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ABSTRACT OF THE DISSERTATION

Modeling, Characterization and Simulation of On-Chip Power Delivery
Networks and Temperature Profile on Multi-Core Microprocessors

by

Duo Li

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2010

Dr. Sheldon X.-D. Tan, Chairperson

Reliable on-chip power delivery is a challenging design task for sub-100nm and below

VLSI technologies as voltage IR drops become more and more pronounced. This situa-

tion gets worse as technology continues to scale down. And efficient verification of power

integrity becomes critical for design closure. In addition, the increasing process-induced

variability makes it even worse for reliable power deliverynetworks. The process induced

variations manifest themselves at different levels (waferlevel, die-level and within a die)

and they are caused by different sources (lithograph, materials, aging, etc.). In this disser-

tation, for power delivery networks without considering process variations, we propose an

efficient simulation approach, called ETBR (Extended Truncated Balanced Realization),

which uses MOR (Model Order Reduction) to speedup the simulation. To make ETBR

more accuracy, we further introduce an error control mechanism into it. For power delivery

networks with considering process variations, we propose varETBR (variational Extended

Truncated Balanced Realization), a reduced Monte-Carlo simulation approach, which can

handle a large number of variables and different variation distributions. To further speedup
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the MOR process used in the fast simulation, a hierarchical Krylov subspace projection

based MOR approach, hiePrimor, is proposed.

Besides the on-chip power delivery, excessive on-chip temperature has also become a

first-tier design constraint as CMOS technology scales intothe nanometer region. The ex-

ponential increase of power density of the high-performance microprocessors leads to the

rapid rising of the average chip temperature. Higher temperature has significant adverse

impacts on chip package cost, performance, and reliability. Multi-core techniques provide

a viable solution to temperature/power problems. However,designing thermal efficient

multi-core microprocessors remains a challenging problemas the temperature in each core

can be dramatically different and the resulting large temperature gradients can produce me-

chanical stress and degrade the chip reliability. In this dissertation, we investigate a new

architecture-level dynamic thermal characterization problem from a behavioral modeling

perspective to address the emerging thermal related analysis and optimization problems for

high-performance multi-core microprocessor design. We propose a new approach, called

ThermPOF, to build the thermal behavioral models from the measured or simulated ther-

mal and power information at the architecture level. And then we extend ThermPOF into

ParThermPOF, a parameterized thermal behavioral modelingapproach that can handle dif-

ferent parameters in multi-core microprocessor design andoptimization.
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Chapter 1

Introduction

1.1 Motivations

1.1.1 Modeling and simulation of on-chip power delivery networks

Reliable on-chip power delivery is one of the difficult challenges for sub-100nm and below

VLSI technology as voltage IR drops become more and more pronounced. This situation

gets worse as technology continues to scale down. It has beenreflected by the facts that

more power has to be delivered into the chips for more packed devices, and supply voltage

continues to decrease, which results in a decreased noise margin for signal transition, and

makes transistor more vulnerable to supply voltage degradation. So efficient verification of

power integrity becomes critical for final design power integrity closure.

The power delivery networks used in most of the research can be modeled as RC/RLC

networks, as shown in Fig. 1.1 which is a part of large power grid networks. There are

known time-variant current sources inside the power grid networks. Those current sources

can be obtained by gate level logic simulations of the circuits. Some nodes having known

1



voltage are modeled as constant voltage sources.

Figure 1.1: The power grid model.

Many research works have been done on efficient simulation ofon-chip power grid net-

works. Methods such as multigrid-like [48, 73], hierarchical [83, 32], partition-based [37],

fast iterative [9, 67] and random walk based [59] help improve scalability of power gird

network analysis. Extended Krylov subspace based methods (EKS) [79, 32] uses both a

power grid system and its input signals to reduce the original circuits before the simulation.

Due to efficiency of Krylov subspace based reduction techniques, EKS can deal with very

large power grid circuits.

Another issue for reliable on-chip power delivery is the increasing process-induced

variability [62, 46]. The process induced variations manifest themselves at different levels

(wafer level, die-level and within a die) and they are causedby different sources (lithograph,

materials, aging etc) [10, 45]. One of the process variabilities comes from the voltage drop

variations in on-chip power distribution networks. Voltage drop has significant impacts

on the circuit timing [51]. The voltage drop of power grid networks subject to leakage

current variations was first studied in [16, 17]. In [72, 50],impulse responses are used

2



to compute the mean and variances of node voltage responses caused by general current

variations. Methods proposed in [20, 19] use orthogonal polynomial chaos expansion of

random processes to represent and solve for the stochastic responses of linear systems. The

methods have been improved by the StoEKS method [42, 41], where reduction is performed

on the variational circuit matrices before the simulation.

1.1.2 Modeling and simulation of temperature profile on multi-core

microprocessors

As CMOS technology is scaled into the nanometer region, the power density of high-

performance microprocessors has increased drastically. The exponential power density

increase will in turn lead to average chip temperature to raise rapidly [5]. Higher temper-

ature has significant adverse impacts on chip package cost, performance, and reliability.

Excessive on-chip temperature leads to slower transistor speed, more leakage power con-

sumption, higher interconnect resistance, and reduced reliability [22, 6, 52].

Multi-Core techniques, where multiple CPU-cores and caches are integrated into a sin-

gle chip, provide a viable solution to the temperature/power problems [38, 3, 4]. The

architecture of the Intel Quad-Core microprocessor is shown in Fig. 1.2, where there are

four CPU cores (die 0 to die 3) and one shared cache core (die 4). TIM here stands for

thermal interface material.

Multi-Core processing allows one to increase the total throughput by task-level parallel

computing with lower voltage and frequency to meet power andthermal constraints. The

proliferation of this technique provides both opportunities and challenges for future mas-

sive parallel computing. One difficult issue confronting designers is the unpredictable heat

and thermal effects, which are caused by the placement of cores and caches and changing
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Figure 1.2: The quad-core architecture.

program loads. Furthermore, local hot spots, which may havemuch higher temperatures

compared to the average die temperature, are becoming more prevalent in microprocessor

chips [52]. This is especially the case for multicore processors as the temperature in each

core can be dramatically different and the resulting large temperature gradients can pro-

duce mechanical stress and degrade the chip reliability. Hence it is very important to verify

the temperatures and estimate the related performance (power, timing, yield) and reliability

limits during the thermal-aware floorplanning and architecture design under various loads

among different cores and caches [71].

To facilitate this temperature-aware architecture design, it is important to have accu-

rate and fast thermal estimation at the architecture level [27]. Both architecture and CAD

tool communities are currently lacking accurate and practical tools for thermal architecture

modeling. Existing work on the HotSpot project [26, 71] tried to solve this problem by

generating the architecture thermal model in a bottom-up way based on the floorplanning

of the function units. But this method may not be accurate forreal industry designs as

many approximations are made during the modeling. It may also difficult to set up for new

architectures with different thermal and packaging configurations [81]. To compute the
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thermal responses by solving the basic thermal transfer equations using numerical methods

like the finite element method, finite difference method is very expensive, especially for

different thermal conditions and package configurations during the design stage. Hence,

the need for efficient, accurate, and parameterized architecture thermal models, especially

for emerging multicore microprocessors has never been greater.

1.2 Objectives and main results of this dissertation

The main objectives of this dissertation is to develop new modeling and simulation meth-

ods for on-chip power delivery networks and temperature profile on multi-core micropro-

cessors. The major achievements accomplished in this dissertation as follows:

• A new model order reduction based simulation approach, called ETBR (Extended

Truncated Balanced Realization), is proposed. In ETBR, both a system and its input

signals are used to reduce the original circuit matrices. But different from the (im-

proved) extended Krylov subspace methods, EKS/IEKS [79, 32], ETBR performs

singular value decomposition (SVD) on response Gramian to reduce the original sys-

tem while with the similar computation costs as EKS and a moreaccurate reduction

framework: truncated balanced realization.

• We extend ETBR to ETBRIR for efficient IR drop analysis based on the sampling-

based reduction and simulation framework. ETBRIR tries to dynamically compen-

sate error losses from the reduction during the simulation process of reduced models.

It introduces an error check mechanism based on the system residuals, which is an

exact error indicator, as well as the novel effective resistance concept to compute the

errors in terms of more useful voltage drop values.
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• For large power grid network analysis considering process variations, a new scalable

statistical simulation approach, called varETBR, is proposed To consider the varia-

tional parameters, we extend the concept of response Grammian proposed in ETBR

to the variational response Grammian. Then Monte Carlo based numerical integra-

tion is employed to multiple-dimensional integrals. varETBR is very scalable for

large networks with a large number of random variables.

• To speedup the MOR (Model Order Reduction) process used in the fast simulation,

a hierarchical Krylov subspace projection based MOR approach, hiePrimor, is pro-

posed. It combines the partitioning strategy and the Krylovsubspace method to

speed up the reduction process. hiePrimor is a very general hierarchical model order

reduction technique and it works for general parasitic interconnect circuits modeled

as RLC circuits.

• A new thermal behavioral modeling approach, called ThermPOF, is proposed for

fast temperature estimation at the architecture level for multi-core microprocessors.

ThermPOF builds the transfer function matrix from the measured or simulated ther-

mal and power information. It improves generalized pencil-of-function (GPOF)

method [24, 25, 64] to extract the poles and residues of the transfer functions. Fur-

ther, the size of thermal models can be reduced by a Krylov subspace reduction

method to speedup the simulation process [77]. ThermPOF is atop-down, black-box

approach, meaning it does not require any internal structure of the systems and it is

very general and flexible.

• We extend ThermPOF into ParThermPOF, a parameterized dynamic thermal be-

havioral modeling approach for emerging thermal-related analysis and optimization
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problems for high-performance multi-core microprocessordesign. ParThermPOF

consists of two steps: first, a Response Surface Method (RSM)based on low-order

polynomials is applied to build the parameterized models ateach time point for all the

given sampling nodes in the parameter space (except for time). Second, ThermPOF

is employed to build the transfer-function-based models for each time-varying coef-

ficient of the polynomials generated in the first step.

1.3 Organization of this dissertation

The organization of this dissertation is as follows: In Chapter 2, we first propose a new fast

simulation method ETBR (Extended Truncated Balanced Realization) for on-chip power

delivery network. To make ETBR more accurate, we then extendETBR into ETBRIR with

an error control mechanism. For large power grid network analysis considering process

variations, we propose a novel scalable statistical simulation approach, called varETBR, in

Chapter 3. Then, in Chapter 4, we propose a new hierarchical Krylov subspace based re-

duction method, called hiePrimor, to speed up the traditional reduction process for RC/RLC

circuits. In Chapter 5 and Chapter 6, we investigate a new architecture-level dynamic ther-

mal characterization problem from a behavioral modeling perspective to address the emerg-

ing thermal related analysis and optimization problems forhigh-performance multi-core

microprocessor design. We propose a new approach, called ThermPOF, to build the ther-

mal behavioral models from the measured or simulated thermal and power information at

the architecture level. And then we extend ThermPOF into ParThermPOF, a parameterized

thermal behavioral modeling approach that can handle different parameters in multi-core

microprocessor design and optimization. Finally Chapter7concludes the dissertation.
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Chapter 2

ETBR: Extended Truncated Balanced

Realization for On-Chip Power Grid

Network Analysis

In this chapter, we propose a novel model order reduction based simulation approach.

This approach, called ETBR, performs singular value decomposition (SVD) on response

Gramian to reduce the original system while with the similarcomputation costs of EKS/IEKS [79,

32]. ETBR is based on a more accurate reduction framework: truncated balanced re-

alization, which was shown to be more accurate than Krylov subspace method used in

EKS/IEKS method.

The proposed method is very amenable for threading-based parallel computing, as

the response Gramian, which is used to construct the projection matrix, is computed in

a Monte-Carlo-like sampling style and each sampling can be computed in parallel. This

contrasts with all the Krylov subspace based methods like the EKS method, where mo-

ments have to be computed in a sequential order. The feature is important as the multi-core
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architectures and multi-core computing are becoming commonplace [30, 70]. ETBR can

naturally exploit task-level threading-oriented parallelism based on multicore architectures

to significantly boost the simulation performance.ETBR also avoids the explicit moment

representation of the input signals, which have well-knownnumerical problems in the past.

Instead, it uses spectrum representation of input signals by fast Fourier transformation. As

a result, ETBR is much more flexible for different types of input sources and can better

capture the high frequency contents than EKS and this leads to more accurate results for

fast changing input signals. Numerical examples, on a number of large RLC networks up

to one million nodes, show that ETBR is indeed more accurate than the EKS/IEKS method

especially for current sources rich in high-frequency components. ETBR also shows simi-

lar computational costs of EKS but smaller memory footprintin a single CPU, but is much

faster than EKS when parallelism is explored.

Then we propose an efficient IR drop analysis approach, called ETBR IR, based on the

sampling-based reduction and simulation framework. The new approach tries to dynami-

cally compensate error losses from the reduction during thesimulation process of reduced

models. ETBRIR introduces an error check mechanism based on the system residuals,

which is an exact error indicator, as well as the novel effective resistance concept to com-

pute the errors in terms of more useful voltage drop values. The on-the-fly error reduction

works well for compensating high frequency accuracy loss related to disruptive tap cur-

rent waveforms in typical industry power grid networks. Thenew method also presents a

new way to closely combine model order reduction and simulation to achieve the overall

efficiency of simulation. The proposed method provide an efficient way to easily trade

errors for speedup to suit different applications. Numerical examples show the proposed

IR drop analysis method can significantly reduce the errors of the existing ETBR method,
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and meanwhile it can lead to up 10X speedup over the the latestcommercial power grid

simulator, UPS, in UltraSim, with about 1-2% errors on a number of real industry circuits.

2.1 Power grid network models

The power grid networks in this chapter are modeled as RC networks with known time-

variant current sources, which can be obtained by gate levellogic simulations of the cir-

cuits. Fig. 2.1 shows the power grid models used in this chapter. For a power grid, some

nodes having known voltage are modeled as constant voltage sources. For C4 power grids,

the known voltage nodes can be internal nodes inside the power grid. Given the tap current

source vector,u(t), the node voltages can be obtained by solving the following differential

equations, which is formulated using modified nodal analysis (MNA) approach,

Gv(t) + C
dv(t)

dt
= Bu(t)

y(t) = LT v(t) (2.1)

whereG ∈ Rn×n is the conductance matrix,C ∈ Rn×n is the matrix resulting from storage

elements.v(t) is the vector of time-varying node voltages and branch currents of voltage

sources.y(t) is the observed output voltage vector.u(t) is the vector of independent power

sources, andB ∈ Rn×p is the input selector matrix andL ∈ Rn×l is the output selector

matrix. p andl are the number of input and output terminals respectively.
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Figure 2.1: The power grid model used.

2.2 New extended balanced truncation method: ETBR

In this chapter, we propose an extended truncated balanced realization method, called

ETBR, for efficient simulation of power grid networks. The new method features two im-

provements over existing approaches. First, the input signals are represented in its spectrum

form in frequency domain directly by fast Fourier transformation. Second, fast balanced

truncation method is used to perform the reduction, which has global accuracy [43, 56].

In the following, we first review the balanced truncation method and then the fast

Gramian computation method.

2.2.1 Review of standard TBR

Given a system in a standard state-space form

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(2.2)
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whereA ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, y(t), u(t) ∈ Rp. The controllable and observable

Grammians are the unique symmetric positive definite solutions to the Lyapunov equations.

AX + XAT + BBT = 0

AT Y + Y A + CT C = 0

(2.3)

Since the eigenvalues of the productXY are invariant under similarity transformation,

we can perform a similarity transformation(Ab = T−1AT, Bb = T−1B, Cb = CT ) to

diagonalize the productXY such that

T−1XY T = Σ = diag(σ1
2, σ2

2, . . . , σn
2) (2.4)

where the Hankel singular values of the system (σk), are arranged in a descending order. If

we partition the matrices as







W T
1

W T
2






XY

[

V1 V2

]

=







Σ1 0

0 Σ2






(2.5)

whereΣ1 = diag(σ1
2, σ2

2, . . . , σr
2) are the firstr largest eigenvalues of Gramian product

XY andW1 andV1 are corresponding eigenvectors. A reduced model can be obtained as

follows

ẋ(t) = Arx(t) + Bru(t)

y(t) = Crx(t)

(2.6)

whereAr = W T
1 AV1, Br = W T

1 B, Cr = CV1. The error in the transfer function of the or-

derr approximation is bounded by2
∑N

i=r+1 σk. In the TBR procedure, the computational

cost is dominated by solving Lyapunov equationsO(n3), which makes it too expensive to
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apply to integrated circuits problems and thus an efficient Gramian approximation tech-

nique is highly appreciated.

2.2.2 Review of fast TBR method: Poor man’s TBR

Existing Gramian approximation technique, PMTBR [55], is restricted to a state-space

model (2.2) withA = AT andC = BT . This is the case for RC and RL circuits. In this

symmetric case, it is easy to see that, both Gramians are equal and are obtained by solving

the Lyapunov equation

AX + XAT + BBT = 0 (2.7)

SinceX is symmetric, it is orthogonally diagonalizable, i.e., there existsT−1 = T T such

thatT T XT = Σ. Then, we have

T TXXT = (T T XT )(T TXT ) = (Σ)2 (2.8)

which means, in this symmetric case, the eigenspace of Gramian productXX is exactly

the eigenspace of eachX and we only need to find the dominant invariant subspace of an

approximated Gramian̂X. In frequency domain, the Gramian X can also be computed

from the expression

X =

∫ +∞

−∞

(jωI − A)−1BBT (jωI − A)−Hdω (2.9)

where superscriptH denotes Hermitian transpose. Letωk be kth sampling point. If we

define

zk = (jωkI − A)−1B (2.10)
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thenX can be approximated as

X̂ =
∑

wkzkz
H
k = ZW 2ZH (2.11)

whereZ = [z1, z2, . . . , zn]. W a diagonal matrix with diagonal entrieswkk =
√

wk. wk

comes from a specific numerical quadrature method. SinceX̂ is symmetric, it is orthogo-

nally diagonalizable.

V̂ T X̂V̂ =







V̂ T
1

V̂ T
2






X̂

[

V̂1 V̂2

]

=







Σ̂1 0

0 Σ̂2






(2.12)

whereV̂ T V̂ = I. V̂ converges to the eigenspaces ofX and the dominant eigenvectorŝV1

can be used as the projection matrix in a model reduction approach(Ar = V̂ T
1 AV̂1, Br =

V̂ T
1 B).

2.2.3 Response Gramian and fast computation method

Follow the similar strategy of EKS method, we consider the input signals of the system

into TBR based reduction framework so that efficient reduction can be done by converting

an MIMO system into an SIMO system.

For a linear system in (2.1), we first define the frequency-domainResponse Gramian,

Xr =

∫ +∞

−∞

(jωC + G)−1Bu(jω)uT (jω)BT (jωC + G)−Hdω (2.13)

which is different from the Gramian concepts in the traditional TBR based reduction frame-

work. Notice that in the new Gramian definition, the input signalsu(jω) is considered. As
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a results,(jωC + G)−1Bu(jω) actually is the system response with respect to the input

signalu(jω) and resultingXr becomes response Gramian.

To fast compute the response gramianXr, which essential essentially one-dimensional

integral with respect to the complex frequencyω. We can use Monte-Carlo-based method

to estimate the numerical value as done in [53]. Specifically, let ωk bekth sampling point

over the frequency range. If we further define

zr
k = (jωkC + G)−1Bu(jωk) (2.14)

thenX̂ can be computed approximately by numerical quadrature methods

X̂r =
∑

k

wkz
r
kz

r
k
H = ZrW

2ZH
r (2.15)

whereZr is a matrix whose columns arezr
k andW a diagonal matrix with diagonal entries

wkk =
√

wk. wk comes from a specific quadrature method.

For the truncated balanced based reduction, we need to compute the eigven-composition

of X̂r to obtain the projection matrix, which consists of eigen vectors ofX̂r. Since the ap-

proximate GramianX̂r is symmetric, we can obtain the project matrix by singular value

decomposition ofZr. To see this, if we have SVD ofZr = VrSrU
T
r , then we can have the

eigen decomposition of̂Xr = VrS
2
rV

T
r . After this, we can reduce the original matrices into

small ones and then perform the transient analysis on the reduced circuit matrices.

Also we find that weightswk are not important for the SVD process. The weight matrix

W will not change the subspace ofZr as it simple multiplies each vector inZr with a

constant. In our algorithm, we just simple ignore the weights and we use simple linear or

logarithmic sampling methods to perform the sampling (to bediscussed later).
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Notice that we need frequency response of input signalu(jωk) in (2.14). This can be

obtained by fast Fourier transformation on the input signals in time domain.

2.2.4 Extended truncated balanced realization method: ETBR

In this subsection, we give the algorithm flow of the proposedETBR method, which is

summarized inAlgorithm1.

Algorithm 1: Extended Truncated Balanced Realization method (ETBR)

Input: Circuit of G, C, B, u(t), number of samples:q, transient simulation step interval.
Output: Node voltage responsesv(t) for the given simulation interval.

1. Convert all the input signalsu(t) into u(s) using FFT.
2. Selectq frequency pointss1, s2, . . . , sq over the frequency range
3. Computezr

k = (skC + G)−1Bu(sk)

4. Form the matrixZr = [zr
1, z

r
2 , . . . , z

r
q ]

5. Perform SVD onZr, Zr = VrSrU
T
r

6. Ĝ = V T
r GVr,Ĉ = V T

r CVr, B̂ = V T
r B

7. Simulate (̂G, Ĉ, B̂, u(t))
8. Obtain the original waveformsv(t) = Vr

ˆv(t)

Note that, like the EKS method, we use congruence transformation for the reduction

process with orthogonal columns in the projection matrix (using Arnoldi or Arnoldi-like

process), the reduced system must be stable. As far as simulation is concerned, this is good

enough. If all the observable ports are also the current source nodes, i.e.y(t) = BT v(t),

wherey(t) is the voltage vector at all observable ports, the reduced system is passive.

