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WATER RESOURCES RESEARCH, VOL. 23, NO. 1, PAGES 92-104, JANUARY 1987 

The Inverse Problem for Confined Aquifer Flow' 
Identification and Estimation With Extensions 

HUGO A. LOAICIGA 

Department of Geolo#ical Sciences, Wri#ht State University, Dayton, Ohio 

MIGUEL A. MARINO 

Department of Land, Air, and Water Resources and Department of Civil En#ineerin•h University of California, Davis 

The contributions of this work are twofold. First, a methodology for estimating the elements of 
parameter matrices in the governing equation of flow in a confined aquifer is developed. The estimation 
techniques for the distributed-parameter inverse problem pertain to linear least squares and generalized 
least squares methods. The linear relationship among the known heads and unknown parameters of the 
flow equation provides the background for developing criteria for determining the identifiability status of 
unknown parameters. Under conditions of exact or overidentification it is possible to develop statis- 
tically consistent parameter estimators and their asymptotic distributions. The estimation techniques, 
namely, two-stage least squares and three stage least squares, are applied to a specific groundwater 
inverse problem and compared between themselves and with an ordinary least squares estimator. The 
three-stage estimator provides the closer approximaton to the actual parameter values, but it also shows 
relatively large standard errors as compared to the ordinary and two-stage estimators. The estimation 
techniques provide the parameter matrices required to simulate the unsteady groundwater flow equation. 
Second, a nonlinear maximum likelihood estimation approach to the inverse problem is presented. The 
statistical properties of maximum likelihood estimators are derived, and a procedure to construct confi- 
dence intervals and do hypothesis testing is given. The relative merits of the linear and maximum 
likelih( od estimators are analyzed. Other topics relevant to the identification and estimation meth- 
odologies, i.e., a continuous-time solution to the flow equation, coping with noise-corrupted head 
measurements, and extension of the developed theory to nonlinear cases are also discussed. A simulation 
study is used to evaluate the methods developed in this study. 

1. INTRODUCTION 

The estimation of transmissivities, storativities, and other 
groundwater parameters has received substantial attention in 
the water resources literature. Several of such approaches to 
the inverse problem can be found in previous studies by 
McLaughlin [1975], Cooley [1977, 1979, 1982], Neuman and 
Yakowitz [1979], Yakowitz and Duckstein [1980], Neurnan 
[1980], Yeh and Yoon [1981], Yeh et al. [1983], Kitanidis and 
Vomvoris [1983], Aboufirassi and Marino [1984], Sadeghipour 
and Yeh [1984], Hoekserna and Kitanidis [1984], and Carrera 
and Neurnan 1-1986a, b, c], among others. Some problematic 
aspects of groundwater parameter estimation related to nu- 
merical instability, noisy observations, and nonuniqueness are 
discussed in the works by Neurnan and Yakowitz [1979] and 
Yakowitz and Duckstein [1980] and have been recognized and 
reported by several other authors (see, for example, Yeh et al. 
[1983]). 

This study has two main objectives: (1) to develop an ana- 
lytic criterion to establish the identifiability status of the iff- 
verse problem for confined groundwater flow and (2) to pres- 
ent linear (i.e., least squares) and maximum likelihood esti- 
mation methods for the solution of the inverse problem and to 
derive the statistical properties of such estimators. A simula- 
tion study is used to evaluate the theory developed in this 
study and to compare the alternative estimation techniques. 

The contributions of this study can be summarized as fol- 
lows. 
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1. An analytical interpretation of identifiability in the in- 
verse problem based on the relationships between available 
information and the unknown parameters is developed. 

2. Least squares and maximum likelihood methods for 
groundwater parameter estimation are then presented. 

3. Alternative parameter estimators are analyzed on the 
basis of their statistical properties, i.e., consistency and asymp- 
totic distributions. 

4. A unified theory of parameter identifiability, estimation, 
and statistical properties, is developed. 

The remainder of this paper is organized as follows: section 
2 contains a description as well as background to the prob- 
lem; section 3 discusses the identifiability status of the inverse 
problem for confined aquifer flow; section 4 presents the two- 
stage least squares estimation technique; section 5 contains 
the three-stage least squares method for parameter estimation; 
maximum likelihood estimation is developed in section 6; ap- 
plications are given in section 7; section 8 contains a summary 
and discussion of the findings of this study; and section 9 
outlines future research needs, e.g., extensions of the theory to 
unsaturated flow, mass transport, and noisy head observa- 
tions. 

2. BACKGROUND AND DESCRIPTION OF THE PROBLEM 

2.1. Confined Aquifer Flow: Continuous and Discrete Forms 

The basic equation used in this study is that which describes 
flow in a heterogeneous and isotropic confined aquifer: 

T + T + F = S (1) 
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in which •b denotes the piezometric head (units, L); T = T(x, 
y) denotes transmissivity (units, L2/T); S = S(x, y) represents 
storativity (dimensionless); and F denotes either a distributed 
(units, L/T) or point (units, L3/T) sink/source, or a combi- 
nation of both throughout the flow domain. Notice that if F is 
to represent a point sink/source, it must be multiplied by 
6(x- x i, y- yi), the Dirac delta function, in which (x•, Yi) 
denotes the location of the sink/source. 

Equation (1) is discretized using finite-element methods and 
expressed as a linear system of differential equations as fol- 
lows: 

A*• + B* d• F* •-+ +0 (2) 

in which the elements of the conductance (or stiffness) matrix 
A*, the capacity matrix B*, and vector F* are obtained by 
assembling the element equations according to the node num- 
bering selected when the flow domain is divided into a number 
of subregions or finite elements; the head vector • is of size 
N x 1, where N is the total number of nodal heads in the flow 
domain; the vector of sinks and sources F* is of size N x 1 
(although many or even all of its components could be zero, 
depending upon the sink/source distribution); and the banded 
matrices A* and B* are both of dimension N x N. 

The finite-element model has been chosen to form (2) for 
several reasons: (1) it permits division of the flow domain into 
subregions over which T and S can be assumed constant, and 
hence the spatial variability of such parameters is conveniently 
handled; (2) boundary conditions, in particular flux-type 
boundary conditions, are easy to manipulate; and (3) the con- 
tinuous form of (2) can be used, as is shown below, to the 
derive closed-form solution for •(t). Other numerical methods, 
e.g., finite differences, could also be used as plausible alter- 
natives to the finite-element method. 

If boundary conditions are of the flux or mixed type, they 
would be included automatically into F* in (2) by the finite- 
element method. If the boundary conditions are only pre- 
scribed heads, then it is convenient to partition • and F* into 
•r= [•r, •2r] and F *r= [F• *r, F•*r], in which subscripts 
1 and 2 denote the subvectors of prescribed and unknown 
heads, respectively. Equation (2) can be expressed in parti- 
tioned form as 

* A•: • + A• -B• 
* A22 (•2 B21* A21 _ 

B12 

(3) 

Of interest for the developments on identifiability and esti- 
mation in this study is the lower subsystem in (3), i.e., 

A22'•2 + B22'$2 + F2* + A2,*•, + B2•*$• = 0 2 (4) 

in which A22' and B22' are of size G x G (G is the dimension 
of the unknown subvector •2); •2, F2*, and •x are of dimen- 
sion G x 1, G x 1, and (N- G) x 1, respectively; and A2•* 
and B2•* are both of size G x (N- G). For the sake of sim- 
plicity in notation, the continuous time linear system in (4) is 
written as 

A• + B$ + F = 0 (5) 

in which A = A22', B = B22', •--•2, 0--02, and F = F2* 
+ A21*•l + B21*•; i.e., • will denote the (G x 1) vector of 

unknown nodal heads, and the matrices A and B, as well as 

the vector F, are appropriately defined after the boundary 

conditions are properly introduced. Notice that when dealing 
with flux or mixed type boundary conditions G equals N, and 
the fluxes must be adequately specified in vector F* of (2). 

It is of relevance for the applications given in section 7 that 
(5) be explicitly solved for •(t), for any time t, given an initial 
condition 0(0) and known matrices A, B, and vector F. Such 
analytic expression is easily derived if (5) is premultiplied by 
B- x and expressed as 

dp = COp(t) + DF(t) •(0) = •o (6) 

in which C- --B-•A and D = --B-2. In (6), F(t) takes the 
role of being a vector of inputs (outputs), where inputs (out- 
puts) can be sources (sinks) and/or the effect of boundary 
conditions (since boundary conditions, to some extent, govern 
the groundwater flow). From basic theory of linear systems 
(see, for example, Polak and Wong [1970, pp. 9-17]), 

4p(t)=etC[Opo+••e-•CDF(z)dz] (7) 
in which the matrix e tc can be expressed as a function of t by 
the method of interpolating polynomials (see, for example, 
Gantmacher [1959, pp. 95-129]). Equation (7) will be used in 
section 7. 

