that p0 ̸= p1. Hence, the period of LP

T (t) is exactly 2.

3. Cosets and combinatorial tools

The intent of this section is to derive a relation between LQ
G(t) and LP

G(t) for a nonnegative
integer t. In the next section we shall use this relation to derive the period of LP

G from the
known facts concerning the period of LQ

G. For this task, internally Eulerian subgraphs, a class of
graphs that resemble caterpillars, and a local move performed on graphs called nearest neighbor
interchange (NNI) play central roles. The general idea is partitioning the integer points of the
polytope tQ into parts of size having LP

G(t) as our unit of standard measurement.

3.1. Eulerianicity

Let G be a {1, 3}-graph and LG := (2ZE) × ZI . For each integer t ⩾ 0 and each internally
Eulerian subgraph H of G, we define

partt(G, H) := tQG ∩ (LG + (1H , 0)) and volt(G, H) := |partt(G, H)|, (3.1)

where LG + (1H , 0) is a coset of the lattice LG, in the lattice ZE × ZI .
In words, we are now counting integer points in cosets of a lattice, not just in a lattice. The

term “partt” originates from the fact that these sets correspond to parts of a partition of the set
of integer points of the polytope tQG. We have that

tQG ∩ (ZE × ZI) =
⋃
H

partt(G, H) and LQ
G(t) =

∑
H

volt(G, H), (3.2)

where the union and the summation are over all internally Eulerian subgraphs H of G. Indeed,
because of the parity constraint (1.1), for every integer point (w, z) in tQG, the set of edges e
for which we is odd induces an internally Eulerian subgraph of G.

Example 3.1. Consider the polytope tQG in Figure 1.1. The graph G has four internally Eu-
lerian subgraphs, namely, the subgraphs ∅, H{1}, H{2}, and H{1,2} induced by the edge sets ∅,
{1}, {2}, and {1, 2}, respectively. One can verify that

part2(G,∅) = {((0, 0, 0), (0, 0)), ((2, 0, 0), (2, 0)), ((0, 2, 0), (0, 2)), ((2, 2, 0), (2, 2))},
part2(G, H{1}) = {((1, 0, 0), (1, 0)), ((1, 2, 0), (1, 2))},
part2(G, H{2}) = {((0, 1, 0), (0, 1)), ((2, 1, 0), (2, 1))}, and
part2(G, H{1,2}) = {((1, 1, 0), (1, 1)), ((1, 1, 2), (2, 2))}.

Therefore, LQ
G(2) = 10 = vol2(G,∅) + vol2(G, H{1}) + vol2(G, H{2}) + vol2(G, H{1,2}) =

4 + 2 + 2 + 2. □
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The number of internally Eulerian subgraphs of G is denoted by NG. If G has n nodes and m
edges, then its cyclomatic number is m−n+1. Liu and Osserman [LO06, Remark 3.11] observed
that if G has h leaves and cyclomatic number k, then NG = 2k if h = 0 and NG = 2k+h−1

if h > 0.
The plan for this section is to measure the terms in the summation in (3.2) having LP

G(t) as
standard. An important special term is volt(G,∅). This term is associated to the set partt(G,∅)
formed by all integer points (w, z) in tQG for which all coordinates of w are even. Equivalently,

partt(G,∅) = {(w, z) ∈ tQG : w = 2x for an integer point x in tPG}

since z is uniquely determined by w in order for (w, z) to be in tQG. Therefore

volt(G,∅) = |partt(G,∅)| = LP
G(t). (3.3)

For instance, for the graph G appearing in Figure 1.1, vol2(G,∅) = 4 = LP
G(2).

3.2. Caterpillars

Wakabayashi [Wak19, Theorem A(ii)] proved that polytopes PG associated to any connected
{1, 3}-graph G with a given number n of nodes and a given number m of edges have the same
Ehrhart quasi-polynomial LP

G(t). This gives us the freedom to elect a convenient representative
for every equivalence class of connected graphs with n nodes and m edges. It turns out that, in
order to derive the period of LP

G(t), a particularly convenient choice of a representative graph
for G resembles a caterpillar. We define this convenient class of representative graphs in the
sequel.

A caterpillar is a tree for which the removal of all leaves results in a path, called its central
path, or in the empty graph (Figure 3.1(a)). When the result is the empty graph, we set the
central path to be the empty path. The edges that are not in the central path of the caterpillar are
its legs. The nodes that are not in the central path and are adjacent to an end node of the central
path are its roots. When the central path is empty, both nodes are roots. The legs adjacent to the
roots are the stems of the caterpillar.

b

b b b b

b

b b

bbb

b b b b

b

b b

bb

(a) (b)

b

b b b b

b

b b

bb

(c)

r

s

r

u

va
b c

d r a a

root stem

Figure 3.1: (a) Caterpillar with 6 legs, with roots r, s, u, v and corresponding stems a, b, c, d.
(b) (2, 4)-caterpillar with root r and corresponding stem a. (c) (2, 4)-caterpillar G2,4 with root r
and corresponding stem a.

For nonnegative integers h and k such that h + k ⩾ 2, let T be a {1, 3}-tree which is a
caterpillar with h + k leaves. A graph obtained from T by adding a loop to k of its leaves is
called an (h, k)-caterpillar (Figure 3.1(b)). The number of nodes in T and in an (h, k)-caterpillar
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obtained from T is the same, that is, 2(h + k − 1). The number of edges in an (h, k)-caterpillar
is 2(h + k − 1) − 1 + k = 2h + 3k − 3.

We say that the leaf-edges of an (h, k)-caterpillar are consecutive if their nodes in the cen-
tral path are consecutive. We say that the loops of an (h, k)-caterpillar are consecutive if their
neighbors in the central path are consecutive. We denoted by Gh,k the (h, k)-caterpillar whose
loops are all consecutive and leaf-edges are also all consecutive (Figure 3.1(c)). In particular,
neither G1,0 nor G0,1 exist, and the smallest (h, k)-caterpillar is G2,0, which corresponds to the
trivial {1, 3}-tree.

Due to the discussion above, henceforth all of our ambient graphs will be (h, k)-caterpillars
Gh,k. To make the proofs that follow easier to read, we use the notation

LP
h,k(t) := LP

Gh,k
(t) and LQ

h,k(t) := LQ
Gh,k

(t).

3.3. Nearest neighbor interchanges

This section is devoted to scrutinizing the terms in the summation in (3.2). In the following
two paragraphs we outline how we deal with the left and right side of the summation in (3.2),
respectively.

If G is a connected graph with n nodes and m edges, then its cyclomatic number
is k = m − n + 1. In addition, if G is a connected {1, 3}-graph with m edges and h leaves,
then 2m = 3n − 2h. Due to these two linearly independent equalities we conclude that any
connected {1, 3}-graph with h leaves and cyclomatic number k has the same number n of
nodes and the same number m of edges as the (h, k)-caterpillar Gh,k. Therefore, from Wak-
abayashi [Wak19, Theorem A(ii)] it follows that if G is a connected {1, 3}-graph with h leaves
and cyclomatic number k, then LP

G = LP
h,k. The first step to turn the summation in (3.2) more

amenable to our purposes is to prove a similar identity to polytope Q, namely LQ
G = LQ

h,k.
An internally Eulerian subgraph H of any (h, k)-caterpillar consists of a disjoint collection

of leaf-paths and loops. The next step is to prove that the value of volt(Gh,k, H) depends only on
the number of leaf-paths and loops in H . Finally, we show that volt(Gh,k, H) actually depends
on the number of leaf-paths in H and on whether or not H has a loop. For all these tasks we
shall need the machinery of the nearest neighbor interchange.

A nearest neighbor interchange (NNI) is a local invertible move performed in G on a trail of
length three, marked by dark edges in Figure 3.2. This move interchanges the ends of the two
extreme edges of the trail on the central edge.

NNIb b b

a b a b

b

Figure 3.2: An NNI move on the trail marked by bold darker line segments. One of the incidences
of the edges a and b were interchanged.
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We refer to the central edge of the trail as the pivot of the NNI move. The result of the move
is another {1, 3}-graph G′ on the same number of nodes, edges, and connected components. We
call {G, G′} an NNI pair.

Consider an NNI pair {G, G′}. Let w and z be weight functions defined on the edges
and internal nodes of G, respectively. A weighted NNI is a local invertible move performed
on (G, w, z). It is induced by the NNI pair. The result of the move is (G′, w′, z′) where w′

and z′ are weight functions on the edges and internal nodes of G′ defined as follows. Suppose
that e = uv is the pivot of the NNI move. Let a and b be the first and last edges in the trail,
and c and d be the remaining edges adjacent to e, with their corresponding weights depicted in
Figure 3.3. Note that a, b, c, and d are not necessarily pairwise distinct. The weight function w′,
defined as in [FdPAR21], is such that w′

f = wf for every f ̸= e and

w′
e = we + max{wa + wc, wb + wd} − max{wb + wc, wa + wd}.

The weight function z is such that z′
x = zx for every x ̸∈ {u, v},

z′
u = (w′

b + w′
c + w′

e)/2, and z′
v = (w′

a + w′
d + w′

e)/2.

we

wdwc

w′
e

wb

wd

wa

wc

b b b b

G G′

wNNI
zu zv z′vz′u

wbwa

Figure 3.3: Weighted NNI move on the trail marked by bold darker line segments. Weights
modified are the ones on the pivot edge and its end nodes.

Let us restrict our attention to integer points satisfying the parity constraint (1.1). If (w, z)
is one of these points, then so is (w′, z′). In fact, for any internally Eulerian subgraph H of G,
a weighted NNI move maps points in partt(G, H) into partt(G′, H ′), where H ′ is uniquely de-
termined by {G, G′} and H . Indeed, a weighted NNI acts on the parity (of the weight) of the
NNI pivot based uniquely on the parity of the edges incident to it (Figure 3.4). Therefore, as a
weighted NNI move is invertible, there is a bijection between partt(G, H) and partt(G′, H ′) for
every corresponding pair H and H ′. We call {(G, H), (G′, H ′)} a weighted NNI pair.

