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ABSTRACT OF THE DISSERTATION

Modeling, Characterization and Simulation of On-Chip Poielivery
Networks and Temperature Profile on Multi-Core Microprem®s

by

Duo Li

Doctor of Philosophy, Graduate Program in Electrical Eegiing
University of California, Riverside, December 2010
Dr. Sheldon X.-D. Tan, Chairperson

Reliable on-chip power delivery is a challenging desigk fas sub-100nm and below
VLSI technologies as voltage IR drops become more and maneopinced. This situa-
tion gets worse as technology continues to scale down. Afiadesft verification of power
integrity becomes critical for design closure. In addititime increasing process-induced
variability makes it even worse for reliable power delivagtworks. The process induced
variations manifest themselves at different levels (wédgel, die-level and within a die)
and they are caused by different sources (lithograph, maéteaging, etc.). In this disser-
tation, for power delivery networks without consideringppess variations, we propose an
efficient simulation approach, called ETBR (Extended Tatad Balanced Realization),
which uses MOR (Model Order Reduction) to speedup the sitionla To make ETBR
more accuracy, we further introduce an error control meimmto it. For power delivery
networks with considering process variations, we prop@&VBR (variational Extended
Truncated Balanced Realization), a reduced Monte-Camhailsition approach, which can

handle a large number of variables and different variatistridutions. To further speedup



the MOR process used in the fast simulation, a hierarchicglo subspace projection
based MOR approach, hiePrimor, is proposed.

Besides the on-chip power delivery, excessive on-chip &atpre has also become a
first-tier design constraint as CMOS technology scalestilonanometer region. The ex-
ponential increase of power density of the high-perforneamecroprocessors leads to the
rapid rising of the average chip temperature. Higher temijpee has significant adverse
impacts on chip package cost, performance, and reliabMuylti-core techniques provide
a viable solution to temperature/power problems. Howegtesigning thermal efficient
multi-core microprocessors remains a challenging proldsrthe temperature in each core
can be dramatically different and the resulting large terafage gradients can produce me-
chanical stress and degrade the chip reliability. In théselitation, we investigate a new
architecture-level dynamic thermal characterizationbpgm from a behavioral modeling
perspective to address the emerging thermal related asalyd optimization problems for
high-performance multi-core microprocessor design. WWippse a new approach, called
ThermPOF, to build the thermal behavioral models from thasnead or simulated ther-
mal and power information at the architecture level. Anchthae extend ThermPOF into
ParThermPOF, a parameterized thermal behavioral modapipgpach that can handle dif-

ferent parameters in multi-core microprocessor designagtithization.

Vi
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Chapter 1

Introduction

1.1 Motivations

1.1.1 Modeling and simulation of on-chip power delivery netvorks

Reliable on-chip power delivery is one of the difficult cleasdfjes for sub-100nm and below
VLSI technology as voltage IR drops become more and moregumoced. This situation
gets worse as technology continues to scale down. It hasredlented by the facts that
more power has to be delivered into the chips for more packsdtds, and supply voltage
continues to decrease, which results in a decreased noiggnniiar signal transition, and
makes transistor more vulnerable to supply voltage degi@auaSo efficient verification of
power integrity becomes critical for final design power grigy closure.

The power delivery networks used in most of the research eanddeled as RC/RLC
networks, as shown in Fig._1.1 which is a part of large powét getworks. There are
known time-variant current sources inside the power gritivoeks. Those current sources

can be obtained by gate level logic simulations of the ciscusome nodes having known



voltage are modeled as constant voltage sources.

VW W YW W
=T % T T =7
VW W YW W
T I'3T I'3T 3T =T
VWA WWA VWA WA
=T T =T =T =7
VWA WWA VWA WA

Figure 1.1: The power grid model.

Many research works have been done on efficient simulation-afhip power grid net-
works. Methods such as multigrid-like 48,173], hierarclif83,[32], partition-based [37],
fast iterative [[9/ 6/7] and random walk basédl|[59] help imgrecalability of power gird
network analysis. Extended Krylov subspace based metheidS)([79,32] uses both a
power grid system and its input signals to reduce the orlgineuits before the simulation.
Due to efficiency of Krylov subspace based reduction tealesgEKS can deal with very
large power grid circuits.

Another issue for reliable on-chip power delivery is thergasing process-induced
variability [62,[46]. The process induced variations masifthemselves at different levels
(wafer level, die-level and within a die) and they are causedifferent sources (lithograph,
materials, aging etc) [10, 45]. One of the process varigdslicomes from the voltage drop
variations in on-chip power distribution networks. Voleadrop has significant impacts
on the circuit timing [[51]. The voltage drop of power grid wetks subject to leakage

current variations was first studied in_]16,117]. [n]72] SOhpulse responses are used



to compute the mean and variances of node voltage respoasssd:by general current
variations. Methods proposed in_ |20,/ 19] use orthogonaymahial chaos expansion of
random processes to represent and solve for the stochespionises of linear systems. The
methods have been improved by the StoEKS methdd [42, 41 ewbduction is performed

on the variational circuit matrices before the simulation.

1.1.2 Modeling and simulation of temperature profile on mult-core

microprocessors

As CMOS technology is scaled into the nanometer region, thweep density of high-
performance microprocessors has increased drasticalhe ekponential power density
increase will in turn lead to average chip temperature teeraapidly [5]. Higher temper-
ature has significant adverse impacts on chip package caggrmance, and reliability.
Excessive on-chip temperature leads to slower transipeed; more leakage power con-
sumption, higher interconnect resistance, and reducebrigy [22, [6,/52].

Multi-Core techniques, where multiple CPU-cores and caelne integrated into a sin-
gle chip, provide a viable solution to the temperature/popreblems [[38/13[14]. The
architecture of the Intel Quad-Core microprocessor is showFig.[T.2, where there are
four CPU cores (die 0 to die 3) and one shared cache core (di&l#) here stands for
thermal interface material.

Multi-Core processing allows one to increase the totalughput by task-level parallel
computing with lower voltage and frequency to meet power thiedmal constraints. The
proliferation of this technique provides both opportugstiand challenges for future mas-
sive parallel computing. One difficult issue confrontingidmers is the unpredictable heat

and thermal effects, which are caused by the placement eS@nd caches and changing

3
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die:3 B
|| de2 | die4
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die:0 Tl TIML
" DIE

Figure 1.2: The quad-core architecture.

program loads. Furthermore, local hot spots, which may mameh higher temperatures
compared to the average die temperature, are becoming mexal@nt in microprocessor
chips [52]. This is especially the case for multicore preoes as the temperature in each
core can be dramatically different and the resulting lasyagerature gradients can pro-
duce mechanical stress and degrade the chip reliabilitycelé is very important to verify
the temperatures and estimate the related performances(ptnving, yield) and reliability
limits during the thermal-aware floorplanning and arcltitee design under various loads
among different cores and cachks|[71].

To facilitate this temperature-aware architecture desigis important to have accu-
rate and fast thermal estimation at the architecture |/l [Both architecture and CAD
tool communities are currently lacking accurate and peattools for thermal architecture
modeling. Existing work on the HotSpot projeCt [26] 71] trio solve this problem by
generating the architecture thermal model in a bottom-up based on the floorplanning
of the function units. But this method may not be accurateréat industry designs as
many approximations are made during the modeling. It may@il§icult to set up for new

architectures with different thermal and packaging comfigjons [81]. To compute the



thermal responses by solving the basic thermal transfeateams using numerical methods
like the finite element method, finite difference method isyvexpensive, especially for
different thermal conditions and package configurationsnguthe design stage. Hence,
the need for efficient, accurate, and parameterized aothieethermal models, especially

for emerging multicore microprocessors has never beertgrea

1.2 Objectives and main results of this dissertation

The main objectives of this dissertation is to develop nevdetiag and simulation meth-
ods for on-chip power delivery networks and temperaturdileron multi-core micropro-

cessors. The major achievements accomplished in thisrtiiiea as follows:

e A new model order reduction based simulation approacheddiTBR (Extended
Truncated Balanced Realization), is proposed. In ETBR) Batystem and its input
signals are used to reduce the original circuit matricest difterent from the (im-
proved) extended Krylov subspace methods, EKS/IEKS([7R, BPBR performs
singular value decomposition (SVD) on response Gramiaadace the original sys-
tem while with the similar computation costs as EKS and a racoeirate reduction

framework: truncated balanced realization.

e We extend ETBR to ETBRR for efficient IR drop analysis based on the sampling-
based reduction and simulation framework. ETBRtries to dynamically compen-
sate error losses from the reduction during the simulatroogss of reduced models.
It introduces an error check mechanism based on the syst@duats, which is an
exact error indicator, as well as the novel effective resise concept to compute the

errors in terms of more useful voltage drop values.

5



e For large power grid network analysis considering procesgtions, a new scalable
statistical simulation approach, called varETBR, is psgzbTo consider the varia-
tional parameters, we extend the concept of response Grampnoposed in ETBR
to the variational response Grammian. Then Monte Carlodasenerical integra-
tion is employed to multiple-dimensional integrals. vaBE is very scalable for

large networks with a large number of random variables.

e To speedup the MOR (Model Order Reduction) process useceifat simulation,
a hierarchical Krylov subspace projection based MOR amtrohiePrimor, is pro-
posed. It combines the partitioning strategy and the Kndatbaspace method to
speed up the reduction process. hiePrimor is a very generarbhical model order
reduction technique and it works for general parasiticrtdanect circuits modeled

as RLC circuits.

e A new thermal behavioral modeling approach, called TherfHA® proposed for
fast temperature estimation at the architecture level foltincore microprocessors.
ThermPOF builds the transfer function matrix from the meedwr simulated ther-
mal and power information. It improves generalized peoéifunction (GPOF)
method [24| 25, 64] to extract the poles and residues of Hrester functions. Fur-
ther, the size of thermal models can be reduced by a Krylogmate reduction
method to speedup the simulation procéss [77]. ThermPOBois-down, black-box
approach, meaning it does not require any internal straatfithe systems and it is

very general and flexible.

e We extend ThermPOF into ParThermPOF, a parameterized dgrthermal be-

havioral modeling approach for emerging thermal-relatealysis and optimization



problems for high-performance multi-core microprocesdesign. ParThermPOF
consists of two steps: first, a Response Surface Method (RfalsBd on low-order
polynomials is applied to build the parameterized mode¢ésah time point for all the
given sampling nodes in the parameter space (except fo).tiBecond, ThermPOF
is employed to build the transfer-function-based modelgéxh time-varying coef-

ficient of the polynomials generated in the first step.

1.3 Organization of this dissertation

The organization of this dissertation is as follows: In Cieald, we first propose a new fast
simulation method ETBR (Extended Truncated Balanced Ra#din) for on-chip power
delivery network. To make ETBR more accurate, we then exEr8R into ETBRIR with
an error control mechanism. For large power grid networkiyasig considering process
variations, we propose a novel scalable statistical sittml@approach, called varETBR, in
ChaptefB. Then, in Chapter 4, we propose a new hierarchigdb¥K subspace based re-
duction method, called hiePrimor, to speed up the tradifioeduction process for RC/RLC
circuits. In Chaptell5 and Chapfér 6, we investigate a nehit@ature-level dynamic ther-
mal characterization problem from a behavioral modelingpective to address the emerg-
ing thermal related analysis and optimization problemshigh-performance multi-core
microprocessor design. We propose a new approach, calledROF, to build the ther-
mal behavioral models from the measured or simulated theanthpower information at
the architecture level. And then we extend ThermPOF intd RermPOF, a parameterized
thermal behavioral modeling approach that can handlerdifteparameters in multi-core

microprocessor design and optimization. Finally Chaptenicludes the dissertation.



Chapter 2

ETBR: Extended Truncated Balanced
Realization for On-Chip Power Grid

Network Analysis

In this chapter, we propose a novel model order reductiordasmulation approach.
This approach, called ETBR, performs singular value deasitipn (SVD) on response
Gramian to reduce the original system while with the simgtamputation costs of EKS/IEKS [I79,
32]. ETBR is based on a more accurate reduction frameworknctted balanced re-
alization, which was shown to be more accurate than Kryldsspace method used in
EKS/IEKS method.

The proposed method is very amenable for threading-basedlgdacomputing, as
the response Gramian, which is used to construct the projeatatrix, is computed in
a Monte-Carlo-like sampling style and each sampling candmeputed in parallel. This
contrasts with all the Krylov subspace based methods likeBKS method, where mo-

ments have to be computed in a sequential order. The featurgbrtant as the multi-core
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architectures and multi-core computing are becoming conpiaze BJ,[70]. ETBR can
naturally exploit task-level threading-oriented pardie based on multicore architectures
to significantly boost the simulation performance.ETBRoasoids the explicit moment
representation of the input signals, which have well-knomrmerical problems in the past.
Instead, it uses spectrum representation of input sigryaladt Fourier transformation. As
a result, ETBR is much more flexible for different types ofubgources and can better
capture the high frequency contents than EKS and this lead®te accurate results for
fast changing input signals. Numerical examples, on a numilarge RLC networks up
to one million nodes, show that ETBR is indeed more acculate the EKS/IEKS method
especially for current sources rich in high-frequency comgnts. ETBR also shows simi-
lar computational costs of EKS but smaller memory footpnrda single CPU, but is much
faster than EKS when parallelism is explored.

Then we propose an efficient IR drop analysis approach,cBIEBR IR, based on the
sampling-based reduction and simulation framework. Tive aygproach tries to dynami-
cally compensate error losses from the reduction duringsiimellation process of reduced
models. ETBRIR introduces an error check mechanism based on the systduads,
which is an exact error indicator, as well as the novel effeatesistance concept to com-
pute the errors in terms of more useful voltage drop valué® dn-the-fly error reduction
works well for compensating high frequency accuracy losstee to disruptive tap cur-
rent waveforms in typical industry power grid networks. T method also presents a
new way to closely combine model order reduction and sinanab achieve the overall
efficiency of simulation. The proposed method provide arcieffit way to easily trade
errors for speedup to suit different applications. Numarexamples show the proposed

IR drop analysis method can significantly reduce the errbteeexisting ETBR method,



and meanwhile it can lead to up 10X speedup over the the led@smercial power grid

simulator, UPS, in UltraSim, with about 1-2% errors on a nemtt real industry circuits.

2.1 Power grid network models

The power grid networks in this chapter are modeled as RC arktwvith known time-
variant current sources, which can be obtained by gate lega simulations of the cir-
cuits. Fig.[21 shows the power grid models used in this @raftor a power grid, some
nodes having known voltage are modeled as constant voltagees. For C4 power grids,
the known voltage nodes can be internal nodes inside thempwie Given the tap current
source vectory(t), the node voltages can be obtained by solving the followiffgréntial
equations, which is formulated using modified nodal analf8iINA) approach,

du(t)
dt

y(t) = LTu(t) (2.1)

Gu(t)+C

whereG € R™*"™ is the conductance matrig; € R"*" is the matrix resulting from storage
elements.v(t) is the vector of time-varying node voltages and branch autsref voltage
sourcesy(t) is the observed output voltage vectof) is the vector of independent power
sources, and3 € R™? is the input selector matrix anil € R™*! is the output selector

matrix. p and/ are the number of input and output terminals respectively.

10
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Figure 2.1: The power grid model used.

2.2 New extended balanced truncation method: ETBR

In this chapter, we propose an extended truncated balaradization method, called

ETBR, for efficient simulation of power grid networks. Themmethod features two im-

provements over existing approaches. First, the inputdsgare represented in its spectrum

form in frequency domain directly by fast Fourier transfation. Second, fast balanced

truncation method is used to perform the reduction, whichdiabal accuracy [43, 56].

In the following, we first review the balanced truncation huet and then the fast

Gramian computation method.

2.2.1 Review of standard TBR

Given a system in a standard state-space form

Ax(t) + Bul(t)

Cz(t)

11

(2.2)



whereA € R™*", B € R"*?,C € RP*", y(t), u(t) € RP. The controllable and observable
Grammians are the unique symmetric positive definite smhstto the Lyapunov equations.

AX + XAT + BBT =0
(2.3)

ATY + YA+ CTC =0
Since the eigenvalues of the produSt” are invariant under similarity transformation,
we can perform a similarity transformatidal, = T-'AT, B, = T™'B,C, = CT) to

diagonalize the producX'Y such that
T'XYT =% = diag(o,?, 092, ..., 0,%) (2.4)

where the Hankel singular values of the systef),(are arranged in a descending order. If

we partition the matrices as
wi

XY l ViV, } = (2.5)

Wy

whereX, = diag(o1%, 092, ..., 0,%) are the first- largest eigenvalues of Gramian product

XY andW; andV; are corresponding eigenvectors. A reduced model can béneltas

follows
x(t) = Ax(t) + Beu(t)

y(t) = Cra(t)

(2.6)

whereA, = WAV, B, = WI'B, C, = CV;. The error in the transfer function of the or-

N

derr approximation is bounded ) ;" .,

o. In the TBR procedure, the computational

cost is dominated by solving Lyapunov equatiah@?), which makes it too expensive to

12



apply to integrated circuits problems and thus an efficieran@an approximation tech-

nique is highly appreciated.

2.2.2 Review of fast TBR method: Poor man’s TBR

Existing Gramian approximation technique, PMTBRI[55], éstricted to a state-space
model [Z2) withA = AT andC = B”. This is the case for RC and RL circuits. In this
symmetric case, it is easy to see that, both Gramians ar¢ agdiare obtained by solving

the Lyapunov equation

AX + XAT + BBT =0 (2.7)

SinceX is symmetric, it is orthogonally diagonalizable, i.e.,rhexistsT'~! = T7 such

that7” XT = ¥. Then, we have
TTXXT = (TTXT)(TTXT) = (%)? (2.8)

which means, in this symmetric case, the eigenspace of @raproductX X is exactly
the eigenspace of eact and we only need to find the dominant invariant subspace of an
approximated GramiaX. In frequency domain, the Gramian X can also be computed

from the expression
+o0o
X = / (jwl — A)"'BBT (jwl — A) "dw (2.9)

where superscripf denotes Hermitian transpose. Let be kth sampling point. If we
define

2 = (jurl — A)7'B (2.10)

13



thenX can be approximated as
X = wzmel = ZW?z" (2.11)

whereZ = [z, 29,..., 2,]. W a diagonal matrix with diagonal entries,, = \/wy. wg
comes from a specific numerical quadrature method. Skiée symmetric, it is orthogo-

nally diagonalizable.

VIXV = X
V’QT

Vit |
[ - (2.12)

whereVTV = I. V converges to the eigenspacesfand the dominant eigenvectors
can be used as the projection matrix in a model reductionogmr( A, = V7 AV;, B, =

VIB).

2.2.3 Response Gramian and fast computation method

Follow the similar strategy of EKS method, we consider thauinsignals of the system
into TBR based reduction framework so that efficient reductian be done by converting
an MIMO system into an SIMO system.

For a linear system i .(2.1), we first define the frequency-g@iorResponse Gramian
+o0o
X, = / (jwC + G) ' Bu(jw)u” (jw) BT (jwC + G) Hdw (2.13)

which is different from the Gramian concepts in the tradiabTBR based reduction frame-

work. Notice that in the new Gramian definition, the inputrgitsu(jw) is considered. As

14



a results,(jwC + G)~'Bu(jw) actually is the system response with respect to the input
signalu(jw) and resultingX,. becomes response Gramian.

To fast compute the response gramign which essential essentially one-dimensional
integral with respect to the complex frequengyWe can use Monte-Carlo-based method
to estimate the numerical value as done_in [53]. Specifickdty, be kth sampling point

over the frequency range. If we further define
28 = (jwrC + G) "' Bu(jwy) (2.14)
thenX can be computed approximately by numerical quadrature edsth
X, =Y wzmat = 2wzl (2.15)
k

whereZ, is a matrix whose columns arg¢ andW a diagonal matrix with diagonal entries
wrr = /Wi wy, comes from a specific quadrature method.

For the truncated balanced based reduction, we need to ¢eltif@eigven-composition
of X, to obtain the projection matrix, which consists of eigenteesof X,.. Since the ap-
proximate GramianX, is symmetric, we can obtain the project matrix by singulduga
decomposition ofZ,.. To see this, if we have SVD df, = V,.S,.UZ, then we can have the
eigen decomposition of, = V,.S2V T, After this, we can reduce the original matrices into
small ones and then perform the transient analysis on thecegbicircuit matrices.

Also we find that weightsy,, are not important for the SVD process. The weight matrix
W will not change the subspace af as it simple multiplies each vector ifi. with a
constant. In our algorithm, we just simple ignore the wesgdrtd we use simple linear or

logarithmic sampling methods to perform the sampling (taliseussed later).
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Notice that we need frequency response of input sigial,) in (Z14). This can be

obtained by fast Fourier transformation on the input sigmakime domain.

2.2.4 Extended truncated balanced realization method: ETR

In this subsection, we give the algorithm flow of the propoEaBR method, which is

summarized irAlgorithm(d.

Algorithm 1: Extended Truncated Balanced Realization mettod (ETBR)

Input:  Circuit of G, C, B, u(t), number of samplesgj, transient simulation step interval.
Output:  Node voltage responsest) for the given simulation interval.

. Convert all the input signals(¢) into u(s) using FFT.

. Selecty frequency points, s, . . ., s, over the frequency range
. Computez} = (s,C + G) "' Bu(sy)

. Form the matrixZ, = [21, 25, .. ., 2]

. Perform SVD o1?,., Z, = V,.S, U}
.G=VTev,C=VTCV,,B=V'B

. Simulate G, C, B, u(t))

. Obtain the original waveforms(t) = Wv(t)

00 ~NO Ol WNP

Note that, like the EKS method, we use congruence transtomé#or the reduction
process with orthogonal columns in the projection matrigirfg Arnoldi or Arnoldi-like
process), the reduced system must be stable. As far as siomikconcerned, this is good
enough. If all the observable ports are also the currentceonodes, i.ey(t) = BT v(t),
wherey(t) is the voltage vector at all observable ports, the reducestkgyis passive.

