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Abstract
Background: Protoacoustic (PA) imaging has the potential to provide real-time
3D dose verification of proton therapy. However, PA images are susceptible to
severe distortion due to limited angle acquisition. Our previous studies showed
the potential of using deep learning to enhance PA images. As the model was
trained using a limited number of patients’ data, its efficacy was limited when
applied to individual patients.
Purpose: In this study, we developed a patient-specific deep learning
method for protoacoustic imaging to improve the reconstruction quality of
protoacoustic imaging and the accuracy of dose verification for individual
patients.
Methods: Our method consists of two stages: in the first stage, a group model
is trained from a diverse training set containing all patients, where a novel deep
learning network is employed to directly reconstruct the initial pressure maps
from the radiofrequency (RF) signals; in the second stage, we apply transfer
learning on the pre-trained group model using patient-specific dataset derived
from a novel data augmentation method to tune it into a patient-specific model.
Raw PA signals were simulated based on computed tomography (CT) images
and the pressure map derived from the planned dose. The reconstructed PA
images were evaluated against the ground truth by using the root mean squared
errors (RMSE), structural similarity index measure (SSIM) and gamma index on
10 specific prostate cancer patients. The significance level was evaluated by
t-test with the p-value threshold of 0.05 compared with the results from the
group model.
Results: The patient-specific model achieved an average RMSE of 0.014
(p < 0.05), and an average SSIM of 0.981 (p < 0.05), out-performing the group
model. Qualitative results also demonstrated that our patient-specific approach
acquired better imaging quality with more details reconstructed when compar-
ing with the group model.Dose verification achieved an average RMSE of 0.011
(p < 0.05), and an average SSIM of 0.995 (p < 0.05). Gamma index evalua-
tion demonstrated a high agreement (97.4% [p < 0.05] and 97.9% [p < 0.05]
for 1%/3 and 1%/5 mm) between the predicted and the ground truth dose
maps. Our approach approximately took 6 s to reconstruct PA images for each
patient, demonstrating its feasibility for online 3D dose verification for prostate
proton therapy.
Conclusions: Our method demonstrated the feasibility of achieving 3D
high-precision PA-based dose verification using patient-specific deep-learning
approaches, which can potentially be used to guide the treatment to mitigate
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the impact of range uncertainty and improve the precision. Further studies are
needed to validate the clinical impact of the technique.

KEYWORDS
dose verification, patient specific modeling, protoacoustic reconstruction

1 INTRODUCTION

Proton therapy is an advanced radiation treatment that
uses protons to disrupt and destroy tumor cells. Once
the protons reach the tumor, they deposit most of
their energy at a specific depth, known as the Bragg
peak, before dropping off sharply. This characteristic
allows for better dose distribution and reduced radia-
tion exposure beyond the tumor, making proton therapy
particularly beneficial for treating tumors located near
critical structures or in pediatric patients.1 However, the
precision of proton therapy is subject to the influence of
range uncertainties caused by patient positioning vari-
ations, anatomical changes, and uncertainties in dose
calculation.2 Due to the sharp dose falloff at Bragg
Peak, even minor deviations in proton dose delivery can
lead to substantial underdosing of the intended target
and simultaneous overdosing of adjacent healthy tis-
sues. Consequently, the integration of online 3D dose
verification methods within the treatment process is
regarded as essential in proton therapy to ensure the
accurate delivery of radiation and optimize treatment
efficacy.3 In recent years, various in-vivo dose verifi-
cation methods have been developed to validate the
range of proton dose delivery. These methods encom-
pass the utilization of wireless implantable dosimeters
to measure dose or fluence,4–6 as well as the delivery
and imaging of separate proton beams.7–9 An alterna-
tive approach involves the measurement of surrogate
data generated during proton irradiation to verify the
deposition of proton doses. Notably, positron emis-
sion tomography (PET)10–13 and prompt gamma (PG)
imaging14–17 have been employed for this purpose,
detecting the gamma rays produced along the path of
the proton beam. However, these techniques possess
certain limitations. PET imaging techniques do not offer
real-time online dose verification during treatment, as
they necessitate post-treatment data analysis. Addition-
ally, while PG imaging provides information about the
gamma rays generated during proton beam irradiation,
its accuracy is compromised due to low signal inten-
sity and the absence of comprehensive 3D volumetric
data.16,18 These limitations underscore the need for fur-
ther advancements in online dose verification methods
for improved accuracy and real-time monitoring during
proton therapy treatment.

