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Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
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Impedance of Accelerator Components 

John N. Corlett 

Center for Beam Physics, Lawrence Berkeley National Laboratocy, 
1 Cyclotron Road, Berkeley, California 94720 

* 

Abstract. As demands for high luminosity and low emittance particle beams 
increase, an understanding of the electromagnetic interaction of these beams with 
their vacuum chamber environment becomes more important in order to maintain the 
quality of the beam. This interaction is described in terms of the wake field in time 
domain, and the beam impedance in frequency domain. These concepts are 
introduced, and related quantities such as the loss factor are presented. The 
broadband Q=l resonator impedance model is discussed. Perturbation and coaxial 
wire methods of measurement of real components are reviewed. 

INTRODUCTION 

At low beam currents the motion of a charged particle beam can be described 
by the optics in the ac9elerator - the beam experiences accelerating and focusing 
forces due to the external magnetic and electric fields purposely applied and 
controlled. In addition to this interaction with external fields, the beam also 
communicates with its surrounding vacuum chamber through electromagnetic 
fields generated by the beam itself. When the beam current is sufficiently large, the 
effects of the beam induced fields become more important, and can limit the 
performance of an accelerator. The various accelerator components, such as RF 
cavities, bellows, injection septa, dielectric walls, and even a smooth pipe of finite 
conductivity result in scattering or trapping of the beam-induced fields. These 
fields can last for long enough to be experienced by a charge following the exciting 
charge, causing perturbations to the energy or angle of the following particle's 
orbit. The dynamics of bunches of particles due to their interaction with the 
environment of the accelerator through the beam-induced electromagnetic field are 
generally described in terms of "collective effects" which may be highly disruptive 
to the beam. Problems may also be encountered in heating of accelerator 
components as a result of these scattered or trapped fields. 

Prediction and measurement of the effects of the beam induced fields, in terms 
of beam impedance or wake function, is necessary for accurate assessment of 
machine performance, and a considerable formalism has been developed to 

·This work was supported by the US Department of Energy, Under Contract DE-AC03-
76SF00098. 
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describe the beam interaction with electromagnetic fields. Analytical estimates, 
computer simulation, test laboratory measurements, and measurements with beam 
in an accelerator are used to determine the beam impedance (1 - 4). 

The effects of the self-fields of the beam may be analyzed in either time
domain or frequency-domain, and each has its advantages and drawbacks. For 
circular accelerators, the periodic nature of the beam signals makes the frequency 
domain approach generally more useful, whereas the time domain approach is 
more often applied to linear machines. In the time-domain the beam-induced 
electromagnetic field in an accelerator component may be described by wake 
junction~ in the frequency-domain by the beam impedance (sometimes known as 
the coupling impedance). The beam impedance is a complex quantity: the real part 
is associated with extraction of energy from the beam~ the imaginary part with 
deformation of the beam profile. The wake function and impedance are equivalent, 
in the sense that the impedance is the Fourier transform of the wake function. 

BASIC CONCEPTS 

The electric field vector for a charged particle moving in free space, in the 
laboratory frame, may be written (5): 

E= qf{) 1 
41t£o'fr2 ( v2 . 2 )3/2 1--sm ~ 

c2 . 

where 'I' is the angle between the observer at r0 and the particle velocity v. 

The opening angle of the radialE-field is of the order 1/y. For ultra-relativistic 
particles the fields resemble plane waves - E and B are transverse to each other 
and lie in a disk transverse to the particle velocity. We have only radial E field and 
azimuthal H field, confined to a disk perpendicular to the direction of motion of 
the charge, producing a a-function distribution in the direction of motion. Outside 
this disk there are no fields, and consequently there would be no forces acting on a 
charge ahead of or following the particle. The situation remains the same for 
charges moving along the axis of an infinitely conducting smooth cylindrical pipe. 
The electric field lines are then terminated with surface charges on the inside wall. 

For non-relativistic particles the situation is more complex. y is determined by 
the energy of the particle beam divided by the rest energy of the constituent 
particles. For low-y beams the space-charge force which cancels out with the 
magnetic forces of ultra-relativistic charges cannot be neglected, and the fields 
associated with a charge are not confined to a disk around the charge. Here, we will 
deal mainly with the simpler case of ultra-relativistic charges, and ignore these 
latter complications. 
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Longitudinal Wake Fields 

The beam-induced electromagnetic fields are called the wake fields, since in the 
limiting case of charges moving at the speed of light, causality requires that the 
fields exist only behind the charge. 