Compared with the existing approaches like EKS/IKES methBd BR shows several
advantages and features. First ETBR method is much moreabieefor parallel com-
puting than EKS as eactf in (Z12) can be computed in parallel. Thus ETBR is more

efficient than EKS when the threading-based parallel comgus explored as shown in

16



the Numerical examples. Second, it is more accurate oves ndehd frequency ranges due
to the global samplings. Third, it avoids the explicit morn@presentation of the input sig-
nals, which can lead more accurate results than the EKS mhethen signals are rich in
high frequency components. ETBR can deal with any type od{ttomain and frequency-
domain input signals. While the EKS method can only deal wiplut signals in piecewise

linear form.

2.2.5 Time complexity analysis and comparison

In this subsection, we analyze the computational costsdtr ETBR and EKS and com-
pare with the EKS methods.

In ETBR, there are two major computing steps, sampling anB®.S\ét’s look at the
cost of each step. For sampling, we basically need to sov¢Xi4)q times. Typically
solving an xn linear matrix take$) (n?) (typically, 1.1 < 3 < 1.5 for matrix factorizations
andO(n®) (typically, 1 < a < 1.2) for solving (forward and backward substitutions). So
the time complexity for this step ©(qn” + ¢qn®). For the second step, the singular value
decomposition (SVD) will také& (nq?) for an x ¢ matrix. Another computing cost comes
from converting the input signals into the frequency speutform. Assume that we have
m current sources, the samplings we use for the FFII iFT takesO(l/logl) to finish.
Hence the cost associated with input signal3(s:ilogl). Typically we set = 128, which

gives sufficient accuracy. So the total computational cOE{IBR is

O(qn” + gqn® 4+ ng® + milogl). (2.16)

If all the sampling can be computed in parallel, computind42 will becomeO (n” + n®)

17



assuming very small overheads incurred to manage the threfte total computational

cost of ETBR will become

O(n” 4+ n® + ng* + milogl). (2.17)

For one-point (expanded at one frequency point) EKS, it asee two major com-
puting costs: compute the response moments and orthorizenthém similar to the QR
decomposition. For the first step, it will take one matrixt@azation and; steps solving
(forward and backward substitutions). The computing ceét(iyn® + n”), whereO(gn®)
(typically, 1 < o < 1.2 for sparse circuits) ig step solving. The orthonormalization will
take about)(nq¢?) to finish. Again, we need to calculate the computing costromigform-
ing the input signals into the moment form. It can be shown thea computing cost is
O(qk*m) [32], wherek is the number of piecewise segments in each current solands,

m the number of current sources. Hence the final computatmoslfor EKS is

O(qn® 4 n” + ng® + qk*m) (2.18)

It can be seen that EKS will be more efficient due to smallerlmemof factorizations in a
single CPU. But if parallel computing is allowed, ETBR be@much better. But if itera-
tion solvers are used, which are typically more fast and nrgrefficient than the LU-based
direct solvers for RLC networks [63], both approaches waVvé the same computational

costs in a single CPU.
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2.2.6 Statistical point of view

The proposed method in a sense can be viewed as special S34d-pancipal component
analysis (PCA) method used in statistical variable redudtiansformation.

For a linear dynamic system formulated in state space emnga{MNA) in (Z.1), if
complex frequency is a vector of random variables with uniform distributiontire fre-
quency domain. Then the state respongés) = (G + sC)~!Bu(s) become random

variables in frequency domain. Its covariance matrix candraputed as
E{V(s)V(s)"} = X, (2.19)

whereE{z} stands for computing the mean of random variabl&, is defined in[(Z.13).
The response Gramian essentially can be viewed as the angarmatrix associated with
state responses. ETBR procedure performs the principapoaant analysis transforma-

tion of the mentioned random process with a uniform distidou

2.3 Numerical examples of ETBR

The proposedETBRalgorithm has been implemented using MATLAB 7.0 and tested o
an Intel Xeon 3.0GHz dual CPU workstation with 2GB memory andintel quad-core
3.0GHz CPU workstation with 16GB memory. All the test citsuare randomly generated
RC or RLC power grid networks up to one million nodes (R on thadeo of (2, C on the
order of pF and L on the order of pH), as shown in Tablé 2.1. Eeficmatrix computations
benefit from sparse matrix structure and a parser implerdéd>ython.

To solve circuits with one million nodes in MATLAB, an extetrinear solver package
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Table 2.1: Test circuits

| TestCkts | #Nodes | #Sourceg

Cktl 1,000 100
Ckt2 10, 000 100
Ckt3 10, 000 1,000
Ckt4 100, 000 1,000
Ckt5 100, 000 4,000
Ckt6 500, 000 5,000
Ckt7 500, 000 20,000
Ckt8 1,000,000 | 50,000

Ckt9 (RLC) || 6,000 100

Ckt10 (RLC)|| 250,000 100

UMFPACK [2] is used, which is linked with MATLAB using MATLABmexFunction.
For ETBR, we use a non-LU-decomposition solver in UMFPACKhiW for EKS, the
LU decomposition solver is used. The reason why we chooserelift solver for them is
ETBR only solves one column in the right hand side, so LU dgmmsition may cost too
much and cannot be reused in ETBR. While in EKS, LU decomjoostan be reused to
solve several columns in the right hand side, number of cokidepending on the selected
reduced order, so doing LU decomposition is an efficient wilgKS. We remark that the
selection of solvers is the best for both ETBR and EKS. Theparieon is more fair for

them.

2.3.1 Comparison with the EKS method

In sequel, we will compare our ETBR with IEK5[32], first in acacy and then in CPU
times. In all the test cases, to make a fair comparison, ttecten orderq is set to6
for IEKS and the number of frequency samples used for ETBRsis set to6. Note that

for the RLC circuits Ckt1-Ckt8, the results are collectedaonintel dual CPU workstation
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with 2GB memory, and for the RLC circuits Ckt9 and Ckt10, tesults are collected on
an Intel quad-core workstation with 16GB memory.

Fig.[Z2 shows the simulation results of ETBR and IEKS at O@tf2 node of Ckt2. The
simulation errors compared with SPICE results are showngriZ3. One of the input sig-
nal waveforms in both time domain and frequency domain ishvas/s in Fig[Z#. Through

Fig.[Z3, we can see that ETBR is more accurate than IEKS beegritire simulation time.
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0.016 | —— ETBR
= = = |EKS
0.014 1\
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b s vy~ R
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0.002|, S __=C
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0 0.5 1 15 2
Time (s) -7

Figure 2.2: Transient waveform at the 200th node of Ckt2.

In the second testing case, we change the input signals seh#hacan have more
fast changing spikes as shown in Hig.12.7(a). In other wardsgent sources are rich in
high-frequency components.

We find that ETBR’s results are much better than EKS’s as showig.[Z8. From the
simulation errors comparison in F[g. 2.6, we can see thatEERIMost x more accurate
than IEKS (the maximum error: ETBR 0.003 vs IEKS 0.01). Thkigot a surprise for us

if we notice that the input signals shown in Fig.12.7(b) hauechhnmore high frequency
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Figure 2.3: The simulation errors of ETBR and IEKS of Ckt2.
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Figure 2.4: Transient waveform at the 5th current sourcekt2C

components from(0"MHz to 108MHz than the input signals shown in Fg.12.4(b).

We can try different reduced orders for Ckt2 to get 5 andq = 7. The results are

shown in Fig[ZB and Fig. 2.9. We can see that ETBR is stillevamcurate than EKS as

long as both of them use the same reduced order. And the CRi$ BinETBR depends

on the reduced order. If we want to achieve more accuracy,aed more reduced orders
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Figure 2.5: Transient waveform at the 200th node of Ckt2 fa#t changing inputs.
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Figure 2.6: The simulation errors of ETBR and IEKS on Cktzhést changing inputs.

which results in more CPU times.

For the RLC circuits, ETBR also holds much more accuracy #id6. Fig [Z.ID and

Fig.[Z11 show the transient simulation waveforms and sroftboth ETBR and EKS at
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Figure 2.7: The transient waveform at the 5th current soaf&ekt?2.
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Figure 2.8: Transient waveform at the 200th node of Ckt2 #a#t changing inputs.

the 200th node of Ckt9 (RLC).

There may be many high frequency components in the inpuéiEgn the real industry
circuits. In this situation, we in general need more sangdito improve the accuracy.
Now we perform ETBR on a real industry circuit of 154514 nqd&®4 current sources and
25001 simulation time steps. We also perform latest UltraBPS (power network solver)

on the same case. UltraSim UPS is a commercial power gridlatorufrom Cadence
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Figure 2.9: The simulation errors of ETBR and IEKS on Ckt2hwiist changing inputs.
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Figure 2.10: Transient waveform at the 200th node of Ckt9GRL

and the results of UltraSim UPS are considered as golderisrchapter. The number of
samplings in ETBR is still set to 10. But still the results aceurate enough as shown in

Fig.[Z12. This circuit has rapid changing transient was@fdue to the reason that the
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Voltage waveform on node 17 of a real industry circuit
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Figure 2.12: Transient waveform at node 17 of a real industguit.
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Input current waveform on node 17 of a real industry circuit
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Figure 2.13: Input current waveform at node 17 of a real imgusrcuit.

current sources are changing very fast, as shown ifFEigl 2.13

Finally, we compare the CPU time of the two algorithms on aspbwer grid networks
up to one million nodes. The capacity of our implementat®maiinly limited for Cktl-
Ckt8 by the physical memory of our machine (2GB).

Table[Z.2 shows the CPU times of both ETBR (including the 0bBFT) and IEKS on
the given set of circuits using the same reduction order6. ”—" means out-of-memory
error. We find that EKS is a bit faster for small circuits. Bat €kt6 and larger circuits, the
CPU times are almost the same for both methods. For the targesit Ckt8, EKS cannot
even finish owning to the memory constraint; while ETBR rum®tigh all the circuits.
This clearly shows that ETBR is more memory efficient by usinmgn-LU decomposition
solver than EKS.

Table[Z.B shows the CPU times if parallelism is explored iBETPETBRmeans par-
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Table 2.2: CPU times (in seconds) comparison of ETBR and IEKS 6)
| TestCkts || ETBR(s)| EKS (s)]

Cktl 0.23 0.08
Cki2 1.28 0.89
Ckt3 18 1.4
Cktd 20.4 188
Cki5 28.6 25.3
Ckt6 152 151
Ckt7 162 160
Cki8 562 -
Ckt9 (RLC) 0.20 0.11
Ckt10 (RLC)| 6.5 14

Table 2.3: CPU times (in seconds) comparison of ETBR, peiaéld ETBR and IEKS
(¢ = 10)

| Test Ckts|| # Nodes | # Sources ETBR | PETBR| EKS |
Cktll [ 1,750,000 25,000 | 232 | 32 [ 355
Ckt12 | 3,400,000 50,000 | 514 | 68 [ 640
Ckt13 [ 7,000,0000 100,000 | 1349 | 167 [ —

allelized ETBR. The results are collected on an Intel quaig-¢3GHz CPU) workstation
with 16GB memory. We assume that Step 3Algorithm[ can be fully parallelized. So
the total CPU time of parallelized ETBR is the max CPU timeafull the sub-processes
in parallelized Step 3 plus CPU time of serial parts in ETBl;sas FFT and SVD. For
Krylov subspace method, such as EKS/IEKS, each moment iputexth based on previ-
ous one, hence it is hardly to be parallelized. We can see=fhBR is now is a order of

magnitude faster than EKS and ETBR.

2.3.2 Results on circuits with many different switching timngs

In this subsection, we show the results of ETBR and EKS arewasy accurate for power

grid circuits excited by input currents with many differextitching timings (peaks).
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The used benchmark circuit has 1000 nodes and each node hasrat source, which
switches at a different time (the peaks are different fohezfdchem) as shown in Fig. 211 4.
The resistor and capacitor values of this circuit are rangiayanerated. R is on the order
of 1072(), and C is on the order af0—!°F. The capacitance is really small. Fig.2.15 and
Fig.[Z.16 show the simulation waveforms and errors on 100¢h300th nodesy(= 5). We
can see ETBR is still very accurate.

We remark that if the circuit has very small capacitancedidhat the whole circuit
become DC with respect to their input signal spectrum, theth ETBR and model order
reduction in general cannot be applied in this case. Butishésvery unrealistic case for

general interconnect circuits modeled as RLC/RLCK ciguit

0.05

0.045 -

0.04

0.035-

o
o
@

Current (A)
o
o
N
(%)

o
o
o

0.015-

0.01f

0.005-

Time (s)

Figure 2.14: Transient waveforms of current sources switght different time

29



x10°
0.05 T T T T T T T T 3 T T T T T T T T
—— Original ——ETBR
- o - - —IEKS
0.04 il
0.035
0.031
s s
$ 0025 g
s s
0.02
0.015
0.011
0.005
1 14 16 18 14 1‘.6 18 2
Time (s) x10™° <10
(a) Transient waveform (b) Errors
Figure 2.15: The transient waveform and errors at the 100terf; = 5).
x10°
0.05 T T T T T T T T 45 T
——— Original '| ETBR
—e—ETBR N = = =IEKS
0.045 - = —IEKS 4r h b
0.04 v .: \
35 P
1 !
0.035 \ 1
3F [
!
0.03F o
g S5t '
@ @ 1 1
g 0025 g R
s R S
0.02 ) l| Il '
Lo ! nh
0015} 15 'i ' . | ,u' G
v ! y ‘e
10 1 Vo \
0.01f L [ 1
l’ II .l 4
Al
0.005 05r 1 : ‘. : 1
! 1 1
i~ 1y
L L L L L 0 L L] L Il L L L
0.2 0.4 0.6 0.8 1 12 14 16 18 0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Time (s) «10° Time (s) «107°
(b) Errors

(a) Transient waveform

Figure 2.16: The transient waveform and errors at the 300tery = 5).

2.4 IR drop analysis problem

The power grid networks in this charpter are modeled as R@ar&s with known time-

variant tap current sources as showrinl 2.1, which can bdanauteby gate level logic
simulations of the circuits under assumption that transisircuit simulation and power

grid network simulation are separated. Such RC model isvstild at least for the on-chip
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level power grid networks for current technologid3].

The on-chip power grids, one important integrity issue isessive voltage IR drops
due to the unavoidable wire resistance (and inductive &ffeten inductance are large).
IR drop based power grid integrity analysis is differentnfrthe general transient analysis
in that designers are mainly interested in the voltage dmofse tap current sources as the
tap currents are where the power grid network are connectibdie logic circuits and IR
drops mainly matter from the logic circuit perspective. Aeault in our progranl., = B
andp = [ in ZJ). This implies the passive model order reduction lbarachieved and
it will also lead to more efficient reduction-based simuatfor power grid networks as
shown later.

Second, for IR drop analysis, what matter are the excessifage drops occurring at
a few time instances over the simulation period for each ndths is especially the case
for real industry power grid networks, where the tap curseare very disruptive in nature
as shown in Fig—2.17 and so are the IR drops as shown i El§. Eigy.[2.1D shows the
frequency spectrum of the current shown in Eig. .17, whabelshapes like sinc functions

due to the impulse shapes of currents in time domain.

2.5 New reduction based IR drop analysis method

For IR drop analysis, many industry circuits exhibit rapithnging tap current waveforms
as shown in Fid_2.17. Such impulse-like current wavefornikhave the frequency spec-
trum similar to sinc function in frequency domain as showirig.[Z.19, which has a long
tail and thus is significant across wide frequency range.s Téquires large number of

samplings to make ETBR accurate, which degrades its pesiocm
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Figure 2.17: Input current waveform at the node 10510 of Cktd first one-tenth).
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Figure 2.18: Voltage waveform at the node 10510 of Ckt4 (its¢ dine-tenth).

In this chapter, we propose to reduce the errors during tirestent simulation of the

reduced models. In the new method, we monitor errors for tlnestent waveforms from
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8 x107° Frequency waveform on Node 10510 of Ckt4
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Figure 2.19: Frequency waveform at the node 10510 of Ckelfitet one-tenth).

the reduced model and switch to the original models whernreeare large. Our Numerical
examples show such large errors typically occur around @ingel voltage drop (spikes)
and the proposed method can accurately estimate largegeati@ps while still maintain

decent speedup over traditional methods. We first presemtenimrs are estimated in the

time domain.

2.5.1 Error estimation in the time domain

One important aspect of the proposed method is to have ae@umiori error estimation
at each time step.

We propose to use the residual error information of the ndbon the states obtained
from the reduced models. Specifically, for syst€éml(2.1)uamssthath; is the time step at
time¢; andv,(t;) andv,.(t;,_,) are the voltage vectors in the reduced systems attjraed

t,_, after the time discretization. Then we can define the resielwar in time domain as
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R(t) = GVu,(t;) + (C/h)V (v,(t:) — v,(ti1)) — Bu(t:) (2.20)

whereVv,.(t;) is an approximation of the original stat€t;), V' is the project matrix
computed from ETBR andl” € R"*9, ¢ is the reduced order. Notice thatlifv,(t;) is
exactly equal toz(t;), the residual error should be zero. As a result, the nornk@f),
||R(t;)|| can serve as a good error indicator for the reduced model Btactically, we take
||R(t:)||-o @s the error indicator, which is the maximum absolute valuthe element in
R(t;).

Notice that we are only interested in the tap current noddslamlargest IR drop must
happen in one tap current node. As a result, we do not neectttk¢he all the nodes. The

new residual formula considering only tap current node®bess

Rigp(t:;) = BT (G + C/hi)Vu,(t;) = BT (C/hi)Vu(tiy) — BT Bu(t,) (2.22)

Although R(¢;) still involves the original matrice§& andC', only matrix multiplications
are involved. The time complexity df (Z21) 3(p x ¢), wherep is the number of nodes

andgq is the size of the reduced model.

2.5.2 Effective resistance

The residual definition in{2.22) mainly give the currentidesi asu(¢;) mainly contains

the tap current sources (with only a few voltage sources atiyi)n However, to effectively
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control the errors, we need to know how much voltage errochsas current residuals
will cause. As a result, we need to map from the current redithuthe voltage residual
(difference).

We introduce the effective resistance to perform the mappiine effective resistance

at timet, is defined as

~ max(t;) — vge(t;))

ress(ti) = — X B (1)) (2.23)

wheremaz means taking the maximum value of a vector. To computg(t;), we have to
know the exact response solved from the original sysién). Actually we do not need to
compute the effective response at every time step. Insteadnly compute it at the first
step and the steps where errors are large and the origindlaw are solved.

Our Numerical examples show that the effective resistaamequite consistent through
the time steps for each circuit. Fig.2120 show the histogfanthe effective resistance
distribution all over the time steps of Ckt4 in the experintaection. It can seen that the
effective resistance is dominated by values arolihdPractically we compute the average
effective resistance,,, all over the effective resistance computed seen so far imats

the allowed maximum current residual.

2.5.3 Dynamic error control

To control the errors, we need to determine the maximum atbeurrent residual, ,,,,.
If the max (R, (t;)) is larger than, ..., the original model will be solved. Otherwise, the

reduced model is solved. Thg,,., will be computed as

Vir max X Qup

by g = e 2 CHh (2.24)

Tavg
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Figure 2.20: Effective resistance distribution of Ckt4.

whereuv;, ... IS the largest IR drop seen so far ahek oy, < 1is a user-defined threshold
specifying the percentage of the allow voltage differenidé vespect to the largest voltage
drop seen so far. Typically,;, is around).01 to 0.05.

At the beginning, the maximum voltage drop,,... may be small and it can lead to the
necessary solving of the original models. To avoid this ot the initial current residual
is determined by the largest current valig,., of all the current sources over all the time
steps.

ir,max = Imam X Qip (225)

So the actual allowed current residual will take the largee of the twai,. ,,,..S’.
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2.5.4 The new IR drop analysis algorithm flow

In this subsection, we summarize all the steps we discuszdefWe first present the

proposed ETBRR method inAlgorithm[2.

Algorithm 2: ETBR based IR drop analysis (ETBRL_IR)

Input:  Circuit of G, C, B, u(t), number of samplesg;, transient simulation step interval.
Output:  Max IR drop for the given simulation interval.

1. Convert all the input signals(¢) into u(s) using FFT.

2. Selecty frequency points, s, . . ., s, over the frequency range.

3. Computez}, = (sxC + G) "' Bu(sg).

4. Form the matrixZ, = [z1,23,..., z].

5. Perform SVD o1%Z,., Z, = V,.S,UL.

6.G=VIGv,C=vICcV,, B=V'B

7. Solve theith step 7, C, B, u(t)), and geti(t). v(t) = V;0(t).

8. Substitutes(¢) into (G, C), and get right hand side;. w = B x u.

9. Compute current residual errdt = abs(w — wl). If ||R||~ is less than allowed residual
ir.maz, then goto step 11, else goto step 10.

10. Solve theth step &, C, B, u(t)), and get(t). Updater,,, andi, ,,q,.. Goto step 11.
11. Compute max IR dropg.= ¢ + 1. Goto step 7.

12. Finish all the time steps and return max IR drop.

In the new algorithm, ETBRR first reduces the original circuits from step 1 to 6 using
ETBR method. Then from step 7 to step 11, it performs the satrari on the reduced
model. At the same time, it watches out for the error in eatletstep. If the error is larger
than the given voltage IR drop threshold, ETBR switches the simulation to the original
model to get accurate results and then switch back the reduoeel for the next step until

we finish all the time step.
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2.6 Numerical examples of ETBRIR

The proposedETBRIR algorithm has been implemented using C++ and CSparse packag
[12]. ETBRIR has been tested on a workstation with Intel quad-core 20GPU and
8GB memory. All the benchmarks are power or ground grids freal industry designs.
The statistics are summarized in Tabld 2.4. In the table déianeans the total number of
nodes in one test circuit. #VS means the total number of gelsmurces and #IS means the
total number of current sources. #Time Steps means thertataber of simulation time
steps.

In the experimental setting, the,, is set to0.05 except for Ckt6 and Ckt7 wherg,, is

set t00.01. Also the number of samplings is setlto for all the case irETBRIR.