In recent years, protoacoustic (PA) imaging has
emerged as a promising approach for dose verification
in proton therapy. PA imaging involves the detec-

tion of radiofrequency (RF) signals generated by the
proton beam during dose deposition. Various stud-
ies have been conducted to explore the potential of
PA imaging for dose verification, employing simulation-
based approaches using 2D computed tomography
(CT) images,19–21 as well as experimental investigations
utilizing matrix array transducers,22,23 where the initial
pressure map is reconstructed from the RF signals, and
then related to the dose deposition. Traditional algo-
rithms for reconstructing pressure maps from PA signals
have been proposed, such as Time Reversal (TR)24,25

and the Universal Back Projection (UBP) method.26

However, reconstructed PA pressure maps still suffer
from distortion and artifacts due to limited-angle views
of the matrix array detectors, which limits their accuracy
for dose verification.27

To address these challenges in image reconstruction,
deep learning-based methods have been introduced.
For instance, Zhu et al. used fully connected (FC)
layers to map the dual-domain correlations.28 This
method faces memory limitations when dealing with
high-resolution protoacoustic images. Häggström et al.
utilized convolutional layers instead of FC layers to
reduce memory consumption.29 Zhang et al. proposed
a self -supervised learning method for ultrasound image
reconstruction, minimizing the difference between the
sinogram projected from the reconstructed image and
the initially measured sinogram.30 Jiang et al. utilized
a 3D U-net to enhance an initial pressure map recon-
structed by the TR method to solve the limited-angle
view issue.31 However, the efficacy of deep learn-
ing enhancement depends heavily on the quality of
the initial reconstruction, which is hindered by severe
distortion and the loss of detailed anatomical struc-
tures. Moreover, the TR method is time-consuming,
rendering this approach impractical for real-time online
dose verification. More recently, Lang et al.32 proposed
a hybrid supervised deep learning method, where a
Recon-Enhance two-stage strategy is applied to achieve
improved reconstruction quality and efficiency. Specifi-
cally, in the Recon-stage, a transformer-based network
is proposed to directly reconstruct the initial map from
RF signals.Transfer learning is employed to ensure con-
sistency in data fidelity. Subsequently, in the Enhance-
stage, a 3D U-net is applied to improve the reconstruc-
tion quality further. The reconstructed dose distributions
obtained through this approach exhibited improved
accuracy and efficiency,offering promising prospects for
real-time dose verification during treatment.
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Despite the advancements in enhancing the quality
and efficiency of PA image reconstruction, a notable
limitation in previous studies lies in the potential subop-
timal performance of deep learning models trained on
a limited number of patients. This limitation can result in
errors when applying the models to specific patients,pri-
marily due to inter-patient anatomical variations, thereby
compromising the accuracy of derived dose deposition.
Furthermore, for PA imaging, due to the limited angle
view issues, some essential information may be lost
when applying a model trained using a limited group
of patients on a specific patient, limiting the efficacy of
the model.By leveraging the pre-knowledge and data of
each patient,a patient-specific model can better account
for the individual variations and optimize the accuracy
of dose verification for each patient. Also, the informa-
tion lost due to limited angle view issues can be relieved
from the patient-specific data. Recently, there has been
a growing interest in patient-specific training33–38 within
the field of medical physics as it offers potential benefits
in improving the accuracy and applicability of mod-
els for individual patients. Elmahdy et al.35 introduced
a patient-specific method aimed at improving the seg-
mentation accuracy for prostate cancer treatment. The
approach applied transfer learning by fine-tuning the last
layer of a pre-trained baseline Convolutional Neural Net-
work (CNN) model using patient-specific data derived
from previous treatment fractions. Jansen et al.36 also
proposed the same patient-specific method for lesion
quantification and the segmentation of brain white mat-
ter hyperintensities. Both methods fine-tuned the group
model using the initial scan of multiple patients and
evaluated the patient-specific model on the remain-
ing scans without any augmentation. However, these
methods are not suitable for our study due to the lim-
ited number of CT scans available per patient (1–9).
Additionally, they are tailored to a subgroup of patients
rather than individual patients. Notably, Chun et al.37

proposed a patient-specific framework named Inten-
tional Deep Overfit Learning (IDOL) and applied it on
three tasks: auto contouring on radiation pneumonitis
CT (rpCT), super-resolution (SR)-based magnetic res-
onance image (MRI) reconstruction and synthetic CT
reconstruction. Specifically, a generalized model with
a diverse training dataset was trained, then a patient-
specific dataset was derived by augmentation and sub-
sequently used to fine-tune the entire network weights.
Results showed great improvement for the three tasks,
indicating the efficacy of the approach when applied
to a specific patient. Jiang et al.38 proposed a patient-
specific deep learning method applied for enhancing
digital tomosynthesis(DTS) for lung radiotherapy. For
each specific patient, the deformation vector fields were
calculated based on the patient’s scans taken on vari-
ous days. Subsequently, the first three principal motion
components were estimated using the principal compo-

nent analysis (PCA) technique.These components were
then assigned varying weights to create a dataset used
for training the patient-specific model.