Consider a point charge q1 traveling with velocity v=~c at position zl> and 
followed by another point "test" charge q traveling with equal velocity parallel to 
q 1 and at position z. The time delay between the charges is 't, and their 

longitudinal coordinates are given by z 1(t) = vt, z(t) = v(t-'t). Figure 1 shows the 
coordinate system. 

~v 

----...,...-------------.z 
Z Zl 

q 

FIGURE 1. Coordinates of the point charges 

The Lorentz force experienced by the test charge, q, due to fields created by 
the exciting charge q b is given by: 

F=q(E+vxB] 

In general the wake fields and resulting force will have transverse and 
longitudinal components. The energy lost from the leading charge q 1 is given by 
the work done against the electromagnetic fields: 

and for the longitudinal component we find: 
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. t=Zl 
' v 

This accounts for the energy loss to resistive heating in the vacuum chamber walls, 
to fields scattered at discontinuities in the pipe, and to fields stored in irregular 
regions of the pipe. · 

The loss factor k(r1) is defined as the energy loss to the self-field per unit 
charge squared: 

and has units of volt per Coulomb. 
The test charge experiences an energy change due to the fields produced by the 

leading charge: 

The longitudinal wake function wz(r,rl>t) may be defined as the energy lost by 

the trailing charge q per unit charge of both q 1 and q: 

or equivalently in terms of the longitudinal electric field: 

. t=~ + 't 
' v 

Like the loss factor, the wake function has units of volt per Coulomb. 
We need to know the wake function for a distribution of particles in a bunch. 

By using the wake function as defined above for a point charge, also known as a 
Green function, we apply linear superposition to add the effects of a bunch of 
particles. Thus the wake field of an arbitrary charge distribution ib(t), where 
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is obtained by the convolution of the o-function wake function with the bunch 
distribution. We omit the transverse position dependence, and write the integral 

over the bunch coordinate 't': 

1~ ib('t') Wz('t-'t') d't' 

Wz(-r) = -~----
QI (1) 

Note that the wake function is zero for time -r' > 't, by causality - the distant tails 
of the exciting bunch cannot influence a test particle closer to the center of the 
bunch. For a unit test charge, q1 = 1, the wake function is known as the wake 

potential V(-r). 
The loss factor for a bunch may now be defined as: 

(2) 

Longitudinal Beam Impedance 

The frequency-domain or impedance representation may be related to the 
time-domain wake function by Fourier transform. For a point charge the beam 
impedance or coupling impedance is defined as the Fourier transform of the wake 
function: 

and has units of Ohms. 

The Fourier spectrum of the charge distribution, I(w), is 
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and by transforming equations (1) and (2) we find the wake function in terms of 
the impedance, and the frequency domain representation of the loss factor: 

K = f Zreru(ro)ll(roj2 dro 

1t qy 

where we have taken the real part of the impedance in calculating the loss factor. 
For the case of a Gaussian charge distribution: 

and the loss factor for a bunch is given by: 

1-Zreai( ro) e- {CilcrT dro 
K = ;:_:_ ______ _ 

1t 

and it is apparent that the loss depends on the bunch length. 
We may also write the wake potential as 

V z(<.O) = I( <.0) Z(ro) 

and we see that a convolution integral in time domain has become a simple product 
in frequency domain. 

Longitudinal wake of a resonant cavity 

The wake function of a cavity resonant at frequency ror may be found by 

modeling the cavity as a parallel RLC circuit, and calculating the response of the 
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· circuit to a 8-function pulse. The impedance of the RLC circuit is given by 

which gives 

where 

_L=_l +-1-+ jroC 
Zu Rs jroL 

Z Rs 
u= 

1-j~:- :) 

Charge q induces a voltage given by 

~= q rorRs 
c Q 

The energy stored in the capacitor can be related to the loss factor by: 

.ll U = q2 = rorRs q2 = kq2 
2C 2Q 

(3) 

where we have introduced the loss factor for a point charge, or the parasitic mode 
loss factor k for a given cavity mode 

k = ffirRs 
2Q 

The wake function is given by the inverse Fourier transform of (3): 

w(t) = 2qaRseat (cos rot+~ sin rot) 

where 
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and for high Q-value 

Transverse Wake Fields 

Consider the leading charge, q1, transversely displaced from the axts. The 
charge can excite electromagnetic fields which can be expanded in multipole 
components (dipole, quadrupole, etc.); for small displacements the dipole 
component is usually dominant. The test charge q receives a momentum change (a 
kick) from the fields: 