Compared with the existing approaches like EKS/IKES methods, ETBR shows several

advantages and features. First ETBR method is much more amenable for parallel com-

puting than EKS as eachzk
i in (2.14) can be computed in parallel. Thus ETBR is more

efficient than EKS when the threading-based parallel computing is explored as shown in
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the Numerical examples. Second, it is more accurate over wide band frequency ranges due

to the global samplings. Third, it avoids the explicit moment representation of the input sig-

nals, which can lead more accurate results than the EKS method when signals are rich in

high frequency components. ETBR can deal with any type of time-domain and frequency-

domain input signals. While the EKS method can only deal withinput signals in piecewise

linear form.

2.2.5 Time complexity analysis and comparison

In this subsection, we analyze the computational costs for both ETBR and EKS and com-

pare with the EKS methods.

In ETBR, there are two major computing steps, sampling and SVD. Let’s look at the

cost of each step. For sampling, we basically need to solve the (2.14)q times. Typically

solving an×n linear matrix takesO(nβ) (typically,1.1 ≤ β ≤ 1.5 for matrix factorizations

andO(nα) (typically, 1 ≤ α ≤ 1.2) for solving (forward and backward substitutions). So

the time complexity for this step isO(qnβ + qnα). For the second step, the singular value

decomposition (SVD) will takeO(nq2) for an× q matrix. Another computing cost comes

from converting the input signals into the frequency spectrum form. Assume that we have

m current sources, the samplings we use for the FFT isl, FFT takesO(llogl) to finish.

Hence the cost associated with input signals isO(mllogl). Typically we setl = 128, which

gives sufficient accuracy. So the total computational cost of ETBR is

O(qnβ + qnα + nq2 + mllogl). (2.16)

If all the sampling can be computed in parallel, computing (2.14) will becomeO(nβ + nα)
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assuming very small overheads incurred to manage the threads. The total computational

cost of ETBR will become

O(nβ + nα + nq2 + mllogl). (2.17)

For one-point (expanded at one frequency point) EKS, it alsohave two major com-

puting costs: compute the response moments and orthonormalize them similar to the QR

decomposition. For the first step, it will take one matrix factorization andq steps solving

(forward and backward substitutions). The computing cost isO(qnα + nβ), whereO(qnα)

(typically, 1 ≤ α ≤ 1.2 for sparse circuits) isq step solving. The orthonormalization will

take aboutO(nq2) to finish. Again, we need to calculate the computing cost for transform-

ing the input signals into the moment form. It can be shown that the computing cost is

O(qk2m) [32], wherek is the number of piecewise segments in each current sources,and

m the number of current sources. Hence the final computationalcost for EKS is

O(qnα + nβ + nq2 + qk2m) (2.18)

It can be seen that EKS will be more efficient due to smaller number of factorizations in a

single CPU. But if parallel computing is allowed, ETBR become much better. But if itera-

tion solvers are used, which are typically more fast and memory efficient than the LU-based

direct solvers for RLC networks [63], both approaches will have the same computational

costs in a single CPU.
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2.2.6 Statistical point of view

The proposed method in a sense can be viewed as special SVD-based principal component

analysis (PCA) method used in statistical variable reduction transformation.

For a linear dynamic system formulated in state space equations (MNA) in (2.1), if

complex frequencys is a vector of random variables with uniform distribution inthe fre-

quency domain. Then the state responsesV (s) = (G + sC)−1Bu(s) become random

variables in frequency domain. Its covariance matrix can becomputed as

E{V (s)V (s)T} = Xr (2.19)

whereE{x} stands for computing the mean of random variablex. Xr is defined in (2.13).

The response Gramian essentially can be viewed as the covariance matrix associated with

state responses. ETBR procedure performs the principal component analysis transforma-

tion of the mentioned random process with a uniform distribution.

2.3 Numerical examples of ETBR

The proposedETBRalgorithm has been implemented using MATLAB 7.0 and tested on

an Intel Xeon 3.0GHz dual CPU workstation with 2GB memory andan Intel quad-core

3.0GHz CPU workstation with 16GB memory. All the test circuits are randomly generated

RC or RLC power grid networks up to one million nodes (R on the order of Ω, C on the

order of pF and L on the order of pH), as shown in Table 2.1. Efficient matrix computations

benefit from sparse matrix structure and a parser implemented by Python.

To solve circuits with one million nodes in MATLAB, an external linear solver package
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Table 2.1: Test circuits
Test Ckts #Nodes #Sources

Ckt1 1, 000 100
Ckt2 10, 000 100
Ckt3 10, 000 1, 000
Ckt4 100, 000 1, 000
Ckt5 100, 000 4, 000
Ckt6 500, 000 5, 000
Ckt7 500, 000 20, 000
Ckt8 1, 000, 000 50, 000

Ckt9 (RLC) 6, 000 100
Ckt10 (RLC) 250, 000 100

UMFPACK [2] is used, which is linked with MATLAB using MATLABmexFunction.

For ETBR, we use a non-LU-decomposition solver in UMFPACK. While for EKS, the

LU decomposition solver is used. The reason why we choose different solver for them is

ETBR only solves one column in the right hand side, so LU decomposition may cost too

much and cannot be reused in ETBR. While in EKS, LU decomposition can be reused to

solve several columns in the right hand side, number of columns depending on the selected

reduced order, so doing LU decomposition is an efficient way in EKS. We remark that the

selection of solvers is the best for both ETBR and EKS. The comparison is more fair for

them.

2.3.1 Comparison with the EKS method

In sequel, we will compare our ETBR with IEKS [32], first in accuracy and then in CPU

times. In all the test cases, to make a fair comparison, the reduction orderq is set to6

for IEKS and the number of frequency samples used for ETBR is also set to6. Note that

for the RLC circuits Ckt1-Ckt8, the results are collected onan Intel dual CPU workstation
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with 2GB memory, and for the RLC circuits Ckt9 and Ckt10, the results are collected on

an Intel quad-core workstation with 16GB memory.

Fig. 2.2 shows the simulation results of ETBR and IEKS at the 200th node of Ckt2. The

simulation errors compared with SPICE results are shown in Fig. 2.3. One of the input sig-

nal waveforms in both time domain and frequency domain is as shown in Fig. 2.4. Through

Fig. 2.3, we can see that ETBR is more accurate than IEKS over the entire simulation time.
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Figure 2.2: Transient waveform at the 200th node of Ckt2.

In the second testing case, we change the input signals so that they can have more

fast changing spikes as shown in Fig. 2.7(a). In other words,current sources are rich in

high-frequency components.

We find that ETBR’s results are much better than EKS’s as shownin Fig. 2.5. From the

simulation errors comparison in Fig. 2.6, we can see that ETBR is almost3× more accurate

than IEKS (the maximum error: ETBR 0.003 vs IEKS 0.01). This is not a surprise for us

if we notice that the input signals shown in Fig. 2.7(b) have much more high frequency
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Figure 2.3: The simulation errors of ETBR and IEKS of Ckt2.
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Figure 2.4: Transient waveform at the 5th current source of Ckt2.

components from107MHz to 108MHz than the input signals shown in Fig. 2.4(b).

We can try different reduced orders for Ckt2 to setq = 5 andq = 7. The results are

shown in Fig. 2.8 and Fig. 2.9. We can see that ETBR is still more accurate than EKS as

long as both of them use the same reduced order. And the CPU times of ETBR depends

on the reduced order. If we want to achieve more accuracy, we need more reduced orders
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Figure 2.5: Transient waveform at the 200th node of Ckt2 withfast changing inputs.
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Figure 2.6: The simulation errors of ETBR and IEKS on Ckt2 with fast changing inputs.

which results in more CPU times.

For the RLC circuits, ETBR also holds much more accuracy thanEKS. Fig. 2.10 and

Fig. 2.11 show the transient simulation waveforms and errors of both ETBR and EKS at
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Figure 2.7: The transient waveform at the 5th current sourceof Ckt2.
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Figure 2.8: Transient waveform at the 200th node of Ckt2 withfast changing inputs.

the 200th node of Ckt9 (RLC).

There may be many high frequency components in the input signals in the real industry

circuits. In this situation, we in general need more samplings to improve the accuracy.

Now we perform ETBR on a real industry circuit of 154514 nodes, 624 current sources and

25001 simulation time steps. We also perform latest UltraSim UPS (power network solver)

on the same case. UltraSim UPS is a commercial power grid simulator from Cadence
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Figure 2.9: The simulation errors of ETBR and IEKS on Ckt2 with fast changing inputs.
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Figure 2.10: Transient waveform at the 200th node of Ckt9 (RLC).

and the results of UltraSim UPS are considered as golden in this chapter. The number of

samplings in ETBR is still set to 10. But still the results areaccurate enough as shown in

Fig. 2.12. This circuit has rapid changing transient waveforms due to the reason that the
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Figure 2.11: The simulation errors of ETBR and IEKS on Ckt9 (RLC).
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Figure 2.12: Transient waveform at node 17 of a real industrycircuit.
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Figure 2.13: Input current waveform at node 17 of a real industry circuit.

current sources are changing very fast, as shown in Fig. 2.13.

Finally, we compare the CPU time of the two algorithms on a setof power grid networks

up to one million nodes. The capacity of our implementation is mainly limited for Ckt1-

Ckt8 by the physical memory of our machine (2GB).

Table 2.2 shows the CPU times of both ETBR (including the costof FFT) and IEKS on

the given set of circuits using the same reduction orderq = 6. ”−” means out-of-memory

error. We find that EKS is a bit faster for small circuits. But for Ckt6 and larger circuits, the

CPU times are almost the same for both methods. For the largest circuit Ckt8, EKS cannot

even finish owning to the memory constraint; while ETBR runs through all the circuits.

This clearly shows that ETBR is more memory efficient by usinga non-LU decomposition

solver than EKS.

Table 2.3 shows the CPU times if parallelism is explored in ETBT. PETBRmeans par-
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Table 2.2: CPU times (in seconds) comparison of ETBR and IEKS(q = 6)
Test Ckts ETBR (s) EKS (s)

Ckt1 0.23 0.08
Ckt2 1.28 0.89
Ckt3 1.8 1.4
Ckt4 20.4 18.8
Ckt5 28.6 25.3
Ckt6 152 151
Ckt7 162 160
Ckt8 562 −

Ckt9 (RLC) 0.20 0.11
Ckt10 (RLC) 6.5 4.4

Table 2.3: CPU times (in seconds) comparison of ETBR, parallelized ETBR and IEKS
(q = 10)

Test Ckts # Nodes # Sources ETBR PETBR EKS

Ckt11 1,750,000 25,000 232 32 355
Ckt12 3,400,000 50,000 514 68 640
Ckt13 7,000,000 100,000 1349 167 −

allelized ETBR. The results are collected on an Intel quad-core (3GHz CPU) workstation

with 16GB memory. We assume that Step 3 inAlgorithm1 can be fully parallelized. So

the total CPU time of parallelized ETBR is the max CPU time outof all the sub-processes

in parallelized Step 3 plus CPU time of serial parts in ETBR, such as FFT and SVD. For

Krylov subspace method, such as EKS/IEKS, each moment is computed based on previ-

ous one, hence it is hardly to be parallelized. We can see thatETBR is now is a order of

magnitude faster than EKS and ETBR.

2.3.2 Results on circuits with many different switching timings

In this subsection, we show the results of ETBR and EKS are also very accurate for power

grid circuits excited by input currents with many differentswitching timings (peaks).
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The used benchmark circuit has 1000 nodes and each node has a current source, which

switches at a different time (the peaks are different for each of them) as shown in Fig. 2.14.

The resistor and capacitor values of this circuit are randomly generated. R is on the order

of 10−2Ω, and C is on the order of10−15F. The capacitance is really small. Fig. 2.15 and

Fig. 2.16 show the simulation waveforms and errors on 100th and 300th nodes (q = 5). We

can see ETBR is still very accurate.

We remark that if the circuit has very small capacitances such that the whole circuit

become DC with respect to their input signal spectrum, then both ETBR and model order

reduction in general cannot be applied in this case. But thisis a very unrealistic case for

general interconnect circuits modeled as RLC/RLCK circuits.
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Figure 2.14: Transient waveforms of current sources switching at different time
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Figure 2.15: The transient waveform and errors at the 100th node (q = 5).
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Figure 2.16: The transient waveform and errors at the 300th node (q = 5).

2.4 IR drop analysis problem

The power grid networks in this charpter are modeled as RC networks with known time-

variant tap current sources as shown in 2.1, which can be obtained by gate level logic

simulations of the circuits under assumption that transistor circuit simulation and power

grid network simulation are separated. Such RC model is still valid at least for the on-chip
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level power grid networks for current technologies [47].

The on-chip power grids, one important integrity issue is excessive voltage IR drops

due to the unavoidable wire resistance (and inductive effects when inductance are large).

IR drop based power grid integrity analysis is different from the general transient analysis

in that designers are mainly interested in the voltage dropsin the tap current sources as the

tap currents are where the power grid network are connected with the logic circuits and IR

drops mainly matter from the logic circuit perspective. As aresult in our programL = B

andp = l in (2.1). This implies the passive model order reduction canbe achieved and

it will also lead to more efficient reduction-based simulation for power grid networks as

shown later.

Second, for IR drop analysis, what matter are the excessive voltage drops occurring at

a few time instances over the simulation period for each node. This is especially the case

for real industry power grid networks, where the tap currents are very disruptive in nature

as shown in Fig. 2.17 and so are the IR drops as shown in Fig. 2.18. Fig. 2.19 shows the

frequency spectrum of the current shown in Fig. 2.17, which have shapes like sinc functions

due to the impulse shapes of currents in time domain.

2.5 New reduction based IR drop analysis method

For IR drop analysis, many industry circuits exhibit rapid changing tap current waveforms

as shown in Fig. 2.17. Such impulse-like current waveforms will have the frequency spec-

trum similar to sinc function in frequency domain as shown inFig. 2.19, which has a long

tail and thus is significant across wide frequency range. This requires large number of

samplings to make ETBR accurate, which degrades its performance.
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Figure 2.17: Input current waveform at the node 10510 of Ckt4(the first one-tenth).
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Figure 2.18: Voltage waveform at the node 10510 of Ckt4 (the first one-tenth).

In this chapter, we propose to reduce the errors during the transient simulation of the

reduced models. In the new method, we monitor errors for the transient waveforms from
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Figure 2.19: Frequency waveform at the node 10510 of Ckt4 (the first one-tenth).

the reduced model and switch to the original models when errors are large. Our Numerical

examples show such large errors typically occur around the large voltage drop (spikes)

and the proposed method can accurately estimate large voltage drops while still maintain

decent speedup over traditional methods. We first present how errors are estimated in the

time domain.

2.5.1 Error estimation in the time domain

One important aspect of the proposed method is to have accurate a priori error estimation

at each time stepti.

We propose to use the residual error information of the original on the states obtained

from the reduced models. Specifically, for system (2.1), assume thathi is the time step at

time ti andvr(ti) andvr(ti−1) are the voltage vectors in the reduced systems at timeti and

ti−1 after the time discretization. Then we can define the residual error in time domain as
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R(ti) = GV vr(ti) + (C/hi)V (vr(ti) − vr(ti−1)) − Bu(ti) (2.20)

= (G + C/hi)V vr(ti) − (C/hi)V vr(ti−1) − Bu(ti) (2.21)

whereV vr(ti) is an approximation of the original statev(ti), V is the project matrix

computed from ETBR andV ∈ Rn×q, q is the reduced order. Notice that ifV vr(ti) is

exactly equal tox(ti), the residual error should be zero. As a result, the norm ofR(ti),

||R(ti)|| can serve as a good error indicator for the reduced model atti. Practically, we take

||R(ti)||∞ as the error indicator, which is the maximum absolute value of the element in

R(ti).

Notice that we are only interested in the tap current nodes and the largest IR drop must

happen in one tap current node. As a result, we do not need to check the all the nodes. The

new residual formula considering only tap current nodes becomes

Rtap(ti) = BT (G + C/hi)V vr(ti) − BT (C/hi)V vr(ti−1) − BT Bu(ti) (2.22)

AlthoughR(ti) still involves the original matricesG andC, only matrix multiplications

are involved. The time complexity of (2.21) isO(p × q), wherep is the number of nodes

andq is the size of the reduced model.

2.5.2 Effective resistance

The residual definition in (2.22) mainly give the current residual asu(ti) mainly contains

the tap current sources (with only a few voltage sources normally). However, to effectively
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control the errors, we need to know how much voltage errors such as current residuals

will cause. As a result, we need to map from the current residual to the voltage residual

(difference).

We introduce the effective resistance to perform the mapping. The effective resistance

at timeti is defined as

reff(ti) =
max(v(ti) − vdc(ti))

max(Rtap(ti))
(2.23)

wheremax means taking the maximum value of a vector. To computereff(ti), we have to

know the exact response solved from the original systemv(ti). Actually we do not need to

compute the effective response at every time step. Instead,we only compute it at the first

step and the steps where errors are large and the original solutions are solved.

Our Numerical examples show that the effective resistancesare quite consistent through

the time steps for each circuit. Fig. 2.20 show the histogramfor the effective resistance

distribution all over the time steps of Ckt4 in the experimental section. It can seen that the

effective resistance is dominated by values around12. Practically we compute the average

effective resistanceravg all over the effective resistance computed seen so far to estimate

the allowed maximum current residual.

2.5.3 Dynamic error control

To control the errors, we need to determine the maximum allowed current residualir,max.

If the max(Rtap(ti)) is larger thanir,max, the original model will be solved. Otherwise, the

reduced model is solved. Their,max will be computed as

ir,max =
vir,max × αth

ravg
(2.24)
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Figure 2.20: Effective resistance distribution of Ckt4.

wherevir,max is the largest IR drop seen so far and0 < αth < 1 is a user-defined threshold

specifying the percentage of the allow voltage difference with respect to the largest voltage

drop seen so far. Typicallyαth is around0.01 to 0.05.

At the beginning, the maximum voltage dropvir,max may be small and it can lead to the

necessary solving of the original models. To avoid this problem, the initial current residual

is determined by the largest current value,Imax, of all the current sources over all the time

steps.

ir,max = Imax × αth (2.25)

So the actual allowed current residual will take the larger one of the twoir,maxs’.
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2.5.4 The new IR drop analysis algorithm flow

In this subsection, we summarize all the steps we discuss before. We first present the

proposed ETBRIR method inAlgorithm2.

Algorithm 2: ETBR based IR drop analysis (ETBR IR)

Input: Circuit of G, C, B, u(t), number of samples:q, transient simulation step interval.
Output: Max IR drop for the given simulation interval.

1. Convert all the input signalsu(t) into u(s) using FFT.
2. Selectq frequency pointss1, s2, . . . , sq over the frequency range.
3. Computezr

k = (skC + G)−1Bu(sk).
4. Form the matrixZr = [zr

1, z
r
2 , . . . , z

r
q ].

5. Perform SVD onZr, Zr = VrSrU
T
r .

6. Ĝ = V T
r GVr,Ĉ = V T

r CVr, B̂ = V T
r B

7. Solve theith step (̂G, Ĉ, B̂, u(t)), and get̂v(t). v(t) = Vrv̂(t).
8. Substitutev(t) into (G, C), and get right hand sidew1. w = B × u.
9. Compute current residual errorR = abs(w − w1). If ||R||∞ is less than allowed residual
ir,max, then goto step 11, else goto step 10.
10. Solve theith step (G,C,B, u(t)), and getv(t). Updateravg andir,max. Goto step 11.
11. Compute max IR drop.i = i + 1. Goto step 7.
12. Finish all the time steps and return max IR drop.

In the new algorithm, ETBRIR first reduces the original circuits from step 1 to 6 using

ETBR method. Then from step 7 to step 11, it performs the simulation on the reduced

model. At the same time, it watches out for the error in each time step. If the error is larger

than the given voltage IR drop threshold, ETBRIR switches the simulation to the original

model to get accurate results and then switch back the reduced model for the next step until

we finish all the time step.
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2.6 Numerical examples of ETBRIR

The proposedETBRIR algorithm has been implemented using C++ and CSparse package

[12]. ETBR IR has been tested on a workstation with Intel quad-core 2.0GHz CPU and

8GB memory. All the benchmarks are power or ground grids fromreal industry designs.

The statistics are summarized in Table 2.4. In the table, #Nodes means the total number of

nodes in one test circuit. #VS means the total number of voltage sources and #IS means the

total number of current sources. #Time Steps means the totalnumber of simulation time

steps.

In the experimental setting, theαth is set to0.05 except for Ckt6 and Ckt7 whereαth is

set to0.01. Also the number of samplings is set to10 for all the case inETBRIR.

Table 2.4: Benchmark circuits
Test Ckts #Nodes #VS #IS #Time Steps

Ckt1 249475 1 5177 25001
Ckt2 154514 0 624 25001
Ckt3 60999 1 20901 250001
Ckt4 42222 0 10654 250001
Ckt5 49303 0 48756 79001
Ckt6 70127 1 28928 100001
Ckt7 75758 1 28048 100001

We compare ETBRIR with original ETBR and UltraSim version 7.1, which is a com-

mercial simulation tool from Cadence. UltraSim UPS (UltraSim Power network Solver)

is the power grid analysis tool in UltraSim. It is an improvedLU solver for power grid

network analysis. We consider UltraSim UPS as the standard one, due to the reason that

those real industry benchmarks are too large and too challenging for SPICE to solve it. We

first show the performance comparison results in Table 2.5.

