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BRIEF REPORT

The focal adhesion protein Testin modulates KCNE2 potassium channel β 
subunit activity
Maria Papanikolaou , Shawn M. Crump, and Geoffrey W. Abbott

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA

ABSTRACT
Coronary Artery Disease (CAD) typically kills more people globally each year than any other single 
cause of death. A better understanding of genetic predisposition to CAD and the underlying 
mechanisms will help to identify those most at risk and contribute to improved therapeutic 
approaches. KCNE2 is a functionally versatile, ubiquitously expressed potassium channel β subunit 
associated with CAD and cardiac arrhythmia susceptibility in humans and mice. Here, to identify 
novel KCNE2 interaction partners, we employed yeast two-hybrid screening of adult and fetal 
human heart libraries using the KCNE2 intracellular C-terminal domain as bait. Testin (encoded by 
TES), an endothelial cell-expressed, CAD-associated, focal adhesion protein, was identified as 
a high-confidence interaction partner for KCNE2. We confirmed physical association between 
KCNE2 and Testin in vitro by co-immunoprecipitation. Whole-cell patch clamp electrophysiology 
revealed that KCNE2 negative-shifts the voltage dependence and increases the rate of activation 
of the endothelial cell and cardiomyocyte-expressed Kv channel α subunit, Kv1.5 in CHO cells, 
whereas Testin did not alter Kv1.5 function. However, Testin nullified KCNE2 effects on Kv1.5 
voltage dependence and gating kinetics. In contrast, Testin did not prevent KCNE2 regulation of 
KCNQ1 gating. The data identify a novel role for Testin as a tertiary ion channel regulatory protein. 
Future studies will address the potential role for KCNE2-Testin interactions in arterial and myocyte 
physiology and CAD.
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Introduction

Coronary Artery Disease (CAD) typically leads to 
more deaths in the US. and globally each year than 
any other single cause of death [1]. Around half of 
CAD cases involve genetic predisposition, while 
reduction of other risk factors could reduce CAD 
mortality and morbidity by >30% [2]. A major 
challenge is to develop more comprehensive pre
vention and treatment strategies for both genetic 
and environmental risk factors [2]. This will 
require a fuller mechanistic understanding of 
CAD. Another form of fatal cardiac event, 
Sudden Cardiac Death (SCD), kills 1000 people 
per day in the U.S.. SCD probably requires electric 
and ischemic substrates, and a trigger [3]. Despite 
recent advances in our understanding of SCD, 
there is still much to learn. Most of the 25 genes 
linked to SCD also serve roles outside the heart, 
therefore it makes sense to consider how disrup
tion of these extracardiac functions influences 

SCD and arrhythmogenesis, and in some cases 
also CAD. Many SCD-linked genes encode ion 
channel pore-forming (α) subunits, but the 
remainder encode proteins that regulate them 
[3,4]. It is advantageous to understand the biology 
and pathobiology of the entire macromolecular 
ion channel complex.

KCNE subunits are single-transmembrane 
domain proteins that form complexes with voltage- 
gated potassium (Kv) channel α subunits to alter all 
aspects of their function and biology. KCNE genes 
are associated with human cardiac arrhythmias 
including Long QT Syndrome (LQTS), Brugada 
Syndrome (BrS) and atrial fibrillation (AF) [5,6], 
and KCNEs serve broad roles extending beyond 
direct regulation of Kv channel electrical attributes 
[7–14]. Studies of Kcne knockout (–/–) mice have 
predicted disorders that were subsequently linked 
to human gene disruption [15–19]. We and others 
recently discovered an unexpected link between 
KCNE2 and CAD, in humans [20,21] and in mice 
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[22]. Aside from Kcne2, only two other single-gene 
knockouts (ApoB and Ldlr) induce atherosclerosis in 
mice [23]. Beyond this, Kcne2 gene deletion causes 
a multisystem syndrome predisposing to SCD, 
which includes multiple risk factors for CAD, 
including diabetes, elevated serum LDL and angio
tensin II (Ang II). The spectrum of Kcne2 disrup
tion-linked disorders in mice therefore provides 
multiple electric and ischemic substrates, and even 
a trigger (fasting-induced hypoglycemia) for SCD 
[24]. Aspects of this KCNE2-linked multisystem 
pathology have emerged in human population stu
dies [20,25].