Inspired by the previous research, in this study, we
develop a patient-specific deep learning method,aiming
at improving the reconstruction quality of PA imaging,
as well as the accuracy of the dose verification. Specif-
ically, as shown in Figure 1, our method consists of
two stages: in the first stage, a group model is trained
using a population based training set, where a novel
deep learning network32 is employed to directly recon-
struct the initial pressure maps from the RF signals; in
the second stage, we apply transfer learning to tune the
pre-trained group model into a patient-specific model
using a patient-specific dataset derived by a novel data
augmentation method. The patient-specific model will
then be tested for individual patients. In contrast to the
approach described in reference,37 which focuses on
image-to-image translation tasks, our work addresses
the unique challenge of signal-to-image transformation.
As such, conventional augmentation techniques such
as random cropping are not applicable in our work
due to inconsistency between signal-image domains.
Moreover,deformation with random displacement vector
fields (DVFs) may compromise the integrity of anatom-
ical structures specific to individual patients, which are
unsuitable for our patient-specific task. The main con-
tributions of our article are multi-fold: (1) Extending
the group model32 to a patient-specific deep learning
approach for PA imaging; (2) Introduction of a pioneer-
ing intra-patient augmentation method, facilitating data
expansion while preserving intra-feature consistency;
(3) Evaluation of the proposed methodology utilizing
protoacoustic data derived from CT images and clin-
ical treatment plans of patients with prostate cancer,
thereby demonstrating the feasibility of high-precision
3D dose verification in proton therapy for individual
patients.

2 METHODS

2.1 Domain transfer reconstruction
network

We employ Domain Transfer Reconstruction Network
(DTR-Net) in ref. [32] as shown in Figure 2 to directly the
reconstruct initial pressure map from RF signals. Same
as U-Net, DTR-net utilizes a contracting-expanding
architecture. By taking the 3D RF image and its corre-
sponding first-order derivative image as input, the DTR-
Net utilizes residual transformer39–42 blocks (RTBs) to
capture long-range dependencies in the input data.
Each RTB consists of several 3D Swin transformer (ST)
layers. The number of STs used in each RTB increases
progressively, starting from 2 and doubling at each
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F IGURE 1 The overview of the proposed patient-specific method.

F IGURE 2 The architecture of DTR network for the initial pressure reconstruction from RF signals. DTR, domain transfer reconstruction; RF,
radiofrequency.

subsequent RTB (i.e., 4, 8, and 16 STs). The extracted
features are transformed from the signal domain to
the image domain using a convolution layer. This step
helps in transferring the learned features to a format
suitable for image reconstruction. The expanding path
of the network consists of four residual blocks. Each
block includes an up-sampling layer followed by two

consistent 3D convolution layers with a 3 × 3 × 3 ker-
nel.ReLU activation and Group normalization layers are
applied after the convolution layers to introduce non-
linearity and normalize the feature maps. Finally, the
reconstructed initial pressure map is obtained by apply-
ing a convolution layer with a 1 × 1 × 1 kernel to the
features obtained from the expanding path.
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F IGURE 3 The overview of the augmentation of group data and patient-specific data.

In the Recon-stage, the network is trained with
a hybrid supervision method: (1) During the initial
training, we use the pressure map reconstructed by
iterative TR method as ground truth to initially train
the model by using SSIM loss and perceptual loss.
This step enables DTR-Net to focus on discovering the
most representative features for fast reconstruction. (2)
After the initial training, the network is fine-tuned using
transfer learning and self -supervision based on data
fidelity constraint. In this step, the reconstructed pres-
sure maps are projected back to the signal domain to
generate RF signals, which are then compared with the
input RF signals using the l2 loss function. Specifically,
we leverage the k-wave toolbox43 to simulate the for-
ward procedure. Subsequently, during backpropagation,
TR reconstruction is utilized, mirroring the procedural
steps employed in generating the TR reconstruction
outcomes. The integration of the forward and the back-
ward MATLAB functions into our Python framework is
enabled through the “transplant” interface.By fine-tuning
the network based on the data fidelity constraint, the
focus shifts to solely reconstructing images based on
the raw data without relying on the imperfect supervision
provided by the TR reconstructed images in the initial
training. This fine-tuning step helps to improve the over-
all reconstruction quality by aligning the reconstructed
RF signals more closely with the input RF signals.

In the Enhance-stage, a 3D U-net architecture was
employed to further improve the quality of the recon-
structed images, where the initial pressure map is
used as ground truth. Once the enhanced images are

obtained, they are further converted into dose values for
proton verification purposes.

2.2 Patient-specific intra-data
augmentation

During the patient-specific training process,each patient
has 2–10 diagnostic scans that can be leveraged as
prior knowledge to improve the performance of patient-
specific models. However, training a patient-specific
model using a small dataset can lead to overfitting and
limited generalization over patient day-to-day anatomi-
cal variations when applying the model to reconstruct
patient images on different days.

