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ABSTRACT

Many aquatic organisms can thrive in polluted environments by having the

genetic  capability  to  withstand  sub-optimal  conditions.  However,  the

contributions of microbiomes under these stressful environments are poorly

understood.  We  investigated  whether  a  mercury-tolerant  microbiota can

extend its phenotype to its host by ameliorating host survival and fecundity

under mercury-stress. We isolated microbiota members from various clones

of  Daphnia magna,  screened for  the mercury-biotransforming  merA gene,

and  determined  their  mercury  tolerance  levels.  We  then  introduced  the

mercury-tolerant  microbiota,  Pseudomonas-10,  to  axenic  D.  magna and

quantified  its  merA gene  expression,  mercury  reduction  capability  and

measured its impact on host survival and fecundity. Expression of merA gene

was  up-regulated  in  Pseudomonas-10,  both  in  isolation  and  in  host-

association  with  mercury  exposure.  Pseudomonas-10  is  also  capable  of

significantly  reducing  mercury  concentration  in  the  medium.  Notably,

mercury-exposed  daphnids  containing  only  Pseudomonas-10 exhibited

higher survival and fecundity than mercury-exposed daphnids supplemented

with  parental  microbiome.  Our  study  showed  that  zooplankton,  such  as

Daphnia, naturally harbor microbiome members that are eco-responsive and

tolerant to mercury exposure and can aid in host survival and maintain host

fecundity  in  a  mercury-contaminated  environment.  This  study  further

demonstrates that under stressful environmental condition, the fitness of the

host can depend on the genotype and the phenotype of its microbiome.
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INTRODUCTION

Daphnia is a ubiquitous keystone zooplankton species found in many

aquatic  ecosystems,  capable  of  growing  in  both  pristine  and  polluted

environments.  It  can  withstand  many  environmental  stressors,  hence,  is

widely  used as  a  model  organism for  numerous  research  (1-7), including

studies on the effects of temperature fluctuations (8, 9), food availability (10-

12), predations (13-15), and exposure to metal pollutants (such as mercury,

cadmium,  copper,  arsenic)  (16-23).  To  date,  mercury  studies  on  Daphnia

have  focused  mainly  on  the  mechanisms  of  uptake,  accumulation  and

elimination in  D. magna (16, 24-26). While host responses to stressors are

evaluated primarily,  the responses and contributions of  their microbiomes

are often overlooked. Aside from host genetics, microbiomes can also be an

important  component  in  host  survival  in  deleterious  environments.  For

instance, the gut microbiome of desert woodrats enhances the host’s ability

to  ingest  plants  with  toxic  secondary  compounds  (27),  and  the  gut

microbiota of a coffee berry borer can detoxify the caffeine ingested by its

host,   allowing the beetle to subsist on the otherwise toxic caffeine-laden

berries (28).

Mercury is a well-known metal contaminant that bioaccumulates and

biomagnifies  in  aquatic  food  webs  (29-31).  Many  studies  on  mercury

pollution and its neurotoxicity have been reported (30, 32-34). Three major
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species  of  mercury  can  be  found  in  the  environment:  inorganic  mercury

(Hg2+),  organic  methylmercury  (MeHg  including  the  mono-  and  dimethyl

forms), and elemental mercury (Hg0). Hg0 and Hg2+ are commonly released

into the atmosphere via anthropogenic and natural sources, while deposition

of atmospheric mercury leads to mercury contamination of terrestrial  and

aquatic ecosystems (31, 33, 35). Anaerobic microorganisms harboring hgcAB

genes (encoding a corrinoid-dependent protein and an associated ferredoxin

protein, respectively) have been shown to methylate mercury, producing the

highly bioaccumulative MeHg from inorganic Hg2+ (36-39). Demethylation of

MeHg  to  Hg2+,  on  the  other  hand,  can  be  facilitated  by  microorganisms

containing merB that encodes an organomercurial lyase. Inorganic Hg2+ can

be  further  converted  into  the  less  toxic,  extremely  volatile  Hg0 by

microorganisms  expressing  the  merA gene  that  encodes  a  mercury

reductase  (40-43).  Therefore,  microorganisms  harboring  these  mercury-

biotransformation genes have the potential  to impact mercury speciation,

cycling and concentration in the environment. Although mercury tolerance

and detoxification  in  many  bacteria  species  have  been  reported  (42-44),

most of these bacteria were identified in water columns, sediments and soil

(45-47). In addition, most studies on biotransformation of mercury in natural

ecosystems  focused  on  bacteria  found  in  specific  geographical

environmental  habitats  (45-47),  with  only  a  few  studies  on  mercury-

biotransforming bacteria found in animal hosts (48, 49). The contribution of
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these bacteria on host mercury tolerance and survival, however, has never

been investigated.

In this study, we investigated the role of microbiomes on host fitness

under  mercury  stress.  We  first  assessed  the  microbiome  community

structure of D. magna collected from a seasonally mercury-polluted site (Yolo

Bypass,  California)  (50).  We  then  isolated  members  of  the  microbiota,

determined  their  mercury  tolerance  levels,  and  measured  merA gene

expression  and  mercury  reduction  of  the  mercury-tolerant  microbiota

member (Pseudomonas-10) in isolation and in association with the daphnid

host.  We  found  that  Daphnia is  an  environmental  reservoir  of  mercury-

tolerant bacteria that could potentially biotransform mercury into less-toxic

form  by  up-regulating  the  expression  of  merA gene  upon  exposure  to

elevated levels of mercury and reducing the concentration of mercury in the

medium. Most importantly, we found that a daphnid microbiota member can

aid in the host survival and allow the host to produce viable offspring even

when exposed to mercury contamination.

 

MATERIALS AND METHODS 

Daphnia animal  collection and husbandry.  D.  magna  CAY (California

Yolo-bypass) was sampled in the inlet ponds (38°31’45.4"N, 121°36’28.9"W)

that are part of the Yolo Bypass Wildlife Area (Davis, California, U.S.A). Other

D. magna  clones,  DE-K35-Iinb1 (Germany) and  FI-Xinb3 (Finland)  (51), are

part  of  the  Daphnia collection  in  our  laboratory. Daphnid  husbandry  was
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carried out as previously published (52). Animals were routinely cultured in

artificial  Daphnia medium  (ADaM)  (53) at  20C  with  14:10  light:dark

photoperiod  and  fed  daily  with  Scenedesmus  obliquus  (~2x107 cells).

Experiments  with  D.  magna were  also  carried  in  the  same  media  and

conditions. 

16S rRNA fragments high-throughput sequencing and data analysis.

Total genomic DNA (gDNA) (n = 3) was extracted using DNeasy Blood and

Tissue  Kit  (Qiagen,  Germantown,  MD).  Equimolar  DNA concentration  was

sent to Argonne National Laboratory Sequencing Core for library preparation

and sequencing of  the 16S rRNA V4 region (PCR-amplified with 515F and

806R  primers,  Table  S1),  using  MiSeq  Illumina  sequencing  platform.

