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ABSTRACT Microbiome-based disease classification depends on well-validated disease-
specific models or a priori organismal markers. These are lacking for many diseases.
Here, we present an alternative, search-based strategy for disease detection and classifi-
cation, which detects diseased samples via their outlier novelty versus a database of
samples from healthy subjects and then compares these to databases of samples from
patients. Our strategy’s precision, sensitivity, and speed outperform model-based ap-
proaches. In addition, it is more robust to platform heterogeneity and to contamination
in 16S rRNA gene amplicon data sets. This search-based strategy shows promise as an
important first step in microbiome big-data-based diagnosis.

IMPORTANCE Here, we present a search-based strategy for disease detection and
classification, which detects diseased samples via their outlier novelty versus a data-
base of samples from healthy subjects and then compares them to databases of
samples from patients. This approach enables the identification of microbiome states
associated with disease even in the presence of different cohorts, multiple sequenc-
ing platforms, or significant contamination.

KEYWORDS microbiome, search, disease detection and classification

Microbiome-wide association studies have found diagnostic (and prognostic) ap-
plications in many diseases (1). Current strategies for such diagnosis typically

build computational models by identifying organismal or gene-based biomarkers from
specifically selected cohorts with validated samples from patients and their healthy
controls via machine learning methods. These models are then applied to the query to
derive a numeric index of disease status, severity, or risk (Fig. 1A). However, such
models generally require an a priori assumption (and samples) of a particular disease
and its corresponding control samples from healthy subjects. In addition, extending a
model to other studies, even of the same disease, can be challenging, since selection
of organismal biomarkers generally requires careful consideration of the effects of a
plethora of factors, including host metadata (e.g., age, disease stage, etc. [2]) and
sequencing technologies. Moreover, organismal biomarkers can be associated with
multiple diseases, which can cause misclassification (3). Because efforts to systemati-
cally evaluate and curate disease-specific statistical models have only just begun (4),
their availability for use in diagnosis is limited.

Here, we present an alternative, search-based strategy for disease detection and
classification. Using a database of samples from healthy subjects as a reference
distribution we employ an outlier detection strategy to identify disease status.
Then, disease classification is achieved by subsequent comparison to databases of
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samples from patients. Using standard performance measures, the precision, sen-
sitivity, and speed of our search-based method outperform the widely used model-
based approaches of random forest (RF), support vector machine (SVM), and
eXtreme Gradient Boosting (XGBoost). In addition, we demonstrate that our ap-
proach is more robust to platform heterogeneity and contamination in 16S rRNA
gene amplicon data sets.

RESULTS
Search-based disease detection and multiple classification with a two-step

process. We recently developed Microbiome Search Engine (MSE), which rapidly and
precisely identifies matches to a query sample from hundreds of thousands of known
microbiomes based on their phylogeny-based compositional similarity (5). We hypoth-
esized that such a search capability, which is at the whole-microbiome level, could be
exploited to address the aforementioned limitations of model-based approaches
(Fig. 1A). To test this hypothesis, we proposed a search-based strategy for microbiome-
based diagnosis using MSE in two steps (Fig. 1B). (i) We assign disease status to samples
identified as outliers relative to a large, comprehensive database of samples from
healthy subjects (i.e., a baseline database); (ii) candidate disease(s) are then selected via
multiple classification of diseases performed across cohorts via similarity to a database
of samples from diseased subjects.

Step I: The disease status of a sample is determined via an outlier microbiome
novelty score (MNS) against the baseline database. Taxonomic profiles are available
for tens of thousands of human-associated microbiomes on the operating taxonomy
unit (OTU) level that have been generated by a large number of studies via sequencing
16S rRNA gene amplicons. Because the diversity of human microbiomes from healthy
subjects in 16S studies is nearly saturated as defined by the MNS (5) (see Fig. S1 in the
supplemental material), we hypothesized that healthy human microbiome data could
be used as a baseline to predict disease status, because samples from individuals
with disease were expected to exhibit extreme MNS values (Fig. 1B). To test this
hypothesis, we first established a fecal baseline database which consisted of all

FIG 1 Comparison of model-based and search-based diagnosis. (A) The model-based approach starts by
defining specified targeted diseases with training samples and then selects biomarkers for modeling. The
whole procedure is repeated for updating the model upon availability of new training samples. (B) The
search-based approach starts by detecting disease samples based on their outlier MNS compared to a
comprehensive healthy-sample database, without making any a priori hypothesis about any diseases,
and then performs multiple-disease classification for the unhealthy samples based on their nearest
compositional matches in a database of samples from diseased subjects. The two databases are updated
when additional reference microbiomes are available.
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human fecal samples from healthy subjects from the Qiita database (http://qiita.ucsd
.edu; 6) (n � 15,704 from 56 studies and 94 countries/regions; both adults and children;
Table S1). We constructed a test data set, Data Set Gut, which included fecal micro-
biomes assessed by 16S rRNA gene amplicon profiling (n � 3,113 from 9 studies,
excluded from the baseline database; see Materials and Methods; Table S2). Specifically,
Data Set Gut contained samples derived from individuals without disease (healthy
controls) and from individuals diagnosed with a disease, either inflammatory bowel
disease (IBD), human immunodeficiency virus (HIV), colorectal cancer (CRC), or enteric
diarrheal disease (EDD).

Each of the 3,113 samples in Data Set Gut was searched against the baseline
database to calculate its MNS, quantifying the degree of structural dissimilarity be-
tween a query microbiome and those in the healthy baseline database (5) (see Materials
and Methods). The MNS of the healthy control samples in Data Set Gut were signifi-
cantly lower than those from individuals with disease (Wilcoxon rank-sum test P
value � 0.01, corrected by removing longitudinal replicates; Fig. 2A). Such extreme
taxonomic compositions relative to the baseline data can be exploited for the detection
of samples with disease. In fact, this MNS-based detection reached an area under the
curve (AUC) of 0.81 (a maximum statistical F1-score of 0.78 was reached when the MNS
was set to 0.072; recall � 0.80; precision � 0.75) for Data Set Gut (Fig. 2B) in the absence
of any preexisting knowledge of disease.