Here, to pursue a fuller understanding of the 
mechanisms of action of KCNE2 and its roles in 
cardiovascular disease, we conducted yeast two- 
hybrid screens to identify novel interacting part
ners expressed in human heart tissue. The screen 
identified a high-confidence hit, Testin, which is 
a CAD-associated focal adhesion protein. We con
firm its physical interaction with KCNE2 and 
demonstrate its ability to alter the functional attri
butes of Kv channel complexes.

Methods

Yeast two-hybrid

Yeast two-hybrid screens were conducted by 
Hybrigenics Services, S.A.S. (Paris, France). The 
coding sequence for Homo sapiens – KCNE2 (aa 
66–123) (GenBank accession number gi: 
27436977) was amplified by PCR and cloned into 
pB27 as a C-terminal fusion to LexA (N-LexA- 
KCNE2-C) and into pB66 as a C-terminal fusion 
to Gal4 DNA-binding domain (N-Gal4-KCNE2 
-C). Construct integrity was verified by sequen
cing. The constructs were used as bait to screen 
a random-primed human ventricle and embryo 
heart cDNA library constructed into pP6. pB27, 
pB66 and pP6 derive from the original pBTM116 
[26], pAS2ΔΔ[27] and pGADGH [28] plasmids, 
respectively.

For the LexA bait construct, 145 million clones 
(18-fold the complexity of the library) were 
screened using a mating approach with YHGX13 
(Y187 ade2-101::loxP-kanMX-loxP, matα) and 
L40ΔGal4 (mata) yeast strains as previously 
described [27]. A total of 33 His+ colonies were 

selected on a medium lacking tryptophan, leucine 
and histidine, and supplemented with 2 mM 
3-aminotriazole to handle bait autoactivation. For 
the Gal4 construct, 66 million clones (eightfold the 
complexity of the library) were screened using the 
same mating approach with HGX13 (Y187 ade2- 
101::loxP-kanMX-loxP, matα) and CG1945 (mata) 
yeast strains. A total of 37 His+ colonies were 
selected on a medium lacking tryptophan, leucine 
and histidine, and supplemented with 0.5 mM 
3-aminotriazole to handle bait autoactivation. 
The prey fragments of the positive clones were 
amplified by PCR and sequenced at their 5� and 
3� junctions. The resulting sequences were used to 
identify the corresponding interacting proteins in 
the GenBank database (NCBI) using a fully auto
mated procedure. A confidence score (Predicted 
Biological Score) was attributed to each interaction 
as previously described [29]. The Predicted 
Biological Score relies on two different levels of 
analysis. First, a local score includes consideration 
of the redundancy and independency of prey frag
ments, in addition to the distribution of reading 
frames and stop codons in overlapping fragments. 
Second, a global score takes into account the inter
actions found in all the screens performed at 
Hybrigenics using the same library. The global 
score indicates the probability of an interaction 
being nonspecific. For practical use, the Predicted 
Biological Scores are divided into six categories, 
including A (highest confidence) to D (lowest con
fidence). A fifth category (E) specifically flags 
interactions involving highly connected prey 
domains previously found several times in screens 
performed on libraries derived from the same 
organism. Finally, several of these highly con
nected domains have been confirmed as false posi
tives of the technique and are designated as 
F. Importantly, the Predicted Biological Scores 
positively correlate with the biological significance 
of interactions [30].