Table 2.4: Benchmark circuits
| Test Ckts|| #Nodes| #VS| #IS | #Time Stepg

Cktl 249475 | 1 5177 25001
Ckt2 154514 | O 624 25001
Ckt3 60999 1 |20901 250001
Ckt4 42222 0 | 10654 250001
Ckt5 49303 0 | 48756 79001
Ckt6 70127 1 | 28928 100001
Ckt7 75758 1 | 28048 100001

We compare ETBRR with original ETBR and UltraSim version 7.1, which is a com
mercial simulation tool from Cadence. UltraSim UPS (Ulirm3?ower network Solver)
is the power grid analysis tool in UltraSim. It is an improvied solver for power grid
network analysis. We consider UltraSim UPS as the standagg due to the reason that
those real industry benchmarks are too large and too chluafigrior SPICE to solve it. We
first show the performance comparison results in Table 2.5.

TabldZb shows the performance in CPU seconds of ET®BRomparing with original
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Table 2.5: Performance comparison (CPU seconds) of UlraBTBR and ETBRR

| Test Ckts| UltraSim (s)| ETBR (s)| ETBR.R (s) | ETBR speedup ETBR.IR speedup

Cktl 49653 236 278 210.39 178.61
Ckt2 6906 104 122 66.40 56.61
Ckt3 6130 350 1122 17.51 5.46
Ckt4 3969 234 629 16.96 6.31
Ckt5 3969 551 1182 7.20 3.34
Ckt6 6144 803 1020 7.65 6.02
Ckt7 6523 765 950 8.53 6.87
Avg. 47.81 37.60

ETBR and UltraSim. From Table2.5, we can see ETIBRcan finish much faster than
UltraSim for Cktl and Ckt2. It can archive about 37X speedup\verage. We notice that
ETBRIR favors circuits with less current sources as shown for Ckid @kt2 where we

see much higher speedup. This is due to the less time speheandpping results from
reduced models to the original one. For other cases sucht&asviere the #IS is almost

equal to #Nodes, ETBRR still can finish 3x faster than UltraSim.

Table 2.6: Accuracy comparison (max IR drop values) of 3ina, ETBR and ETBRR

| Test Ckts| UltraSim (mV) | ETBR (mV) | ETBR.IR (mV) | ETBR error| ETBRUIR error |

Cktl 1087.855 1087.812 1087.812 0.00% 0.00%
Ckt2 1899.810 1890.496 1890.500 0.49% 0.49%
Ckt3 12.230 6.021 12.222 50.77% 0.07%
Ckt4 24.734 15.549 24.707 37.14% 0.13%
Ckt5 8.424 5.055 8.363 39.99% 0.72%
Ckt6 196.300 181.251 197.468 7.67% 0.60%
Ckt7 255.920 196.102 252.613 23.37% 1.29%
Avg. 22.78% 0.47%

Table[Z.6 shows the accuracy in maximum IR drop values of ETBRompared with

ETBR and UltraSim. Here we consider results from UltraSinB# the golden and errors

39



Voltage waveform on node 17 of Ckt2

2 T T T T T
1.8+ B
UltraSim
16 - - —ETBR_IR ]
----- ETBR
1.4 4
1.2 B

Voltage (V)
=
L

0.8
0.6
0.4
0.2
0 J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s) x10°

Figure 2.21: Voltage waveform at the node 17 of Ckt2.
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Figure 2.22: Input current waveform at the node 17 of Ckt2.

are computed as the relative errors to the golden resultsriceptage.

We can see that the max IR drop values computed by UltraSire@BdR IR are almost
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Voltage waveform on node 10510 of Ckt4
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Figure 2.23: Voltage waveform at the node 10510 of Ckt4.
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Figure 2.24: Input current waveform at the node 10510 of Ckt4

the same. The max difference is less than 2%, and the aveifégrenke is less than 1%.

Fig.[Z21, Fig[Z23 and Fig_ZR5 show the voltage wavefaomshe max IR drop node
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x107° Voltage waveform on node 170 of Ckt5
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Figure 2.25: Voltage waveform at the node 107 of Ckt5.

x107° Input current waveform on node 170 of Ckt5
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Figure 2.26: Input current waveform at the node 107 of Ckt5.

of Ckt2, Ckt4 and Ckt5, respectively. The max IR drop valuesputed by ETBRR are

sufficiently accurate for the practice purpose. As we cartls&tethe voltage drops are very
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disruptive and shape. The maximum voltage drop only hapgesnaumber of discrete time
points over the the whole simulation period. Such disrpwwaveforms comes from the
similar input current waveforms as shown in Hig. 2.22, Ei@Z&and Fig[ZZ.26, which show
the input current waveforms on the max IR drop node of Ckt24@kd Ckt5, respectively.
For the original ETBR, the errors for some circuits are qlarge (22.78% in average) for
the maximum voltage drops. We observe that ETBR works quék fer Ck1 and Ck2.
The reason is that Ck1l and Ck2 have input waveforms that ehkesg rapidly compared
to other circuits as shown in Fig—2122, Hig. 4.24 and Eigd2\&e can increase the number
of samples to improve the accuracy at much more computdttosss.

Further, we can implement multithreading version of ETBRto gain more speedup.
ETBR.IR (Algorithm[) mainly consists of two parts: one-time reduction (Stefstep 6)
and error-checking simulation (Step 7 - Step 11). When we loto Algorithm[2, Step 2
and Step 3 can be fully parallel computed without any ovetl&fere we use multithreading
techniques as circuit matricés C, B can be shared between threads without using local
copies. In this way, multithreading version ETBR can save a lot of memory compared
to multiprocessing version.

Table[Z¥ shows the performance comparison of reductioe {igtep 1 - Step 6) in
ETBR.IR between single core and Quad-Core. The speedup we adBiéwmm multi-
threading implementation of the one-time reduction in ETBRlow. We can see that the
reduction time in ETBRIR is able to gain around 3x speedup.

The reason why we could not achieve 4x speedup on a Quad-Carkeime is that in
an algorithm there are always some parts that could not ll@computed. Those parts
must be done sequentially. So the total speedup must behkasgx.

For the total run time of ETBRR, Table[Z.8 shows the performance comparison be-
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Table 2.7: Performance comparison (CPU seconds) of remfutithe in ETBRIR between
single core and Quad-Core

| Test Ckts| Single (s)| Quad-Core (s) speedup

Cktl 206 66 3.12
Cki2 94 34 2.76
Ckt3 174 62 2.80
Ckt4 118 41 2.88
Ckt5 79 29 2.72
Ckt6 132 43 3.07
Ckt7 127 42 3.02
| Avg. | | | 291 |

tween ETBRIR and ETBRIR_THREAD on our Quad-Core machine. We can see that

multithreading version of ETBRR is able to achieve up to 2x, 35% on average speedup

compared to

Table 2.8:
ETBRIR_TH

single process version of ETHR

Performance comparison (CPU seconds) betweeBRHR and

READ

Test Ckts|| ETBRUIR (s) | ETBRIR_.THREAD | speedup
Cktl 278 138 2.01
Ckt2 122 62 1.97
Ckt3 1122 1010 1.11
Ckt4 629 552 1.14
Ckt5 1182 1132 1.04
Ckt6 1020 931 1.10
Ckt7 950 865 1.10
Avg. 1.35

2.7 Summary

In this chapter, we have proposed a new fast simulation ndeHTBR for extended trun-

cated balanced realization. ETBR is based on a more acaeguetion framework: trun-

cated balanced realization, which was shown to be more attian Krylov subspace
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method used in EKS method. The proposed method is very anesfmatthreading-based
parallel computing, as the response Gramian, which is usesbnstruct the projection
matrix, is computed in a Monte-Carlo-like sampling stylel@ach sampling can be com-
puted in parallel. This contrasts with all the Krylov subsphased methods like the EKS
method, where moments have to be computed in a sequential. ofthe feature is im-
portant as the multi-core architectures and multi-core moting are becoming common-
place [30[.7D0]. ETBR can naturally exploit task-level tidieg-oriented parallelism based
on multicore architectures to significantly boost the sitioh performance. ETBR also
avoids the explicit moment representation of the inputaiginwhich have well-known nu-
merical problems in the past. Instead, it uses spectruneseptation of input signals by
fast Fourier transformation. As a result, ETBR is much maegifile for different types of
input sources and can better capture the high frequenceotsthan EKS and this leads
to more accurate results for fast changing input signals.

To make ETBR more accuracy, we further introduce an errotrobomechanism into
it. The improved method is called ETBIR. The error control mechanism is based on the
system residuals as well as the novel effective resistaoceept to compute the errors in
terms of more useful voltage drop values. The on-the-flyreeduction works well for
compensating high frequency accuracy loss related topliseutap current waveforms in
typical industry power delivery networks. ETBIR provides an efficient way to easily
trade errors for speedup to suit different applications.mtical results show ETBRR
can significantly reduce the errors of the existing ETBR rodtht the similar computing
cost, while it can have 10X and more speedup over the the cocrathpower grid simulator

in UltraSim with about 1-2% errors on a number of real indysgnchmark circuits.
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Chapter 3

varETBR: Variational Extended
Truncated Balanced Realization for

On-Chip Power Grid Network Analysis

Another issue for reliable on-chip power delivery is thergasing process-induced vari-
ability [62,[46]. The process induced variations manifésniselves at different levels
(wafer level, die-level and within a die) and they are causgdlifferent sources (litho-
graph, materials, aging etd) [10,145]. Some of the variatiare systematic, like those
caused by chemical mechanical polishing (CMP), while soragarely random, like the
doping density of impurities and edge roughness. As thent@ogy moves to 65nm and
comes near to 45nm, variation will become more and more pnoced for both systemic
and random components.

One of the process variabilities comes from the voltage glew@tions in on-chip power
distribution networks. Voltage drop has significant imgamt the circuit timing([51]. Vari-

ability on voltage drops will also affect the statisticahtng analysis. A number of research

46



works have been proposed recently to address the variatiohage drop issues in the on-
chip power delivery networks under process variations. Tdleage drop of power grid
networks subject to leakage current variations was firgtistbin [16,[17]. This method
assumes that the log-normal distribution of the node vel@wp is caused by log-normal
leakage current inputs, and is based on a localized Monie Gampling) method to com-
pute the variance of the node voltage drop. However, thialibed sampling method is
limited to the static DC solution of power grids modeled ags®r-only networks. There-
fore, it can only compute the responses to the standby lead@gents. However, dynamic
leakage currents are becoming more significant, due to teasive use of sleep transistors
for reducing leakage powers. In]72,/50], impulse respoasesised to compute the mean
and variances of node voltage responses caused by genemtcuariations. But this
method requires the impulse response from all the curramtcss to all the nodes, which
is expensive to compute for a large network. Methods proghos¢20,[19] use orthogonal
polynomial chaos expansion of random processes to regrasdrsolve for the stochastic
responses of linear systems. But existing approaches dgramsider Gaussian distribu-
tions, and analysis times increase with the number of veesabThe methods have been
improved by the StoEKS method 42,141], where reduction ifopmed on the variational
circuit matrices before the simulation.

In this chapter, we present a novel scalable statisticallsition approach for large
power grid network analysis considering process variatiomhe new algorithm is very
scalable for large networks with a large number of randomatédes. Our work is in-
spired by the recent work on variational model order redurctising fast balanced trun-
cation method (called variational Poor man’s TBR methodyasPMTBR [53]).The new

method, calledrarETBR is based on the recently proposed extended truncateddealan
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realization (ETBR) methodB3,[35%]. To consider the variational parameters, we extead t
concept of response Grammian, which was used in ETBR to ctemipe reduction projec-
tion subspace, to the variational response Grammian. Themdé/Carlo based numerical
integration is employed to multiple-dimensional integral

Different from traditional reduction approaches, varETB&culates the variational
response Grammians, considering both system and inputesoariations, to generate
the projection subspace. In this way, much more efficienuecgdn can be performed
for interconnects with massive terminals like power gridwaaks [77]. Furthermore, the
new method is based on the globally more accurate balangedattion reduction method
instead of the less accurate Krylov subspace method as ilEKS [79,[32]. After the
reduction, Monte Carlo based statistical simulation i$sgrened on the reduced system and
the statistical responses of the original systems are mdudathereafter. The varETBR only
requires the simulation of the reduced circuit using angt@xg transient analysis method.
It is insensitive to the number of variables and variatiamges in terms of computing costs
and accuracy, which makes it very general and scalable. Noahexamples, on a number
of the IBM benchmark circuitd [47] up to 1.6 million nodespshthat the varETBR can
be up t01900.X faster than the Monte Carlo method, and is much more scalbhatethe
StoEKS method |42, 41]. varETBR can solve very large powat getworks with large

numbers of random variables, large variation ranges arerdiit variational distributions.

3.1 \Variational model for power grid networks

In the presence of process variations, thandC' matrices and input currentg¢) depend

on variational circuit parameters, such as metal wire witlthgth, and metal thickness on
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power grids, as well as transistor parameters, such as ehéngth, width, gate oxide
thickness, etc. Process-induced random variations cagdtersatic and random and can
be highly partially correlated [10]. For highly correlateariations like inter-die variations,
the worst case corner can be easily found by setting the gdeasto their range limits
(mean plus3o). The difficulty lies in the intra-die variations, where @it parameters are
not correlated or spatially correlated. Intra-die vaoas also consist of local and layout
dependent deterministic components and random componbkntkis chapter, we focus
on the random variations, which are typically modeled astivariate Gaussian processes
with any spatial correlation [28].

We assume that we have a number of independent (uncorreletadformed orthonor-
mal Gaussian random variables- [¢1, ..., £y, which model the channel length, the device
threshold voltage and the wire geometry variations. Teeeefthe MNA equation fof{211)

becomes
du(t)

G(&v(t) +C(E) = Bu(t,€) (3.1)

The spatial correlation in the intra-die variation can begassed by using the principal
component analysis method (or other methods like K-L ti@msétion or principal fac-
tor analysis, etc.) to transform the correlated variabis un-correlated variables before
spectral statistical analysis [20].

Note that the input vectou(t,&) = i(t,£) + uo(t), where the current vectaxt, &)
follows the log-normal distribution and has both determsiiici and random components,
and the input voltage vecta(t) is not effected by. In this chapter, we assume the dy-
namic currents (power) due to circuit switching are stilldeted as deterministic currents.
Therefore, we only consider the leakage variations as theyrmre significant owing to

their log-normal distributions. Specifically, we expand trariationalz andC' around their
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mean values and keep the first order terms ag@y11,53].

GE&) = Go+Gi&+Goo+ ...+ Guéu (3.2)

Cl) = Co+Ci&+Colo+ ... + Cnéur

We remark that the proposed method can be trivially exteriddtie second and higher
order terms[[58]. The input current variatioft, ) follows the log-normal distribution as

leakage variations are dominant factors:

i(€) =e'®, g(&) =p+o¢ (3.3)

Note that input current variatioi{{) is not a function of time as we only model the static
leakage variations for the simplicity of presentation. Hweer, the proposed approach can

be easily applied to time-variant variations with any disttion.

3.2 New variational analysis method: varETBR

In this section, we detail the new proposeafETBRmethod. We first present the re-
cently proposed ETBR method for deterministic power gridlgsis based on reduction

techniques.

3.2.1 Extended truncated balanced realization scheme

The new method is based on the recently proposed extendezhtad balanced realization

method [33]. We first review this method.
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For a linear system i (2.1), we first define the frequency-a@iorResponse Grammian
+o0o
X, = / (jwC + G) ' Bu(jw)u” (jw) BT (jwC + G) Hdw (3.4)

which is different from the Grammian concepts in the tramhiil TBR based reduction
framework. Notice that in the new Grammian definition, theuthsignalsu(jw) are con-
sidered. As a resul{jwC + G)~!Bu(jw) serves as the system response with respect to
the input signak(jw) and resultingX,. becomes the response Grammian.

To fast compute the response Grammigy) we can use Monte Carlo based method
to estimate the numerical value as done_in [53]. Specifickdty, be kth sampling point

over the frequency range. If we further define
%, = (jurC + G) ™' Bu(jwy,) (3.5)
thenX can be computed approximately by numerical quadrature edsth
X, = Zwkz,’;z,’;H = Z,W?ZH (3.6)
k

whereZ, is a matrix whose columns ar¢ andW a diagonal matrix with diagonal entries
wrr = \/Wk. wx comes from a specific quadrature method.

The projection matrix can be obtained by singular value demmsition of Z,.. After
this, we can reduce the original matrices into small onesthed perform the transient
analysis on the reduced circuit matrices. The extended TIB&ithm is summarized in
Algorithm@3.

Notice that we need the frequency response caused by igmatisi jw;,) in (33). This
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Algorithm 3: ETBR: Extended Truncated Balanced Realization method

Input:  Circuit of G, C, B, u(t), number of samples;
Output:  Transient voltage waveforms

. Convert all the input signals(t) into u(s) using Fast Fourier Transformation (FFT).
. Selecty frequency points, so, . . . , s, over the frequency range

. Computez} = (s,C + G) "' Bu(sy)

. Form the matrixz, = [21, 25, .. ., 2]

. Perform Singular Value Decomposition (SVD) 8p, Z, = V.S, UL
.G=VvIav,C=VICV,, B=V'B

. Perform the transient analysis on reduced syst&nd', B] to compute responsést)

. Compute the final transient waveform@) = V,.0(t)

0O ~NO O WNPEP

can be obtained by fast Fourier transformation on the inguntads in time domain. Using
frequency spectrum representations for the input sigsassignificant improvement over
the EKS method as we avoid the explicit moment representatidhe current sources,
which are not accurate for currents rich in high frequencynponents due to the well-
known problems in explicit moment matching methadds [58].cé@cy is also improved
owing to the use of the fast balanced truncation method ®reduction, which has global
accuracy!(l43, 56].

Note that we use congruence transformation for the redaigtiocess with orthogonal
columns in the projection matrix (by using Arnoldi or Arnolcke process), the reduced
system must be stable. For simulation purposes, this iscairffi If all the observable
ports are also the current source nodesj(e) = BTv(t), wherey(t) is the voltage vector
at all observable ports, the reduced system is also padsiwas also shown in [56] that
the fast TBR method has similar time complexity to multiplgint Krylov subspace based
reduction methods. The extended TBR method also has siogfaputation costs as the

EKS method.
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3.2.2 The new variational ETBR method

We first start the new statistical interpretation of Granmdamputation before introducing

the new method.

3.2.3 Statistical interpretation of Grammian

For a linear dynamic system formulated in state space eansgtMNA) in (Z.1), if complex
frequencyjw is a vector of random variables with uniform distributionthre frequency
domain, then the state respon$ggw) = (G + jwC) ! Bu(w) become random variables

in frequency domain. Its covariance matrix can be compused a
+o0o
X, = BV GV} = [ Vi) o 3.7)

where E{z} stands for computing the mean of random variahleX, is defined in[[34).
The response Grammian essentially can be viewed as theiamosarmatrix associated
with state responses(,. can also be interpreted as the mean for funcfit§riw) on evenly
distributed random variablegu over[—oo, +oo] . ETBR method actually performs the
principal component analysis (PCA) transformation of thentroned random process with

uniform distribution.

3.3 Computation of variational response Grammian

Define P(jw) = V(jw)V (jw)'. Now suppose in addition to the frequency variajle

P(jw, &) is also the function of the random varialglevith probability densityf(£). The

IPractically, the interesting frequency range is alwaysriotma
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newvariationalresponse Grammiai,, can be defined as

Xy = / / " )P, ) dwde = E{P(ju,6)} (3.8)

wheres, is the domain of variabl¢ with a specific distribution. Hencey,,,. is essentially
the mean ofP(jw, £) with respect to bothjw and¢. The concept can be extended to
more random variables= [¢;, &, ..., &,] and each variablg adds one more dimension of
integration for the integral.

As a result, calculating the variational Grammian is eq@rato computing the multi-
dimensional integral in({318), which can be computed by mitaequadrature methods.
For one dimensional integration, efficient methods like €&@an quadrature rulé [74] ex-
ist. For multi-dimension integral, quadrature points ar@ated by taking tensor products
of one-dimensional quadrature points, which, unfortulyatgrow exponentially with the
number of variables (dimensions) and makes the integratioactable for practical prob-
lems [68].

Practically, established techniques like Monte Carlo cagjiMonte Carlo are more
amenable for computing the integrals|[74] as the computatasts are not dependent on
the number of variables (integral dimensions). In this ¢éapve apply the standard Monte
Carlo method to compute the variational Grammidy.. The Monte Carlo estimation
of (3.8) consists of samplingy random pointsr; € S, whereS is the domain for both
frequency and other variables, from a uniform distributind then computing the estimate

as

X 1 X

1=1

The Monte Carlo method has a slow convergence rate/(V) in general although it can
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be improved to {/N) by quasi Monte Carlo methods. But as observed by Phill33, [
the projection subspace constructed from the sampledgaattially converge much faster
than the value off,,. As we are concerned with the projection subspace ratherttre
actual numerical values of,,,., we require only the drawing of a small number of samples
as shown in the experimental result. NeETBRalgorithm flow is shown irAlgorithmid.

Algorithm 4: varETBR: Variational extended Truncated Bala nced Realization method

Input:  Circuit of G(£), C(§), B, u(t,§), variables = &1, ..., £ar], number of samples;
Output:  The variational responsgt)

1. Convert all the nominal input signalgt) into u(s) using FFT.

2. Selecty points over an M+1 dimensional spage¢y, ..., {ir)

3. Computez; = (sC(EF,.... &%) + G(EF, ... &%) "t Bu(sy, &F, ..., €%,)) through Monte
Carlo.

4. Form the matrixz, = [z1, 23, .. . , 2]

5. Perform SVD or%,., Z, = V,.S,.UL

6.G(6) = V' G(OV:, C((€)) =V C()Ve. B=VB

7. Perform the Monte Carlo simulation 61(¢) () + C(¢) 2 — Bu(t, ¢)

8. Obtain the variational responsé&) = V,.0(t).

9. End

WhereG(¢) = VIG(€)V, andC((€)) = VT C(€)V, stand for

GE) = VIGWV, + VTG V,6, + VIG Vo + ...+ VIGY Ve (3.10)

C) = VICV, +VICV& +VICV + .+ VIO Viéyw  (3.11)

The algorithm starts with the given power grid network ane ttumber of samplings
¢, which are used for building the projection subspace. Theomputes the variational
response] = (spC(&F, ... &8 + G(EF, ... &8)) "t Bu(sy, £F, ..., &%) randomly. Then we
perform the SVD onZ, = [z], 23, ..., 2] to construct the projection matrix. After the

reduction, we perform the Monte Carlo based statisticalyamato obtain the variational
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responses from(t) = V,0(t).