To address the aforementioned challenge, numerous
studies have employed data augmentation techniques
to expand the size of their datasets. However, in our
specific work, the conventional data augmentation meth-
ods such as rotation, translation, and rescaling are not
adequate since they do not represent the daily defor-
mations commonly seen in patient data. In the following,
we used two data augmentation methods to avoid over-
fitting. Initially, as depicted in Figure 3, we conduct
the registration of all other patients’ data to the first
scan of each specific patient. An alternative approach
involves registering the first scan to all other patients’
data. In this scenario, the intensity of the image remains
the same, however, the anatomical features of specific
patients are subject to deformation to conform to the
anatomical characteristics of other patients, resulting
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in a lack of specificity within the generated dataset.
Consequently, the data generated using this approach
has a variety of “inter-patient variations” rather than
“intra-patient variations”. In our method, aligning the
patients’ data with the first scan of the target patient
ensures a shared anatomical structure (SSIM >0.95)
while adjusting the intensity. To introduce some varia-
tion and enhance the robustness of the trained model,
we allow for slight deformations in the registered data,
which helps to account for natural anatomical variations
and potential discrepancies in positioning or patient-
specific characteristics between different individuals. By
including such variations in the augmented dataset,
the model is able to learn to recognize and adapt to
different scenarios, such as diverse anatomical struc-
tures. By exposing the model to a more extensive range
of examples through data augmentation, it becomes
more robust and better equipped to handle unseen data
during inference.44 In this work, we employ affine regis-
tration as the initial step to align all other patients’ data
to the target scan, ensuring a coarse correspondence
between anatomical structures. Then we utilize non-
rigid deformation using a 3D B-spline transformation45

to perform local deformations and fine adjustments to
enhance the alignment accuracy.We empirically choose
a B-spline interpolation order of 5, as it provides the
necessary flexibility to model complex deformations
while ensuring smoothness in the transformed data. By
applying the deformation map, we can achieve a more
precise alignment of anatomical structures, account-
ing for patient-specific variations. Additionally, the same
deformation map derived from the B-spline transforma-
tion is applied to the dose maps for dose verification.
This ensures that the dose maps are consistent with the
registered patient data,enabling accurate verification of
the applied treatment dose.

Also,we utilized simulation methods to generate addi-
tional RF-P0 (radiofrequency and initial pressure map)
pairs,effectively expanding the training set.An additional
augmentation process was employed to vary the posi-
tions of the PA (photoacoustic) detector in the perineum
area.Specifically, the PA detector was initially positioned
below the prostate and near the perineum area, with an
initial tilt angle of 𝜋

6
degrees. Subsequently, the detec-

tor was rotated along the lateral axis, covering the entire
prostate area, with different angles uniformly sampled
within the range of [−𝜋

6
, 𝜋

6
]. This process is visually

represented in Figure 3 of the study. For each sam-
pled angle, protoacoustic simulation procedures were
conducted to generate the corresponding RF signals
from P0 maps.The augmentation process was repeated
20 times, with equally spaced angles selected for each
patient. This approach ensured a diverse range of sim-
ulated detector positions and captured a wider array of
acoustic responses.

2.3 Training implementation and
inference

2.3.1 Group model training

We utilize the same training strategy as proposed in
ref. [32] to train the group model. The models in both
the Recon-Enhance stages were trained by the ADAM
optimizer with an initial learning rate of 0.001. The
learning rate was reduced by a factor of 5 after every
500 000 epochs. During this phase, the reconstructed
initial pressure map was compared to the corresponding
TR-reconstructed reference by calculating SSIM loss
and perceptual loss. Then the transfer learning process
commenced for another 1 000 000 epochs by calculat-
ing the SSIM loss between the predicted RF signal
and the input RF signal. Following the transfer learn-
ing phase, the Enhance-stage focused on training the
enhancement network for another 1 00 0000 epochs.
This stage aimed to further refine the model’s perfor-
mance and optimize the enhancement capabilities. The
network was implemented based on PyTorch framework
version 1.7.1, a 40 GB Nvidia A100 server GPU with
CUDA Toolkit 12.0 and a 64 GB RAM.

2.3.2 Patient-specific model training

To train the patient-specific model, we utilize the same
training strategy as applied for the group model with all
training weights being frozen except for the last layer.
Based on transfer learning, only the last layer in the net-
work is fine-tuned since it capture more task-specific
features, while the early layers of the model tend to
capture more general features representing correlation
from signal domain to image domain.By only fine-tuning
the last layer,35,36,46 the group model can be adapted to
the patient-specific task without overfitting or losing the
valuable general features learned from the group model.
Besides, we skip the initial training since the model was
already trained from the group data. Specifically, we
reduce the learning rates to 0.0005 and fine-tune the
model using the augmented patient-specific dataset for
1 000 000 epochs where only the SSIM loss between
the predicted RF signals and the input RF signals
are calculated. In the Enhance-stage, the last layer of
the enhancement network is fine-tuned for additional
500 000 epochs to calculate the L2 loss between the
reconstructed initial pressure map and the correspond-
ing ground truth,with the parameters of other layers kept
frozen.35,36

By employing this training approach for the patient-
specific model, we aim to leverage the pre-existing
knowledge of the group model while tailoring the
model’s parameters to the specific characteristics of
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TABLE 1 Tissue-specific parameter setting for RF signal simulation. v, 𝜌 and Γ refer to the speed of sound, tissue density and the
Grüneisen parameter, respectively.