Table 2.5 shows the performance in CPU seconds of ETBRIR, comparing with original
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Table 2.5: Performance comparison (CPU seconds) of UltraSim, ETBR and ETBRIR

Test Ckts UltraSim (s) ETBR (s) ETBR IR (s) ETBR speedup ETBR IR speedup

Ckt1 49653 236 278 210.39 178.61
Ckt2 6906 104 122 66.40 56.61
Ckt3 6130 350 1122 17.51 5.46
Ckt4 3969 234 629 16.96 6.31
Ckt5 3969 551 1182 7.20 3.34
Ckt6 6144 803 1020 7.65 6.02
Ckt7 6523 765 950 8.53 6.87
Avg. 47.81 37.60

ETBR and UltraSim. From Table 2.5, we can see ETBRIR can finish much faster than

UltraSim for Ckt1 and Ckt2. It can archive about 37X speedup in average. We notice that

ETBRIR favors circuits with less current sources as shown for Ckt1 and Ckt2 where we

see much higher speedup. This is due to the less time spent on the mapping results from

reduced models to the original one. For other cases such as Ckt5 where the #IS is almost

equal to #Nodes, ETBRIR still can finish 3x faster than UltraSim.

Table 2.6: Accuracy comparison (max IR drop values) of UltraSim, ETBR and ETBRIR

Test Ckts UltraSim (mV) ETBR (mV) ETBR IR (mV) ETBR error ETBR IR error

Ckt1 1087.855 1087.812 1087.812 0.00% 0.00%
Ckt2 1899.810 1890.496 1890.500 0.49% 0.49%
Ckt3 12.230 6.021 12.222 50.77% 0.07%
Ckt4 24.734 15.549 24.707 37.14% 0.13%
Ckt5 8.424 5.055 8.363 39.99% 0.72%
Ckt6 196.300 181.251 197.468 7.67% 0.60%
Ckt7 255.920 196.102 252.613 23.37% 1.29%
Avg. 22.78% 0.47%

Table 2.6 shows the accuracy in maximum IR drop values of ETBRIR compared with

ETBR and UltraSim. Here we consider results from UltraSim UPS as the golden and errors
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Figure 2.21: Voltage waveform at the node 17 of Ckt2.
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Figure 2.22: Input current waveform at the node 17 of Ckt2.

are computed as the relative errors to the golden results in percentage.

We can see that the max IR drop values computed by UltraSim andETBR IR are almost
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Figure 2.23: Voltage waveform at the node 10510 of Ckt4.
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Figure 2.24: Input current waveform at the node 10510 of Ckt4.

the same. The max difference is less than 2%, and the average difference is less than 1%.

Fig. 2.21, Fig. 2.23 and Fig. 2.25 show the voltage waveformson the max IR drop node
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Figure 2.25: Voltage waveform at the node 107 of Ckt5.
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Figure 2.26: Input current waveform at the node 107 of Ckt5.

of Ckt2, Ckt4 and Ckt5, respectively. The max IR drop values computed by ETBRIR are

sufficiently accurate for the practice purpose. As we can seethat the voltage drops are very
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disruptive and shape. The maximum voltage drop only happensat a number of discrete time

points over the the whole simulation period. Such disruptive waveforms comes from the

similar input current waveforms as shown in Fig. 2.22, Fig. 2.24 and Fig. 2.26, which show

the input current waveforms on the max IR drop node of Ckt2, Ckt4 and Ckt5, respectively.

For the original ETBR, the errors for some circuits are quitelarge (22.78% in average) for

the maximum voltage drops. We observe that ETBR works quite well for Ck1 and Ck2.

The reason is that Ck1 and Ck2 have input waveforms that change less rapidly compared

to other circuits as shown in Fig. 2.22, Fig. 2.24 and Fig. 2.26. We can increase the number

of samples to improve the accuracy at much more computational costs.

Further, we can implement multithreading version of ETBRIR to gain more speedup.

ETBR IR (Algorithm2) mainly consists of two parts: one-time reduction (Step 1 -Step 6)

and error-checking simulation (Step 7 - Step 11). When we look into Algorithm2, Step 2

and Step 3 can be fully parallel computed without any overlaps. Here we use multithreading

techniques as circuit matricesG, C, B can be shared between threads without using local

copies. In this way, multithreading version ETBRIR can save a lot of memory compared

to multiprocessing version.

Table 2.7 shows the performance comparison of reduction time (Step 1 - Step 6) in

ETBR IR between single core and Quad-Core. The speedup we achieveis from multi-

threading implementation of the one-time reduction in ETBRIR flow. We can see that the

reduction time in ETBRIR is able to gain around 3x speedup.

The reason why we could not achieve 4x speedup on a Quad-Core machine is that in

an algorithm there are always some parts that could not be parallel computed. Those parts

must be done sequentially. So the total speedup must be less than 4x.

For the total run time of ETBRIR, Table 2.8 shows the performance comparison be-
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Table 2.7: Performance comparison (CPU seconds) of reduction time in ETBRIR between
single core and Quad-Core

Test Ckts Single (s) Quad-Core (s) speedup

Ckt1 206 66 3.12
Ckt2 94 34 2.76
Ckt3 174 62 2.80
Ckt4 118 41 2.88
Ckt5 79 29 2.72
Ckt6 132 43 3.07
Ckt7 127 42 3.02

Avg. 2.91

tween ETBRIR and ETBRIR THREAD on our Quad-Core machine. We can see that

multithreading version of ETBRIR is able to achieve up to 2x, 35% on average speedup

compared to single process version of ETBRIR.

Table 2.8: Performance comparison (CPU seconds) between ETBR IR and
ETBR IR THREAD

Test Ckts ETBR IR (s) ETBR IR THREAD speedup

Ckt1 278 138 2.01
Ckt2 122 62 1.97
Ckt3 1122 1010 1.11
Ckt4 629 552 1.14
Ckt5 1182 1132 1.04
Ckt6 1020 931 1.10
Ckt7 950 865 1.10
Avg. 1.35

2.7 Summary

In this chapter, we have proposed a new fast simulation method ETBR for extended trun-

cated balanced realization. ETBR is based on a more accuratereduction framework: trun-

cated balanced realization, which was shown to be more accurate than Krylov subspace
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method used in EKS method. The proposed method is very amenable for threading-based

parallel computing, as the response Gramian, which is used to construct the projection

matrix, is computed in a Monte-Carlo-like sampling style and each sampling can be com-

puted in parallel. This contrasts with all the Krylov subspace based methods like the EKS

method, where moments have to be computed in a sequential order. The feature is im-

portant as the multi-core architectures and multi-core computing are becoming common-

place [30, 70]. ETBR can naturally exploit task-level threading-oriented parallelism based

on multicore architectures to significantly boost the simulation performance. ETBR also

avoids the explicit moment representation of the input signals, which have well-known nu-

merical problems in the past. Instead, it uses spectrum representation of input signals by

fast Fourier transformation. As a result, ETBR is much more flexible for different types of

input sources and can better capture the high frequency contents than EKS and this leads

to more accurate results for fast changing input signals.

To make ETBR more accuracy, we further introduce an error control mechanism into

it. The improved method is called ETBRIR. The error control mechanism is based on the

system residuals as well as the novel effective resistance concept to compute the errors in

terms of more useful voltage drop values. The on-the-fly error reduction works well for

compensating high frequency accuracy loss related to disruptive tap current waveforms in

typical industry power delivery networks. ETBRIR provides an efficient way to easily

trade errors for speedup to suit different applications. Numerical results show ETBRIR

can significantly reduce the errors of the existing ETBR method at the similar computing

cost, while it can have 10X and more speedup over the the commercial power grid simulator

in UltraSim with about 1-2% errors on a number of real industry benchmark circuits.
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Chapter 3

varETBR: Variational Extended

Truncated Balanced Realization for

On-Chip Power Grid Network Analysis

Another issue for reliable on-chip power delivery is the increasing process-induced vari-

ability [62, 46]. The process induced variations manifest themselves at different levels

(wafer level, die-level and within a die) and they are causedby different sources (litho-

graph, materials, aging etc) [10, 45]. Some of the variations are systematic, like those

caused by chemical mechanical polishing (CMP), while some are purely random, like the

doping density of impurities and edge roughness. As the technology moves to 65nm and

comes near to 45nm, variation will become more and more pronounced for both systemic

and random components.

One of the process variabilities comes from the voltage dropvariations in on-chip power

distribution networks. Voltage drop has significant impacts on the circuit timing [51]. Vari-

ability on voltage drops will also affect the statistical timing analysis. A number of research
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works have been proposed recently to address the variational voltage drop issues in the on-

chip power delivery networks under process variations. Thevoltage drop of power grid

networks subject to leakage current variations was first studied in [16, 17]. This method

assumes that the log-normal distribution of the node voltage drop is caused by log-normal

leakage current inputs, and is based on a localized Monte Carlo (sampling) method to com-

pute the variance of the node voltage drop. However, this localized sampling method is

limited to the static DC solution of power grids modeled as resistor-only networks. There-

fore, it can only compute the responses to the standby leakage currents. However, dynamic

leakage currents are becoming more significant, due to the intensive use of sleep transistors

for reducing leakage powers. In [72, 50], impulse responsesare used to compute the mean

and variances of node voltage responses caused by general current variations. But this

method requires the impulse response from all the current sources to all the nodes, which

is expensive to compute for a large network. Methods proposed in [20, 19] use orthogonal

polynomial chaos expansion of random processes to represent and solve for the stochastic

responses of linear systems. But existing approaches can only consider Gaussian distribu-

tions, and analysis times increase with the number of variables. The methods have been

improved by the StoEKS method [42, 41], where reduction is performed on the variational

circuit matrices before the simulation.

In this chapter, we present a novel scalable statistical simulation approach for large

power grid network analysis considering process variations. The new algorithm is very

scalable for large networks with a large number of random variables. Our work is in-

spired by the recent work on variational model order reduction using fast balanced trun-

cation method (called variational Poor man’s TBR method, orvarPMTBR [53]).The new

method, calledvarETBR, is based on the recently proposed extended truncated balanced
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realization (ETBR) method [33, 35]. To consider the variational parameters, we extend the

concept of response Grammian, which was used in ETBR to compute the reduction projec-

tion subspace, to the variational response Grammian. Then Monte Carlo based numerical

integration is employed to multiple-dimensional integrals.

Different from traditional reduction approaches, varETBRcalculates the variational

response Grammians, considering both system and input source variations, to generate

the projection subspace. In this way, much more efficient reduction can be performed

for interconnects with massive terminals like power grid networks [77]. Furthermore, the

new method is based on the globally more accurate balanced truncation reduction method

instead of the less accurate Krylov subspace method as in EKS/IEKS [79, 32]. After the

reduction, Monte Carlo based statistical simulation is performed on the reduced system and

the statistical responses of the original systems are obtained thereafter. The varETBR only

requires the simulation of the reduced circuit using any existing transient analysis method.

It is insensitive to the number of variables and variation ranges in terms of computing costs

and accuracy, which makes it very general and scalable. Numerical examples, on a number

of the IBM benchmark circuits [47] up to 1.6 million nodes, show that the varETBR can

be up to1900X faster than the Monte Carlo method, and is much more scalablethan the

StoEKS method [42, 41]. varETBR can solve very large power grid networks with large

numbers of random variables, large variation ranges and different variational distributions.

3.1 Variational model for power grid networks

In the presence of process variations, theG andC matrices and input currentsu(t) depend

on variational circuit parameters, such as metal wire width, length, and metal thickness on
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power grids, as well as transistor parameters, such as channel length, width, gate oxide

thickness, etc. Process-induced random variations can be systematic and random and can

be highly partially correlated [10]. For highly correlatedvariations like inter-die variations,

the worst case corner can be easily found by setting the parameters to their range limits

(mean plus3σ). The difficulty lies in the intra-die variations, where circuit parameters are

not correlated or spatially correlated. Intra-die variations also consist of local and layout

dependent deterministic components and random components. In this chapter, we focus

on the random variations, which are typically modeled as multivariate Gaussian processes

with any spatial correlation [28].

We assume that we have a number of independent (uncorrelated) transformed orthonor-

mal Gaussian random variablesξ = [ξ1, ..., ξM ], which model the channel length, the device

threshold voltage and the wire geometry variations. Therefore, the MNA equation for (2.1)

becomes

G(ξ)v(t) + C(ξ)
dv(t)

dt
= Bu(t, ξ) (3.1)

The spatial correlation in the intra-die variation can be processed by using the principal

component analysis method (or other methods like K-L transformation or principal fac-

tor analysis, etc.) to transform the correlated variables into un-correlated variables before

spectral statistical analysis [20].

Note that the input vectoru(t, ξ) = i(t, ξ) + u0(t), where the current vectori(t, ξ)

follows the log-normal distribution and has both deterministic and random components,

and the input voltage vectoru0(t) is not effected byξ. In this chapter, we assume the dy-

namic currents (power) due to circuit switching are still modeled as deterministic currents.

Therefore, we only consider the leakage variations as they are more significant owing to

their log-normal distributions. Specifically, we expand the variationalG andC around their
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mean values and keep the first order terms as in [40, 11, 53].

G(ξ) = G0 + G1ξ1 + G2ξ2 + ... + GMξM (3.2)

C(ξ) = C0 + C1ξ1 + C2ξ2 + ... + CMξM

We remark that the proposed method can be trivially extendedto the second and higher

order terms [53]. The input current variationi(t, ξ) follows the log-normal distribution as

leakage variations are dominant factors:

i(ξ) = eg(ξ), g(ξ) = µ + σξ (3.3)

Note that input current variationi(ξ) is not a function of time as we only model the static

leakage variations for the simplicity of presentation. However, the proposed approach can

be easily applied to time-variant variations with any distribution.

3.2 New variational analysis method: varETBR

In this section, we detail the new proposedvarETBRmethod. We first present the re-

cently proposed ETBR method for deterministic power grid analysis based on reduction

techniques.

3.2.1 Extended truncated balanced realization scheme

The new method is based on the recently proposed extended truncated balanced realization

method [33]. We first review this method.
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For a linear system in (2.1), we first define the frequency-domainResponse Grammian,

Xr =

∫ +∞

−∞

(jωC + G)−1Bu(jω)uT (jω)BT (jωC + G)−Hdω (3.4)

which is different from the Grammian concepts in the traditional TBR based reduction

framework. Notice that in the new Grammian definition, the input signalsu(jω) are con-

sidered. As a result,(jωC + G)−1Bu(jω) serves as the system response with respect to

the input signalu(jω) and resultingXr becomes the response Grammian.

To fast compute the response GrammianXr, we can use Monte Carlo based method

to estimate the numerical value as done in [53]. Specifically, let ωk bekth sampling point

over the frequency range. If we further define

zr
k = (jωkC + G)−1Bu(jωk) (3.5)

thenX̂ can be computed approximately by numerical quadrature methods

X̂r =
∑

k

wkz
r
kz

r
k
H = ZrW

2ZH
r (3.6)

whereZr is a matrix whose columns arezr
k andW a diagonal matrix with diagonal entries

wkk =
√

wk. wk comes from a specific quadrature method.

The projection matrix can be obtained by singular value decomposition ofZr. After

this, we can reduce the original matrices into small ones andthen perform the transient

analysis on the reduced circuit matrices. The extended TBR algorithm is summarized in

Algorithm3.

Notice that we need the frequency response caused by input signalu(jωk) in (3.5). This
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Algorithm 3: ETBR: Extended Truncated Balanced Realization method

Input: Circuit of G, C, B, u(t), number of samples:q
Output: Transient voltage waveforms

1. Convert all the input signalsu(t) into u(s) using Fast Fourier Transformation (FFT).
2. Selectq frequency pointss1, s2, . . . , sq over the frequency range
3. Computezr

k = (skC + G)−1Bu(sk)

4. Form the matrixZr = [zr
1, z

r
2 , . . . , z

r
q ]

5. Perform Singular Value Decomposition (SVD) onZr, Zr = VrSrU
T
r

6. Ĝ = V T
r GVr,Ĉ = V T

r CVr, B̂ = V T
r B

7. Perform the transient analysis on reduced system[Ĝ, Ĉ, B̂] to compute responseŝv(t)

8. Compute the final transient waveformsv(t) = Vrv̂(t)

can be obtained by fast Fourier transformation on the input signals in time domain. Using

frequency spectrum representations for the input signals is a significant improvement over

the EKS method as we avoid the explicit moment representation of the current sources,

which are not accurate for currents rich in high frequency components due to the well-

known problems in explicit moment matching methods [58]. Accuracy is also improved

owing to the use of the fast balanced truncation method for the reduction, which has global

accuracy [43, 56].

Note that we use congruence transformation for the reduction process with orthogonal

columns in the projection matrix (by using Arnoldi or Arnoldi-like process), the reduced

system must be stable. For simulation purposes, this is sufficient. If all the observable

ports are also the current source nodes, i.e.y(t) = BT v(t), wherey(t) is the voltage vector

at all observable ports, the reduced system is also passive.It was also shown in [56] that

the fast TBR method has similar time complexity to multiple-point Krylov subspace based

reduction methods. The extended TBR method also has similarcomputation costs as the

EKS method.
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3.2.2 The new variational ETBR method

We first start the new statistical interpretation of Grammian computation before introducing

the new method.

3.2.3 Statistical interpretation of Grammian

For a linear dynamic system formulated in state space equations (MNA) in (2.1), if complex

frequencyjω is a vector of random variables with uniform distribution inthe frequency

domain, then the state responsesV (jω) = (G + jωC)−1Bu(ω) become random variables

in frequency domain. Its covariance matrix can be computed as

Xr = E{V (jω)V (jω)T} =

∫ +∞

−∞

V (jω)V (jω)T dω (3.7)

whereE{x} stands for computing the mean of random variablex. Xr is defined in (3.4).

The response Grammian essentially can be viewed as the covariance matrix associated

with state responses.Xr can also be interpreted as the mean for functionP (jω) on evenly

distributed random variablesjω over [−∞, +∞] 1. ETBR method actually performs the

principal component analysis (PCA) transformation of the mentioned random process with

uniform distribution.

3.3 Computation of variational response Grammian

DefineP (jω) = V (jω)V (jω)T . Now suppose in addition to the frequency variablejω,

P (jω, ξ) is also the function of the random variableξ with probability densityf(ξ). The

1Practically, the interesting frequency range is always bounded
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newvariational response GrammianXvr can be defined as

Xvr =

∫

sξ

∫ +∞

−∞

f(ξ)P (jω, ξ)dωdξ = E{P (jω, ξ)} (3.8)

wheresξ is the domain of variableξ with a specific distribution. Hence,Xvr is essentially

the mean ofP (jω, ξ) with respect to bothjω and ξ. The concept can be extended to

more random variablesξ = [ξ1, ξ2, ..., ξn] and each variableξi adds one more dimension of

integration for the integral.

As a result, calculating the variational Grammian is equivalent to computing the multi-

dimensional integral in (3.8), which can be computed by numerical quadrature methods.

For one dimensional integration, efficient methods like Gaussian quadrature rule [74] ex-

ist. For multi-dimension integral, quadrature points are created by taking tensor products

of one-dimensional quadrature points, which, unfortunately, grow exponentially with the

number of variables (dimensions) and makes the integrationintractable for practical prob-

lems [68].

Practically, established techniques like Monte Carlo or quasi Monte Carlo are more

amenable for computing the integrals [74] as the computation costs are not dependent on

the number of variables (integral dimensions). In this chapter, we apply the standard Monte

Carlo method to compute the variational GrammianXvr. The Monte Carlo estimation

of (3.8) consists of samplingN random pointsxi ∈ S, whereS is the domain for both

frequency and other variables, from a uniform distribution, and then computing the estimate

as

X̂vr =
1

N

N
∑

i=1

P (xi) (3.9)

The Monte Carlo method has a slow convergence rate (1/
√

N) in general although it can
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be improved to (1/N) by quasi Monte Carlo methods. But as observed by Phillips [53],

the projection subspace constructed from the sampled points actually converge much faster

than the value ofX̂vr. As we are concerned with the projection subspace rather than the

actual numerical values ofXvr, we require only the drawing of a small number of samples

as shown in the experimental result. ThevarETBRalgorithm flow is shown inAlgorithm4.

Algorithm 4: varETBR: Variational extended Truncated Bala nced Realization method

Input: Circuit of G(ξ), C(ξ), B, u(t, ξ), variablesξ = [ξ1, ..., ξM ], number of samples:q
Output: The variational responsev(t)

1. Convert all the nominal input signalsu(t) into u(s) using FFT.
2. Selectq points over an M+1 dimensional space(s, ξ1, ..., ξM )

3. Computezr
k = (skC(ξk

1 , ..., ξk
M ) + G(ξk

1 , ..., ξk
M ))−1Bu(sk, ξ

k
1 , ..., ξk

M )) through Monte
Carlo.
4. Form the matrixZr = [zr

1, z
r
2 , . . . , z

r
q ]

5. Perform SVD onZr, Zr = VrSrU
T
r

6. Ĝ(ξ) = V T
r G(ξ)Vr, Ĉ((ξ)) = V T

r C(ξ)Vr, B̂ = V T
r B

7. Perform the Monte Carlo simulation on̂G(ξ)v̂(t) + Ĉ(ξ)dv̂(t)
dt = B̂u(t, ξ)

8. Obtain the variational responsev(t) = Vrv̂(t).
9. End

WhereĜ(ξ) = V T
r G(ξ)Vr andĈ((ξ)) = V T

r C(ξ)Vr stand for

Ĝ(ξ) = V T
r G0Vr + V T

r G1Vrξ1 + V T
r G2Vrξ2 + ... + V T

r GMVrξM (3.10)

Ĉ(ξ) = V T
r C0Vr + V T

r C1Vrξ1 + V T
r C2Vrξ2 + ... + V T

r CMVrξM (3.11)

The algorithm starts with the given power grid network and the number of samplings

q, which are used for building the projection subspace. Then it computes the variational

responsezr
k = (skC(ξk

1 , ..., ξ
k
M) + G(ξk

1 , ..., ξ
k
M))−1Bu(sk, ξ

k
1 , ..., ξ

k
M)) randomly. Then we

perform the SVD onZr = [zr
1, z

r
2, . . . , z

r
q ] to construct the projection matrix. After the

reduction, we perform the Monte Carlo based statistical analysis to obtain the variational
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responses fromv(t) = Vrv̂(t).