We remark that in both Algorithrfll 3 and Algorithiih 4, we perfoionte-Carlo like
random sampling to obtaig frequency sampling points over the M+1 dimensional space
for given frequency range and parameter spaces (for Algoill, sampling is on the given
frequency range only). We note that the MC based samplintpodeis also used in the
PMTBR method[53].

Compared with existing approaches, varETBR offers sewataantages and features.
First, varETBR only uses Monte Carlo sampling, it is easymplement and is very gen-
eral for dealing with different variation distributionséiarge variation ranges. It is also
more amenable for parallel computing as each sampling quéecy domain can be done
in parallel. Second, it is vary scalable for solving largewwks with large number of
variables as reduction is performed. Third, varETBR is nmaareurate over wide band fre-
guency ranges as it samples over frequency band (compattetheiless accurate moment-
matching based EKS method). Last, it avoids the explicit mihmepresentation of the
input signals, leading to more accurate results than the Ek®iod when signals are rich

in high frequency components.

3.4 Numerical examples

The proposedarETBRalgorithm has been implemented using MATLAB and tested on an
Intel quad-core workstation with 16GB memory under Linuxiesnment.

All the benchmarks are real PG circuits from IBM provided @], but the circuits
in [47] are resistor-only circuits. For transient analysiee need to add capacitors and

transient input waveforms. As a result, we modified the barark circuits. First we
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Table 3.1: Power Grid (PG) benchmarks
| Name || #Nodes| #V Sources| #l Sources

ibmpgl] 30638 14308 10774
ibmpg2|| 127238 330 37926
ibmpg3 | 851584 955 201054
ibmpg4 || 953583 962 276976
ibmpg5 | 1079310 | 539087 | 540800
ibmpg6|[ 1670404 | 836239 761484

added one grounded capacitor on each node with a random ivatlne magnitude of pF.
Second we replaced the DC current sources by a piecewise bignal in the benchmark.
The values of these signals are also randomly generated bagbeir original values in the
DC benchmarks. We implemented a parser using Python toforamshe SPICE format
benchmarks into MATLAB format.

The summary of our transient PG benchmarks is shown in Tallle B/e use MNA
formulation to set up the circuit matrices. To efficienthh&PG circuits with 1.6 million
nodes in MATLAB, an external linear solver package UMFPACH is used, which is
linked with Matlab using Matlab mexFunction.

We will compare varETBR with the Monte Carlo method, first ataracy and then in
CPU times. In all the test cases, the number of samples uséarfoing the subspace in
varETBR are50, based on our experience. The reduced order is set010, which is
sufficiently accurate in practice. Here we set the variatéorge, the ratio of the maximum
variation value to the nominal value, 16% and set the number of variables@g2 for G,

2 for C' and 2 fori). G(£) andC'(¢) follow Gaussian distributioni(z, £ ), which models the
leakage variations$ [1.6], follows log-normal distribution

varETBR is essentially a kind of reduced Monte Carlo methbithherits the merits of

Monte Carlo methods, which are less sensitive to the numbeareables and can reflect
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the real distribution very accurately for a sufficient numbgsamples. But the main dis-
advantage of Monte Carlo is that it is too slow to simulateargé scale circuits. varETBR
first reduces the size of circuits to a small number while @hiving sufficient accuracy.
Thus, varETBR can do Monte Carlo simulation on the reducexlits very fast. Note that
the reduction process is done only once during the simulgirocess.

To verify the accuracy of our varETBR method, we show theltesaf simulations on
ibmpg1(100 samples) anidhmpg6(10 samples). Fid_3.1 and FIg.1B3.2 show the results of
varETBR and the pure Monte Carlo method at the 1000th node
(named n12058311663 in SPICE format) ofbompgland at the 1000th node (named
n3.168009178400 in SPICE format) abmpg6 respectively. The circuit equations in
Monte Carlo are solved by MATLAB.

The absolute errors and relative errorstohpglandibmpg6are shown in Fid. 313 and
Fig.[3.4. We can briefly see that errors are very small and atETVBR is very accurate.
Note that the errors are not only influenced by the variatimmsalso depends on the re-
duced order. To increase the accuracy, we may increasedheeé order. In our tests, we
set the reduced order o= 10 for all the benchmarks.

Next we do accuracy comparison with Monte Carlo on the proipahlistributions
including means and variances. Hig.13.5 shows the voltagjghilitions of both varETBR
and original Monte Carlo at the 1000th nodeilompglwhent = 50ns (200 time steps
betweerOns and200ns in total). We can also refer to simulation waveformstoa 50ns
in Fig.[3.1. Note that the results do not follow Gaussianritigtion asG (&) and C(€)
follow Gaussian distribution andt, £) follows log-normal distribution. From Fi._3.5, we
can see that not only are the means and the variances of v&&m8 Monte Carlo almost

the same, but so are their probability distributions.
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Transient waveforms on node 1000 of ibmpg1
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Figure 3.1: Transient waveform at the 1000th node 2058311663) ofiompgl(p = 10,
100 samples).
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Figure 3.2: Transient waveform at the 1000th node 168009178400) ofibmpg6(p =
10, 10 samples).
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Simulation errors of ibmpgl x107* Simulation errors of ibmpg6
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Figure 3.3: Simulation errors a@bmpglandibmpg6
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Figure 3.4: Relative errors @bmpglandibmpg6

Finally, we compare the CPU times of varETBR and the pure K &wrlo method.

To verify the efficiency of varETBR on both CPU time and memawg do not need to

run simulations many times for both varETBR and Monte Caki¢e will run 10 or 100

samples for each benchmark to show the efficiency of varETiB&sve already showed

its accuracy. Although we only run a small number of samples,speedup will be the

same. Tabl€=312 shows the actual CPU times of both varETBfRu@ing FFT costs) and
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Distributions of voltages for Monte Carlo and varETBR
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Figure 3.5: Voltage distribution at the 1000th nodelohpg1(10000 samples) when=

50ns.
Table 3.2: CPU times (s) comparison of varETBR and MontedJgrk 50, p = 10)
Test Ckts varETBR (s) Mor_lte Carlo
Red. (s)| Sim. (s)| Sim. (s)

ibmpg1 (100) 23 14 739

ibmpg1 (10000)| 23 1335 70719
ibmpg2 (10) 115 1.4 536
ibmpg3 (10) 1879 1.5 4973
ibmpg4 (10) 2130 1.3 5275
ibmpg5 (10) 1439 1.3 5130
ibmpg6 (10) 1957 1.5 6774

Monte Carlo on the given set of circuits. The number of sangppoints in reduction is

g = 50. The reduction order ip = 10. Table[3B shows the projected CPU times of

varETBR (one-time reduction plus 10000 simulations) andhtddCarlo (10000 samples).

In varETBR, circuit model becomes much smaller after reidmcand we only need to

performa the reduction once. Therefore, the total time isimfaster than Monte Carlo (up

to 1960.X). Basically, the bigger the original circuit size is, thatier the simulation will
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Table 3.3: Projected CPU times (s) comparison of varETBR Mpodte Carlo ¢ = 50,
p = 10, 10000 samples)
| Test Ckts| varETBR (s)| Monte Carlo (s)| Speedug

ibmpg1l 1358 70719 53X

ibmpg2 1515 53600 354X
ibmpg3 3379 497300 1472X
ibmpg4 3430 527500 1538X
ibmpg5 2739 513000 1873X
ibmpg6 3457 677400 1960X

be for varETBR. Compared to the Monte-Carlo method, the ¢c&dn time is negligible
compared to the total simulation time.

Note that we run random simulation 10000 timesifompg1 as shown in Table3.2, to
show the efficiency of our varETBR in practice.

It can be seen that varETBR is very scalable. It is, in practdmost independent of
the variation range and numbers of variables. One posshkon is that varETBR already
captures the most dominant subspaces even for small nurhbamples (50 in our case)
as explained in Subsectibn 312.2.

When we increase the variation range and the number of Yasathe accuracy of
varETBR is almost unchanged. Tablel3.4 and TRble 3.5 shatsite mean and variance
comparison between the two methods for 10K Monte Carlo rnagre we increase the
number of variables from 6 to 15 and the variation range fr@%to 100%. The tables

show that varETBR is very insensitive to the number of vdeatand variation range for

a given circuitibmpgl, where simulations are run on 10000 samples for both varETBR

(¢ = 50, p = 10) and Monte Carlo.

The variation rangevar is the ratio of the maximum variation value to the nominal

value. So bar = 100%” means the maximum variation value may be as large as the
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Table 3.4: Relative errors for the mean of max voltage dropasETBR compared with
Monte Carlo on the 2000th node iimpg1(q = 50, p = 10, 10000 samples) for different
variation ranges and different numbers of variables

Variation range
#Variables|| var = 10% ‘ var = 30% ‘ var = 50% ‘ var = 100%
M=6 0.16% 0.08% 0.17% 0.21%
M=9 0.16% 0.25% 0.08% 0.23%
M =12 0.25% 0.07% 0.07% 0.28%
M =15 0.15% 0.06% 0.05% 0.06%

nominal value.

Table 3.5: Relative errors for the variance of max voltaggdf varETBR compared with
Monte Carlo on the 2000th node iimpg1(q = 50, p = 10, 10000 samples) for different
variation ranges and different numbers of variables

Variation range
#Variables|| var = 10% ‘ var = 30% ‘ var = 50% ‘ var = 100%
M=6 0.27% 1.54% 1.38% 1.73%
M=9 0.25% 0.67% 1.32% 1.27%
M =12 0.42% 0.07% 0.68% 1.41%
M =15 0.18% 1.11% 0.67% 2.14%

From Table[3¥ and Table—3.5, we observe that varETBR is alsimsensitive to
the number of variables and the variation range. Here we hisesame sampling size
(¢ = 50) and reduced ordep(= 10) for all of the different combinations between number
of variables and variation range. And the computation céstabETBR is the almost
same for different number of variables and different vasiatranges. This actually is
consistent with the observation in PMTBR [56]. One explaomafor the insensitivities
or nice feature of the new method is that the subspace olbtawen with small number of
samplings contains the dominant responses Grammian stéssf@ the wide parameter
and frequency ranges.

Finally, to demonstrate the efficiency of varETBR, we conepi&with one recently
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proposed similar approaclgtoEKSmethod, which employs Krylov subspace reduction
with orthogonal polynomials iri [42] on the same suite of IBIvtuit.

Table[3.6 shows the comparison results where '’ means onteshory error. StOEKS
can only finish smaller circuitvompgl(30k) andibmpg2(120k), while varETBR can go
through all the benchmarks (up to 1.6M nodes) easily. The @b of StoEKS increases
rapidly and could not complete computations as variablesmtimcreases. For varETBR,
CPU time is independent of number of variables and only dépe@m the reduced order
and number of samples used in the reduced Monte Carlo siimlatiere we select re-
duced ordep = 10 and 10000 samples that are sufficient in practice to obt&mticurate

probability distribution.

Table 3.6: CPU times (s) comparison of StoEKS and varETBR-(50, p = 10) with
10000 samples for different numbers of variables.

M=5 M=7 M=9
Test Ckts|| StoEKS| varETBR | StoEKS| varETBR| StoEKS| varETBR
ibmpgl 165 1315 572 1338 3748 1326
ibmpg2 || 1458 1387 - 1351 - 1377

3.5 Summary

In this chapter, we have proposed a novel scalable statisiimulation approach for large
power grid network analysis considering process varigtiomhe new algorithm is very
scalable for large networks with a large number of randoniatédes. The new method,
called varETBR, is based on the previously proposed extetrdacated balanced realiza-
tion (ETBR) method. To consider the variational parametwesextend the concept of re-

sponse Grammian, which was used in ETBR to compute the riedymiojection subspace,

64



to the variational response Grammian. Then Monte Carloasenerical integration is
employed to multiple-dimensional integrals. varETBR ordguires the simulation of the
reduced circuit using any existing transient analysis ettt is insensitive to the number
of variables and variation ranges in terms of computingsast accuracy, which makes
it very general and scalable. Numerical examples, on a nuoflike IBM benchmark cir-
cuits [47] up to 1.6 million nodes, show that the varETBR carup t01900.X faster than
the Monte Carlo method, and is much more scalable than theK&anethod[[42, 41].
varETBR can solve very large power grid networks with largenbers of random vari-

ables, large variation ranges and different variationstrdiutions.
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Chapter 4

hiePrimor:Hierarchical Krylov
Subspace Based Reduction of Large

Interconnects

Compact modeling of passive RLC interconnect networks le& ka research-intensive
area in the past decade owing to increasing delays and sigagtity effects and increas-
ing design complexity in today’s hanometer VLSI designsdieng the parasitic inter-
connect circuits by approximate compact models can sigmifig speedup the simulation
and verification process in nanometer VLSI designs. As thbertelogy moves to 45nm,
the massive extracted post-layout circuits will make thduction imperative before any
meaningful simulations and verifications. Hence the radacilgorithm must be able to
scale to attack very large circuit sizes in the current atdréutechnologies.

Reduction algorithms based on subspace projection havegreeed to be very effec-
tive in the pastl[14, €9, 29, 49,177]. Those methods typicatbyject the original circuit

into the dimensioned-reduced Krylov subspace to reducenibdel order. Krylov sub-
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space methods can lead to a localized moment matching litwkele@ the original model
and the reduced one. It was introduced to the interconndatt®n by the Pade via Lanc-
zos (PVL) [14] method, as it can mitigate the numerical peofs in the explicit moment
matching methods like Asymptotic Waveform Evaluation (AY\#gorithm [57]. There-
after, some similar approaches such as Arnoldi Transfaomamethod[[69] was also pro-
posed. Later, the congruence transformation method [2@]RRIMA [4S] were further
proposed, which produce passive models. At the same timey wther approaches also
have been proposed, such as balanced truncation basediosaduethods(|54l, 80, 82],
local node reduction methods [65,166] and general node tedtumethod [[6D] 76]. But
Krylov subspace based-reduction method remains a vialgeoaph for many practical
interconnect reduction problems owning to its high efficienExisting projection-based
reduction methods, however, lack a general way to expleiptirallel computing capabili-
ties, which become more popular with emerging multi-commpating architectures.

But in this chapter, we investigate the parallelism witlia teduction operations in one
expansion point for one large interconnect circuit. Grimmas explored the parallel com-
putation for multi-point Krylov based reduction where ed€lylov subspace from each
expansion point can be computed in parallel [21]. Hierar@hieduction of interconnects
have also been studied from different perspectives in tbe paHIPRIME algorithm[[3R2],
hierarchical reduction has been extended in the extendgld\Ksubspace method (EKS)
to compute the responses of on-chip power grid networks.HIRRIME method reduces
both system and input signals at the same time in a hieradohay, but it does not produce
a reduced model for general use. In the RecMOR methdd [1&n#snn and Liu applied
the combined terminal and model order reduction on the scits based on the obser-

vation that partitioning may lead to many circuits with mamgw terminals, which will
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affect the efficiency for projection-based reduction methaHowever, terminal reduction
in general still remains a difficult problem and may not besefive for many practical
problems|([54, 39].

In this chapter, we propose a new hierarchical Krylov subspxased reduction method.
The new method combines the partitioning strategy and thagokrsubspace method to
speed up the reduction process. It is more suitable for iadunany large global intercon-
nects like coupled bus, transmission lines and large cletk where the number of ports
are general not significant. Itis a very general hierardmuadel order reduction technique
and it works for general parasitic interconnect circuitsdeled as RLC circuits.

The new method, callelsiePrimor, first partitions a large RLC circuit into two or more
levels and then perform the projection-based reductionutaciscuits in a bottom-up way.
Our contributions are as follows: (1) theoretically we shitwat if £th order block moment
order is preserved in all the reduction processes for altisabits and top level circuit,
first &k block moments will be preserved in the final reduced mod@lsye prove that the
new hierarchical reduction method also preserves the\pgssef the reduced models for
interconnects at all the hierarchical levels; (3) we shoat the proposed method not only
can exploit parallel computing to speed up the reductiocgss, but also can significantly
improve the analysis capacity by partitioning strategy; W4 study the impacts of parti-
tioning on the reduction efficiency and show that partitr@nis critical for the hierarchical
reduction process and min-span or min-cut objective shbeldttained for best reduction
performance. We apply the existing hMETIS patrtitioningl$ofd]] to perform the min-cut
partitioning.

The proposed method, for the first time, exploits the paritig-based reduction strat-

egy, which enable the parallel computing and more scatglidr handle very large para-
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sitic interconnect circuits. Numerical examples show thatproposed method can lead to
significant speedup over the flat projection based meth&lRiRIMA and order of mag-
nitudes speedup over PRIMA if parallel computing is usedterbonnect circuits with
millions of nodes can be analyzed by hiePrimor in a desktopuBi6g Matlab in a few

minutes.

4.1 Review of subspace projection based MOR methods

In this section, we review the Krylov subspace projectiasdid methods, which are also
used for the new hierarchical projection MOR method.
Without loss of generality, a linear m-port RLC circuit cam éxpressed as

Cx,, = —Gx,, + Bu,,
(4.1)

i, = L7x,
wherex,, is the vector of state variables ands the number of state variables, is the
number of independence sources specified as port&: are storage element and conduc-
tance matrices respectivelig. and L are position matrices for input the output ports.
Defined = —G7'C, A € R andR = G7'B, R = [ro,71, ..., 7], B € R,
The transfer function matrix after Laplace transformati®/ (s) = L* (G + sC)~'B =
LT (I, — sA)"'R wherel, is then x n identity matrix. The block moments df (s) are

defined as the coefficients of Taylor expansiordf) arounds = 0:
H(s) = My + Mys + Mys® + ... (4.2)

whereM; € ™™ and can be computed ag; = LT A’R. In the sequel, we use, to

69



denote the terminal count for subcircuit

The idea of model order reduction is to find a compact systemrafich smaller size
than the original system. The Krylov subspace based metbocah#plishes this by pro-
jecting the original system on a special subspace whichssipensame space as the block

moments of the original system. Specifically, the block Kwsubspace is defined as

Kr(A,R,q) = colsp|R, AR, A’R, ..., A*"'R,
Abpg, AFry L AR (4.3)

k= |q/m|, l=q—km. (4.4)

For simplicity of expression, we assume= m x k in the following andk is the order of
block moments used in the Krylov subspace. karder block moments will be matched
if Krylov subspaceKr(A, R,mk) is used. Then, projection MOR method tries to find

orthogonal matrixX' € ®"*? such thatolsp(X) = Kr(A, R, q). With

C=XxXTcx G=XxTgx

B=X"B L=XTL

the reduced system of sizas found as

Cx, = —G%, + Bu,
(4.5)
i, =L7%,

The reduced transfer function becofi¢s) = L”(G + sC)~'B. An important result

for projection-based MOR methods is that the reduced sysjgonoximates the original

70



systems in terms of moment matching#if-(A, R, q) C span(X), then the reduced trans-

fer functionY (s) and the original transfer functiaH (s) matches the first block moments

wherek = ¢/m. Also whenL = B, the reduction process preserves passivity.

4.2 Hierarchical projection MOR method: hiePrimor

4.2.1 A walkthrough example

We introduce our method by using an illustrative RC examjpeud shown in Fig[4ll.

This circuit has been partitioned into three parts, the tulcgcuits/ and /7 and the top

part, which connects the two subcircuits. The two subciscare connected via the top

level circuit only.

top 17
V1 Vo G2 Vs G3 V3 G4 (N
+ + C
} Tiul 1 C Cy L T Us 1 Cs | L
1 - i -

Figure 4.1: A partitioned RC circuit.

As a result, we have the partitioned MNA equations as showL.&), where we par-

tition the matrix into three parts and the input sources tato parts as input sources only

appear in partitiod and the top-level partition.
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G1 —G1 -1 0 0 0 0 U1
—Gl Gl + GQ 0 0 0 —Gg 0 (%)
1 0 0 0 0 0 0 Loy
0 0 0 (Gg + G4) —G4 —Gg 0 V3 +
0 0 0 -Gy Gy 0 0 (1
0 —G2 0 —Gg 0 (GQ + Gg) -1 Vs
0 0 0 0 0 1 0 Loy
O 0 00 OO0 O V1 010
0 C, 0]0 0[]0 0 Vo 00 (4.6)
O 0 0[O0 OO0 O Tul 10
Uy
0 0 0|Cs 00 O vy | =010 E—
Ug
0 0 0|0 C4y10 O V4 010
0O 0 0|0 0O01|Cy O Vs 010
0 0 0[]0 0[]0 O T2 0|1
oy 0 0 1/0 0 ‘ 0 0
= T,
Loy 0 0 0j]0 O ‘ 01
1l = [v] vy Gy, V3 V4 Vs Gyy)

In general, we can write a-way partitioned RLC circuit into the following general
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form:

G1 0 G{t X1 Cl 0 0 5(1
0 G2 G%; X9 0 Cg 0 Xg
+
Glt th Gtt Xt 0 0 Ctt Xt
- (4.7)
Bl 0 0 uq
0 B2 0 U9
0 0 Btt Uy

where thex; is the internal variable vector for partitiorandu, is the external input vector
for partitioni. x; andu, are the variables and external input vectors of the toptgveuit.
If there are no external inputs for partitieythen the corresponding columns in the position

matrix can be removed as shown[n{4.6).

4.2.2 The hiePrimor algorithm

For a general RLC circuit, we can rewrife{®.7) as

Gx + Cx = Bu (4.8)

The idea of hierarchical projection-based reduction is st foerform the reduction
using projection MOR method for each subcircuit assumirag the subcircuits are dis-
connected from the rest of the circuit. After the subcirsw@te reduced, we perform the
reduction on their parent circuits of the subcircuits untd reach to the top-level circuit.