Additional details are provided under Supporting Information B.

D. magna  sequences were demultiplexed and checked for chimeras,

with low quality  sequence and short  sequence reads (<150 bp)  removed

prior  to post-analysis with the Quantitative Insights Into Microbial  Ecology

(QIIME 1.8) pipeline (54). Operational taxonomic units (OTUs) were clustered

at 97% sequence similarity with Uclust (55). Representative sequences from

the clustered OTUs were picked for taxonomic identification based on RDP

classifier 2.2 (56). Singletons, chloroplast and mitochondria sequences were

filtered  out  of  the  OTU  table  prior  to  alignment  of  OTU  representative

sequences  with  PyNAST  (54).  Samples  were  rarified at  a  minimum of  10

sequences and a maximum depth of 12,030 sequences in steps of 10. For
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microbiome  composition  analysis,  assignment  of  bacterial  taxon  were

performed using BLAST 2.22.2 (57). Information on NCBI data availability of

the raw sequence reads are provided in Supporting Information E.

Bacteria isolation and identification, growth conditions,  and  merA

screening. D.  magna microbiota  were  isolated  from  various  D.  magna

clones: the newly collected CAY clone and clones in the laboratory collections

(FI-Xinb3 and DE-K35-Iinb1), as well as sediment samples from Yolo Bypass.

Individual  D. magna were washed three times with 1 ml of sterile ADaM,

homogenized  in  200  l  of  sterile  ADaM,  plated  on  various  agar  media,

including LB, R2A (Teknova, Hollister, CA), 10x-diluted R2A with and without

N-acetylglucosamine supplement, and MacConkey (Teknova, Hollister,  CA),

and incubated at  room temperature (22-23C) for  several  days.  Sediment

samples were also plated on the same set of agar media and incubated at

room  temperature  for  several  days.  Agar  medium  contains  1.5%  (w/v)

granulated agar. Colonies exhibiting different phenotypes were repeatedly

streaked for single colonies. Pure microbiota isolates were cultured in R2A

liquid media and stored at -80C in autoclaved glycerol. 

Genetic  identification of  bacterial  isolates  and  merA screening were

carried  out  by  sequencing  the  partial  PCR-amplified  16S  rRNA and  merA

fragments.  PCR  amplification  was  carried  out  with  MyTaq  Red  (Bioline,

Taunton, MA) using the following PCR program: initial denaturation at 95°C

for 2 min, followed by 35 cycles of 95°C for 30 sec, 50°C for 30 sec, 72°C for
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2 min and a final extension step at 72°C for 5 min. Universal 16S primer set

8F and 1492R (58) and merA primer sets MERA5 and MERA1 (44) or  merA-

128_F and  merA-993_R, were used to amplify 16S rRNA and  merA genes,

respectively.  Additional  details  are  provided  in  Supporting  Information  C.

Primers  used  in  this  study  are  listed  in  Table  S1.  GenBank  accession

numbers  for  the partial  16S rRNA and  merA sequences are found in  the

Supporting  Information.  Details  on  16S  rRNA  phylogenetic  analysis  is

provided in Supporting Information D.

Bacteria  mercury  minimal  inhibitory  concentration  (MIC)  assays.

Mercury MIC assays of twenty-seven bacterial isolates were carried out at

room temperature (22-23C) in 96-well microtiter plates containing 200 l of

R2A media with different concentrations of mercury (0.1, 0.2, 0.4, 0.6, 0.8

M,  and  1  M  to  15  M,  with  1  M  increment).  The  bacteria  MIC  was

determined  using  1  M  to  15  M  first,  followed  by  the  lower  mercury

concentrations (0.1, 0.2, 0.4, 0.6, 0.8  M and  1  M) for bacteria that have

MIC < 1  M. Each well containing the defined mercury concentrations was

inoculated  with  2  l  of  bacterial  inoculum  and  visible  bacterial  growth,

defined as increased in culture turbidity, was visually checked and measured

as increased in absorbance/optical density at 600 nm (OD600). Cultures grown

in  the  absence  of  mercury  were  used  as  positive  controls,  while  un-

inoculated R2A media were used as negative controls. The MIC is the lowest

mercury  concentration  where  bacterial  growth  (culture  turbidity)  was  not
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observed  with  the  naked  eye  (59),  and  the  difference  of  OD600 values

between measured and negative control (un-inoculated R2A media) is less

than 0.01  (60). The MIC assays were repeated three times and the lowest

mercury  concentration  where  no  growth occurred  (59) after  3  days  of

incubation  indicates  the  mercury  MIC for  that  particular  bacterial  isolate.

Mercury  stock  solution  (1,000  g/ml  mercury  in  10%  nitric  acid)  was

purchased from SPEX CertiPrep (Metuchen, NJ). OD600 was determined daily

using SpectraMax M2 microplate reader (Molecular Devices, Sunnyvale, CA). 

RNA extraction and cDNA synthesis.  Since  Pseudomonas-10 exhibited

the highest mercury MIC (8 M) among the merA-positive microbiota isolates

identified in this study (Table 1), this microbiota isolate was used to study

merA gene  expression.  To  quantify  merA gene  expression  in  isolation,

Pseudomonas-10 was grown aerobically at room temperature (22-23C) in LB

media until mid-exponential growth phase (OD600 = 0.3). Aliquots (10 ml) of

the cultures were transferred to new culture flasks, followed by no mercury

exposure (0 M) or exposure to 2.5 M or 5 M of mercury for 15 min at room

temperature. After treatments, 2 ml-aliquots were pelleted by centrifugation

(21, 200 x g) at room temperature for 2 min. Cell pellets were immediately

resuspended in Trizol (Fisher Scientific, Hampton, NH) and stored at -80C. 

For measuring  merA expression of daphnid-associated  Pseudomonas-

10, D. magna CAY harboring Pseudomonas-10 exposed to 50 nM mercury for

4 h on Day 5 (Experiment 1,  n = 55; Experiment 2,  n = 50) or unexposed
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(Experiment 1, n = 50; Experiment 2, n = 53) were harvested, washed once

with sterile ADaM, homogenized in Trizol and stored at -80C. The mercury

LD50 for D. magna is 51.5 nM (Figure S3), hence, the mercury concentration

of 50 nM was chosen for the mercury stress experiments in D. magna CAY.

Gnotobiotic D. magna were generated as described for survival assays (52). 

RNA was extracted with Direct-zol RNA Miniprep Plus (Zymo research,

Irvine,  CA) according to manufacturer’s instructions.  Eluted total RNA was

further  treated with  DNase I  (Promega,  Madison,  WI)  for  30 min at  37C,

followed by inactivation at 65C for 10 min, and purified using Direct-zol RNA

Miniprep Plus.  RNA concentrations  were estimated using either  NanoDrop

spectrophotometer  or Qubit  Fluorometer  (Fisher  Scientific, Hampton,  NH).

cDNA  was  synthesized  using  SuperScript  III  and  random  hexamers

(Invitrogen, Carlsbad, CA), according to manufacturer’s instructions. For no-

host RNA samples, 200 ng of RNA was used as templates for cDNA synthesis.