Cell culture and transfection

We seeded CHO cells (ATCC) onto poly-L-lysine 
treated glass coverslips and transfected using 
TransIT-LT1 (Mirus Bio LLC, Madison, WI, 
USA) the following day with CMV-based expres
sion constructs containing cDNA for human TES 
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(DDK-tagged), KCNE2 (HA or mCherry-tagged), 
KCNA5 (CFP-tagged), and/or KCNQ1 (GFP- 
tagged for electrophysiology). Cells were cultured 
in DMEM with 10% FBS and 1% penicillin/strep
tomycin in a 95% O2/5% CO2 humidified environ
ment at 37°C for 48–72 hours post-transfection 
prior to biochemical analysis, imaging or patch- 
clamping. We purchased cell culture consumables 
and reagents from VWR or Fisher Scientific unless 
otherwise stated.

Protein biochemistry

For co-immunoprecipitations, we first pre-cleared 
all samples by incubating the total CHO cell lysate 
with protein A/G PLUS-coated agarose beads 
(Santa Cruz) for 1 h. Beads were then pelleted 
and discarded. Total protein was quantified by 
BCA. We then added immunoprecipitating anti
bodies at a dilution of 1:100 for overnight pull
down at 4°C. The following day, we 
immunoprecipitated antibody-antigen complexes 
with fresh protein A/G PLUS agarose beads 
(Santz Cruz biotechnology, Dallas, TX), prior to 
western blotting. For western blotting, we con
ducted SDS-PAGE, and then transferred proteins 
onto PVDF membranes for immunoblotting with 
the following primary antibodies: mouse anti- 
DDK (Santa Cruz Biotechnology), rabbit anti-HA 
(Santa Cruz Biotechnology). For secondary detec
tion, we used horseradish peroxidase (HRP)- 
conjugated antibodies (BioRad, Hercules, CA) in 
conjugation with Luminata Forte HRP substrate 
(Millipore Sigma, Burlington, MA). We imaged 
the western blots using Gbox hardware and soft
ware (Syngene, Cambridge, UK).

Whole-cell patch clamp

We recorded currents expressed in CHO cell using 
whole-cell patch-clamp at room temperature (22–
25°C) with 3–6 MΩ borosilicate glass electrodes 
backfilled with solution containing (in mM): 90 K 
Acetate, 20 KCl, 40 HEPES, 3 MgCl2, 1 CaCl2, 3 
EGTA-KOH, 2 MgATP; pH7.2. We perfused cells 
continuously at 1–2 ml/min with extracellular 
solution containing (in mM): 135 NaCl, 5 KCl, 5 
HEPES, 1.2 MgCl2, 2.5 CaCl2, 10 glucose; pH 7.4. 
We purchased chemicals from Fisher Scientific or 

Sigma-Millipore. We held cells at −80 mV in vol
tage clamp before applying the voltage step proto
cols and recording currents in response to pulses 
between −80 mV and +40 or +60 mV at 10 or 
20 mV intervals, followed by a single pulse to 
−30 mV, using a CV −7A Headstage (Axon 
Instruments, Foster City, CA, USA). Currents 
were amplified using a Multi-clamp 700B (Axon 
Instruments), low-pass filtered at 2–10 kHz using 
an eight-pole Bessel filter and digitization was 
achieved (sampling at 10–40 kHz) through 
a DigiData 1322A interface (Molecular Devices; 
Sunnyvale, CA). We used pClamp8 (Molecular 
Devices) Clampex software for data acquisition 
and Clampfit software for analysis, together with 
Graphpad Prism 7.0 (Graphpad; La Jolla, CA, 
USA). We plotted normalized tail currents versus 
pre-pulse voltage and fitted with a single 
Boltzmann function to examine voltage 
dependence.

Statistical analysis

All values are expressed as mean ± SEM. Students’ 
t-test was used for statistical comparisons. All 
P-values were two-sided. Statistical significance 
was defined as P < 0.05.