Tissue HU value v (m/s) 𝝆 (kg/m3) 𝚪 𝝆 × 𝚪 (kg/m3) 𝜶 (dB/cm/MHz)

Air [−1000,−200) - - - - -

Water air overwritten 1500 1000 0.11 110 0.0022

Fat [−200,−50) 1480 920 0.80 736 0.5

Soft tissue [−50,100) 1540 1040 0.30 312 1

Bone [100, max) 2000 1900 0.80 1520 10

Note: 𝛼 denotes the attenuation coefficient.
Abbreviation: RF, radiofrequency.

individual patients. The fine-tuning process, guided by
SSIM loss and L2 loss calculations, enables the model
to adapt to the patient-specific dataset and enhances its
performance in terms of RF signal prediction and initial
pressure map reconstruction.

2.3.3 Dose conversion

We utilize a 3D U-net model with the same architecture
and training setting as described in ref. [32] for deriving
dose maps from the reconstructed initial pressure maps.
An initial dose map is computed by dividing the recon-
structed pressure map by a dose conversion coefficient
map derived from patient CT images. By leveraging the
U-net model and its ability to capture complex rela-
tionships in 3D data, the final dose map is generated
by combining the initial dose map with the predicted
residual errors. This process ensures a precise repre-
sentation of the actual dose distribution, accounting for
any discrepancies or errors that may have been present
in the initial estimation. A group dose verification model
is first trained from the group dataset for 1 000 000
epochs by ADAM optimizer with an initial learning rate
of 0.001. Then the last layer of this model is fine-tuned
using the patient-specific dataset for another 500 000
epochs with a learning rate of 0.0005.

2.3.4 Inference

During the inference phase, the trained patient-specific
model is utilized to reconstruct the pressure map from
RF data acquired through limited angle PA imaging.Sub-
sequently, the reconstructed pressure map is further
enhanced by the enhancement network, resulting in the
generation of the final PA images. This recon-enhance
approach exhibits efficient processing capabilities, with
each 3D RF signal image, sized at 32 × 32 × 112, being
processed in less than 6 s. Finally, dose map is directly
derived from the trained dose verification model by tak-
ing the reconstructed initial pressure map as input. The
total procedures only takes less than 6 s under an

environment of 40 GB Nvidia A100 GPU and 64 GB
of RAM.

2.4 Experiment configuration

In this study, we collected a dataset comprising 126
anonymized patients diagnosed with prostate cancer
under the approval of an Institutional Review Board
(IRB) protocol, ensuring compliance with ethical guide-
lines and regulations. Each patient’s data in the dataset
consists of a planning CT scan and the corresponding
clinical treatment plan. The dose map for each treat-
ment plan was obtained using a commercial software
named RayStation (RaySearch Laboratories, Stock-
holm/Sweden), then normalized to the maximum dose,
providing a standardized representation of the delivered
radiation dose.Prior to further analysis, each CT scan in
the dataset underwent a segmentation process to cat-
egorize the different tissue types present in the scan,
including air, fat, soft tissue, and bone according to the
predefined HU value thresholding empirically.31,32,47 For
the purposes of our study,various tissue-specific param-
eters were predefined and utilized. The tissue-specific
parameters including density, speed of sound, and the
Grüneisen parameter31,32,48 are given in Table 1.

By multiplying the dose map with the tissue density
and the Grüneisen parameter, the initial pressure (P0)
was computed as:

P0 = dose_map × 𝜌 × Γ, (1)

Then, the acoustic simulation process for generating
RF signals was conducted using the open-source k-
wave toolbox within the Matlab environment.Specifically,
a planar detector with dimensions of 8 cm×,8 cm
and a 64 × 64 ultrasound transducer array was simu-
lated. The detector was positioned below the prostate
and near the perineum area, with a tilt angle of 30
degrees. This configuration was chosen to cover the
prostate region while avoiding interference from the
pelvic bones. The transducer array was designed with
a central frequency of 500 kHz,a bandwidth of 100,and
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TABLE 2 Quantitative analysis of the reconstruction results of initial pressure maps and dose verification.

Modality Method MSE PSNR (dB) SSIM Speed (s)

PA image Group model32 0.029 ± 0.008 30.37 ± 0.076 0.962 ± 0.013 6

Patient-specific 0.014 ± 0.005 35.37 ± 0.036 0.981 ± 0.021 6

Dose Verification Group model32 0.018 ± 0.009 34.86 ± 0.27 0.989 ± 0.007 6

Patient-specific 0.011 ± 0.004 36.26 ± 0.057 0.995 ± 0.003 6

Note: All our results achieved a significance level p < 0.05.
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.

a sampling rate of 5 MHz. These settings determined
the frequency characteristics and sampling resolution of
the acquired RF signals. During the simulation, tissue-
specific heterogeneity and attenuation were considered
in the propagation of the acoustic signals. To mimic
real-world conditions, a Gaussian white noise with a
signal-to-noise ratio (SNR) of 10 dB was added to the
acquired RF signals.

For the training of the DTR-Net, the time-reversal (TR)
method was employed. It involved 10 iterations to recon-
struct the initial pressure maps from the simulated RF
signals. These reconstructed pressure maps served as
the ground truth for the initial training of the group model.
Both the initial pressure map (P0) and the dose map
were used as ground truth for training the pressure map
enhancement network and the dose conversion network,
respectively. To ensure consistency and comparability,
both the pressure map and dose map were resampled
to a resolution of 2.50 × 2.50 × 1.25 mm3, with a size of
48 × 48 × 112. Additionally, the simulated RF signal was
resampled to a size of 32 × 32 × 112 to reduce memory
consumption while still retaining essential information.