The benefit of doing this is that we can reduce the computatomplexity by performing
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the reduction on the subcircuits and intermediate circiid parallelism can be exploited
to speed up the reduction process as subcircuits in onertigcal level can be reduced
independently.

To illustrate this idea, we still use the example in [Eig] 4Td.reduce the subcircuit,

we have the following subcircuit matrix:

G1 —G1 —1 U1 0 0 0 @1 0 0
Uy
—G, Gi+Gy 0| vl +]0 ¢ ol |[oo] =10 1 (4.9)
. i
1 0 0| |, 0 0 0| |iy 10

wherei, is the current source attached to najewvhich becomes a terminal node now.
The added current source is just for reduction propose. Nhatiethe position matrix3; =

[0 0 1)T for this subcircuit has been changed to

Bi= 0 1 (4.10)

This modification reflects the fact that the subcircuniow has two terminal nodes: node
1 and node2. Notice that all the internal nodes, which are inside a gehdi and are
connected to boundary node at the upper level via a devigechydecome the terminal
nodes of the subcircuits for the reduction propose (as tee odnode2). If a subcircuit
does not have any external input (such as the subcifdyijtall the nodes incident on
the boundary nodes will become the terminal nodes for thaatsah of the subcircuit.
As projection based-MOR method becomes less effectivenftreasing terminal counts,

we should try to minimize the terminal counts of subcircuitherefore, the hierarchical
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reduction requires the min-spHrpartitioning of the circuit. In this way, we can achieve
better reduction performance. We will discuss the pariitig issue in the sectidn4.4.

After the projection matriX/; is computed usind(4.9), whefg spans the:th order
block Krylov subspace. i.eV, C Kr(G{'B;,G;'Cy, kmy), wherem, is the terminal
count of subcircuitl, we can perform the reduction. But now we need to look at the

subcircuit in the context of the whole circuit. From{4.®r the subcircuifl, we have
Gix1 + Cix; + Glx, = By (4.11)
After the reduction, we have
Ghzy + Cizy + GTx, = Biuy (4.12)

wherex = Viz, Gy = V/GV4, C, = VTC\Wy, B, = VT By, Gy, = ViGy,. We remark
that we use originaB; here instead oB]. Since thecolsp(B;) C colsp(B}), we can use
subspace defined i to perform the reduction.

We repeat the the reduction process on all the subcircuitsesgioned above until we

Ispanof cut net is the number of internal nodes that a cut net casrigam all the partitions.
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end up with the following order reduced system at the toplieve

G1 0 é{t VAl él 0 0 Zl
0 ég é%; Zy 0 ég 0 22
+

_élt th Gtt Xt 0 0 Ctt Xt

e 4L (4.13)
B1 0 0 uq
0 BQ 0 Us
0 0 Btt U

In this chapter, we only present the results for two leveliin as shown ir({4l7). But
the proposed method can be trivially extended to more hohreal levels. We can also
rewrite (£IB) as

G, x, + C.x, = B,u, (4.14)

With @I3), we can continue the reduction by performing teeuction at the top-level
circuit using the projection-based reduction method agé&imally, we have the reduced

model:

Gx + Cx = Bu (4.15)

whereG = V7@, V,, C = VIC,V,, B = VT B,. G, andC, and B, are the circuit matrices
in @I3) andV; C Kr(G:'B,,GR'C,, q;), whereq; = km; andm; is the terminal count

at the top-level circuit.

76



4.2.3 The algorithm flow for hiePrimor
In this subsection, we summarize the algorithm flow of thé’himor method shown in
Fig.[L23.

Algorithm 5: Hierarchical Krylov Subspace Projection-based Model Order Reduction
Method (hiePrimor)

Input:  Circuit matricess, C, B, reduced ordey, partition numbenw
Output:  Reduced matrice§, C, B

1. Partition original large circuit intaw small subcircuits using hMETIS.

2. Form original circuit matrices as i (4.7).

3. For each subcircuit, find sub-level projection matri¥; using Krylov subspace method.
4. Reduce subcircuit matrices

G =VI'GVi, Ci = V'C;V;, B; = V' By, Gyt = ViGiy.

5. Form top-level circuit matrices as in{4113).

6. Compute top-level projection matri% using Krylov subspace method.
7.G=VIGV,C=VICV;,,B=VTB

8. End

4.3 Moment matching connection

In this section, we analyze the moment matching propertyhefgroposed method. We
show that if thekth order block moment is preserved/matched in the redustionall the
subcircuits and for the top-level circuit as well, the finetluced model preserves the first
k block moments of the original system.

Assume that we have an interconnected circuit system wélhrémsfer functior (s),
which consists of: subcircuits that connects together. Assume that we denbtgrsuiti

as(G;, C;, B;) and we perform the projection based model order reductich@subcircuit
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7 only

(Gy,Ci, B) = (VG V;, VGV, VT By) (4.16)

and keep all the other system unchanged. We generate tleetiooj matrixl; such that

Vi C Kr(A;, Ri, q;) (4.17)

whereA; = —G;l(],-, R, = G;lB,- andg; = km;. Then we have the following result:

Lemma 1 The resulting interconnected circuit system trangfg(s), which consists of the
order reduced subcircui([éi, o BZ-) with rest of subcircuits unchanged, matches the first

k block moments aff (s).

The detailed proof of this lemma can be found.ai [78]. Here e gn intuitive example
to explain the Lemma. For instance, we have two connecteslystdmsA and B with two
transfer function 4(s) and Hz(s), where the outputs oft drive the inputs ofB. So the
whole system transfer function 1$(s) = H(s)Hp(s). If we replaceH 4(s) with H (s),
which is accurate tgth order of H,(s). It can be easily see thaf(s) = H(s)Hp(s)
will be accurate to theth order of H (s) if we write both H 4(s) and H(s) in the moment
(Taylor’s series) form.
For the interconnected circuit systefi(s), all of its subcircuits are reduced by the

projection based MOR method such that

(Gi, Ci, B)) = (VIGV, VIC Vi, VIB)), i=1,...,w (4.18)

such thal; C Kr(A;, R, ¢;), ¢ = km, for all the subcircuits. Based on Lemida 1, we can

easily obtain the following result:
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Corollary 1 The resulting interconnected circuit system trangfgts), which consists of
the order reduced subcircuit(y;, C;, B;),i = 1, ..., w, for all subcircuits, matches the first

q block moments aff (s).

The proof of Corollarydl can be obtained when we apply Lerimetiines to the intercon-
nected circuit systeni/ (s) such that we reduce one subcircuit at a time.
Now we are ready to present the main result regarding thegsexgbhierarchical model

order reduction method, hiePrimor.

Theorem 1 Given a partitioned RLC circuit defined {@.4) with transfer functiont (s), if
we perform the projection based reduction on all the suhiiscand then on the top-level
circuit such thatkth order block moment is preserved in the all reduction psses, the
transfer functionH (s) of the reduced system @.I3)will match the first block moments

of H(s).

The proof of the theory is obvious in light of Corollddy 1 arttfact the top-level reduction
on (4.1I3) also preserves thth order block moment. Theorelth 1 also indicates that for the
hierarchical reduction process, we should always use three ddock moment order for
all the reduction processes. For the same reduction drdgifferent subcircuit may have
different reduced model sizes as the size of the reduced Inde;, wherem; is the
terminal count of the subcircuit

In summary, the proposed hierarchical projection basedatgosh method, hiePrimor,
will have the same accuracy as the flat projection based rdethmmth methods use the

same block moment order.
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4.4  Circuit partitioning

Partitioning plays an important rule for the performancéhaf proposed reduction method.
The reason is that the nodes that are inside a subcircuit r@niti@dent on the boundary
nodes at the top level will become the terminal nodes for sabits. The sizes of the
reduced models grow linearly with the terminal number ofdhiginal circuits in the pro-
jection based reduction framework as the size of the redowadkl iskm;, wherek is the
block moment order angh; is terminal count for subcircuit To have smaller sizes of the
reduced matrices (thus smaller nonzero elements in thdaaas)r which will be stamped
into the higher-level circuit matrix for further reductipwe need to reduce terminal count
of subcircuits as much as possible. This calls for the mimmgpan or minimum-cut par-
titioning to achieve this.

Also the size of subcircuits cannot be too small comparel thié number of terminals
to have meaningful reduction on subcircuits. As a resuk, ploposed method is more
suitable for very large RLC networks like bus, coupled traission lines and clock nets
with loosely coupled subcircuits.

After partitioning, the subcircuit terminals generatedgartitioning will be driven by
current sources in general, which requires the subcir@astdC path for all the nodes. If
this is not the case, we have to introduce voltage sourcdsgedetminal for the reduction
purpose (to make the subcircdit non-singular). This will add more interface terminals to
the original subcircuits. As a result, we should minimize tapacitive cut, which can lead
to non-DC path nodes. But the proposed method does not hgvestrictions on types of
boundary nodes.

To meet the partitioning requirement, we apply hMETIS pigmi tool suite [1], which

employs the hierarchical partitioning strategy and is tlestbmin-cut partitioning tools
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available. Specifically, we abstract a circuit netlist iatbypergraph, where components
(such as resistors, capacitors, inductors, etc.) are deresd as vertices in abstracted hy-
pergraph, and nodes in circuit netlist are considered astegges. Then we use hMETIS
partitioning suites of the hypergraph partitioning to garh the original large circuit into
several small subcircuits.

hMETIS can balance the sizes of each partition automaiegthout any change to
its cost function. In the experiments, we set 2-level parting: one top-level circuit and
many second-level subcircuits. hMETIS tool suite is verfycet for partitioning very
large networks. With hMETIS, the hiePrimor is able to redweey large interconnect
circuits with millions of nodes in a PC using Matlab.

For very densely coupled circuits, the proposed method ke applied. First, for
the capacitively coupled circuits, it is well known that ttwipling is more localized, which
means the coupling can be further reduced without loss offrnagcuracy. For inductive
coupling, which has long-range effects owning to partiductance formatiori [61], many
methods have been proposed to reduce the coupling usirmugavindow-based truncation

techniques |31, 13, 84] before the hierarchical reduction.

4.5 Numerical examples

In this section, we report the experiment results of hieBrimn some interconnect cir-
cuits. We compare it with PRIMA[49] with and without pardlemputing settings. We
implement the hiePrimor method and PRIMA using Matlab 7 @ Rython. Sparse matrix
structures are used in Matlab. Python is used for a parsereciomg Spice format netlist

into Matlab format.
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Our test circuits are created based on a bus circuit streictuhere each circuit has
capacitively-coupled bus lines with different length ardte of them are modeled as RC
ladder-like circuits. To partition the testing circuits 8PICE format, we transform the
netlists into the ones that hLMETIS can read and then partikie circuits into several small
spice-formatted subcircuits of equal size with the minatjective.

We first show that hiePrimor and PRIMA give almost the samel@gy for the given
block moment ordet (our claim in Sectiofi 413). We set the reduction orgasq = n x k,
wheren is the number of ports. Fig.4.Zkt 1, 25K) and Fig[4¥ Ckt 7, 1)) show
the frequency responses of Y(1,1) and Y(1,2) from the redunedels by hiePrimor and
PRIMA. Fig.[43 and Fig[C4]l5 show the differences betweerPtimor and PRIMA. In
all the test circuits, the accuracy of PRIMA and the hiePrirae the almost the same

numerically, although their results may be a little bit diint from the exact one.
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Figure 4.2: Accuracy comparison of PRIMA and hiePrimor intTwhenk = 4.

If we increase the value df, we can obtain the more accurate models. Eig. 4.6 and
Fig.[41 show the comparison results okt 1andCkt 7for k£ = 8. We can see the results
are much better than the previous cases when4. Notice that the results from hiePrimor

and PRIMA are still almost the same again and their sizes igtiiction are the same too.
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Figure 4.3: Difference between PRIMA and hiePrimor in Cktiewk = 4.
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Figure 4.4: Accuracy comparison of PRIMA and hiePrimor inCkhenk = 4.

Next, we compare hiePrimor with PRIMA in a single CPU setimtgrms of reduction
times. Tabld-4]1 shows the circuit statistics and comparnissults of PRIMA and hiePri-
mor. #Nodeis the number of nodegSubis the number of subcircuit#Portsis number of
ports (terminals) of the circuit and -’ means out of memorgould not end in a reasonable
time. Note thaCktl- Ckt8are run on an Intel Xeon 3.0GHz dual CPU workstation with
2GB memory;Ckt9 and Ckt10are run on an workstation with an Intel Xeon Quad-Core

CPU (3.0GHz and 16GB memory).
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Figure 4.5: Difference between PRIMA and hiePrimor in CkiTenk = 4.
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Figure 4.6: Accuracy comparison of PRIMA and hiePrimor inOwhenk = 8.

We set the reduction (block moment) order4dqk = 4) in all the test circuits so
that each circuit has the same reduced order (size) aftactiet. It may be not accurate
enough fork = 4 in all the circuits. But given that fact that hiePrimor givasnost the
same accuracy as PRIMA, = 4 is sufficient for us to compare the reduction CPU times
for them. The last column is the speedup of hiePrimor overMPRIWe can see that
hiePrimor can roughly ruAix faster than PRIMA for large scale circuits. It also showg tha

the hiePrimor has a better performance when the size of theits grow larger. Note that
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Figure 4.7: Accuracy comparison of PRIMA and hiePrimor infCwhenk = 8.

Table 4.1: Reduction time comparison of PRIMA and hiePrifio 4, ¢ = n x k).
| Test Ckts| #Nodes| w = #Parts| #Ports| PRIMA (s) | hiePrimor (s)| Speedup

Cktl 20K 2 8 ) 4 1.25
Ckt2 S0K 4 16 16 9 1.78
Ckt3 100K 8 16 32 13 2.46
Ckt4 200K 8 16 69 27 2.56
Ckt5 500K 16 24 248 60 4.13
Ckt6 800K 16 24 401 99 4.05
Ckt7 1M 16 32 863 154 5.60
Ckt8 1.0M 16 20 - 176 -

Ckt9 2M 32 32 - 136 -

Ckt10 AM 32 64 - 305 -

such a speedup is gained without any accuracy loss.

Typically, the more partition number we have, the more sppeslattained. But we also
need to consider the cost of combining all the lower levetsghits into higher level. Also
as we get more partitions, the ratio of the terminal node taad the internal node count
may get smaller, which may hurt the reduction efficiency asghbcircuits may not be
effectively reduced. So number of partitions need to be @ryselected practically based

on the actual situation. Tadle #1.2 shows the relationshiywéxen the partition number and
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the reduction time.

Another observation is that hiePrimor becomes more effidiean PRIMA when the
number of ports increases. We use different number of portshie same circuit@kt?)
using both hiePrimor and PRIMA with the same reduction ord#ith larger number of
ports, hiePimor become faster than PRIMA. Tdblé 4.3 shoegeduction time compar-
ison of PRIMA and hiePrimor for the same large circuk(7) with different number of
ports. One reason is that ports are dispersed into subtdrafier partitioning and model
order at the top level is already much smaller than the aailginwwhile for PRIMA, its
time complexity is highly related to the number of ports gitbe same number of block

momentsk.

Table 4.2: Reduction time for different numbers of partisdk = 4, ¢ = n x k).
| Test Ckts| w = #Parts = 2| #Parts = 4] #Parts = 8 #Parts = 16|

Ckt5 116 100 71 60
Ckt6 374 251 128 99
Ckt7 383 298 204 154
Ckt8 675 394 257 176
Ckt9 363 257 200 164
Ckt10 — 886 582 405

8 189 56 3.38
16 339 96 3.53
32 863 154 5.60

Table 4.3: Reduction time for different numbers of portstiCk = 4, ¢ = n x k).
| #Ports|| PRIMA | hiePrimor| Speedup

Further, we compare the two methods in the artificial paralbenputing settings. It
is relatively easy to parallelize our method because eabhiswit can be reduced inde-

pendently. In parallel computing setting, the running tiaiéniePrimor is only the sum
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Table 4.4: Reduction time comparison of PRIMA and hiePrimvith parallel computing
settingsk = 4,q¢=n x k).
| Test Ckts| Max Sub (s)| Top (s)| Sum (s)| Speedug

Cktl 2 0 2 2.50
Ckt2 3 1 4 4.00
Ckt3 3 1 4 8.00
Ckt4 D 1 6 11.50
Ckt5 6 1 7 35.43
Ckt6 10 1 11 36.46
Ckt7 17 3 20 43.15
Ckt8 14 1 15 —

Ckt9 8 1 9 —

Ckt10 19 2 21 —

of the maximum subcircuit level reduction time among all shécircuits and the top-level
reduction time (for two level reduction). The results in T4 show that we can have one
order of magnitude or more speedup if parallel computingjgiad. With more levels, it

is reasonable to expect more speedup as more parallelisivecaxploited.

4.6 Summary

In this chapter, we have proposed a new hierarchical Kryldyspace based reduction
method called hiePrimor. hiePrimor combines the partitignstrategy and the Krylov
subspace method to speed up the reduction process. It issuibable for reducing many
large global interconnects like coupled bus, transmisbias and large clock nets where
the number of ports are general not significant. It is a venyegal hierarchical model
order reduction technique and it works for general pam@sitierconnect circuits modeled
as RLC circuits. Numerical examples show that the proposetthod can lead to signifi-

cant speedup over the flat projection based method like PRéid\order of magnitudes
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speedup over PRIMA if parallel computing is used.
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Chapter 5

ThermPOF: Architecture-level Thermal
Characterization For Multi-Core

Microprocessors

In this chapter, we propose a new thermal behavioral mogelpproach for fast tempera-
ture estimation at the architecture level for multi-corermprocessors. The new approach,
calledThermPOF builds the transfer function matrix from the measured ondated ther-
mal and power information. It first builds behavioral thetmmedels using the generalized
pencil-of-function (GPOF) method [24, 125,164], which waseleped in the communica-
tion community to build the rational modeling from the givdata of real-time and electro-
magnetism systems. However, the direct use of GPOF doesaor&tfar thermal systems.
Based on the characteristics of transient chip-level teatpee behaviors, we make two
new improvements over the traditional GPOF: First we appbgarithmic-scale sampling
scheme instead of the traditional linear sampling to bet@ture the rapid temperatures

change over the long period. Second, we modify the extrattexanal impulse response
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such that the extracted poles from GPOF are guaranteed ttabke svithout accuracy
loss. Finally we further reduce the size of thermal models §rylov subspace reduction
method to further speedup the simulation process [77]. Nigaleexamples on a practical
guad-core microprocessor show that the generated themhalioral models can be built
very efficiently and the resulting model match the given terapure well.

The proposed method provides a different perspective femntlal modeling. Existing
approach like HotSpol 26, ¥1] can be viewed as a bottom-ppogeh by considering the
internal structures of the architectures of a processorilé\ur approach is a top-down
approach as we only consider the port behaviors of the psocesit the architecture level.
The two methods in a sense are complementary in their sakitio

The advantage of the proposed method is that it is very simpticheap to build the
models as we only need the measured or computed thermal ared pdormation, we do
not need to know the internal structure of the microprocessab a architecture or other
more detailed levels. Its accuracy with respect to the harevis automatically achieved
during the modeling process. Also, the proposed method e@asily extended to consider
variable parameters like thermal conductivities, meagupoints (heat sink, heat spreader)
etc, to build the parameterized thermal models.

In addition to the thermal modeling of the multi-core prasas the proposed method
can also be used for many other thermal related design mesesn mobile platforms, it
is important to understand the thermal interactions betvaigerent power components as
they usually share the same cooling solution and thermalepe. The thermal behavioral
modeling will be quite useful to understand these influehgesnalyzing a variety of power
scenarios. This will be almost impossible using experiment-EM-based methods. Also

as systems become smaller and new boundary conditions erfergy ergonomic lim-
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its), the thermal behavioral models will be very useful tété&eunderstand the trade-offs

between different design conditions.

5.1 Architecture-level thermal modeling problem

We first present the new thermal behavioral modeling probBasically we want to build
the behavioral model, which is excited by the power input prauces the temperature
outputs for the specific locations at the architecture le¥¢he multi-core microprocessor.
Our behavioral models are created and calibrated with thessaored or simulated tempera-
ture and power information from the chips.

Our models are mainly built in the mathematic level and we ehtice power thermal
relationships without regarding many other physical praps (like real poles the system
should have) of the multi-core systems. But as far as sinauland verification are con-
cerned, our models can work with any thermal simulatorshermal-related synthesis and
optimization. Another benefit of such behavioral thermabels is that it can easily built
for many different architectures with different thermahditions and thermal parameters
such as thermal conductivity, thermal cooling configumtimeasuring locations (in chip
dies, in heat spreader, in heat sinks and other locatiotts)it@lso has a clear path to build
parameterized thermal models with variable parameters.

We remark that the proposed thermal modeling method is argeblkack-box model-
ing approach and can be easily applied to thermal modelimgiofoprocessors and other
platform systems at different levels and granularities.

Since the given temperature data are transient and chamngegtime, we need to

capture the transient behavior of the temperature, whichbmaattained by building an
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Figure 5.2: The abstracted model system.

impulse response function between temperature and poviiee ithme domain.