The continuous system given in (5) can be discretized as 
follows: 

A[03•t + (1 -- 03)•t-•3 + B + Ft* = ut* (8) 
At 

which upon rearrangement becomes 

+03A •t+ A(1--03)-- •t-, +Ft*=ut* (9) 

t= 1,2,..-,n 

in which 0 < 03 < 1 (equation (9) is unconditionally valid, i.e., 
stable and convergent, for « < 03 < 1) and was set equal to « in 
this study; At is the selected time step for the simulation of 
groundwater flow; n is the number of simulation periods; 
Pt* = 03Pt + (1 -- 03)P t_ 1; and ut* is a G x 1 error vector that 
accounts for modeling errors in approximating the physical 
process of groundwater flow by (1), measurement errors, etc. 

It is assumed that 

in which 

ut* = pu t_ • * + u t (10) 

E(ut) -- 0 (11) 

E(utUs T): [rrij](; x (;C•ts = 12 C•ts (12) 

in which a•, 1 _< i, j _< G are the elements of I2. Equation (10) 
states that the error term follows an autoregressive time pat- 
tern and hence is autocorrelated over time. The unknown 

scalar coefficient p is another parameter in the inverse prob- 
lem; 12 is a G x G covariance matrix whose elements are de- 

noted by a•, I _< i, j < G; 5ts is a Kronecker delta; and u t is a 
white noise term. An equivalent error structure to that given 
in (10) was successfully used by Cartera and Neuman [1986a, 
b, c] in an indirect approach to the inverse problem via maxi- 
mum likelihood. 

2.2. Notational Convention for the Discrete Flow Equation 

The criteria for identifiability set forth in section 3 require 
the introduction of special notation. Equation (9), combined 
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Fig. 1. 

1 •Element 2 •Element Element 4 ] Element • 
aquifer subject to fime-dependem boundary conditions and a discharge (of units • •-• •-•) at 

with (10), yields 

(G x G)(G x 1) 

in which 

(13) 

t= 1,2,---,n 

(14) 

B I (15) F = A(1 -- co) -- X•' M, -plax a 
= r r ,r] (16) Xt T [4)t - 1 ' Pt ' at- 1 

with 4•0 assumed known, in which M and p, are a matrix and 
vector, respectively, determined by the nature of sink/sources 
and the boundary conditions over the flow domain (see exam- 
ple below). In (16), u0*, the error at time zero, is assumed to be 
equal to zero. Notice that one has to estimate the matrices W 
and F (and E) by first assuming that p in (10) is zero, and with 
those estimates generate a sequence of the error term u,*, 
t = 1, 2, ..., n, via (13). The generated sequence of u,*'s is used 
in (16) to reestimate W, F, and E (with p % 0). It might be 
necessary to iterate this procedure, although the application in 
section 7 required only one iteration to satisfy an adequate 
convergence criterion for the elements of W and F. It is also 
assumed that the time step At in (14) and (15) is constant. This 
assumption is quite appropriate for actual applications in 
which the data available for the calibration of groundwater 
parameters are spaced at equal time steps, or can be adapted 
to a uniform time interval. Since the methods proposed in 
sections 4-6 do not require the simulation of the groundwater 
flow equations for the purpose of estimation (i.e., the methods 
of this paper are of the direct type, as opposed ot the indirect 
methods), setting At- const does not lead to any difficulties 
in their implementation. Clearly, when using indirect methods 
to solve the inverse problem, it is necessary to solve the entire 
finite-element equations at each iteration in the search for 
optimal parameter values, and thus it might be more appro- 
priate to let the time step vary in those methods. The authors 
are conducting a project to calibrate storativities and trans- 
missivities in the San Joaquin Valley, California, in which the 
data are available at intervals of 6 months (i.e., At- 6 

months). In large-scale applications of this type it is usually 
convenient and appropriate to set At -- constant. 

To illustrate the validity of the terms and the dimensions 
appearing in (13), the aquifer shown in Figure 1 is used as an 
example (p is set equal to zero for simplicity). The aquifer is 
confined, of length L, subject to time-varying prescribed heads 
at x--0 and x--L; a discharge takes place at a rate F at 
point x = L/2. The flow is one dimensional, in the x direction 
only. Without loss of generality, a one-dimensional example 
has been chosen to illustrate the developments of this paper. 
The properties of the aquifer are its transmissivity T and sto- 
rativity S (both unknown). The aquifer is divided into four 
elements each of size L/4. 

By using linear interpolation functions to form the (2 x 2) 
element matrices (their elements can be read directly, e.g., from 
equations (7) and (8) of Pinder and Frind [1972] after drop- 
ping the y terms and matching other terms), after assembling 
the matrices, and condensing out the prescribed heads, one 
obtains (B/At + wA) = tridiagonal [½u]3 x 3, in which 

4co L 

eli---•- I -r(') + r(i+ x)] + 1-• Es(i)+ S('+ 1)] (17) 
i= 1,2,3 

4co L 

½i.i+l = -- T [r(i+ 1)] 4- 2'-• IS(i+ 1)] i -- 1, 2 (18) 
½•,i- • = ½,- 1., (symmetry) i = 2, 3 (19) 

where T u) and S u) denote the values of transmissivity and 
storativity within the jth element (j- 1, 2, 3, 4, as seen in 
Figure 1). The elements of the (symmetric and tridiagonal) 
matrix (A(1-- co) -- B/At) are given by (17)--(19) with co re- 
placed by 1- co and the plus sign between bracketed terms 
changed to a minus sign. The Ft* vector of (9) is given by 

L 1) 

0 • :(I'•A •m• S; (20) Ft* = • + + 
in which if=oF(t)+(1--co)F(t--1) is the averaged dis- 
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charge (see Figure 1) at x = L/2' •fi,l = coqba(t) + (1 -- co)qba(t 
-- 1)' •,l = [•Pa(t)- •Pa(t- 1)]/At' and similarly for •fiB and 

From (17)-(20), W, F, •t, xt and u• of (13) for the illustrative 
example are given by 

½•2 0 

(21a) 

7• 7•2 0 0 7•5 0 717 0 

r-- [7;1 722 723 ß 1 0 0 0 0 •32 T33 ' 0 0 T36 0 

(2lb) 
u,(t)] 

(2c) 

Thus for the example of Figure 1' G=3, K=8, and 
K -- G = 5. The elements 7• 5, 736, 7• 7, and T38 of the matrix F 
are the coefficients multiplying •, •, ½•, and $• in (20), 
respectively. After this example, the general notation presented 
in (13) will describe the time evolution and spatial distribution 
of confined aquifer flow in either one or two dimensions. 
Notice that in the notation of (13) the dependent variable •, is 
a function of the sinks (sources) (i.e., F), boundary conditions 
(½•, ½•), and is conditioned on the previous realization •_ •. 

In principle, the coefficient matrices • and F could be full, 
although it is known that the groundwater flow equation 
shows a banded matrix •, and the leading submatrix (of size 
G x G) in F is also banded. The presence of many zeros in • 
and F simplifies the task of estimating their nonzero elements. 
The unknown covariance matrix E (see equation (11)) must 
also be estimated. In summary, the estimation problem con- 
sists of obtaining statistically consistent estimators of •, F, 
and Z, based on data •t and x•, t = 1, 2, .--, n. Recall that an 
estimator 0• of an unknown but constant parameter 0 is statis- 
tically consistent if 

lim P[lO•-0[>•]=0 V•>0 

or, equivalently, if 0• coincides with the limiting distribution of 
•, i.e., if 

plim • = 0 

in which n is the sample size used to compute 0• (see, for 
example, Rao [1973] or Bickel and Doksum [1977, pp. 132- 
133]). Consistency is a sine qua non property of any esti- 
mator' an inconsistent estimator is necessarily based on an 
incomplete and almost surely faulty theory. 

3. CONDITIONS FOR IDENTIFICATION 

The identifiability criteria set forth in this section apply to 
the linear estimation methods of sections 4 and 5. The interest 

is in the matrices • and F in (13) that govern the time evolu- 
tion of piezometric heads and in the covariance matrix Z (see 
equation (12)). Once ß and F are available, one can simulate, 
or predict, the response of the aquifer to natural and/or arti- 
ficial inputs. There are many situations that justify the esti- 

mation of the nonzero elements of •P and F, as opposed to 
estimating physical parameters such as transmissivity and sto- 
rativity. One such situation occurs when there is scarce infor- 
mation about the geological structure and physical properties 
of an aquifer, It may then be difficult to specify a zonation of 
the aquifer, by either finite elements or finite differences, that 
would realistically approximate the actual spatial variability 
of aquifer properties. In such an instance, the calibration of •P 
and F with available piezometric head data will provide the 
necessary information for the simulation of the aquifer re- 
sponse, and the use of such response information in planning 
studies. For a direct estimate of parameters such as transmis- 
sivity and storativity, the reader is referred to section 6, where 
a nonlinear maximum likelihood method is given. 