Results

KCNE2 physically interacts with Testin

Several interactions with the KCNE2 C-terminal 
domain were discovered by yeast two-hybrid 
screening. Among them, KCNE2-Testin interac
tion was detected with six independent clones 
and using both screening systems, the LexA and 
the Gal4. The KCNE2-Testin interaction was 
ranked with a high-confidence score (Predicted 
Biological Score = B). The common sequence of 
the six independent clones incorporated Testin 
residues 297–369 and contains the zinc finger, 
LIM-type functional domain (Figure 1(a–c)). Co- 
immunoprecipitation studies in CHO cells expres
sing epitope-tagged versions of KCNE2 and Testin 
confirmed that the two proteins closely associate 
in the absence of any Kv α subunit partners 
(Figure 1(d)). Interestingly, Testin, encoded by 
TES, is a focal adhesion protein [31] that has 
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been shown to be important for endothelial cell 
integrity, and which was found to be sixfold down
regulated in humans with CAD compared to con
trols [32]. Therefore, KCNE2 and Testin are each 
linked to similar pathophysiology, although sup
port for a common mechanism underlying this 
will require future studies in native tissue or ani
mals, beyond the scope of the present manuscript.

Testin prevents regulation of Kv1.5 voltage 
dependence by KCNE2

Kv1.5 is a voltage potassium channel (Kv) α sub
unit expressed in atrial myocytes and endothelial 

cells [33]. We previously showed that Kcne2 dele
tion in mice impairs ventricular myocyte Kv1.5 
(KCNA5) currents [34]. Here, we show that 
human KCNE2 negative-shifts the voltage depen
dence of Kv1.5 activation by ~-20 mV, greatly 
increasing the ability of Kv1.5 to open at subthres
hold membrane potentials, but reduces peak cur
rent density at depolarized membrane potentials 
by 40% (Figure 2(a–c)). Co-expression of Testin 
had no effect on Kv1.5 voltage dependence or 
current density in the absence of KCNE2. 
However, co-expression of all three proteins 
resulted in elimination by Testin of the negative 
shift in Kv1.5 voltage dependence induced by 

Figure 1. KCNE2 forms complexes with Testin. (a,b) Summary of yeast two-hybrid results indicating the region of Testin (residues 
297–369, in yellow) (PREY) common to all clones interacting with the KCNE2 C-terminal domain (residues 66–123, in pink) (BAIT). 
SID = Selected Interacting Domain.
(c). Transmembrane topology of KCNE2 showing the intracellular portion used for bait in yeast two-hybrid (pink). (d) Representative 
western immunoblot (IB) (from n = 2) confirming physical association by co-immunoprecipitation (IP) of DDK-tagged Testin with HA- 
tagged KCNE2 alongside IP controls; lysate controls are shown on right. 
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Figure 2. Testin modulates KCNE2 effects on Kv1.5.
All error bars indicate SEM. (a) Exemplar traces showing whole-cell patch-clamp recordings from CHO cells transfected with the 
subunit combinations shown. Dotted line indicates zero current level. Upper inset shows the voltage protocol.(b) Mean current 
density for currents expressed by subunit combinations indicated. Kv1.5, n = 13; Kv1.5 + Testin, n = 14; Kv1.5 + KCNE2, n = 15; Kv1.5 
+ Testin + KCNE2, n = 19.(c) Mean G/Gmax calculated from tail current for cells as in B.(d) Mean activation rate quantified as fast 
(Tfast) and slow (Tslow) components from a double exponential fit, for cells as in B. * P < 0.05; ** P < 0.01 for Kv1.5 + KCNE2 versus 
other groups; # P < 0.05 for Kv1.5 + KCNE2 versus Kv1.5 + KCNE2 + Testin. (e) Relative amplitude of the slow component of 
activation for cells as in B. Mean deactivation rate quantified as T of a single exponential fit, for cells as in B.* P < 0.05 versus other 
groups. 
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KCNE2, and a 60% reduction in current density 
compared to Kv1.5 alone (Figure 2(a–c)).

Testin prevents regulation of Kv1.5 gating 
kinetics by KCNE2

We assessed Kv1.5 activation rate by fitting with a 
double exponential function. KCNE2 increased the 
rate of Kv1.5 activation, specifically by accelerating 
the fast component of activation (Figure 2(d,e)). In 
contrast, Testin had no effect on Kv1.5 activation 
rate. Furthermore, Testin eliminated the effects of 
KCNE2 on Kv1.5 activation rate when the three 
were co-expressed (Figure 2(d,e)). 
Correspondingly, KCNE2 slowed Kv1.5 deactiva
tion by >40%, while Testin had no effect alone on 
Kv1.5 deactivation rate. Again, Testin eliminated 
the effects of KCNE2 on Kv1.5 deactivation rate 
(Figure 2(f)).