We remark that in both Algorithm 3 and Algorithm 4, we performMonte-Carlo like

random sampling to obtainq frequency sampling points over the M+1 dimensional space

for given frequency range and parameter spaces (for Algorithm 3, sampling is on the given

frequency range only). We note that the MC based sampling method is also used in the

PMTBR method [53].

Compared with existing approaches, varETBR offers severaladvantages and features.

First, varETBR only uses Monte Carlo sampling, it is easy to implement and is very gen-

eral for dealing with different variation distributions and large variation ranges. It is also

more amenable for parallel computing as each sampling in frequency domain can be done

in parallel. Second, it is vary scalable for solving large networks with large number of

variables as reduction is performed. Third, varETBR is moreaccurate over wide band fre-

quency ranges as it samples over frequency band (compared with the less accurate moment-

matching based EKS method). Last, it avoids the explicit moment representation of the

input signals, leading to more accurate results than the EKSmethod when signals are rich

in high frequency components.

3.4 Numerical examples

The proposedvarETBRalgorithm has been implemented using MATLAB and tested on an

Intel quad-core workstation with 16GB memory under Linux environment.

All the benchmarks are real PG circuits from IBM provided by [47], but the circuits

in [47] are resistor-only circuits. For transient analysis, we need to add capacitors and

transient input waveforms. As a result, we modified the benchmark circuits. First we
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Table 3.1: Power Grid (PG) benchmarks
Name #Nodes #V Sources #I Sources

ibmpg1 30638 14308 10774
ibmpg2 127238 330 37926
ibmpg3 851584 955 201054
ibmpg4 953583 962 276976
ibmpg5 1079310 539087 540800
ibmpg6 1670494 836239 761484

added one grounded capacitor on each node with a random valuein the magnitude of pF.

Second we replaced the DC current sources by a piecewise linear signal in the benchmark.

The values of these signals are also randomly generated based on their original values in the

DC benchmarks. We implemented a parser using Python to transform the SPICE format

benchmarks into MATLAB format.

The summary of our transient PG benchmarks is shown in Table 3.1. We use MNA

formulation to set up the circuit matrices. To efficiently solve PG circuits with 1.6 million

nodes in MATLAB, an external linear solver package UMFPACK [2] is used, which is

linked with Matlab using Matlab mexFunction.

We will compare varETBR with the Monte Carlo method, first in accuracy and then in

CPU times. In all the test cases, the number of samples used for forming the subspace in

varETBR are50, based on our experience. The reduced order is set top = 10, which is

sufficiently accurate in practice. Here we set the variationrange, the ratio of the maximum

variation value to the nominal value, to10% and set the number of variables to6 (2 for G,

2 for C and 2 fori). G(ξ) andC(ξ) follow Gaussian distribution.i(t, ξ), which models the

leakage variations [16], follows log-normal distribution.

varETBR is essentially a kind of reduced Monte Carlo method.It inherits the merits of

Monte Carlo methods, which are less sensitive to the number of variables and can reflect
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the real distribution very accurately for a sufficient number of samples. But the main dis-

advantage of Monte Carlo is that it is too slow to simulate on large scale circuits. varETBR

first reduces the size of circuits to a small number while maintaining sufficient accuracy.

Thus, varETBR can do Monte Carlo simulation on the reduced circuits very fast. Note that

the reduction process is done only once during the simulation process.

To verify the accuracy of our varETBR method, we show the results of simulations on

ibmpg1(100 samples) andibmpg6(10 samples). Fig. 3.1 and Fig. 3.2 show the results of

varETBR and the pure Monte Carlo method at the 1000th node

(named n12058311663 in SPICE format) ofibmpg1and at the 1000th node (named

n3 168009178400 in SPICE format) ofibmpg6, respectively. The circuit equations in

Monte Carlo are solved by MATLAB.

The absolute errors and relative errors ofibmpg1andibmpg6are shown in Fig. 3.3 and

Fig. 3.4. We can briefly see that errors are very small and our varETBR is very accurate.

Note that the errors are not only influenced by the variationsbut also depends on the re-

duced order. To increase the accuracy, we may increase the reduced order. In our tests, we

set the reduced order top = 10 for all the benchmarks.

Next we do accuracy comparison with Monte Carlo on the probability distributions

including means and variances. Fig. 3.5 shows the voltage distributions of both varETBR

and original Monte Carlo at the 1000th node ofibmpg1whent = 50ns (200 time steps

between0ns and200ns in total). We can also refer to simulation waveforms ont = 50ns

in Fig. 3.1. Note that the results do not follow Gaussian distribution asG(ξ) andC(ξ)

follow Gaussian distribution andi(t, ξ) follows log-normal distribution. From Fig. 3.5, we

can see that not only are the means and the variances of varETBR and Monte Carlo almost

the same, but so are their probability distributions.
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Figure 3.1: Transient waveform at the 1000th node (n12058311663) ofibmpg1(p = 10,
100 samples).
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Figure 3.2: Transient waveform at the 1000th node (n3168009178400) ofibmpg6(p =
10, 10 samples).
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Figure 3.3: Simulation errors ofibmpg1andibmpg6
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Figure 3.4: Relative errors ofibmpg1andibmpg6

Finally, we compare the CPU times of varETBR and the pure Monte Carlo method.

To verify the efficiency of varETBR on both CPU time and memory, we do not need to

run simulations many times for both varETBR and Monte Carlo.We will run 10 or 100

samples for each benchmark to show the efficiency of varETBR since we already showed

its accuracy. Although we only run a small number of samples,the speedup will be the

same. Table 3.2 shows the actual CPU times of both varETBR (including FFT costs) and
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Figure 3.5: Voltage distribution at the 1000th node ofibmpg1(10000 samples) whent =
50ns.

Table 3.2: CPU times (s) comparison of varETBR and Monte Carlo (q = 50, p = 10)

Test Ckts
varETBR (s) Monte Carlo

Red. (s) Sim. (s) Sim. (s)

ibmpg1 (100) 23 14 739
ibmpg1 (10000) 23 1335 70719

ibmpg2 (10) 115 1.4 536
ibmpg3 (10) 1879 1.5 4973
ibmpg4 (10) 2130 1.3 5275
ibmpg5 (10) 1439 1.3 5130
ibmpg6 (10) 1957 1.5 6774

Monte Carlo on the given set of circuits. The number of sampling points in reduction is

q = 50. The reduction order isp = 10. Table 3.3 shows the projected CPU times of

varETBR (one-time reduction plus 10000 simulations) and Monte Carlo (10000 samples).

In varETBR, circuit model becomes much smaller after reduction and we only need to

performa the reduction once. Therefore, the total time is much faster than Monte Carlo (up

to 1960X). Basically, the bigger the original circuit size is, the faster the simulation will
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Table 3.3: Projected CPU times (s) comparison of varETBR andMonte Carlo (q = 50,
p = 10, 10000 samples)

Test Ckts varETBR (s) Monte Carlo (s) Speedup

ibmpg1 1358 70719 53X
ibmpg2 1515 53600 354X
ibmpg3 3379 497300 1472X
ibmpg4 3430 527500 1538X
ibmpg5 2739 513000 1873X
ibmpg6 3457 677400 1960X

be for varETBR. Compared to the Monte-Carlo method, the reduction time is negligible

compared to the total simulation time.

Note that we run random simulation 10000 times foribmpg1, as shown in Table 3.2, to

show the efficiency of our varETBR in practice.

It can be seen that varETBR is very scalable. It is, in practice, almost independent of

the variation range and numbers of variables. One possible reason is that varETBR already

captures the most dominant subspaces even for small number of samples (50 in our case)

as explained in Subsection 3.2.2.

When we increase the variation range and the number of variables, the accuracy of

varETBR is almost unchanged. Table 3.4 and Table 3.5 shows that the mean and variance

comparison between the two methods for 10K Monte Carlo runs,where we increase the

number of variables from 6 to 15 and the variation range from 10% to 100%. The tables

show that varETBR is very insensitive to the number of variables and variation range for

a given circuitibmpg1, where simulations are run on 10000 samples for both varETBR

(q = 50, p = 10) and Monte Carlo.

The variation rangevar is the ratio of the maximum variation value to the nominal

value. So ”var = 100%” means the maximum variation value may be as large as the
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Table 3.4: Relative errors for the mean of max voltage drop ofvarETBR compared with
Monte Carlo on the 2000th node ofibmpg1(q = 50, p = 10, 10000 samples) for different
variation ranges and different numbers of variables

Variation range
#Variables var = 10% var = 30% var = 50% var = 100%

M = 6 0.16% 0.08% 0.17% 0.21%
M = 9 0.16% 0.25% 0.08% 0.23%
M = 12 0.25% 0.07% 0.07% 0.28%
M = 15 0.15% 0.06% 0.05% 0.06%

nominal value.

Table 3.5: Relative errors for the variance of max voltage drop of varETBR compared with
Monte Carlo on the 2000th node ofibmpg1(q = 50, p = 10, 10000 samples) for different
variation ranges and different numbers of variables

Variation range
#Variables var = 10% var = 30% var = 50% var = 100%

M = 6 0.27% 1.54% 1.38% 1.73%
M = 9 0.25% 0.67% 1.32% 1.27%
M = 12 0.42% 0.07% 0.68% 1.41%
M = 15 0.18% 1.11% 0.67% 2.14%

From Table 3.4 and Table 3.5, we observe that varETBR is basically insensitive to

the number of variables and the variation range. Here we use the same sampling size

(q = 50) and reduced order (p = 10) for all of the different combinations between number

of variables and variation range. And the computation cost of varETBR is the almost

same for different number of variables and different variation ranges. This actually is

consistent with the observation in PMTBR [56]. One explanation for the insensitivities

or nice feature of the new method is that the subspace obtained even with small number of

samplings contains the dominant responses Grammian subspaces for the wide parameter

and frequency ranges.

Finally, to demonstrate the efficiency of varETBR, we compare it with one recently
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proposed similar approach,StoEKSmethod, which employs Krylov subspace reduction

with orthogonal polynomials in [42] on the same suite of IBM circuit.

Table 3.6 shows the comparison results where ’-’ means out ofmemory error. StoEKS

can only finish smaller circuitsibmpg1(30k) andibmpg2(120k), while varETBR can go

through all the benchmarks (up to 1.6M nodes) easily. The CPUtime of StoEKS increases

rapidly and could not complete computations as variables count increases. For varETBR,

CPU time is independent of number of variables and only depends on the reduced order

and number of samples used in the reduced Monte Carlo simulation. Here we select re-

duced orderp = 10 and 10000 samples that are sufficient in practice to obtain the accurate

probability distribution.

Table 3.6: CPU times (s) comparison of StoEKS and varETBR (q = 50, p = 10) with
10000 samples for different numbers of variables.

M = 5 M = 7 M = 9
Test Ckts StoEKS varETBR StoEKS varETBR StoEKS varETBR

ibmpg1 165 1315 572 1338 3748 1326
ibmpg2 1458 1387 − 1351 − 1377

3.5 Summary

In this chapter, we have proposed a novel scalable statistical simulation approach for large

power grid network analysis considering process variations. The new algorithm is very

scalable for large networks with a large number of random variables. The new method,

called varETBR, is based on the previously proposed extended truncated balanced realiza-

tion (ETBR) method. To consider the variational parameters, we extend the concept of re-

sponse Grammian, which was used in ETBR to compute the reduction projection subspace,
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to the variational response Grammian. Then Monte Carlo based numerical integration is

employed to multiple-dimensional integrals. varETBR onlyrequires the simulation of the

reduced circuit using any existing transient analysis method. It is insensitive to the number

of variables and variation ranges in terms of computing costs and accuracy, which makes

it very general and scalable. Numerical examples, on a number of the IBM benchmark cir-

cuits [47] up to 1.6 million nodes, show that the varETBR can be up to1900X faster than

the Monte Carlo method, and is much more scalable than the StoEKS method [42, 41].

varETBR can solve very large power grid networks with large numbers of random vari-

ables, large variation ranges and different variational distributions.
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Chapter 4

hiePrimor:Hierarchical Krylov

Subspace Based Reduction of Large

Interconnects

Compact modeling of passive RLC interconnect networks has been a research-intensive

area in the past decade owing to increasing delays and signalintegrity effects and increas-

ing design complexity in today’s nanometer VLSI designs. Reducing the parasitic inter-

connect circuits by approximate compact models can significantly speedup the simulation

and verification process in nanometer VLSI designs. As the technology moves to 45nm,

the massive extracted post-layout circuits will make the reduction imperative before any

meaningful simulations and verifications. Hence the reduction algorithm must be able to

scale to attack very large circuit sizes in the current and future technologies.

Reduction algorithms based on subspace projection have been proved to be very effec-

tive in the past [14, 69, 29, 49, 77]. Those methods typicallyproject the original circuit

into the dimensioned-reduced Krylov subspace to reduce themodel order. Krylov sub-
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space methods can lead to a localized moment matching link between the original model

and the reduced one. It was introduced to the interconnect reduction by the Pade via Lanc-

zos (PVL) [14] method, as it can mitigate the numerical problems in the explicit moment

matching methods like Asymptotic Waveform Evaluation (AWE) algorithm [57]. There-

after, some similar approaches such as Arnoldi Transformation method [69] was also pro-

posed. Later, the congruence transformation method [29] and PRIMA [49] were further

proposed, which produce passive models. At the same time, many other approaches also

have been proposed, such as balanced truncation based reduction methods [54, 80, 82],

local node reduction methods [65, 66] and general node reduction method [60, 76]. But

Krylov subspace based-reduction method remains a viable approach for many practical

interconnect reduction problems owning to its high efficiency. Existing projection-based

reduction methods, however, lack a general way to exploit the parallel computing capabili-

ties, which become more popular with emerging multi-core computing architectures.

But in this chapter, we investigate the parallelism within the reduction operations in one

expansion point for one large interconnect circuit. Grimmehas explored the parallel com-

putation for multi-point Krylov based reduction where eachKrylov subspace from each

expansion point can be computed in parallel [21]. Hierarchical reduction of interconnects

have also been studied from different perspectives in the past. In HiPRIME algorithm [32],

hierarchical reduction has been extended in the extended Krylov subspace method (EKS)

to compute the responses of on-chip power grid networks. TheHiPRIME method reduces

both system and input signals at the same time in a hierarchical way, but it does not produce

a reduced model for general use. In the RecMOR method [15], Feldmann and Liu applied

the combined terminal and model order reduction on the subcircuits based on the obser-

vation that partitioning may lead to many circuits with manynew terminals, which will
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affect the efficiency for projection-based reduction methods. However, terminal reduction

in general still remains a difficult problem and may not be effective for many practical

problems [54, 39].

In this chapter, we propose a new hierarchical Krylov subspace based reduction method.

The new method combines the partitioning strategy and the Krylov subspace method to

speed up the reduction process. It is more suitable for reducing many large global intercon-

nects like coupled bus, transmission lines and large clock nets where the number of ports

are general not significant. It is a very general hierarchical model order reduction technique

and it works for general parasitic interconnect circuits modeled as RLC circuits.

The new method, calledhiePrimor, first partitions a large RLC circuit into two or more

levels and then perform the projection-based reduction on subcircuits in a bottom-up way.

Our contributions are as follows: (1) theoretically we showthat if kth order block moment

order is preserved in all the reduction processes for all subcircuits and top level circuit,

first k block moments will be preserved in the final reduced models; (2) we prove that the

new hierarchical reduction method also preserves the passivity of the reduced models for

interconnects at all the hierarchical levels; (3) we show that the proposed method not only

can exploit parallel computing to speed up the reduction process, but also can significantly

improve the analysis capacity by partitioning strategy; (4) we study the impacts of parti-

tioning on the reduction efficiency and show that partitioning is critical for the hierarchical

reduction process and min-span or min-cut objective shouldbe attained for best reduction

performance. We apply the existing hMETIS partitioning tools [1] to perform the min-cut

partitioning.

The proposed method, for the first time, exploits the partitioning-based reduction strat-

egy, which enable the parallel computing and more scalability for handle very large para-
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sitic interconnect circuits. Numerical examples show thatthe proposed method can lead to

significant speedup over the flat projection based method like PRIMA and order of mag-

nitudes speedup over PRIMA if parallel computing is used. Interconnect circuits with

millions of nodes can be analyzed by hiePrimor in a desktop PCusing Matlab in a few

minutes.

4.1 Review of subspace projection based MOR methods

In this section, we review the Krylov subspace projection-based methods, which are also

used for the new hierarchical projection MOR method.

Without loss of generality, a linear m-port RLC circuit can be expressed as

Cẋn = −Gxn + Bum

im = LT xn

(4.1)

wherexn is the vector of state variables andn is the number of state variables,m is the

number of independence sources specified as ports.C, G are storage element and conduc-

tance matrices respectively.B andL are position matrices for input the output ports.

DefineA = −G−1C, A ∈ ℜn×n andR = G−1B, R = [r0, r1, ..., rm], R ∈ ℜn×m.

The transfer function matrix after Laplace transformationis H(s) = LT (G + sC)−1B =

LT (In − sA)−1R whereIn is then × n identity matrix. The block moments ofH(s) are

defined as the coefficients of Taylor expansion ofH(s) arounds = 0:

H(s) = M0 + M1s + M2s
2 + ... (4.2)

whereMi ∈ ℜm×m and can be computed asMi = LT AiR. In the sequel, we usemi to
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denote the terminal count for subcircuiti.

The idea of model order reduction is to find a compact system ofa much smaller size

than the original system. The Krylov subspace based method accomplishes this by pro-

jecting the original system on a special subspace which spans the same space as the block

moments of the original system. Specifically, the block Krylov subspace is defined as

Kr(A, R, q) = colsp[R, AR, A2R, ..., Ak−1R,

Akr0, A
kr1, ..., A

krl] (4.3)

k = ⌊q/m⌋, l = q − km. (4.4)

For simplicity of expression, we assumeq = m × k in the following andk is the order of

block moments used in the Krylov subspace. i.e.k order block moments will be matched

if Krylov subspaceKr(A, R, mk) is used. Then, projection MOR method tries to find

orthogonal matrixX ∈ ℜn×q such thatcolsp(X) = Kr(A, R, q). With

C̃ = XT CX G̃ = XT GX

B̃ = XT B L̃ = XT L

the reduced system of sizeq is found as

C̃ ˙̃xn = −G̃x̃n + B̃um

im = L̃T x̃n

(4.5)

The reduced transfer function becomeỸ (s) = L̃T (G̃ + sC̃)−1B̃. An important result

for projection-based MOR methods is that the reduced systemapproximates the original
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systems in terms of moment matching: ifKr(A, R, q) ⊆ span(X), then the reduced trans-

fer functionỸ (s) and the original transfer functionH(s) matches the firstk block moments

wherek = q/m. Also whenL = B, the reduction process preserves passivity.

4.2 Hierarchical projection MOR method: hiePrimor

4.2.1 A walkthrough example

We introduce our method by using an illustrative RC example circuit shown in Fig. 4.1.

This circuit has been partitioned into three parts, the two subcircuitsI andII and the top

part, which connects the two subcircuits. The two subcircuits are connected via the top

level circuit only.

+

−

+

−u1
u2

I IItop

iu1

iu2

G1 G2 G3 G4

C1 C2
C3

C4

v1 v2 v3 v4v5

Figure 4.1: A partitioned RC circuit.

As a result, we have the partitioned MNA equations as shown in(4.6), where we par-

tition the matrix into three parts and the input sources intotwo parts as input sources only

appear in partitionI and the top-level partition.
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(4.6)

In general, we can write aw-way partitioned RLC circuit into the following general
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form:
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(4.7)

where thexi is the internal variable vector for partitioni andui is the external input vector

for partitioni. xt andut are the variables and external input vectors of the top-level circuit.

If there are no external inputs for partitioni, then the corresponding columns in the position

matrix can be removed as shown in (4.6).

4.2.2 The hiePrimor algorithm

For a general RLC circuit, we can rewrite (4.7) as

Gx + Cẋ = Bu (4.8)

The idea of hierarchical projection-based reduction is to first perform the reduction

using projection MOR method for each subcircuit assuming that the subcircuits are dis-

connected from the rest of the circuit. After the subcircuits are reduced, we perform the

reduction on their parent circuits of the subcircuits untilwe reach to the top-level circuit.

The benefit of doing this is that we can reduce the computationcomplexity by performing

73



the reduction on the subcircuits and intermediate circuitsand parallelism can be exploited

to speed up the reduction process as subcircuits in one hierarchical level can be reduced

independently.

To illustrate this idea, we still use the example in Fig. 4.1.To reduce the subcircuitI,

we have the following subcircuit matrix:
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(4.9)

wherei2 is the current source attached to node2, which becomes a terminal node now.

The added current source is just for reduction propose. Notethat the position matrixB1 =

[0 0 1]T for this subcircuit has been changed to

B′

1 =
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0 0
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1 0















(4.10)

This modification reflects the fact that the subcircuitI now has two terminal nodes: node

1 and node2. Notice that all the internal nodes, which are inside a subcircuit and are

connected to boundary node at the upper level via a device branch, become the terminal

nodes of the subcircuits for the reduction propose (as the case of node2). If a subcircuit

does not have any external input (such as the subcircuitII), all the nodes incident on

the boundary nodes will become the terminal nodes for the reduction of the subcircuit.