Step II: Unhealthy samples detected in step I are further searched against a
curated database of microbiomes from diseased subjects by MSE for multiple
disease classification. After the identification of disease status in step I, the goal is to
pinpoint the specific underlying disease (Fig. 1B). To test the accuracy of MSE-based
diagnosis across cohorts, Data Set Gut was analyzed for 10-fold cross-validation,
repeated 30 times, while models were constructed using XGBoost, RF, and SVM in

FIG 2 Microbiome search-based disease status detection and classification. (A) MNS of gut samples from patients (IBD, HIV, CRC, EDD, or their
pools) are significantly different from those of samples from healthy subjects. (B) Receiver operating characteristics (ROCs) of MSE-based disease
prediction. (C) Comparison of MSE-based and model-based (XGBoost, RF, and SVM) methods for performance via Kappa coefficients. (D) Recall
and precision of MSE versus models for each cohort. Each vertex of the pentagon represents a recall/precision value on a specific disease, and
thus, collapse on any vertex reflects shortcoming of the method in detecting the corresponding disease. For boxplots in A and C, central lines
represent the medians, the bounds of the box represent the quartiles, and error bars represent the local maximum and local minimum values.
***, P � 0.01. Source data are provided as Data Set S1.
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parallel (see Materials and Methods). Single samples were chosen from host individuals
that had been sampled multiple times during the cross-validation to avoid statistical
bias (see Materials and Methods). We then used the Kappa coefficient (k) to compare
the overall performance of MSE with these three model-based approaches on multi-
cohort classification which measures the rates of both correctly classified queries and
misclassified ones. (The AUC performance measure is for binary discrimination and is
not well suited to more than two categories.) Among the five cohorts (IBD, HIV, CRC,
EDD, and control) of Data Set Gut, MSE achieved a k of 0.85 � 0.03, indicating a striking
agreement with the experimental design (Fig. 2C). The distribution of k from MSE in the
30 repetitions was significantly higher than that of all the model-based approaches
(paired Wilcoxon rank-sum test P value � 0.01; refer to Table 1 for statistical details;
Fig. 2C). Furthermore, MSE-based classification features less weakness of recall and
precision for each of the four diseases; in contrast, the model-based metrics suffer from
certain obvious biased performance, such as lower recall of identifying CRC for XG-
Boost, IBD for RF, and EDD and CRC for SVM (Fig. 2D).

Robustness of MSE to technical data variation and to contamination. Robust-
ness to sequencing platform heterogeneity. Heterogeneity in sequencing platform is
frequently encountered in cumulative disease-specific microbiome data sets. This has
become a hurdle for cross-cohort application of microbial disease markers (7). We
tested the robustness of MSE to such technical data variation. In step I of MSE, the
Roche 454 and Illumina sequences in Data Set Gut carry an AUC of 0.86 and 0.80,
respectively, which are both close to the overall AUC of 0.81 (Fig. 3A). In step II, the k
of �0.8 by leave-one-out cross-validation (LOOCV) also supports excellent performance
of MSE in the simultaneous presence of the two sequencing platforms (0.79 for Illumina
and 0.87 for 454; Fig. 3B). In contrast, accuracy of the model-based diagnosis is heavily
dependent on sequencing platform variation (8), as suggested by the preference for
Illumina samples over 454 samples (Fig. 3B). Thus, MSE was less affected by the change
in sequencing platform than the model-based approaches. This is a key advantage in
the reuse of data to avoid the per-study bias (7) due to the sequencing-platform
variation for 16S amplicon-based data sets.

Robustness to sequence contamination. Another factor that greatly affects the
accuracy of model-based disease classification is contamination by DNA from the
experimental workflow or from the environment. To probe the robustness of MSE to
this problem, randomly selected OTUs from two different sources of contamination—
reagent blank microbiomes and indoor environment microbiomes—were mixed into
samples in testing Data Set Gut (see Materials and Methods). These represent the most
likely source of contamination for human microbiome samples in the context of disease
diagnosis. The rate of contamination was set to 5%, 10%, 15%, and 20%. Even at a high
contamination rate of 20%, MSE still offers a reasonable performance, in both disease
status detection (i.e., step I; AUC � 0.77 with reagent blank contaminations in Fig. 3C;

TABLE 1 Statistical details of the Kappa coefficients for each method

Methoda Repetition (time) Mean SD 95% CIb P value to MSEc

MSE 30 0.822 0.025 0.813–0.831
XGBoost 30 0.789 0.026 0.779–0.798 2.762e-06
RF 30 0.792 0.036 0.778–0.805 3.128e-04
SVM 30 0.763 0.028 0.753–0.774 1.863e-09
MSE (KO) 30 0.543 0.050 0.524–0.561 1.863e-09
MSE (cosine distance) 30 0.729 0.041 0.713–0.744 1.863e-09
MSE (Euclidean distance) 30 0.636 0.049 0.618–0.654 1.863e-09
MSE (N � 5) 30 0.810 0.026 0.800–0.819 0.184
MSE (N � 15) 30 0.832 0.029 0.822–0.843 0.191
MSE (N � 20) 30 0.832 0.032 0.820–0.844 0.262
MSE (Unweighted) 30 0.806 0.029 0.795–0.817 4.408E-05
aN, number of search matches.
bCI, confidence interval.
cP values were calculated using the Paired Wilcoxon test.
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AUC � 0.71 with indoor contaminations in Fig. 3E) and disease classification (i.e., step
II; k � 0.75 � 0.03 in Fig. 3D; k � 0.76 � 0.03 in Fig. 3F). Furthermore, in step II the
robustness to reagent blank contaminations of MSE was 3.2-fold higher than that of all
three model-based methods (average Δk with 20% OTU contamination versus with 0%
OTU contamination: 9.0% versus 38.4%; Fig. 3D), whereas robustness to indoor envi-
ronment contamination was 2.1-fold higher than that of model-based methods (aver-
age Δk: 7.6% versus 16.5%; Fig. 3F). Specifically, when 20% blank contaminated OTUs
were present in a given query sample, MSE still featured recall of 83.4% and 76.6% in
detecting HIV and IBD, respectively. In contrast, the three model-based methods
showed a reduction in recall to 32.0% and 37.5%, respectively, on average. Thus, MSE
was much more robust to DNA contamination than model-based methods.