which in general depends on the positions of both the exciting and trailing charges, 
and in general is not in the direction of the displacement of the leading charge. The 
transverse wake junction, w .lt), is defined as the kick per unit of both charges and 
is given by: 

and has units of volt per Coulomb. Here, the symbol ..L represents either the x or 
y direction. In analogy to the longitudinal case we define the transverse loss 
factor, k_t. as the transverse kick given to the charge by its own wake per unit 
charge squared: 

and again has units of volt per Coulomb. 
Usually the dipole component dominates, and this term is proportional to the 

transverse displacement of the exciting charge q1. The transverse dipole wake 

function, w'('t), is defined as the transverse wake function per unit transverse 
displacement: 
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and has units volt per Coulomb per meter. Similarly the transverse dipole loss 
factor is given by: 

k
. _ ~P11 
1.- qf r1 

Transverse Beam Impedance 

The transverse beam impedance, Z.L, may be found from the Fourier 
transform of the transverse wake function: 

the units are Ohms. 
Since the transverse dynamics is dominated by the dipole wake, we define the 

dipole transverse impedance : 

z' (w) = Z.L( w) 
J.; f} 

and the units are Ohms per meter. If the impedance is known, the transverse wake 
may be calculated from the inverse Fourier transform: 

Relationship Between Transverse and Longitudinal Wake Fields 
and Impedance 

If we differentiate the momentum kick experienced by a charge q with respect 
to time, we obtain: 

a~p = Jlb(aE d a{v x B) d) 
dt q dt t + dt t 

ta 
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For relativistic particles, of constant velocity 

dz = v dt 

we have 

dd dE aB flb lb 
dtp = q a at dt + a dz X dt dt 

Using Maxwell's equation 

and the identity 

aB 
-=-V'xE 
dt 

dz X V' x E = V' ( dz · E) - ( dz • V' )E = V' ( dz • E) - ~~ dz 

then we find 

f
lb lb dd dE aE ~=q -dt- (v(dz·E)--dz} at at az 

a a 

a~r = q f (V(dz ·E)+ 2dE) 

The transverse components are 

:\ (~p.L) = q f [. V _t(dz ·E)+ 2dE~ 

and noting that 
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<I.E = q f dz • E 

we find 

The bracketed term we choose to extend over the region that the entry and exit 
fields E..L(a), E..L(b), are zero. Then for fields with sinusoidal time variation we 

have the Panofsky-Wenzel theorem: 

This theorem tells us that the transverse kick can be described purely in terms of 
the longitudinal electric field. There must be a longitudinal electric field component 
in order to produce a transverse momentum change in a particle traveling through a 
structure. The frequency dependence shows that the higher the frequency at 
which the deflecting fields are encountered, the less of a kick they impart. 

IMPEDANCE MEASUREMENTS 

Perturbation Measurements 

For narrow-band impedances, e.g. cavity resonances, perturbation 
measurements are an accurate method for mapping fields and determining the beam 
impedance. The method involves the introduction of a small perturbing object into 
the fields of the resonator (6). 

The change in resonant frequency upon introducing the object is proportional 
to the relative change in electric and magnetic stored energy: 

For a small object, i.e. one for which the unperturbed field is roughly constant 
over the volume of the perturbing object, the perturbed energy is generally 
expressible as the product of the stored energy of the unperturbed field integrated 
over the volume of the perturbing object and a form factor which depends on the 
shape and orientation, and electromagnetic properties of the perturbing object. For 
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a small sphere of radius r, we find: 

For a dielectric bead Jlr = 1, and 

For a metal bead Jlr --7 0 and er --7 oo, and 

For the case of a monopole mode, with zero magnetic field on axis, the electric 
field is: 

A metallic bead gives a large frequency shift, but the perturbation is sensitive 
to both E and H fields. A dielectric bead will only perturb the E field. Shaped 
perturbing objects, such as needles, can enhance the perturbation and offer 
directional sensitivity. For an ellipsoid, the enhanced perturbation can be 
calculated analytically; other objects can be calibrated in a known field. 