In this chapter, we study a quad-core microprocessor auctuite from Intel Corpo-
ration to validate the new thermal modeling method. The itgcture of the multi-core
microprocessor is shown in Fig5.1, where there are four €Btds (die O to die 3) and
one shared cache core (die 4). TIM here stands for thermaafate material. The tempera-
ture of each die is reported on the die bottom face in the cefach die. We can abstract
this quad-core CPU into a linear system with 5 inputs and puistas shown in Fig. 3.2
(actually the inpup; and output port; will be shared as shown later). The inputs are the

power traces of all the cores, and the outputs are the tertypesaof them, respectively.
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Such a system can be described by the impulse-response-valtred functionH

hoo(t)  hoi(t) hoa(t) hos(t) hos(t)
hio(t) hai(t) haa(t) has(t) haa(t)
H(t) = |hoo(t) hoi(t) haolt) has(t) hoa(t) (5.1)
hso(t) hai(t) haa(t) hss(t) haa(t)
) )

_h40(t) hai(t) haa(t) has(t) has(t)

whereh;; is the impulse response function for output podue to input portj. So totally
we have 25 transfer functions.
Given a power input vector for each cougt), the transient temperature vector (at all

the ports) can be then computed
t
y(t) = / H(t — 7)u(r)dr (5.2)
0
Equation [5.R) can be further written in frequency domaimgg.3).
y(s) = H(s)u(s) (5.3)

wherey(s), u(s) andH(s) are the Laplace transform ¢f(¢), u(¢) andH(t), respectively.
H(s) is called the transfer-function matrix of the system wheaehe:;;(s) can be repre-

sented as the partial fraction form or the pole-residue f@@@) as shown below:

hijls) = Y —* (5.4)

8 J—
—1 Dk

where h;;(s) is the transfer function between thi¢h input terminal and théth output
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terminal;p, andr, are thekth pole and residue respectively. Once transfer functions are
computed, the transient responses can be easily computed.

We remark that the leakage current depends on the tempertponentially. High
temperature will leads to large leakages current. Such pteweperature dependency
should be addressed in the power modeling for better acguBad this chapter is mainly
focusing the thermal circuit modelings.

The remaining important problem is to find the poles and ressdfor each transfer
functionh;; from the given thermal and power information. It turns owttthe generalized
pencil-of-function can be used for this propose. But we casimply apply GPOF method
as we show in the Sectidnb.3. In the following section, wé kikfly review the GPOF

method before we present our improvements and the new method

5.2 Review of generalized pencil-of-function method

Generalized pencil-of-function (GPOF) method can be usedtract the poles and residues
from the transient response of a real-time dynamic (eledtrielectromagnetic) systems
[24,125,64]. The GPOF method essentially can be viewed as@admeneral eigen-value
decomposition method, which finds the eigen-values of thgpsed two non-square matri-
ces from the output of the linear dynamic systems (Eeel(p.T#le eigen-values actually
are the poles of the systems.

Specifically, GPOF can work for such a system that can be sgpdain sum of complex

exponentials:
M

ye =y _ rie? A (5.5)

i=1

where N is the number of sampled points, k =0, 1, ..., M;is the complex residuesp;
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are the complex poles, antlt is the sampling interval) is the number of poles used to

build the transfer function. Let’s define

z; = ePiAtk) (5.6)

which becomes a pole iA-plane. For real valug,, bothr; andp,; should be in complex

conjugate pairs. Let's define the new vector of node tempezat(in our problem) as
Yo, Y1,--,¥YL Where,

Y. = [yia Yit1, ---ayi+N—L—1]T (5.7)

whereL can be viewed as the sampling window size. Based on thesersget can define

the matriced; andY; as

}/1 = [y07YI7"'7yL—1] (58)

}/2 = [Y17Y27---aYL] (59)

Then one can obtain the following relationship amongtheY; and the pole and residue

vectorsZ, and R based on the structure df, Y5:

Y, = ZiRZ, (5.10)

Yo = ZiRZyZs (5.11)
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where

1ZM

Zy = diag|z1, 22, ...

R = diag|ry, e, ...

L-1
M|

7ZM]

7TM]

(5.12)

(5.13)

(5.14)

(5.15)

So the problem we need to solve is to find the pole and residtteng, and R efficiently.

It turns out that this can be easily computed by observing tha

Y'Yy = ZFR'Z{ZiRZyZ,

= Zf ZoZ,

(5.16)

Hence, the poles are the eigenvaluesYpfY,, where + indicate the (Moore-Penrose)

pseudo-inverse, as; is not a square matrix. As a result, one can obtainAhéy us-

ing

Z =D 'Utv,v

(5.17)

whereZ € CM*M andD, V andU come from the singular value decomposition (SVD) of
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Algorithm 6: Generalized Pencil of Function (GPOF)

Input:  sampling vectors;; = [yi, yi+1, - Yis N—L-1]"
Output:  poles vectop and residues vectar

. Construct matrice¥; andYs, as in [5ID) and(5.11).

. Singular value decomposition (SVD) ¥f, Y| = UDVH.

. Construct matrixZ, Z = D'U"Y,V.

. Eigen-decomposition df, 7y = eig(Z).

. Find poles vectorp, p; = %.

. SolveR; andR;, fromY, = Z1RZ, andY, = Z1RZyZ>, Z1 andZ2 are defined as in{5.12)

and [5IB).

7. Find residues vector: = 13-
8. End.

OOk WN P

Figure 5.3: GPOF algorithm for poles and residues extractio

Yi:

Y, =UDV# (5.18)

Where X means taking the conjugate transposeXofAfter the Z is computed, we can
obtain the pole vecto¥, by performing the eigen-decomposition 8f Z, = eig(Z),
whereeig(X) is to obtain the eigenvalue vector from matfix OnceZ, is obtained, we
can compute the residue vect®iby using either[(5.10) of{5.11).

We summerize the GPOF algorithm flow in Hg.15.3, whéfas the total number of
sampled points)M is the number of poles used arddcan be viewed as the sampling
window size.

GPOF works on the sum of exponential forms, which can be semted in the partial
fraction form in frequency domain lik€{(8.4). So it can bediszextract poles and residues
from the impulse responses for our problem. The GPOF methodsaM < L < N —
M, which means that we can allow different window sizes an& paimbers. Typically,

choosingL = N/2 can yield good results. Obviously, more poles will lead mareurate
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Algorithm 7: The flow of ThermPOFalgorithm (extracting one transfer function)

Input:  Step input of powers and step response of temperatures
Output:  Transfer function in the pole-residue form

1.Calculate impulse response from step response by nuathdifferentiating.

2. Perform log-scale sampling on impulse response andtalfeestarting time to zero.
3. Extend the ending time of sampling for stabilizing thegsol

4. Improve the accuracy of computed model by selecting rdiffel.

5. Extract poles and residues of the transfer function by &PO

Figure 5.4: The flow of extracting one transfer function.

results. For our problem we fintl/ = 50 gives the good results.

5.3 New architecture-level thermal behavioral modeling
method

In this section, we present our new thermal behavioral modedpproach based on the
GPOF method mentioned in the previous section. We first ptéseThermPOFRalgorithm

flow. Then explain the several key steps in our proposed ndetho

5.3.1 The ThermPOF algorithm flow

Now, we describe all the important steps to obtain a trarfafestion of the thermal system,
which is shown in Figi514.

Step 1 computes the impulse responses from the given stepn®ss. Step 2-4 basi-
cally improve the sampling efficiency and stabilizing thedals. Stefd has been explained
in the previous section. We will explain the key steps 2-himfollowing subsections.

We need to perfornThermPOFor all the transfer functions in our method to obtain
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the complete thermal models.

5.3.2 Logarithmic scale sampling for poles and residues erdction

GPOF method should be applied to the thermal impulse regpevtsch in general can-
not be obtained directly from measurement or simulatiorstdad, we are provided with
the thermal step response for each core excited by the powet on the given multi-
core microprocessor. Then impulse response can be obthyngerforming the numerical
differentiation on the step response.

But directly applying the GPOF to the computed thermal ilmpulesponse may not
lead to stable and accurate model. In the following, we widitfshow the problems and
then present two improvement schemeshermPOFmethod such that the resulting model
is stable and accurate.

The first problem we face for the thermal modeling is thatdingampling in the tradi-
tional GPOF method does not work for our thermal data.

According to GPOF method reviewed in Section 5.2, we know rietricesY; andY,
are constructed from the sampled data and that the sampiiegnterval A¢ must be the
same. However, how to obtain sample observed temperatargel became a big issue as
the step temperature response often goes up rapidly in giddw seconds and gradually
tends to reach a steady state after a relatively long time.

This can be illustrated in Fig. §.5(a), which is step tempeeresponse forore0
(die : 0) when onlycore0 is driven by a ste@0W power source beginning at= 0 (which
is calledactivein this paper). The abient temperature, the initial temippgeavhen no input
power at the beginning, B°C. We observe that almost all the temperature increase occurs

within the first second, from5°C to 57.9°C', where61.1°C' is the final stable temperature
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whencore( reaches a steady state aftéf0s or more.

Temperture of core0 when core0 is active Temperture of core0 when core0 is active
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(a) Linear time scale. (b) Logarithmic time scale.

Figure 5.5: The transient temperature change of core0 whie®ds excited by 20W power
input.

However, the rapid temperature changes and a long obseueingd lead to problems
for the GPOF method if linear sampling is used. The reasamais to capture the thermal
change information, the sampling interval tends to be vemglg but this will lead to a
very large number of samples owning to the long tail of thertted response reaching the
steady state. As a result, we have to use a very lafgend consequently very large,
which causes large dimensions of matri¢gandY; in GPOF. Hence the following matrix
operations such as multiplication, inverse or singulaugalecomposition (SVD) become
very expensive.

In this chapter, we propose to use the logarithmic-scalepfiagh(log-scale sampling
for short) to mitigate this problem. For the same tempegatasponse in Fig.3.5(a), we
can obtain the log-sampled temperature response i _Elfp)5Which clearly show how
the temperature changes over the log-scale time gradually.

After the time is changed to the logarithmic scale, which$ime) and it may become
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negative. So we need to offset it to make sure that temperadsponse always starts at
t = 0 in the log scale. And the offsetting will not affect GPOF cgterns. After we obtain
the transfer function from GPOF, we need to compute the respm original time scale.

We can get the response back by us[ng(5.19),

y'(t) = y(in(t) — In(to)) (5.19)

wherey’(t) is the response in normal time scal€) is the response in log-scalg;is the
offset and usually it is a very small value.
We remark that logarithmic sampling in time and frequencyndo has been used in

the numerical deconvolution method for RC network extiacin the past[75].

5.3.3 Stable poles and residues extraction
Stable pole extraction

The second problem with the GPOF method is that it will noteglsvgenerate stable poles
for a given impulse response. Actually GPOF model can giverst good matching for
a given impulse response for the sampled interval by usirgitipe poles. But outside
the sampled interval, the response from the model by GPOBeambounded due to the
positive poles.

Fig.[5.6(a) shows the extracted impulse response comparbe original one for one
of the cores. For this example, the sampled time intervabisfO to1000 seconds. Except
for the very beginning (we will address this issue latergah be seen that the computed
model matches very well with the original one from tifd@¢o 1000s (the corresponding

x = 18.55 in log-scaled x-axis with offset beirg8 x 10~°). But outside the time interval,
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if we extend the time scale tt0!° seconds, they are significant differences between the
two models. The computed models does not look like an impalsponses and will go
unbounded actually owning to the positive poles. Eigl 5.8tows the extracted poles

where not all the poles extracted by GPOF are stable (haweggtive real parts).

Temperature (°C)

Unstable impulse response
T T

0.12
0.12r
0.1
original 01r original
0.08 10+ computed model 0+ computed model

(a) Impulse response with positive poles.
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b) Impulse response with only negative poles.

Figure 5.6: Unstable and stable impulse response for CoreO.
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(a) Existing positive poles.

(b) Only negative poles.

Figure 5.7: Poles distributions of unstable and stableaeted transfer function.

To resolve this problem, we propose to extend the time iatdor zero-response time.
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For any impulse response, after sufficient time, the respanl become zero (or numeri-
cally become zero) as the area integration of the impulsedoelow is a constant (should
be 1 ideally). By sufficiently extending the time interval fero-response time in an im-
pulse response, we can make all the poles stable. The reasloat iif we have positive
poles, after sufficient long time, the response will alwagsngn-zero and eventually be-
come unbounded assuming all the poles are different nuailgtievhich is always true
practically. If we ensure the zero response for a sufficiengltime, all the poles must be
stable. The reason is that the response contributed onligdsetstable poles can decay to
zero. Positive poles will lead to unbounded response fong tome interval.

Using the same example, if we extend the time interval@t seconds, which ac-
tually does not increase significantly in log-scale, all &x¢racted poles become stable.
Fig.[5:7(b) shows the extracted poles by extending zemperese time td0'°s, where all
the poles are stable (with negative real part) and[Elg. % €{bws the extracted stable im-
pulse response. For all our problem, we firid"s seems sufficient for our example. The
proposed pole stabilization method can be applied to amestiynamic system using the
pencil of function method. If you sample zero-response aefit enough, the generated
poles will be negative. But the sufficient time is problem elegient. Typically, the new

interval should be several order of magnitudes larger tharotiginal time interval.

Stabilizing the starting response

Temperature changes is very slow at the very beginning. Asalt; the obtained impulse
response may become zero numerically for a short periocedielyinning.
However, the zero-response time at beginning may causeghiicant discrepancies

as shown in Fig[5l6(b). For example, we consider the tenperaf corel when only
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core( is active. Assume thabre0 is active at = 0, in the first very short time, such as-
10~%s, temperature responsea@frel, due to the delay in thermal transmission, is probably
still 0 and it may begin to increase ait= 10~3s. Normally we consider the difference
10~*s and10~3s as a small value in normal time scale, but in the log-scals difference

is translated to a noticeable period of time with zero respsrat the beginning. And long
zero-response time at the beginning, however, may caussgh#icant discrepancies as
shown in Fig[’5B(a), although the computed response tenoks &ccurate after some time
period. This means this transfer function we obtained isawsurate enough. Fig.5.8(b)
shows a step response computed by the transfer functiomettia Fig[5.8(a). Obviously,

it has visible differences compared to the original one.
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T T T 12

0.12

101

0.1

original
+10 '+ computed model

original
+10 '+ computed model

Temperature (°C)
Temperature (°C)

. . . . . . . . . . . .
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
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(a) Impulse response with large errors in the (b) The corresponding step response for the
starting time. inaccurate model. Here the zero temperature
means the room temperature.

Figure 5.8: Impulse and step response computed by inaecoratlel with large error in
the starting time.

The reason for this problem is that the log-scaled impulspaase is different from
the impulse response from a physical RLC electronic cicwthich the response goes to

non-zero immediately after= 0. To resolve this problem, we may truncate the beginning
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zero-response time such that responses go to non-zero iwatheimmediately. This can
be achieved by setting threshold temperature to locatediezero time. During the sim-
ulation process of the model, in all the actual time befoeertbw artificial zero time, the
response will be set to zero. Fig. 5.9 shows the impulse aqlreisponse computed by

accurate model after suppressing the beginning zeros.
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(a) Impulse response. (b) Step response.

Figure 5.9: Impulse and step response computed by accukadelmwith both improve-
ments.

This problem can also be mitigated by increasing the valug,affhich means more
sampling points but more accuracy. The advantage of thendeoethod is that we can set
up the same offset for all the transfer functions, which dampfy the reduced models.
Fig[5.10 shows the improved impulse and step responses fooed ¢o corel. Herd =
200, in contrast tol. = 100 as used before. Notice that mokemay not result in more

accurate models. In our experimentsyaries from 150 to 300.
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Figure 5.10: Impulse and step response itk 200.

5.3.4 Recursive computation of temperature responses anhrte com-
plexity

After we obtain the transfer-function matrK, responses of the system can be computed
theoretically for whatever type of inputs. In this chaptee introduce a fast recursive
response computation method. Recursive convolution istactanvolution withO(n) time
complexity instead of traditiona@d(n?) time complexity [8], where: is the number of time
steps. This method requires to know the poles/residuesdfansfer functions.

For our problem, the computation complexity becort¥sq), wheren is the number
of time segments or the number of power traces @iithe order of the thermal models
(number of the poles in each transfer function). So it cands:ghat the simulation time
is linear with respect to both model size (number of polesaicheransfer function) and the
number of the time steps.

In contrast, for traditional integration methods, the tiowemplexity for al x [ linear
matrix, isO(kl® + 1) where itemO(19) (typically, 1.1 < 3 < 1.5 for sparse circuits) is for

the matrix factorization(Q (/) (typically, 1 < o < 1.2 for sparse circuits) is for solving
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one step in transient analysis. The the time complexitypeslinear in general.

In our problem, if the power traces are clock-pulses liketems in Fig[5.1H4, i.e., the
power inputs stay the same during one time segment. Thesigeuronvolution can be
simplified. Specifically, the power input can be seen as theafla group step inputs with
different delays. This method works well for the generalitgas long as the time interval
is small enough.

Given the power traces and time intenzat, the response in each time segment not
only depends on the current power inputs, but also dependtlsegprevious power inputs.
In total there are 3 cases of power inputs changes, as shotie ileft part of Fig[5. 11,
whereT,,_, andT,, are two immediate time segments is the time interval.

Considering powers changetat 0, we would like to compute the temperatuygt)
att (0 < t < At) in the nth time segmenft;,,. And y,(¢) can be computed as shown
in the right part of Fig[’5. 111, respectively, whejgt) is the step response. The intuitive
explanation of the Fid. 5.11 is that the final waveforms attmg point is the sum of step
response waveforms generated from all previous power sgidll the previous time steps.
If the input becomes zero, it means adding a negative st@omes waveform (case 1); if
input becomes positive from zero, it means adding a posstee response waveform (case
3). Otherwise, we stay at the same value (case 2). But thesieewonvolution([8] can be

used to compute any input waveforms in a linear time.

5.4 Reduction of thermal models

After we obtain our thermal models, we can further reducediter of the models. In

this chapter, a classic Krylov-subspace model order réaluchethod PRIMA[[4D, /7] is
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Figure 5.11: The recursive computation step.

used. Before using PRIMA, we need to have the state-spalizatézn (5.20), which can

be formed by poles and residues.

(5.20)

In our model, poles and residues are both complex and appeanjugate pairs. And

for each pairl(5.21), the state-space realization is in ¢ fof (522) [7]:

h(s) = + — (5.21)
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wherep = a + bj andr = ¢ + dj. Let’s further define
a b 2

So we have the state-space realizatior.of (5.23):

A, 0 ... 0 by
0 Ay ... O b,
X = X + u
(5.23)
0 0 A, b,
y= [clT ck . cz] X

wheren is the number of the complex pole pairs in the transfer fuumcandn = M/2.

Then, the model order reduction is performed:

A, =VIAV b, =V'b ="V (5.24)

whereV is the projection matrix obtained from PRIMA.

After model reduction, we need to extract the poles and vesidrom the reduced
matrix (5.24) to go back to the partial fraction form (poksidue form). This can be
done by means of the eigen-decompositiodgf{[7], which leads to a diagonal matrik

containing eigenvalues and an orthogonal md#iformed by the eigenvectors.
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Thus, the transfer function of the pole-residue fornfinl(®&n be computed as

q
- v

hij(s) = 5’“_ = (5.25)
k=1 k

where )\, is the kth diagonal element oA, 1, is the kth element ofc’ P, v, is the kth

element ofP~'b, andq is the reduced order.

5.5 Numerical examples

The proposed hermPOFRalgorithm has been implemented in MATLAB 7.0 and tested on
a quad-core microprocessor architecture as shown in(Elyfré&m industry partner Intel
Corp. We first extracted the transfer function matrix of tigetem through a training data
set, which consists of the step responses for each core ftioen cores. After generation
of the transfer functions, we could validate our models bypating the thermal responses
from other non-training power inputs and compare them witbvikn responses.

Our experimental data contain each core’s temperaturesureg directly from the
center of the dies, which are provided by Intel. At the begigrall the cores are in zero
state and have an initial ambient temperaire’.

We verify the correctness of our model based on two sets @giliermal data from
Intel. First, from¢ = 0 each core is excited by a step power inpuR0Fl” simultaneously.
And the temperature of each core is collected fiono 1000s. For each transfer function,
we set the order to 50. This is already enough for our modepr#atice, temperature on
each core or cache can be computed very fast by our modelgdamiyntime interval as our
model is directly based on the transfer function represkhiepoles and residues instead

of state space equations.
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We remark that in reality we cannot turn the cores to zero poWwer the purposes of
the simulations, we turned on and off cores and cache ragplcso we can quantify or
capture the influences. The power traces used are reabstiod workloads and the on/off
scenario for different cores is not.

The results of core0 and cache are shown in [Eigl]5.12 and Eg.sder the normal
linear time scale and the log scale respectively. The sailidecrepresents the measured
temperature and the dotted line represents our computqebt@ture. The simulation runs
very fast and costs only few seconds. From these figures, weamthat our models have
very good accuracy. Actually, the temperatures of otheesanatch as well as shown in

the following tables.

Temperature response for core0 Temperature response for core0
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a0l +©Q ++ computed model

70r

original
o
608 10+ computed model

601

Temperature (° C)
Temperature (° C)

. . . . . . . . .
0 200 400 600 800 1000 10° 4 -2 0 2 4
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(a) Temperature response of coreQ in the linear (b) Temperature response of core0O in the log
scale. scale.

Figure 5.12: Comparison results of coreQ’s temperaturenwdilecores are active (driven
by 20W powers).

Table[5.1 shows the temperatures when all the cores aclhiewstdady state and the er-
ror differences in percentage. The difference is only adduf%. Furthermore, Tablg5.2
shows some statistical features of the differences ovénalbampling time points, includ-

ing the maximums, the means and the standard deviations, this maximum and average
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Temperature response for cache Temperature response for cache
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(a) Temperature response of cache in the linear (b) Temperature response of cache in the log
scale. scale.

Figure 5.13: Comparison results of cache’s temperatureveltiecores are active (driven
by 20W powers).

percentages are given. From this table we can see that thenmnavdifference is less than

0.5°C and1% and the average difference is less tia@8tC' and0.3% for all the cores.

Table 5.1: Difference when temperatures achieve the stsiztky.

Measured | Computed | Difference
Temp. (C) | Temp. (C) | percentage
Core0 88.96 88.78 0.22%
Corel 90.60 90.52 0.08%
Core2 90.04 88.94 0.11%
Core3 88.96 88.78 0.20%
Cache 68.46 68.32 0.20%

Now we test on the second set of thermal benchmarks also fiteh The temperature
on every core is driven to an initial state by a powerl6#/ on each of the cores for
1000 seconds. Then we start to apply a number of random power trgoeegs as shown in
Fig.[5.14(a), where the step poweriglV for all the cores.

We verify the correctness of our model fraim to 1s based on the given thermal data
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Table 5.2: Statistics of the difference between measurddcamputed temperatures.