A total of 116 patients were selected for training in
the group model. The CT scan of each patient was
augmented by positioning the detector with 20 different
angles uniformly sampled within the range of [−𝜋

6
, 𝜋

6
]

during the simulation. Finally, a group dataset consisting
of 2320 pairs of the generated RF signals with the corre-
sponding P0 maps and the derived dose maps are used
for training the group model with the training/validation
splitting of 5:1, where the number of training/validation
is 1856 and 464, respectively. We use the remaining 10
patients, each with 2–9 CT scans from different time
phases, to generate the patient-specific dataset. For
each patient, we perform data augmentation as men-
tioned in Section 2.2 on the CT scan from the first time
phase, resulting in a total of 2744 training cases, where
the split of training/validation is 5:1, with the number
of 2195 and 548. Once the patient-specific model was
trained on this dataset, it was evaluated and tested on
the remaining CT scans from different days that were
not used during the training process. These CT scans
are Quality Assurance CTs (QACTs) that are acquired
during the middle of treatment course to verify anatomy
changes. In this work, we trained one group model, and
fine-tuned it on 10 patient-specific datasets, separately.

3 RESULTS

3.1 Pressure map reconstruction
results

To evaluate the performance of our patient-specific
model, we compared the reconstructed initial pressure
map with the ground truth by calculating the root mean
squared errors (RMSE). The RMSE metric provided an
indication of the average difference between the cor-
responding pixel values in the two maps. Lower RMSE
values indicated a higher level of agreement and better
reconstruction accuracy. Additionally, we also employed
peak signal-to-noise ratio (PSNR) and structural similar-
ity index measure (SSIM) metrics to further investigate
the reconstruction quality on details and basic structure
reconstruction. SSIM assessed the similarity between
the predicted and ground truth maps based on both
structural information and luminance. It compared the
structural organization of the two maps and provided a
measure of the similarity in terms of texture, edges, and
overall structural patterns.

The overall quantitative results of pressure map
reconstruction are summarized in Table 2. The qualita-
tive results are also shown in Figure 4.The group model,
trained without employing patient-specific augmentation
method,serves as a baseline for comparison.It achieved
an average RMSE value of 0.029 (p < 0.05), indicat-
ing a significant decrease in the discrepancy between
the predicted and ground truth pressure maps. The
SSIM was 0.962 (p < 0.05), showing a high similarity
of anatomic structure compared with the ground truth.
The observed improvement in the reconstruction qual-
ity can be attributed to the utilization of the transform
network for quality enhancement, as well as the imple-
mentation of transfer learning to maintain data fidelity
consistency. However, some challenging details were
still not reconstructed, while blur effect still existed on
the whole structure. Our patient-specific model further
improved the reconstruction accuracy by reducing the
RMSE value to 0.014 (p < 0.05), indicating a significant
improvement in the accuracy of pressure map recon-
struction compared to the group model. As depicted in
Figure 4, the patient-specific model successfully recon-
structed most of the challenging details, while also
eliminating the blurring effect observed in the group
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F IGURE 4 Example P0 map reconstruction results (normalized). From left to right: Color bar of the P0 map, ground truth, results by group
model, difference maps between ground truth and results from group model, results by our approach, difference maps between ground truth
and our results, and colorbar of the difference maps.

TABLE 3 Quantitative analysis (Gamma index) of the reconstruction results of dose maps.

Modality Metric Group model32 Patient-specific

Dose Gamma index (3%/3 mm) 99.3% ± 0.4% 99.4% ± 0.4%

Gamma index (3%/5 mm) 99.6% ± 0.3% 99.6% ± 0.2%

Gamma index (2%/3 mm) 97.1% ± 1.9% 98.6% ± 1.2%

Gamma index (2%/5 mm) 97.8% ± 2.0% 98.8% ± 0.8%

Gamma index (1%/3 mm) 94.7% ± 1.7% 97.4% ± 1.5%

Gamma index (1%/5 mm) 95.7% ± 1.4% 97.9% ± 1.3%

Note: All our results achieved a significance level p < 0.05.

model. Furthermore, the SSIM value increased to 0.981
(p < 0.05), indicating a higher level of similarity in the
anatomical structures compared to the ground truth.
These findings confirm the effectiveness of utilizing
transfer learning on patient-specific data to enhance the
reconstruction accuracy. Our approach also achieved
a testing speed of approximately 6 s. This rapid pro-
cessing time makes our method suitable for online
dose verification in proton therapy, enabling real-time
assessment and monitoring of treatment accuracy.