The problem of identification is that of being able to deter- 
mine all the (nonzero) elements of the matrices •P and F, as 
well as the covariance matrix •. Notice that we look for esti- 

mators of ½'u, 7u, and a u (i.e., the elements of the matrices •P, 
F, and •, respectively). 

By premultiplying (13) by •P-• and solving for • one ob- 
tains 

•)t = (--tP- lI-)xt + (tp-lu,) = I-I x t + e, (22) 

t= 1, 2, "', n 

in which E(etet r) = •-•Z(•-•)r. As is shown in section 4, the 
G x K (full and unknown) matrix II can be estimated consis- 
tently by ordinary least squares (OLS). The identification 
problem can then be stated as follows: given a consistent esti- 
mator of II (=--q•-lF), is it possible to estimate (consis- 
tently) W and F, and if so, are the estimators unique? It is 
important to point out that if W and F can be estimated, then 
immediately one has all the information required to simulate 
the discretized groundwater flow equations (9) or (13). The 
estimated covariance Z is useful to determine the properties of 
the estimators for q• and F. 

3.1. The ldentifiability Problem 

Given that 

n -•P-• r (23) 
(G x K) (G x G)(G x K) 

and that II can be found independently of ß and F (see sec- 
tion 4) it follows that 

q• II = - F (24) 

The jth row (j - 1, 2, ..., G) of (24) can be written as 

(IPjl IPj2 ''' IPjG)I-I •-- --(Tjl 7j2 ''' 7jK) (25) 

As it was shown in the example of subsection 2.2, some of the 
elements •pj•, and 7jr (k = 1, 2,'", G' I -- 1, 2,'", K) are equal 
to zero. 

The elements of the right- and left-hand side vectors of (25) 
can be rearranged so that their nonzero elements lead those 
that are equal to zero. The matrix H can be conformally 
rearranged so that (25) can be rewritten as 

I-Iz•** ___ T) (,, 0,•)[•1--I::. ilzx•..] __(,.T 0,, (26) 
in which •a and 0aa are the G a x 1 and (G -- G a) x 1 subvec- 
tors of nonzero and zero elements in the left-hand side vector 

of (26); and y, and 0.. are the K* x 1 and (K- K*) x 1 
subvectors of nonzero and zero elements of the right-hand 
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side vector of (26). The submatrices Ha., Ha**, YIaa ., and 
tiaa** are of dimensions G a x K*, G a x (K -- K*), (G -- G a) 
x K,, .and (G- G a) x (K--K)*, respectively, and corre- 

spond to a conformally rearranged matrix H as required by 
the vector partition in (26). G a and K* denote the number of 
nonzero elements in the left- and right-hand side vectors of 
(25), respectively. Equation (26) leads to the following ex- 
pressions' 

•/,r II/,. = _y.r (27) 
(1 x G '•)(G a x K*) (1 x K*) 

q•a r Ha. . = 0.. r (28) 
(1 x G a) G a x (K--K*) 1 x (K--K*) 

In (27) and (28) it is possible to divide both sides by any of 
the (nonzero) elements of q•a so that one of the elements of q•a 
can be normalized to unity. Then, there are (G a-- 1)+ K* 
unknown variables in the jth equation (i.e., equation (25)). If 
(28) could be solved for •a, then T* would be immediately 
determined •rom (27). From basic matrix theory [Graybill, 
1983, pp. 149-178] it is known that at least G a-- 1 equations 
are needed to solve for q•a in (28). The vector •a has G a-- 1 
unknown elements, since one of its elements can be normal- 

ized to unity, as is stated above. Therefore it is required that 

K- K* >_ G/'-- 1 (29) 

since there are K -- K* columns in Ha. .. 
Equation (29) is onl• a necessary condition for identifiabil- 

ity, because even if it is satisfied, the columns of Ha. . may not 
be linearly independent. A necessary and sufficient condition 
for the identification of q•a and y. in the jth equation is that 
the number of linearly independent columns of Ha. . be equal 
to G a - 1, i.e., 

rank (Ha**)= G a-- 1 (30) 

To summarize, the identification status of the jth equation 
(see equation (25)), j = 1, 2, -.., G must belong to one of the 
possible cases below. 

1. If K- K* > G a-- 1 and rank(Ha**) = G a-- 1, the jth 
equation is overidentified, meaning that one can solve for the 
unknown elements 69•, and 7j• by different, consistent methods. 
The overidentification condition implies that there are more 
independent equations than there are unknown parameters. 
The two-stage and three-stage least squares methods of sec- 
tions 4 and 5 are applicable to overidentified equations. 

2. If K--K*=G •'--1 and rank (Ha**)=G a- 1, there 
exists exact identification. It is possible to solve uniquely for 
•a and y, from (27) and (28). Under exact identification, the 
two-stage and three-stage least square methods, as well as the 
maximum likelihood estimators yield identical parameter esti- 
mators. 

3. If K--K*>G a-- 1 and rank (Ha**)<G a--l, or if 
K- K*< G a-- 1, the equation is underidentified. In this 
case, it is not possible to estimate consistently the parameters 
in •a and y,. This is equivalent to saying there are more 
unknowns than there are (independent) equations to estimate 
them. It is shown in subsection 3.2 that the problem of esti- 
mating W and F in confined aquifer problems is most likely to 
be overidentified, so that there are alternative methods to 
obtain consistent estimators. 

Ha, , if (30) is written in its equivalent form 

rank(Ha**) = rank(Waa ' F** ) - (G - G a) 

= G a-- 1 (31) 

in which Waa and F** are submatrices of the matrices W and 
F, respectively, corresponding to the variables omitted from 
the jth equati_on but included in the other rows in (24). Waa 
and F** are of dimensions (G--1) x(G-G a) and 
(G - 1) x (K -- K*), respectively (see example below). 

The application of (29) and (31) is illustrated with the 
system introduced in subsection 2.2 (see equation (21)). By 
arbitrarily choosing the first equation, one obtains for the left- 
and right-hand side vectors of (26), 

(%• 0•)=(½,, ½,• 0) 

-(•,• 0.. •)=-(y,, y,• y,• y,, o0oo) 
respectively, so that K--K*=8--4=4, and G a--1 =!; 
therefore K- K*> G a-- 1, and condition (29) is satisfied. 
The rank condition, as specified in (31), can be tested as fol- 
lows' 

• = 1 ½22 ' 
32 ' 

and the reordered F matrix is 

Thus 

Y,2 Y•s ?• ' .0 0 .0 '•sl 
ß 

T22 0 0 ' 723 1 0 732 0 0 ' 733 0 736 73 

½23 ' 723 1 0 0 

(t/Jaa'F**) = L½33 ' T33 0 T36 T3 
and rank(q'aa'F**)= 2. Since G--Ga= 3--2= 1, then 
rank(Ha**)=2-1=l' also, G a--l=2-1=l; therefore 
rank(Ha**) = rank(q'aa'F**) -- (G -- G a) = 1, which equals 
G a- 1 = 1. The first equation of the system represented in 
(21) is therefore overidentified. 

The reader can verify that for the second equation in the 
equation system (21), overidentification holds with K- K* = 
8--4>G a--1 =3--1 and rank (Ha**)=2--(3--3)=G a 
-- 1 = 3 - 1. The third equation in the equation system (21) is 

overidentified with K--K*=8--4>G a--l=2--1, and 
rank(Ha**)=2-(3-2)=2-1=G a-1 =2-1. 