Difference (C) Difference percentage

Maximum | Mean| Std. deviation Maximum | On average
Core0 0.46 0.25 0.08 0.89% 0.32%
Corel 0.27 0.18 0.07 0.42% 0.15%
Core2 0.37 0.16 0.08 0.73% 0.20%
Core3 0.46 0.24 0.08 0.88% 0.31%
Cache 0.31 0.16 0.08 0.51% 0.26%

from Intel. During that time, power inputs stay the same inheime step 0f).1s. In
practice, temperature on each core can be computed verpyastir model during any
time interval, as the computation complexity in our modengy O(nq) by using recursive

convolution, where: is the number of time steps agds the order of the reduced models.

Power traces of different cores Temperature responses for Core0 for the given power traces
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(a) Random power input traces. (b) CoreQ’s temperature.

Figure 5.14: Thermal simulation results on given power triipaces

Our simulation results for all cores are shown in Fig_5.)4fg.[5.15 and Fig. 5.16.
The simulation runs very fast and costs only few secondsmRfe figures, we can see
that all the peak temperatures (both the maximum and thenmimi) of each core during

the whole time interval match well between the models anémgimeasured data. The
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Figure 5.15: Thermal simulation results on given power tiipaces
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Figure 5.16: Thermal simulation results on given power tripaces

temperature errors are less theud’, as shown in Table5.3.

The errors (absolute values) between the original and aupcbed model are shown in
Table[5.4, including the maximums, the means and the stdmt#asiations. The maximal
errors of core0, corel, core2 and cache are aroundl°C' or less thar2°C' at the most.

The maximal error otore3 is a little bit larger, which occurred during the time intalv
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Table 5.3: The maximal and minimum error peaks$ & 50).

Maximal peak Minimum peak
Measured{(C) | Error (°C) | Percentage Measured{C) | Error (°C) | Percentage
Core0 77.27 0.45 0.58% 47.47 0.38 0.79%
Corel 78.86 0.04 0.05% 47.81 0.35 0.73%
Core2 78.55 0.38 0.48% 47.77 0.24 0.51%
Core3 76.48 0.75 0.98% 47.38 0.45 0.95%
Cache 57.80 0.99 1.72% 48.86 0.11 0.23%

Table 5.4: Statistics of the errors between measured anguiau temperatured{ = 50).

Error (°C) Error percentage

Maximum\ Mean | Std. deviation Maximum\ On average
Core0 1.05 0.34 0.23 1.56% 0.50%
Corel 1.67 0.53 0.48 2.44% 0.78%
Core2 1.78 0.61 0.47 2.56% 0.98%
Core3 3.33 1.10 0.82 6.09% 1.80%
Cache 1.05 0.63 0.22 1.84% 1.22%

Table 5.5: The maximal and minimum error peaks and me&hs=(30).

Maximal peak Minimum peak Mean
Error (C) | Percentage Error (C) | Percentage Error (°C) | Percentage
Core0 0.40 0.52% 0.46 0.96% 0.36 0.48%
Corel 0.12 0.15% 0.49 1.00% 0.47 0.69%
Core2 0.06 0.07% 0.34 0.70% 0.56 0.88%
Core3 0.76 0.98% 0.53 1.11% 1.11 1.66%
Cache 1.01 1.78% 0.01 0.02% 0.03 1.25%

0.5s — 0.6s. But the standard deviations of the errors of all cores shawthe temperature
variations on average are less tHan’. Note that all the errors here are the absolute values
of measured temperatures minus our computed temperatures.

Further we show the speedup gained in the simulation by théehmeduction tech-
nigues presented in Sectibnlb.4. In our experiments, westistne ordeil/ = 50. After

reduction, the order is reduced 3¢ = 30 without loss of accuracy. All the errors are less
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than< 2% compared to the exact ones, as shown in TBle We know that simulation
running timeO(ngq), ¢ is the size or order of the model. So from order 50 to 30, we can
approximately reduca0% simulation time, as shown in Talle’b.6. We also set up order
M = 100 at first, but the reduced order is stil if we want to maintain the same high

accuracy.

Table 5.6: Speedup whevl = 30 compared ta\/ = 50.

Runtime ¢) | Runtime 6) Time

whenM = 50 | whenM = 30 | reduced
Core0 1.31 0.80 38.9%
Corel 1.29 0.78 39.5%
Core2 1.28 0.78 39.1%
Core3 1.28 0.78 39.1%
Cache 1.30 0.79 39.2%

5.6 Summary

In this chapter, we have proposed a new thermal behaviordetimy approach for fast
temperature estimation at the architecture level for radtie microprocessors. The new
approach, called ThermPOF, builds the transfer functiotrimtom the measured or sim-
ulated thermal and power information. It first builds beloa&l thermal models using the
generalized pencil-of-function (GPOF) methddl[24, [25,, éhich was developed in the
communication community to build the rational modelingnfrthe given data of real-time
and electromagnetism systems. However, the direct use 6FGIes not work for ther-
mal systems. Based on the characteristics of transientletrg temperature behaviors, we
make two new improvements over the traditional GPOF: Fiestpply a logarithmic-scale

sampling scheme instead of the traditional linear sampbrigetter capture the rapid tem-
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peratures change over the long period. Second, we modifgxttracted thermal impulse
response such that the extracted poles from GPOF are geaditat be stable without ac-
curacy loss. Finally we further reduce the size of thermatiai® by a Krylov subspace
reduction method to further speedup the simulation prof@&js Numerical examples on a
practical quad-core microprocessor show that the gergetatgmal behavioral models can

be built very efficiently and the resulting model match theegitemperature well.
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Chapter 6

ParThermPOF: Parameterized
Architecture-Level Dynamic Thermal

Models For Multi-Core Microprocessors

In this chapter, we propose a new architecture-level paremzed dynamic thermal behav-
ioral modeling algorithm for emerging thermal-related lgses and optimization problems
for high-performance chip-multiprocessor design. Theppsed compact thermal model
will be used to predict the thermal response of new packagigae once its accuracy has
been calibrated and validated with the detailed modelss Ethe design methodology
to be used by our industry partner. We propose a new appraatied ParThermPOF,
to build the parameterized dynamic thermal behavioral nsofilem accurately computed
thermal and power information using the sophisticated FEi{e Element Analysis) or
CFD (Computational Fluid Dynamics) tools at architectueeel. The new method is a
top-down, black-box approach, meaning it does not requiseiaternal structure of the

systems and it is very general and flexible. ParThermPOFlestalinclude a number of
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parameters such as location of thermal sensors in a heatdffdeent components (heat
sink, heat spreader, core, cache, etc.), thermal condlyativheat sink materials, etc. The
new method consists of two steps: first, a Response Surfatteobl€RSM) based on low-
order polynomials is applied to build the parameterized el®at each time point for all
the given sampling nodes in the parameter space (excephfe).t Second, an improved
Generalized Pencil-Of-Function (GPOF) methiod [36, 34¢c#cally for thermal model-

ing, called ThermPOF, is employed to build the transferction-based models for each
time-varying coefficient of the polynomials generated ie finst step.

We remark that the detailed model for generating the realisinperatures for training
compact models was developedAlo THERMI[18], which is a typical 3D Computational
Fluid Dynamics (CFD) commercial software used in coolinglgictronics. Also, the ma-
terial properties and boundary conditions are represeetabf conditions found in the
thermal test vehicles at Intel’'s lab rather than real-liyjstems. The specific workloads
only mimic those of real-life applications. The model doesinclude the specifics of the
board. The power distribution in the real die is known in atb&(for example from Ther-
mal Test Vehicles (TTVs)). The detailed model only tries tonme these profiles. Although
sufficient detail was put in the model, the focus was to ineltitk relevant parameters that
needed to be calibrated with parameterized methods.

Simulation results on a practical quad-core microprocesisow that the generated pa-
rameterized thermal behavioral models can be built vergiefitly and the temperatures
computed from resulting models match the given temperatweall for given parameter
space in the time domain. The compact models by ParThermfé&Rwo order of mag-
nitudes speedup over the commercial thermal analysis todIHERM [1&] on the given

examples from our industry partner.
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6.1 Parameterized Transient Thermal Behavioral Model-
ing Problem

Two types of parameters are considered in our modeling probl The first one is time;
the second one are other parameters to be discussed below.

Our modeling problem is to build parameterized transieatrital models considering
the both time and other variable parameters of multi-coce@ssors. Basically we want
to build the behavioral model, whose inputs are the powedscartputs are temperatures
that not only depend on the input powers but also depend osystem parameters. Our
parameterized behavioral models are created and calkibratie the simulated temperature
and power information using a commercial thermal analymislhased on a realistic multi-
core processor.

In this paper, we specifically look at a quad-core micropssoe architecture from Intel
to validate the new thermal modeling method. The architeotdi this multi-core micro-
processor is shown in Fig.6.1, where there are four CPU daliesO to die 3) and one
cache core (die 4). The temperatures reported are on thettebface and centered with
each die region.

Fig.[6.2 shows 3-D structure of this quad-core microprooess a package, where
the CPU die (with quad-cores) is in the bottom in contact witermediate heat spreader
(IHS). At the top is the heater sink (HS), which has the top laottiom parts. The thermo-
couples (thermal sensors) are used to measure the temasratuthese specific locations.
Fig.[&3 shows the temperature changes when only coreOive 201" power at the in-
put) at difference locations using a copper heat sink.318n means that the temperature

changes abmm away from the center of the heat sink. As we can see, tempesayio
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Figure 6.1: Quad-core architecture

Figure 6.2: 3D structure of quad-core processor

down as we move away from the center and away from the bottata phthe chip. The
temperatures at the core center are hottest. Also, in additi the distance parameter in
a specific component (heat sink), we may select differenéimasion components such as

individual core, cache, heat spreader or heat sink as atderator parameters.
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Figure 6.3: Temperature responses at various locationsad-gore processor when only
coreO is active.
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Figure 6.4: Temperature distributions on the whole chighywiackage using different heat
sink materials when all cores and cache are active.

Furthermore, we may consider the thermal conductivity eftieat sink material as an-
other parameter. Normally, heat sink is made of copper (€ajuminium (Al). Cu and Al
have different thermal conductivities, such as C80@WW/(m- K) and Alis240WW/(m- K).
Different heat sink materials may induce the different temagure distributions on the chip.
Fig.[6.4 shows the simulated temperature distributionserthole chip with package us-

ing copper heat sink and aluminum heat sink respectivelg.stipply power for both cases
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is about 40W. We can see from the two figures that the maximumpéeature of the chip

on a copper heat sink i)°C' less than the one on an aluminum heat sink due to different
thermal conductivities of the two materials. But the pricé<opper and aluminum are
different. So the designers need a trade-off between hdttepgperatures and package
cost. In our work, we set up such a parameter to indicate therthl conductivity of the
heat sink material properties. Such parameterized themodkls may be very helpful for
the design exploration and optimization.

We can abstract this quad-core processor into a linearrmsyaiéh 5 inputs, 1 output
and several parameters as shown in[Elg. 6.5. The inputsepother traces of all the cores
and the output is the temperature response for given paeasndthe parameters can be the
location of the thermal sensors (distance to a center pdh)observation component or

measure point, thermal conductivity of the materials usedhéat sinks, etc.

Power Temperatur
PO —
pl — Thermal
p2 — System — T
P3— (x1, x2, X3, X4, ...)
pa ——

Figure 6.5: Abstracted system

Such system can be described by the parameterized impdpesrse (transfer) func-

tion matrixH

H(tvé) = [hO(tvé) hl(tag) hQ(tvé) h3(ta£) h4(t7€)] (61)

whereh; are the impulse response function for output due to inputi@rdé = (&1, &2, &3, -)

are the parameters of this system.
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Given a power input vector for each conét) and a specific set of paramet&sthe

transient temperature can be then computed by
t
y(t) = / H(t — 7, &)u(r)dr (6.2)
0
Equation[[6.R) can be written in frequency domain a§1nl (6.3)
y(s) = H(s, )u(s) (6.3)

wherey(s), u(s) andH(s, ) are the Laplace transform of(¢), u(¢t) and H(¢,¢), re-
spectively. Eaclh; can be expressed as the partial fraction form or the poieuwedorm
&3) [58]:

o) =3 o (6.4)

whereh; (s, £) is the transfer function between thith input terminal and the output ter-
minal; p, andr, are thekth pole and residue. Once transfer functions are obtaired, t
transient responses can be easily computed.

To build the parameterized behavioral model, we need taedbk following two prob-
lems: (1) to find a response polynomial functions that canm@pmate the given temper-
atures for all the controllable variables (parametershwitough accuracy; (2) to find the
poles and residues for each transfer functigrirom thermal coefficients (of the polyno-
mials from step (1)) and power information to capture thadrant behavior of the temper-
ature.

For problem (1), we introduce response surface method ttutapnear or nonlinear

relationship between the parameters and response (tempgpat each time point. For
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problem (2), we can handle it by using improved generalizexicp-of-function (GPOF)
to extract the poles and residues from transient thermpbrese. Combine (1) and (2), we
can build the parameterized transient thermal behaviocalets.

In the following section, we will first briefly review the impved GPOF method for
transient thermal behavioral modeling before we presentew parameterized thermal

behavior models.

6.2 GPOF and Improved GPOF for thermal modeling

6.2.1 Review of generalized pencil-of-function (GPOF) mabd

Generalized pencil-of-function (GPOF) method has beenl useextract the poles and
residues from the transient response of a real-time systehrekectromagnetism [24, 25,
64]. 1t works on the sum of exponential forms, which can beregged in the partial fraction
form in frequency domain likd_(68l.4). GPOF method can be vita®a special generalized
eigenvalue computing method, in which we not only computecilgenvalue (poles) of the
given two matrices made by the sampled data, but also prathecesidue for each pole
in the partial fraction form([23]. As a result, it can be usedektract poles and residues
from the thermal-related impulse responses for our probl@ROF algorithm flow can be
shown in Fig[6B, wheréV is the total number of sampled point¥, is the order or the
number of poles and can be viewed as sampling window size.

For GPOF method, it allowd/ < L. < N — M, which means that we can allow the
different window size and pole numbers. Typically, chogsin= N/2 can yield better

results.
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ALGORITHM: GPOF
Input: sampling vectors; = [y;, Yit1, .., Yirn-1-1]"
Output: poles vectop and residues vectar

1.

Construct matrice®; andYs.
)/1 = [y07y17"'7YL—1] }/2 = [Y1>YZ>---aYL]
Singular value decomposition (SVD) ¥f. Y; = UDVH

. Construct matrixZ. Z = D-'UHY,V

Eigen-decomposition of. Z, = eig(2)

find poles vectorp; = %

SolveR; andR, fromY; = Z,RZ, andY; = Z, RZyZ,.
[ 1 1 1
7, = Z1 2'2 M
_Z{V—L—l zéV—L—l ]]CTI_L_l
-1 1 Zf_l
7, =
_1 ZM .- 21%4_1

find residues vecton: = 1%z

Figure 6.6: GPOF algorithm for poles and residues extractio

Improved GPOF method for thermal modeling

Directly applying the GPOF to the computed thermal impukssponse may not lead to
stable and accurate model. We improve the GPOF method by leggarithmic-scale and
stabilization process mentioned below. The resulting wetballedThermPOF was pro-
posed recently by the authols [36] 3#hermPORbuilds the linear transient thermal mod-
els for given power and temperature information and is byriefiewed in the following.

Because the temperatures change very rapidly in a very shatand gradually reach
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a steady state for a long time. This feature results in theaimagl problem for GPOF
method if linear sampling is used. A logarithmic-scale skhngptechnique is presented
in ThermPOFo mitigate this problem. After obtaining the transfer ftino from GPOF,
ThermPOFcan get the response back in original time scale.

Also, GPOF method will not always generate stable poles fven impulse response.
The response from the model by GPOF can be unbounded outs&dsatnpled interval
while using positive poles, although GPOF model can giverg geod matching for a
given impulse response for the sampled interval. To miéights problem,ThermPOF
artificially extends the time interval when the impulse @sge is zero. By sufficiently
extending the time interval of zero-response in an impusponse, it can make all the
poles stable.

Further more, the obtained impulse response may becomenaarerically for a short
period because temperature changes at the beginning islegryAnd long zero-response
time at beginning may cause the significant discrepancig®ireduced models. To resolve
this problem,ThermPOFtruncates the beginning zero-response time such thatmespo
goes to non-zero numerically immediately. The second ntethanitigate this problem
is by increasing the value df, which means more sampling points but more accuracy.
The advantage of the second method is that it can use the désatfor all the transfer

functions, which can reduce the complexity in the thermaildation.

6.3 Parameterized thermal behavioral modeling method

In this section, we present our new parameterized thernta\beral modeling approach.

We first present th@arThermPOFRalgorithm overall flow and then present the important

127



steps in the algorithm.

6.3.1 The ParThermPOF algorithm flow

The proposedParThermPOFconsists of two major steps: first, building parameterized
models byresponse surface methods every time point; second, building subsystem re-
sponse behavior models BhermPOF Let assume that we haweparameter variables in

the parameter spa¢e= {£[¢ = (&1, &, ..., &) }-
The proposedParThermPOHs given in Fig[6.). Steps 1-2 build the response surface

ALGORITHM: PARTHERMPOF

Input: the sampled transient power and temperature infoom& parame-
ter space?

Output: parametered thermal modélg, P, ()

1. Perform coding for the variable parameters where origiasameter
variables are converted to a new and expanded variablespace

2. Obtain the coefficients of the fitting polynomials of respe surface
models (RSM) in a minimum square way.
1.

3. Perform the numerical differentiation on each coefficeithe poly-

nomials in resulting RSM and optimize the resulting wavefsifor
stability and accuracy.

4. Compute the transient thermal model for each coefficiétiteopoly-
nomials in resulting RSM.

Figure 6.7: The proposdeéarThermPOHlow.

models in the parameter spaeat each time step Steps 3-4 build the transient thermal
models on top of the RSM models.
As an illustration, Fig[&l8 shows the response surfacesrgéed byParThermPOF

over 3 selected time points when only coreO is active. In til®wing, we discuss the
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Response surfaces when core0 is active
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Figure 6.8: Response surfaces at 3 time points when onlY)ési@ctive

important steps in the proposed method.

6.3.2 Response surface method

Response surface methodology (RSM) explores the reldtipsoetween several input
variables and one or more responses. The main principle 8 B30 use a set of de-

signed experiments to obtain an optimal response. Thenmany applications of RSM in

real industry, particularly in situations where severgdunvariables potentially influence
some performance measure or quality characteristic of thdyzt or procesd [44]. This

performance measure or quality characteristic is callsgaase. And the input variables
are sometimes called independent variables.

Specifically, suppose that a responsdepends on serval controllable input variables
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(&1,62, -, &)
y=f(&, &, &) e (6.5)

where the form of the true response functiprs unknown and perhaps very complicated.
We need to minimize the errerwhen building response surface models.

Usually, a low-order polynomial in some relatively smalgien of the independent
variable space is appropriate. In many cases, either afid&r or a second-order model is
used. First-order model is easy to estimate and apply, bahibnly accurately approximate
the true response surface over a relatively small regiomefvariable space where there
is little curvature inf. But if the curvature is strong enough that the first-ordedeias

inadequate to fit the true response surface, a second-owtlwill be required.

6.3.3 Building parameterized thermal behavioral models
Coding for the variable parameters

The first thing we do is to transform the natural variabjeis a rangefa, b] into coded
variablesr in a rangg—1, 1]. After coding, the variable matriX will have all orthogonal
columns. It may reduce the numerical errors and increaseuheerical stability.

A simple linear transformation can be used on the originahsnee scale so that the
highest value becomes "1” and the lowest value becomes A4Sume that a variablg is
in a rang€a, b], using the linear transformation in{6.6), we can convesttbded variable

x; into arangg—1, 1]. Now we can use the coded variables...zs instead of the natural

onessy, ...
&= (b+a)/2

"= -0 &0
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Build the response surface models

In this chapter, we use second-order response surface maAdsdcond-order responge

depending on variabl€s:, xs, ..., ;) can be written as

k k k
j=1 =2 i<j j=1
If we let zp1 = 2129, Tpyo = 2oT3, ... Lh(k+1)/241 = ﬁ, Th(k+1)/242 = $§, e

Brt1 = B2y Braz = Bazs oo Brhr1)/241 = Bi1s Br(hs1)/242 = Pa2, -, then[GI7) becomes
q
y=05+ Y Bizjte (6.8)
=1

which is a linear regression model for coefficiefts, 5, ..., 5,), whereq = k(k + 3)/2.
We can use least squares method to estimate the regres@fitieats in the multiple
linear regression model in{6.8).

Suppose that we have observed responsas = (y1, vo, ..., y,) and for eachy; we
have one set of parameter valugs= (z;1, z;2, ..., x;,). SO [€8) can be written in matrix
notation as

y=XB8+¢ (6.9)
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where

U1 1 11 T12 .- Tig
Yo 1 To1 T2z ... Tq
y = , X = ;

Un 1 1 Tpa o0 Tpg

L7 L " / (6.10)
Bo €o
b1 €1

B = €=

_/Gq_ _gn_

We would like to find the coefficient solution vectﬁrthat minimizes the squares of

errors E, where

B =3 e =ce=(y—Xp)(y - X0 (6.11)

And E can be expressed as

E=yy-p8Xy—-yXg+pXX3

(6.12)
=y'y 28Xy + XX
To minimize £/, we have
E .
g—ﬂ = -2X'y+2X'XB=0 (6.13)
B
So the least squares estimatorbis
B = (X'X)"'X'y (6.14)
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In practice, we do QR decomposition ahto make the computation numerically more
stable. So we obtaiR3 = Q”y. After solving the linear equations, we get the estimated

coefficient vectof3.