For  daphnid-associated RNA samples,  depletion of  daphnid  host  RNA was

first  carried  out  using Dynabeads mRNA purification  Kit  (Fisher  Scientific,

Hampton,  NH),  where the Dynabeads Oligo (dT)25 binds to host RNA that

contains poly-A tail. Unbound bacterial RNA was collected and purified using

Direct-zol RNA Miniprep Plus. cDNA synthesis was then carried out using 2-3

g of RNA as templates. Reactions without reverse transcriptase were used

as controls (NRT). 
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Quantitative  real-time  PCR  (qRT-PCR)  and  semi-quantitative  PCR

(semi-qPCR).  qRT-PCR reactions (10  l) were set up using PowerUp SYBR

Green  Master  Mix  (Applied  Biosystems,  Foster  City,  CA),  according  to

manufacturer’s instructions. Each reaction contains 2 l of cDNA, 0.4  M of

each  specific  primer  (merA-Pse10_F  and  merA-Pse10_R  or  glnA_F  and

glnA_R; Table S1) and 1X SYBR green master mix. qRT-PCR was performed

on  an  Applied  Biosystems  7500  real-time PCR system with  the  following

thermal cycling steps: 50C for 2 min, 95C for 2 min, followed by 40 cycles of

95C for 15 sec and 60C for 1 min. Specificity of the merA and glnA primers

were tested with regular PCR and DNA gel electrophoresis, as well as in qRT-

PCR with a Dissociation Stage (melt curve analysis). No amplification of no

template control (NTC) and no reverse transcriptase (NRT) reactions served

as  negative  controls.  Serially-diluted  Pseudomonas-10  gDNA  samples,

extracted  with  DNeasy  Blood  and  Tissue  Kit  (Qiagen,  Germantown,  MD),

were used as positive controls and for generating calibration curves. The CT

values of the samples were within the linear dynamic range of the calibration

curves  for  glnA  and  merA,  with  R2 values  of  >0.99.  All  samples  were

normalized  to  the  expression  of  the glutamine  synthetase  (glnA)

housekeeping  gene  (61),  and  relative  gene  expression  (fold  change)  is

calculated using 2-C
T method (62). Data were log-transformed for statistical

analysis. The assay was carried out three times, each with three technical

replicates. 
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Semi-qPCR was carried out, similar to a protocol published previously

(63), to measure  merA expression in daphnid-associated  Pseudomonas-10.

The reactions (10 l) were set up using MyTaq Red master mix, 3 l of cDNA

and 1 M of each specific primer (merA-Pse10_F and merA-Pse10_R or glnA_F

and glnA_R) with the following PCR program: initial denaturation at 95°C for

2 min, followed by 35 cycles of 95°C for 15 sec, 55°C for 20 sec, 72°C for 1

min and a final extension step at 72°C for 5 min. NRT and NTC were used as

negative controls.  Amplified products  (3  l)  were analyzed with  2% (w/v)

agarose  gel  electrophoresis  and  the  gel  images  were  captured  using

ChemiDoc  System  (BioRad,  Hercules,  California).  Fluorescence  were

determined  with  Image  Lab  v5  software  (Bio-Rad)  and  calculated  by

subtracting background fluorescence of the corresponding NRT reactions for

both  merA and  glnA,  followed by normalization to the corresponding  glnA

samples.  The  assay  was  carried  out  twice,  each  with  three  technical

replicates.  Statistical  methods  for  comparison  between  treatments  are

described in Supporting Information D.

D.  magna mercury  lethal  dose  50  (LD50),  survival  and  fecundity

assays. Mercury LD50 of  D. magna was determined in non-axenic daphnids

cultured  in  80  ml  of  ADaM  medium  containing  10,  50,  75  and  100  nM

mercury. Daphnids cultured in ADaM without mercury (0 M mercury) served

as controls.  The mercury LD50 experiments were carried out in 10% nitric

acid-washed  experimental  jars  (with  0.22-M  filter  caps)  containing  4
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daphnids per experimental jar (n = 4 for each treatment) and were fed with

non-axenic S. obliquus (~2x107 cells per jar). LD50 was determined using 4-

parameter logistic regression (Figure S3). The LD50 of D. magna CAY after 2

days of mercury exposure is 51.5 nM, and as such 50 nM of mercury was

used as the applied concentration in the experiments that involved mercury

exposure  in  D.  magna CAY.  The  LD50 assays  were  carried  out  with  four

replicates. 

Survival  assays  were  carried  out  twice in  10%  nitric  acid-washed

experimental jars (with 0.22-M filter caps) containing 80 ml of sterile ADaM

with one daphnid per jar and fed with axenic S.  obliquus (~8x107 cells/jar).

Bacteria-free eggs were generated with antibiotic-treatment  (52) using the

third  egg  clutches  of  reproductively  synchronized  F2  adults  and  were

separated  into  3  groups:  Bacteria-free  (Bac-Free),  bacteria  supplemented

with  parental  microbiome (Bac-Suppl)  and  Pseudomonas-10-infected (Pse-

Inf). Pseudomonas-10 was used as it exhibits the highest MIC (8 M) among

the  merA-positive  microbiota  isolates  identified  in  this  study  (Table  1).

Mercury stress (50 nM) was introduced at Day 5. Survival were monitored

daily for a period of 18 days. Fecundity assays were carried out twice, set up

similarly as the survival assays, in  80 ml of sterile ADaM with one daphnid

per jar and fed with  axenic  S.  obliquus  (~8x107 cells/jar).  Number of  live

hatchlings was counted and removed from the experimental jars daily for a

period of 18 days. Mercury stress (50 nM) was added on Day 5. At the end of

the  experiments,  sterility  of  the  daphnids  in  Bac-Free  group  and  the
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presence of bacteria in Bac-Suppl and Pse-Inf groups were verified by PCR

using 327F and 936R primer set (Table S1), targeting bacterial 16S rRNA

gene (52). In addition, crushed daphnids from each experimental group were

also plated on  LB or R2A agar media (Sigma, St. Louis, MO) to verify that

there  was  no  bacterial  growth  from the  Bac-Free  group,  mixed  bacterial

growth from Bac-Suppl group (indicated by the growth of bacteria exhibiting

various morphotypes),  and pure bacterial  growth from Pse-Inf  group.  The

identity of Pseudomonas-10 from the Pse-Inf groups was further confirmed

via sequencing of the 16S rRNA using 8F and 1492R (58). 