It is apparent that for groundwater problems of larger size 
either in one or two dimensions, the sparsities of the matrices 
q' and F will be larger than those in (21). The densities of 
those matrices (i.e., the proportion of nonzero elements) will 
become smaller as the dimension G increases. The effect of this 

is an overabundance of information (taking the form of equa- 
tions) about relatively few parameters on each of the G equa- 
tions of the system given by (24). Consequently, the parame- 
ters (i.e., the nonzero elements) of the matrices q' and F cannot 
be uniquely estimated, as is shown above. There is a condition 
of overidentification. The estimation methods of sections 4 

and 5 yield consistent estimators for the parameters ½'•a and 

4. ESTIMATION BY ONE SINGLE-EQUATION METHOD 

3.2. An Example of Determining Identifiability 

Judge et al. [1982, p. 358] show that the rank condition 
expressed in (30) can be checked without having to compute 

4.1. The Two-Stage Least Squares Method (2SLS) 

The 2SLs method was originally developed by Basmann 
[1957] in the context of econometric models First, notice that 
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LOAICIGA AND MARIlqO: THE INVERSE PROBLEM 97 

(13) can be rewritten for all time periods, at once, as follows' 

•'/E(ID 1 ''' (IDn] q- FEx 1 ... Xn] = EUl --- Un] (32) 

The system of (32) contains G equations, each equation cor- 
responding to one of the rows of the matrix W (say, the jth) 
times the matrix of the 4•'s, plus the jth row of F times the 
matrix of the x's being equal to the jth row of the right-hand 
side of (32). The next step is to choose the jth row equation 
and normalize the •p.ij parameter to unity by dividing the 
entire jth equation by •pj•, an arbitrary choice (in the sequel, 
the normalized coefficients, •Pu* = tPu/tP.u and )'.it* = 7.it/tP.i.i are 
represented by ½u and )'jr, respectively, to simplify the nota- 
tion, and from the context it should be obvious whether the 

raw or normalized coefficients are being used in the equa- 
tions). By taking the transpose of the (normalized)jth equa- 
tion (so that the parameters are ordere6 columnwise) one ob- 
tains 

•j -- (.I)jlql j -Jr' Xjyj '-{- Uj (33) 
in which 

l•j T -- E(]Sj(1), ''', (]Sj(tl)] 1 x n 

•r• [-7j•, -•2, " ', -•j•.]• •. 

Uj T = [Uj(1), ''', Uj(n)]l xn 

•,(1)-.. •j_,(1)•j+,(1).-. •(1)1 

Ix,(1, x2(1, ... ;::•12• l . 

x:(n)." 
In (33), E(u•uj r) = a•fi,, according to the assumptions given 
in (11) and (12). Also, notice that matrices •j and X• contain 
the variables associated with nonzero coefficients; thus their 

respective column dimensions are G a- 1 and K* (see dis- 
cussion following equation (26)). 

Equation (33) can be written in the usual linear model form, 

% = zjpj + % (34) 

where Zj = [•jXj] and pjr = [½jrTjr]. 
It is tempting to apply the ordinary least squares (OLS) 

method to (34) to obtain 

•j = (zjTzj) -- IzjT•j (35) 

in which the design matrix Zj as well as the heads •j are 
observable data. Furthermore, one could estimate pj similarly 
for j = 1, 2, ---, G, i.e., for each equation, one at a time (hence 
the name single-equation method), to estimate the nonzero 
elements of W and F. One inconvenience though is that Zj is a 
stochastic matrix (it contains the matrix •j) whose first G a - 1 
columns are correlated with the error vector uj. This is easily 
shown by taking one of the columns of •j, say, •, and taking 
expectations, 

= E[(zp + = + %L. 

which is clearly nonzero even if one assumes that a•j = 0 due 
to the complex nonzero term E(Z•p•ujr). It is well known that 
a correlated design matrix and error term lead to inconsistent 

OLS estimators (see, for example, Kmenta [ 1971, pp. 298-304]). 
The two-stage least squares method transforms (33) so that 

the resulting design matrix becomes asymptotically un- 
correlated with the (transformed) error term. The details are 
given in Appendix A, where it is shown that (33) can be ex- 
pressed as 

•j = Zjpj -1 L Wj (36) 

in which the transformed design matrix Zj and error term wj 
(defined in Appendix A) are asymptotically uncorrelated. 
Therefore the OLS method applied to (36) has all the asymp- 
totic properties of the standard linear model, in particular, it is 
consistent. The 2SLS estimator for pj is thus 

•j .__ (Z"jr•j)-I•jTi•)j (37) 
The first stage of the 2SLS method consists of finding the 

matrix Zj (see Appendix A) and the second stage in computing 
•j by (37). 

4.2. Properties of the 2SLS Method 

The asymptotic covariance of $j is estimated by 
COV (•j): (2jT2j) - l z•jT({•jjlnn)2jlz•jT2j)- I 

= •jj(•jT•j)-I (38) 

The unknown ajj is estimated by the well-known consistent 
estimator 

^ (4•i- 2•)r(•_ 2j•j) (39) aiJ= n-(G a-1 +K*) 
with i = j, which is the usual error sum of squares, divided by 
the corresponding degrees of freedom, in classical linear model 
theory. 

From large-sample theory of least squares (see, for example, 
Rao [i973]) it follows that the asymptotic distribution of 
(n)•/2(•- •j) is normal, zero mean, with covariance equal to 
ajj plim,• • In- •(•j r•j)] - •, so that •j is consistent. 

The 2SLS method can be applied to each equation (j = 1, 2, 
ß --, G) to yield consistent estimators for all the nonzero ele- 
ments of W and F and the error covariance matrix [au] = 
Z. An application of the 2SLS method is provided in section 7. 

5. ESTIMATION BY ONE SYS•M EQUATION METHOD 

5.1. The Three-Stage Least Squares Method (3SLS) 

The 2SLS method is applied to each equation, one by one. 
It is possible to estimate all the $j's (j = 1, 2, ---, G) simulta- 
neously (hence the name system equation), with a gain in 
asymptotic efficiency (see, for example, Bickel and Doksum, 
[1977, pp. 137-141]). Such efficiency gain is due to the fact 
that in the 2SLS method the cross correlation among equation 
disturbances is not considered, since it deals with one equation 
at a time. 

Adopting the same notation of subsection 4.1 (see equation 
(36)), the system of G equations can be expressed in augmen- 
ted form by stacking them as follows' 

= Z2 -.. w 2 

[Lj 0 ... 
or in compact notation, 

(40) 
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98 LOAICIGA AND MARI•IO' THE INVERSE PROBLEM 

4) = •[I + W (41) 

in which 4• and w are both of dimension nG x 1, and 13 is of 
dimension [•]• • (G• a-- 1 + K•*)] x 1, in which G• a and K•* 
are the number of nonzero parameters in the jth row of the q' 
and ¾ matrices, respectively (see equations (25) and (26)). The 
dimension of the matrix • in (41) is nG x [• (G• a-- 1 
+ K•*)]. 

Zellner and Theil [1962] proposed to apply the generalized 
least squares technique to (41) to yield the 3SLS estimator, 

• = [2v(]•OI..) - •2]- • [2v($]Oln.) - •]4) (42) 

in which •,Olnn( = [6ijlnn]) is the Kronecker product of • and 
the identity matrix Inn, and f: denotes the matrix [6u] (of 
dimension G x G), where the covariance estimators 6u's are 
obtained from the error sum of squares computed from using 
the 2SLS estimators, i.e., 

^ (•'- 2i•i)r(•- •J•J) (43) aij =n- max [Gi a-- 1 + Ki*, Gj a-- 1 + K•*] 
The covariance •I,, (of dimension nG x nG) is an estimator 
of the asymptotic covariance of w in (41), and its structure (i.e., 
the Kronecker product) is a consequence of the covariance 
assumptions made in (11) and (12). In the implementation of 
the 3SLS estimator it is assumed that the number of observa- 

tions n exceeds the number of equations G to avoid the singu- 
larity of 2:•I,,. 

The calculation of • in (42) requires first the computation of 
the 2SLS estimators •j (j = 1, 2, ---, G) to estimate 9•{D1,,, 
and subsequently the generalized least squares (42)' hence its 
name, 3SLS estimator. 

5.2. Properties of the 3SLS Method 

The linearity of the estimator • in (42) leads to the following 
estimator of its asymptotic covariance' 

Cov (•) = [•T(•- l•)inn)• ]-1 (44) 

(notice that (•(•Inn) -1-- •,-l(•Inn ). The asymptotic distri- 
bution of (n)l/2(•- Ii) is normal, zero mean, with covariance 
equal to 

plim [n- •r(•,- l(•)inn)• ] - 1 

implying that • is a consistent estimator. The 3SLS method is 
illustrated in section 7. 

6. MAXIMUM LIKELIHOOD ESTIMATION 

6.1. The Negative Log-Likelihood Function 

The estimation methods presented in subsections 5.1 and 
5.2 are linear.. They yield the matrices that govern the dis- 
cretized equation of groundwater flow (see equations (9) and 
(13)). It was shown that due to overidentification (the number 
of linearly independent equations exceeds the number of un- 
known parameters) the parameters are not unique (i.e., there 
are alternative consistent estimators). The criterion for deter- 
mining the identification status was based on analyzing the 
groundwater flow equation as a linear simultaneous equation 
system. It is possible to determine directly transmissivities, 
storativities, and the autoregressive parameter p (see equation 
(10)) if one introduces a nonlinear criterion to be maximized 
with respect to the set of unknown parameters. One such 
criterion is the maximum likelihood (ML) method. 