Testin does not alter KCNE2 regulation of KCNQ1

KCNE2 regulates many other Kv channel α subunits, 
including KCNQ1 (Kv7.1). KCNQ1-KCNE2 com
plexes are constitutively active K+ channels that gen
erate relatively small (compared to homomeric 
KCNQ1) K+ currents with a linear voltage depen
dence, in gastric parietal cells, thyroid cells, choroid 
plexus epithelium and probably pancreatic β cells 
[16,35–37]. Here, we recapitulated published effects 
of KCNE2 on KCNQ1 using CHO cell expression 
and whole-cell patch-clamp (Figure 3(a)). Testin had 
no effects on KCNQ1 voltage dependence or current 
density; neither did it alter KCNE2 regulation of 
KCNQ1 (Figure 3(a–c)). Thus, Testin modulation 
of KCNE2 function is specific to the α subunit that 
KCNE2 is regulating.

Discussion

After the original report linking a SNP near the 
human KCNE2 locus to early-onset myocardial 
infarction (MI) [25], a different SNP within the 
human KCNE2 gene itself was reported to be asso
ciated with predisposition to CAD [20], and 
related findings have followed [38,39]. These dis
coveries suggested a link between human KCNE2 
and CAD, but functional and mechanistic data 
were lacking. We recently established causality by 

finding that Kcne2 deletion in mice predisposes to 
atherosclerosis [22]. The Kcne2–/– mouse data sup
ported the association between CAD and KCNE2 
observed in human studies, and are notable 
because mouse atherosclerosis models are rare 
and not previously associated with ion channel 
subunits [40]. Kcne2–/ – mice exhibit many risk 
factors for CAD [22,24,41], but a precise molecular 
mechanism for Kcne2-linked CAD is lacking. It is 
therefore of interest that Testin is now identified, 
in an unbiased yeast two-hybrid screen, as a high- 
confidence interaction partner for KCNE2.

Testin is a focal adhesion protein that functions in 
cell motility and adhesion [31]. Strikingly, Testin was 
previously found to be sixfold down-regulated in the 
coronary arteries of people with CAD [32]. Testin is 
required for endothelial integrity and its disruption 
promotes trans-endothelial migration of monocytes, 
facilitating CAD [32]. The KCNE2-interacting frag
ments in our screens overlapped with the Testin LIM2 
domain, consistent with the established role of LIM 
domains in protein–protein interactions [42]. Also of 
interest, Testin is a tumor suppressor gene, and when 
challenged with a carcinogen, Testin null mice are 
predisposed to developing gastric cancer [43]. This 
increases the pathophysiological overlap of Testin 
with KCNE2, because Kcne2 null mice spontaneously 
develop gastric cancer [17]. KCNQ1-KCNE2 com
plexes are essential for gastric acid secretion through 
the parietal cell H+/K+-ATPase [15,16,44]. Germline 
Kcne2 disruption causes achlorhydria, gastric hyper
plasia, gastritis cystica profunda, adenomatous polyps 
and gastric metaplasia [17]. While bacterial over
growth arising from achlorhydria can lead to inflam
mation and potentially predispose to metaplasia, 
Kcne2 disruption also causes potentially carcinogenic 
cell cycle changes at the cellular level and is associated 
with increased cancer cell migration in vitro, indepen
dent of changes to stomach pH and tissue inflamma
tion [45].