As projection based-MOR method becomes less effective for increasing terminal counts,

we should try to minimize the terminal counts of subcircuit.Therefore, the hierarchical
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reduction requires the min-span1 partitioning of the circuit. In this way, we can achieve

better reduction performance. We will discuss the partitioning issue in the section 4.4.

After the projection matrixV1 is computed using (4.9), whereV1 spans thekth order

block Krylov subspace. i.e.V1 ⊆ Kr(G−1
1 B1, G

−1
1 C1, km1), wherem1 is the terminal

count of subcircuit1, we can perform the reduction. But now we need to look at the

subcircuit in the context of the whole circuit. From (4.7), for the subcircuit1, we have

G1x1 + C1ẋ1 + GT
1txt = B1u1 (4.11)

After the reduction, we have

G̃1z1 + C̃1ż1 + G̃T
1txt = B̃1u1 (4.12)

wherex = V1z, G̃1 = V T
1 G1V1, C̃1 = V T

1 C1V1, B̃1 = V T
1 B1, G̃1t = V1G1t. We remark

that we use originalB1 here instead ofB′

1. Since thecolsp(B1) ⊆ colsp(B′

1), we can use

subspace defined inV1 to perform the reduction.

We repeat the the reduction process on all the subcircuits asmentioned above until we

1spanof cut net is the number of internal nodes that a cut net connects from all the partitions.
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end up with the following order reduced system at the top level:
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(4.13)

In this chapter, we only present the results for two level reduction as shown in (4.7). But

the proposed method can be trivially extended to more hierarchical levels. We can also

rewrite (4.13) as

Grx̃r + Cr
˙̃xr = Brur (4.14)

With (4.13), we can continue the reduction by performing thereduction at the top-level

circuit using the projection-based reduction method again. Finally, we have the reduced

model:

G̃x̃ + C̃ ˙̃x = B̃u (4.15)

whereG̃ = V T
t GrVt, C̃ = V T

t CrVt, B̃ = V T
t Br. Gr andCr andBr are the circuit matrices

in (4.14) andVt ⊆ Kr(G−1
r Br, G

−1
R Cr, qt), whereqt = kmt andmt is the terminal count

at the top-level circuit.
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4.2.3 The algorithm flow for hiePrimor

In this subsection, we summarize the algorithm flow of the hiePrimor method shown in

Fig. 4.2.3.

Algorithm 5: Hierarchical Krylov Subspace Projection-based Model Order Reduction
Method (hiePrimor)

Input: Circuit matricesG, C, B, reduced orderq, partition numberw
Output: Reduced matriceŝG, Ĉ, B̂

1. Partition original large circuit intow small subcircuits using hMETIS.
2. Form original circuit matrices as in (4.7).
3. For each subcircuiti, find sub-level projection matrixVi using Krylov subspace method.
4. Reduce subcircuit matrices
G̃i = V T

i GiVi, C̃i = V T
i CiVi, B̃i = V T

i Bi, G̃it = ViGit.
5. Form top-level circuit matrices as in (4.13).
6. Compute top-level projection matrixVt using Krylov subspace method.
7. Ĝ = V T

t G̃Vt,Ĉ = V T
t C̃Vt, B̂ = V T

t B̃

8. End

4.3 Moment matching connection

In this section, we analyze the moment matching property of the proposed method. We

show that if thekth order block moment is preserved/matched in the reductions for all the

subcircuits and for the top-level circuit as well, the final reduced model preserves the first

k block moments of the original system.

Assume that we have an interconnected circuit system with the transfer functionH(s),

which consists ofn subcircuits that connects together. Assume that we denote subcircuiti

as(Gi, Ci, Bi) and we perform the projection based model order reduction onthe subcircuit
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i only

(G̃i, C̃i, B̃i) = (V T
i GiVi, V

T
i CiVi, V

T
i Bi) (4.16)

and keep all the other system unchanged. We generate the projection matrixVi such that

Vi ⊆ Kr(Ai, Ri, qi) (4.17)

whereAi = −G−1
i Ci, Ri = G−1

i Bi andqi = kmi. Then we have the following result:

Lemma 1 The resulting interconnected circuit system transferH̄1(s), which consists of the

order reduced subcircuit(G̃i, C̃i, B̃i) with rest of subcircuits unchanged, matches the first

k block moments ofH(s).

The detailed proof of this lemma can be found at [78]. Here we give an intuitive example

to explain the Lemma. For instance, we have two connected subsystemsA andB with two

transfer functionHA(s) andHB(s), where the outputs ofA drive the inputs ofB. So the

whole system transfer function isH(s) = HA(s)HB(s). If we replaceHA(s) with ĤA(s),

which is accurate toqth order ofHA(s). It can be easily see that̂H(s) = ĤA(s)HB(s)

will be accurate to theqth order ofH(s) if we write bothĤA(s) andHB(s) in the moment

(Taylor’s series) form.

For the interconnected circuit systemH(s), all of its subcircuits are reduced by the

projection based MOR method such that

(G̃i, C̃i, B̃i) = (V T
i GiVi, V

T
i CiVi, V

T
i Bi), i = 1, ..., w (4.18)

such thatVi ⊆ Kr(Ai, Ri, qi), qi = kmi for all the subcircuits. Based on Lemma 1, we can

easily obtain the following result:
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Corollary 1 The resulting interconnected circuit system transferH̄2(s), which consists of

the order reduced subcircuit,(G̃i, C̃i, B̃i), i = 1, ..., w, for all subcircuits, matches the first

q block moments ofH(s).

The proof of Corollary 1 can be obtained when we apply Lemma 1w times to the intercon-

nected circuit systemH(s) such that we reduce one subcircuit at a time.

Now we are ready to present the main result regarding the proposed hierarchical model

order reduction method, hiePrimor.

Theorem 1 Given a partitioned RLC circuit defined in(4.7)with transfer functionH(s), if

we perform the projection based reduction on all the subcircuits and then on the top-level

circuit such thatkth order block moment is preserved in the all reduction processes, the

transfer functionH̃(s) of the reduced system in(4.15)will match the firstk block moments

of H(s).

The proof of the theory is obvious in light of Corollary 1 and the fact the top-level reduction

on (4.13) also preserves thekth order block moment. Theorem 1 also indicates that for the

hierarchical reduction process, we should always use the same block moment order for

all the reduction processes. For the same reduction orderk, different subcircuit may have

different reduced model sizes as the size of the reduced model is kmi, wheremi is the

terminal count of the subcircuiti.

In summary, the proposed hierarchical projection based reduction method, hiePrimor,

will have the same accuracy as the flat projection based method if both methods use the

same block moment order.
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4.4 Circuit partitioning

Partitioning plays an important rule for the performance ofthe proposed reduction method.

The reason is that the nodes that are inside a subcircuit and are incident on the boundary

nodes at the top level will become the terminal nodes for subcircuits. The sizes of the

reduced models grow linearly with the terminal number of theoriginal circuits in the pro-

jection based reduction framework as the size of the reducedmodel iskmi, wherek is the

block moment order andmi is terminal count for subcircuiti. To have smaller sizes of the

reduced matrices (thus smaller nonzero elements in the matrices), which will be stamped

into the higher-level circuit matrix for further reduction, we need to reduce terminal count

of subcircuits as much as possible. This calls for the minimum-span or minimum-cut par-

titioning to achieve this.

Also the size of subcircuits cannot be too small compared with the number of terminals

to have meaningful reduction on subcircuits. As a result, the proposed method is more

suitable for very large RLC networks like bus, coupled transmission lines and clock nets

with loosely coupled subcircuits.

After partitioning, the subcircuit terminals generated bypartitioning will be driven by

current sources in general, which requires the subcircuit has DC path for all the nodes. If

this is not the case, we have to introduce voltage sources at the terminal for the reduction

purpose (to make the subcircuitGi non-singular). This will add more interface terminals to

the original subcircuits. As a result, we should minimize the capacitive cut, which can lead

to non-DC path nodes. But the proposed method does not have any restrictions on types of

boundary nodes.

To meet the partitioning requirement, we apply hMETIS partition tool suite [1], which

employs the hierarchical partitioning strategy and is the best min-cut partitioning tools
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available. Specifically, we abstract a circuit netlist intoa hypergraph, where components

(such as resistors, capacitors, inductors, etc.) are considered as vertices in abstracted hy-

pergraph, and nodes in circuit netlist are considered as hyperedges. Then we use hMETIS

partitioning suites of the hypergraph partitioning to partition the original large circuit into

several small subcircuits.

hMETIS can balance the sizes of each partition automatically without any change to

its cost function. In the experiments, we set 2-level partitioning: one top-level circuit and

many second-level subcircuits. hMETIS tool suite is very efficient for partitioning very

large networks. With hMETIS, the hiePrimor is able to reducevery large interconnect

circuits with millions of nodes in a PC using Matlab.

For very densely coupled circuits, the proposed method can still be applied. First, for

the capacitively coupled circuits, it is well known that thecoupling is more localized, which

means the coupling can be further reduced without loss of much accuracy. For inductive

coupling, which has long-range effects owning to partial inductance formation [61], many

methods have been proposed to reduce the coupling using various window-based truncation

techniques [31, 13, 84] before the hierarchical reduction.

4.5 Numerical examples

In this section, we report the experiment results of hiePrimor on some interconnect cir-

cuits. We compare it with PRIMA [49] with and without parallel computing settings. We

implement the hiePrimor method and PRIMA using Matlab 7.0 and Python. Sparse matrix

structures are used in Matlab. Python is used for a parser converting Spice format netlist

into Matlab format.
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Our test circuits are created based on a bus circuit structure, where each circuit has

capacitively-coupled bus lines with different length and each of them are modeled as RC

ladder-like circuits. To partition the testing circuits inSPICE format, we transform the

netlists into the ones that hMETIS can read and then partition the circuits into several small

spice-formatted subcircuits of equal size with the min-cutobjective.

We first show that hiePrimor and PRIMA give almost the same accuracy for the given

block moment orderk (our claim in Section 4.3). We set the reduction orderq asq = n×k,

wheren is the number of ports. Fig. 4.2 (Ckt 1, 25K) and Fig. 4.4 (Ckt 7, 1M) show

the frequency responses of Y(1,1) and Y(1,2) from the reduced models by hiePrimor and

PRIMA. Fig. 4.3 and Fig. 4.5 show the differences between hiePrimor and PRIMA. In

all the test circuits, the accuracy of PRIMA and the hiePrimor are the almost the same

numerically, although their results may be a little bit different from the exact one.

10
6

10
7

10
8

10
9

10
−2

10
−1

10
0

10
1

Frequency

M
ag

ni
tu

de

Admittance Response Y(1,1)

Exact response
PRIMA
HiePrimor

10
6

10
7

10
8

10
9

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency

M
ag

ni
tu

de

Admittance Response Y(1,2)

Exact response
PRIMA
HiePrimor

Figure 4.2: Accuracy comparison of PRIMA and hiePrimor in Ckt1 whenk = 4.

If we increase the value ofk, we can obtain the more accurate models. Fig. 4.6 and

Fig. 4.7 show the comparison results forCkt 1andCkt 7 for k = 8. We can see the results

are much better than the previous cases whenk = 4. Notice that the results from hiePrimor

and PRIMA are still almost the same again and their sizes after reduction are the same too.
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Figure 4.3: Difference between PRIMA and hiePrimor in Ckt1 whenk = 4.
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Figure 4.4: Accuracy comparison of PRIMA and hiePrimor in Ckt7 whenk = 4.

Next, we compare hiePrimor with PRIMA in a single CPU settingin terms of reduction

times. Table 4.1 shows the circuit statistics and comparison results of PRIMA and hiePri-

mor. #Nodeis the number of nodes,#Subis the number of subcircuits,#Portsis number of

ports (terminals) of the circuit and ’-’ means out of memory or could not end in a reasonable

time. Note thatCkt1 - Ckt8are run on an Intel Xeon 3.0GHz dual CPU workstation with

2GB memory;Ckt9 andCkt10are run on an workstation with an Intel Xeon Quad-Core

CPU (3.0GHz and 16GB memory).
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Figure 4.5: Difference between PRIMA and hiePrimor in Ckt7 whenk = 4.
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Figure 4.6: Accuracy comparison of PRIMA and hiePrimor in Ckt1 whenk = 8.

We set the reduction (block moment) order to4 (k = 4) in all the test circuits so

that each circuit has the same reduced order (size) after reduction. It may be not accurate

enough fork = 4 in all the circuits. But given that fact that hiePrimor givesalmost the

same accuracy as PRIMA,k = 4 is sufficient for us to compare the reduction CPU times

for them. The last column is the speedup of hiePrimor over PRIMA. We can see that

hiePrimor can roughly run5× faster than PRIMA for large scale circuits. It also shows that

the hiePrimor has a better performance when the size of the circuits grow larger. Note that
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Figure 4.7: Accuracy comparison of PRIMA and hiePrimor in Ckt7 whenk = 8.

Table 4.1: Reduction time comparison of PRIMA and hiePrimor(k = 4, q = n × k).
Test Ckts #Nodes w = #Parts #Ports PRIMA (s) hiePrimor (s) Speedup

Ckt1 25K 2 8 5 4 1.25
Ckt2 50K 4 16 16 9 1.78
Ckt3 100K 8 16 32 13 2.46
Ckt4 200K 8 16 69 27 2.56
Ckt5 500K 16 24 248 60 4.13
Ckt6 800K 16 24 401 99 4.05
Ckt7 1M 16 32 863 154 5.60
Ckt8 1.5M 16 20 − 176 −
Ckt9 2M 32 32 − 136 −
Ckt10 4M 32 64 − 305 −

such a speedup is gained without any accuracy loss.

Typically, the more partition number we have, the more speedup is attained. But we also

need to consider the cost of combining all the lower level subcircuits into higher level. Also

as we get more partitions, the ratio of the terminal node count and the internal node count

may get smaller, which may hurt the reduction efficiency as the subcircuits may not be

effectively reduced. So number of partitions need to be properly selected practically based

on the actual situation. Table 4.2 shows the relationship between the partition number and
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the reduction time.

Another observation is that hiePrimor becomes more efficient than PRIMA when the

number of ports increases. We use different number of ports for the same circuit (Ckt7)

using both hiePrimor and PRIMA with the same reduction order. With larger number of

ports, hiePimor become faster than PRIMA. Table 4.3 shows the reduction time compar-

ison of PRIMA and hiePrimor for the same large circuit (Ckt7) with different number of

ports. One reason is that ports are dispersed into subcircuits after partitioning and model

order at the top level is already much smaller than the original. While for PRIMA, its

time complexity is highly related to the number of ports given the same number of block

momentsk.

Table 4.2: Reduction time for different numbers of partitions (k = 4, q = n × k).
Test Ckts w = #Parts = 2 #Parts = 4 #Parts = 8 #Parts = 16

Ckt5 116 100 71 60
Ckt6 374 251 128 99
Ckt7 383 298 204 154
Ckt8 675 394 257 176
Ckt9 363 257 200 164
Ckt10 − 886 582 405

Table 4.3: Reduction time for different numbers of ports (Ckt7, k = 4, q = n × k).
#Ports PRIMA hiePrimor Speedup

8 189 56 3.38
16 339 96 3.53
32 863 154 5.60

Further, we compare the two methods in the artificial parallel computing settings. It

is relatively easy to parallelize our method because each subcircuit can be reduced inde-

pendently. In parallel computing setting, the running timeof hiePrimor is only the sum
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Table 4.4: Reduction time comparison of PRIMA and hiePrimorwith parallel computing
settings (k = 4, q = n × k).

Test Ckts Max Sub (s) Top (s) Sum (s) Speedup

Ckt1 2 0 2 2.50
Ckt2 3 1 4 4.00
Ckt3 3 1 4 8.00
Ckt4 5 1 6 11.50
Ckt5 6 1 7 35.43
Ckt6 10 1 11 36.46
Ckt7 17 3 20 43.15
Ckt8 14 1 15 −
Ckt9 8 1 9 −
Ckt10 19 2 21 −

of the maximum subcircuit level reduction time among all thesubcircuits and the top-level

reduction time (for two level reduction). The results in Table 4.4 show that we can have one

order of magnitude or more speedup if parallel computing is applied. With more levels, it

is reasonable to expect more speedup as more parallelism canbe exploited.

4.6 Summary

In this chapter, we have proposed a new hierarchical Krylov subspace based reduction

method called hiePrimor. hiePrimor combines the partitioning strategy and the Krylov

subspace method to speed up the reduction process. It is moresuitable for reducing many

large global interconnects like coupled bus, transmissionlines and large clock nets where

the number of ports are general not significant. It is a very general hierarchical model

order reduction technique and it works for general parasitic interconnect circuits modeled

as RLC circuits. Numerical examples show that the proposed method can lead to signifi-

cant speedup over the flat projection based method like PRIMAand order of magnitudes
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speedup over PRIMA if parallel computing is used.
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Chapter 5

ThermPOF: Architecture-level Thermal

Characterization For Multi-Core

Microprocessors

In this chapter, we propose a new thermal behavioral modeling approach for fast tempera-

ture estimation at the architecture level for multi-core microprocessors. The new approach,

calledThermPOF, builds the transfer function matrix from the measured or simulated ther-

mal and power information. It first builds behavioral thermal models using the generalized

pencil-of-function (GPOF) method [24, 25, 64], which was developed in the communica-

tion community to build the rational modeling from the givendata of real-time and electro-

magnetism systems. However, the direct use of GPOF does not work for thermal systems.

Based on the characteristics of transient chip-level temperature behaviors, we make two

new improvements over the traditional GPOF: First we apply alogarithmic-scale sampling

scheme instead of the traditional linear sampling to bettercapture the rapid temperatures

change over the long period. Second, we modify the extractedthermal impulse response
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such that the extracted poles from GPOF are guaranteed to be stable without accuracy

loss. Finally we further reduce the size of thermal models bya Krylov subspace reduction

method to further speedup the simulation process [77]. Numerical examples on a practical

quad-core microprocessor show that the generated thermal behavioral models can be built

very efficiently and the resulting model match the given temperature well.

The proposed method provides a different perspective for thermal modeling. Existing

approach like HotSpot [26, 71] can be viewed as a bottom-up approach by considering the

internal structures of the architectures of a processor. While our approach is a top-down

approach as we only consider the port behaviors of the processors at the architecture level.

The two methods in a sense are complementary in their solutions.

The advantage of the proposed method is that it is very simplyand cheap to build the

models as we only need the measured or computed thermal and power information, we do

not need to know the internal structure of the microprocessors at a architecture or other

more detailed levels. Its accuracy with respect to the hardware is automatically achieved

during the modeling process. Also, the proposed method can be easily extended to consider

variable parameters like thermal conductivities, measuring points (heat sink, heat spreader)

etc, to build the parameterized thermal models.

In addition to the thermal modeling of the multi-core processor, the proposed method

can also be used for many other thermal related design processes. In mobile platforms, it

is important to understand the thermal interactions between different power components as

they usually share the same cooling solution and thermal envelope. The thermal behavioral

modeling will be quite useful to understand these influencesby analyzing a variety of power

scenarios. This will be almost impossible using experiments or FEM-based methods. Also

as systems become smaller and new boundary conditions emerge (e.g. ergonomic lim-
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its), the thermal behavioral models will be very useful to better understand the trade-offs

between different design conditions.

5.1 Architecture-level thermal modeling problem

We first present the new thermal behavioral modeling problem. Basically we want to build

the behavioral model, which is excited by the power input andproduces the temperature

outputs for the specific locations at the architecture levelof the multi-core microprocessor.

Our behavioral models are created and calibrated with the measured or simulated tempera-

ture and power information from the chips.

Our models are mainly built in the mathematic level and we model the power thermal

relationships without regarding many other physical properties (like real poles the system

should have) of the multi-core systems. But as far as simulation and verification are con-

cerned, our models can work with any thermal simulators for thermal-related synthesis and

optimization. Another benefit of such behavioral thermal models is that it can easily built

for many different architectures with different thermal conditions and thermal parameters

such as thermal conductivity, thermal cooling configuration, measuring locations (in chip

dies, in heat spreader, in heat sinks and other locations), etc. It also has a clear path to build

parameterized thermal models with variable parameters.

We remark that the proposed thermal modeling method is a general black-box model-

ing approach and can be easily applied to thermal modeling ofmicroprocessors and other

platform systems at different levels and granularities.

Since the given temperature data are transient and changingover time, we need to

capture the transient behavior of the temperature, which can be attained by building an
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impulse response function between temperature and power inthe time domain.

In this chapter, we study a quad-core microprocessor architecture from Intel Corpo-

ration to validate the new thermal modeling method. The architecture of the multi-core

microprocessor is shown in Fig. 5.1, where there are four CPUcores (die 0 to die 3) and

one shared cache core (die 4). TIM here stands for thermal interface material. The tempera-

ture of each die is reported on the die bottom face in the center of each die. We can abstract

this quad-core CPU into a linear system with 5 inputs and 5 outputs as shown in Fig. 5.2

(actually the inputpi and output portti will be shared as shown later). The inputs are the

power traces of all the cores, and the outputs are the temperatures of them, respectively.
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Such a system can be described by the impulse-response matrix-valued functionH

H(t) =


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(5.1)

wherehij is the impulse response function for output porti due to input portj. So totally

we have 25 transfer functions.

Given a power input vector for each coreu(t), the transient temperature vector (at all

the ports) can be then computed

y(t) =

∫ t

0

H(t− τ)u(τ)dτ (5.2)

Equation (5.2) can be further written in frequency domain asin (5.3).

y(s) = H(s)u(s) (5.3)

wherey(s), u(s) andH(s) are the Laplace transform ofy(t), u(t) andH(t), respectively.