Stability across unrelated studies. To test the stability of MSE performance across
unrelated studies, fecal microbiome samples from a second, independent IBD cohort
were analyzed (9) (n � 375 and 393 for samples from diseased and healthy subjects,
respectively, which were not included in the baseline database and Data Set Gut). In
step I, the MNS of patient samples were significantly higher than those of controls
(Wilcoxon rank-sum test P value � 0.01), based on which they were detected with
AUC � 0.71 (Fig. 3G) without a priori knowledge. Searching against Data Set Gut, IBD
status was identified with k � 0.75 (recall � 0.79 and precision � 0.95). This compared
favorably to an average k of 0.52 (recall � 0.47 and precision � 0.67) for model-based
approaches using Data Set Gut as training (Fig. 3H). Therefore, MSE’s performance was
stable across independent studies of IBD.

Data features that influence disease detection and classification. Size of the
baseline database. As MNS is derived in reference to samples from healthy subjects,
we evaluated the effect of baseline database size on the accuracy of MSE step I. The size
of the fecal baseline database was rarefied from n � 1,000 to 15,000 with step 1,000.
This was repeated 10 times. Step I was performed to detect samples with disease in
Data Set Gut using the rarefied baselines. There was a strong positive correlation
between AUC and baseline database size (Pearson r � 0.995; Fig. 4A). For instance,

FIG 3 Robustness of MSE to sequencing platform change and DNA contamination. Gut microbiome samples were used as the example. (A) ROCs of MNS-based
disease status prediction under two sequencing platforms. (B) Difference in Kappa coefficient (k) of disease classification under two sequencing platforms. ROCs
of MNS (C) and variation of k for multiple-disease classification (D) with reagent blank microbiome contaminations. ROCs of MNS (E) and variation of k of multiple
disease classification (F) with indoor environmental contaminations. (G) ROC of MNS-based disease detection by independent IBD cohorts and (H) disease
classification for cross-cohort data sets by MSE and by model-based approaches. For boxplots in D and F, central lines represent the medians, the bounds of
the box represent the quartiles, and error bars represent the local maximum and local minimum values. Source data are provided as Data Set S1.
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when the baseline database size was n � 1,000 healthy microbiomes, the AUC was 0.65,
in contrast to an AUC of 0.81 for n � 15,704. Therefore, the number of healthy control
samples is a crucial determinant of MSE performance. This result indicates that MSE
performance can still be improved with the accumulation of more microbiomes from
healthy individuals (Fig. 4A). Given that the number of shotgun-sequenced samples
from healthy subjects remains a tiny fraction of those 16S rRNA genes sequenced, the
results also underscore the key advantage of 16S data sets for search-based diagnosis.

The accuracy of MSE-based disease detection differed between geographic
regions. Since the diversity of the human microbiome is strongly associated with the
geographical region (10), we assessed whether geographical sampling coverage in the
baseline database affected MSE step I performance. The human hosts in Data Set Gut
primarily reside in the United States (n � 1,832), Sweden (n � 695), the United Kingdom
(n � 185), and Australia (n � 26), with the remaining being from 61 other countries/
regions (n � 375). We split the baseline database into two subsets, those from the same
regions as Data Set Gut (n � 12,892) and those from regions different from Data Set Gut
(n � 2,812). Each of the two subsets were then separately used as a baseline database
for detecting the unhealthy microbiome in Data Set Gut. To avoid the bias of uneven
sample amount, the subset from the original regions was rarefied to n � 2,000 samples
(with 10 replicates) to avoid the random bias. The baseline from the same regions
as the test set yielded higher precision (AUC � 0.68 � 0.004) than that from differ-
ent regions (AUC � 0.60 � 0.004) in detecting diseased samples (Wilcoxon rank-
sum test P value � 0.01; Fig. 4B). Therefore, MSE performance is affected by the
representation of the query samples’ geographic region in the baseline database.

Taxonomic structure provided higher accuracy in MSE diagnosis than func-
tional profiles. Here, we also employed the KEGG Orthology (KO)-based search (see

FIG 4 Microbiome data features that influence the performance of search-based disease detection with
gut samples. (A) The AUC of MNS-based disease detection is affected by the number of baseline samples.
(B) The AUC of MNS-based disease detection is affected by the geographic regions of baseline samples.
Error bars represent the standard deviation. (C) OTU-based search has higher AUC than KO-based search
in detecting disease samples by MNS. (D) Kappa coefficients of OTU-based multiple classification are
significantly higher than those of the KO-based method. Central lines represent the medians, the bounds
of the box represent the quartiles, and error bars represent the local maximum and local minimum
values. ***, P � 0.01. Source data are provided as Data Set S1.
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Materials and Methods) using PICRUSt (11) inferred functional profiles of 16S data for
step I and step II instead of the OTU. In step I, the AUC of 0.67 from the KO-based search
for disease detection on Data Set Gut was markedly lower than that from the OTU-
based search (AUC � 0.81; Fig. 4C). In step II for disease classification, the k coefficients
of the KO-based search were significantly lower than that from the OTU-based ap-
proach on the test data set (paired Wilcoxon rank-sum test P value � 0.01; refer to
Table 1 for statistical details; Fig. 4D). Thus, OTU-based MSE performed better than
function-based MSE in our tests. There are a number of possible explanations for this
observation. First, in PICRUSt, the KO profiles are derived by the products of (i) the
abundance of contributed OTUs, (ii) the 16S rRNA gene copy number of the contributed
OTUs, and (iii) the KO weight of contributed OTUs. Second, the KO profiles do not
contain additional information to measure the relationships among compositional
features such as the phylogeny of OTUs, which provides higher accuracy in computing
the similarity (see Materials and Methods for details). Third, in machine learning-based
classification of biologically meaningful categories, PICRUSt-predicted KO profiles do
not necessarily offer improvement over microbial composition data alone (and might
actually offer worse results if the aim is to obtain biomarkers of physiological or
ecological states [12]). As a next step, it will be intriguing to compare the performance
of OTU-based MSE versus searches via functional assignment of shotgun reads once
more shotgun metagenomic data sets are available.