The absolute fields may be calculated if the power and Q value are known; 
however the geometrical factor R/Q can be found from the longitudinal field 
distribution. By mapping the longitudinal distribution of Ell and integrating, the 

R/Q of the cavity mode can be measured: 

The transit-time factor, T, is defined as the ratio of energy received by a charge 
passing through the time-varying fields to that which would be received if the field 
everywhere along the path were at its time-maximum value: 
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.... 

f Eu ei ';'- 'dz 

f Endz 

T= 

Consider a charge traveling at speed v=z/t through a field extending a length± 
g, where the field is: 

v 
En = -{ cos rot 

Then the energy gain is given by: 

1~ 1~ v 
..:lE = .! qEn dz = .! e g 0 cos ~ dz 

2 2 

..:lE = 2q V 0 _y_ sin ro
2 

g 
rog v 

..:lE = qVo sin 8 
e 

The transit-time factor is given by 

and the transit angle e is 

T =sin 8 
e 

e = rog 
2v 

The transit-time-corrected shunt impedance RT2 of an even mode (symmetric 
in z about the center of the cavity) is obtained from: 

RT
2 

(f ~(cos¥)ctz)' 
Q = 2rrrotr3e

0 
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Transverse Dipole Mode Impedance 

To determine the transverse impedance of a dipole mode, 'we measure the 
longitudinal impedance of the dipole mode, at a radial offset r, and use the 
Panofsky-Wenzel theorem to calculate the transverse impedance. 

The transverse energy change is related to the transverse voltage by: 

and the dipole transverse impedance is: 

R - .Vl_ 
l_- ]If 

Then, for ultra-relativistic particles 

R = jc~p1_ =- V 1_(Vu)~ 
1_ elr rolr 

For small radial displacements in dipole modes, E11 is proportional to the radial 
offset r, and we may write: 

which gives: 

V 1_{Vu) = Vu(r) 
r 

Coaxial Wire Measurements 

The coaxial wire impedance measurement uses a conducting rod placed along 
the beam axis in the vacuum chamber, forming the center conductor in a coaxial line 
system (7,8). Tapers at either end of this section allow for smooth impedance 
transformation from the 50 Q lines used in common microwave measurement 
equipment, to the characteristic impedance of the vacuum chamber and center 
conductor, of the order ofhundreds of Ohms. 

A smooth vessel of the same entrance/exit cross-section and length as those of 
the device under test is used in a reference measurement. Resonances within the 
apparatus are difficult to avoid completely and require careful placing of 
absorptive material, manufacture of test and reference chambers, and assembly of 
apparatus. 
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Frequency domain 

Figure 2 shows a schematic of the measurement apparatus and the currents in 
the apparatus. Current 10 is applied upstream of the impedance to be determined, 
Z. The coaxial wire forms a line of characteristic impedance R with the vacuum 
chamber. A voltage V is generated at the impedance, inducing currents V/2R 
traveling equally upstream and downstream. 

Absorber inside tapers I 

TEM mode impedance 
matching tapers 

Figure 2. Coaxial wire impedance measurement apparatus. Absorptive material is placed 
in the impedance matching transformers at the ends of the device under test to avoid 
resonances of traveling waveguide modes within the apparatus. A reference vessel 
replaces the device under test, between the vertical dashed lines, to normalize to the 
losses in the tapers, cables etc. 

For a localized impedance (small in extent compared with the wavelength of 
the applied current), the current that excites the voltage V in the impedance is: 

The perturbation in wire current is: 

and 

S21 measurements without the impedance Z (reference measurement) and with 
the impedance Z (object measurement) give: 

( 

sreference ) 
Z=2R 21 -1 

sobject 
21 
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Time-domain 

The time-domain measurement gives the wake potential and the loss factor for 
a bunch simulated by a current pulse from a pulse generator. Figure 3 shows a 
schematic ofthe measurement apparatus. A reference pulse i0 is measured at the 

output of the reference line with characteristic impedance R, and a pulse through 
the device under test im. 

.,.. - - - --- - - - - --.... , .. 
-- .... _ I L•------------------------>-.... , 

Reference vessel 

Sampling oscilloscope 
and 

processing 

Figure 3. Coaxial wire impedance measurement apparatus, time domain. 

The energy in the "unperturbed" current pulse at the output of the reference 
line is: 

For the perturbed pulse, at the output of the device under test line we have 

im{t} = i0 {t} + ~i(t) 

and the energy in the pulse at the output of the device under test line is 

The energy difference Um-Uo can be interpreted as the energy lost by the pulse 
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traveling through the device under test. Then the loss from a bunch is given by: 

the loss factor k is: 

and the wake potential is given by 

w(t} = 2R (i0 - im) 

Transverse Impedance Measurements 

Transverse impedance measurements are made with two off-axis wires driven 
differentially with a hybrid, or a single wire and ground-plane. The technique is 
basically the same as the longitudinal measurements described above. 