The following lemma that summarizes the previous discussion is applied extensively, explic-
itly and implicitly, in several proofs ahead.

Lemma 3.2. Let {(G, H), (G′, H ′)} be a weighted NNI pair. The corresponding weighted NNI
is a bijection between partt(G, H) and partt(G′, H ′) and therefore

volt(G, H) = volt(G′, H ′).
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wa wb

wNNI

wc

wa

wd

wb

w′
e

wc wd

we

wa wb

wNNI
b

wc

wa

wd

wb

w′
e

wc wd

we

wa wb

wc wd

we

b

b

b b

bb

bb b

wNNI

wc

wa

wd

wb

w′
eb b

type (I)

type (II)

type (III)

wa wb

wNNI

wc wd

wb

w′
e

wc wd

we

we

wdwc

w′
e

wb

wd

wa

wc

b b
wNNI

wbwa

wa

bb

b b b b
type (V)

type (VI)

wa wb

wNNI b

wc

wa

wd

wb

w′
e

wc wd

web b b
type (IV)

Figure 3.4: Parity of weights on edges modified by a weighted NNI on a trail marked by bold
darker line segments. Dashed line segments indicate edges with odd weights, and continuous
line segments indicate edges with even weights.
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b

b

b

23

w1

w2

w3

b

b
v

(1
2
, 1
2
, 0)

(1
2
, 0, 1

2
)

(0, 1

2
, 1

2
)

G′

u

1
PG′

b

b

b

b

LP
G′(t) = 1

24t3 + 1
4t2 +

{ 5
6t + 1, if t is even
11
24t + 1

4 , if t is odd

LQ
G′(t) = 1

6t3 + t2 + 11
6 t + 1

tPG′ =


w1 ⩽ w2 + w3
w2 ⩽ w1 + w3
w3 ⩽ w1 + w2

w1 + w2 + w3 ⩽ t

tQG′ =



w1 ⩽ w2 + w3
w2 ⩽ w1 + w3
w3 ⩽ w1 + w2

w1 + w2 + w3 = 2zv

w1 + w2 + w3 = 2zu

zv ⩽ t
zu ⩽ t

Figure 3.5: The cubic graph G′ is obtained from applying an NNI to the graph G in Figure 1.1.
The pivot of the NNI was the edge 3. The polytope PG′ , the linear systems of tPG′ and tQG′ ,
and the Ehrhart quasi-polynomials associated to G′ are identical to the ones associated to the
{1, 3}-tree T in Figure 2.1. The points in tPG′ have coordinates (w1, w2, w3) and the points
in tQG′ have coordinates ((w1, w2, w3), (zv, zu)).

Example 3.3. The graph G in Figure 1.1 and G′ in Figure 3.5 form an NNI pair {G, G′}. Con-
sider the polytope tQG′ in Figure 3.5. The graph G′ has four internally Eulerian subgraphs,
namely, the subgraphs ∅, H ′

{1,2}, H ′
{1,3} and H ′

{2,3} induced by the edge sets ∅, {1, 2}, {2, 3},
and {1, 3}, respectively. One can verify that

part2(G′,∅) = {((0, 0, 0), (0, 0)), ((2, 2, 0), (2, 2)), ((2, 0, 2), (2, 2)), ((0, 2, 2), (2, 2))},
part2(G′, H ′

{1,2}) = {((1, 1, 0), (1, 1)), ((1, 1, 2), (2, 2))},

part2(G′, H ′
{1,3}) = {((1, 0, 1), (1, 1)), ((1, 2, 1), (2, 2))}, and

part2(G′, H ′
{2,3}) = {((0, 1, 1), (1, 1)), ((2, 1, 1), (2, 2))}.

The corresponding weighted NNI pairs are {(G,∅), (G′,∅)}, {(G, H{1}), (G′, H ′
{1,3})},

{(G, H{2}), (G′, H ′
{2,3})}, {(G, H{1,2}), (G′, H ′

{1,2})}. Therefore, volt(G, H) = volt(G′, H ′) for
each weighted NNI pair {(G, H), (G′, H ′)}, confirming the previous Lemma 3.2. □

Having the tool of weighted NNIs in hand, we are ready to follow the steps delineated.

Lemma 3.4. If G is a connected {1, 3}-graph with h leaves and cyclomatic number k, then
LQ

G(t) = LQ
h,k(t) for each nonnegative integer t.

Proof. The graph G can be transformed into Gh,k through a series of NNI moves [FdPAR21,
Theorem 1]. We have that

LQ
G(t) =

∑
H

volt(G, H) (3.4)
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=
∑
H

volt(Gh,k, H) (3.5)

= LQ
h,k(t), (3.6)

where the summations in (3.4) and in (3.5) are over the internally Eulerian subgraphs H of G
and Gh,k, respectively. Equalities (3.4) and (3.6) are due to the summation in (3.2), and Equal-
ity (3.5) follows from Lemma 3.2 by induction on the number of NNI moves.

Now, we prove that volt(Gh,k, H) depends only on the number of leaf-paths and loops in H .

Lemma 3.5. If H and H ′ are internally Eulerian subgraphs of Gh,k with the same number of
leaf-paths and loops, then

volt(Gh,k, H) = volt(Gh,k, H ′),
for each nonnegative integer t.

Proof. Consider a series of weighted NNIs taking the loops in H to the ones in H ′, by swapping
consecutive legs of Gh,k and an appropriated relabeling. Similarly, consider a series of weighted
NNIs taking the leaf-edges of leaf-paths in H to the ones in H ′, by swapping consecutive legs
of Gh,k and an appropriated relabeling. The composition of the corresponding bijections is a
bijection between partt(Gh,k, H) and partt(Gh,k, H ′). Indeed, the used NNIs are as in Corol-
lary 10 from [FdPAR21], and preserve the parity of the values on the corresponding leaf-edges
and loops. So the lemma follows.

Any internally Eulerian subgraph of Gh,k consists of a disjoint collection of leaf-paths and
loops. Inspired by Lemma 3.5, we shall start to use the following notation: Hi,j denotes any
internally Eulerian subgraph with i leaf-paths and j loops. Recalling the definitions (3.1) in
terms of the present notation, we have

partt(Gh,k, Hi,j) := tQGh,k
∩ (LGh,k

+ (1Hi,j
, 0)), and

volt(Gh,k, Hi,j) := |partt(Gh,k, Hi,j)|.

Thus we may rewrite the summation in (3.2), namely that LQ
G(t) = ∑

H volt(G, H), to obtain

LQ
h,k(t) =

∑
H

volt(Gh,k, H) =
⌊h/2⌋∑
i=0

(
h

2i

)
k∑

j=0

(
k

j

)
volt(Gh,k, Hi,j), (3.7)

where the first summation is over all internally Eulerian subgraphs Hi,j of Gh,k.
Next we strengthen Lemma 3.5 and show that volt(Gh,k, H) does not depend on the exact

number of loops in H , but only on whether H has a loop or not. In other words, the value
of volt(Gh,k, Hi,j) depends only on whether j = 0 or j ⩾ 1. This will allow us to simplify the
summation in (3.7).

Lemma 3.6. Let h and k be nonnegative integers such that k ⩾ 1 and h + k ⩾ 2. For every
nonnegative integer t, i = 0, . . . , ⌊h/2⌋, and j = 1, . . . , k, we have that

volt(Gh,k, Hi,j) = volt(Gh,k, Hi,1).
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Proof. If h = i = 0 and k = j = 2, then the composition of the corresponding two
weighted NNIs shown in Figure 3.6(a) and a relabeling is by Lemma 3.2 a bijection between
partt(G0,2, H0,2) and partt(G0,2, H0,1), where the Eulerian subgraphs H0,2 and H0,1 are induced
by the edge sets {a, c} and {c}, respectively.

For the other cases, the proof is by induction on j. Suppose that j ⩾ 2 and let H be
an internally Eulerian subgraph of Gh,k with i leaf-paths and j loops. By applying weighted
NNIs, we may assume that two of the loops in H are at distance 2. Call a one of these loops.
The composition of the corresponding four weighted NNIs shown in Figure 3.6(b) and a rela-
beling is by Lemma 3.2 a bijection between partt(Gh,k, H) and partt(Gh,k, H−a). Therefore,
volt(Gh,k, Hi,j) = volt(Gh,k, Hi,j−1) = volt(Gh,k, Hi,1), where the second equality follows from
the induction hypothesis.
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bbbbb b
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Figure 3.6: Weighted NNIs that bring two loops with odd weights to one loop with odd weight.
The trail of each NNI is marked by bold darker line segments. Dashed line segments indicate
the edges with odd weights.

Finally, we focus special attention on the value of volt(Gh,k, Hi,0) for i > 0. This will allow
us to simplify even further the summation in (3.7).

Lemma 3.7. Let h and k be nonnegative integers such that k ⩾ 1 and h + k ⩾ 2. For every
nonnegative integer t, i = 1, . . . , ⌊h/2⌋, we have that

volt(Gh,k, Hi,0) = volt(Gh,k, Hi,1).

Proof. Let H be an internally Eulerian subgraph of Gh,k with i leaf-paths and no loops. By
applying weighted NNIs we may assume that there is a leaf-path of H at distance 1 from a loop
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of Gh,k. We denote the loop by a. The composition of the corresponding bijections of the two
weighted NNIs ilustrated in Figure 3.7 and a relabeling is a bijection between partt(Gh,k, H) and
partt(Gh,k, H+a). Therefore, volt(Gh,k, Hi,0) = volt(Gh,k, Hi,1).

type (II) type (III)b

b

a

b

c d bbbb bbb

b

b b

a

bc

d bbbb bbb

b

b b

a

b

c d bbbb bbb

pivotpivot

b

Figure 3.7: Weighted NNIs that, using a leaf-path with odd weights, change the weight of a loop
from even to odd. The trail of each NNI is marked by bold darker line segments. Dashed line
segments indicate the edges with odd weights.