Assuming that u t in (13) has a multivariate normal distri- 

bution, the likelihood function corresponding to the process of 
(13) is 

L -- (271:)na/2 12:l -n/2 

( 1 • (W•e + Fxe)V2:- •(W•e + Fxt) t (45) ß exp --• t=• 
For estimation purposes it is convenient to use the negative of 
the logarithm of (45) to obtain the following negative log- 
likelihood function: 

nG n 

f= •- In (2•r) + • In 12:1- n In Iq'l 
n 

+ • t=•l(kt14)t + I-•xt)T2: - 1(kI•4) , + [•X,) (46) 
The unknown matrices W and F have elements that are 

functions of transmissivities and storativities (see equations 
(17) and (20)). Therefore one must minimize (46) with respect 
to a parameter vector 0 (q x 1) whose elements are the un- 
known transmissivities and storativities, which vary within the 
subdomains of the finite-element spatial discretization, as well 
as the autoregressive parameter p. 

It is convenient to simplify (46) by taking its derivative with 
respect to 2:, equating to zero and solving for 2:, to obtain the 
estimator •' 

• = 1 (W4)t + Fxt)(tl•4)t + Fx,) r (47) 
n t= 

By substituting (47) into (46) one obtains the following ex- 
pression for the negative log-likelihood function f: 

nG n 1 n 

f= •- In (2•r) + • In- •]•(tI'4• , + Fx,)(W4), + Fx,) r nt= 

n 2 n 

- n In Iq'l q- -•- c q- • In 12:1- n In Iq'l (48) 
in which 

nG n 2 
c = • In (2•) + • = const (49) 

2 2 

Equation (48) is minimized with respect to the parameter 
vector 0 by the Newton-Raphson method [see Gill et al., 
1981]. One advantage of using the Newton-Raphson method 
to minimize (48) is that the gradient and Hessian matrix off 
are computable in closed form (i.e., there is no need for nu- 
merical differentiation in the search algorithm) as shown in 
Appendix B. In addition, the rate of convergence of the 
Newton-Raphson is quadratic. An application of the ML ap- 
proach is given in section 7. 

6.2. Properties of ML Estimators 

Suppose • denotes the true but unknown vector of parame- 
ters. Let 

I(0) = E(cq2f/c90c90 r) (50) 

i(O) = a2f/c90c90 r (S 1) 

in which the expectation in (50) is with respect to 4•. The 
matrices given in (50) and (51) are the Fisher information and 
the sample information matrices, respectively. For a sample 
size n sufficiently large, the distribution of the ML estimator 
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LOAICIGA AND MARIlqO' THE INVERSE PROBLEM 99 

0* is approximately [see, for example, Efron and Hinkley, 
1978] 

0* (52) 

in which N denotes the multivariate normal distribution. 

From (50) follows that the expression 

(0 -- o*)TI - 1(0')(0 -- 0') • Z0•2(q) (53) 

in which Xa2(q) is the (1- cz)th percentile of a chi-squared 
variable with q degrees of freedom, represents an ellipsoid in 
the q-dimensional O-space centered at 0'; the probability that 
this random ellipsoid covers the true parameter • is 1- or. 
Equation (52) allows the construction of a hypothesis test. Let 

H0:0 =0 ø 

H•'0 4:0 ø (54) 
in which 0 ø is the specified value in the null hypothesis H 0. 
The null hypothesis H 0 is rejected at a significance level cz if 

(0 ø -- 0*)rl - •(0øX0 ø - 0') > xa2(q) (55) 

In practice, I( ) (see equation (50)) may be difficult to obtain, 
so the sample information matrix i( ) (see equation (51)) re- 
places I( ) in (52), (53), and (55). 

6.3. Caveats on Least Squares and ML Estimation 

Under overidentification conditions (see section 3.1), the 
2SLS and 3SLS methods provide consistent estimators for the 
parameter matrices W and F (and Z). The implementation of 
these methods requires only the use of ordinary least squares 
and generalized least squares subroutines that are extremely 
efficient (and stable) in solving the system of equations on the 
unknown parameters. For identified (see section 3.1) inverse 
problems it can be shown that the nonzero elements of the 
matrices W and F are identically estimated (i.e., obtain the 
same numerical values) by either the 2SLS, 3SLS, or the ML 
methods. 

The ML approach given in this paper deals directly with 
the unknown parameters T, S, and p by minimizing a nonlin- 
ear function (i.e., the negative log-likelihood function, equation 
(48)) with respect to T, S, and p. Our computational experi- 
ence in this study (see section 7) shows that the ML method 
results in a highly stable estimation process. The search algo- 
rithm shows quadratic convergence, and this is partly due to 
the fact that the log-likelihood function (see equation 48) is 
convex on the parameter space 0. Such convexity follows from 
the properties of the family of exponential distributions, of 
which the normal is a member. 

7. APPLICATION OF METHODS 

The implementation of the estimation methods discussed in 
sections 4-6 is illustrated with the confined aquifer of Figure 
1. This example, although simple in nature, is intended to 
illustrate the theoretical developments presented in this paper. 
A large-scale application to the San Joaquin groundwater 
basin is in preparation. Table 1 contains the data used to 
generate the piezometric heads used in the estimation. 

7.1. Generation of Head Values 

Based on the data in Table 1, the head values at nodes 1, 2, 
and 3 (Figure 1) were generated by the exact analytical solu- 
tion given in (7). Piezometric heads were computed for t - 1, 

2, ..., 20, where the time index is in days. The solution of (7) 
led to the following closed-form expression' 

•(t) = A• + B•t + C•e •'t + D•e •t + E•e x3t (56) 

i = 1, 2, 3; t > 0. The constant coefficients A•, B•, C•, D•, and 
E•, as well as the eigenvalues 2•, 22, and 23 of the matrix C (see 
equations (6) and (7)) are given in Table 2. The negative values 
of the 2[s indicate that if the boundary heads are held con- 
stant, even if pumping continues indefinitely at a constant 
rate, the heads at the interior nodes will reach a steady state 
after relatively short times (i.e., the system is stable). This fol- 
lows from the fact that e 'ht approaches zero exponentially with 
t, and that B i becomes zero when the boundary conditions, as 
well as the sinks/sources, are kept constant. 

7.2. Ordinary Least Squares Estimators 

For the purpose of comparison, the OLS estimators (see 
equation (35)) were computed. It was shown in subsection 4.1 
that the OLS estimators are inconsistent estimators. However, 

they are readily computable, and even though their asymp- 
totic properties are unappealing, they can provide a quick 
approximation to the parameters I• (J = 1, 2, 3) in (33). Table 
3 displays the values of the estimators, as well as their corre- 
sponding standard errors (within parentheses). From the 
values of the parameter vectors I•, [•2, and 1•3 the matrices W 
and F (see equation (21)) can be constructed and used to 
simulate the piezometric heads (the same approach is used to 
simulate the heads_ after computing the 2SLS or the 3SLS 
estimators). 

7.3. Two-Stage and Three-Stage Least Squares Estimators 
(2SLS, 3SLS) 

The 2SLS and 3SLS estimators (see equations (37) and (42), 
respectively) and their standard errors are shown in Table 3, 
together with the OLS estimators and the true parameter 
values. It can be appreciated from Table 3 that the 3SLS 
estimators provide a very good approximation to the parame- 
ters except for the first and second components of 1•3- Overall, 
the OLS and 2SLS estimators provide a good estimate of the 
true parameters, although they show larger deviations from 
the actual values than those shown by 3SLS, except for two of 
the components of [•3 (i.e., the first and second components). 
In particular, the OLS and 2SLS estimators are quite similar, 
although the latter appear to give an overall better resem- 
blance of the true parameter values than the former. 

The standard errors show that in general, the 2SLS exhibit 
a smaller standard error than the OLS and 3SLS estimators, 
the former showing the larger standard errors of all three 
alternative estimators. The presumed (asymptotic) efficiency 
gained by the 3SLS due to the joint estimation of all equations 
is not reflected in this limited-size sample experiment. Gain in 
efficiency is likely to be effective in reducing small-sample 
standard errors when the covariances a o are known, which is 
not the case in this study. Head values generated by means of 
the OLS, 2SLS, and 3SLS (i.e., Z•O•, '•'iO, and •, respectively) 
reproduced very closely the actual values obtained from the 
analytical continuous time solution of (56). Table 4 shows the 
actual (i.e., continuous-time) and simulated (using equation 
(36)) piezometric heads for periods t - 1, 2,'", 20. 