Building generalized linear thermal models for coefficiens

After we obtain coded variable matriX, the coefficients of our model can be computed
using [6.1H). At this point, we obtain the parameterizedrtta@ model only on a single
time point. We then compute the response surface models| dimealime points, which
could generate a set of response surface models, or morsglye@ set of coefficients,
which are functions of time now. Since we can consider thepature response as a
linear combination of such coefficients, the original thatsystem is decomposed into a
number of linear dynamic subsystems. Each coefficient isidened as temperature output
of each subsystem and these subsystems share the samemuter i

To build transient models, we need to incorporate the tineanr model. Now we ap-
ply theThermPOH36] to each coefficient, which is a function of time only ase¢omputed
from the previous RSM step. The coefficient function, whieim de viewed as a special
transient temperature function along with the input pow#re real temperature function
is the combination of those coefficients), will become a ipldtinput and single-output
(MISO) linear dynamic system. In our specific thermal probkes shown in Fid_615, each
coefficient function consists of 5 power inputs and 1 temjpeesoutput. Once we have the
coefficient models, we can compute the total temperatuggorese of the whole system,
which is just the sum of all the responses from all the sulesysttogether. Note that the
modeling process above is only for one power output. We neeelteat it 5 times in order

to obtain the models of thermal system with 5 power outputs.
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6.3.4 The thermal-coefficient step and impulse response

In ParThermPOFinstead of having the thermal power step responses, wadb&thermal-
coefficient power step responses. Although such resporsemitdhave direct physical
meaning, but the resulting step and impulse responsegesgiimble the thermal-power
step and impulse response.

Most important is that GPOF can be still applied to obtaintthasient thermal models
for the coefficients, which show the flexibility of the new apach. Fig[6&P shows the step
and impulse responses of one of the coefficients in the ragultermal models (versus the

original ones), which are similar to the actual thermal sted impulse responses.

Step response of [30 Impulse response [30

Original response

= =0= = Computed model

Original response

= =0= = Computed model

(a) Step response of one coefficient. (b) Impulse response of coefficient.

Figure 6.9: Step and impulse responses of one of the coetfici&éher axis is the time in
logarithmic scale ang axis is the relative temperature to the ambient temperature

6.3.5 A walkthrough example

We illustrate the new method by using a real example. Spadifiche temperature re-

sponsey is a function of the following parameters: two variablgs, &;) are distance

134



away from the center and thermal conductivity of the heak simaterials; six variables
(&3,&4, ..., &) are used to indicate observation components, such as coreG; cache,
heat spreader and heat sink. Such variables are calledatodicariables, because values
in them are binary (0 or 1), while values (&, &,) are continuous.

We obtained the data from Intel and the data was computedtfieraommercial ther-
mal analysis tool based on a real quad-cord microproce$berobserved temperature re-
sponses are ofy = 0mm, 5mm, 15mm andés = 240W/(m - K)(Al), 390W/(m - K)(Cu).

&3 = 1 if we observe the temperature on coré@,= 1 if we observe the temperature are

on corel. The setting f@E, ...¢s are the same. They represent core2, core3, cache and heat
spreader when they are set to 1, respectively. At any tineretis at most one variable
which is set to 1 irts, ...&s. Whengs, ...&s are all zeros, it means that we observe on heat
sink.

In our setting, we set, as a full second-order form, which consists of the lineanter
the crossing terms amid different variables and squaredseForz,, we first consider the
temperatures on two thermal conductivity poirkd(iV/(m - K) and390W/(m - K) (we
consider one more material in the experimental sectionjn®ar models we consider,
as a second-order form including only linear and crossingse We may extend, to a
full second-order or even high-order form for more traingaga.

For z3, ...x5, because they are indicator variables only binary valuer(1), we also
consider them as a second-order form including only lineat erossing terms. Also,
based on our current given data, ...z only have the crossing terms witly, because
the temperatures we obtained 0mm, 5mm and 15mm away from center is only for
heat sink. For other components, such as coreO-core3, @achbeat spreader, we only

know the temperature on their centers. So currently indicaariables are independent
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of distancer;. Note that we indicate the heat sink by settiyg...&s to all zeros. So our
models can still work well to capture the temperature respsron heat sink for different
values of distance variablg .

Now we can begin to set up variable matd based on given temperature data like
the form in [E&1D). There are 17 terms in total, including stamt, linear, crossing and
squared terms. For each time point, we hasegiven temperature samples for different
distances, different thermal conductivities of heat sirddenals and different observation

components. So we obtain the coded variable m&ras shown in Fid_6.10.

1 I X9 r3 T4 Iy Tg 7 X8 T1X2 ToX3 X2Xy4 T2X5 X2Xg IT2X7 T2X8 x%
1 -1 1 1 0 0 0 0 O -1 1 0 0 0 0 0 1
1 -1 -1 1 0 0O O 0 O 1 -1 0 0 0 0 0 1
1 -1 1 0o 1 0 0 0 O -1 0 1 0 0 0 0 1
1 -1 -1 0 1 0 0O 0 O 1 0 -1 0 0 0 0 1
1 -1 1 O 0 1 0 0 O -1 0 0 1 0 0 0 1
1 -1 -1 0 0 1 O O O 1 0 0 -1 0 0 0 1
1 -1 1 0O 0 0 1 0 O -1 0 0 0 1 0 0 1
1 -1 -1 0 0 O 1 0 O 1 0 0 0 -1 0 0 1
1 -1 1 0o 0o 0 0 1 0 -1 0 0 0 0 1 0 1
1 -1 -1 0 0 O O 1 O 1 0 0 0 0 -1 0 1
1 -1 1 o 0 o0 o0 o0 1 -1 0 0 0 0 0 1 1
1 -1 -1 0 0 O O 0 1 1 0 0 0 0 0 -1 1
1 -1 1 0o 0o 0 0 0 ©0 -1 0 0 0 0 0 0 1
1 -1 -1 0 0 O O 0 O 1 0 0 0 0 0 0 1
1 -13 1 0 0 0O O O O -1/3 0 0 0 0 0 0 1/9
1 -13 -1 0 0 0O O O O 1/3 0 0 0 0 0 0 1/9
1 1 1 0O 0 0 O 0 O 1 0 0 0 0 0 0 1
L1 1 -1 0 0 0 0 0 O -1 0 0 0 0 0 0 1 ]
(6.15)

Figure 6.10: Coded variable matrk

6.3.6 More remarks for the proposed method

We remarks that response surface model works fine when tipenes can be approxi-

mated by low-order models. Our Numerical examples showttiegiven parameters like
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locations of thermal sensors in a heat sink, thermal comdtycof heat sink materials etc,
second order approximation can give quite good approxonatiFor strong nonlinear pa-
rameters, new modeling techniques will be explored suclsemgywrthogonal polynomials
in RSM or piecewise linear modeling methods.

We also remark that currently the number of samples will déejpexponentially on the
number of variables for sufficient accuracy. We used a sirsghepling method as sampling
is not the main focus of this chapter. More efficient samphmgthods will be investigated
in the future to accommodate more parameters.

Also for fine granularity modeling where a large number ofuhpower sources exist,
the proposed method can still work. More power inputs widlde to more transfer func-
tions and more matrix pencil operations. But the number afgranputs does not add
the sampling dimensionality as all the inputs share the danmeesteps from one detailed
simulation of a particular setting. The only differencehateach transfer function (or the
coefficient function) will have more inputs.

To consider the dependency of leakage powers and thermelctivity on tempera-
ture, the simple way is to build the thermal models on theaateasured data (we are
working on that with Intel). Another way is to build the modeln the detailed simulation
in which such dependencies are considered. Although sucbdelns still linear, but we
at least have first-order approximation to the nonlineagct§.

In addition to the parameter variables, there are many qihekage variables which
will affect the thermal characterization of the whole pagési such as the thermal conduc-
tivities of the materials used TIM1 and TIMZ2. In this chaptge just demonstrate that the
proposed method can accommodate different parameterseéustep is to make it more

practical for use in industry setting.

137



6.4 Numerical examples

The proposedParThermPOFalgorithm has been implemented in MATLAB 7.0 and the
Numerical examples are obtained on a Dell PowerEdge 190Rstaiion (using a Linux
system) with Intel Quadcore Xeon CPUs with 2.99Ghz and 16@Bory.

The example we use is the quad-core microprocessor as simawg.[6.1, from Intel.
We first build parameterized thermal behavior models fromaming data set, using com-
mercial thermal analysis to®lloTHERM[18], which is a 3D computational fluid dynam-
ics (CFD) commercial software, where we collect the comghstep temperature response
when only one single step power source is applied at one #fter parameterized thermal
models are built, we could apply them to generate the tenyreraesponses for any type
of time-varying input power sources and different paramséttings.

In our experiments, the training data used first to build tloelets have different time
scales from the benchmark data used later to verify the nso@alth the training data and
benchmark data from Intel are the powers and computed teryes (usingrloTHERM
on a realistic quad-core microprocessor under some opgratinditions. The given tem-
perature distribution when using a Copper heat sinkat1s is shown in FigC&J1. The
power input traces in the benchmark are shown in Eig.]16.12¢hgre the step power is
20W for all the cores.

In practice, temperature response can be computed venpyastur models during
any time interval, as the computation complexity in our masl@nly O(n) by using the
recursive convolution on the pole-residue expressionyahes the number of time steps.
Note that the simulation results at one time point are obthiior all the parameter space.
In other words, when we change the values of parameters dtroagoint, the results can

be computed directly without doing transient simulatioaiag
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Figure 6.11: Given temperature distribution on the wholie gackage when using a Cop-
per heat sink at = 1s.

Power traces of different cores Temperature response on heat sink at 0omm
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(a) Power input traces in the benchmark. (b) Temperatures on a heat sink made of Alu-

minum at Omm.

Figure 6.12: Thermal simulation results on specific vallgsasameters

Now we will show the accuracy d®arThermPOFE The calculation of temperature re-

sponses at each coefficient is only done once. Then we caim thxtamal response for any
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Figure 6.13: Thermal simulation results on specific valigsapameters
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Figure 6.14: Thermal simulation results on specific valigsasameters

specific values for paramete(§,, &, ..., £ ) by setting them directly in the models.

Fig.[612(b) and Fid.6.13 show the computed temperaturdtseat the point®mm,

5mm and 15mm away from the center when using an Aluminum heat sink. In farot

word, we set; = 0, 5, 15, & = 240 and others to zeros.

Fig.[612 and Fid. 6.15(a) show the temperatures on themaitereO, core2 and cache
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Figure 6.16: Thermal simulation results on specific valigsasameters

when using a Copper heat sink. In these cases wg sel), {&; =390, & =10r& =1or
&7 = 1 and others to zeros.

Fig.[6.1%(b) and Fid. 6.16 show the temperatures on the cehtmrel, core3 and the
heat spreader when using an Aluminum heat sink. In theses easset; = 0, & = 240,

& =1or& =1or& = 1and others to zeros.
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From the figures, we can see that all the peak temperaturesébr set of parameters
during the whole time interval match well between computathcand given data. The
models work well for the nine sets of specific parameters agusteshowed sequentially.
The errors and percentages are shown in Table 6.1. All thedemture errors except for
set6 (cache with a Copper heat sink) is less tifarn

The average errors and relative errors (computed temperaiter given temperature
on each time point) between computed data and given datdavensn Tabld 6R. From

Tablel6.1 and Table8.2, we can see PatThermPOHs very accurate.

Table 6.1: Errors of the peaks

Parameter Maximal peak

settings || Given (C) | Error (°C) | Percentage
setl 43.8 0.21 0.48%
set2 40.0 0.14 0.35%
set3 35.9 0.02 0.06%
set4 69.1 0.29 0.42%
setb 70.3 0.69 0.98%
set6 49.6 1.27 2.56%
set7 77.4 0.22 0.28%
set8 74.2 0.87 1.17%
set9 59.2 0.57 1.03%

Finally, we add one sampling point for the thermal conduttiparameter of sink ma-
terials after we did for Al and Cu in our model and to see howrtteelel works. Specifi-
cally, we add the thermal-power data for Magnesium (Mg), séenthermal conductivity is
160W/(m - K') as a heat sink material (Cu ha801W//(m - K') and Al ha240W/(m - K).).
In this case,;r, in Section[6.B are not only including linear and crossingntgrbut also
including squared terms. We also need to add one coljrto coded variable matriX
and update the corresponding item valueXin

Fig.[61T(a) and Fid—6.17(b) show the temperatures on theecef core0 and heat
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Table 6.2: Average errors and relative errors between thgpebed and given temperatures

Parameter| Average Average
settings || Error (°C") | Relative Error {C)
setl 0.06 0.16%
set2 0.18 0.49%
set3 0.02 0.07%
set4 0.15 0.23%
set5 0.39 0.59%
set6 0.72 1.69%
set7 0.81 1.28%
set8 0.17 0.55%
set9 0.71 1.52%

sink when using an Magnesium heat sink when pulse-like paweerts are excited for the
generated models using the new training data. In these wasegt{; = 0, & = 160,

& = 1 oré& = 0, and others to zeros. ParThermPOF can still obtain enougirae

results.
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(a) Temperatures on core0 when using a Mag- (b) Temperatures on the center of heat sink
nesium (Mg) heat sink. when using a Magnesium (Mg) heat sink.

Figure 6.17: Thermal simulation results on specific valigsasameters

Now we report some CPU times for the proposed method and centpam with

FIoTHERM[18], which uses advanced numerical techniques to comeatehiermal re-
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sponses. In the FIoTHERM, each run for one setting (with fokeadimal materials for heat
sink, heat spreader, ambient temperature and thermal tomms)i takes about 25 minutes
for 1000 transient steps.

While in ParThermPOF, the training process tak@seconds for 5 inputs and 19 coef-
ficients, which means perfornisx 19 matrix pencil operations [36]. After we obtain the
models from training part, the simulation time is much leBer the problem we have, it
takes 2.81 seconds to compute the 19 coefficients for theendinlulation period (1000
steps). For one particular response at one time step, iomstg 0.002s. The reduced model
has 535X speedup over FIoTHERM if we only consider the temtssimulation time, and
35X speedup over FlIoTHERM if we consider both training amehsient simulation time.
As a result, the proposed compact modeling is much fast theruil-blown numerical

simulation.

6.5 Summary

In this chapter, we have proposed a new architecture-leargrpeterized dynamic ther-
mal behavioral modeling algorithm for emerging thermdated analysis and optimiza-
tion problems for high-performance chip-multiprocessesign. The proposed compact
thermal model will be used to predict the thermal responseeaf package designs once
its accuracy has been calibrated and validated with theleétmodels. This is the de-
sign methodology to be used by our industry partner. We me@onew approach, called
ParThermPOF, to build the parameterized dynamic thermaieral models from accu-
rately computed thermal and power information using thengijgated FEA (Finite Ele-

ment Analysis) or CFD (Computational Fluid Dynamics) toatsarchitecture level. The

144



new method is a top-down, black-box approach, meaning it do¢ require any internal
structure of the systems and it is very general and flexiblTRermPOF is able to in-
clude a number of parameters such as location of thermabeeirtsa heat sink, different
components (heat sink, heat spreader, core, cache, armal conductivity of heat sink
materials, etc. The new method consists of two steps: firResponse Surface Method
(RSM) based on low-order polynomials is applied to build pfa@ameterized models at
each time point for all the given sampling nodes in the patanspace (except for time).
Second, an improved Generalized Pencil-Of-Function (GR@4$thod, called ThermPOF,
is employed to build the transfer-function-based modetsetrh time-varying coefficient
of the polynomials generated in the first step. SimulatiGuits on a practical quad-core
microprocessor show that the generated parameterizeshéhdéxehavioral models can be
built very efficiently and the temperatures computed frosultng models match the given
temperatures well for given parameter space in the time donfde compact models by
ParThermPOF offer two order of magnitudes speedup overdihmerercial thermal analy-

sis tool FIoTHERM [18] on the given examples from our indygtartner.
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Chapter 7

Conclusion

In this dissertation, we have finished deep studies on devedeling and simulation al-
gorithms of on-chip power delivery networks and tempem®pnofile on multi-core micro-

processaors.

7.1 Modeling and simulation of on-chip power delivery

networks

Reliable on-chip power delivery is a challenging desigrk tis sub-100nm and below
VLSI technologies as voltage IR drops become more and maoreopinced. This situation
gets worse as technology continues to scale down. And efficierification of power
integrity becomes critical for design closure. In addititime increasing process-induced
variability makes it even worse for reliable power delivagtworks. The process induced
variations manifest themselves at different levels (wideel, die-level and within a die)

and they are caused by different sources (lithograph, matéteaging, etc.).
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For power delivery networks without considering processatens, we have proposed
a new fast simulation method ETBR for extended truncatedruad realization, which
uses MOR (Model Order Reduction) to speedup the simula&d®BR is based on a more
accurate reduction framework: truncated balanced rda&izavhich was shown to be more
accurate than Krylov subspace method used in EKS methodREI$ avoids the explicit
moment representation of the input signals, which have-lwelwn numerical problems in
the past. Instead, it uses spectrum representation of sigonéls by fast Fourier transfor-
mation. As a result, ETBR is much more flexible for differeypes of input sources and
can better capture the high frequency contents than EKShasdeads to more accurate
results for fast changing input signals. To make ETBR mooeiexy, we further introduce
an error control mechanism into it. The improved method ifedaETBR.IR. The error
control mechanism is based on the system residuals as vibt a®vel effective resistance
concept to compute the errors in terms of more useful voltagp values. The on-the-fly
error reduction works well for compensating high frequeacyguracy loss related to disrup-
tive tap current waveforms in typical industry power defiwaetworks. ETBRIR provides
an efficient way to easily trade errors for speedup to suiedght applications. Numerical
results show ETBRR can significantly reduce the errors of the existing ETBRhod at
the similar computing cost, while it can have 10X and moresgp@ over the the commer-
cial power grid simulator in UltraSim with about 1-2% errans a number of real industry
benchmark circuits.

For power delivery networks with considering process \taies, we have proposed a
novel scalable statistical simulation approach for largegr grid network analysis consid-
ering process variations. The new algorithm is very scalédnl large networks with a large

number of random variables. The new method, called varET8Based on the previously
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proposed extended truncated balanced realization (ETBf)ad. To consider the varia-
tional parameters, we extend the concept of response Grammhich was used in ETBR
to compute the reduction projection subspace, to the vamatresponse Grammian. Then
Monte Carlo based numerical integration is employed to iplefdimensional integrals.
Numerical examples, on a number of the IBM benchmark ciscj4if/] up to 1.6 million
nodes, show that the varETBR can be ug 00X faster than the Monte Carlo method,
and is much more scalable than the StoEKS method(]42, 41ET&R can solve very
large power grid networks with large numbers of random \@es, large variation ranges
and different variational distributions.

To further speedup the MOR process used in the fast simalaibierarchical Krylov
subspace projection based MOR approach, hiePrimor, isopexp Different from the
traditional flat MOR, The new method combines the partitignstrategy and the Krylov
subspace method to speed up the reduction process. higisimore suitable for reducing
many large global interconnects like coupled bus, transimislines and large clock nets
where the number of ports are general not significant. Themethod is a very general
hierarchical model order reduction technique and it woksgeneral parasitic intercon-
nect circuits modeled as RLC circuits. Numerical resultsidestrate that hiePrimor can
be significantly faster (up to 5x) and more scalable than ttepilojection methods like
PRIMA and be order of magnitude faster than PRIMA with palatiomputing without
loss of accuracy. Interconnect circuits with up to 4 millimodes can be analyzed in a few

minutes even in Matlab.
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7.2 Modeling and simulation of temperature profile on multi-
core microprocessors

Besides the on-chip power delivery, excessive on-chip egatpre has also become a first-
tier design constraint as CMOS technology scales into themater region. The exponen-
tial increase of power density of the high-performance opecocessors leads to the rapid
rising of the average chip temperature. Higher temperdtasesignificant adverse impacts
on chip package cost, performance, and reliability. Madiie techniques provide a viable
solution to temperature/power problems. However, desmgtihermal efficient multi-core
microprocessors remains a challenging problem as the textype in each core can be dra-
matically different and the resulting large temperaturadggnts can produce mechanical
stress and degrade the chip reliability.

In this dissertation, we have investigated a new architedewvel dynamic thermal char-
acterization problem from a behavioral modeling perspedt» address the emerging ther-
mal related analysis and optimization problems for higHgrenance multi-core micro-
processor design. We have proposed a new thermal behamod#ling approach for fast
temperature estimation at the architecture level for radtie microprocessors. The new
approach, called ThermPOF, , builds the transfer functiatrimmfrom the measured or sim-
ulated thermal and power information. It first builds beloa&l thermal models using the
generalized pencil-of-function (GPOF) method. Howevss,direct use of GPOF does not
work for thermal systems. Based on the characteristicsaofsient chip-level temperature
behaviors, we make two new improvements over the traditiGiROF: First we apply a
logarithmic-scale sampling scheme instead of the trathfinear sampling to better cap-

ture the rapid temperatures change over the long periorteeeve modify the extracted
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thermal impulse response such that the extracted poles ®B@F are guaranteed to be
stable without accuracy loss. Finally we further reducedize of thermal models by a
Krylov subspace reduction method to speedup the simulgtiocess. Numerical results
on a real quad-core microprocessor show that generatech&héehavioral models match
the measured temperature very well.

Further, we have extended ThermPOF into ParThermPOF, anpsedzed dynamic
thermal behavioral modeling algorithm for emerging thelrnedated analysis and opti-
mization problems for high-performance chip-multipraa@sdesign. The proposed com-
pact thermal model will be used to predict the thermal respasf new package designs
once its accuracy has been calibrated and validated withettagled models. ParThermPOF
builds the parameterized dynamic thermal behavioral nsofiem accurately computed
thermal and power information using the sophisticated FEAi{e Element Analysis) or
CFD (Computational Fluid Dynamics) tools at architectueeel. ParThermPOF consists
of two steps: first, a Response Surface Method (RSM) basedwoidder polynomials
is applied to build the parameterized models at each timetfoi all the given sampling
nodes in the parameter space (except for time). SecondmA@F is employed to build
the transfer-function-based models for each time-varyogfficient of the polynomials
generated in the first step. Numerical results on a pradjiegadl-core microprocessor show
that the generated parameterized thermal model matchegivtbe data very well. The
compact models by ParThermPOF offer two order of magnitsgpeedup over the com-

mercial thermal analysis tool FIoTHERN 18] on the given exdes.
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