3.4. Key summation

Finally, we arrive at the targeted expression of this section by manipulating the summation
in (3.7). If G is a {1, 3}-graph with h leaves and cyclomatic number k then

LQ
G(t) = LQ

h,k(t) (3.8)

=
⌊h/2⌋∑
i=0

(
h

2i

)
k∑

j=0

(
k

j

)
volt(Gh,k, Hi,j)

=
⌊h/2⌋∑
i=0

(
h

2i

)volt(Gh,k, Hi,0) +
k∑

j=1

(
k

j

)
volt(Gh,k, Hi,1)

 (3.9)

=
⌊h/2⌋∑
i=0

(
h

2i

)(
volt(Gh,k, Hi,0) + (2k − 1)volt(Gh,k, Hi,1)

)

=
⌊h/2⌋∑
i=0

(
h

2i

)(
2k volt(Gh,k, Hi,0) − (2k − 1)(volt(Gh,k, Hi,0) − volt(Gh,k, Hi,1))

)

= 2k
⌊h/2⌋∑
i=0

(
h

2i

)
volt(Gh,k, Hi,0)

− (2k − 1)
⌊h/2⌋∑
i=0

(
h

2i

)
(volt(Gh,k, Hi,0) − volt(Gh,k, Hi,1)),

= 2k
⌊h/2⌋∑
i=0

(
h

2i

)
volt(Gh,k, Hi,0) (3.10)

− (2k − 1)(volt(Gh,k,∅) − volt(Gh,k, H0,1)), (3.11)

where Equality (3.8) is due to Lemma 3.4, Equality (3.9) holds by Lemma 3.6, and Equal-
ity (3.11) follows from Lemma 3.7. We remind the reader that volt(Gh,k, H0,0) = volt(Gh,k,∅).
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4. The period for {1, 3}-graphs

In this section we prove the main theorem of this paper. We claim that we may henceforth
consider only t an even integer, due to the following argument. Liu and Osserman [LO06,
Lemma 3.3] proved that if t is a nonnegative odd integer, then volt(Gh,k, Hi,j) = LP

h,k(t) for
every i ⩾ 0 and j ⩾ 0. Applying their result for t odd to the final relation of the previous section
we see that the term (3.11) vanishes and from the summation in (3.10) we have that

LQ
G(t) = LQ

h,k(t) = 2k
⌊h/2⌋∑
i=0

(
h

2i

)
volt(Gh,k, Hi,0)

= 2k
⌊h/2⌋∑
i=0

(
h

2i

)
LP

h,k(t)

= NGh,k
LP

h,k(t) = NGLP
G(t), (4.1)

where Equality (4.1) follows from the fact that the number of internal Eulerian subgraphs of Gh,k

is NGh,k
= 2k if h = 0 and NGh,k

= 2k+h−1 if h > 0. From the relation LQ
G(t) = NGLP

G(t)
for odd t, and the fact that LQ

G(t) has period 1 or 2, Liu and Osserman concluded that the odd
constituent polynomials p1 and p3 of LP

G are equal.

4.1. The lemmas of the leaf-paths and of the loops

For the purpose of determining the period of LP
G, we settle the values of the summation in (3.10)

and the difference in the term (3.11) for nonnegative even integers t as stated in the two lemmas
below. Lemma 4.1 is concerned with the summation in (3.10) and Lemma 4.2 deals with the
difference in the term (3.11). We recall that for any (h, k)-caterpillar Gh,k we have h + k ⩾ 2,
by definition.

Lemma 4.1 (the leaf-paths). Let h and k be integers such that h ⩾ 0 and k ⩾ 0. For every
nonnegative even integer t, we have that

2k
⌊h/2⌋∑
i=0

(
h

2i

)
volt(Gh,k, Hi,0) = NGh,k

LP
h,k(t) +

⌊h/2⌋∑
j=1

(−4)−j

(
h − j

j

)
h

h − j
LP

h−j,k(t)
 .

Lemma 4.2 (the loops). Let h and k be integers such that h ⩾ 0 and k ⩾ 1. For every nonneg-
ative even integer t, we have that

volt(Gh,k,∅) − volt(Gh,k, H0,1) =


(

t
2 + 1

)k−1
if t ≡ 0 (mod 4) or h = 0,

0 if t ≡ 2 (mod 4).

The proofs of these lemmas are technical. Therefore we shall defer the proof of Lemma 4.1
to Section 5 and of Lemma 4.2 to Section 6. In the remainder of this section we refer to these
lemmas in order to deduce the period of the Ehrhart quasi-polynomial in t associated to the
polytope PG.
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4.2. Proof of the theorem of the period for {1, 3}-graphs

We have now all tools to deliver a theorem on the period collapse of the quasi-polynomial LP
G(t).

Proof of Theorem 1.5 (the period for {1, 3}-graphs). We denote by qh,k
0 (t) and qh,k

1 (t) the con-
stituents of LQ

h,k(t) for t even and t odd, respectively. We also denote by ph,k
j (t) the constituent

polynomials of LP
h,k(t) for t congruent to j (mod 4).

Say G has h leaves and cyclomatic number k. Note that h+k ⩾ 2. By Wakabayashi [Wak19,
Theorem A(ii)] and Lemma 3.4, we may assume that G = Gh,k. Liu and Osserman [LO06]
proved that ph,k

1 = ph,k
3 . Therefore the period of LP

h,k is at most 2 if and only if ph,k
0 = ph,k

2 .

Case 1. k = 0.
Then Gh,0 is a tree, and the period of LP

h,0(t) is 2 by Corollary 1.4.

Case 2. h = 0.
Then G0,k is a cubic graph and (3.10) is equal to 2kvolt(G0,k, H0,0) = 2kvolt(G0,k,∅) be-

cause the summation reduces to the term associated with i = 0. By Lemma 4.2, for every
nonnegative even integer t, we have that

LQ
0,k(t) = q0,k

0 (t) = 2kvolt(G0,k,∅) − (2k − 1)(volt(G0,k,∅) − volt(Gh,k, H0,1))

= NG0,k
LP

0,k(t) − (NG0,k
− 1)

(
t

2 + 1
)k−1

.

Therefore, q0,k
0 (t) = NG0,k

p0,k
0 (t) − (NG0,k

− 1)
(

t
2 + 1

)k−1
for t ≡ 0 (mod 4). Because both

sides of the latter equation are polynomials in t, the equality holds for every real t. Similarly,
q0,k

0 (t) = NG0,k
p0,k

2 (t) − (NG0,k
− 1)

(
t
2 + 1

)k−1
for every real t. Hence p0,k

0 = p0,k
2 and the

period of LP
0,k is at most 2.

Case 3. h ⩾ 1 and k ⩾ 1.
Now we tackle all other connected {1, 3}-graphs. For t ≡ 0 (mod 4), applying Lemma 4.1

and Lemma 4.2 to the final relation of the previous section, we obtain that

LQ
h,k(t) = qh,k

0 (t) = NGh,k

LP
h,k(t) +

⌊h/2⌋∑
j=1

(−4)−j

(
h − j

j

)
h

h − j
LP

h−j,k(t)


− (2k − 1)
(

t

2 + 1
)k−1

. (4.2)

Similarly, for t ≡ 2 (mod 4), we can derive that

LQ
h,k(t) = qh,k

0 (t) = NGh,k

LP
h,k(t) +

⌊h/2⌋∑
j=1

(−4)−j

(
h − j

j

)
h

h − j
LP

h−j,k(t)
 . (4.3)

Using (4.2) with t ≡ 0 (mod 4), and substituting NGh,k
= 2h+k−1, we have

qh,k
0 (t)

NGh,k

= ph,k
0 (t) +

⌊h/2⌋∑
j=1

(−4)−j

(
h − j

j

)
h

h − j
ph−j,k

0 (t) − 1
2h−1 (1 − 1

2k
)
(

t

2 + 1
)k−1

.

(4.4)
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Because both sides of Equality (4.4) are polynomials in t, it holds for every t. Similarly, from
Equality (4.3), we deduce that, for every t,

qh,k
0 (t)

NGh,k

= ph,k
2 (t) +

⌊h/2⌋∑
j=1

(−4)−j

(
h − j

j

)
h

h − j
ph−j,k

2 (t). (4.5)

By subtracting (4.4) from (4.5) and rearranging the terms, we deduce that

(ph,k
0 − ph,k

2 )(t) +
⌊h/2⌋∑
j=1

(−4)−j

(
h − j

j

)
h

h − j
(ph−j,k

0 − ph−j,k
2 )(t)

= 1
2h−1

(
1 − 1

2k

) (
t

2 + 1
)k−1

. (4.6)

We define

d(α) := (−4)α

α

(pα,k
0 − pα,k

2 )(t)
(1 − 1

2k ) ( t
2 + 1)k−1 , (4.7)

so that we may divide (4.6) by h
(−4)h (1 − 1

2k )( t
2 + 1)k−1 and obtain

h−1∑
j=0

(
h − j

j

)
d(h − j) = (−4)h

h 2h−1 = (−1)h 2h+1

h
. (4.8)

The j = ⌊h/2⌋ + 1, . . . , h − 1 terms are all equal to zero.
From one of the so called simpler Chebyshev inverse relations [Rio68, Table 2.3, item 5],

we derive that

d(h) =
h−1∑
j=0

[(
h + j − 1

j

)
−
(

h + j − 1
j − 1

)]
(−1)j(−1)h−j2h−j+1

h − j

=
h−1∑
j=0

h − j

h + j

(
h + j

j

)
(−1)h2h−j+1

h − j

= (−1)h
h−1∑
j=0

2h−j+1

h + j

(
h + j

j

)
.