The computation of the OLS and 2SLS requires the inver- 
sion of matrices ZiTz• and •T•, respectively (see equations 
(35) and (37)). Often, the columns of the matrices Z• and Z• 
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100 LOAICIGA AND MARIl•O' THE INVERSE PROBLEM 

TABLE 1. Data for the Example Aquifer 

Element Transmissivity Storativity Length 
i T, m2/day S l, m 

1 500 12 x 10 -3 500 
2 500 12 x 10 -3 500 
3 500 12 x 10 -3 500 
4 500 12 x 10-3 500 

Matrix A (Equation (5)) Vector F (Equation (5)) Matrix B (Equation (5)) 

A = 1 2 -- m/day 0 0 0 
0 -1 -1 0 1 

t.J 

Here, •b•(t) = 80 + t, m; q• = 1, m/day; •pB(t) = 100 - t, m' q•B = -- 1, m/day' F = 10, m 3 m- • day- 
At = 1 day; and ro = 0.5. 

show multicollinearity; i.e., some of their columns are almost 
linearly dependent, so that Zj or Z"• do not have full column 
rank and the inverses of zjTz• or 7•Tz"• are not computable 
numerically. This was the case in our application. The prob- 
lem can be readily solved by perturbing, say, z•Tz•, by adding 
to it a diagonal matrix kl (I is the identity matrix). Thus one 
utilizes (zjTzj-[-kl) -•. From the theory of ridge regression 
[see, for example, Hoerl and Kennard [1970] or Marquardt 
and Snee [1975]], a small k number (in our case k was set at 
the value k = 1) stabilizes the inversion while leaving the esti- 
mators basically unaffected by the perturbation. Multicolin- 
earity is to be expected in groundwater problems in which the 
heads at adjacent nodes are columns of the regression matrix 
Z• (or •), for such columnar values are likely to be quite 
similar. 

7.4. Maximum Likelihood (ML) Estimators 

The ML approach presented in section 6 was used to esti- 
mate T, S, and p for the aquifer of Figure 1. Several initial 
estimators T {ø• and S {ø• were tried to start the search for opti- 
mal estimators. In all cases, a quadratic rate of convergence 
was observed to the same minima. Table 5 shows one of the 

convergence paths to the optimal estimators T* =462 
m2/day, S*= 0.0110, and p*= 0.08. The actual parameter 
values (see Table 1) are T = 500 m2/day, S = 0.012, and 
p = 0.10. The standard errors of estimators (within parenthe- 
ses in Table 5) were estimated by the square root of the diago- 
nal terms of the sample information matrix (see equation (51)). 
The maximum likelihood estimators T*, S*, and p* were used 
to estimate tp and F through the relationships given in (17)- 
(20). Having the ML estimates tp, and F* for tp and F, re- 
spectively, piezometric heads were simulated by 

= n,x, (57) 

in which 

I•* = -(•'*)-•r* (58) 

(see equation (22). The simulated head values were essentially 
the same as those obtained from the 2SLS and 3SLS esti- 

mates, already shown in Table 4. 

8. SUMMARY AND CONCLUSIONS 

The theory and methods presented in this paper apply to 
linear, distributed-parameter, and unsteady systems, of which 

the flow in a confined aquifer is a typical example. It has been 
shown that it is possible to derive a continuous-time, closed- 
form solution for the linear system of differential equations 
corresponding to the finite-element (spatial) discretization of 
the confined-aquifer flow equation. The computation of the 
transition matrix e tc requires moderate numerical and analyti- 
cal effort and is conveniently obtained by the method of inter- 
polating polynomials. On the other hand, once the closed- 
form solution of the continuous groundwater flow equation is 
obtained, one can easily establish the convergence rate to a 
steady state, whether such steady state exists (stability), and 
the numerical value of the steady state head distribution. 
Piezometric heads can be generated for any time and for any 
node straightforwardly. 

Upon the time discretization and weighting of consecutive 
(i.e., at times t and t- 1) of the continuous system equation, 
one obtains a discrete linear system with unknown stationary 
parameters. The first important question is whether the 
matrices governing the discretized flow equations can be esti- 
mated consistently (in a statistical sense). The answer depends 
on their identifiability status, i.e., on whether each of the rows 
of the system equation is itself under-, exactly, or overidenti- 
fied. Underidentification leads to inconsistent estimation, 

exact identification implies unique and consistent estimation, 
and overidentification is synonymous to consistent but nonu- 
nique estimation. 

By means of an example it was argued that the inverse 
problem in groundwater is almost surely overidentified. As a 
consequence, three linear estimation techniques (OLS, 2SLS, 
and 3SLS) were utilized to obtain the elements of the matrices 
tp and F governing the discretized flow equation. As a subpro- 
duct of the linear estimation techniques, their variance- 
covariance matrices and asymptotic distributions are also 
available. 

The simplest linear method, i.e., OLS, is computed with 

TABLE 2. Parameters of the Analytic Solution 

Node 

i A i B i Ci Di Ei •i 

1 78.5036 0.5000 -- 1.0356 

2 80.0056 0.0000 1.4639 

3 91.5037 --0.5000 --1.0356 

1.5000 6.0319 --1.3204 

0.0000 8.5306 -- 0.5000 

-- 1.5000 6.0319 --0.1082 
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< 
[-- 

TABLE 4. Actual and Forecasted Piezometric Heads 

Actual Simulated 

Node Node 

Time, 
t 1 2 3 1 2 3 

0 85.00 90.00 95.00 
1 85.05 88.05 95.23 85.05 87.99 95.29 
2 84.04 86.98 94.74 84.67 86.95 94.78 
3 84.68 86.20 94.01 84.62 86.22 94.07 
4 84.61 85.55 93.21 84.61 85.52 93.29 
5 84.64 84.97 93.39 84.64 84.95 92.47 
6 84.73 84.46 91.58 84.75 84.46 91.66 
7 84.88 84.01 90.79 84.90 84.02 90.82 
8 85.07 83.06 90.01 85.11 83.13 90.10 
9 85.29 83.23 89.27 85.32 83.26 89.32 

10 85.56 82.90 88.54 85.58 82.92 88.59 
11 85.84 82.60 87.83 85.88 82.63 87.88 
12 86.15 82.33 87.15 86.16 82.35 87.20 
13 86.48 82.10 86.48 86.50 82.11 86.52 
14 86.83 81.88 85.83 86.83 81.89 85.89 
15 87.19 81.69 85.19 87.19 81.70 85.21 
16 87.57 81.52 84.57 87.55 81.52 84.57 
17 87.69 81.36 83.96 87.57 81.36 83.94 
18 88.36 81.22 83.36 88.35 81.19 83.35 
19 88.78 81.10 82.78 88.74 81.06 82.74 
20 89.20 80.99 82.20 89.18 80.95 82.16 

Piezometric heads are in meters. 

minimal effort, but due to the correlation of its regression 
matrix with the error term, its large sample properties are not 
desirable; in particular, it is not consistent. The 2SLS and 
3SLS are consistent estimators that can be computed with 
standard least squares and generalized least squares regres- 
sions, respectively. The application of this study showed that 
the 3SLS offered a better overall approximation to the true 
parameters, although despite its unique joint estimation fea- 
ture, it showed larger standard error of estimators than the 
OLS and 2SLS methods. It turns out that the supposed gain 
in asymptotic efficiency of the 3SLS method (due to joint 
estimation) materializes when the unknown covariances ai• are 
known. Since in actuality the airs are unknown, the gain in 
asymptotic efficiency may not materialize in limited-size 
sample estimates. Clearly, our limited-size experiment points 
to the fact that the standard errors of 3SLS estimators are not 

necessarily smaller than those of OLS and 2SLS estimators. 
A maximum likelihood approach has been developed in this 

paper. The ML method yields directly estimates of transmis- 
sivities, storativities, and other statistical parameters. The 
asymptotic distribution, confidence ellipsoids, and test of hy- 
pothesis for ML estimators have also been derived. Due to the 
(global) convexity of the negative log-likelihood function, the 

TABLE 5. Results of Maximum Likelihood Estimation 

Iteration 

Negative Log- 
Transmissivity, Autoregressive Likelihood 

m2/day Storativity Parameter p Function 

0 350 0.0060 0. i0 i i.98 
1 455 0.0081 0.03 7.96 
2 446 0.0096 0.06 7.10 
3 453 0.0010 0.07 6.45 
4 459 0.0015 0.08 6.30 
5 462 0.0110 0.08 5.83 

(47.8) (0.00390) (0.001) 

Standard errors of ML estimators are given in parentheses. Actual 
values are T = 500 m2/day, S = 0.012, and p = 0.10. 
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102 LOAICIGA AND MARIffIO' THE INVERSE PROBLEM 

ML estimators for T, S, and p are global minima. A quadratic 
rate of convergence was observed in the search algorithm (i.e., 
Newton-Raphson method). A sensitivity analysis on the initial 
estimators showed convergence in all cases to the same mini- 
mizing point. Simulated heads were for all practical purposes 
equal when using the 2SLS, 3SLS, and ML estimates for W 
and F. 