H(s) is called the transfer-function matrix of the system where eachhij(s) can be repre-

sented as the partial fraction form or the pole-residue form(5.4) as shown below:

hij(s) =

n
∑

k=1

rk

s − pk
(5.4)

wherehij(s) is the transfer function between thejth input terminal and theith output
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terminal;pk andrk are thekth pole and residue respectively. Once transfer functions are

computed, the transient responses can be easily computed.

We remark that the leakage current depends on the temperature exponentially. High

temperature will leads to large leakages current. Such power-temperature dependency

should be addressed in the power modeling for better accuracy. But this chapter is mainly

focusing the thermal circuit modelings.

The remaining important problem is to find the poles and residues for each transfer

functionhij from the given thermal and power information. It turns out that the generalized

pencil-of-function can be used for this propose. But we cannot simply apply GPOF method

as we show in the Section 5.3. In the following section, we will briefly review the GPOF

method before we present our improvements and the new method.

5.2 Review of generalized pencil-of-function method

Generalized pencil-of-function (GPOF) method can be used to extract the poles and residues

from the transient response of a real-time dynamic (electrical, electromagnetic) systems

[24, 25, 64]. The GPOF method essentially can be viewed as a special general eigen-value

decomposition method, which finds the eigen-values of the sampled two non-square matri-

ces from the output of the linear dynamic systems (see (5.16)). The eigen-values actually

are the poles of the systems.

Specifically, GPOF can work for such a system that can be expressed in sum of complex

exponentials:

yk =
M

∑

i=1

rie
(pi∆tk) (5.5)

where N is the number of sampled points, k = 0, 1, ..., N-1,ri is the complex residues,pi
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are the complex poles, and∆t is the sampling interval.M is the number of poles used to

build the transfer function. Let’s define

zi = e(pi∆tk) (5.6)

which becomes a pole inZ-plane. For real valueyk, bothri andpi should be in complex

conjugate pairs. Let’s define the new vector of node temperatures (in our problem) as

y0,y1, ...,yL where,

yi = [yi, yi+1, ..., yi+N−L−1]
T (5.7)

whereL can be viewed as the sampling window size. Based on these vectors, we can define

the matricesY1 andY2 as

Y1 = [y0,y1, ...,yL−1] (5.8)

Y2 = [y1,y2, ...,yL] (5.9)

Then one can obtain the following relationship among theY1, Y2 and the pole and residue

vectorsZ0 andR based on the structure ofY1, Y2:

Y1 = Z1RZ2 (5.10)

Y2 = Z1RZ0Z2 (5.11)
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where
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Z2 =


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(5.13)

Z0 = diag[z1, z2, ..., zM ] (5.14)

R = diag[r1, r2, ..., rM ] (5.15)

So the problem we need to solve is to find the pole and residue vectorZ0 andR efficiently.

It turns out that this can be easily computed by observing that

Y +
1 Y2 = Z+

2 R−1Z+
1 Z1RZ0Z2

= Z+
2 Z0Z2 (5.16)

Hence, the poles are the eigenvalues ofY +
1 Y2, where+ indicate the (Moore-Penrose)

pseudo-inverse, asY1 is not a square matrix. As a result, one can obtain theZ0 by us-

ing

Z = D−1UHY2V (5.17)

whereZ ∈ CM×M andD, V andU come from the singular value decomposition (SVD) of
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Algorithm 6: Generalized Pencil of Function (GPOF)

Input: sampling vectorsyi = [yi, yi+1, ..., yi+N−L−1]
T

Output: poles vectorp and residues vectorr

1. Construct matricesY1 andY2, as in (5.10) and (5.11).
2. Singular value decomposition (SVD) ofY1, Y1 = UDV H .
3. Construct matrixZ, Z = D−1UHY2V .
4. Eigen-decomposition ofZ, Z0 = eig(Z).
5. Find poles vector:p, pi = log(zi)

∆t .
6. SolveR1 andR2 from Y1 = Z1RZ2 andY2 = Z1RZ0Z2, Z1 andZ2 are defined as in (5.12)
and (5.13).
7. Find residues vector:r = R1+R2

2 .
8. End.

Figure 5.3: GPOF algorithm for poles and residues extraction.

Y1:

Y1 = UDV H (5.18)

WhereXH means taking the conjugate transpose ofX. After theZ is computed, we can

obtain the pole vectorZ0 by performing the eigen-decomposition ofZ, Z0 = eig(Z),

whereeig(X) is to obtain the eigenvalue vector from matrixX. OnceZ0 is obtained, we

can compute the residue vectorR by using either (5.10) or (5.11).

We summerize the GPOF algorithm flow in Fig. 5.3, whereN is the total number of

sampled points,M is the number of poles used andL can be viewed as the sampling

window size.

GPOF works on the sum of exponential forms, which can be represented in the partial

fraction form in frequency domain like (5.4). So it can be used to extract poles and residues

from the impulse responses for our problem. The GPOF method allows M ≤ L ≤ N −

M , which means that we can allow different window sizes and pole numbers. Typically,

choosingL = N/2 can yield good results. Obviously, more poles will lead moreaccurate
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Algorithm 7: The flow of ThermPOFalgorithm (extracting one transfer function)

Input: Step input of powers and step response of temperatures
Output: Transfer function in the pole-residue form

1.Calculate impulse response from step response by numerical differentiating.
2. Perform log-scale sampling on impulse response and offset the starting time to zero.
3. Extend the ending time of sampling for stabilizing the poles.
4. Improve the accuracy of computed model by selecting differentL.
5. Extract poles and residues of the transfer function by GPOF.

Figure 5.4: The flow of extracting one transfer function.

results. For our problem we findM = 50 gives the good results.

5.3 New architecture-level thermal behavioral modeling

method

In this section, we present our new thermal behavioral modeling approach based on the

GPOF method mentioned in the previous section. We first present theThermPOFalgorithm

flow. Then explain the several key steps in our proposed method.

5.3.1 The ThermPOF algorithm flow

Now, we describe all the important steps to obtain a transferfunction of the thermal system,

which is shown in Fig. 5.4.

Step 1 computes the impulse responses from the given step responses. Step 2-4 basi-

cally improve the sampling efficiency and stabilizing the models. Step5 has been explained

in the previous section. We will explain the key steps 2-4 in the following subsections.

We need to performThermPOFfor all the transfer functions in our method to obtain
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the complete thermal models.

5.3.2 Logarithmic scale sampling for poles and residues extraction

GPOF method should be applied to the thermal impulse response, which in general can-

not be obtained directly from measurement or simulation. Instead, we are provided with

the thermal step response for each core excited by the power input on the given multi-

core microprocessor. Then impulse response can be obtainedby performing the numerical

differentiation on the step response.

But directly applying the GPOF to the computed thermal impulse response may not

lead to stable and accurate model. In the following, we will first show the problems and

then present two improvement schemes inThermPOFmethod such that the resulting model

is stable and accurate.

The first problem we face for the thermal modeling is that linear sampling in the tradi-

tional GPOF method does not work for our thermal data.

According to GPOF method reviewed in Section 5.2, we know that matricesY1 andY2

are constructed from the sampled data and that the sampling time interval∆t must be the

same. However, how to obtain sample observed temperature changes became a big issue as

the step temperature response often goes up rapidly in the first few seconds and gradually

tends to reach a steady state after a relatively long time.

This can be illustrated in Fig. 5.5(a), which is step temperature response forcore0

(die : 0) when onlycore0 is driven by a step20W power source beginning att = 0 (which

is calledactivein this paper). The abient temperature, the initial temperature when no input

power at the beginning, is35◦C. We observe that almost all the temperature increase occurs

within the first second, from35◦C to 57.9◦C, where61.1◦C is the final stable temperature
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whencore0 reaches a steady state after1000s or more.
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(b) Logarithmic time scale.

Figure 5.5: The transient temperature change of core0 when core0 is excited by 20W power
input.

However, the rapid temperature changes and a long observingperiod lead to problems

for the GPOF method if linear sampling is used. The reason is that, to capture the thermal

change information, the sampling interval tends to be very small, but this will lead to a

very large number of samples owning to the long tail of the thermal response reaching the

steady state. As a result, we have to use a very largeN and consequently very largeL,

which causes large dimensions of matricesY1 andY2 in GPOF. Hence the following matrix

operations such as multiplication, inverse or singular value decomposition (SVD) become

very expensive.

In this chapter, we propose to use the logarithmic-scale sampling (log-scale sampling

for short) to mitigate this problem. For the same temperature response in Fig. 5.5(a), we

can obtain the log-sampled temperature response in Fig. 5.5(b), which clearly show how

the temperature changes over the log-scale time gradually.

After the time is changed to the logarithmic scale, which isln(time) and it may become
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negative. So we need to offset it to make sure that temperature response always starts at

t = 0 in the log scale. And the offsetting will not affect GPOF operations. After we obtain

the transfer function from GPOF, we need to compute the response in original time scale.

We can get the response back by using (5.19),

y′(t) = y(ln(t) − ln(t0)) (5.19)

wherey′(t) is the response in normal time scaley(t) is the response in log-scale;t0 is the

offset and usually it is a very small value.

We remark that logarithmic sampling in time and frequency domain has been used in

the numerical deconvolution method for RC network extraction in the past [75].

5.3.3 Stable poles and residues extraction

Stable pole extraction

The second problem with the GPOF method is that it will not always generate stable poles

for a given impulse response. Actually GPOF model can give a very good matching for

a given impulse response for the sampled interval by using positive poles. But outside

the sampled interval, the response from the model by GPOF canbe unbounded due to the

positive poles.

Fig. 5.6(a) shows the extracted impulse response compared to the original one for one

of the cores. For this example, the sampled time interval is from 0 to1000 seconds. Except

for the very beginning (we will address this issue later), itcan be seen that the computed

model matches very well with the original one from time0 to 1000s (the corresponding

x = 18.55 in log-scaled x-axis with offset being8.8× 10−6). But outside the time interval,

101



if we extend the time scale to1010 seconds, they are significant differences between the

two models. The computed models does not look like an impulseresponses and will go

unbounded actually owning to the positive poles. Fig. 5.7(a) shows the extracted poles

where not all the poles extracted by GPOF are stable (having negative real parts).
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(a) Impulse response with positive poles.
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(b) Impulse response with only negative poles.

Figure 5.6: Unstable and stable impulse response for Core0.
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(a) Existing positive poles.
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(b) Only negative poles.

Figure 5.7: Poles distributions of unstable and stable extracted transfer function.

To resolve this problem, we propose to extend the time interval for zero-response time.
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For any impulse response, after sufficient time, the response will become zero (or numeri-

cally become zero) as the area integration of the impulse curve below is a constant (should

be 1 ideally). By sufficiently extending the time interval for zero-response time in an im-

pulse response, we can make all the poles stable. The reason is that if we have positive

poles, after sufficient long time, the response will always go non-zero and eventually be-

come unbounded assuming all the poles are different numerically, which is always true

practically. If we ensure the zero response for a sufficient long time, all the poles must be

stable. The reason is that the response contributed only by those stable poles can decay to

zero. Positive poles will lead to unbounded response for a long time interval.

Using the same example, if we extend the time interval to1010 seconds, which ac-

tually does not increase significantly in log-scale, all theextracted poles become stable.

Fig. 5.7(b) shows the extracted poles by extending zero-response time to1010s, where all

the poles are stable (with negative real part) and Fig. 5.6(b) shows the extracted stable im-

pulse response. For all our problem, we find1010s seems sufficient for our example. The

proposed pole stabilization method can be applied to any stable dynamic system using the

pencil of function method. If you sample zero-response sufficient enough, the generated

poles will be negative. But the sufficient time is problem dependent. Typically, the new

interval should be several order of magnitudes larger than the original time interval.

Stabilizing the starting response

Temperature changes is very slow at the very beginning. As a result, the obtained impulse

response may become zero numerically for a short period at the beginning.

However, the zero-response time at beginning may cause the significant discrepancies

as shown in Fig. 5.6(b). For example, we consider the temperature of core1 when only
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core0 is active. Assume thatcore0 is active att = 0, in the first very short time, such ast =

10−4s, temperature response ofcore1, due to the delay in thermal transmission, is probably

still 0 and it may begin to increase att = 10−3s. Normally we consider the difference

10−4s and10−3s as a small value in normal time scale, but in the log-scale, this difference

is translated to a noticeable period of time with zero responses at the beginning. And long

zero-response time at the beginning, however, may cause thesignificant discrepancies as

shown in Fig. 5.8(a), although the computed response tends to be accurate after some time

period. This means this transfer function we obtained is notaccurate enough. Fig. 5.8(b)

shows a step response computed by the transfer function obtained in Fig. 5.8(a). Obviously,

it has visible differences compared to the original one.
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(a) Impulse response with large errors in the
starting time.

0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12

Time (log−scale)

T
em

pe
ra

tu
re

 (°
C

)

Step response 

original
computed model

(b) The corresponding step response for the
inaccurate model. Here the zero temperature
means the room temperature.

Figure 5.8: Impulse and step response computed by inaccurate model with large error in
the starting time.

The reason for this problem is that the log-scaled impulse response is different from

the impulse response from a physical RLC electronic circuitin which the response goes to

non-zero immediately aftert = 0. To resolve this problem, we may truncate the beginning
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zero-response time such that responses go to non-zero numerically immediately. This can

be achieved by setting threshold temperature to locate the new zero time. During the sim-

ulation process of the model, in all the actual time before the new artificial zero time, the

response will be set to zero. Fig. 5.9 shows the impulse and step response computed by

accurate model after suppressing the beginning zeros.
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(a) Impulse response.
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(b) Step response.

Figure 5.9: Impulse and step response computed by accurate model with both improve-
ments.

This problem can also be mitigated by increasing the value ofL, which means more

sampling points but more accuracy. The advantage of the second method is that we can set

up the same offset for all the transfer functions, which can simplify the reduced models.

Fig 5.10 shows the improved impulse and step responses from core0 to core1. HereL =

200, in contrast toL = 100 as used before. Notice that moreL may not result in more

accurate models. In our experiments,L varies from 150 to 300.
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Figure 5.10: Impulse and step response withL = 200.

5.3.4 Recursive computation of temperature responses and time com-

plexity

After we obtain the transfer-function matrixH, responses of the system can be computed

theoretically for whatever type of inputs. In this chapter,we introduce a fast recursive

response computation method. Recursive convolution is a fast convolution withO(n) time

complexity instead of traditionalO(n2) time complexity [8], wheren is the number of time

steps. This method requires to know the poles/residues of the transfer functions.

For our problem, the computation complexity becomesO(nq), wheren is the number

of time segments or the number of power traces andq is the order of the thermal models

(number of the poles in each transfer function). So it can be seen that the simulation time

is linear with respect to both model size (number of poles in each transfer function) and the

number of the time steps.

In contrast, for traditional integration methods, the timecomplexity for al × l linear

matrix, isO(klα + lβ) where itemO(lβ) (typically,1.1 ≤ β ≤ 1.5 for sparse circuits) is for

the matrix factorization,O(lα) (typically, 1 ≤ α ≤ 1.2 for sparse circuits) is for solving
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one step in transient analysis. The the time complexity is super-linear in general.

In our problem, if the power traces are clock-pulses like as shown in Fig. 5.14, i.e., the

power inputs stay the same during one time segment. The recursive convolution can be

simplified. Specifically, the power input can be seen as the sum of a group step inputs with

different delays. This method works well for the general inputs as long as the time interval

is small enough.

Given the power traces and time interval∆t, the response in each time segment not

only depends on the current power inputs, but also depends onthe previous power inputs.

In total there are 3 cases of power inputs changes, as shown inthe left part of Fig. 5.11,

whereTn−1 andTn are two immediate time segments,∆t is the time interval.

Considering powers change att = 0, we would like to compute the temperatureyn(t)

at t (0 ≤ t ≤ ∆t) in the nth time segmentTn. And yn(t) can be computed as shown

in the right part of Fig. 5.11, respectively, wherey0(t) is the step response. The intuitive

explanation of the Fig. 5.11 is that the final waveforms at anytime point is the sum of step

response waveforms generated from all previous power inputs at all the previous time steps.

If the input becomes zero, it means adding a negative step response waveform (case 1); if

input becomes positive from zero, it means adding a positivestep response waveform (case

3). Otherwise, we stay at the same value (case 2). But the recursive convolution [8] can be

used to compute any input waveforms in a linear time.

5.4 Reduction of thermal models

After we obtain our thermal models, we can further reduce theorder of the models. In

this chapter, a classic Krylov-subspace model order reduction method PRIMA [49, 77] is
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Figure 5.11: The recursive computation step.

used. Before using PRIMA, we need to have the state-space realization (5.20), which can

be formed by poles and residues.

ẋ = Ax + bu

y = cTx

(5.20)

In our model, poles and residues are both complex and appear in conjugate pairs. And

for each pair (5.21), the state-space realization is in the form of (5.22) [7]:

h(s) =
r

s − p
+

r

s − p
(5.21)
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wherep = a + bj andr = c + dj. Let’s further define
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So we have the state-space realization of (5.23):
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(5.23)

wheren is the number of the complex pole pairs in the transfer function andn = M/2.

Then, the model order reduction is performed:

Ar = VTAV br = VTb cT
r = cTV (5.24)

whereV is the projection matrix obtained from PRIMA.

After model reduction, we need to extract the poles and residues from the reduced

matrix (5.24) to go back to the partial fraction form (pole-residue form). This can be

done by means of the eigen-decomposition ofAr [7], which leads to a diagonal matrixΛ

containing eigenvalues and an orthogonal matrixP formed by the eigenvectors.
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Thus, the transfer function of the pole-residue form in (5.4) can be computed as

hij(s) =

q
∑

k=1

µk · vk

s − λk
(5.25)

whereλk is thekth diagonal element ofΛ, µk is thekth element ofcT
r P, vk is thekth

element ofP−1br andq is the reduced order.

5.5 Numerical examples

The proposedThermPOFalgorithm has been implemented in MATLAB 7.0 and tested on

a quad-core microprocessor architecture as shown in Fig. 5.1 from industry partner Intel

Corp. We first extracted the transfer function matrix of the system through a training data

set, which consists of the step responses for each core from other cores. After generation

of the transfer functions, we could validate our models by computing the thermal responses

from other non-training power inputs and compare them with known responses.

Our experimental data contain each core’s temperatures measured directly from the

center of the dies, which are provided by Intel. At the beginning all the cores are in zero

state and have an initial ambient temperature35◦C.

We verify the correctness of our model based on two sets of given thermal data from

Intel. First, fromt = 0 each core is excited by a step power input of20W simultaneously.

And the temperature of each core is collected from0s to 1000s. For each transfer function,

we set the order to 50. This is already enough for our model. Inpractice, temperature on

each core or cache can be computed very fast by our model during any time interval as our

model is directly based on the transfer function represented by poles and residues instead

of state space equations.
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We remark that in reality we cannot turn the cores to zero power. For the purposes of

the simulations, we turned on and off cores and cache respectively so we can quantify or

capture the influences. The power traces used are realistic for the workloads and the on/off

scenario for different cores is not.

The results of core0 and cache are shown in Fig. 5.12 and Fig. 5.13 under the normal

linear time scale and the log scale respectively. The solid curve represents the measured

temperature and the dotted line represents our computed temperature. The simulation runs

very fast and costs only few seconds. From these figures, we can see that our models have

very good accuracy. Actually, the temperatures of other cores match as well as shown in

the following tables.
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(a) Temperature response of core0 in the linear
scale.
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(b) Temperature response of core0 in the log
scale.

Figure 5.12: Comparison results of core0’s temperature when all cores are active (driven
by 20W powers).

Table 5.1 shows the temperatures when all the cores achieve the steady state and the er-

ror differences in percentage. The difference is only around 0.2%. Furthermore, Table 5.2

shows some statistical features of the differences over allthe sampling time points, includ-

ing the maximums, the means and the standard deviations. Also, the maximum and average
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(a) Temperature response of cache in the linear
scale.
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(b) Temperature response of cache in the log
scale.

Figure 5.13: Comparison results of cache’s temperature when all cores are active (driven
by 20W powers).

percentages are given. From this table we can see that the maximum difference is less than

0.5◦C and1% and the average difference is less than0.3◦C and0.3% for all the cores.

Table 5.1: Difference when temperatures achieve the steadystate.
Measured Computed Difference

Temp. (◦C) Temp. (◦C) percentage

Core0 88.96 88.78 0.22%
Core1 90.60 90.52 0.08%
Core2 90.04 88.94 0.11%
Core3 88.96 88.78 0.20%
Cache 68.46 68.32 0.20%

Now we test on the second set of thermal benchmarks also from Intel. The temperature

on every core is driven to an initial state by a power of10W on each of the cores for

1000 seconds. Then we start to apply a number of random power inputtraces as shown in

Fig. 5.14(a), where the step power is20W for all the cores.

We verify the correctness of our model from0s to 1s based on the given thermal data

112



Table 5.2: Statistics of the difference between measured and computed temperatures.
Difference (◦C) Difference percentage

Maximum Mean Std. deviation Maximum On average

Core0 0.46 0.25 0.08 0.89% 0.32%
Core1 0.27 0.18 0.07 0.42% 0.15%
Core2 0.37 0.16 0.08 0.73% 0.20%
Core3 0.46 0.24 0.08 0.88% 0.31%
Cache 0.31 0.16 0.08 0.51% 0.26%

from Intel. During that time, power inputs stay the same in each time step of0.1s. In

practice, temperature on each core can be computed very fastby our model during any

time interval, as the computation complexity in our model isonly O(nq) by using recursive

convolution, wheren is the number of time steps andq is the order of the reduced models.
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(b) Core0’s temperature.