Mercury biotransformation by  Pseudomonas-10. Total  mercury (Hg2+

and Hg0, MeHg and other Hg species) concentrations in the ADaM medium of

Pseudomonas-10 only (Pse), bacteria-free daphnids (Bac-Free) and daphnids

infected  with  Pseudomonas-10  (Pse-Inf)  were  determined  by  cold  vapor

atomic absorption spectrometry using a DMA-80 (Milestone, Inc.), calibrated

with aqueous standards and accuracy checked against standard reference

material BCR-414 (EPA Standard Method 7473) (64). Experimental jars were

set  up  similar  to  the  survival  assays,  except  that  each  experimental  jar

contains  5  daphnids.  Experimental  jars  containing ADaM medium (80 ml)

only served as controls.  Experimental jars of the Pse group contain ADaM

medium (80  ml)  and  Pseudomonas-10  (200  l  of  ADaM-washed bacterial

culture suspension diluted to OD = ~0.6). Mercury (50 nM) was added to the

experimental  jars  on Day 5.  Samples  were collected and filtered through
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0.22 m filter on Day 5, before (No Hg) and after (D5) addition of mercury,

and on Day 8 (D8). Mercury samples were stored at 4oC until analysis. Total

mercury in  the  samples  were  measured  directly  with  cold  vapor  atomic

absorption spectrometry without any pretreatment. Data were obtained from

at least 3 replicates for each condition: ADaM medium (n = 3), Pse (n = 3),

Bac-Free (n = 4), Pse-Inf (n = 4).

Statistical Analysis. Data were presented as mean values with standard

errors, except for box plots where medians (horizontal lines within the box)

were  shown  with  25%  to  75%  quartiles  (whiskers).  For  experiments

measuring  the  differences  in  gene  expression  and  mercury  reduction

between treatments, data were log-transformed (when necessary) to fit the

assumption  of  normal  distribution  and  were  tested  for  homogeneity  of

variance prior to performing one-way ANOVA with Tukey’s HSD post-hoc test

or Student’s t test using JMP 14. Statistical analysis for differences in survival

rates was conducted using Mantel Cox log-rank test in GraphPad Prism 5.01,

with  Bonferroni  corrected  p-value for  multiple  comparisons.  Kruskal-Wallis

test  and  Wilcoxon  each  pair  test  was  used  to  compare  differences  in

fecundity using JMP 14.0. 

RESULTS AND DISCUSSION  

Microbiome composition of D. magna CAY
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To investigate whether  D. magna  CAY (collected from California  Yolo

Bypass)  harbors  mercury-tolerant  and  merA-positive  bacteria,  we  first

determined the composition of the D. magna CAY microbiome via 16S rRNA

amplicon sequencing. A total of 1,295 OTUs were identified from the samples

(n = 3). After removing singletons, mitochondrial and chloroplast sequences,

416  OTUs  remained  and  were  assigned  into  73  genera,  32  families,  10

orders, 9 classes and 1 phylum (Table S2). Only bacteria with 1% average

relative abundance (from 3 samples) were included in the comparison shown

in  Figure 1. The top three most abundant microbiota in  D. magna CAY are

bacteria  from the genus  Limnohabitans (32.8%,  average abundance),  the

order  Saprospirales (26.2%),  and  the  genus  Leptothrix  (11.9%). Other

identified microbiota members that are  1% (average abundance) include

bacteria  from  the  family  Comamonadaceae (9.2%),  the  genera

Sediminibacterium (5.8%), Flavobacterium (1.8%), Pseudomonas (1.3%), and

the order  Sphingobacteriales (1%). Since  Pseudomonas  has been shown to

be pathogenic to D. magna (65-67),  it is interesting that Pseudomonas was

found  to  be  >1% in  the  microbiota  of  D.  magna CAY. The  presence  of

Pseudomonas  as  part  of  Daphnia  microbiome  has  also  been  reported  in

different  Daphnia species  (51, 68, 69), suggesting that these Pseudomonas

microbiome members may be non-pathogenic, as opposed to the isolates (P.

aeruginosa PAO1 and strain DD1) used in the reported studies. 

Notably,  the  microbial  composition  and  structure  of  D.  magna CAY

reported here is  similar  with the microbiomes of  other  D. magna  coming
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from different geographical locations (51, 68, 70), such as the dominance of

Limnohabitans and  Saprospirales  group  for  instance,  suggesting  active

selection  of  microbiome  by  the  daphnid  host.  Limnohabitans have  been

reported to increase fecundity in the Daphnia host (71) and are abundant in

host’s filter apparatus (72). Indeed, host genetics have been shown to play a

role  in  structuring  and  maintaining  different  microbiota  community

abundances in Daphnia (51) and in Drosophila (73-75). Collectively, our data

indicates that the newly collected  D. magna  CAY clones harbor microbiota

similar to other published D. magna clones and reinforces the idea that host

factors influence the microbial composition of the Daphnia microbiome.

Figure 1.  Relative  abundance  of  major  taxonomic  groups  of

microbiota  from  D.  magna CAY. Relative  abundance  of  microbiota

members that are 1% (average abundance of all 3 samples). Genera with

less than 1% are grouped as “Other”. Some of the microbiota were identified

only at the family and order levels using BLAST. D. magna samples (n = 3):

DM1, DM2 and DM3. 
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Mercury minimal inhibitory concentration (MIC) and merA screening

of microbiota isolates

Many  bacteria  are  capable  of  mercury  detoxification,  commonly

through the expression of mer operons (42-44). One of the central players of

this widespread mercury-detoxification system is MerA, a mercuric reductase

that is capable of reducing a more reactive, cationic form of mercury (Hg2+)

to  a  relative  inert,  volatile  monoatomic  mercury  vapor  (Hg0),  which  can

diffuse  through  the  cell  membrane  (40-42).  Cross-referencing  the  73

assigned genera found in  D. magna CAY with NCBI databases, 41 genera

were found to contain species that putatively harbor merA genes (Table S2).

We therefore hypothesize that Daphnia could harbor merA-positive bacteria

capable  of  detoxifying  mercury  through  biotransformation.  To  test  this

hypothesis, we isolated pure cultures of the microbiota members from the

newly collected D. magna CAY and two published D. magna clones (DE-K35-

Iinb1 and FI-Xinb3) in the laboratory collection as well as their environments

(ADaM culture media and the sediment from Yolo Bypass sampling site). We

then  determined  the  mercury  MICs  of  individual  isolated  bacteria  and

screened them for the presence of merA gene. We isolated 27 bacteria from

different D. magna clones and their environments (Table 1) and determined

their identities and phylogeny using partial 16S rRNA sequences. The well-

resolved phylogenetic tree showed the phylum/class groupings of D. magna

CAY microbiota  isolates  (Figure 2). Several  of  the  bacterial  isolates
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(Acidovorax,  Acinetobacter,  Blastomonas,  Exiguobacterium,

Hydrogenophaga, and Pseudomonas) have homologous 16s rRNA sequences

identified  in  the  D.  magna CAY  microbiome  (Figure 1  and  Table  S2). In

addition,  some  of  these  isolated  bacteria  (Acidovorax,  Acinetobacter,

Aeromonas, Hydrogenophaga and  Pseudomonas)  were  also  identified  as

microbiome members of other  Daphnia species  (68, 69, 76). We were not

able to isolate and culture the dominant microbiota member, Limnohabitans,

despite numerous attempts using several different media and methods of

isolation. 

