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The Multiverse in an Inverted Island

Kevin Langhoff,1 Chitraang Murdia,1 and Yasunori Nomura1, 2, 3

1Berkeley Center for Theoretical Physics, Department of Physics,
University of California, Berkeley, CA 94720, USA

2Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3Kavli Institute for the Physics and Mathematics of the Universe (WPI),

The University of Tokyo Institutes for Advanced Study, Kashiwa 277-8583, Japan

We study the redundancies in the global spacetime description of the eternally inflating multiverse
using the quantum extremal surface prescription. We argue that a sufficiently large spatial region in a
bubble universe has an entanglement island surrounding it. Consequently, the semiclassical physics
of the multiverse, which is all we need to make cosmological predictions, can be fully described
by the fundamental degrees of freedom associated with certain finite spatial regions. The island
arises due to mandatory collisions with collapsing bubbles, whose big crunch singularities indicate
redundancies of the global spacetime description. The emergence of the island and the resulting
reduction of independent degrees of freedom provides a regularization of infinities which caused the
cosmological measure problem.

I. INTRODUCTION

In the last two decades or so, we have learned a lot
about the origin of spacetime in quantum gravity. A key
concept is holography [1–4], which states that a funda-
mental description of quantum gravity resides in a space-
time, often non-gravitational, whose dimension is lower
than that of the bulk spacetime. This concept has been
successfully applied to understanding the dynamics of an
evaporating black hole, in particular to address the in-
formation problem [5]; for recent reviews, see Refs. [6–8].

There are two distinct approaches to implementing the
idea of holography. One is to start from global spacetime
of general relativity and identify independent quantum
degrees of freedom [9–11] using the quantum extremal
surface (QES) prescription [12–15]. When applying this
prescription to a black hole, the existence of the inte-
rior is evident, whereas understanding unitary evolution
requires non-perturbative gravitational effects [16, 17].
The other approach is to begin with a description that is
manifestly unitary (if all the relevant physics is included
in the infrared) and understand how the picture of global
spacetime emerges [18–23]. Specifically, in this approach
the interior of an evaporating black hole arises as a col-
lective phenomenon of soft (and radiation) modes [21–
24]. While the two approaches appear radically different
at first sight, they are consistent with each other in the
common regime of applicability [25, 26].

In this paper, we study the eternally inflating multi-
verse using the first approach which begins with global
spacetime. A key assumption is that for a partial Cauchy
surface R in a weakly gravitating region, we can use the
QES prescription [15]. In particular, the von Neumann
entropy of the microscopic degrees of freedom associated
with the region R is given by the island formula [11]

S(R) = min ext
I
Sgen(I ∪R), (1)

where I is a partial Cauchy surface spacelike separated

from R.1 Here, the boldface symbol R in the left-
hand side is to emphasize that S(R) is the microscopic
von Neumann entropy of the fundamental degrees of free-
dom, while

Sgen(X) =
A(∂X)

4GN
+ Sbulk(X) (2)

is the generalized entropy for partial Cauchy surface X
calculated in bulk semiclassical theory, where A(∂X) is
the area of the boundary ∂X of X, and Sbulk(X) is the
von Neumann entropy of the reduced density matrix of
X calculated in the semiclassical theory.

In this work, we show that when R is a sufficiently
large region on a late time hypersurface in a bubble uni-
verse, an island I appears which encloses the bubble uni-
verse. Given that the semiclassical physics in I is fully
reconstructed using the fundamental degrees of freedom
in R, this implies that the full semiclassical physics of
the multiverse needed to make cosmological predictions
is encoded in the fundamental degrees of freedom of the
region R, which has a finite volume!

While one might feel that this is too drastic a conclu-
sion, in some respects it is not. Even for a black hole,
the interior region described as an island I can have an
ever increasing spatial volume, which can even be infinite
for an eternal black hole [27, 28]. However, in quantum
gravity, the number of independent states associated with
this region is bounded by the exponential of the entropy
of the system. This is because exponentially small over-
laps between semiclassically orthogonal states lead to a
drastic reduction in the number of basis states [25, 29–
31]. What happens in the multiverse is an “inside-out”
version of the black hole case. As anticipated in Refs. [32–
34], this allows us to address the cosmological measure

1 In this paper, I refers to a spacelike codimension-1 surface. Al-
though it is more standard to refer to the domain of dependence
of I, D(I), as the island, we also refer to I as an island in this
paper.
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FIG. 1. The multiverse as an entanglement castle. On a
given Cauchy surface Ξ, the physics of the multiverse can be
described by the fundamental degrees of freedom associated
with the region R ∪ (R ∪ IΞ), where IΞ = D(I) ∩ Ξ with I
being the (inverted) island of a partial Cauchy surface R.

problem [35–39] associated with the existence of an in-
finitely large spacetime at the semiclassical level.

Entanglement Castle

In the black hole case, the region R encloses I, so
I looks geographically like an island. However, in our
setup, I encloses R so it no longer appears as an island.
Thus, we call I an inverted island.

The geography for a Cauchy surface Ξ containing R
is depicted in Fig. 1. It is customary to treat the re-
gions R and I as “land” and everything else as “water.”
Following this convention, Ξ has a central land R sur-
rounded by a moat R ∪ IΞ which separates R from IΞ,
where IΞ = D(I) ∩ Ξ. To describe the multiverse at the
semiclassical level, one only needs fundamental degrees
of freedom associated with the complement of IΞ on Ξ,
IΞ = R ∪ (R ∪ IΞ). This is the region corresponding to
the castle—the multiverse lives in an entanglement castle.

Relation to Other Work

Entanglement islands in cosmological spacetimes have
been discussed in the context of toy models, e.g., mod-
els in which a nongravitational bath is entangled with a
gravitational system as well as models in lower dimen-
sional gravity [40–50]. In this paper, we study them in a
realistic scenario of eternal inflation.

Several holographic descriptions of the multiverse have
been proposed [32–34, 51–56], mostly to address the mea-
sure problem. These correspond to the unitary descrip-
tion of a black hole, although the issue of unitarity at the
fundamental level is not quite clear in cosmology.

Outline of the Paper

In Section II, we review the eternally inflating multi-
verse and describe some basic assumptions employed in

our analysis. In Section III, we discuss how bulk en-
tanglement necessary for the emergence of an island can
arise from accelerating domain walls, which are pervasive
in the eternally inflating multiverse.

Section IV is the main technical part of the paper,
in which we show that a sufficiently large region R in
a bubble universe has an inverted island that surrounds
R. Implications of this result for the multiverse are dis-
cussed in Section V. Finally, Section VI is devoted to
conclusions.

II. THE ETERNALLY INFLATING
MULTIVERSE IN GLOBAL SPACETIME

In this paper, we are concerned with eternally inflat-
ing cosmology. Eternal inflation occurs when the theory
possesses a metastable vacuum which has a positive vac-
uum energy and small decay rates to other vacua [57, 58].
If the universe sits in such a vacuum at some moment,
there will always be some spacetime region that remains
inflating for an arbitrarily long time.

This scenario of eternal inflation is naturally realized in
the string landscape [59–62]. In the string landscape, the
number of local minima of the potential, i.e. false vacua,
is enormous. Vacuum energies at these minima can be
either positive or negative. Since exactly vanishing vac-
uum energy requires an infinite amount of fine-tuning, we
expect that it is realized only in supersymmetric vacua.

Spacetime regions in different vacua are created by nu-
cleation of bubbles, each of which can be viewed as a sep-
arate universe. We assume that bubble nucleation occurs
through Coleman-De Luccia tunneling [63], although we
expect that our results also apply to other vacuum transi-
tion mechanisms such as the thermal Hawking-Moss pro-
cess [64, 65].

As explained in the introduction, we begin with the
global spacetime picture, which is the infinitely large mul-
tiverse with a fractal structure generated by continually
produced bubbles. We assume that the global quantum
state on a Cauchy surface is pure. We are interested
in studying the existence and location of the island cor-
responding to a partial Cauchy surface R in the global
multiverse.

To address this problem, we focus on a particular bub-
ble, which we call the central bubble. We assume that the
central bubble is formed in a parent de Sitter (dS) bubble.
After being nucleated, it undergoes collisions with other
bubbles [58]. Let us follow a timelike geodesic to the fu-
ture along (and outside) the bubble wall separating the
central bubble from other bubbles. The last bubble that
this geodesic encounters must be either an anti-de Sitter
(AdS) bubble or a supersymmetric Minkowski bubble, or
else the geodesic still has an infinite amount of time to
encounter another bubble.

We assume that the last bubbles such geodesics en-
counter are all AdS bubbles and call them surrounding
AdS bubbles. Since AdS bubbles generally end up with
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FIG. 2. A sketch of the Penrose diagram of the multiverse.
We focus on an arbitrarily chosen bubble, which we call the
central bubble. The central bubble is nucleated in a parent
dS bubble and is surrounded by collapsing AdS bubbles which
collide with it at late times.

big crunch singularities [63], they are collapsing bubbles.
Note that the choice of the central bubble was arbitrary,
so all the bubbles have the feature of being surrounded by
collapsing AdS bubbles. A typical example of the space-
time structure described here is illustrated in Fig. 2. (We
have omitted an infinite number of bubbles that form a
fractal structure in the asymptotic future infinity which
are not relevant for the discussion here.)

We postulate that the cosmological history we study
takes place in the semiclassical regime. This implies
that the characteristic energy scale E of the potential is
sufficiently smaller than the cutoff scale, and hence the
Planck scale. On the other hand, in the string landscape
we expect that this energy scale is not much smaller than
the string scale, e.g., E ∼ O(10−5 – 10−1)/lP, where lP
is the Planck length. Note, however, that some of these
bubbles could be associated with much smaller energy
scales by selection effects. For instance, the bubble uni-
verse that we live in has a vacuum energy much smaller
than the naive value of O(E4) [66–68].

III. BULK ENTANGLEMENT FROM
ACCELERATING DOMAIN WALLS

In this section, we discuss the possible origin of bulk
entanglement Sbulk leading to an island in eternally in-
flating spacetime. As discussed in Ref. [43], an island
cannot be created by Sbulk originating solely from entan-
glement between regular matter particles. In particular,
the generation of Sbulk must involve spacetime (vacuum)
degrees of freedom. Examples of such processes include
Hawking radiation and reheating after inflation. Here we
discuss another such process: Sbulk generated by Unruh
radiation [69, 70] from accelerating domain walls.

Consider a domain wall in 4-dimensional flat spacetime
which is extended in the x2-x3 directions and is acceler-

A

x
1

x
0

FIG. 3. Generation of Sbulk by an accelerating domain wall.
The blue and red lines are entanglement partners of each
other. This results in the region A, shown in green, to have a
large Sbulk.

ating in the x1 direction. In an inertial reference frame,
the domain wall appears to emit radiation. This occurs
because the modes of a light quantum field colliding with
the domain wall from behind are (partially) reflected by
it, which converts these modes into semiclassical excita-
tions on top of the vacuum; see blue arrows in Fig. 3.
(For a review and recent analyses, see Refs. [71–73].)

An important point is that this process stretches the
wavelength of reflected modes. In particular, radiation
emitted later corresponds to a shorter wavelength mode
at a fixed early time. We postulate that, as in the case of
Hawking radiation [74] and the generation of fluctuations
in cosmic inflation [75–78], this picture can be extrapo-
lated formally to an infinitely short distance, below the
Planck length. This allows for converting an arbitrary
amount of short distance vacuum entanglement to en-
tanglement involving physical radiation. In particular, if
we take a spatial region A that contains the radiation but
not its partner modes, then we can obtain a large contri-
bution to Sbulk from this process. This is illustrated in
Fig. 3.

This mechanism of generating Sbulk operates at any
wall separating bubble universes. It converts entangle-
ment in a semiclassical vacuum, which is assumed to take
the flat space form at short distances [79], into that in-
volving radiation emitted by the wall. There are two
classes of walls relevant for our purpose.

The first is a bubble wall separating a nucleated bubble
from the ambient bubble (parent dS bubble in our con-
text). In this case, the bubble wall accelerates outward,
so that the radiation lies inside the bubble. This radia-
tion is homogeneous on a Friedmann-Robertson-Walker
(FRW) equal-time slice and has coarse-grained entropy
density

s ∼
( √
−κ

2πa(t)

)3

, (3)

where a(t) is the scale factor at FRW time t, and 1/
√
−κ

is the comoving curvature length scale at an early stage
of the bubble universe, when a(t) ≈

√
−κ t.
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The second is a domain wall separating two bubbles
colliding with each other. A domain wall relevant for
our discussion is that separating the central bubble and
one of the surrounding AdS bubbles colliding with it. In
this case, the domain wall accelerates outward in the AdS
bubble [80, 81], so the mechanism described above applies
to the AdS bubble; in Fig. 3 the regions left and right of
the wall would correspond to the AdS and central bub-
bles, respectively. If the domain wall is also accelerating
away from the central bubble, the radiation emitted into
the central bubble also results in a large Sbulk, although
this is not relevant for our setup.

IV. ENTANGLEMENT ISLAND FROM
SURROUNDING COLLAPSING BUBBLES

In this section, we argue that a sufficiently large space-
like region R in the multiverse has an island I. We use the
method of island finder [82] to demonstrate this. First,
we locate a partial Cauchy surface I ′ that (i) is spacelike
separated from R, (ii) provides a reduction of generalized
entropy Sgen(I ′ ∪R) < Sgen(R), and (iii) has the bound-
ary ∂I ′ that is quantum normal or quantum antinor-
mal with respect to variations of the generalized entropy
Sgen(I ′ ∪ R). We will find such an I ′ which has a quan-
tum antinormal boundary. We then argue that there is a
partial Cauchy surface I0 whose domain of dependence,
D(I0), contains I ′ and whose boundary, ∂I0, is quantum
normal with respect to variations of Sgen(I0∪R). Having
such an I ′ and I0 guarantees the existence of a non-empty
island I.

We focus on (3 + 1)-dimensional spacetime through-
out our analysis, although it can be generalized to other
dimensions. In our analysis below, we assume that the
central bubble is either a dS or Minkowski bubble, which
simplifies the analysis [80, 81]. We believe that a similar
conclusion holds for an AdS central bubble, but demon-
strating this requires an extension of the analysis.

The argument in this section consists of several steps.
In Section IV A, we identify a two-dimensional quantum
antinormal surface ∂Σ′ in a surrounding AdS bubble for
a region R in the central bubble. In Section IV B, we
gather a portion of ∂Σ′ in each surrounding bubble and
sew them together to form a closed quantum antinormal
surface ∂I ′ which encloses R. In Section IV C, we ar-
gue that appending I ′ reduces the generalized entropy
of R and hence it can serve as the I ′ of Ref. [82]. In
Section IV D, we find I0, establishing the existence of a
non-empty QES for R. Finally, Section IV E contains
some discussion about the (inverted) island I.

While our argument applies more generally, in this sec-
tion we consider a setup that involves only a central bub-
ble and its surrounding AdS bubbles. We discuss more
general cases in Section V.

•
𝑘𝜇

𝜕Σ′

AdS
dS or Minkowski

ቊ
Θ𝑘 < 0
Θ𝑙 < 0

quantum

trapped

ቊ
Θ𝑘 > 0
Θ𝑙 < 0

quantum

antinormal

quantum

antitrapped

ቊ
Θ𝑘 > 0
Θ𝑙 > 0

Σ′

𝑙𝜇

FIG. 4. Penrose diagram showing the region near the domain
wall (yellow strip) separating the central dS/Minkowski and
surrounding AdS bubbles at late times. The transverse di-
rections corresponding to the hyperboloid H2 have been sup-
pressed. ∂Σ′ is a boundary of a partial Cauchy surface Σ′

and kµ, lµ are future-directed null vectors orthogonal to it.
Blue and red arrows indicate Unruh radiation and their part-
ner modes, respectively, and the double line at the top of the
AdS bubble represents the big crunch singularity. The signs
of classical expansions θk,l are shown in green following the
Bousso wedge convention [83].

A. Quantum Antinormal Surface in a Colliding
Collapsing Bubble

Let us consider the central bubble and only one of the
surrounding AdS bubbles. These bubbles are separated
by a domain wall. This system preserves invariance un-
der an SO(2, 1) subgroup of SO(3, 1) symmetry of a sin-
gle Coleman-De Luccia bubble. The spacetime is thus
given by a warped product of a two-dimensional hyper-
boloid H2 with a two-dimensional spacetime M2. Con-
sider a two-dimensional hyperbolic surface ∂Σ′ given by
the SO(2, 1) orbit of a spacetime point as shown in Fig. 4.
We denote the partial Cauchy surface which is bounded
by ∂Σ′ and extending toward the AdS side by Σ′.

We focus on the region near the domain wall at late
times. Given a ∂Σ′ in this region, let kµ and lµ be the
future-directed null vectors orthogonal to ∂Σ′, pointing
inward and outward relative to Σ′, respectively, as de-
picted in Fig. 4. We normalize them such that k · l =
−2 and denote the corresponding classical and quan-
tum expansions by θk,l and Θk,l, respectively. Here,
Θk,l are given by the changes in the generalized entropy
Sgen(Σ′∪R) under infinitesimal null variations of ∂Σ′ [84].

Suppose that a surface ∂Σ′ in the AdS bubble is lo-
cated near the big crunch singularity but sufficiently far
from the domain wall. This surface is classically trapped
(θk, θl < 0). When ∂Σ′ is moved toward the central bub-
ble, first it becomes normal (θk < 0, θl > 0) and then
antitrapped (θk, θl > 0) [80, 81]. What about the quan-
tum expansions?
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In general, Sbulk, and hence Sgen, can only be defined
for a closed surface, and its change δSbulk under a small
variation of the surface depends non-locally on the entire
surface. In our setup, however, the only relevant contri-
bution to δSbulk(Σ′ ∪ R) comes from partner modes of
the Unruh radiation emitted by the domain wall into the
AdS bubble, and we can locally determine the signs of
Θk,l.

2

Suppose we locally deform ∂Σ′ in the ±l direction.
Then, δSbulk receives a contribution from the reflected
modes, depicted by blue arrows in Fig. 4. This contri-
bution, however, is not strong enough to compete with
the classical expansion, since the modes are spread out
in the l direction.

To see this explicitly, let us assume that every radi-
ation quantum carries O(1) entropy, and that the rate
of emission as viewed from the domain wall’s frame is
controlled by the Unruh temperature T = aw/2π, where
aw is the acceleration of the domain wall. We then find
that3

|δSbulk| ∼
a3

w`
6

λr2(t∞ − x−)3
δrΩH, (4)

where ` is the AdS radius in the bubble, (t, r) are the
location of ∂Σ′ in the coordinates [80, 81]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dH2

2 , (5)

δr is the change of r when we deform ∂Σ′ in the l di-
rection, and ΩH is the coordinate area of the portion of
the hyperboloid for which we deform ∂Σ′. Also, λ is a
parameter appearing in the trajectory of the domain wall(

t
r

)
'
(
t∞ − t∞e−λ(τ−τ0)

r0 e
λ(τ−τ0)

)
, (6)

where τ is the proper time along the domain wall trajec-
tory, with r0 = r(τ = τ0) and t∞ = t(τ = ∞), and we
have introduced the null coordinates

x± = t± `2

r
. (7)

To derive the above expressions, we have assumed that
λ` & 1 and r is sufficiently larger than ` so that f(r) ∼
r2/`2, which implies t∞ ∼ `2/r0 (also t∞ > `2/r0).

The expression in Eq. (4) should be compared with the
corresponding change in area,∣∣∣∣ δA4l2P

∣∣∣∣ ∼ 1

l2P
rδrΩH. (8)

2 The contribution from partner modes of Unruh radiation emit-
ted into the central bubble is not relevant if R is sufficiently large
such that it intersects most of the radiation, since then the con-
tribution has the same sign as the variation of the area A(∂Σ′).

3 We thank Adam Levine for discussion on obtaining the quantum
contributions.

Assuming that the scalar potential responsible for the
domain wall is characterized by a single energy scale E,
we find ` ∼ 1/E2lP and λ ∼ aw ∼ E,4 so∣∣∣∣ δSbulk

δA/4l2P

∣∣∣∣ . lP
`
, (9)

where we have only considered ∂Σ′ satisfying t < t∞.
We indeed find that the quantum effect, δSbulk, is negli-
gible compared to the classical contribution, δA/4l2P, for
` sufficiently larger than lP.

On the other hand, if we vary ∂Σ′ in the ±k direction,
δSbulk receives a contribution from the partner modes,
depicted by red arrows in Fig. 4. If ∂Σ′ is far from the
domain wall, this contribution is small, so that ∂Σ′ re-
mains trapped at the quantum level: Θk,l < 0. However,
if ∂Σ′ is moved toward the null surface to which the do-
main wall asymptotes, x+ = t∞, the contribution be-
comes enhanced because the partner modes are squeezed
there.

Specifically, the quantum effect can be estimated as

|δSbulk| ∼
a3

w`
6

λr2(x+ − t∞)3
δrΩH. (10)

Here, we have assumed that the reflected modes, the
partners of which ∂Σ′ crosses, all pass through Σ′, which
requires

t > t∞ −
(

1− c
1 + c

)
`2

r
, (11)

where c = (t∞ − `2/r0)/(t∞ + `2/r0) is a constant satis-
fying 0 < c < 1. We thus find that the relevant ratio is
given by ∣∣∣∣ δSbulk

δA/4l2P

∣∣∣∣ ∼ `5lP
r3(x+ − t∞)3

, (12)

and the quantum effect can indeed compete with the clas-
sical contribution when ∂Σ′ approaches the null surface
x+ = t∞.5

Since the sign of δSbulk from this effect is such that
Sbulk gets reduced when ∂Σ′ is deformed in the −k di-
rection, Θk can become positive, making ∂Σ′ quantum
antinormal:

Θk > 0, Θl < 0. (13)

We assume that this transition happens before ∂Σ′

changes from being classically trapped to normal.6 This
behavior of quantum expansions is depicted in Fig. 4.

4 The second relationship holds for generic bubbles. For super-
symmetric bubbles, we instead have λ ∼ aw ∼ 1/`.

5 For supersymmetric bubbles, the numerator becomes `4l2P. In
this case, we need a more careful analysis to show that δSbulk

can compete with δA/4l2P.
6 If this assumption does not hold, we still have an island as will

be shown in Section IV D.
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FIG. 5. A sketch of the construction of closed codimension-2
surface ∂I ′. The central bubble and some of the surrounding
AdS bubbles are depicted as the green and blue cones, respec-
tively. The region I ′ is defined as a partial Cauchy surface
bounded by and outside ∂I ′.

B. Forming a Closed Quantum Antinormal Surface

In the previous subsection, we have shown that there is
a quantum antinormal surface ∂Σ′ in the AdS bubble. If
there were no other bubbles except for these two bubbles,
then this surface would extend infinitely in H2 and would
have an infinite area.

However, this is not the case because the central bubble
is surrounded by a multitude of AdS bubbles, as shown
in Fig. 5. The surface ∂Σ′ corresponding to a particular
AdS bubble is cut off by the domain walls resulting from
collisions with the neighboring AdS bubbles. Thus, we
are left with a finite portion of ∂Σ′. Such a finite-sized,
quantum antinormal surface can be obtained in each AdS
bubble, which we denote by σ′i (i = 1, 2, · · · ).

These surfaces σ′i can be connected with appropriate
smoothing in such a way that the resulting closed surface
encloses the central bubble and is quantum antinormal
everywhere. To see this, we note that we have some free-
dom in choosing the values of (t, r) for each σ′i. Using this
freedom, we can make two adjacent σ′i’s intersect along a
curve. The resulting “kink” can then be smoothed at a
length scale smaller than that of bulk entanglement. This
smoothing retains quantum antinormalcy, so we end up
with a closed, quantum antinormal surface.

We label this closed surface as ∂I ′, and the partial
Cauchy surface bounded by ∂I ′ and outside it as I ′; see
Fig. 5. Note that ∂I ′ being quantum antinormal means
that Θk > 0 and Θl < 0, where the quantum expansions
are defined using Sbulk(I ′ ∪R).

C. Reduction of the Generalized Entropy

We now move on to discuss the generalized entropy.
For a sufficiently large R, we expect that the region I ′

reduces the generalized entropy of R in the sense that7

Sgen(I ′ ∪R) < Sgen(R). (14)

To understand this, we first note that Unruh radiation
from the bubble walls of the central and surrounding bub-
bles, as well as that from the domain walls separating the
central and surrounding bubbles, contributes to entan-
glement between R and I ′. Appending I ′ to R therefore
reduces the Sbulk contribution to Sgen.

To illustrate Eq. (14), let us take R to be a spheri-
cally symmetric region in the central bubble. We assume
that the distribution of AdS bubbles surrounding and
colliding with the central bubble is statistically spheri-
cally symmetric. We then append I ′ to R and compare
the decrease in Sgen due to the change of Sbulk with the
increase in Sgen coming from A(∂I ′).

We do this comparison by focusing on an infinitesimal
solid angle dΩS in the central bubble. Using Eq. (3), we
can estimate the differential change in Sgen due to Unruh
radiation from the central bubble wall to be

dSbulk ≡ [Sbulk(I ′ ∪R)− Sbulk(R)]
dΩS

4π

∼ − 1

32π3
sinh

(
2
√
−κχ∗

)
dΩS, (15)

where χ∗ is the coordinate radius of R in the hyper-
bolic version of the FRW metric. Here, we have used
the fact that the global state is pure, so that Sbulk(I ′ ∪
R) = Sbulk(I ′ ∪R). Moreover, we have assumed that
Sbulk(I ′ ∪R) is sufficiently smaller than Sbulk(R) and
have taken

√
−κχ∗ � 1. These conditions can be sat-

isfied if the bubble nucleation rates in the parent bubble
are small, so that the collisions with AdS bubbles occur
at large FRW radii in the central bubble.

The corresponding area element of ∂I ′ is given by

dA ≡ A(∂I ′)
∣∣
dΩH

= r2
σ′i

dΩH, (16)

where rσ′i is the location of σ′i in coordinate r defined

by Eq. (5), and dΩH is the hyperbolic solid angle. By
matching the area element of the domain wall expressed
in hyperbolic and FRW coordinates on the side of the
central bubble, we find dΩS ∼ dΩH. This leads to∣∣∣∣ dSbulk

dA/4l2P

∣∣∣∣ ∼ l2P
16π3r2

σ′i

e2
√
−κχ∗ . (17)

(To do this properly, we need to regulate the solid angle
ΩAdS which an AdS bubble asymptotically occupies and
take dΩS sufficiently small so that this area element fits
within the corresponding domain wall. We can then take
the limit ΩAdS,dΩS → 0 afterward.)

The radius rσ′i is microscopic and is controlled by lP
and `i, where `i is the AdS radius in the bubble in which

7 This implies that I′ violates the Bekenstein bound [85, 86].
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𝜃
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FIG. 6. Variations of classical and quantum expansions, θ and
Θ, when a two-dimensional surface ∂Σ extending in the direc-
tion of hyperboloid H2 is moved between the surrounding AdS
and central bubbles. A finite area surface σ′

i (⊂ ∂Σ′), which
constitutes a portion of ∂I ′, is taken in the regime where the
surface is quantum antinormal. A surface σ0,i (⊂ ∂Σ0) which
gives ∂I0 after smoothing is in the quantum normal region.

σ′i resides. When a surface ∂Σ′ is moved from an AdS
bubble to the central bubble, the radius r grows and
becomes macroscopic. However, this transition occurs
mostly in the region where ∂Σ′ is classically normal, and
since σ′i resides on the AdS side of it, rσ′i is small.

We thus find that for a sufficiently large region R sat-
isfying

√
−κχ∗ & log

(
4π2maxi(rσ′i)

lP

)
, (18)

appending I ′ to R reduces Sgen, so Eq. (14) holds in this
case.

D. Existence of a Quantum Extremal Surface

The existence of a surface ∂I ′ satisfying Eqs. (13) and
(14) is not sufficient to ensure that of a non-empty is-
land I for R. The existence of an island, however, is
ensured [82] if there is a partial Cauchy surface I0 that
(i) is spacelike separated from R, (ii) has the boundary
∂I0 that is quantum normal with respect to Sgen(I0∪R),
and (iii) encloses I ′ in the sense that I ′ ⊂ D(I0).

To argue for the existence of such I0, let us consider
a codimension-2 surface ∂Σ0 similar to ∂Σ′. Such a sur-
face is specified by the coordinates (t, r) in Eq. (5). The
analysis in Sections IV A and IV B then tells us that when
∂Σ0 is moved from the near singularity region to the cen-
tral bubble, it changes from being quantum trapped to
quantum antinormal (as viewed from the side opposite to
the central bubble, which we denote by Σ0). This occurs
before the classical expansions become normal. As we
move the surface further, we expect that the quantum
effect becomes subdominant at some point, making the
signs of quantum expansions the same as those of clas-
sical expansions. In Fig. 6, we depict possible behaviors
of quantum expansions in this region by green Bousso
wedges which are consistent with the quantum focusing
conjecture [84]. We can thus take ∂Σ0 in the quantum
normal region to construct the surface ∂I0.

Like ∂Σ′, the surface ∂Σ0 is truncated by AdS-AdS
domain walls and becomes a finite surface σ0. As earlier,
we form a closed surface using these truncated surfaces
σ0,i (i = 1, 2, · · · ) from each surrounding AdS bubble. By
using the freedom of locating each surface, these pieces
can be sewn together to form a closed surface enclosing
the central bubble.

The resulting surface, however, has folds at the junc-
tions between AdS bubbles, with angles opposite to those
required for quantum normalcy. Nevertheless, the ef-
fect of these angles is suppressed by O(`i/r) compared
to that of the expansions of σ0,i’s in the interior of the
AdS bubbles. Therefore, by locating σ0,i’s at large r, we
can smooth out the folds to form a closed surface that is
classically normal and hence quantum normal.

This surface can play the role of ∂I0:⋃
i

σ0,i −−−−−→
smoothing

∂I0, (19)

where we define I0 as a partial Cauchy surface bounded
by and outside ∂I0. It is easy to see that the smooth-
ing can be done such that the resulting I0 is spacelike
separated from R and I ′ ⊂ D(I0). This guarantees the
existence of an island for R.

We note that the existence of I0 is sufficient by itself to
ensure the existence of an island if R is very large, satis-
fying Eq. (18) with maxi(rσ′i) replaced with the radius of

I0. Our argument involving I ′, however, indicates that
the island exists for much smaller R.

E. Inverted Island and Entanglement Castle

Given that the collisions between the central and sur-
rounding bubbles play an essential role in the existence
of I ′ and I0, we expect that ∂I is located in the region
near the corresponding domain walls. In fact, it is rea-
sonable to expect that the two possibilities for quantum
expansions depicted in Fig. 6 are both realized, depend-
ing on the path along which a codimension-2 surface ∂Σ
is moved. The edge of island ∂I would then lie at the
point where trajectories of ∂Σ bifurcate to behave in
these two different ways. The structure of the Bousso
wedges around this location is indeed consistent with ∂I
being a quantum maximin surface [87, 88].

Strictly speaking, this only implies that the surface ∂I
is a QES. In order for this surface to be the boundary of
an island, it must be the minimal QES. We assume that
this is the case, which is true if R has only one nontrivial
QES with Sgen(I ∪R) < Sgen(R).

Since the topology of I is the same as that of I ′ or
I0, the island I for region R is an inverted island, and
hence does not geographically look like an island. Let Ξ
be a Cauchy surface containing R and IΞ = D(I)∩Ξ the
section of the inverted island on this surface. Given the
geography, we may refer to the region IΞ, complement of
IΞ on Ξ, as an entanglement lake. However, R occupies
a significant portion of IΞ, so (regarding R as a land as
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other authors do) the region R ∪ IΞ which corresponds
to water is more like a moat; see Fig. 1. In this sense,
the region IΞ in the present context may be called an
entanglement castle.

V. COSMOLOGICAL EVOLUTION

Consider a Cauchy surface Ξ in the global spacetime.
The existence of a non-empty island I for a subregion R
of Ξ implies that the information about the semiclassical
state in IΞ = D(I)∩Ξ is encoded in the fundamental de-
grees of freedom associated with R. Therefore, physics at
the semiclassical level can be fully described by the fun-
damental degrees of freedom associated with the partial
Cauchy surface IΞ = Ξ \ IΞ.