Thus, we have that d(h) > 0 for every positive even h and d(h) < 0 for every odd h. Finally,
substituting in definition (4.7) with α = h, we obtain that

ph,k
0 (t) − ph,k

2 (t) = h

4h

(
1 − 1

2k

) (
t

2 + 1
)k−1 h−1∑

j=0

2h−j+1

h + j

(
h + j

j

)
> 0

and conclude that ph,k
0 (t) > ph,k

2 (t) for every t ⩾ 0. Consequently, the period of LP
h,k is 4.
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5. Lemma of the leaf-paths

The purpose of this section is to prove Lemma 4.1, the lemma of the leaf-paths. To achieve
this goal, we first establish the necessary tools in two supporting lemmas and a combinatorial
identity. We defer the proofs of these lemmas to the end of this section.

Then, in Section 5.3, we give a tool that is purely set-theoretic, namely Lemma 5.4. This tool
allows us to shift our lattice, in order to measure the difference between two discrete volumes.
This is also the main tool that is employed in the proofs of the supporting lemmas of this section,
and in the following section. Finally, we end this section by giving the proofs of the supporting
lemmas.

Before continuing we would like to recall that Hi,j denotes any internally Eulerian subgraph
with i leaf-paths and j loops and that for any (h, k)-caterpillar Gh,k we have h + k ⩾ 2, by
definition.

5.1. Supporting lemmas, and an identity

Here, we state, without proving, the lemmas and identity used in the proof of the lemma of the
leaf-paths.

Lemma 5.1 (one less leaf-path). Let h and k be integers such that h ⩾ 2 and k ⩾ 1. For every
nonnegative even integer t and for every integer i = 1, . . . , ⌊h/2⌋, we have that

volt(Gh,k, Hi,0) = volt(Gh,k, Hi−1,0) − volt(Gh−1,k, Hi−1,0). (5.1)

From this lemma, we can deduce the following identity.

Lemma 5.2 (the size of coset Hi,0). Let h and k be integers such that h ⩾ 0 and k ⩾ 1. For
every nonnegative even integer t and for every integer i = 0, . . . , ⌊h/2⌋, we have that

volt(Gh,k, Hi,0) =
i∑

j=0
(−1)j

(
i

j

)
LP

h−j,k(t).

We shall derive the lemma of the leaf-paths from Lemma 5.2 and the following known com-
binatorial identity.
Identity 5.3. [Rio68, Problem 18(a), Chap. 6] For every integer h ⩾ 1 and j = 0, . . . , ⌊h/2⌋,

⌊h/2⌋∑
i=j

(
h

2i

)(
i

j

)
=
(

h − j

j

)
h

h − j
2h−1−2j.

5.2. Proof of the lemma of the leaf-paths

We are now prepared to carry out the proof of Lemma 4.1, upon which the proof of Theorem 1.5
of the period of LP

G(t) rests.
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Proof of Lemma 4.1 (the leaf-paths). The lemma clearly holds for h = 0. Thus we may assume
h ⩾ 1 and we have that

2k
⌊h/2⌋∑
i=0

(
h

2i

)
volt(Gh,k, Hi,0) = 2k

⌊h/2⌋∑
i=0

(
h

2i

)
i∑

j=0
(−1)j

(
i

j

)
LP

h−j,k(t) (5.2)

= 2k
⌊h/2⌋∑
i=0

(
h

2i

)LP
h,k(t) +

i∑
j=1

(−1)j

(
i

j

)
LP

h−j,k(t)


= 2k+h−1 LP
h,k(t) + 2k

⌊h/2⌋∑
i=1

(
h

2i

)
i∑

j=1
(−1)j

(
i

j

)
LP

h−j,k(t)

= NGh,k
LP

h,k(t) + 2k
⌊h/2⌋∑
j=1

(−1)j LP
h−j,k(t)

⌊h/2⌋∑
i=j

(
h

2i

)(
i

j

)
(5.3)

= NGh,k
LP

h,k(t) + 2k
⌊h/2⌋∑
j=1

(−1)j LP
h−j,k(t)

(
h − j

j

)
h

h − j
2h−1−2j (5.4)

= NGh,k
LP

h,k(t) + 2k+h−1
⌊h/2⌋∑
j=1

(−1)j 2−2j

(
h − j

j

)
h

h − j
LP

h−j,k(t)

= NGh,k
LP

h,k(t) + NGh,k

⌊h/2⌋∑
j=1

(−4)−j

(
h − j

j

)
h

h − j
LP

h−j,k(t)

= NGh,k

(
LP

h,k(t) +
⌊h/2⌋∑
j=1

(−4)−j

(
h − j

j

)
h

h − j
LP

h−j,k(t)
)

,

where (5.2) holds by Lemma 5.2, Equality (5.3) is the result of exchanging the two summations,
and finally Equality (5.4) is due to Identity (5.3).

5.3. Bijections by shifting

Here we derive a purely set-theoretic tool, Lemma 5.4, that gives a partial bijection by shifting.
We will employ this tool repeatedly in the remaining proofs of this section, and in those of the
next section.

We begin with some notation that is followed by the lemma. For an e in E and a set X ⊂ RE ,
let

Oute(X ) := {w ∈ X ∩ ZE : we is even and w + 1e ̸∈ X } and
Ine(X ) := {w ∈ X ∩ ZE : we is odd and w − 1e ̸∈ X }.

We think of the function w 7→ w + 1e as a shifting of the integer points with even e-coordinate
to the integer points with odd e-coordinate. Oute(X ) is the set of integer points of X with even
e-coordinate that are moved outside X and Ine(X ) is the set of integer points of X with odd
e-coordinate that are images of points outside X (Figure 5.1). Roughly, considering the integer
points, the shifting enters X through Ine(X ) and leaves X through Oute(X ).
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w 7→ w + 11e

∈ Oute(X )

∈ Ine(X )

Figure 5.1: Filled circles represent points with an even e-coordinate, while empty circles rep-
resent points with an odd e-coordinate. Let X be the set of points in the grey area. The
circles marked by triangles represent the set Oute(X ) and the circles marked by squares
represent Ine(X ). The difference between the number of filled and empty circles in X is
|Oute(X )| − |Ine(X )| = 7 − 8 = −1.

For any subset X ⊂ RE , we define

vole even(X ) := |{w ∈ X ∩ ZE : we is even}|,

and
vole odd(X ) := |{w ∈ X ∩ ZE : we is odd}|.

Lemma 5.4 (the bijection by shifting). If X ⊂ RE is bounded and e ∈ E, then

vole even(X ) − vole odd(X ) = |Oute(X )| − |Ine(X )|.

Proof. We have that

Oute(X ) ⊆ {w ∈ X ∩ ZE : we is even} and Ine(X ) ⊆ {w ∈ X ∩ ZE : we is odd}.

Therefore,

vole even(X ) = |{w ∈ X ∩ ZE : we is even} \ Oute(X )| + |Oute(X )|, and (5.5)
vole odd(X ) = |{w ∈ X ∩ ZE : we is odd} \ Ine(X )| + |Ine(X )|. (5.6)

The function w 7→ w + 1e is a bijection from {w ∈ X ∩ ZE : we is even} \ Oute(X ) to
{w ∈ X ∩ ZE : we is odd} \ Ine(X ). As X is bounded, vole even(X ) and vole odd(X ) are finite
and the result follows from Equalities (5.5) and (5.6).

5.4. Proofs of the supporting lemmas

We begin this section by presenting the proof of the supporting Lemma 5.1 of one less leaf-path.
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Proof of Lemma 5.1 (one less leaf-path). By Lemma 3.5 we may assume that one of the leaf-
paths P in Hi,0 consists of two stems a and b of Gh,k incident to a vertex r. Let u and v be the
leaves adjacent to a and b, respectively (Figure 5.2(a)). Let Gh−1,k := Gh,k − {u, v} and let c
be the edge incident to r other than a or b (Figure 5.2(b)). Hence, Hi−1,0 := Hi,0 − P is an
internally Eulerian subgraph of Gh,k and Gh−1,k.

b bbb

bbbbab b b b

b

b b

bb

b

b

c

r

Gh,k
Gh−1,k

c
bb bb bb bb

(a) (b)

u

v

Figure 5.2: (a) Gh,k and the stems a and b. (b) Gh−1,k.

Let W := partt(Gh,k, Hi,0), Z := partt(Gh,k, Hi−1,0), and X := partt(Gh−1,k, Hi−1,0) for
conciseness. Equality (5.1) is equivalent to |X| = |Z| − |W |. We partition Z and W into

Z< := {(w, z) ∈ Z : zr < t},

Z= := {(w, z) ∈ Z : zr = t},

W< := {(w, z) ∈ W : wc < wa + wb} and
W= := {(w, z) ∈ W : wc = wa + wb}.

Let I be the set of internal nodes of Gh,k. Consider the function ϕ+ : RE × RI → RE × RI ,
given by the shifting operation

ϕ+(w, z) = (w, z) + (1a,b,1r).

One can verify that ϕ+ is a bijection from Z< to W< and therefore |Z<| = |W<|. Consequently,
in order to prove the lemma, it suffices to show that

|X| = |Z| − |W | = (|Z<| + |Z=|) − (|W<| + |W=|) = |Z=| − |W=|.

Conceptually, from the viewpoint of shiftings and Lemma 5.4, W= is reminiscent of Ina,b(Z)
and Z= is reminiscent of Outa,b(Z), meaning that the shifting operation ϕ+ enters Z through
W= and leaves Z through Z=.