The theory and the application of this work leads to the 
following conclusions. 

1. It is feasible and useful to obtain a closed-form (analyti- 
cal) solution to the continuous-time flow equation for confined 
aquifers. Stability and convergence properties of the piezo- 
metric heads are readily established from the continuous-time 
solution. 

2. The structure of the discretized flow equation lends 
itself for a general analysis of the identification status of the 
inverse problem. Nonuniqueness and consistent estimation are 
features of the inverse problem in groundwater when ap- 
proached with linear estimation techniques. 

3. Of the competing methods, OLS is inconsistent but yet 
may yield useful and easy to compute estimates capable of 
producing accurate simulated heads. 2SLS and 3SLS are ap- 
pealing from the standpoint of their asymptotic properties, 
specifically, being consistent and asymptotically normal. For a 
limited sample test case, 3SLS showed the smaller bias but 
also the larger standard errors, indicating that for small sam- 
ples, the (asymptotic) efficiency gain of joint estimation is of 
little relevance. 

4. Since the 2SLS estimator requires an ordinary least 
squares stage for its implementation (and, in turn, 3SLS re- 
quires the 2SLS estimates), it is straightforward to design soft- 
ware to compute OLS, 2SLS, and 3SLS at once, using stan- 
dard least squares and generalized least squares subroutines. 

5. It has been shown that the ML technique is applicable 
to the discrete confined-aquifer flow equation, leading to 
direct estimates of transmissivities and storativities. Asymp- 
totic properties and standard errors of estimates are also 
available in the ML method. Quadratic convergence, consis- 
tent estimators, and global optimality are attractive features of 
the ML approach developed in this work. 

9. FUTURE RESEARCH NEEDS AND POSSIBLE EXTENSIONS 

The methods presented in this paper are not limited to 
confined aquifer flow. It is possible to linearize the unconfined 
flow equation (see, for example, Marifio and Luthin [1982]) 
and apply the identifiability and estimation techniques devel- 
oped above. 

Nonlinear processes, such as unsaturated flow and solute 
transport, can also be dealt with conveniently by dividing the 
field into subregions or elements so that the spatial variability 
of parameters (such as diffussivity) can be adequately repre- 
sented. By treating the parameters of diffusion (or diffusion- 
convection) processes as the unknowns and letting the field 
variable (e.g., tension heads or solute concentrations) be the 
known data, it is possible to write a discrete time system 
equation relating parameters and the field variable as in (13). 
Application of the methods of this paper is then feasible (see, 
for example, Loaiciga and Marifio [1986]). 

A more complicated situation arises when the field variable 
is observed with errors. It is apparent that (9) can be expressed 
as 

•, = P•,-x + qt + g, (59) 

in which the transition matrix P, the inputs qt, and the error 
term gt follow immediately from the terms in (9). To the first- 

order, discrete, "state" equation (59) an observation process is 
added; i.e., 

(60) 

which denotes that a linear combination (i.e., M•,) of heads 
(or any other field variable) is observed with error (distributed 
according to the white noise sequence v,). Given the measure- 
ments z t and ¾t it is possible to obtain the smoothed esti- 
mators of •t, ¾t, and the parameters of the state space model 
(59) and (60), namely, P, the unknown covariances Zx and Z: 
of the error terms gt, and v t, respectively, as well as the initial 
conditions, i.e., the expected value and covariance of •o. The 
estimation is possible by means of the so-called expectation- 
maximization algorithm (see Shuntway and Stoffer [1982] and 
Loaiciga and Mari•o [1985]). 

APPENDIX A: DERIVATION OF THE 2SLS EQUATION 

Equation (36) is obtained by first transposing (32) to yield 

or in compact form, after postmultiplying by (Wr) - •, 

x + 
(n x G) (n x K)(K x G) 

(A1) 

V 

(n x 6) 

(A2) 

in which V equals the product of the right-hand side matrix in 
(A1) times (Wr) - x. Incidentally, R equals FI r, H being defined 
in (23). The multivariate regression model of (A2) can be 
solved for R as follows (see, for example, Anderson [1984]), 

1• = (xtx) - xxt• (A3) 

in which/• denotes an estimator for R. Let/• be the following 
submatrix of/•; 

R• = [r 1, '", r•_•, r•+x, "-, raA ] (A4) 

R"• equals the matrix /• with its jth column suppressed. It 
follows from (A2) that 

ß- V = XR (A5) 

Since the matrix of disturbances V is unobservable, one can 
approximate the left-hand side of (A5) by 

ß- • = X/• (A6) 

in which 17 is the matrix of residuals obtained from the multi- 

variate regression in (A3), i.e., 

f• = (I)- X/• (A7) 

From (A6) it is clear that by deleting the jth column, 

O•- V• = XRj (A8) 

Finally, (33) can be transformed to 

= Z• + w• (A9) 
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LOAICIGA AND MARIlqO' THE INVERSE PROBLEM 103 

Since 0•-• and uj + •q•j (=w) are asymptotically un- 
correlated (the probability limit of •- • converges to XR•, 
which is uncorrelated with w), the OLS method applied to 
(A9) yields consistent estimators of llj, as is shown in section 4. 
Equation (A9) is identical to the expression in (36), which is 
used to derive the 2SLS estimators. 

APPENDIX B: GRADIENT AND HESSIAN OF THE NEGATIVE 

LOG-LIKELIHOOD FUNCTION 

In the implementation of the Newton-Raphson method, the 
gradient of f (see equation (48)) Vf and the matrix of second 
derivatives of f with respect to the parameters 0 i, G, are 
needed. In order to compute Vf and G at 0k, the following 
matrix derivative results are useful [Graybill, 1983]: 

c•ln IAI_ Tr [ A O0i - IAI > 0 (B1) 
•A -• •A 

- - A-' -- A-' 
•Oi 

•2 In IAI = Tr -- A- • A- • A- • (B3) 

in which A should be replaced by • or W (see equation (48)) in 
actual computations. 

By means of (BlaB3), the first and second derivatives of 
the negative log-likelihood function f are 

0f n Tr (•_• 0•) (•) (B4) O0 i 2 -- n Tr W- • 0W 
062 - 2 • •-• • + •-• 

•zf n [ • •• •'l -- Tr --•-••-•+E -• 
00•00 i 2 00• O0 i 

nTr• • 1• ••] -- -- - ••-• j•i (B6) 

The gradient Vfis the (q x 1) vector whose elements are 
and the matrix of second derivatives (G) is the (q x q) matrix 
whose elements are 

NOTATION 

A G x G matrix in the continuous-time groundwater 
flow equation. 

B G x G matrix in the continuous-time groundwater 
flow equation. 

C G x G matrix in the continuous-time groundwater 
equation; the value of its characteristic røots 
determine the stability of the continuous-time 
flow process. 

e t G x 1 error term vector in the discretized groundwater 
equation. 

F pumping rate. 
F t G x 1 vector of inputs in the discretized groundwater 

flow equation at time t. 
f negative log-likelihood function. 
G number of structural equations. 

G a number of nonzero structural parameters in matrix W 
of any structural equation. 

I( ) Fisher information matrix. 

i( ) sample information matrix. 
j index to denote anyone of the structural equations 

(j = 1, 2,---, G). 
K column dimension of the structural matrix F. 

K* number of nonzero parameters in matrix F of any 
structural equation. 

L log-likelihood function. 
n number of time periods. 
R K x G matrix of parameters in the multivariate 

regression of heads (R = Fir). 
R K x G estimator matrix of R. 

/•j K x (G a-- 1)submatrix of/• in the jth structural 
equation. 

S storativity. 
S ") storativity within the ith element. 
T transmissivity. 

T (i) transmissivity within the ith element. 
t time index (t = 1, 2, ..., n). 

u t G x 1 error vector in the discretized flow equation 
at time t. 

uj n x 1 error term in the jth structural equation. 
V n x G error matrix in the multivariate regression 

model for heads. 

P n x G estimator for V. 

v t G x 1 error term in the observation process of the 
state-space model at time t. 

w j n x 1 error term in the transformed jth structural 
equation of the 2SLS method. 

w nG x 1 error term in the 3SLS method. 

X n x K regression matrix in the multivariate regression 
model for heads. 

X j n x K* regression submatrix in the jth structural 
equation. 

x t K x 1 vector of predetermined variables in the 
discretized flow equation at time t. 

Zj n x (G a- 1 + K*) regression matrix in the jth 
structural equation. 