Figure 5.14: Thermal simulation results on given power input traces

Our simulation results for all cores are shown in Fig. 5.14(b), Fig. 5.15 and Fig. 5.16.

The simulation runs very fast and costs only few seconds. From the figures, we can see

that all the peak temperatures (both the maximum and the minimum) of each core during

the whole time interval match well between the models and given measured data. The
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(b) Core2’s temperature.

Figure 5.15: Thermal simulation results on given power input traces
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(a) Core3’s temperature.
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(b) Cache’s temperature.

Figure 5.16: Thermal simulation results on given power input traces

temperature errors are less than1◦C, as shown in Table 5.3.

The errors (absolute values) between the original and our computed model are shown in

Table 5.4, including the maximums, the means and the standard deviations. The maximal

errors of core0, core1, core2 and cache are around1◦C or less than2◦C at the most.

The maximal error ofcore3 is a little bit larger, which occurred during the time interval
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Table 5.3: The maximal and minimum error peaks (M = 50).

Maximal peak Minimum peak
Measured (◦C) Error (◦C) Percentage Measured (◦C) Error (◦C) Percentage

Core0 77.27 0.45 0.58% 47.47 0.38 0.79%
Core1 78.86 0.04 0.05% 47.81 0.35 0.73%
Core2 78.55 0.38 0.48% 47.77 0.24 0.51%
Core3 76.48 0.75 0.98% 47.38 0.45 0.95%
Cache 57.80 0.99 1.72% 48.86 0.11 0.23%

Table 5.4: Statistics of the errors between measured and computed temperatures (M = 50).
Error (◦C) Error percentage

Maximum Mean Std. deviation Maximum On average

Core0 1.05 0.34 0.23 1.56% 0.50%
Core1 1.67 0.53 0.48 2.44% 0.78%
Core2 1.78 0.61 0.47 2.56% 0.98%
Core3 3.33 1.10 0.82 6.09% 1.80%
Cache 1.05 0.63 0.22 1.84% 1.22%

Table 5.5: The maximal and minimum error peaks and means (M = 30).
Maximal peak Minimum peak Mean

Error (◦C) Percentage Error (◦C) Percentage Error (◦C) Percentage

Core0 0.40 0.52% 0.46 0.96% 0.36 0.48%
Core1 0.12 0.15% 0.49 1.00% 0.47 0.69%
Core2 0.06 0.07% 0.34 0.70% 0.56 0.88%
Core3 0.76 0.98% 0.53 1.11% 1.11 1.66%
Cache 1.01 1.78% 0.01 0.02% 0.03 1.25%

0.5s−0.6s. But the standard deviations of the errors of all cores show that the temperature

variations on average are less than1◦C. Note that all the errors here are the absolute values

of measured temperatures minus our computed temperatures.

Further we show the speedup gained in the simulation by the model reduction tech-

niques presented in Section 5.4. In our experiments, we firstset the orderM = 50. After

reduction, the order is reduced toM = 30 without loss of accuracy. All the errors are less
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than< 2% compared to the exact ones, as shown in Table5.5. We know that simulation

running timeO(nq), q is the size or order of the model. So from order 50 to 30, we can

approximately reduce40% simulation time, as shown in Table 5.6. We also set up order

M = 100 at first, but the reduced order is still30 if we want to maintain the same high

accuracy.

Table 5.6: Speedup whenM = 30 compared toM = 50.
Run time (s) Run time (s) Time

whenM = 50 whenM = 30 reduced

Core0 1.31 0.80 38.9%
Core1 1.29 0.78 39.5%
Core2 1.28 0.78 39.1%
Core3 1.28 0.78 39.1%
Cache 1.30 0.79 39.2%

5.6 Summary

In this chapter, we have proposed a new thermal behavioral modeling approach for fast

temperature estimation at the architecture level for multi-core microprocessors. The new

approach, called ThermPOF, builds the transfer function matrix from the measured or sim-

ulated thermal and power information. It first builds behavioral thermal models using the

generalized pencil-of-function (GPOF) method [24, 25, 64], which was developed in the

communication community to build the rational modeling from the given data of real-time

and electromagnetism systems. However, the direct use of GPOF does not work for ther-

mal systems. Based on the characteristics of transient chip-level temperature behaviors, we

make two new improvements over the traditional GPOF: First we apply a logarithmic-scale

sampling scheme instead of the traditional linear samplingto better capture the rapid tem-
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peratures change over the long period. Second, we modify theextracted thermal impulse

response such that the extracted poles from GPOF are guaranteed to be stable without ac-

curacy loss. Finally we further reduce the size of thermal models by a Krylov subspace

reduction method to further speedup the simulation process[77]. Numerical examples on a

practical quad-core microprocessor show that the generated thermal behavioral models can

be built very efficiently and the resulting model match the given temperature well.
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Chapter 6

ParThermPOF: Parameterized

Architecture-Level Dynamic Thermal

Models For Multi-Core Microprocessors

In this chapter, we propose a new architecture-level parameterized dynamic thermal behav-

ioral modeling algorithm for emerging thermal-related analysis and optimization problems

for high-performance chip-multiprocessor design. The proposed compact thermal model

will be used to predict the thermal response of new package designs once its accuracy has

been calibrated and validated with the detailed models. This is the design methodology

to be used by our industry partner. We propose a new approach,called ParThermPOF,

to build the parameterized dynamic thermal behavioral models from accurately computed

thermal and power information using the sophisticated FEA (Finite Element Analysis) or

CFD (Computational Fluid Dynamics) tools at architecture level. The new method is a

top-down, black-box approach, meaning it does not require any internal structure of the

systems and it is very general and flexible. ParThermPOF is able to include a number of

118



parameters such as location of thermal sensors in a heat sink, different components (heat

sink, heat spreader, core, cache, etc.), thermal conductivity of heat sink materials, etc. The

new method consists of two steps: first, a Response Surface Method (RSM) based on low-

order polynomials is applied to build the parameterized models at each time point for all

the given sampling nodes in the parameter space (except for time). Second, an improved

Generalized Pencil-Of-Function (GPOF) method [36, 34], specifically for thermal model-

ing, called ThermPOF, is employed to build the transfer-function-based models for each

time-varying coefficient of the polynomials generated in the first step.

We remark that the detailed model for generating the realistic temperatures for training

compact models was developed inFloTHERM[18], which is a typical 3D Computational

Fluid Dynamics (CFD) commercial software used in cooling ofelectronics. Also, the ma-

terial properties and boundary conditions are representatives of conditions found in the

thermal test vehicles at Intel’s lab rather than real-life systems. The specific workloads

only mimic those of real-life applications. The model does not include the specifics of the

board. The power distribution in the real die is known in advance (for example from Ther-

mal Test Vehicles (TTVs)). The detailed model only tries to mimic these profiles. Although

sufficient detail was put in the model, the focus was to include the relevant parameters that

needed to be calibrated with parameterized methods.

Simulation results on a practical quad-core microprocessor show that the generated pa-

rameterized thermal behavioral models can be built very efficiently and the temperatures

computed from resulting models match the given temperatures well for given parameter

space in the time domain. The compact models by ParThermPOF offer two order of mag-

nitudes speedup over the commercial thermal analysis tool FloTHERM [18] on the given

examples from our industry partner.
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6.1 Parameterized Transient Thermal Behavioral Model-

ing Problem

Two types of parameters are considered in our modeling problems. The first one is time;

the second one are other parameters to be discussed below.

Our modeling problem is to build parameterized transient thermal models considering

the both time and other variable parameters of multi-core processors. Basically we want

to build the behavioral model, whose inputs are the powers and outputs are temperatures

that not only depend on the input powers but also depend on thesystem parameters. Our

parameterized behavioral models are created and calibrated with the simulated temperature

and power information using a commercial thermal analysis tool based on a realistic multi-

core processor.

In this paper, we specifically look at a quad-core microprocessor architecture from Intel

to validate the new thermal modeling method. The architecture of this multi-core micro-

processor is shown in Fig. 6.1, where there are four CPU cores(die 0 to die 3) and one

cache core (die 4). The temperatures reported are on the die bottom face and centered with

each die region.

Fig. 6.2 shows 3-D structure of this quad-core microprocessor in a package, where

the CPU die (with quad-cores) is in the bottom in contact withintermediate heat spreader

(IHS). At the top is the heater sink (HS), which has the top andbottom parts. The thermo-

couples (thermal sensors) are used to measure the temperatures on these specific locations.

Fig. 6.3 shows the temperature changes when only core0 is active (20W power at the in-

put) at difference locations using a copper heat sink. HS5mm means that the temperature

changes at5mm away from the center of the heat sink. As we can see, temperatures go

120



die:3

die:2

die:1

die:0

CACHE
die:4

1 
cm

1 cm

DIE
TIM1
Heat spreader
TIM2
Heat sink

Top View Lateral View

Figure 6.1: Quad-core architecture

Figure 6.2: 3D structure of quad-core processor

down as we move away from the center and away from the bottom parts of the chip. The

temperatures at the core center are hottest. Also, in addition to the distance parameter in

a specific component (heat sink), we may select different observation components such as

individual core, cache, heat spreader or heat sink as other indicator parameters.

121



0 200 400 600 800 1000
35

40

45

50

55

60

65

Time (s)

T
em

pe
ra

tu
re

 (°
 C

)
Temperautures for Cu as heat sink material

Die_Center

Core0_Center

IHS_Center

HS_center

HS_5mm

HS_15mm

HS_25mm

(a) Temperature responses in normal time scale.

10
−6

10
−4

10
−2

10
0

10
2

10
4

35

40

45

50

55

60

65

Time (s)

T
em

pe
ra

tu
re

 (°
 C

)

Temperautures for Cu as heat sink material

Die_Center

Core0_Center

IHS_Center

HS_center

HS_5mm

HS_15mm

HS_25mm
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Figure 6.3: Temperature responses at various locations in quad-core processor when only
core0 is active.

(a) Using copper heat sink (b) Using aluminium heat sink

Figure 6.4: Temperature distributions on the whole chip with package using different heat
sink materials when all cores and cache are active.

Furthermore, we may consider the thermal conductivity of the heat sink material as an-

other parameter. Normally, heat sink is made of copper (Cu) or aluminium (Al). Cu and Al

have different thermal conductivities, such as Cu is390W/(m·K) and Al is240W/(m·K).

Different heat sink materials may induce the different temperature distributions on the chip.

Fig. 6.4 shows the simulated temperature distributions on the whole chip with package us-

ing copper heat sink and aluminum heat sink respectively. The supply power for both cases
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is about 40W. We can see from the two figures that the maximum temperature of the chip

on a copper heat sink is10◦C less than the one on an aluminum heat sink due to different

thermal conductivities of the two materials. But the pricesof copper and aluminum are

different. So the designers need a trade-off between hot spot temperatures and package

cost. In our work, we set up such a parameter to indicate the thermal conductivity of the

heat sink material properties. Such parameterized thermalmodels may be very helpful for

the design exploration and optimization.

We can abstract this quad-core processor into a linear system with 5 inputs, 1 output

and several parameters as shown in Fig. 6.5. The inputs are the power traces of all the cores

and the output is the temperature response for given parameters. The parameters can be the

location of the thermal sensors (distance to a center point), the observation component or

measure point, thermal conductivity of the materials used for heat sinks, etc.

p0

p2

p3

p4

p1

Power Temperature

T

(x1, x2, x3, x4, ...)

System

Thermal

Figure 6.5: Abstracted system

Such system can be described by the parameterized impulse-response (transfer) func-

tion matrixH

H(t, ξ) = [h0(t, ξ) h1(t, ξ) h2(t, ξ) h3(t, ξ) h4(t, ξ)] (6.1)

wherehi are the impulse response function for output due to input port i andξ = (ξ1, ξ2, ξ3, ...)

are the parameters of this system.
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Given a power input vector for each coreu(t) and a specific set of parametersξ, the

transient temperature can be then computed by

y(t) =

∫ t

0

H(t − τ, ξ)u(τ)dτ (6.2)

Equation (6.2) can be written in frequency domain as in (6.3).

y(s) = H(s, ξ)u(s) (6.3)

wherey(s), u(s) andH(s, ξ) are the Laplace transform ofy(t), u(t) andH(t, ξ), re-

spectively. Eachhi can be expressed as the partial fraction form or the pole-residue form

(6.4) [58]:

hi(s, ξ) =
n

∑

k=1

rk(ξ)

s − pk(ξ)
(6.4)

wherehi(s, ξ) is the transfer function between theith input terminal and the output ter-

minal; pk andrk are thekth pole and residue. Once transfer functions are obtained, the

transient responses can be easily computed.

To build the parameterized behavioral model, we need to solve the following two prob-

lems: (1) to find a response polynomial functions that can approximate the given temper-

atures for all the controllable variables (parameters) with enough accuracy; (2) to find the

poles and residues for each transfer functionhi from thermal coefficients (of the polyno-

mials from step (1)) and power information to capture the transient behavior of the temper-

ature.

For problem (1), we introduce response surface method to capture linear or nonlinear

relationship between the parameters and response (temperatures) at each time point. For
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problem (2), we can handle it by using improved generalized pencil-of-function (GPOF)

to extract the poles and residues from transient thermal response. Combine (1) and (2), we

can build the parameterized transient thermal behavioral models.

In the following section, we will first briefly review the improved GPOF method for

transient thermal behavioral modeling before we present our new parameterized thermal

behavior models.

6.2 GPOF and Improved GPOF for thermal modeling

6.2.1 Review of generalized pencil-of-function (GPOF) method

Generalized pencil-of-function (GPOF) method has been used to extract the poles and

residues from the transient response of a real-time system and electromagnetism [24, 25,

64]. It works on the sum of exponential forms, which can be expressed in the partial fraction

form in frequency domain like (6.4). GPOF method can be viewed as a special generalized

eigenvalue computing method, in which we not only compute the eigenvalue (poles) of the

given two matrices made by the sampled data, but also producethe residue for each pole

in the partial fraction form [23]. As a result, it can be used to extract poles and residues

from the thermal-related impulse responses for our problem. GPOF algorithm flow can be

shown in Fig. 6.6, whereN is the total number of sampled points,M is the order or the

number of poles andL can be viewed as sampling window size.

For GPOF method, it allowsM ≤ L ≤ N − M , which means that we can allow the

different window size and pole numbers. Typically, choosing L = N/2 can yield better

results.
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ALGORITHM: GPOF
Input: sampling vectorsyi = [yi, yi+1, ..., yi+N−L−1]

T

Output: poles vectorp and residues vectorr

1. Construct matricesY1 andY2.

Y1 = [y0,y1, ...,yL−1] Y2 = [y1,y2, ...,yL]

2. Singular value decomposition (SVD) ofY1. Y1 = UDV H

3. Construct matrixZ. Z = D−1UHY2V

4. Eigen-decomposition ofZ. Z0 = eig(Z)

find poles vector:pi = log(zi)
∆t

5. SolveR1 andR2 from Y1 = Z1RZ2 andY2 = Z1RZ0Z2.

Z1 =










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Figure 6.6: GPOF algorithm for poles and residues extraction

6.2.2 Improved GPOF method for thermal modeling

Directly applying the GPOF to the computed thermal impulse response may not lead to

stable and accurate model. We improve the GPOF method by using logarithmic-scale and

stabilization process mentioned below. The resulting method, calledThermPOF, was pro-

posed recently by the authors [36, 34].ThermPOFbuilds the linear transient thermal mod-

els for given power and temperature information and is briefly reviewed in the following.

Because the temperatures change very rapidly in a very shorttime and gradually reach
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a steady state for a long time. This feature results in the modeling problem for GPOF

method if linear sampling is used. A logarithmic-scale sampling technique is presented

in ThermPOFto mitigate this problem. After obtaining the transfer function from GPOF,

ThermPOFcan get the response back in original time scale.

Also, GPOF method will not always generate stable poles for agiven impulse response.

The response from the model by GPOF can be unbounded outside the sampled interval

while using positive poles, although GPOF model can give a very good matching for a

given impulse response for the sampled interval. To mitigate this problem,ThermPOF

artificially extends the time interval when the impulse response is zero. By sufficiently

extending the time interval of zero-response in an impulse response, it can make all the

poles stable.

Further more, the obtained impulse response may become zeronumerically for a short

period because temperature changes at the beginning is veryslow. And long zero-response

time at beginning may cause the significant discrepancies inthe reduced models. To resolve

this problem,ThermPOFtruncates the beginning zero-response time such that response

goes to non-zero numerically immediately. The second method to mitigate this problem

is by increasing the value ofL, which means more sampling points but more accuracy.

The advantage of the second method is that it can use the same offset for all the transfer

functions, which can reduce the complexity in the thermal simulation.

6.3 Parameterized thermal behavioral modeling method

In this section, we present our new parameterized thermal behavioral modeling approach.

We first present theParThermPOFalgorithm overall flow and then present the important
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steps in the algorithm.

6.3.1 The ParThermPOF algorithm flow

The proposedParThermPOFconsists of two major steps: first, building parameterized

models byresponse surface methodson every time point; second, building subsystem re-

sponse behavior models byThermPOF. Let assume that we havek parameter variables in

the parameter spaceΩ = {ξ|ξ = (ξ1, ξ2, ..., ξk)}.

The proposedParThermPOFis given in Fig. 6.7. Steps 1-2 build the response surface

ALGORITHM: PARTHERMPOF
Input: the sampled transient power and temperature information in parame-
ter spaceΩ
Output: parametered thermal modelsT (t, P, Ω)

1. Perform coding for the variable parameters where original parameter
variables are converted to a new and expanded variable spaces.

2. Obtain the coefficients of the fitting polynomials of response surface
models (RSM) in a minimum square way.

1.

3. Perform the numerical differentiation on each coefficient of the poly-
nomials in resulting RSM and optimize the resulting waveforms for
stability and accuracy.

4. Compute the transient thermal model for each coefficient of the poly-
nomials in resulting RSM.

Figure 6.7: The proposedParThermPOFflow.

models in the parameter spaceΩ at each time stept. Steps 3-4 build the transient thermal

models on top of the RSM models.

As an illustration, Fig. 6.8 shows the response surfaces generated byParThermPOF

over 3 selected time points when only core0 is active. In the following, we discuss the
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Figure 6.8: Response surfaces at 3 time points when only core0 is active

important steps in the proposed method.

6.3.2 Response surface method

Response surface methodology (RSM) explores the relationships between several input

variables and one or more responses. The main principle of RSM is to use a set of de-

signed experiments to obtain an optimal response. There aremany applications of RSM in

real industry, particularly in situations where several input variables potentially influence

some performance measure or quality characteristic of the product or process [44]. This

performance measure or quality characteristic is called response. And the input variables

are sometimes called independent variables.

Specifically, suppose that a responsey depends on serval controllable input variables
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(ξ1, ξ2, ..., ξk)

y = f(ξ1, ξ2, ..., ξk) + ε (6.5)

where the form of the true response functionf is unknown and perhaps very complicated.

We need to minimize the errorε when building response surface models.

Usually, a low-order polynomial in some relatively small region of the independent

variable space is appropriate. In many cases, either a first-order or a second-order model is

used. First-order model is easy to estimate and apply, but itcan only accurately approximate

the true response surface over a relatively small region of the variable space where there

is little curvature inf . But if the curvature is strong enough that the first-order model is

inadequate to fit the true response surface, a second-order model will be required.

6.3.3 Building parameterized thermal behavioral models

Coding for the variable parameters

The first thing we do is to transform the natural variablesξ in a range[a, b] into coded

variablesx in a range[−1, 1]. After coding, the variable matrixX will have all orthogonal

columns. It may reduce the numerical errors and increase thenumerical stability.

A simple linear transformation can be used on the original measure scale so that the

highest value becomes ”1” and the lowest value becomes ”-1”.Assume that a variableξi is

in a range[a, b], using the linear transformation in (6.6), we can convert the coded variable

xi into a range[−1, 1]. Now we can use the coded variablesx1, ...x8 instead of the natural

onesξ1, ...ξ8.

xi =
ξi − (b + a)/2

(b − a)/2
(6.6)
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Build the response surface models

In this chapter, we use second-order response surface model. A second-order responsey

depending on variables(x1, x2, ..., xk) can be written as

y = β0 +
k

∑

j=1

βjxj +
k

∑

j=2

∑

i<j

βijxixj +
k

∑

j=1

βjx
2
j + ε (6.7)

If we let xk+1 = x1x2, xk+2 = x2x3, ... ,xk(k+1)/2+1 = x2
1, xk(k+1)/2+2 = x2

2, ... ,

βk+1 = β12, βk+2 = β23, ... ,βk(k+1)/2+1 = β11, βk(k+1)/2+2 = β22, ..., then (6.7) becomes

y = β0 +

q
∑

j=1

βjxj + ε (6.8)

which is a linear regression model for coefficients(β0, β1, ..., βq), whereq = k(k + 3)/2.

We can use least squares method to estimate the regression coefficients in the multiple

linear regression model in (6.8).

Suppose that we haven observed responsesy = (y1, y2, ..., yn) and for eachyi we

have one set of parameter valuesxi = (xi1, xi2, ..., xiq). So (6.8) can be written in matrix

notation as

y = Xβ + ε (6.9)
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(6.10)

We would like to find the coefficient solution vectorβ̂ that minimizes the squares of

errors E, where

E =
n

∑

i=1

ε2
i = ε′ε = (y − Xβ)′(y − Xβ) (6.11)

And E can be expressed as

E = y′y − β′X′y − y′Xβ + β′X′Xβ

= y′y − 2β′X′y + β′X′Xβ

(6.12)

To minimizeE, we have

∂E

∂β

∣

∣

∣

∣

β̂

= −2X′y + 2X′Xβ̂ = 0 (6.13)

So the least squares estimator ofβ is

β̂ = (X′X)−1X′y (6.14)
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In practice, we do QR decomposition onX to make the computation numerically more

stable. So we obtainRβ = QTy. After solving the linear equations, we get the estimated

coefficient vector̂β.