3.2 Dose conversion results

We compared the dose maps that were predicted from
the pressure maps reconstructed by group model and
the patient-specific model, in terms of RMSE,PSNR and

SSIM. Table 2 also gives the quantitative results. Specif-
ically, the patient-specific model reduces the RMSE
value from 0.018 in the group model to 0.011 (p <

0.05), indicating a decrease in the discrepancy between
the predicted and ground truth dose maps. Addition-
ally, the SSIM value increases from 0.989 to 0.995 (p <

0.05), highlighting a high level of similarity between the
predicted and the ground truth 3D dose maps. These
findings confirm the superior accuracy of the dose
maps restored by our method. Our approach achieved
significant improvements in the gamma index values
compared to the ground truth as shown in Table 3.
Specifically, for the 3%/3 mm criterion, the gamma index
increased from 99.3% to 99.4% (p < 0.05). Similarly, for
the 3%/5 mm criterion, the gamma index improved
from 99.6% to 99.6% (p < 0.05). For the 2%/3 mm and
2%/5 mm criteria, our approach increased the gamma
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7434 PSDL FOR 3D PA ImageRECON AND DoseVeri

F IGURE 5 Example dose map reconstruction results (normalized). From left to right: color bar of the dose map, ground truth, results by
group model, difference maps between ground truth and results from group model, results by our approach, difference maps between ground
truth an our results, and colorbar of the difference maps.

index from 97.1% to 98.6% (p < 0.05) and from 97.8%
to 98.8% (p < 0.05), respectively. Notably, our approach
demonstrated excellent performance in terms of the
gamma index for the 1%/3 mm and 1%/5 mm cri-
teria, achieving rates of 97.4% (p < 0.05) and 97.9%
(p < 0.05), respectively. These high gamma index rates
indicate a strong agreement between the predicted
and ground truth dose maps, further highlighting the
effectiveness and accuracy of our approach.

Qualitative results of several challenging cases are
shown in Figure 5, where the dose maps reconstructed
using our approach exhibit higher accuracy compared
to alternative methods. This improved accuracy can be
attributed to the high quality of the input pressure maps
obtained from our proposed method. The qualitative
analysis further supports the effectiveness and reliability
of our approach in predicting dose maps accurately.

We compared the dose volume histogram (DVH) of
organ at risks (OARs) of the predicted dose map with the
ground truth. The DVHs of the target organ (prostate)
and the OARs including rectum,bladder and small bowel

are plotted in Figure 6 with different colors. Notably,
DVHs derived from the ground truth dose map were
represented by solid lines, while those derived from
the predicted dose map were depicted using dotted
lines. Our analysis revealed a noteworthy consistency
between the DVH curves obtained from the predicted
and ground truth datasets. Notably, the DVH for the
prostate demonstrated that approximately 95% of the
organ’s volume received the maximum dose.Conversely,
for the rectum, bladder, and small bowel, approximately
35%, 34%, and 3.9% of their volumes respectively
received doses surpassing 50% of the maximum pre-
scribed dose. These findings serve to confirm the
efficacy of our approach in predicting dose distributions.

3.3 Statistic analysis

To investigate the significance of the results for both PA
reconstruction and dose verification,we conduct statistic
analysis with two null hypotheses,under the assumption

 24734209, 2024, 10, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.17294 by U

niversity O
f C

alifornia Irvine L
ib, W

iley O
nline L

ibrary on [05/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PSDL FOR 3D PA ImageRECON AND DoseVeri 7435

F IGURE 6 DVHs of ROI (prostate) and OARs (rectum, baldder and small bowel). DVHs, dose volume histograms; OARs, organ at risks.

TABLE 4 p-Value calculated by t-testing for each quantitative results.

Test index Number of cases P1-RMSE P1-PSNR P1-SSIM P2-RMSE P2-PSNR P2-SSIM

test 1 4 1.14e-4 5.54e-5 2.13e-5 5.7e-6 3.84e-4 3.17e-5

test 2 5 3.69e-5 2.68e-5 2.60e-5 1.85e-5 3.9e-4 1.06e-4

test 3 4 2.24e-5 2.89e-5 2.78e-5 1.12e-5 1.3e-4 1.30e-4

test 4 4 2.55e-4 5.13e-5 4.24e-5 1.27e-6 1.44e-5 1.39e-4

test 5 7 2.78e-4 6.90e-5 2.52e-5 1.06e-5 2.56e-4 2.12e-5

test 6 3 2.12e-4 2.58e-5 1.24e-5 1.41e-5 3.45e-5 1.31e-4

test 7 4 2.82e-5 3.90e-5 8.50e-5 1.26e-5 1.29e-4 6.22e-6

test 8 4 2.53e-4 3.81e-5 1.81e-5 1.23e-4 1.95e-4 4.25e-5

test 9 9 2.47e-4 1.24e-5 8.59e-5 1.49e-5 6.21e-4 9.08e-5

test 10 4 9.8e-6 7.52e-6 6.34e-5 2.23e-5 3.76e-4 4.29e-7

entire 48 2.03e-7 4.03e-6 1.41e-6 1.01e-6 2.01e-5 7.09e-6

Note: P1 corresponds to PA imaging reconstruction results, and P2 corresponds to dose verification results.
Abbreviations: PA, protoacoustic; PSNR, peak signal-to-noise ratio; RMSE, root mean squared errors; SSIM, structural similarity index measure.