• nG x •j=• Gs a 1 + K?) regression matrix in the ( a _ 
3SLS method. 

Z"• n x (G a- 1 + K*) transformed regression matrix in 
the jth structural equation of the 2SLS method. 

[i (•=• (Gs a- 1 + Kj*)) x 1 parameter vector in 
the 3SLS method. 

Ilj (G a- 1 + K*) x 1 vector of parameters in the jth 
structural equation. 

•j (G a -- 1 + K*) x 1 estimator of Ilj in the OLS 
method. 

• (G a- 1 + K*) x 1 estimator of Ilj in the 2SLS 
method. 

• (•=• (Gj a-- 1 + K?)) x 1 estimator of fi in the 
3SLS method. 

F G x K matrix of structural parameters. 

•/j K* x 1 vector of parameters (the jth row of the 
matrix F). 

7u ijth element of F. 
0 param/:ter vector (q x 1). 

0* ML parameter vector. 
• true and unknown parameter vector. 
it i ith eigenvaiue of the G x G matrix C of the 

continuous-time flow equation. 
5,t G x 1 error term in the state equation. 
Yl G x K matrix of parameters in the discrete time 

flow equation. 
p parameter in the autoregressive error term. 
Z G x G covariance matrix of u,. 
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104 LOAICIGA AND MARlEO: THE INVERSE PROBLEM 

ijth element of the covariance matrix E. 
estimator of a 0. 
n x G matrix of piezometric heads in the multi- 
variate regression model. 

n x (G • -- 1) matrix of piezometric heads in the jth 
structural equation. 

n x 1 vector of piezometric heads in the jth 
structural equation. 
G x 1 vector of piezometric heads at time t. 
G x 1 time derivative of vector 4•t- 
chi-squared random variable. 
G x G matrix of structural parameters. 

ijth element of W. 
(Gj •-- 1) x 1 vector of parameters (the jth row of 
the matrix W). 
weighting factor in the discretized equation. 

Acknowledgment. The research leading to this report was support- 
ed by the University of California, Water Resources Center, as part of 
Water Resources Center Project UCAL-WRC-W-634. 

REFERENCES 

Aboufirassi, M., and M. A. Marifio, A geostatistically based approach 
to the identification of aquifer transmissivities in Yolo Basin, Cali- 
fornia, Math. Geol., •6(2), 125-137, 1984. 

Anderson, T. W., An Introduction to Multivariate Statistical Analysis, 
2nd. ed., John Wiley, New York, 1984. 

Basmann, R. L., A generalized classical method of linear estimation of 
coefficients in a structural equation, Econometrica, 25, 77-83, 1957. 

Bickel, P. J., and K. A. Doksum, Mathematical Statistics: Basic Ideas 
and Topics, Holden-Day, San Francisco, Calif., 1977. 

Carrera, J., and S. P. Neuman, Estimation of aquifer parameters 
under transient and steady state conditions, 1, Maximum likeli- 
hood method incorporating prior information, Water Resour. Res., 
22(2), 199-210, 1986a. 

Carrera, J., and S. P. Neuman, Estimation of aquifer parameters 
under transient and steady state conditions, 2, Uniqueness, stabili- 
ty, and solution algorithms, Water Resour. Res., 22(2), 211-227, 
1986b. 

Carrera, J., and S. P. Neuman, Estimation of aquifer Parameters 
under transient and Steady state conditions, 3, Application to syn- 
thetic and field data, Water Resour. Res., 22(2), 228-242, 1986c. 

Cooley, R. L., A method of estimating parameters and assessing reli- 
ability for models of steady state groundwater flow, 1, Theory and 
numerical properties, Water Resour. Res., 13(2), 318-324, 1977. 

Cooley, R. L., A method of estimating parameters and assessing reli- 
ability for models of steady state groundwater flow, 2, Applications 
of statistical analysis, Water Resour. Res., •5(3), 603-617, 1979. 

Cooley, R. L., Incorporation of prior information on parameters into 
nonlinear regression groundwater flow models, 1, Theory, Water 
Resour. Res., •8(4), 965-976, 1982. 

Efrom B., and D. V. Hinkley, Assessing the accuracy of the maximum 
likelihood estimator: Observed versus expected Fisher information, 
Biometrika, 65, 457-487, 1978. 

Gantmacher, F. R., The Theory of Matrices, vol. 1, Chelsea, New 
York, 1959. 

Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, 
Academic, Orlando, Fla., 1981. 

Graybill, F. A., Matrices with Applications in Statistics, 2nd ed., Wads- 
worth Internati6nal Group, Belmont, Calif., 1983. 

Hoeksema, R. J., and P. K. Kitanidis, An application of the geostatis- 
tical approach to the inverse problem in two-dimensional ground- 

water modeling, Water Resour. Res., 20(7), 1003w1020, 1984. 
Hoerl, A. E., and R. W. Kennard, Ridge regression: Biased estimation 

for nonorthogonal problems, Technometrics, 12(1), 69-82, 1970. 
Judge, G. G., R. C. Hill, W. E. Giffiths; H. Lfitkepohl, and T.-C. Lee, 

Introduction to the Theory and Practice of Econometrics, John 
Wiley, New York, 1982. 

Kitanidis, P. K., and E.G. Vomvoris, A geostatistical approach to the 
inverse problem in groundwater modeling (steady state) and one 
dimensional simulations, Water Resour. Res., 19(3), 677-690, 1983. 

Kmenta, J., Elements of Econometrics, MacMillan, New York, 1971. 
Loaiciga, H. A., and M. A. Marifio, An approach to parameter esti- 

mation and stochastic control in water resources with an appli- 
cation to reservoir operation, Water Resour. Res., 21(11), 1575- 
1584, 1985. 

Loaiciga, H. A., and M. A. Marifio, Estimation and inference in the 
inverse problem, in Proceedings of Water Forum '86: World Water 
Issues in Evolution, pp. 973-980, American Society of Civil En- 

ß gineers, New York, 1986. 
Marifio, M. A., and J. N. Luthin, Seepage and GroundWater, Devel- 

opments in Water Science, vol. 13, Elsevier Science, NeW York, 
1982. 

Marquardt, D. W., and R. D. Snee, Ridge regression in practice, Am. 
Star., 29(1), 3-20, 1975. 

McLaughlin, D., Investigation of alternative procedures for esti- 
mating groundwater basin parameters, report prepared for the 
Office of Water Resources and Technology, Water Resour. Eng., 
Walnut Creek, Calif., 1975. 

Neuman, S. P., and S. Yakowitz, A statistical approach to the inverse 
problem of aquifer hydrology, 1, Theory, Water Resour. Res., 15(4), 
845-860, 1979. 

NUman, S. P., A statistical approach to the inverse problem of aquifer 
hydrology, 3, Improved solution method and added perspective, 
Water Resour. Res., 16(2), 331-346, 1980. 

Pinder, G. F., and E. O. Frind, Application of Galerkin's procedure to 
aquifer analysis, Water Resour. Res., 8(1), 108-120, 1972. 

Polak, E., and E. Wong, A First Course on Linear Systems, Van 
Nostrand-Reinhold, New York, 1970. 

Rao, C. R., Linear Statistical Inference and Its Applications, 2nd ed., 
John Wiley, New York, 1973. 

Sadeghipour, J., and W. W.-G. Yeh, Para,rneter identification of 
groundwater aquifer models: A generalized least squares approach, 
Water Resour. Res., 20(7), 971-979, 1984. 

Shumway, R. H., and D. S. Stoffer, An approach to time series 
smoothing and forecasting using the EM algorithm, J. Time Ser., 
3(4), 253-264, 1982. 

Yakowitz, S., and L. Duckstein, Instability in aquifer identification: 
Theory and case studies, Water Resour. Res., 16(6), 1045-1064, 
1980. 

Yeh, W. W.-G., and Y. S. Yoon, Aquifer parameter identification with 
optimum dimension in parametrization, Water Resour. Res., 17(3), 
664-672, 1981. 

Yeh, W. W.-G., Y. S. Yoon, and K. S. Lee, Aquifer parameter identifi- 
cation with kriging and optimum parametrization, Water Resour. 
Res., 19(1), 225-233, 1983. 

Zellner, A., and H. Theil, Three stage least squares: Simultaneous 
estimation of simultaneous equations, Econometrica, 30, 54-78, 
1962. 

H. A. Loaiciga, Department of Geological Sciences, Wright State 
University, Dayton, OH 45435. 

M. A. Marifio, Department of Land, Air, and Water Resources and 
Department of Civil Engineering, University of California, Davis, CA 
95616. 

(Received October 4, 1985; 
revised July 17, 1986; 

accepted August 26, 1986.) 

 19447973, 1987, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/W

R
023i001p00092 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense




