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Abstract 

Quantum dot superlattices have recently been proposed for thermoelectric applications. 
The predicted improvement of the thermoelectric figure of merit in such structures should come 
from the decreased lattice thermal conductivity due to additional boundary scattering and acoustic 
phonon spectrum modification, as well as change in the carrier transport and density of states. Here 
we outline a theoretical model to calculate carrier and phonon dispersion in such structures and 
present results for Ge/Si quantum dot superlattices. We argue that one can tune the mini-band 
carrier transport and phonon dispersion in such a way that electron-phonon coupling is suppressed. 
The latter may open up a novel way for the enhancement of the thermoelectric figure of merit.   

 

1. Introduction 
Quantum dot superlattices (QDS) e.g., multiple arrays of quantum dots, have recently 

been proposed for thermoelectric applications [1-3]. Initially it has been suggested that the 
predicted improvement in such structures should come from the decreased lattice thermal 
conductivity due to additional acoustic phonon scattering on quantum dots and “some sort of 
quantum confinement of carries” in quantum dots. At the same time, a simplistic mechanism of the 
process when carriers are confined inside the dots, and electrical conduction is due to carrier 
hopping (tunneling) between the dots does not lead to significant improvement in thermoelectric 
properties. Indeed hopping conductivity is characterized by low mobility values [4]. It is also 
unlikely that above-the-barrier transport due to thermal excitation or applied bias would 
significantly contribute to the current for the realistic conditions of device operation. The situations 
when the main current contribution comes from carrier transport through, for example, wetting 
layers fall to another category since in this case the structure is closer to conventional multiple 
quantum well structure. In order to achieve thermoelectric properties improvement not only via 
thermal conductivity decrease one has to envision some other mechanisms. 

Thus, we argue that in order to achieve “electron transmitting – phonon blocking” regime, 
which is desirable for the thermoelectric material, it may be helpful to use regimented quantum dot 
arrays where carrier transport is facilitated by mini-band formation, while acoustic phonons are 
subject to additional resonant scattering. A proper selection of the parameters of such QDS may 
also allow for tuning of the electron – acoustic phonon interaction and its suppression to some 
degree.  

In the following section we consider three-dimensionally (3D) regimented QDS with the 
strong coupling (wave function overlap) among the dots. QDS with 3D regimentation has already 
been reported in literature [5]. Strong coupling and regimentation leads to formation of 3D 
extended mini-bands instead of localized quantum dot states. This makes such structures analogous 
to artificial crystals, e.g. quantum dot crystals [6]. Such energy spectrum modification is expected 
to take place provided that the dot size is homogeneous and the dots are crystalline with low 
surface defect concentration.  Formation of extended electron states and mini-bands have also 
already been observed in multiple quantum-dot arrays [4,7].  

 
2. Theoretical Model  

We calculate electron spectrum of QDS in the envelope wave function approximation 
applied to a potential barrier profile of choice. The one-electron Schrödinger equation for such a 
system is written as 
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where h  is Plank’s constant, 1/m* is the reciprocal effective mass tensor, ϕ(r) is the electron wave 
function, E is the electron energy, and the confining potential profile V(r) corresponds to an infinite 
sequence of quantum dots of size Lx, Ly, and Lz separated by the barriers of thickness Hx, Hy, and 
Hz. The profile V(r) is set to zero in the barrier region, while inside quantum dot it is equal to the 
band offset in the conduction (or valence) band of the considered material system taken with a 
negative sign. The information about band structure of the host materials is reflected in the 
reciprocal effective mass tensor 1/m*. The effect of strain was approximately taken into account by 
changing the value of the corresponding band offset. The confining potential V(r) was considered 
to be a piece-wise uniform function.  

Heat is carried by acoustic phonons. Acoustic phonon dispersion is strongly modified in 
QDS. In the long-wavelength limit, the dispersion can be described by a continuum model. For 
QDS made of semiconductors of cubic symmetry, such as Si and Ge with diamond lattice (Oh

7 
space group), or A3B5 compounds with zincblende lattice (Td

2 space group) the number of 
independent elastic stiffness constants in the elasticity equation reduces down to three:  
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Similar expressions for y- and z-components of the displacement vector u of a geometrical point 
inside the material of QDS with (i = x,y,z) coordinates can be obtained by cyclic exchange of  (ux, 
uy, uz) and (x, y, z). The elasticity Eqs. (2) in a non-uniform medium results from Euler-Lagrange 
equations for the system with cubical crystal lattice. The solution of these equations for QDS can 
be expressed in a plane wave form by analogy with regular bulk crystals 
 

( ) ( ) ( )[ ]tit ω−⋅= rqrAru exp,   ,   (3) 
 
where |q| = 2π/λ is the phonon wave vector, with phonon wavelength λ, r is coordinate vector, t is 
time, and ω is the phonon frequency. The eigenvalues of Eq. (2) in bulk material linearly depend 
on the phonon wave vector, as it should be in the continuum approximation.  

We solve Eqs. (1-2) using the finite difference method (FDM). Details of the simulation 
procedure are reported elsewhere [8]. A simpler semi-analytical approach to calculate electron 
dispersion below the potential barrier in QDS with a model confining potential that allows for 
electron wave function separation has been reported in Ref. [6]. 
 
 
3. Results and Discussion 

As an example material system we consider Ge quantum dots grown on (001) Si by the 
molecular beam epitaxy (MBE). Although state-of-the-art Ge/Si QDS are characterized only by 
partial regimentation, continuous progress in MBE self-assembly most likely will lead to synthesis 
of 3D regimented quantum dot superlattices similar to those reported in Ref. [5]. For simplicity we 
restrict our analysis to heavy-holes in Ge/Si QDS. This is done for two reasons. Firstly, most of the 
band-gap discontinuity between Si and Ge goes to the valence band. Secondly, the potential energy 
maximum in the valence band is located in Γ point, which greatly simplifies the model and justifies 
our omission of carrier Bloch functions from consideration. 
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Fig. 1 shows the heavy-hole dispersion in Ge/Si QDS calculated using FDM. The energy 
is given with respect to the position of the potential barrier. Double brackets for the wave vector 
notation are introduced to distinguish direction in quantum dot supra crystal from crystallographic 
directions. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Heavy-hole dispersion in Ge/Si QDS with the following parameters: 
Lx = Ly = 5 nm, Lz = 2.5 nm, Hx = Hy = 2.5 nm, and Hz = 1.25 nm along [[111]] 
quasi-crystallographic direction. The depth of potential well is V = 450 meV. 
The energy in units of eV is counted from the position of the potential barrier. 
 
One can see the transformation of discrete levels of isolated quantum dots to mini-bands 

in 3D regimented quantum dot arrays. Similar to bulk crystals, the energy in QDS has the full 
symmetry of the reciprocal lattice. In this artificial crystal some of the energy bands are degenerate 
in the center of the quasi-Brillouin zone (QBZ). Moving away from the point of high symmetry in 
the center of QBZ to a point of lower symmetry splits the energy branches. The width of mini-
bands rapidly increases with shrinking of distance between quantum dots and may be up to dozens 
meV. The existence of the mini-bands means that electron (or hole) state are extended over the 
whole QDS structure instead of being confined in separate quantum dots. Their group velocity 
components strongly depend both on the mini-band number and the quasi-crystallographic 
direction. It is interesting to note that in an ideal artificial crystal, it is possible to achieve a very 
high electron velocity (on the same order of magnitude as the thermal velocity in the host 
material). This fact is explained by the small size of the quasi Brillouin zone in QDS as compared 
to the Brillouin zone in bulk crystals. It permits carriers to move easily under the influence of 
electric field. The latter leads to a much higher conductivity in a regimented quantum dot array 
compared to that of an array of randomly positioned quantum dots with the same size. Thus the 
power factor, which is proportional to electrical conductivity, increases leading to ZT 
improvement.  

Fig. 2 shows electrical conductivity of a three-dimensional regimented p-doped Ge/Si 
QDS obtained on the basis of model developed in Ref. [6] under certain simplifying assumptions. 
In our calculations we took into account modification of heavy-hole energy spectrum only. The 
nonlinear behavior seen in Fig. 2 is explained by slope change of the carrier dispersion branches 
(changing of the effective sign of major carriers taking part in the conductivity) as quasi-Fermi 
level shifts up in energy. 
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Figure 2. Electric conductivity at room temperature of simple cubical p-doped 
Ge/Si QDS with the following parameters: L = 2.5 nm, H = 1.0 nm, 
Ve = 0.45 eV, m*W = 0.28 m0, and m*B = 0.49 m0 at room temperature as a 
function of heavy hole quasi-Fermi energy. The depth of potential well is 
V = 450 meV. The energy in units of eV is counted from the position of the 
potential barrier. The constant relaxation time value is about 10-12 s. The gray 
stripes show the energy range of “almost free” motion of carriers over the whole 
QDS. 

 
 

When quasi-Fermi level is lower then the lowest mini-band, only small part of the tail of 
Fermi distribution appears in the range of allowed energies. This situation is similar to ordinary 
conductivity of doped semiconductors and corresponds to quasi-semiconductor conductivity of 
QDS. When quasi-Fermy energy is inside a mini-band, carries in kT energy-range almost freely 
move inside the mini-band over the whole QDS. This corresponds to quasi-metallic conductivity of 
QDS, which is an order of magnitude larger then that in the quasi-semiconductor regime. The 
further shifting of the quasi-Fermi energy up to a mini-band gap leads to conductivity drop. This 
cycle repeats every time as EF goes through a mini band. The presented result is valid for the low-
field electrical conductivity, when the electronic mini-bands do not split into a Wannier-Stark 
ladder. 

While regimentation of quantum dots makes it easy for carriers to move, phonons are 
effectively scattered by quantum dots interfaces. Solid lines in Fig. 3 present the phonon dispersion 
in [[111]] quasi-crystallographic direction calculated using FDM. There exist two different types 
of phonon modes in regimented QDS that emanated from bulk acoustic modes. These modes are 
quasi-acoustic (ω(q=0)=0) and quasi-optical (ω(q=0)≠0).  

Quasi-acoustic modes are nothing else but folded acoustic branches of the host material. 
The multiple reflection of phonons from periodical interfaces leads to a mini-gap formation at the 
Brillouin zone boundary. The degeneracy due to intersection of different branches is lifted 
everywhere except for the points of high symmetry. The value of the group velocity for the quasi-
acoustic phonons in Ge/Si QDS lies between Si and Ge sound velocities and it is not defined by 
the volume fractions of two constituent materials. Even in solid alloys where atoms of two 
materials are randomly distributed elastic properties change almost linearly only in “one-mode 
behaved” systems such as Na1-xKxCl.  

The compositional dependence of phonon energy in SixGe1-x alloy is far from linear. In 
systems with a spatial regimentation like in 3D regimented QDS the deviation from linear 
dependence should increase.  
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Figure 3. Phonon dispersion (solid lines) and the first heavy-hole mini-band 
(solid line with dots) shown along [[111]] quasi-crystallographic direction in 
Ge/Si QDS with the following parameters: Lx = Ly = 5.0 nm, Lz = 2.5 nm, 
Hx = Hy = 2.5 nm, and Hz = 1.25 nm. For convenience, the heavy-hole energy is 
counted from the mini-band minimum. 
 
 
Quasi-optical modes correspond to “nearly standing” waves. One can view them as 

created by periodic scatters such as quantum dot interfaces. These modes can be induced inside 
quantum dots or in the space between them. A “true” standing wave would have a completely flat 
dispersion curve, which reflects the fact that this wave does not propagate through the crystal. In 
contrast, the dispersion branches of quasi-optical modes can have a minimum. The latter means 
that these modes propagate slowly going back and forth. We refer to these modes as quasi-optical 
since they have a nonzero energy in the center of the Brillouin zone, e.g. a cut-off frequency. At 
the same time one should emphasize that these modes also originate from acoustic bulk phonon 
modes. The regular optical phonon modes have much higher energy. In Ge/Si QDS of the 
considered geometry the lowest quasi-optical branch has the energy of about 2.6 meV at the zone 
center. In bulk Si the longitudinal optical (LO) and transverse optical (TO) phonon energies are 

== ΓΓ
TOLO ωω hh  64.3 meV. In bulk Ge they equal to == ΓΓ

TOLO ωω hh  37.2 meV. The emergence of 
many new quasi-optical phonon branches in QDS with low characteristic energy may dramatically 
modify carrier energy relaxation processes in such structures.  

A possibility of suppression of carrier – acoustic phonon interaction or at least achieving 
its high anisotropy can be briefly explained as follows. Let us consider single-phonon-assisted 
processes, which are usually the most important ones. We compare heavy-hole and phonon 
dispersion branches along [[111]] quasi-crystallographic direction in Fig. 3. The first heavy-hole 
branch is shown in Fig. 3 with solid line marked with circles. A hole can scatter from its initial 
state E(ki) to the final state E(kf) with a phonon ( )qΩh  assistance if and only if both energy 
conservation ( ) ( ) ( )qΩ=− hif kEkE , and momentum conservation kf – ki  = q laws are satisfied. 
Assuming linear acoustic phonon dispersion for small wave vectors, e.g. ( ) qvq g=Ωh , one can 
find from the above equations the condition for the allowed acoustic phonon-assisted transitions 
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Eq. (3) can be graphically interpreted as a horde to the hole dispersion with the slope 
equal to the acoustic phonon group velocity. In tetragonal (dx = dy > dz) QDS the heavy-hole and 
phonon dispersion along [[100]] and along [[010]] quasi-crystallographic directions generally have 
the smallest value of the slope, while [[111]] (see Fig. 3) is the direction of the steepest branches. 
It is much larger than the phonon group velocity of any branch. It results in scattering suppression 
in approximately 80% of the Brillouin zone except for the small areas near the center and Brillouin 
zone boundary. Thus, the hole - single phonon scattering in QDS displays spatial anisotropy and 
suppression. The latter increases hole -phonon relaxation time, which is favorable for 
thermoelectric applications. 

Moreover, inter-mini-band transitions with assistance of one phonon are forbidden for the 
considered structure. The mini-gap between the first two mini-bands shown in Fig. 1 E2 – E1 ~ 
80 meV - 100 meV is larger than the optical phonon energy. At the same time, multi-phonon 
scattering in QDS may play a significant role in energy relaxation processes due to the presence of 
many quasi-optical phonon branches (see Fig. 3). At room temperature, these low-energy branches 
should have a high population density in accordance with the Bose-Einstein statistics. 

Flattening of phonon dispersion in regimented QDS may have additional positive effect 
on the thermoelectric figure of merit ZT related to the lattice thermal conductivity decrease. 
Initially, this mechanism has been proposed for in-plane phonon transport in free-surface or 
clamped-surface semiconductor quantum wells [9-10] and quantum wires [11]. It has been pointed 
out in Ref. [9-10] that acoustic phonon dispersion modification leads to a decrease of the in-plane 
phonon group velocity and corresponding increase of the phonon relaxation rates on impurities, 
defects, as well as in Umklapp processes. As a result, the phonon (lattice) thermal conductivity 
experiences significant drop along in-plane direction. The precondition for such desirable for 
thermoelectric applications modification of phonon dispersion is small width of the structure 
(much smaller than the phonon mean-free path) and significant difference in elastic constants 
between well (wire) material and the barrier [9-11]. As one can see from Fig. 3 a similar dispersion 
flattening in regimented QDS calculated for realistic elastic constant values may lead to the 
significant decrease in lattice thermal conductivity as well.   

 
Conclusions 

We obtained the carrier and phonon energy spectra in three-dimensional regimented 
quantum dot superlattices  (QDS) proposed for thermoelectric applications.  Coupling among 
quantum dots in such regimented structure results in formation of carrier mini-bands provided that 
the disorder in the system is small. The latter allows one to achieve high carrier mobility values in 
such structures. We also demonstrated that the acoustic phonon dispersion in QDS undergoes 
strong tunable modification, which may open up new possibilities of carrier – phonon scattering 
suppression and thermal conductivity decrease favorable for thermoelectric applications.  
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