For j = 0, 1, . . . , t/2, let

Xj := {(w, z) ∈ X : wc = 2j}

and, for j = 0, 1, . . . , t/2 and ℓ = 0, 1, . . . , j, let

Zj,ℓ := {(w, z) ∈ Z= : wa = t − 2ℓ, wb = t − 2j + 2ℓ, wc = 2j}.
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The edge c is not in Hi−1,0, thus the sets X0, . . . , Xt/2 form a partition of X . The sets
Z0,0, Z1,0, . . . , Zt/2,t/2 form a partition of Z=. Moreover, for each j, we have that |Zj,ℓ| = |Xj|,
for every ℓ. Therefore,

|Z=| =
t/2∑
j=0

j∑
ℓ=0

|Zj,ℓ| =
t/2∑
j=0

j∑
ℓ=0

|Xj| =
t/2∑
j=0

(j + 1)|Xj|.

For j = 0, 1, . . . , t/2 and ℓ = 1, . . . , j, we define

Wj,ℓ := {(w, z) ∈ W= : wa = 2ℓ − 1, wb = 2j − 2ℓ + 1, wc = 2j}.

The sets W0,1, . . . , Wt/2,t/2 form a partition of W= and |Wj,ℓ| = |Xj| for each j and each ℓ.
Hence,

|W=| =
t/2∑
j=0

j∑
ℓ=1

|Wj,ℓ| =
t/2∑
j=0

j∑
ℓ=1

|Xj| =
t/2∑
j=0

j|Xj|.

Therefore, |Z=| − |W=| = ∑t/2
j=0 |Xj| = |X|.

Finishing this section we handle the proof of the supporting Lemma 5.2 of the size of
coset Hi,0.

Proof of Lemma 5.2 (the size of coset Hi,0). The proof is by induction on i, the number of leaf-
paths in Hi,0. For i = 0, the lemma follows from Equality (3.3). Hence, we may assume
that i ⩾ 1 and thus h ⩾ 2. We then have that

volt(Gh,k, Hi,0) = volt(Gh,k, Hi−1,0) − volt(Gh−1,k, Hi−1,0) (5.7)

=
i−1∑
j=0

(−1)j

(
i − 1

j

)
LP

h−j,k(t) −
i−1∑
j=0

(−1)j

(
i − 1

j

)
LP

h−1−j,k(t) (5.8)

=
i−1∑
j=0

(−1)j

(
i − 1

j

)
LP

h−j,k(t) −
i∑

j=1
(−1)j−1

(
i − 1
j − 1

)
LP

h−j,k(t) (5.9)

=
i−1∑
j=0

(−1)j

(
i − 1

j

)
LP

h−j,k(t) +
i∑

j=1
(−1)j

(
i − 1
j − 1

)
LP

h−j,k(t)

=
i∑

j=0
(−1)j

(
i

j

)
LP

h−j,k(t),

where Equality (5.7) holds by Lemma 5.1, Equality (5.8) follows by induction, and Equality (5.9)
holds by changing j to j + 1 in the second sum.

6. Lemma of the loops

This section is dedicated to establishing Lemma 4.2 of the loops. As always, Hi,j denotes any
internally Eulerian subgraph of Gh,k with i leaf-paths and j loops. To handle the boundary
conditions on the indices, we recall that H0,0 = ∅. Moreover, for any (h, k)-caterpillar Gh,k we
have h + k ⩾ 2, by definition.
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6.1. Supporting lemmas

The proof of Lemma 4.2 of the loops relies on two supporting lemmas. For conciseness, we
recall that if X is a subset of RE we write vola even(X ) to denote the number of integer points w
in X such that wa is even and we write vola odd(X ) to denote the number of integer points w
in X such that wa is odd.

Lemma 6.1 (Q to P). Let h and k be integers such that h ⩾ 0 and k ⩾ 1 and let a be a leaf-edge
in Gh+1,k−1. For every nonnegative even integer t, we have that

volt(Gh,k,∅) − volt(Gh,k, H0,1) = vola even(tPGh+1,k−1) − vola odd(tPGh+1,k−1).

Lemma 6.2 (the evaluation). Let h and k be integers such that h ⩾ 1 and k ⩾ 0 and let a be a
leaf-edge in Gh,k. For every nonnegative even integer t, we have that

vola even(tPGh,k
) − vola odd(tPGh,k

) =
{

( t
2 + 1)k if t ≡ 0 (mod 4) or h = 1,

0 if t ≡ 2 (mod 4).

6.2. Proof of the lemma of the loops

Lemma 4.2 is a straightforward consequence of the supporting lemmas.

Proof of Lemma 4.2 (the loops). Because h and k are integers such that h ⩾ 0 and k ⩾ 1,
Gh+1,k−1 has a leaf-edge a. We have that

volt(Gh,k,∅) − volt(Gh,k, H0,1) = vola even(tPGh+1,k−1) − vola odd(tPGh+1,k−1)

=
{

( t
2 + 1)k+1 if t ≡ 0 (mod 4) or h = 0,

0 if t ≡ 2 (mod 4),

where the first equality is by Lemma 6.1 and, noting that h + 1 ⩾ 1 and k − 1 ⩾ 0, the second
equality is obtained by applying Lemma 6.2 to Gh+1,k−1.

6.3. Proofs of the supporting lemmas

We begin by proving Lemma 6.1, which moves our attention from the polytope QGh,k
to the

polytope PGh,k
.

Proof of Lemma 6.1 (Q to P). Let a be an edge of Gh,k, and let ℓ be a loop of Gh,k, both incident
with the same node r. By Lemma 3.5, we may assume that H0,1 is the subgraph induced by the
loop ℓ and that the configuration is as depicted in Figure 6.1(a). In the proof we write ℓ instead
of H0,1. This lemma is concerned with the evaluation of

volt(Gh,k,∅) − volt(Gh,k, ℓ) = |partt(Gh,k,∅)| − |partt(Gh,k, ℓ)|.

For α = 0, . . . , t, let

Zℓ even
α := {(w, z) ∈ partt(Gh,k,∅) : zr = α}, and

Zℓ odd
α := {(w, z) ∈ partt(Gh,k, ℓ) : zr = α}.
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Gh+1,k−1

Figure 6.1: (a) Gh,k and the edge a, loop ℓ and node r. (b) Gh+1,k−1 obtained from Gh,k by
deleting ℓ.

The sets Zℓ even
0 , . . . , Zℓ even

t form a partition of partt(Gh,k,∅) and the sets Zℓ odd
0 , . . . , Zℓ odd

t form
a partition of partt(Gh,k, ℓ). Accordingly,

volt(Gh,k,∅) = |Zℓ even
0 | + · · · + |Zℓ even

t |, and (6.1)
volt(Gh,k, ℓ) = |Zℓ odd

0 | + · · · + |Zℓ odd
t |. (6.2)

Let E be the set of edges and I be the set of internal nodes of Gh,k. Consider the function
ϕ+ : RE × RI → RE × RI , given by the shifting operation

ϕ+(w, z) = (w, z) + (1ℓ,1r).

One can verify that for every α even, α < t, the function ϕ+ is a bijection between Zℓ even
α

and Zℓ odd
α+1 . Therefore, for every α even, α < t, we have that |Zℓ even

α | = |Zℓ odd
α+1 |.

Similarly, consider the function ϕ− : RE × RI → RE × RI , given by the reverse shifting

ϕ−(w, z) = (w, z) − (1ℓ,1r).

One can also check that for every α odd, α ⩽ t, the function ϕ− is a bijection between Zℓ even
α

and Zℓ odd
α−1 . Consequently, for every α odd, α ⩽ t, we have that |Zℓ even

α | = |Zℓ odd
α−1 |.

Keeping in mind the induced bijections given by the shiftings ϕ+ and ϕ−, and using Equali-
ties (6.1) and (6.2), we can see that for every nonnegative even integer t:

volt(Gh,k,∅) − volt(Gh,k, ℓ) = |Zℓ even
0 | + · · · + |Zℓ even

t | − |Zℓ odd
0 | − · · · − |Zℓ odd

t |
= (|Zℓ even

0 | − |Zℓ odd
1 |) + (|Zℓ even

1 | − |Zℓ odd
0 |) + · · ·

+ (|Zℓ even
t−2 | − |Zℓ odd

t−1 |) + (|Zℓ even
t−1 | − |Zℓ odd

t−2 |)
+ (|Zℓ even

t | − |Zℓ odd
t |)

= |Zℓ even
t | − |Zℓ odd

t |.

Our next and last step in this proof is showing that for every nonnegative even integer t:

|Zℓ even
t | − |Zℓ odd

t | = vola even(tPGh+1,k−1) − vola odd(tPGh+1,k−1). (6.3)

For this we outline bijections between the sets Zℓ even
t and {w′ ∈ tPGh+1,k−1 : w′

a is even} and
between the sets Zℓ odd

t and {w′ ∈ tPGh+1,k−1 : w′
a is odd}.
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The (h + 1, k − 1)-caterpillar Gh+1,k−1 will be seen as resulting from the deletion of the
loop ℓ from Gh,k. Because we denote the edge set of Gh,k by E, then the edge set of Gh+1,k−1
is E \ {ℓ}. If (w, z) is a point in Zℓ even

t ∪ Zℓ odd
t , then we is an even integer for each e in E \ {ℓ}.

Moreover, as each point (w, z) ∈ QGh,k
satisfies wa + 2wℓ = 2zr, if (w, z) is a point in Zℓ even

t ,
then wa ≡ 0 (mod 4) and if (w, z) is a point in Zℓ odd

t , then wa ≡ 2 (mod 4).
Consider the function from RE × RI to RE\{ℓ} given by (w, z) 7→ w′, where w′

e = we/2 for
each e in E\{ℓ}. From the above observations concerning parity, one can verify that (w, z) 7→ w′

injectively maps Zℓ even
t into {w′ ∈ tPGh+1,k−1 : w′

a is even} and injectively maps Zℓ odd
t

into {w′ ∈ tPGh+1,k−1 : w′
a is odd}.