Search parameters that influence performance of MSE-based diagnosis. We
compared the influence of computing sample similarity by a phylogeny-based algo-
rithm (refer to Materials and Methods for details) to that of cosine distance and
Euclidean distance on the performance of step I and step II. In step I, MSE achieved an
AUC of 0.81 for disease detection, which is higher than results based on cosine distance
(AUC � 0.74) or Euclidean distance (AUC � 0.71; Fig. 5A). In step II, the disease classi-
fication using MSE achieved a mean k of 0.82, significantly higher than that achieved
using cosine distance (k � 0.73) or Euclidean distance (k � 0.64; Fig. 5B; Table 1). Thus,
phylogeny-based similarity among microbiome samples can provide higher accuracy in
disease detection and classification.

The link between MSE performance and the number of search matches (N) was
evaluated for MNS calculation (N in Equation 4 below; see Materials and Methods) in
step I and for disease classification (N in Equation 8 below) in step II. N was set to 5, 10,
15, and 20. For step I, increasing N skewed the detection results and decreased the AUC
(Fig. 5C). For step II, k remained stable with the change of N (Table 1; Fig. 5D). Therefore,
N � 10 was chosen as a balanced parameter for the two-step diagnosis in MSE.

We probed the influence of the weights for MNS and classification on the diagnosis.
For both MNS (Equation 4 below; see Materials and Methods) and disease classification
(Equation 8 below), we applied the ranks of matches as weights. In both step I and step
II, weighted equations performed better than unweighted ones as follows: AUC of 0.81
for weighted MNS versus 0.75 for unweighted MNS in step I (Fig. 5E) and mean k
coefficients of 0.82 for weighted classification versus 0.81 for unweighted classification
in step II (paired Wilcoxon rank-sum test P value � 0.01; see Table 1 for statistics;
Fig. 5F). Therefore, weights that favor higher-ranked matches improve the performance
of MSE-based predictions.

Rapid microbiome classification by MSE. By developing a highly efficient indexing
strategy that identifies matching candidates, MSE features rapid search, i.e., within
0.3 sec for a complete two-step diagnosis against a 15,000-sample database. In MSE,
update or expansion of databases is faster and easier than in model-based approaches.
The latter require that the statistical model separating cases from controls be retrained
from scratch each time new samples are added (Fig. S2). Furthermore, for MSE, the
search speed is quite stable and much less sensitive to database size increase than
exhaustive search (see Materials and Methods), and optimizations, including data
reencoding and memory allocation already enable MSE to handle large-scale data sets
at the million-sample level (Fig. S3). Thus, with the rapid accumulation of microbiome

Microbiome Search-Based Disease Detection

March/April 2020 Volume 5 Issue 2 e00150-20 msystems.asm.org 7

https://msystems.asm.org


data sets globally, the performance gap in speed is expected to widen as more samples
are added.

DISCUSSION

Here, via MSE, we show that microbiome big data assembled from the many but
diverse past microbiome-sequencing studies can serve as a basis for microbiome-based
disease diagnosis. We employ a two-step process in which a query is evaluated first
against a baseline database of microbiomes from healthy individuals, followed by
comparison against a database of disease-specific samples. The first step constitutes an
outlier detection strategy. The second uses a search-based k-nearest-neighbor (KNN)-
like classification strategy. The resulting predictions provide direction and hypotheses
for clinical decision-making. The two-stage approach provides considerable computing

FIG 5 Search parameters that influence the performance of MSE-based disease detection and classifi-
cation. (A) ROCs of MNS-based disease status detection in MSE step I based on different distance metrics.
(B) Kappa coefficients (k) of multiple-disease classification in MSE step II based on distinct distance
metrics. (C) ROCs of MNS-based disease status detection in MSE step I based on different numbers of
matches. (D) k of multiple-disease classification in MSE step II based on distinct numbers of matches. (E)
ROCs of MNS-based disease status detection based on weighted or unweighted MNS. (F) k of multiple-
disease classification based on weighted or unweighted classification. For boxplots in B, D, and F, central
lines represent the medians, the bounds of the box represent the quartiles, and error bars represent the
local maximum and local minimum values. ***, P � 0.01. Source data are provided as Data Set S1.
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performance advantages for continuous updating of the microbiome databases to
incorporate new studies compared to alternate model-based approaches. Moreover,
MSE does not require curation of disease-specific models or biomarkers. MSE also
provides a new approach to disease prediagnosis, i.e., deciding whether the micro-
biome is indicative of a disease status.