Table 1 also shows the level of mercury tolerance (reported as MIC) of

the isolated  D. magna microbiota. Highest mercury MIC was observed with

Acidovorax-4  (11  M),  followed  by  Curtobacterium-20 (11  M)  and

Pseudomonas-10 (8 M). Other microbiota isolates exhibited low to medium

MICs ranging from 0.6 M to 6 M. To date, most bacteria tested for mercury

tolerance are either free-living bacteria or bacteria found in the sediments

(45, 77-79). Host-associated bacteria that are mercury-tolerant have been

reported  only  in  a  few hosts,  including  fish gut  bacteria  grown in  media

containing  12.5  M  of  mercury  (48),  bacteria  isolated  from  nodules  of

leguminous plants and marine sponges exhibiting MICs of 30 M and >100

M of mercury, respectively  (49, 80). Hence, our study and that of others

indicate  that  host-associated  microbiomes  are  also  potential  sources  of

mercury-detoxifying bacteria.
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To  determine  if  mercury-tolerant  bacteria  contain  merA genes,  we

screened all 27 bacteria isolates for the presence of  merA using published

primer sets (Table S1)  (44, 77, 81). Initial screening identified partial  merA

genes in  Acinetobacter-1 and Hydrogenophaga-8 using primer  set  MERA5

and MERA1 (44); other primer sets did not yield amplified merA fragments.

Using  the  partial  merA sequences  from  Hydrogenophaga-8  and

Acinetobacter-1,  we  designed  a  primer  set,  merA-128_F  and  merA-993_R

(Table S1), targeting the conserved sequence regions (Figure S1) and further

identified  three  more  bacteria  isolates  containing  merA.  In  all,  merA

fragments  were  amplified  from  five  microbiota  isolates:  three  Gamma-

proteobacteria isolates  (Pseudomonas-10,  Pseudomonas-23,  and

Acinetobacter-1)  and  two  Beta-proteobacteria isolates  (Variovorax-11  and

Hydrogenophaga-8). Homology sequence searches using BLAST showed high

sequence similarity  to  known  merA sequences (Table  S3 and  Figure S1),

indicating  that  Pseudomonas-10,  Pseudomonas-23,  Acinetobacter-1,

Variovorax-11, and Hydrogenophaga-8 harbor  merA genes. It is noteworthy

that  all  these five  merA-positive isolates also exhibited moderate to high

mercury MICs, ranging from 3 to 8 M (Table 1), hinting that these bacteria

isolates likely contain functional merA genes. The ability of primer set merA-

128_F  and  merA-993_R  in  amplifying  merA fragments  from  both  Beta-

proteobacteria and Gamma-proteobacteria, indicates that it can be used for

merA screening of environmental samples.
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Although  many  other  isolated  microbiota  exhibited  high  mercury

tolerance or belong to genera that putatively contain merA-positive species,

we  were  unable  to  amplify  their  merA gene,  including  Acidovorax-4  and

Curtobacterium-20. In addition,  while  Pseudomonas-10 and -23 harbor the

merA  gene,  we  were  unable  to  detect  the  presence  of  merA in  the

congeneric  Pseudomonas-28. It  is  possible  that  these  bacteria  isolates

contain  nucleotide  polymorphisms in  the  binding  regions  of  the  designed

merA primer  sets,  or  that  these particular  species/strains  do  not  contain

merA but  exhibit  mercury  tolerance  by  other  yet-to-be  identified

mechanisms. We are continuing our effort in using new merA primer sets to

screen  our  remaining  microbiota  isolates,  as  well  as  screening  for  the

presence of merB, and will be part of another study. 

MerA  exists  as  a  homodimer  protein  and  three  major  conserved

regions/residues critical for MerA activity have been identified (42). At the C-

terminus, a stretch of residues containing two cysteines forms a redox-active

site, while the N-terminus short cysteine pair aids in Hg2+ binding to the C-

terminal redox-active site of the corresponding monomer. In addition, two

tyrosine residues are also involved in Hg2+ binding  (42).  While most of the

conserved active regions/residues are beyond the identified merA sequences

of  the  microbiota  isolates,  the  first  Hg2+-binding  tyrosine  is  found  in

Pseudomonas-10,  Hydrogenophaga-8 and  Acinetobacter-1 (Figure S1).  The

well-resolved  MerA  tree  also  showed  divergence  of  MerA  between

Pseudomonas  isolates and the other three microbiota isolates (Figure S1).
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This is not surprising since merA found in Pseudomonas has been suggested

to be more distantly related to the  merA of other Gram-negative bacteria

(82). While the partial MerA sequences between  Pseudomonas-10 and -23

determined  in  this  study  are  identical,  they  exhibited  distinct  mercury

tolerance levels. Possible sequence variations may exist in their C- and N-

terminus active sites, which may explain the tolerance differences between

these two  Pseudomonas isolates.  Together, our data showed that  Daphnia

microbiomes  contain  mercury-tolerant  bacteria  that  harbor  merA genes,

which imply of their potential to biotransform mercury from the toxic Hg2+ to

less toxic Hg0 species.

Table 1. List of identified  D. magna microbiota isolates, mercury MIC and

merA gene screening.

16S  rRNA
Identificationa Sourceb Mercury MICc (M)

merA
d

Acidovorax-4 FI-Xinb3 11
Curtobacterium-
20

CAY 11

Pseudomonas-10 DE-K35-Iinb1 8 +
Acinetobacter-1 DE-K35-Iinb1 (ADaM) 6 +
Brevundimonas-6 DE-K35-Iinb1 6
Pseudomonas-28 CAY 6
Hydrogenophaga
-8

DE-K35-Iinb1 5 +

Variovorax-11 FI-Xinb3 5 +
Bacillus-19 CAY 5
Rhodococcus-24 CAY 5
Blastomonas-12 CAY 4
Runella-13 CAY 4
Bacillus-16 CAY 4
Bacillus-5 FI-Xinb3 3
Micrococcus-17 CAY 3
Pseudomonas-23 CAY 3 +
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Shinella-26 CAY 3
Aeromonas-27 CAY 3
Arthrobacter-2 DE-K35-Iinb1 2
Aeromonas-3 FI-Xinb3 2
Citricoccus-14 Sediment, Yolo Bypass 2
Flavihumibacter-
21

CAY 2

Curtobacterium-
15

CAY 1

Flavihumibacter-
25

CAY 1

Exiguobacterium-
7

DE-K35-Iinb1 0.8

Flavihumibacter-
22

CAY 0.8

Lysinibacillus-18 Sediment, Yolo Bypass 0.6

a Numbers  after  the  genus  names  indicated  the  laboratory  collection

numbers, so as to distinguish between isolates from the same genera. 

b Bacteria were isolated either from D. magna crushed body (CAY, DE-K35-

Iinb1 or Fl-Xinb3 clones), Yolo Bypass sediment (where the  D. magna CAY

clones were collected) or the ADaM culture medium. 

c Lowest  mercury  concentration  with  no bacterial  growth  after  3  days  of

incubation at room temperature (22-23C). 

d Presence of merA gene determined by PCR and sequencing, indicated with

+ and shaded. 