that the results of both methods are random variables
following normal distribution: (1) the quantitative results
of the proposed method in terms of RMSE, PSNR, and
SSIM has no difference with the results of the group
model (benchmark method); (2) the quantitative results
of the proposed method in terms of RMSE, PSNR,
and SSIM has worse performance than those of the
group model. The significance level was empirically set
to 0.05. The p-value was calculated by t-testing, and
then corrected by Bonferroni multi-comparison correc-
tion method.49 Specifically, we performed the analysis
on each testing patient (totally 10 patients), and cal-

culated their corresponding p-values using t-testing.
Then, according to Bonferroni multi-comparison correc-
tion, each p-value was multiplied by the number of
the testing sets. The corrected p-value of each testing
set is shown in Table 4. We did not list the p-values
under the first hypothesis since they are much smaller
than the significance level p= 0.05. For the second null
hypothesis, we can see that all corrected p-value are
less than 0.05, without any unfavorable results or non-
significant results as shown in the table (all p-values <

alpha) indicating that our model achieved a significantly
improved performance.
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4 DISCUSSION

4.1 Pressure and dose reconstruction
for protoacoustic imaging

The deep learning network that is used in our research
as the group model has demonstrated high reconstruc-
tion accuracy while mitigating the limited angle view
issues that exist in traditional reconstruction methods.
However, due to inner-patient variation, the group model
trained from a group of patients is not optimal for spe-
cific patients. Specifically, the inability to reconstruct
details in challenging locations may be attributed to the
inherent complexity and variability of the data in those
regions. Factors such as acoustic attenuation, tissue
heterogeneity, or limitations in the imaging technique
itself can contribute to difficulties in accurately cap-
turing and representing fine details. Furthermore, the
blurring effect observed in the overall structure could be
attributed to the inherent trade-off between preserving
fine details and maintaining the group’s structural con-
sistency.While efforts were made to enhance the quality
of the reconstructed pressure maps, there may be limi-
tations in striking the perfect balance between capturing
fine details and preserving the overall structure.

The results of our study indicate that the patient-
specific model outperformed the group model in terms
of pressure map reconstruction and dose prediction
accuracy. Specifically, our method employed transfer
learning by fine-tuning the last layer of a pre-trained
model using the patient-specific dataset. The transfer
learning allowed the model to leverage the knowl-
edge gained from the group model while adapting
to the specific characteristics and variations present
in the patient-specific data. By fine-tuning the model on
the patient-specific dataset,we were able to capture and
incorporate the specific nuances and variations present
in the individual patient’s data, leading to improved accu-
racy and personalized predictions. This method enables
us to leverage both group knowledge and patient-
specific information, resulting in superior performance
compared to the group model.

4.2 Limitations and future work

It is important to acknowledge that our approach was
evaluated using simulated data instead of real patient
data due to the lack of real patient experiments for this
new imaging technique that is still in the development
stage.While simulated data offers the advantage of pro-
viding ground truth information for evaluation purposes,
it may not fully capture the complexity and variabil-
ity present in real patient scenarios. The simulation
parameters were set based on empirical knowledge to
approximate real data characteristics as closely as pos-
sible. To validate the clinical efficacy of our technique,

further studies using real patient data and experimental
setups are warranted. Real patient studies can provide
insights into the performance and generalizability of the
approach in diverse clinical scenarios and patient pop-
ulations. In the future, clinical trials will be carried out to
acquire actual patient data to further validate the feasi-
bility, accuracy, and potential benefits of our approach in
real-world applications.

Finally, we plan to explore different methods of
deformation registration to introduce more anatomical
variations into the patient-specific dataset. This will help
to enlarge the dataset and capture a wider range of
anatomical characteristics while maintaining anatomical
consistency.Additionally,we are interested in incorporat-
ing cone-beam computed tomography (CBCT) images
into the patient-specific dataset. Since CBCT (daily
information) images are more routinely acquired than
CT scans, using CBCT images for data augmentation
can be more effective and will be investigated in our
future work.

In this work, we use prostate cancer treatment as an
example to demonstrate the feasibility and advantages
of the technique. Furthermore, we aim to extend the
application of our approach to other imaging modalities.
This will involve evaluating the generalization capabil-
ity of the proposed network by applying it to different
image modalities, such as magnetic resonance imaging
(MRI) or positron emission tomography (PET). Verifying
the performance of our approach on different imaging
modalities will demonstrate its versatility and potential
for broader clinical applications.

5 CONCLUSION

In this work, we have proposed a patient-specific deep
learning method to reconstruct PA images for proton
therapy dose verification. A group model is trained from
a diverse patient set, then fine-tuned by a patient-
specific dataset through transfer learning. The results
show that our patient-specific method achieve bet-
ter performance for PA imaging reconstruction and
dose verification compared to the group model. Mean-
while, our approach achieved superior performance on
reconstructing 3D dose with a fast processing speed,
making it very practical for online 3D dose verification
in proton therapy.
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