In light of the general shift of microbiome-sequencing focus from healthy to
diseased hosts (13–15), the findings here advocate for increased geographic sequenc-
ing of additional baseline samples. At present, in the healthy gut microbiome database,
over 80% of the samples are from the United States, the United Kingdom, and other
European countries, while other populations are poorly represented. As the accuracy of
MSE prediction is dependent on the number of microbiomes, the underrepresented
populations should be prioritized for healthy microbiome sampling. However, healthy
microbiomes from distant populations are also of value; for example, for IBD diagnosis
in U.S. patients, using healthy non-U.S. samples instead of healthy U.S. samples as a
baseline generates an AUC of 0.68 (reduced from 0.79), although even this lower AUC
is still meaningful. Thus, a coordinated effort with global sampling coverage is war-
ranted.

On the other hand, despite its performance advantages when tested on human gut
microbiomes for several disease cohorts, this type of search-based classification strat-
egy will not offer better performance than other machine learning methods under all
circumstances (in accordance with the “no free lunch” theorem in machine learning).
For example, for classification of human body sites from microbiome data, the accuracy
of MSE is equivalent to or lower than several machine learning approaches we tested
(Table S4). Therefore, the potential, as well as limitations, of MSE in predicting the
origin, state, and function (or in general, any of the metadata) of a microbiome sample
need to be explored in future studies to develop general guidelines for applicability.
Nevertheless, we expect that search via MSE will become an important first step in any
microbiome-based diagnosis, just as a BLAST search is in sequence-based diagnosis
today.

MATERIALS AND METHODS
Data sets for testing MSE performance. Data Set Gut (Table S2) consists of 3,113 fecal gut

microbiome samples collected from eight studies, among which, 993 samples were clinically identified
as inflammatory bowel disease (IBD), 120 as colorectal cancer (CRC), 360 as HIV, 222 as enteric diarrheal
disease (EDD), and 1,418 samples as healthy controls. These 16S rRNA gene amplicons were from various
regions (e.g., V1-V2, V1-V3, V3-V4, V4, and V3-V5), and sequences were produced using a Roche 454,
Illumina MiSeq, or Illumina HiSeq system.

Processing of 16S rRNA gene amplicon data for MSE. All microbiome samples were processed
from their published sequence data using Parallel-META 3 version 3.4.3 (16) with Greengenes 13-8 (17)
on the OTU similarity level of 97%. Variation of 16S rRNA gene copy number was normalized based on
the Integrated Microbial Genomes (IMG) database (18) to maximally reduce the bias of comparison with
samples from different platforms and studies. The functional profiles were predicted with the PICRUSt
(11) algorithm and annotated with KEGG Orthology. We set a minimum sequence number of 500 and a
minimum 16S rRNA gene mapping rate of 80% for each sample to ensure high quality. Output of this
procedure then serves as the input to MSE.

Brief overview of MSE. MSE aims to rapidly identify the structurally “similar” microbiomes of a given
query microbiome from a large-scale depository of known microbiomes (5). The search module of MSE
consists of a series of algorithms that perform two phases. In the “database construction” phase, MSE
builds the search index for all database samples by partitioning their relative abundance of operational
taxonomy units (OTUs) into index keys for fast fetch. Next, the “database search” phase is a two-tier
process as follows: (i) with a given query sample, MSE performs index fetching by calculating its index
keys and then selects a constant number (e.g., 200) of “candidate matches” that have the shortest
distances to the query on index keys; (ii) MSE evaluates the phylogeny-based microbiome similarity
(defined below) by a pairwise comparison between the query and each of the “candidate matches” via
the Meta-Storms algorithm (19) on the OTU level, so as to precisely identify the top matches.

Defining Tsimilarity as the time taken to calculate the phylogeny-based similarity between two
microbiomes in a database with N samples, the time consumed for a single exhaustive search is

Texhaustive � N � Tsimilarity (1)

In comparison, defining the dynamic index-fetching time as Tindexing, the time taken for a single
dynamic index-based search by MSE is

TMSE � Tindexing � 200 � Tsimilarity (2)
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Actually, Tindexing « 200 � Tsimilarity, even for searches in a database with one million samples.
Therefore, the search time can be theoretically approximated as

TMSE � 200 � Tsimilarity (3)

We found that for a single search in the database with 10,000 samples, the exhaustive search took
1.15 s, and MSE used 0.14 s (Fig. S3). When the database size increased to 1,000,000 (100 times bigger),
the time of exhaustive search exhibited a linear increase with database size of 99.06 s. MSE finished in
0.29 s (with 98.84% consistency in search result to the exhaustive search; Fig. S3), which is 340 times
faster than exhaustive search. Therefore, the querying speed of MSE is much less sensitive to database
size than exhaustive search.

Calculation of microbiome novelty score. The microbiome novelty score (MNS) is proposed to
evaluate the compositional uniqueness of a microbiome sample compared to a reference microbiome
database (5). With a given query sample q and its top N matches, for its match i, whose microbiome
similarity is Si (see equation 5), the MNS(q) was calculated from the top N ordered matches (we used
N � 10)

MNS � 1 �
� i�1

N �Si � �N � i � 1��
� i�1

N �N � i � 1�
(4)

For each microbiome sample, its MNS was derived by searching it against all samples in the reference
database. Thus, a higher MNS means lower similarity to those microbiomes in the database, suggesting
higher novelty and uniqueness.