23

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494



Figure 2.  16S  rRNA  phylogenetic  tree  of  isolated  D.  magna

microbiota. 16S rRNA sequences of the 27 isolates were first aligned using

MUSCLE,  followed  by tree-construction  using maximum likelihood  method

(PhyML), with Jukes-Cantor substitution model and 250 bootstrap replicates.

merA-positive microbiota isolates identified in this study (Table 1) are in red.

Numbers after the bacteria name represent laboratory collection ID number.

Bootstrap values and scale bar are indicated as substitution per site.
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Expression of  bacterial  merA gene in  isolation and in association

with D. magna after mercury exposure

To test the functionality of the merA gene, we exposed exponentially

growing  Pseudomonas-10 to 2.5  M and 5  M of mercury for 15 min and

compared  merA expression  between  mercury-exposed  and  unexposed

cultures  (0  M).  Pseudomonas-10  was  chosen  as  it  exhibits  the  highest

mercury MIC (8 M) among the merA-positive microbiota isolates identified in

this study (Table 1).  Using qRT-PCR, relative expression of  merA was found

to be more than 300-fold higher in cells exposed to mercury compared to

unexposed cells (one-way ANOVA, F = 130.79,  p = 0.00001 Figure 3). We

also  visualized  the  qRT-PCR  amplified  products  with  agarose  gel

electrophoresis  and  quantify  the  relative  fluorescence  (Figure S2).  As

expected, higher fluorescence was detected in samples exposed to mercury

compared to the unexposed samples. Expression of merA is not significantly

different between cells exposed to 2.5  M and 5 M mercury (Tukey’s HSD

Post-hoc test, p > 0.05, Figure 3 and Figure S2). Similarly, increases in merA

gene expressions have also been reported in other  Pseudomonas  strains,

where over 10-fold and 30-fold increases were observed with 2 M and 5 M

mercury exposure (respectively) in Pseudomonas stutzeri OX (83), and more

than 2-fold increase with 50 M of mercury exposure in Pseudomonas strain

ATH-43  (78).  Our  data  show that  the  mercury-tolerant  and  merA-positive

Pseudomonas-10 isolate is  capable of  upregulating  merA gene expression

upon mercury exposure.
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We further investigated if similar upregulation of  merA also occurs in

Pseudomonas-10 when in association with the D. magna host upon exposure

to mercury.  We first determined the lethal dose 50 (LD50) of mercury in  D.

magna  CAY.  To  do  this,  we  exposed  5-day-old  non-axenic  daphnids  to

various concentration of mercury for 2 days and monitored their survival.

Using  4-parameter  logistic  regression,  we  determined  that  the  LD50 of

mercury  is  51.5  nM  (Figure S3)  and  as  such,  50  nM was  chosen as  the

applied  mercury  concentration  for  the  mercury  stress  experiments  in  D.

magna.  We  infected  bacteria-free  D.  magna CAY  with  Pseudomonas-10,

allowed  bacteria-host  association  to  establish  for  5  days,  exposed  the

Pseudomonas-10-infected  daphnids  to  50  nM  of  mercury  for  4  hours,

harvested  total  RNA  and  determined  merA gene  expression.  Several

attempts using qRT-PCR to determine  merA expression in host-associated

Pseudomonas-10 did not yield reliable results, likely due to low abundance of

bacterial  cDNA  and  interference  from  the  daphnid  host  cDNA,  despite

attempts to deplete host RNA before cDNA synthesis. As such, we carried out

semi-quantitative RT-PCR (semi-qPCR) by analyzing the amplified merA and

glnA (housekeeping gene for normalization) on agarose gel and determined

band intensities of the amplified products (Figure 4). Upon exposure to 50

nM of mercury, merA expression in daphnid-associated Pseudomonas-10 was

upregulated approximately  31-fold,  when compared to daphnid-associated

Pseudomonas-10  without  mercury  treatment.  This  data  indicates  that

Pseudomonas-10 is capable of upregulating merA expression in response to

26

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549



mercury stress even when in association with the daphnid host. The lower

expression level of  merA in daphnid-associated  Pseudomonas-10 (31-fold),

when compared to Pseudomonas-10 in isolation (>300-fold), is likely due to

the lower mercury concentration used in host-associated  Pseudomonas-10

exposure. 

Figure 3. merA expression in the microbiota isolate  Pseudomonas-

10. Relative fold-change of  merA  expression in  Pseudomonas-10 (Pse-10)

bacterial  cultures  exposed  to  0,  2.5  and  5  M of  mercury  in  LB  media,

determined  from  3  independent  experiments  with  3  technical  replicates.

Data were log-transformed and was analyzed using one-way ANOVA with

Tukey’s  HSD Post-hoc  test. Column with  different  letters  are  significantly

different (p<0.05).
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Figure 4. Expression  of  merA in  the  daphnid-associated

Pseudomonas-10. (A) Agarose gel electrophoresis of amplified  merA and

glnA (housekeeping gene for normalization). (B) Relative merA expression in

host-associated  Pseudomonas-10  exposed  to  50  nM mercury,  determined

from 2 independent experiments with 3 technical replicates. *,  p = 0.0001

(Student’s t test). RT, reverse transcriptase.

Pseudomonas-10 aids in host survival and maintains host fecundity

under mercury stress.

Since  host-associated  Pseudomonas-10  exhibited  increased  merA

expression upon mercury exposure, we investigated whether Pseudomonas-

10 can contribute to host survival and fecundity under mercury stress. We

infected D. magna CAY with Pseudomonas-10 (Pse-Inf), allowed the daphnids

to grow for 5 days before exposing the daphnids to 50 nM mercury,  and

compared  their  survival  rates  to  bacteria-free  (Bac-Free)  and  parental-

microbiome supplemented  D. magna CAY (Bac-Suppl) over a period of 18
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days (Figure 5A). We positively verified the absence of bacteria in Bac-Free

group, the presence of  Pseudomonas in Pse-Inf group and the presence of

various  bacterial  morphotypes  in  Bac-Suppl  group  at  the  end  of  the

experiment.

A  significant  difference  in  survival  rates  was  observed  between

daphnid groups (Mantel-Cox log-rank test,  2 = 26.29,  p = 0.003).  In the

absence of mercury stress, Bac-Suppl daphnids (94%,  n = 29/31) exhibited

similar survival rates with Pse-Inf daphnids (87%, n = 26/30, 2 = 0.68, p =

0.41) and significantly higher survival rates than Bac-Free daphnids (73%, n

= 22/30,  2 =  4.16,  p =  0.04)  at  the  end of  the  assay at  Day 18.  This

suggests that Pseudomonas-10 is a mutualistic symbiont and contributes to

D. magna survival.  Similar report  also showed that a  Pseudomonas strain

isolated from a D. magna host is beneficial to the development of D. magna

resting eggs at warm conditions (84).