Conversely, consider the function from RE\{ℓ} to RE ×RI given by w′ 7→ (w, z) as follows.
Firstly we set we = 2w′

e for each e in E \ {ℓ} and set wℓ = t − w′
a. Secondly, for each internal

node v of Gh,k, we set zv to the sum of the components of w associated to the edges incident
to v, adding twice the value associated to loops. Once more, one can check that w′ 7→ (w, z)
provides the inverse injective function.

Remark 6.3. From the previous proof, one can derive that for every nonnegative odd integer t:

volt(Gh,k,∅) − volt(Gh,k, ℓ) = |Zℓ even
0 | + · · · + |Zℓ even

t | − |Zℓ odd
0 | − · · · − |Zℓ odd

t |
= (|Zℓ even

0 | − |Zℓ odd
1 |) + (|Zℓ even

1 | − |Zℓ odd
0 |) + · · ·

+ (|Zℓ even
t−1 | − |Zℓ odd

t |) + (|Zℓ even
t | − |Zℓ odd

t−1 |)
= 0.

This equality also follows from the more generic lemma of Liu and Osserman [LO06,
Lemma 3.3].

It remains to prove Lemma 6.2 of the evaluation. Consider an (h, k)-caterpillar Gh,k

for h ⩾ 1. Let r be a leaf of Gh,k, let a be the edge incident to r, and let q be the other
end node of a. There are two other edges, not necessarily distinct, b and c incident to q.
If w is a point in Outa(tPGh,k

), then wa + wb + wc = t or wa = wb + wc. Therefore
wa = min{t − wb − wc, wb + wc}. Similarly, if w is a point in Ina(tPGh,k

), then wb = wa + wc

or wc = wa + wb. Thus, wa = max{wb − wc, wc − wb}. This digression is summarized in the
following lemma.

Lemma 6.4. If a is a leaf-edge of Gh,k and b and c are two other edges incident to a,
not necessarily distinct, then wa = min{t − wb − wc, wb + wc} for every w ∈ Outa(tPGh,k

)
and wa = max{wb − wc, wc − wb} for every w ∈ Ina(tPGh,k

).
It is a consequence of Lemma 3.5 and Lemma 6.1 that the value of

vola even(tPGh,k
) − vola odd(tPGh,k

)

does not depend on the chosen leaf-edge a; it depends only on the integers t, h and k. Thus, for
conciseness, we may define

∆h,k(t) := vola even(tPGh,k
) − vola odd(tPGh,k

),

where a is any leaf-edge of Gh,k. We now state and prove a lemma that supplies the inductive
step used in the validation of Lemma 6.2.
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Lemma 6.5 (the inductive step). Let h and k be integers such that h ⩾ 1, k ⩾ 0, and h + k ⩾ 3.
For every nonnegative even integer t, we have that

∆h,k(t) =
{

∆1,1(t) × ∆1,k−1(t) if h = 1,
∆2,0(t) × ∆h−1,k(t) if h > 1.

Proof. Let a be a leaf-edge of Gh,k. Let q be the other end vertex of a. Because h + k ⩾ 3,
there are two other distinct edges b and c of Gh,k incident to q. We may assume that a is a stem
of Gh,k and b is either a leaf-edge of Gh,k or is incident to a loop (Figure 6.2(a)). We shall
conveniently delineate two edge-disjoint subgraphs of Gh,k having the vertex q as root. The first
is the subgraph B that has q as its root and b as its stem. The second is the subgraph C having q
as its root and c as a stem. If b is a leaf-edge of Gh,k, then B = G2,0 and C = Gh−1,k, otherwise
B = G1,1 and C = Gh,k−1 (Figure 6.2(b)). If we define

∆B(t) := volb even(tPB) − volb odd(tPB) and ∆C(t) := volc even(tPC) − volc odd(tPC),

then the assertion of this lemma translates into the equality ∆h,k(t) = ∆B(t) × ∆C(t).

b bbb

bbbbbab b b b

b

b b

bb

b
r

b

c
q

Gh,k C

b

c

b

B

bb bb bb bb

(a) (b)

qq

Figure 6.2: (a) Gh,k with stem a, edges b and c, and node q. The dotted loop may not exist. (b)
The graph B with stem b and root q and the graph C with stem c and root q.

In order to prove the lemma it suffices to show that

|Outa(tPGh,k
)| = volb even(tPB) × volc even(tPC) + volb odd(tPB) × volc odd(tPC), and (6.4)

|Ina(tPGh,k
)| = volb even(tPB) × volc odd(tPC) + volb odd(tPB) × volc even(tPC). (6.5)

Indeed, by setting X = tPGh,k
and e = a in Lemma 5.4 of the bijection by shifting, we attain as

a consequence that

∆h,k(t) = |Outa(tPGh,k
)| − |Ina(tPGh,k

)|
= volb even(tPB) × volc even(tPC) + volb odd(tPB) × volc odd(tPC)
= − volb even(tPB) × volc odd(tPC) − volb odd(tPB) × volc even(tPC)
= (volb even(tPB) − volb odd(tPB)) × (volc even(tPC) − volc odd(tPC))
= ∆B(t) × ∆C(t),
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where the first equality is by Lemma 5.4, the second equality is due to (6.4) and (6.5) and the
last equality follows by definition.

We start by showing Equality (6.4). For this we give maps between Outa(tPGh,k
) and the

collection of pairs (wB, wC) of integer points with wB in tPB and wC in tPC such that wB
b +wC

c

is even, indicating that wB
b and wC

c are both even or both odd. By Lemma 6.4, for every w
in Outa(tPGh,k

) we have that wa = min{t − wb − wc, wb + wc}, implying that wb + wc

is even because t and wa are even. Thus, the restriction of each w in Outa(tPGh,k
) to tPB

and to tPC produces a unique pair (wB, wC) of integer points such that wB
b + wC

c is even.
Conversely, given such a pair (wB, wC) of integers point with wB

b + wC
c even, we construct

an integer point w by setting we = wB
e for e ∈ E(B), setting we = wC

e for e ∈ E(C),
and setting wa = min{t − wb − wc, wb + wc}. Clearly w satisfies the system of inequalities
that defines PGh,k

associated to each internal node v in Gh,k with v ̸= q. Let us now ex-
amine the inequalities associated to the vertex q. Firstly, the value of wa was set so that
wa + wb + wc ⩽ t and wa ⩽ wb + wc. Secondly, because wc = wC

c ⩾ 0 and wb = wB
b ⩾ 0,

if wa = wb + wc then wb ⩽ wa + wc and wc ⩽ wa + wb. Finally, because wb = wB
b ⩽ t/2 and

wc = wC
c ⩽ t/2, if wa = t − wb − wc, then wa + wb = t − wb − wc + wb = t − wc ⩾ wc and

wa + wc = t − wb − wc + wc = t − wb ⩾ wb. This concludes the proof of Equality (6.4).
We verify the validity of Equality (6.5) in the same fashion. We mount maps be-

tween Ina(tPGh,k
) and the collection of pairs (wB, wC) of integer points with wB in tPB and wC

in tPC such that wB
b + wC

c is odd, indicating that wB
b and wC

c have different parity. If w is
in Ina(tPGh,k

), then wa is odd and, by Lemma 6.4, wa = max{wb − wc, wc − wb}, implying
that wb + wc is odd. The restriction of w to tPB and to tPC maps w to a pair (wB, wC) of
integer points such that wB

b + wC
c is odd. This gives us one of the maps we want. The other

map is the extention of such a pair (wB, wC) of integer points with wB
b + wC

c odd to the inte-
ger point w such that wa = max{wB

b − wC
c , wC

c − wB
b }. This gives us the converse map. It

is clear that w satisfies the inequalities associated to each internal node v of Gh,k with v ̸= q.
By symmetry we may assume that wa = wb − wc = wB

b − wC
c . Because 0 ⩽ wB

b ⩽ t/2
and 0 ⩽ wC

c ⩽ t/2, then 0 ⩽ wa ⩽ t/2, wa ⩽ wb +wc, wb = wa +wc, wc = wb −wa ⩽ wa +wb

and wa + wb + wc = wB
b − wC

c + wB
b + wC

c = 2wB
b ⩽ t. This concludes the proof of the

lemma.

We have now all the tools to prove Lemma 6.2 of the evaluation and close the proof of
Theorem 1.5 of the period of LP

G(t).

Proof of Lemma 6.2 (the evaluation). Using the abbreviation

∆h,k(t) = vola even(tPGh,k
) − vola odd(tPGh,k

),

we have to prove that

∆h,k(t) =
{

( t
2 + 1)k if t ≡ 0 (mod 4) or h = 1,

0 if t ≡ 2 (mod 4).

The proof is by induction on h + k. The base case is h + k = 2 and we have two possibilities,
either (h, k) = (2, 0) or (h, k) = (1, 1). Let us first consider the case (h, k) = (2, 0). The
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system that defines tPG2,0 is simply

0 ⩽ wa ⩽ t/2,

where a is the unique edge of G2,0. The integer points in tPG2,0 are wa = 0, 1, . . . , t/2.
If t ≡ 0 (mod 4) then t/2 is even and ∆2,0(t) = 1. If t ≡ 2 (mod 4) then t/2 is odd
and ∆2,0(t) = 0. Therefore,

∆2,0(t) =
{

1 if t ≡ 0 (mod 4),
0 if t ≡ 2 (mod 4). (6.6)

Now we consider the case (h, k) = (1, 1). The system that defines tPG1,1 is simply

wa ⩽ t − 2wℓ

wa ⩽ 2wℓ

wa ⩾ 0,

where a is the leaf-edge and ℓ is the loop of G1,1. By Lemma 6.4, we have that wa = 0 for
every w in Ina(tPG1,1) and that wa = min{t − 2wℓ, 2wℓ} for every w in Outa(tPG1,1). Thus,
Ina(tPG1,1) = ∅ and, for each wℓ in {0, . . . , t/2}, there is a unique point w in Outa(tPG1,1).
Therefore, by setting X = tPG1,1 and e = a in Lemma 5.4 of the bijection by shifting, we attain
as consequence that for every nonnegative even integer t

∆1,1(t) = |Outa(tPGh,k
)| − |Ina(tPGh,k

)| = t

2 + 1. (6.7)

Now, we may assume that h + k ⩾ 3. If h = 1, then for every nonnegative even integer t

∆h,k(t) = ∆1,1(t) × ∆1,k−1(t) =
(

t

2 + 1
)

×
(

t

2 + 1
)k−1

=
(

t

2 + 1
)k

,

where the first equality follows from Lemma 6.5 and the second equality is due to (6.7) and the
induction hypothesis.