Defining the microbiome similarity score. We used a microbiome similarity measure that has a
strong correlation with the UniFrac metric (Spearman r � 0.915 [20]) and is optimized for large-scale
parallel computing. The phylogeny-based similarity of two microbiomes (20) assumes a phylogenetic
tree representing the relationships between the union of sequences from the samples. To compute a
similarity between two samples, we first define the node weights for an internal node of the tree as

�j � |�0 � �1|�1 � �j� (5)

where �j is the branch length leading to node j. Thus, for node i, with descendants j and k, the node
weights are

��i� � ��j, �k� (6)

If node i is a terminating edge, then � is the unordered set of abundance of OTU i in the two samples.
The similarity, S, of the two samples is then

S ��
i�1

n

min��i� (7)

where n is the number of nodes on the tree.
Search-based classification of multiple disease status. The disease status of a new microbiome is

predicted based on the metadata of its top N matches (we used N � 10). For a status metadata, G � {g1,
g2, . . . ., gm} for healthy status (e.g., in Data Set Gut, m � 5, g1 � IBD, g2 � HIV, g3 � CRC, g4 � EDD, and
g5 � control), and with a given query sample q and its top N matches, the microbiome similarity to match
i is Si, and then the score of query sample q for status gk is

Score(q � gk) �
� i�gk

Si(N � i � 1)

� j�1
N Sj(N � j � 1)

(8)

Thus, the final classification is determined by the status with the maximum score across all cohorts.
Model-based classification of multiple disease status. We constructed the machine learning

model for multiple disease diagnosis using three metrics of random forest (RF), support vector machine
(SVM), and eXtreme Gradient Boosting (XGBoost). All models were trained and verified using the
taxonomic relative abundances on OTU level after 16S rRNA gene normalization. The RF model was
trained by the randomForest package in R; the SVM model was trained by the svm function in R; the
XGBoost model was trained by the xgboost package in R. The machine learning training processes were
performed with optimized parameters for multicategory classification for microbiome data using the
strategy introduced by Statnikov et al. (21) (Table 2).

Calculation of the Kappa coefficient. The area under the receiver operating characteristic curve
(AUC) is usually used to measure the performance of a model for discrimination between binary states

TABLE 2 Optimized parameters for machine learning-based multiple classification

Method Parametera Value

RF ntree 2,000
RF mtry 2 � �# of OTU
SVM Kernel Polynomial
SVM Degree 3
XGBoost Objective multi:softmax
XGBoost nrounds 20
antree, number of trees; mtry, number of variables sampled at each split; nrounds, maximum number of
iteration times.
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(e.g., a specific disease versus healthy control). Because AUC is not available with a status of �3, we used
the Kappa coefficient (k) to evaluate the performance of MSE in multistate classification. The Kappa
coefficient quantifies the consistency of the sample distribution in multiple cohorts between the
classification results of MSE and the known distribution. k is always between 0 and 1, and the following
intervals provide guidance for interpretation: 0.00 to 0.20, slight consistency; 0.21 to 0.40, fair consis-
tency; 0.41 to 0.60, moderate consistency; 0.61 to 0.80, substantial consistency; and 0.81 to 1.00, almost
perfect consistency. The recall (also referred to as sensitivity; true positive/[true positive � false
negative]) and precision (true positive/[true positive � false positive]) were also calculated to assess the
performance of diagnosing each disease.

We also used reductions in k to quantify the impact of changed sample conditions; specifically, Δk
quantifies the impact of the condition in classification performance.

Removal of replicates in statistical analysis. To avoid the statistical bias due to longitudinal
sampling from the same host, we removed the replicated microbiomes in statistical analysis of both step
I and step II. In step I, among replicates sampled from the same person in each cohort, only one sample
was randomly selected and kept in calculating the results of the Wilcoxon rank-sum test for MNS.
Likewise, during the cross-validation of step II, replicates from the same person in each cohort were also
removed by random selection as in step I before calculating the Kappa coefficient/recall/precision for
MSE and the machine learning-based approaches.

Contamination simulation and test. The reagent blank contamination OTUs were from the reagent
blank microbiomes of the American Gut Project (Qiita ID 10317; 415 reagent blank samples in total;
http://americangut.org/). The indoor environmental contamination OTUs were from the indoor environ-
ment microbiomes of the Qiita public database (11 studies; Table S3). All contamination source
microbiomes were profiled the same way as the baseline samples and test samples. With a target test
sample (the number of mapped reads is m) and a given contamination rate r%, a contamination source
microbiome sample was randomly selected, and m � r% OTUs were randomly extracted from this sample
and mixed into the OTU table of the target sample. The baseline databases of step I and the disease
databases (training samples) of step II were kept as they were (i.e., with no contamination), while
contaminations to Data Set Gut were simulated as described above to test the robustness of the MSE and
the three model-based methods to contaminations.

Evaluation of running speed. To compare the speed of multiple classification between MSE and
machine learning methods, we prepared a simulated data set with different numbers of gut microbiome
samples (3,000, 6,000, 9,000, 12,000 or 15,000) as training data for model-based approaches (which also
serve as the database for MSE) and another 100 samples as testing data (which also serve as the query
for MSE). For model-based machine learning methods, the total running time includes both training time
and testing time. For MSE, the total running time is for a complete two-step diagnosis with database
construction and search (Fig. S2). All tests were performed on a single rack server node with Quad Intel
Xeon E7-4820 CPUs, and multiple threads were enabled for applicable packages (MSE and XGBoost).

Availability of data and materials. MSE is developed and implemented in C/C��. It comes with
a full automatic installer for cross-platform installation and setup in Linux/Mac OS X. The indexing and
searching algorithm is optimized for parallel computing based on multiple CPUs using the OpenMP
library. MSE accepts OTU tables for both database construction and search and thus is compatible with
QIIME/QIIME 2, Parallel-META 3, and many other microbiome profiling tools. Both the source code and
executive binary application packages are available at http://mse.ac.cn. The source code is also posted
to the GitHub repository at http://github.com/qibebt-bioinfo/meta-storms. We have also developed a
QIIME 2 plugin, which can be found at http://github.com/qibebt-bioinfo/q2-metastorms. In addition, all
tests in this work were implemented as Linux shell scripts under Linux/Mac OS X to facilitate reproduc-
tion of the results. Scripts and test data sets are available at the download page of MSE (http://mse.ac.cn).