Under mercury stress, lower survival rates were observed for the three

mercury-treated groups when compared to their counterparts at the end of

the assay (Day 18): Bac-Suppl + Hg (43%, n = 13/30), Pse-Inf + Hg (70%, n

= 21/30) and Bac-Free + Hg (60%, n = 18/30). Daphnids from the Bac-Suppl

+ Hg were most severely affected under mercury stress (2 = 17.22, p <

0.0001) while the survival rates of Pse-Inf + Hg daphnids were statistically

similar with Pse-Inf daphnids (2 = 2.18, p = 0.14).  Survival rates of Bac-Free

daphnids were also statistically similar under mercury and without mercury

stress  (2 =  1.61,  p =  0.21).  Notably,  under  mercury  stress,  daphnids
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harboring  Pseudomonas-10  (Pse-Inf  +  Hg)  exhibited  significantly  higher

survival  rates  than Bac-Suppl  + Hg (2 =  6.19,  p = 0.01).  These results

suggest  that  the  mercury-tolerant  Pseudomonas-10 is  capable  of

augmenting host  survival  under  mercury  stress,  likely  by  biotransforming

mercury into less toxic form, in addition to the daphnid’s ability to eliminate

mercury through excretion, egestion, molting, and neonate production (25).

Intriguingly,  under  mercury  stress,  daphnids  supplemented  with  parental

microbiome (Bac-Suppl + Hg) exhibited the lowest survival (43% at Day 18

n=13/30).  Similar results were obtained in a repeated experiment (Figure

S4). Possibly, the microbiota composition of the Bac-Suppl daphnids is low in

merA-positive bacteria, hence the low survival under mercury exposure, as

compared to the higher abundance of merA-positive Pseudomonas-10 in Pse-

Inf daphnids. It is also likely that under mercury stress, harboring various

kinds  of  microbiota  can  have  a  detrimental  effect  on  the  health  of  the

daphnids. Indeed, Bac-Suppl + Hg daphnids also exhibited significantly lower

survival rates than BacFree + Hg daphnids (2 = 14.49, p = 0.0001), implying

that harboring many bacteria is beneficial under normal conditions but can

be  a  burden  under  stressful  environmental  conditions.  This  is  similarly

observed  on  grasses  with  and  without  fungal  endophytes,  where  the

endophyte-free plants significantly fared better than endophytic-laden plants

in terms of root:shoot ratio under extreme limiting-nutrient conditions (85).

To  further  investigate  the  contributions  of  Pseudomonas-10  in  host

fitness,  we carried out  fecundity  assays and compare the number of  live
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hatchlings  from first  and second clutches of  all  daphnid  groups  with  and

without  mercury  stress  (Figure  5B,  C  and  Figure  S5).  The  six  groups

significantly  vary  in  the  number  of  first  and  second  clutch  hatchlings

(Kruskal-Wallis  test,  2 =  26.97  and  37.56,  respectively,  p  <  0.0001),

suggesting differences between treatments. Under no mercury stress, Bac-

Suppl daphnids have significantly higher number of first and second clutch

hatchlings than Bac-Free daphnids (Wilcoxon Each Pair test, p = 0.0004 and

p = 0.0003, respectively), but did not differ with Pse-Inf daphnids (p = 0.31

and  p = 0.15, respectively). This data confirms that  Pseudomonas-10 is a

beneficial symbiont and positively contributes to daphnid host fitness under

normal environmental condition. Intriguingly, untreated Bac-Suppl and Pse-

inf daphnids produced similar number of first and second clutch hatchlings

as  the  Pse-Inf  +  Hg  treated  daphnids  (p >  0.05),  suggesting  that  the

fecundity  of  the  daphnids  harboring  mercury-tolerant  Pseudomonas-10  is

maintained under mercury stress, and is comparable to that of unstressed

daphnids. On the other hand, under mercury stress, hatchlings production of

Bac-Suppl + Hg treated daphnids, were significantly lower than Bac-Suppl

daphnids (p = 0.007, Figure 5A) and this decrease in fecundity is even more

pronounced in the second clutch (p < 0.0001, Figure 5C). Moreover, Bac-

Suppl + Hg have similar number of hatchlings with Bac-Free and Bac-Free +

Hg daphnids (p > 0.05). This indicates that prolonged exposure to mercury

results  in  lower  fecundity  of  daphnids  harboring  several  microbiota

associates.   Interestingly,  Bac-Suppl  +  Hg  treated  daphnids  have
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significantly  lower  number of  second clutch  hatchlings  than Pse-Inf  + Hg

daphnids  (p =  0.0011).  This  further  confirms  that  mercury-tolerant

Pseudomonas-10  can  maintain  the  fecundity  of  the  daphnid  host  under

mercury exposure, likely by up-regulating its merA expression and reducing

the toxicity of mercury, thereby allowing the host to withstand and survive,

and maintain clonal reproduction in mercury-contaminated environment.

Figure  5. Survival  and  fecundity  of  gnotobiotic  D.  magna CAY

harboring different microbiota under mercury stress. (A) Survival of

bacteria-free  daphnids  (Bac-Free),  bacteria-supplemented  daphnids

harboring  parental  microbiota  (Bac-Suppl),  and  Pseudomonas-10  infected
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daphnids (Pse-Inf) with (50 nM Hg) and without (no Hg) mercury exposure.

Mercury stress (Hg stress) was introduced at Day 5,  indicated with a red

arrow. Bac-Free (no Hg), n = 30; Bac-Free (50 nM Hg), n = 30; Bac-Suppl (no

Hg), n = 31; Bac-Suppl (50 nM Hg), n = 30; Pse-Inf (no Hg), n = 30; Pse-Inf

(50 nM Hg), n =30. Survival assays were repeated twice (Figure S4), but only

one representative  experiment is  shown here.  (B) Fecundity  of  Bac-Free,

Bac-Suppl and Pse-Inf daphnids with (50 nM Hg) and without (no Hg) mercury

stress.  Boxes  show  the  25%  to  75%  quartiles,  medians  are  shown  as

horizontal  lines (within  the box),  and maximum and minimum values are

shown  as  whiskers.  Columns  with  the  same  letter  are  not  significantly

different, analyzed using Kruskal-Wallis test with Wilcoxon each pair test for

pairwise comparisons. Bac-Free (no Hg), n = 8; Bac-Free (50 nM Hg), n = 9;

Bac-Suppl (no Hg), n =15; Bac-Suppl (50 nM Hg), n =10; Pse-Inf (no Hg), n =

9; Pse-Inf (50 nM Hg), n = 9. Fecundity assays were repeated twice (Figure

S5).