The transverse impedance is given by: 

z ..L = _ j Li V 1. = _1_ ~ avu = _1_ ~Zu} 
I Lix I Lix w ax k Lix ax 

2 R 
(

sreference ) 
Z - w 21 1 ..L- -

k (Lix)2 s~~ject 

where L\x is one half of the separation of the effective electrical centers (i.e. the 
location of the "point" wire which would give a cylindrical equipotential at the 
surface ofthe actual finite wire), Rw the impedance of the twin-wire line. 

Effects of Wakes or Impedance 

The fields of a passing bunch, or train of bunches, induce image charges on the 
walls which terminate the field lines of the free charges in the beam. The 
associated image currents can cause heating on the surface of vacuum chamber 
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components, which may present problems for certain structures. In particular, if 
the beam current spectrum can excite resonap.ces in vacuum chamber components, 
large wall currents can be induced and significant damage to the accelerator may 
result. 

The type of impedance creating the wake fields may be useful in identifying 
potential problems. A broad-band, or low-Q, impedance, will decay rapidly and 
the heating will be well characterized by the single-pass calculation. Narrow-band, 
or high-Q, impedance will have a memory which may enhance the heating if the 
resonant frequency is close to a beam harmonic. 

Resistive heating due to image currents in the resistive walls of the vacuum 
chamber may be calculated from the Fourier series of the beam current and the 
wall resistance, taking into account the skin-depth penetration of the fields. The 
Fourier coefficients of the beam current for bunches of length crt spaced by time 

T b, ffib = 21t/T b are: 

For a circular pipe, oflength Land radius r, conductivity <l"uc. the resistance at the 
frequency corresponding to the nth harmonic of the bunch frequency is given by: 

Then the total power is: 

The summation is approximated by an integral evaluated using the definition of 
the Gamma function and the final result is: 

Single-pass power loss, due to short-range wake fields (or broad-band, low-Q 
impedance) that decay before the arrival of the next bunch, can be calculated from 
the loss factor: 
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where Nb is the number of_ equally spaced bunches of charge qb. This calculation 
assumes that the wake field has decayed in the time interval between bunches. 

For wakes that persist until the arrival of the next bunch, the situation may be 
quite different. Depending on the phase of the wake field at the time of passage of 
the following bunch, there may be energy imparted to that bunch or extracted from 
the bunch. The multi-bunch losses may be more or less than the losses calculated 
fromthe loss factor for single-pass effects. 

For the narrow-band case, an analytic expression may be derived in time 
domain (9), or the power lost from the beam can be calculated from the product of 
the beam current squared and the impedance, summing over all beam spectral lines. 
For a uniformly bunched beam, the current spectrum is given by: 

(coo,? oo 

Ib(ro) = Io + 2Io e--2- L O(ro- nwh) 
n=O 

Broadband Q=l Impedance Model 

When considering single-bunch collective effects, we are concerned with the 
wakefields over the bunch length. If we Fourier analyze these short-range 
wakefields, we find that the effective impedance sampled by a single bunch does 
not show the detail that may exist in the actual impedance of a structure; the 
short-range wake "smoothes out" the impedance. The actual impedance of the 
many and varied components of an accelerator is often replaced with an effective 
impedance described by a low-Q resonator of the form of equation 3. The 
resonant frequency COr is generally taken to be the TM-mode cut-off of the 
vacuum chamber, and the Q-value is taken to be unity. The shunt impedance may 
be estimated by making the energy loss to the low-Q resonator equal to the total 
loss of the individual component resonances in the accelerator: 

kQ=I = L kcomponents 

For resonant modes, and Gaussian bunches: 

k - "" WnR e- (roucr,f Q=l- L. 
n modes 2Q 

In the case of components, such as shallow cavities, with mostly inductive 
impedance, the situation may be better modeled by equating the low-frequency 
inductance of the resonator to the calculated inductance of the components. The 
imaginary part of the resonant impedance at low-frequencies is given by: 
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A convenient measure of broadband impedance is IZ/nl, the magnitude of the 
resonant impedance divided by normalized frequency n; n=ro/ro0 , the frequency 
divided by the revolution frequency of the ring. IZ/nl is approximately constant 
below the resonant frequency, and this makes the model attractive when 
calculating single-bunch collective effects in some cases. Approximate expressions 
dependent upon IZ/nl are often used to estimate single-bunch effects. 

The Q=1 resonator has limitations, particularly for very short bunches. In this 
case the beam power spectrum extends beyond the beam-pipe cut-off frequency, 
and the bunch resolves more of the detail of the beam impedance. 
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