Building generalized linear thermal models for coefficients

After we obtain coded variable matrixX, the coefficients of our model can be computed

using (6.14). At this point, we obtain the parameterized thermal model only on a single

time point. We then compute the response surface models on all the time points, which

could generate a set of response surface models, or more precisely, a set of coefficients,

which are functions of time now. Since we can consider the temperature response as a

linear combination of such coefficients, the original thermal system is decomposed into a

number of linear dynamic subsystems. Each coefficient is considered as temperature output

of each subsystem and these subsystems share the same power inputs.

To build transient models, we need to incorporate the time into our model. Now we ap-

ply theThermPOF[36] to each coefficient, which is a function of time only and is computed

from the previous RSM step. The coefficient function, which can be viewed as a special

transient temperature function along with the input powers(the real temperature function

is the combination of those coefficients), will become a multiple-input and single-output

(MISO) linear dynamic system. In our specific thermal problem as shown in Fig. 6.5, each

coefficient function consists of 5 power inputs and 1 temperature output. Once we have the

coefficient models, we can compute the total temperature response of the whole system,

which is just the sum of all the responses from all the subsystems together. Note that the

modeling process above is only for one power output. We need to repeat it 5 times in order

to obtain the models of thermal system with 5 power outputs.
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6.3.4 The thermal-coefficient step and impulse response

In ParThermPOF, instead of having the thermal power step responses, we obtain the thermal-

coefficient power step responses. Although such responses do not have direct physical

meaning, but the resulting step and impulse responses stillresemble the thermal-power

step and impulse response.

Most important is that GPOF can be still applied to obtain thetransient thermal models

for the coefficients, which show the flexibility of the new approach. Fig. 6.9 shows the step

and impulse responses of one of the coefficients in the resulting thermal models (versus the

original ones), which are similar to the actual thermal stepand impulse responses.
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(a) Step response of one coefficient.

0 5 10 15 20 25 30 35
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Impulse response β
0

 

 

Original response

Computed model

(b) Impulse response of coefficient.

Figure 6.9: Step and impulse responses of one of the coefficients. Thex axis is the time in
logarithmic scale andy axis is the relative temperature to the ambient temperature.

6.3.5 A walkthrough example

We illustrate the new method by using a real example. Specifically, the temperature re-

sponsey is a function of the following parameters: two variables(ξ1, ξ2) are distance
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away from the center and thermal conductivity of the heat sink materials; six variables

(ξ3, ξ4, ..., ξ8) are used to indicate observation components, such as core0-core3, cache,

heat spreader and heat sink. Such variables are called indicator variables, because values

in them are binary (0 or 1), while values in(ξ1, ξ2) are continuous.

We obtained the data from Intel and the data was computed fromthe commercial ther-

mal analysis tool based on a real quad-cord microprocessor.The observed temperature re-

sponses are onξ1 = 0mm, 5mm, 15mm andξ2 = 240W/(m ·K)(Al), 390W/(m ·K)(Cu).

ξ3 = 1 if we observe the temperature on core0,ξ4 = 1 if we observe the temperature are

on core1. The setting forξ5, ...ξ8 are the same. They represent core2, core3, cache and heat

spreader when they are set to 1, respectively. At any time, there is at most one variable

which is set to 1 inξ3, ...ξ8. Whenξ3, ...ξ8 are all zeros, it means that we observe on heat

sink.

In our setting, we setx1 as a full second-order form, which consists of the linear terms,

the crossing terms amid different variables and squared terms. Forx2, we first consider the

temperatures on two thermal conductivity points (240W/(m · K) and390W/(m · K) (we

consider one more material in the experimental section). Soin our models we considerx2

as a second-order form including only linear and crossing terms. We may extendx2 to a

full second-order or even high-order form for more trainingdata.

For x3, ...x8, because they are indicator variables only binary value (0 or 1), we also

consider them as a second-order form including only linear and crossing terms. Also,

based on our current given data,x3, ...x8 only have the crossing terms withx2, because

the temperatures we obtained on0mm, 5mm and 15mm away from center is only for

heat sink. For other components, such as core0-core3, cacheand heat spreader, we only

know the temperature on their centers. So currently indicator variables are independent
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of distancex1. Note that we indicate the heat sink by settingξ3, ...ξ8 to all zeros. So our

models can still work well to capture the temperature responses on heat sink for different

values of distance variablex1.

Now we can begin to set up variable matrixX based on given temperature data like

the form in (6.10). There are 17 terms in total, including constant, linear, crossing and

squared terms. For each time point, we have18 given temperature samples for different

distances, different thermal conductivities of heat sink materials and different observation

components. So we obtain the coded variable matrixX as shown in Fig. 6.10.
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Figure 6.10: Coded variable matrixX

6.3.6 More remarks for the proposed method

We remarks that response surface model works fine when the response can be approxi-

mated by low-order models. Our Numerical examples show thatthe given parameters like
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locations of thermal sensors in a heat sink, thermal conductivity of heat sink materials etc,

second order approximation can give quite good approximation. For strong nonlinear pa-

rameters, new modeling techniques will be explored such as using orthogonal polynomials

in RSM or piecewise linear modeling methods.

We also remark that currently the number of samples will depend exponentially on the

number of variables for sufficient accuracy. We used a simplesampling method as sampling

is not the main focus of this chapter. More efficient samplingmethods will be investigated

in the future to accommodate more parameters.

Also for fine granularity modeling where a large number of input power sources exist,

the proposed method can still work. More power inputs will leads to more transfer func-

tions and more matrix pencil operations. But the number of power inputs does not add

the sampling dimensionality as all the inputs share the sametime steps from one detailed

simulation of a particular setting. The only difference is that each transfer function (or the

coefficient function) will have more inputs.

To consider the dependency of leakage powers and thermal conductivity on tempera-

ture, the simple way is to build the thermal models on the actual measured data (we are

working on that with Intel). Another way is to build the models on the detailed simulation

in which such dependencies are considered. Although such a model is still linear, but we

at least have first-order approximation to the nonlinear effects.

In addition to the parameter variables, there are many otherpackage variables which

will affect the thermal characterization of the whole packages such as the thermal conduc-

tivities of the materials used TIM1 and TIM2. In this chapter, we just demonstrate that the

proposed method can accommodate different parameters. Ournext step is to make it more

practical for use in industry setting.
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6.4 Numerical examples

The proposedParThermPOFalgorithm has been implemented in MATLAB 7.0 and the

Numerical examples are obtained on a Dell PowerEdge 1900 workstation (using a Linux

system) with Intel Quadcore Xeon CPUs with 2.99Ghz and 16GB memory.

The example we use is the quad-core microprocessor as shown in Fig. 6.1, from Intel.

We first build parameterized thermal behavior models from a training data set, using com-

mercial thermal analysis toolFloTHERM[18], which is a 3D computational fluid dynam-

ics (CFD) commercial software, where we collect the computed step temperature response

when only one single step power source is applied at one time.After parameterized thermal

models are built, we could apply them to generate the temperature responses for any type

of time-varying input power sources and different parameter settings.

In our experiments, the training data used first to build the models have different time

scales from the benchmark data used later to verify the models. Both the training data and

benchmark data from Intel are the powers and computed temperatures (usingFloTHERM)

on a realistic quad-core microprocessor under some operating conditions. The given tem-

perature distribution when using a Copper heat sink att = 1s is shown in Fig. 6.11. The

power input traces in the benchmark are shown in Fig. 6.12(a), where the step power is

20W for all the cores.

In practice, temperature response can be computed very fastby our models during

any time interval, as the computation complexity in our model is only O(n) by using the

recursive convolution on the pole-residue expression, where n is the number of time steps.

Note that the simulation results at one time point are obtained for all the parameter space.

In other words, when we change the values of parameters at onetime point, the results can

be computed directly without doing transient simulation again.
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Figure 6.11: Given temperature distribution on the whole chip package when using a Cop-
per heat sink att = 1s.
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(a) Power input traces in the benchmark.

0 0.2 0.4 0.6 0.8 1
35

36

37

38

39

40

41

42

43

44

Time (s)

T
em

pe
ra

tu
re

 (°
C

)

Temperature response on heat sink at 0mm

 

 

Original response

ParThermPOF

(b) Temperatures on a heat sink made of Alu-
minum at 0mm.

Figure 6.12: Thermal simulation results on specific values of parameters

Now we will show the accuracy ofParThermPOF. The calculation of temperature re-

sponses at each coefficient is only done once. Then we can obtain thermal response for any
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(a) Temperatures on heat sink made of Alu-
minum at 5mm.
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(b) Temperatures on a heat sink made of Alu-
minum at 15mm.

Figure 6.13: Thermal simulation results on specific values of parameters
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(a) Temperatures on core0 when using a Copper
heat sink.
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(b) Temperatures on core2 when using a Copper
heat sink.

Figure 6.14: Thermal simulation results on specific values of parameters

specific values for parameters(ξ1, ξ2, ..., ξ8) by setting them directly in the models.

Fig. 6.12(b) and Fig. 6.13 show the computed temperature results at the points0mm,

5mm and15mm away from the center when using an Aluminum heat sink. In another

word, we setξ1 = 0, 5, 15, ξ2 = 240 and others to zeros.

Fig. 6.14 and Fig. 6.15(a) show the temperatures on the center of core0, core2 and cache
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(a) Temperatures on cache when using a Copper
heat sink.
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(b) Temperatures on core1 when using an Alu-
minium heat sink.

Figure 6.15: Thermal simulation results on specific values of parameters
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(a) Temperatures on core3 when using an Alu-
minium heat sink.
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(b) Temperatures on heat spreader when using
an Aluminum heat sink.

Figure 6.16: Thermal simulation results on specific values of parameters

when using a Copper heat sink. In these cases we setξ1 = 0, ξ2 = 390, ξ3 = 1 or ξ5 = 1 or

ξ7 = 1 and others to zeros.

Fig. 6.15(b) and Fig. 6.16 show the temperatures on the center of core1, core3 and the

heat spreader when using an Aluminum heat sink. In these cases we setξ1 = 0, ξ2 = 240,

ξ4 = 1 or ξ6 = 1 or ξ8 = 1 and others to zeros.
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From the figures, we can see that all the peak temperatures foreach set of parameters

during the whole time interval match well between computed data and given data. The

models work well for the nine sets of specific parameters as wejust showed sequentially.

The errors and percentages are shown in Table 6.1. All the temperature errors except for

set6 (cache with a Copper heat sink) is less than1◦C.

The average errors and relative errors (computed temperature over given temperature

on each time point) between computed data and given data are shown in Table 6.2. From

Table 6.1 and Table 6.2, we can see thatParThermPOFis very accurate.

Table 6.1: Errors of the peaks
Parameter Maximal peak
settings Given (◦C) Error (◦C) Percentage

set1 43.8 0.21 0.48%
set2 40.0 0.14 0.35%
set3 35.9 0.02 0.06%
set4 69.1 0.29 0.42%
set5 70.3 0.69 0.98%
set6 49.6 1.27 2.56%
set7 77.4 0.22 0.28%
set8 74.2 0.87 1.17%
set9 55.2 0.57 1.03%

Finally, we add one sampling point for the thermal conductivity parameter of sink ma-

terials after we did for Al and Cu in our model and to see how themodel works. Specifi-

cally, we add the thermal-power data for Magnesium (Mg), whose thermal conductivity is

160W/(m ·K) as a heat sink material (Cu has390W/(m ·K) and Al has240W/(m ·K).).

In this case,x2 in Section 6.3 are not only including linear and crossing terms, but also

including squared terms. We also need to add one columnx2
2 to coded variable matrixX

and update the corresponding item values inX.

Fig. 6.17(a) and Fig. 6.17(b) show the temperatures on the center of core0 and heat
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Table 6.2: Average errors and relative errors between the computed and given temperatures
Parameter Average Average
settings Error (◦C) Relative Error (◦C)

set1 0.06 0.16%
set2 0.18 0.49%
set3 0.02 0.07%
set4 0.15 0.23%
set5 0.39 0.59%
set6 0.72 1.69%
set7 0.81 1.28%
set8 0.17 0.55%
set9 0.71 1.52%

sink when using an Magnesium heat sink when pulse-like powerinputs are excited for the

generated models using the new training data. In these caseswe setξ1 = 0, ξ2 = 160,

ξ3 = 1 or ξ3 = 0, and others to zeros. ParThermPOF can still obtain enough accurate

results.
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(a) Temperatures on core0 when using a Mag-
nesium (Mg) heat sink.
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(b) Temperatures on the center of heat sink
when using a Magnesium (Mg) heat sink.

Figure 6.17: Thermal simulation results on specific values of parameters

Now we report some CPU times for the proposed method and compare them with

FloTHERM [18], which uses advanced numerical techniques to compute the thermal re-
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sponses. In the FloTHERM, each run for one setting (with fixedthermal materials for heat

sink, heat spreader, ambient temperature and thermal conditions) takes about 25 minutes

for 1000 transient steps.

While in ParThermPOF, the training process takes40 seconds for 5 inputs and 19 coef-

ficients, which means performs5 × 19 matrix pencil operations [36]. After we obtain the

models from training part, the simulation time is much less.For the problem we have, it

takes 2.81 seconds to compute the 19 coefficients for the whole simulation period (1000

steps). For one particular response at one time step, it onlycosts 0.002s. The reduced model

has 535X speedup over FloTHERM if we only consider the transient simulation time, and

35X speedup over FloTHERM if we consider both training and transient simulation time.

As a result, the proposed compact modeling is much fast than the full-blown numerical

simulation.

6.5 Summary

In this chapter, we have proposed a new architecture-level parameterized dynamic ther-

mal behavioral modeling algorithm for emerging thermal-related analysis and optimiza-

tion problems for high-performance chip-multiprocessor design. The proposed compact

thermal model will be used to predict the thermal response ofnew package designs once

its accuracy has been calibrated and validated with the detailed models. This is the de-

sign methodology to be used by our industry partner. We propose a new approach, called

ParThermPOF, to build the parameterized dynamic thermal behavioral models from accu-

rately computed thermal and power information using the sophisticated FEA (Finite Ele-

ment Analysis) or CFD (Computational Fluid Dynamics) toolsat architecture level. The
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new method is a top-down, black-box approach, meaning it does not require any internal

structure of the systems and it is very general and flexible. ParThermPOF is able to in-

clude a number of parameters such as location of thermal sensors in a heat sink, different

components (heat sink, heat spreader, core, cache, etc.), thermal conductivity of heat sink

materials, etc. The new method consists of two steps: first, aResponse Surface Method

(RSM) based on low-order polynomials is applied to build theparameterized models at

each time point for all the given sampling nodes in the parameter space (except for time).

Second, an improved Generalized Pencil-Of-Function (GPOF) method, called ThermPOF,

is employed to build the transfer-function-based models for each time-varying coefficient

of the polynomials generated in the first step. Simulation results on a practical quad-core

microprocessor show that the generated parameterized thermal behavioral models can be

built very efficiently and the temperatures computed from resulting models match the given

temperatures well for given parameter space in the time domain. The compact models by

ParThermPOF offer two order of magnitudes speedup over the commercial thermal analy-

sis tool FloTHERM [18] on the given examples from our industry partner.
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Chapter 7

Conclusion

In this dissertation, we have finished deep studies on several modeling and simulation al-

gorithms of on-chip power delivery networks and temperature profile on multi-core micro-

processors.

7.1 Modeling and simulation of on-chip power delivery

networks

Reliable on-chip power delivery is a challenging design task for sub-100nm and below

VLSI technologies as voltage IR drops become more and more pronounced. This situation

gets worse as technology continues to scale down. And efficient verification of power

integrity becomes critical for design closure. In addition, the increasing process-induced

variability makes it even worse for reliable power deliverynetworks. The process induced

variations manifest themselves at different levels (waferlevel, die-level and within a die)

and they are caused by different sources (lithograph, materials, aging, etc.).
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For power delivery networks without considering process variations, we have proposed

a new fast simulation method ETBR for extended truncated balanced realization, which

uses MOR (Model Order Reduction) to speedup the simulation.ETBR is based on a more

accurate reduction framework: truncated balanced realization, which was shown to be more

accurate than Krylov subspace method used in EKS method. ETBR also avoids the explicit

moment representation of the input signals, which have well-known numerical problems in

the past. Instead, it uses spectrum representation of inputsignals by fast Fourier transfor-

mation. As a result, ETBR is much more flexible for different types of input sources and

can better capture the high frequency contents than EKS and this leads to more accurate

results for fast changing input signals. To make ETBR more accuracy, we further introduce

an error control mechanism into it. The improved method is called ETBR IR. The error

control mechanism is based on the system residuals as well asthe novel effective resistance

concept to compute the errors in terms of more useful voltagedrop values. The on-the-fly

error reduction works well for compensating high frequencyaccuracy loss related to disrup-

tive tap current waveforms in typical industry power delivery networks. ETBRIR provides

an efficient way to easily trade errors for speedup to suit different applications. Numerical

results show ETBRIR can significantly reduce the errors of the existing ETBR method at

the similar computing cost, while it can have 10X and more speedup over the the commer-

cial power grid simulator in UltraSim with about 1-2% errorson a number of real industry

benchmark circuits.

For power delivery networks with considering process variations, we have proposed a

novel scalable statistical simulation approach for large power grid network analysis consid-

ering process variations. The new algorithm is very scalable for large networks with a large

number of random variables. The new method, called varETBR,is based on the previously
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proposed extended truncated balanced realization (ETBR) method. To consider the varia-

tional parameters, we extend the concept of response Grammian, which was used in ETBR

to compute the reduction projection subspace, to the variational response Grammian. Then

Monte Carlo based numerical integration is employed to multiple-dimensional integrals.

Numerical examples, on a number of the IBM benchmark circuits [47] up to 1.6 million

nodes, show that the varETBR can be up to1900X faster than the Monte Carlo method,

and is much more scalable than the StoEKS method [42, 41]. varETBR can solve very

large power grid networks with large numbers of random variables, large variation ranges

and different variational distributions.

To further speedup the MOR process used in the fast simulation, a hierarchical Krylov

subspace projection based MOR approach, hiePrimor, is proposed. Different from the

traditional flat MOR, The new method combines the partitioning strategy and the Krylov

subspace method to speed up the reduction process. hiePrimor is more suitable for reducing

many large global interconnects like coupled bus, transmission lines and large clock nets

where the number of ports are general not significant. The newmethod is a very general

hierarchical model order reduction technique and it works for general parasitic intercon-

nect circuits modeled as RLC circuits. Numerical results demonstrate that hiePrimor can

be significantly faster (up to 5x) and more scalable than the flat projection methods like

PRIMA and be order of magnitude faster than PRIMA with parallel computing without

loss of accuracy. Interconnect circuits with up to 4 millionnodes can be analyzed in a few

minutes even in Matlab.
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7.2 Modeling and simulation of temperature profile on multi-

core microprocessors

Besides the on-chip power delivery, excessive on-chip temperature has also become a first-

tier design constraint as CMOS technology scales into the nanometer region. The exponen-

tial increase of power density of the high-performance microprocessors leads to the rapid

rising of the average chip temperature. Higher temperaturehas significant adverse impacts

on chip package cost, performance, and reliability. Multi-core techniques provide a viable

solution to temperature/power problems. However, designing thermal efficient multi-core

microprocessors remains a challenging problem as the temperature in each core can be dra-

matically different and the resulting large temperature gradients can produce mechanical

stress and degrade the chip reliability.

In this dissertation, we have investigated a new architecture-level dynamic thermal char-

acterization problem from a behavioral modeling perspective to address the emerging ther-

mal related analysis and optimization problems for high-performance multi-core micro-

processor design. We have proposed a new thermal behavioralmodeling approach for fast

temperature estimation at the architecture level for multi-core microprocessors. The new

approach, called ThermPOF, , builds the transfer function matrix from the measured or sim-

ulated thermal and power information. It first builds behavioral thermal models using the

generalized pencil-of-function (GPOF) method. However, the direct use of GPOF does not

work for thermal systems. Based on the characteristics of transient chip-level temperature

behaviors, we make two new improvements over the traditional GPOF: First we apply a

logarithmic-scale sampling scheme instead of the traditional linear sampling to better cap-

ture the rapid temperatures change over the long period. Second, we modify the extracted
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thermal impulse response such that the extracted poles fromGPOF are guaranteed to be

stable without accuracy loss. Finally we further reduce thesize of thermal models by a

Krylov subspace reduction method to speedup the simulationprocess. Numerical results

on a real quad-core microprocessor show that generated thermal behavioral models match

the measured temperature very well.

Further, we have extended ThermPOF into ParThermPOF, a parameterized dynamic

thermal behavioral modeling algorithm for emerging thermal-related analysis and opti-

mization problems for high-performance chip-multiprocessor design. The proposed com-

pact thermal model will be used to predict the thermal response of new package designs

once its accuracy has been calibrated and validated with thedetailed models. ParThermPOF

builds the parameterized dynamic thermal behavioral models from accurately computed

thermal and power information using the sophisticated FEA (Finite Element Analysis) or

CFD (Computational Fluid Dynamics) tools at architecture level. ParThermPOF consists

of two steps: first, a Response Surface Method (RSM) based on low-order polynomials

is applied to build the parameterized models at each time point for all the given sampling

nodes in the parameter space (except for time). Second, ThermPOF is employed to build

the transfer-function-based models for each time-varyingcoefficient of the polynomials

generated in the first step. Numerical results on a practicalquad-core microprocessor show

that the generated parameterized thermal model matches thegiven data very well. The

compact models by ParThermPOF offer two order of magnitudesspeedup over the com-

mercial thermal analysis tool FloTHERM [18] on the given examples.
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