Pseudomonas-10 is capable of biotransforming mercury

Since the merA-positive and mercury-tolerant Pseudomonas-10 can up-

regulate  merA expression, both in isolation and in host-association, and is

capable  of  aiding  host  survival  and  fecundity  under  mercury  stress,  we

wanted to investigate its ability to biotransform and reduce mercury (Figure

6). In a separate experiment, we measured the reduction or loss of mercury

by  Pseudomonas-10 in isolation (Pse) and in association with the daphnids
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(Pse-Inf)  and  compared  with  the  Bac-Free  daphnids  to  tease  apart  the

contribution  of  each respective partner to mercury reduction.  We did not

include  Bac-Suppl  in  this  study  because  it  harbors  several  microbiota  of

unknown  mercury  biotransformation  potentials.   As  expected,  before  the

addition of mercury on Day 5 (No Hg), negligible background concentrations

of mercury were detected. Upon addition of 50nM mercury on Day 5 (D5), we

detected initial mercury concentrations ranging from 11.6 to 15.6 nM in all

groups (ADaM control,  Pse, Bac-Free and Pse-Inf).  The significant mercury

loss after initial mercury addition could be attributed to the attachment of

mercury  to  the  walls  of  the  processing  vessels.  Nonetheless,  the

concentration of mercury in ADaM only control group between D5 and D8

showed no significant differences (Tukey’s HSD,  p >0.05), as well as in D5

samples of all treatments (Tukey’s HSD, p >0.05), indicating that the loss of

mercury  due  to  attachment  to  processing  vessels  is  consistent  among

samples.  Intriguingly,  after 3 days (Day 8),  a drastic  4.7-fold  decrease in

mercury concentrations (from 15.5 nM to 3.3 nM) was detected in the Pse

group, which contained only ADaM medium and  Pseudomonas-10 (Tukey’s

HSD, p < 0.0001). Mercury loss in the ADaM only control group between D5

and  D8  is  not  significant,  indicating  that  the  reduction  of  mercury  from

solution  in  Pse  group  was  due to  the  presence of  Pseudomonas-10.  This

strongly  suggests  that  Pseudomonas-10  biotransformed  and  reduced

mercury in the solution, most likely with the use of its MerA enzyme, which is

known  to  be  the  common  mechanism  for  the  reduction  and
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biotransformation of Hg2+ to elemental Hg0 (42). We also observed significant

reduction of mercury in the Bac-Free group after 3 days (12.9 nM to 6.3 nM,

2.0-fold), suggesting that the daphnids are capable of mercury uptake from

their  environment.  This  is  not  surprising  as  assimilation  of  mercury  by

Daphnia has  been  reported  (25).  Similar  reduction  of  mercury  was  also

detected in the Pse-Inf group after 3 days (15.6 nM to 5.8 nM, 2.7-fold), but

mercury  reduction  was  not  significantly  different  from  that  of  Bac-Free

group.  Hence,  we  could  not  conclusively  show  that  Pseudomonas-10

significantly contributes to mercury reduction when it is in association with

the  daphnid  host,  despite  its  mercury  biotransformation  capability  in

isolation. 

Host genetics indeed play a major role on metal stress tolerance via

metallothionein genes, which act as metal-responsive systems upon metal

exposure.  D.  magna contain  three  putative  genes  encoding  the  metal-

binding metallothionein proteins in their genome (86, 87) and these proteins

are known to play an important role in metal detoxification and homeostasis

in  many  organisms,  likely  through  binding  and  sequestration  of  various

metals,  including  mercury  (88,  89).  While  the  expression  of  these

metallothionein  genes  may  enable  the  Daphnia host  to  tolerate  mercury

stress, we showed in this study that the merA-positive and mercury-tolerant

microbiota  Pseudomonas-10  can  also  reduce  mercury  in  isolation  and

contributes  to  host  survival  and fecundity  under  mercury  stress,  through

upregulation  of  merA and  thus  likely  reducing  the  mercury  stress
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experienced  by  the  host.  To  definitively  show  the  contribution  of

Pseudomonas-10 in biotransforming mercury inside the host, and to further

investigate its mechanistic role during host association, daphnids containing

knock-outs of the host metallothionein genes and a Pseudomonas-10 strain

harboring  a  merA-knockout,  needs  to  be  generated  and  will  be  part  of

another study. 

Figure 6. Mercury  biotransformation  by  Pseudomonas-10. Mercury

concentrations  (nM of Hg2+)  measured in the ADaM medium control,  with

Pseudomonas-10 only (Pse), bacterial-free daphnids (Bac-Free) and daphnids

infected with Pseudomonas-10 (Pse-Inf) on Day 5, before (No Hg) and after

(D5) addition of mercury, and on Day 8 (D8). Experimental jars containing
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ADaM medium only served as controls. * indicates significant difference (p <

0.0001),  analyzed using one-way ANOVA with Tukey’s  HSD Post-hoc test,

while n.s. indicates no significant difference (p>0.05). 

Our  study  highlights  one  of  the  mechanisms  on  how  an  aquatic

organism like  Daphnia can potentially withstand and survive environmental

stresses.  Just  like many hosts,  Daphnia harbor several  groups of  bacteria

(with different relative abundances) in their microbiome consortium, most of

them with unknown functions; some microbial members maybe mutualistic,

commensals or parasitic depending on existing environmental conditions, or

the  microbiome  consortium  may  be  operating  as  ecological  guilds,  with

various microbial members having specific contribution to the functioning of

the  ecosystem  (i.e.  the  host).   Under  normal  conditions,  the  microbial

consortium collectively increase  D. magna survival and fitness as reported

here and in another study (51). But under stressful environmental conditions,

the collective beneficial contribution of the microbial consortium to the host

can break down (as shown in this study) and the fitness of the host may

depend  on  the  genetic  and  phenotypic  traits  of  a  specific  microbiome

member/s that can positively respond to the given environmental condition.

Pseudomonas and other  merA-containing bacteria  only  constitute a minor

percentage of the microbiome consortium in D. magna. In this study, we did

not  investigate if  prolonged  exposure  to  mercury  will  induce  changes  in

microbiota composition or if it can lead to the enrichment of  merA-positive
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bacteria in  Daphnia. It would be interesting to investigate the flexibility of

the symbiosis under stressful environmental conditions. 

In conclusion, this study is one of the few that shows the extension of

the microbiome genetic and phenotypic traits to the fitness trait of the host,

resulting  in  a  holobiont  phenotype  that  can  withstand  stressful

environmental  condition.  The microbiome of  Daphnia should  therefore  be

taken  into  consideration  specifically  in  ecotoxicological  research  where

Daphnia is commonly used as a testing animal.  
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Supporting Information

Additional  materials  and  experimental  methods,  Genbank  accession

numbers,  list  of  primers  (Table  S1),  assigned  taxon  of  D.  magna  CAY

microbiota  (Table  S2),  merA  Blastn  matches  (Table  S3),  MerA  protein

alignment and tree (Figure S1), merA expression in Pseudomonas-10 (Figure

S2),  Daphnia mercury LD50 assay (Figure S3), replicates of survival (Figure

S4) and fecundity (Figure S5) are available as Supporting Information. 
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