In the eternally inflating multiverse, an inverted island
I appears for sufficiently large R. This implies that the
semiclassical physics of the multiverse, which is all that
we need to make cosmological predictions, is described
by the fundamental degrees of freedom in a finite volume
portion of a Cauchy slice that involves R. We call such
a surface an effective Cauchy surface.

Here we make two general comments about effective
Cauchy surfaces. First, the location of the island D(I),
or ∂I, depends on the Cauchy surface. For example,
since R is spacelike separated from I, a Cauchy surface
describing the state of the parent bubble cannot have ∂I
around the central bubble as seen in the previous sec-
tion. However, in this case there exists a region Rp in
the parent bubble such that an island Ip appears around
the parent bubble, so that the effective Cauchy surface is
given by Ξ \ (D(Ip)∩Ξ). In general, when we consider a
Cauchy surface describing the state of an earlier bubble,
the relevant island appears around that bubble.

Second, when two or more (non-surrounding) bubbles
collide, we may want to consider Cauchy surfaces span-
ning all of these bubbles to describe the collision. In this
case, we can choose a region Rc spanning the colliding
bubbles such that the island Ic encloses all the colliding
bubbles. This allows us to describe the bubble collision
directly without relying on reconstruction from micro-
scopic information in the fundamental degrees of freedom
in R.

A sketch of the global multiverse illustrating the above
points is given in Fig. 7, where possible effective Cauchy
surfaces are depicted by red lines. For a given gauge
choice, the state on an effective Cauchy surface Υ1 can
uniquely determine the state on an effective Cauchy sur-
face Υ2 that is in the future domain of dependence of Υ1.
In general, the final state of this time evolution is given
by a superposition of states in different geometries Mi:

|Ψ(Υ1)〉 time−−−−−→
evolution

∑
i∈geometries

ci|Ψ(Υ2,i)〉Mi
. (20)

Here, all Mi’s share the surface Υ1 and the state on it,
and Υ2,i is an effective Cauchy surface on the geometry
Mi which is in the future domain of dependence of Υ1.

FIG. 7. Several effective Cauchy surfaces for a given geometry
are depicted by red lines. A microstate of the fundamental
degrees of freedom on an effective Cauchy surface can describe
the full semiclassical physics of the multiverse.

It is worth noting that the evolution equation in
Eq. (20) takes the form that once the knowledge of the
current state, |Ψ(Υ1)〉, is given, we can predict its fu-
ture, more precisely what an observer who is a part of
the state can in principle see in their future. Note that
the equation does not allow us to infer from |Ψ(Υ1)〉 the
global state of the multiverse in the past. This structure
is the same as time evolution of states in the Schrödinger
picture of quantum mechanics.

Our approach solves the measure problem in the sense
described above: once we are given the initial state on an
effective Cauchy surface, we can in principle predict any
future observations. The existence of the inverted island
implies that the necessary information for this predic-
tion, i.e. the physics of matter excitations over semiclas-
sical spacetimes, is fully encoded in the microstate of the
fundamental degrees of freedom associated with the ef-
fective Cauchy surface. As discussed in Ref. [22] for a
dS spacetime, this information is expected to be encoded
in quantum correlations between the matter and Unruh
radiation degrees of freedom.

VI. CONCLUSIONS

In this paper, we have shown that a Cauchy surface
Ξ in an eternally inflating multiverse has an entangle-
ment island for a sufficiently large subregion R ⊂ Ξ. The
island IΞ on Ξ is, in fact, an inverted island surround-
ing the region R, implying that the semiclassical physics
of the multiverse is fully described by the fundamental
degrees of freedom associated with the finite region IΞ,
the complement of IΞ on Ξ. This provides a regulariza-
tion of infinities which caused the cosmological measure
problem.

As in the case of a black hole, the emergence of an
island is related to the existence of a singularity in the
global spacetime; in the multiverse, this role is played by
the big crunch singularities in the collapsing AdS bub-
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bles. This picture is consistent with the interpretation of
singularities in Refs. [21–23]: their existence signals that
a portion of the global spacetime is intrinsically semiclas-
sical, arising only as an effective description of more fun-
damental degrees of freedom associated with other space-
time regions.

The result in this paper strongly suggests the existence
of a description of the multiverse on finite spatial regions.
Proposals for such descriptions include Refs. [51–53] and
Refs. [32, 34, 56] in which the fundamental degrees of free-
dom are associated with the spatial infinity of an asymp-
totic Minkowski bubble and the (stretched) cosmological
horizon, respectively. It would be interesting to explore

precise relations between these holographic descriptions
and the description based on the global spacetime pre-
sented in this paper.
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