If h > 1, then for every nonnegative even integer t

∆h,k(t) = ∆2,0(t) × ∆h−1,k(t) =

 1 ×
(

t
2 + 1

)k
=
(

t
2 + 1

)k
if t ≡ 0 (mod 4),

0 × ∆h−1,k(t) = 0 if t ≡ 2 (mod 4),

where the first equality follows from Lemma 6.5 and the second equality is due to (6.6) and the
induction hypothesis. With this we finalize the proof of this lemma.

7. Further research directions

In this section, we present various notable results on the polytopes of Liu and Osserman, ob-
tained in the course of our investigations, that seem interesting on their own. We also discuss
a surprising relation between these polytopes and invariants used to distinguish 3-manifolds as
well as an unexpected connection with arrangements of curves.
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7.1. The coset-based technique

It would be very interesting if the the coset-based method explored by Liu and Osserman [LO06],
and futher developed in this paper, could be applied to derive some information about the Ehrhart
quasi-polynomials for other families of polytopes. In the coset-based method, the integer points
of a polytope are embedded into the collection of intersections of cosets of a lattice with another
polytope, where we already have some knowledge about its Ehrhart quasi-polynomial. We note
that there is a very high degree of symmetry in the polytopes PG and QG. Families of polytopes
with a certain degree of symmetry could be natural candidates for possibly applying the coset-
based technique with some success.

A fascinating collection of polytopes are those integer polytopes that tile Rd by translations
with some lattice L. Indeed such an approach seems promising for these tiling polytopes due to
their symmetry and the recent results of Lev and Liu [LL19], as follows.

Theorem 7.1 ([LL19, Proposition 1.3]). Let A, B ⊂ Rd be two d-dimensional polytopes, and
let L be a d-dimensional lattice. Suppose A tiles Rd by translations with the lattice L. Then B
also tiles Rd by translations with the lattice L if and only if A and B are equidecomposable with
respect to vectors from L.

If a rational polytope A tiles Rd by translations with a lattice L ⊂ Zd, then the cosets of L
in Zd are a natural candidate for the coset method we explored here. In particular, if B is a
rational cube that has the same volume as A, then we might derive information about the Ehrhart
quasi-polynomial of A by using the “trivial” Ehrhart quasi-polynomial of B.

When attempting to obtain some knowledge about the Ehrhart polynomial of a tiling polytope
by using the latter theorem, one complication that may arise is that partially-closed polytopes
might be required, due to the non-overlapping constraint inherent in such a geometric recon-
struction. Nevertheless, perhaps such an approach for the family of tiling polytopes may be
feasible.

In closing, we also mention the family of multi-tiling polytopes [LL19], which naturally
extend the family of tiling polytopes, are necessarily symmetric and their facets are also sym-
metric [GRS12].

7.2. Skeleton of the {1, 3}-trees polytopes

The next result was previously observed by Liu and Osserman [LO06, proof of Corollary 3.6].

Lemma 7.2. If T is a {1, 3}-tree, then the polytope PT is full-dimensional.

Proof. If n is the number of degree 3 nodes in T , then we must prove that PT has dimen-
sion 2n + 1. Let E be the set of edges of T . For an edge e ∈ E, let we = 1

3(1T − 1e). It is
easy to check that we ∈ PT for every e. Moreover, the set {we : e ∈ E} together with the origin
forms a set of affinely independent vectors with 2n + 2 vectors.

Here is a consequence of Theorem 2.4.
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Corollary 7.3. For every {1, 3}-tree T , there is a bijection between vertices of PT and subsets
of the leaves of T with an even number of leaves. Thus, for every {1, 3}-tree T with m edges,
PT has 2m+1

2 vertices.

Proof. Let S denote an arbitrary subset of the leaves of T such that |S| is even. As T is a tree,
each such S corresponds to exactly one collection of |S|/2 disjoint leaf-paths in T whose ends
are exactly the leaves in S. The converse is also true: to each collection H of disjoint leaf-paths
in T , we can associate the set of ends of the paths in H , and this set contains only leaves, and
clearly an even number of them.

Recall that a {1, 3}-tree on m edges has ℓ = m+3
2 leaves. If ℓ is even, then the number of

subsets S of the leaves with |S| even is half of the total number of sets of leaves in T , that is,
half of 2ℓ. If ℓ is odd, then the number of subsets S of the leaves with |S| even is also half of
the total number of sets of leaves in T . Indeed, it is the sum of

(
ℓ
2i

)
for i = 0, 1, . . . , (ℓ−1)/2,

which is equal to the sum of
(

ℓ−1
i

)
for i = 0, . . . , ℓ−1, that is 2ℓ−1 = 2m+1

2 .

Corollary 7.3 implies that there is a nontrivial bijection between vertices of the polytopes of
different {1, 3}-trees with the same number of edges.

The symmetric difference between sets A and B is the set A △ B = (A ∪ B) \ (A ∩ B). For
a vertex w of PT , let Hw denote the collection of disjoint leaf-paths such that w = 1

21Hw .

Theorem 7.4. Let w and w′ be two distinct vertices of PT . Then w and w′ are adjacent in the
1-skeleton of PT if and only if Hw △ Hw′ is a leaf-path.

Proof. Note that Hw △ Hw′ is a disjoint collection {P1, . . . , Pk} of leaf-paths, with k ⩾ 1.
If k = 1, then let L denote the set of edges incident to leaves of T . Let Lw denote the edges
of Hw in L and Lw′ denote the edges of Hw′ in L. Because k = 1, we have that

|Lw △ Lw′ | = 2. (7.1)

The hyperplane h(x) : ∑e∈Lw∩Lw′ 2 xe + ∑
e∈L\(Lw∪Lw′ )(1 − 2 xe) = |L| − 2 is a supporting

hyperplane of PT , with w and w′ being the only vertices of PT in this hyperplane. Indeed, for
every x ∈ PT ,∑

e∈Lw∩Lw′

2 xe +
∑

e∈L\(Lw∪Lw′ )
(1 − 2 xe) ⩽ |Lw ∩ Lw′ | + |L \ (Lw ∪ Lw′)| (7.2)

= |L \ (Lw △ Lw′)| = |L| − 2,

where the last equality is due to (7.1). Also, if x is a vertex of PT , then inequality (7.2) is tight if
and only if the set Lx of leaves of Hx is such that Lw ∩ Lw′ ⊆ Lx ⊆ Lw ∪ Lw′ . There are exactly
only two different such sets Lx with |Lx| even, namely, Lw and L′

w. Therefore, by Corollary 7.3,
inequality (7.2) is tight only for vertices w and w′, implying that w and w′ are adjacent in the
1-skeleton of Pt.

If k > 1, then we will show that the middle point m of the segment [w, w′] is a convex com-
bination of other two vertices of PT , and therefore w and w′ are not adjacent. Let u = 1Hw△P1

and v = 1Hw△(P2∪···∪Pk). Since Hw △ P1 and Hw △ (P2 ∪ · · · ∪ Pk) are disjoint collections
of leaf-paths, u and v are vertices by Theorem 2.4. Also, u and v are distinct from w and w′,
as k > 1. Now it is enough to note that m = w+w′

2 = u+v
2 .
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Corollary 7.5. Let T be a {1, 3}-tree with ℓ leaves. Then the degree of each vertex of the
polytope PT is

(
ℓ
2

)
.

Proof. From Theorem 7.4, every vertex of PT has a neighbour for each leaf-path in T .

Question 7.6. Is there a (combinatorial) characterization of the vertices and edges of the 1-
skeleton of PG for an arbitrary {1, 3}-graph G?

7.3. Symmetry of the {1, 3}-trees polytopes

We propose a family of involutive isometries of PT showing its high degree of symmetry.

Theorem 7.7. Let T be a {1, 3}-tree with n degree 3 nodes and let H be a disjoint collection of
leaf-paths in T . We define the function hH : R2n+1 −→ R2n+1 by

hH(w) =
{

1
2 − we if e ∈ E(H),
we otherwise.

Then hH is an isometry of PT to itself.

Proof. We notice that hH is an involution, and that

hH(w) = w · B + 1
21H

where B is the ((2n + 1) × (2n + 1))-matrix where the entry (e, e)1⩽e⩽2n+1 equals 1 (resp. −1)
if e ̸∈ E(H) (resp. e ∈ E(H)) and zero elsewhere. It can be checked that det(B) = ±1 and
also that B · Bt = Bt · B = I with Bt the transpose of B and I the identity. Therefore, B is a
rotation matrix and thus an isometry. The 1

21H translation does not affect the isometry, so hH is
indeed an isometry.

Moreover, if v is a vertex of PT then hH(v) is a vertex of hH(PT ) = PT . Indeed, if v is a
vertex of PT then there is a collection of disjoint leaf-paths Hv such that v = 1

21Hv . We notice
that

hH(v) = 1
21H△Hv

and, because H △ Hv is also a collection of disjoint leaf-paths, hH(v) correspond to a vertex
of PT . Hence hH is an isometry of PT to itself.

Remark 7.8. Each function hH is an involution, and it can be therefore thought of as a particular
even permutation on the set of vertices of PT .

By Theorem 2.4, we clearly have that 2PT is a 0/1 polytope. In view of the above combina-
torial properties, it might be reasonable to consider 2PT as a good candidate to study different
questions in connection with 0/1 polytopes. For instance, a very basic (but difficult) problem is
to count the minimal number of simplices needed to triangulate the d-dimensional cube. The
following question is in the same spirit.

Question 7.9. Let T be a (1, 3)-tree. What is the smallest number of simplices needed to trian-
gulate 2PT ?
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7.4. Graphs with the same degree sequence

Liu and Osserman [LO06, Remark 3.11] observed that, if G and H are two connected {1, 3}-
graphs on n nodes and m edges, then G and H have the same number of internally Eulerian
subgraphs. In other words, for connected {1, 3}-graphs, the number NG depends only on the
number of nodes and edges in G. Specifically, as we have mentioned just after Example 3.1,
if k = m−n+1 is the cyclomatic number of G and h is the number of leaves in G, then NG = 2k

if h = 0 and NG = 2k+h−1 if h > 0.
We observe that, if G and H are two connected graphs on n nodes and the same degree se-

quence, then G and H have the same number of internally Eulerian subgraphs, that is, NG = NH .
Indeed, a previous result [FdPAR21, Theorem 1] states that G can be transformed into H by a
series of NNIs. Specifically, an NNI move preserves the degree sequence of the graph. The
discussion that precedes Lemma 3.2 establishes for connected {1, 3}-graphs that an NNI move
preserves (internally) Eulerian subgraphs; but NNI moves also preserve (internally) Eulerian
subgraphs in connected graphs with the same degree sequence. Thus the NNIs transforming G
into H naturally induce a bijection between (internally) Eulerian subgraphs of G and H . From
the proof of [FdPAR21, Theorem 1], we may strengthen Liu and Osserman’s remark as follows.
Remark 7.10. Let G be a connected graph with n nodes and m edges. Let h be the number
of leaves of G and k = m − n + 1 be the cyclomatic number of G. Then the number NG of
internally Eulerian subgraphs of G is 2k if h = 0 and 2k+h−1 if h > 0.

This leads also to a purely combinatorial proof (instead of a linear algebraic approach)
that the number of Eulerian subgraphs of a connected graph with n nodes and m edges is 2k

where k = m − n + 1 is the cyclomatic number of the graph [Die17, Theorem 1.9.6].

7.5. Nonintersecting closed curves

A 3-regular hypergraph is a pair H = (V, E) where V is the set of nodes of H and each element
of E is a hyperedge, and consists of exactly three elements of V . Let a, b, and c be the three
nodes in a hyperedge e ∈ E. Let wa, wb, and wc be variables satisfying the following system of
linear inequalities, which we refer to as SH

t (e):

wa ⩽ wb + wc

wb ⩽ wa + wc

wc ⩽ wa + wb

wa + wb + wc ⩽ t . (7.3)

Let SH
t be the union of all the linear systems SH

t (e) taken over all hyperedges e of H and
let PH be the set consisting of all real solutions to this linear system when t = 1. Because of the
constraints (7.3), PH turns out to be a polytope.

Given a cubic graph G, we can naturally associate a 3-regular hypergraph HG having as
nodes the set of edges of G and each hyperedge is given by the edges incident to a node of G. In
this case, we have that PHG

= PG.
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For each hyperedge e of a hypergraph H , let us consider an auxiliary variable ze and substi-
tute constraint (7.3) in each system SH

t (e) by the parity constraint:

wa + wb + wc = 2 ze

ze ⩽ t .

Let S̄H
t be the union of all these modified linear systems, taken over all hyperedges e of H .

The polytope QH consists of all real solutions to this linear system when t = 1. We notice
that QHG

= QG for every cubic graph G.
Let T be a triangulation of a 3-manifold. Let HT = (V, E) be the hypergraph having as set V

of nodes the edges of T and the set E of hyperedges are the 3-sets corresponding to the triangles
which are faces of the tetrahedra used in T . We notice that a node of HT (that is, an edge of T )
could belong to more than two hyperedges (that is, the corresponding edge is shared by two or
more tetrahedra in T ). Maria and Spreer [MS16] studied the notion of admissible colourings of
the edges of T with r − 1 colours, that correspond to integer solutions of the linear system S̄HT

t

for t = r −2, and thus correspond to integer points in the dilated polytope tQHT . They interpret
each admissible colouring as a surface embedded in the triangulated 3-manifold and use this to
derive better algorithms to compute Turaev–Viro invariants of degree 4 for the 3-manifold. Note
that Maria and Spreer [MS16, Section 2.3] defined a reduction of an admissible colouring that
is an admissible colouring with two colours, that is, r = 3, and they decomposed the invariants
according to these reduced colourings. This plays very much the same role as the cosets we used
in our results.

In the same spirit, we mimic the above construction of Maria and Spreer [MS16] for a tri-
angulation T of the 2-sphere. We do so by taking T as a graph embedded in the plane and by
considering its dual graph T ∗. Note that T ∗ is a planar cubic graph. We shall see that the inte-
ger points in the dilated polytope tQT ∗ have an intriguing geometric interpretation in terms of
arrangements of pseudocircles.

A pseudocircle is a non-self-intersecting continuous closed curve in the plane. A T -
arrangement of pseudocircles is a (possibly empty) set of nonintersecting pseudocircles C on
the plane such that (i) C intersects T transversally in the interior of edges (not touching nodes)
and (ii) when C enters into a facial triangle through an edge, it leaves the triangle through a
different edge. The order of a T -arrangement is the maximum number of times a facial triangle
of T is traversed by pseudocircles in the arrangement.

It turns out that each integer point in the rational polytope tQT ∗ induces a T -arrangement
of pseudocircles of order at most t and vice-versa. Indeed, for each such integer point in tQT ∗ ,
we can construct systems of arcs in each facial triangle of T inducing such a T -arrangement of
pseudocircles. To show this correspondence, we may proceed as follows.

Consider a facial triangle of T formed by edges {a, b, c} and let w′
a, w′

b, and w′
c be the values

of wa, wb, and wc in the solution w, respectively. We may assume without loss of generality
that w′

a ⩾ w′
b ⩾ w′

c. Draw w′
a points along a, and similarly for b and c. Recall that w′

a ⩽ w′
b +w′

c.
Let xab be the common node of a and b. If w′

a = w′
b +w′

c then draw arcs joining the w′
b points in a

closer to xab to the points in b, and draw arcs joining the remaining w′
c points in a to the points

in c (Figure 7.1(a)). If w′
a < w′

b +w′
c then let xbc be the common node of b and c. First draw arcs

joining the (w′
b + w′

c − w′
a)/2 points in b closer to xbc to the (w′

b + w′
c − w′

a)/2 points in c closer
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to xbc. Then draw arcs joining the remaining points in b to the points in a closer to xab, and draw
arcs joining the remaining points in c to the points farther from xab in a (Figure 7.1(b)).

(a)
xab

c

ba

(b)

xbc

xab

c

ba

Figure 7.1: (a) w′
a = w′

b + w′
c and (b) w′

a < w′
b + w′

c.

Example 7.11. Consider a triangulation of the 2-sphere whose corresponding graph is a K4.
Note that the dual K∗

4 of a K4 is isomorphic to K4 (Figure 7.2(a)). It can be checked
that w1 = w4 = w6 = 2, w2 = w3 = 3, w5 = 1, ze1 = 2, ze2 = ze3 = ze4 = 3 and
w1 = w2 = w3 = w4 = w5 = w6 = 2, ze1 = ze2 = ze3 = ze4 = 3 are two integer
points in 3QK4 . The corresponding induced nonintersecting pseudocircles are illustrated in Fig-
ure 7.2(b).

(a) (b)

1 2

3

4

56

Figure 7.2: (a) K4 with labeled edges, representing a triangulation of the plane; (b) Two arrange-
ments of curves of order 3.

As a consequence of the above discussion we conclude that the number LQ
T ∗(t) of integer

points in tQT ∗ is exactly the number of T -arrangements of pseudocircles of order at most t.

Lemma 7.12. For any triangulation T of the 2-sphere, the number of T -arrangements of pseu-
docircles of order at most t is the number LQ

T ∗(t) of integer points in the rational polytope tQT ∗ .

We know by Ehrhart theory that the number of points in tQT ∗ grows as a quasi-polynomial
in t, so that, by Lemma 7.12, the number of T -arrangements of pseudocircles of order at most t
also grows as a quasi-polynomial in t. But we would like to know whether this quasi-polynomial
collapses to a polynomial function of t.



40 Cristina G. Fernandes et al.

Question 7.13. Let T be a triangulation of the plane and t ⩾ 0 be an integer. Does the number
of T -arrangements of pseudocircles of order t grow polynomially in t?

A positive answer to the previous question would imply that QT ∗ has period 1.
A well-known problem in dimension 1 asks for the number of ways to construct an admissible

set of n parentheses for a word of length 2n [Sta99, Problem 6.19(b)]. To put this problem into
our context, this 1-dimensional counting problem is equivalent to the following question [Sta99,
Problem 6.19(o)]:

What is the number of ways of connecting 2n points lying on a horizontal line by n
nonintersecting arcs, each arc connecting two of the points and lying above the
points?

Figure 7.3: Five ways to connect 6 points by 3 nonintersecting arcs.

The answer to this problem is given by the Catalan numbers. Note that each configuration in
Figure 7.3 naturally induces an arrangement of nonintersecting circles (by closing up arcs with
their mirrors) which is closely connected to arrangements of pseudocircles.

Question 7.14. Would the above information shed light on the understanding of LQT ∗ ?
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