With respect to the implications of the effects of 
Testin on KCNE2 regulation of Kv1.5, we previously 
found that KCNE2 is required for normal Kv1.5 
activity in ventricular myocytes; Kcne2 knockout in 
mice resulted in reduction in Kv1.5 current (and 
susceptibility to drug-induced LQTS) because with
out Kcne2, Kv1.5 trafficking to the intercalated discs 
was disrupted [34]. It will be of interest in future 
studies to determine whether Testin association 
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with KCNE2 reroutes trafficking of channels incor
porating these subunits, or if Testin knockout mice 
exhibit cardiac electrophysiological abnormalities. In 
endothelial cells of the vasculature, downregulation of 
Kv1.5 resulted in membrane depolarization and 
decreased endothelium-dependent relaxation to acet
ylcholine, in a model of pulmonary artery hyperten
sion [46]. Furthermore, loss of Kv1.5 vasomotor 
function was previously proposed to contribute to 
microvascular dysfunction in CAD and other vascu
lar diseases, based on the observation that impair
ment of H2O2-induced dilation in CAD was 
associated with loss of Kv1.5 expression [47]. Future 
work can be directed toward understanding the 
potential role of KCNE2 and Testin in these effects, 

and whether they are required for the normal func
tion of Kv1.5 in vascular endothelial cells.

Conclusions and Limitations

Increasing evidence demonstrates that KCNE 
effects are not limited to their effects on channel 
gating or cellular localization. For example, 
KCNE1 and KCNE2, but not KCNE3, transduce 
the functional effects of KCNQ1 phosphorylation 
(which also requires Yotiao), facilitating regula
tion of cardiac KCNQ1 activity by the sympa
thetic nervous system [48,49]. In addition, we 
found that KCNE1 is required for PKC-sensitive 
endocytosis of KCNQ1 [11], explaining 

Figure 3. Testin does not alter KCNE2 modulation of KCNQ1.
All error bars indicate SEM. (a) Exemplar traces showing whole-cell patch-clamp recordings from CHO cells transfected with the 
subunit combinations shown. Dotted line indicates zero current level. Upper inset shows the voltage protocol. (b) Mean current 
density for currents expressed by subunit combinations indicated. KCNQ1, n = 14; KCNQ1 + Testin, n = 12; KCNQ1 + KCNE2, n = 12; 
KCNQ1 + Testin + KCNE2, n = 13.(c) Mean G/Gmax calculated from tail current for cells as in B. 
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previously discovered effects of PKC on IKs 
[50,51]; and that KCNE2 reverses the effects of 
KCNQ1 on SMIT1 activity [52]. These and other 
findings, together with our current observations 
for Testin, suggest KCNE proteins augment the 
bidirectional signaling capacity of ion channel 
complexes.

There are several limitations to the present 
study, suggesting additional lines of experimen
tation to be pursued in the future. First, we did 
not investigate native KCNE2-Testin protein– 
protein interaction, due to a current lack of 
Testin antibodies of sufficient quality to conduct 
these studies rigorously. Thus, we do not yet 
know the native physiological relevance of the 
KCNE2-Testin interaction. Second, while we 
demonstrate that heterologously co-expressed 
tagged KCNE2 and Testin proteins physically 
interact with one another, we do not yet know 
if Testin interacts with Kv1.5 itself, or whether its 
interaction with KCNE2 disrupts or alters physi
cal interaction of Kv1.5 with KCNE2 (although 
co-expression of Testin reduces current density 
of Kv1.5-KCNE2, but not Kv1.5 channels, sug
gesting Testin retains some functional effects on 
the former). Therefore, we do not yet understand 
the mechanism by which Testin disrupts func
tional effects of KCNE2 on Kv1.5. Third, we do 
not know if Testin fails to alter effects of KCNE2 
on KCNQ1 because the latter disrupts KCNE2- 
Testin interaction, or because Testin binds to 
a region of KCNE2 important for Kv1.5, but 
not KCNQ1, functional modulation. Fourth, we 
have not yet determined whether Testin binds to 
Kv1.5 but not KCNQ1, another possible mechan
ism to explain why Testin disrupts regulation by 
KCNE2 of Kv1.5 but not KCNQ1. Future bio
chemical and mutagenesis studies can be 
employed to address these mechanistic questions.
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