Data availability. The source data underlying Fig. 2A to D, 3A to H, 4A to D, 5A to F and Fig. S1, S2,
and S3 are provided as Data Set S1. The baseline database samples and contamination samples,
including sequence files and metadata, are available from Qiita (http://qiita.ucsd.edu) using the study IDs
listed in Table S1 and Table S3. Data sets for the evaluation of search-based diagnosis, including
sequence files and metadata, are available from the papers listed in Table S2. All other relevant data are
available upon request.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 0.5 MB.
FIG S2, TIF file, 0.2 MB.
FIG S3, TIF file, 0.3 MB.
TABLE S1, DOCX file, 0.1 MB.
TABLE S2, DOCX file, 0.04 MB.
TABLE S3, DOCX file, 0.03 MB.
TABLE S4, DOCX file, 0.02 MB.
DATA SET S1, XLSX file, 1.6 MB.

ACKNOWLEDGMENTS
We thank Jose Navas for contributing necessary technical improvements to Qiita.
J.X. acknowledges the support of grants 31425002 and 81430011 from the National

Microbiome Search-Based Disease Detection

March/April 2020 Volume 5 Issue 2 e00150-20 msystems.asm.org 11

http://americangut.org/
http://mse.ac.cn
http://github.com/qibebt-bioinfo/meta-storms
http://github.com/qibebt-bioinfo/q2-metastorms
http://mse.ac.cn
http://qiita.ucsd.edu
https://msystems.asm.org


Natural Science Foundation of China (NSFC) and grants KFZD-SW-219-4 and ZDBS-SSW-
DQC002-03 from the Chinese Academy of Sciences (CAS). X.S. acknowledges the
support of grant 31771463 from NSFC and KFZD-SW-219-5 from CAS. R.K. acknowl-
edges the support of grants 1P30DK120515 and R01MD011389 from the U.S. National
Institutes of Health, DBI-1565057 from the National Science Foundation, and G-2017-
9838 from the Alfred P. Sloan Foundation. G.H. and R.K. acknowledge the support of
grant APP1085372 from the National Health and Medical Research Council.

J.X., R.K., and X.S. conceived the idea. X.S., G.J., Y.Z., and D.M. developed the software
and algorithm. X.S., G.J., H.W., Z.S., and S.H. performed the analysis. L.L., Z.X., Z.W., D.M.,
and A.G. contributed to data collection and curation. X.S., J.X., R.K., and G.H. wrote the
manuscript.

We declare that we have no competing interests.

REFERENCES
1. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK,

Dorrestein PC, Knight R. 2016. Microbiome-wide association studies link
dynamic microbial consortia to disease. Nature 535:94 –103. https://doi
.org/10.1038/nature18850.

2. Teng F, Yang F, Huang S, Bo CP, Xu ZZ, Amir A, Knight R, Ling JQ, Xu J.
2015. Prediction of early childhood caries via spatial-temporal variations
of oral microbiota. Cell Host Microbe 18:296 –306. https://doi.org/10
.1016/j.chom.2015.08.005.

3. Jackson MA, Verdi S, Maxan ME, Shin CM, Zierer J, Bowyer RCE, Martin T,
Williams FMK, Menni C, Bell JT, Spector TD, Steves CJ. 2018. Gut micro-
biota associations with common diseases and prescription medications
in a population-based cohort. Nat Commun 9:2655. https://doi.org/10
.1038/s41467-018-05184-7.

4. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. 2017. Meta-analysis
of gut microbiome studies identifies disease-specific and shared re-
sponses. Nat Commun 8:1784. https://doi.org/10.1038/s41467-017
-01973-8.

5. Su X, Jing G, McDonald D, Wang H, Wang Z, Gonzalez A, Sun Z, Huang
S, Navas J, Knight R, Xu J. 2018. Identifying and predicting novelty in
microbiome studies. mBio 9:e02099-18. https://doi.org/10.1128/mBio
.02099-18.

6. Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vazquez-Baeza Y,
Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB, Sanders
JG, Shorenstein J, Holste H, Petrus S, Robbins-Pianka A, Brislawn CJ,
Wang M, Rideout JR, Bolyen E, Dillon M, Caporaso JG, Dorrestein PC,
Knight R. 2018. Qiita: rapid, Web-enabled microbiome meta-analysis. Nat
Methods 15:796 –798. https://doi.org/10.1038/s41592-018-0141-9.

7. Debelius J, Song SJ, Vazquez-Baeza Y, Xu ZZ, Gonzalez A, Knight R.
2016. Tiny microbes, enormous impacts: what matters in gut micro-
biome studies? Genome Biol 17:217. https://doi.org/10.1186/s13059
-016-1086-x.

8. D’Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, Shakya
M, Podar M, Quince C, Hall N. 2016. A comprehensive benchmarking
study of protocols and sequencing platforms for 16S rRNA community
profiling. BMC Genomics 17:55. https://doi.org/10.1186/s12864-015
-2194-9.

9. Vazquez-Baeza Y, Gonzalez A, Xu ZZ, Washburne A, Herfarth HH, Sartor
RB, Knight R. 2017. Guiding longitudinal sampling in IBD cohorts. Gut
https://doi.org/10.1136/gutjnl-2017-315352.

10. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G,
Aksenov AA, Behsaz B, Brennan C, Chen Y, DeRight Goldasich L, Dor-
restein PC, Dunn RR, Fahimipour AK, Gaffney J, Gilbert JA, Gogul G,
Green JL, Hugenholtz P, Humphrey G, Huttenhower C, Jackson MA,
Janssen S, Jeste DV, Jiang L, Kelley ST, Knights D, Kosciolek T, Ladau J,
Leach J, Marotz C, Meleshko D, Melnik AV, Metcalf JL, Mohimani H,
Montassier E, Navas-Molina J, Nguyen TT, Peddada S, Pevzner P, Pollard
KS, Rahnavard G, Robbins-Pianka A, Sangwan N, Shorenstein J, Smarr L,
Song SJ, Spector T, Swafford AD, Thackray VG, et al. 2018. American Gut:
an open platform for citizen science microbiome research. mSystems
3:e00031-18. https://doi.org/10.1128/mSystems.00031-18.

11. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA,

Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Hut-
tenhower C. 2013. Predictive functional profiling of microbial commu-
nities using 16S rRNA marker gene sequences. Nat Biotechnol 31:
814 – 821. https://doi.org/10.1038/nbt.2676.

12. Xu Z, Malmer D, Langille MGI, Way SF, Knight R. 2014. Which is more
important for classifying microbial communities: who’s there or what
they can do? ISME J 8:2357–2359. https://doi.org/10.1038/ismej.2014
.157.

13. Integrative HMPRNC. 2014. The Integrative Human Microbiome Project:
dynamic analysis of microbiome-host omics profiles during periods of
human health and disease. Cell Host Microbe 16:276 –289. https://doi
.org/10.1016/j.chom.2014.08.014.

14. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W,
Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC, Kostic AD,
Luo C, Gonzalez A, McDonald D, Haberman Y, Walters T, Baker S, Rosh J,
Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester
F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier
RJ. 2014. The treatment-naive microbiome in new-onset Crohn’s disease.
Cell Host Microbe 15:382–392. https://doi.org/10.1016/j.chom.2014.02
.005.

15. Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ,
Knight R, Fontenot AP, Palmer BE. 2013. Alterations in the gut microbi-
ota associated with HIV-1 infection. Cell Host Microbe 14:329 –339.
https://doi.org/10.1016/j.chom.2013.08.006.

16. Jing G, Sun Z, Wang H, Gong Y, Huang S, Ning K, Xu J, Su X. 2017.
Parallel-META 3: comprehensive taxonomical and functional analysis
platform for efficient comparison of microbial communities. Sci Rep
7:40371. https://doi.org/10.1038/srep40371.

17. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A,
Andersen GL, Knight R, Hugenholtz P. 2012. An improved Greengenes
taxonomy with explicit ranks for ecological and evolutionary analyses of
bacteria and archaea. ISME J 6:610 – 618. https://doi.org/10.1038/ismej
.2011.139.

18. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y,
Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I,
Mavromatis K, Ivanova NN, Kyrpides NC. 2012. IMG: the Integrated
Microbial Genomes database and comparative analysis system. Nucleic
Acids Res 40:D115–22. https://doi.org/10.1093/nar/gkr1044.

19. Su X, Wang X, Jing G, Ning K. 2014. GPU-Meta-Storms: computing the
structure similarities among massive amount of microbial community
samples using GPU. Bioinformatics 30:1031–1033. https://doi.org/10
.1093/bioinformatics/btt736.

20. Su X, Xu J, Ning K. 2012. Meta-Storms: efficient search for similar
microbial communities based on a novel indexing scheme and similarity
score for metagenomic data. Bioinformatics 28:2493–2501. https://doi
.org/10.1093/bioinformatics/bts470.

21. Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, Pei Z, Blaser
MJ, Aliferis CF, Alekseyenko AV. 2013. A comprehensive evaluation of
multicategory classification methods for microbiomic data. Microbiome
1:11. https://doi.org/10.1186/2049-2618-1-11.

Su et al.

March/April 2020 Volume 5 Issue 2 e00150-20 msystems.asm.org 12

https://doi.org/10.1038/nature18850
https://doi.org/10.1038/nature18850
https://doi.org/10.1016/j.chom.2015.08.005
https://doi.org/10.1016/j.chom.2015.08.005
https://doi.org/10.1038/s41467-018-05184-7
https://doi.org/10.1038/s41467-018-05184-7
https://doi.org/10.1038/s41467-017-01973-8
https://doi.org/10.1038/s41467-017-01973-8
https://doi.org/10.1128/mBio.02099-18
https://doi.org/10.1128/mBio.02099-18
https://doi.org/10.1038/s41592-018-0141-9
https://doi.org/10.1186/s13059-016-1086-x
https://doi.org/10.1186/s13059-016-1086-x
https://doi.org/10.1186/s12864-015-2194-9
https://doi.org/10.1186/s12864-015-2194-9
https://doi.org/10.1136/gutjnl-2017-315352
https://doi.org/10.1128/mSystems.00031-18
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1038/ismej.2014.157
https://doi.org/10.1038/ismej.2014.157
https://doi.org/10.1016/j.chom.2014.08.014
https://doi.org/10.1016/j.chom.2014.08.014
https://doi.org/10.1016/j.chom.2014.02.005
https://doi.org/10.1016/j.chom.2014.02.005
https://doi.org/10.1016/j.chom.2013.08.006
https://doi.org/10.1038/srep40371
https://doi.org/10.1038/ismej.2011.139
https://doi.org/10.1038/ismej.2011.139
https://doi.org/10.1093/nar/gkr1044
https://doi.org/10.1093/bioinformatics/btt736
https://doi.org/10.1093/bioinformatics/btt736
https://doi.org/10.1093/bioinformatics/bts470
https://doi.org/10.1093/bioinformatics/bts470
https://doi.org/10.1186/2049-2618-1-11
https://msystems.asm.org

	RESULTS
	Search-based disease detection and multiple classification with a two-step process. 
	Robustness of MSE to technical data variation and to contamination. 
	Data features that influence disease detection and classification. 
	Search parameters that influence performance of MSE-based diagnosis. 
	Rapid microbiome classification by MSE. 

	DISCUSSION
	MATERIALS AND METHODS
	Data sets for testing MSE performance. 
	Processing of 16S rRNA gene amplicon data for MSE. 
	Brief overview of MSE. 
	Calculation of microbiome novelty score. 
	Defining the microbiome similarity score. 
	Search-based classification of multiple disease status. 
	Model-based classification of multiple disease status. 
	Calculation of the Kappa coefficient. 
	Removal of replicates in statistical analysis. 
	Contamination simulation and test. 
	Evaluation of running speed. 
	Availability of data and materials. 
	Data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES



