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Brian T. Feeley1,2

1Department of Orthopaedic Surgery, University of California San Francisco. San Francisco, 
California

2San Francisco Veteran Affairs Health Care System. San Francisco, California

Abstract

The high prevalence of rotator cuff tears poses challenges to individual patients and the health care 

system at large. This orthopedic injury is complicated further by high rates of re-tear after surgical 

repair. Outcomes following repair are highly dependent upon the quality of the injured rotator cuff 

muscles, and it is therefore crucial that the pathophysiology of rotator cuff degeneration continue 

to be explored. Fibro-adipogenic progenitors, a major population of resident muscle stem cells, 

have emerged as the main source of intramuscular fibrosis and fatty infiltration, both of which are 

key features of rotator cuff muscle degeneration. Improvements to rotator cuff repair outcomes 

will likely require addressing the muscle pathology produced by these cells. The aim of this 

review is to summarize the current rotator cuff degeneration assessment tools, the effects of poor 

muscle quality on patient outcomes, the role of fibro-adipogenic progenitors in mediating muscle 

pathology, and how these cells could be leveraged for potential therapeutics to augment current 

rotator cuff surgical and rehabilitative strategies.

Graphical abstract

Fibro-adipogenic progenitors have emerged as the main source of intramuscular fibrosis and fatty 

infiltration in rotator cuff muscle degeneration. This review summarizes the current rotator cuff 

degeneration assessment tools, the effects of poor muscle quality on patient outcomes, the role of 

fibro-adipogenic progenitors in mediating muscle pathology, and how these cells could be 
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leveraged for potential therapeutics to augment current rotator cuff surgical and rehabilitative 

strategies.
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Introduction

Rotator cuff (RC) tears are among the most common musculoskeletal injuries encountered 

by the health care system, financially burdening society as a whole and negatively impacting 

patients’ quality of life.1, 2 In the United States alone, there is an estimated 4.5 million 

patient visits related to shoulder pain and a total of 250,000 RC repairs annually, with these 

numbers expected to increase due to the aging US population.3, 4 A study conducted by 

Yamamoto et al. found that the overall prevalence of RC tears in subjects aged 22–87 was 

20.7%.5 This number increased with age, with 25.6% of people in their 60’s presenting with 

RC tears, 45.8% of people in their 70’s, and 50.0% of people in their 80’s.5 In addition to 

age, hand dominance, history of trauma, nicotine use, hypercholesterolemia, and genetics 

have all been found to be either correlated with or strongly implicated in increasing the risk 

of RC tears.5–7

In order to understand the total lifetime societal costs (LSC) associated with RC tears it is 

important to consider direct medical costs and indirect costs for both operative and non-

operative treatments. Li et al.8 evaluated 40,618 RC repair cases in 6 different US states, and 

found that the average cost per procedure was $25,353. Considering the estimated cost per 

procedure of $25,353 and that approximately 250,000 rotator cuffs are repaired annually, the 

economic burden from direct medical costs alone is substantial.4, 8 In addition to direct 

medical costs, there are indirect costs to society, including deficits in household income, 

missed workdays, and increases in disability payments. When considering the total LSC 

associated with nonrepaired RC tears, Mather et al. found that these costs exceeded that of 

the aforementioned operative group.4 In the United States, the total LSC associated with 

annual non-operative treatment exceeds that of the operative treatment by $3.44 billion. This 

highlights just how economically burdensome RC tears are, whether or not they undergo 

repair. In addition to levying a heavy societal cost, RC tears cause patients to experience a 

decrease in quality-of-life, as has been demonstrated by the significant improvements in 

patient-reported physical and mental health parameters, such as depression, anxiety, and 

insomnia, after undergoing successful repair.1, 2

The substantial societal and personal costs of RC injuries are complicated further by high 

rates of re-tears after surgical repair.9–12 The probability of re-tear has been highly 

correlated with the degenerative features that are often present in RC tears: muscle atrophy 

and fatty infiltration.10, 11 These re-tear injuries inject additional costs into an already 

expensive endeavor and introduce additional morbidity for this patient population. 

Therefore, understanding the ways in which surgeons assess RC degeneration and include 

these assessments into surgical and rehabilitation planning are of importance. Furthermore, 
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an understanding of the cellular mechanisms and actors involved in the development of RC 

degeneration are crucial for discovering new therapeutic approaches to improve muscle 

quality and augment current surgical and rehabilitation techniques. In this review, we discuss 

current assessment tools of muscle quality, the impact of RC degeneration on patient 

function and surgical outcomes, the role of fibro-adipogenic progenitor cells in RC 

degeneration, and future directions for novel therapeutics that leverage these resident muscle 

stem cells.

RC muscle quality and degeneration

Consideration of RC muscle quality and degeneration has emerged as an important factor 

when investigating RC tear progression, related shoulder pain, and surgical and functional 

outcomes for patients. Historically, characterization of RC degeneration has focused on 

muscle atrophy and intramuscular fatty infiltration (FI).10, 13, 14 More recently, studies have 

also examined whether the development of intramuscular fibrosis plays a significant role in 

RC pathology.15–18

Assessment of RC muscle quality

Efforts have been made to create classification systems to characterize the degree of FI and 

muscle atrophy. Goutallier introduced the first system, which employed a global fatty 

degeneration index based on axial computer tomography (CT) imaging of the scapula and 

surrounding musculature.14, 19 With the onset of magnetic resonance imaging (MRI) 

technology, modifications were made to the scoring system to simplify it, but kept consistent 

with comparing the fat content with muscle content (Fig. 1).20 There have also been multiple 

scoring systems for muscle atrophy over the years. Warner et al. developed a system 

evaluating the amount of muscle above or below lines drawn from the coracoid to the edge 

of the scapular spine and to the inferior border of the scapula (Fig. 2).21 Earlier systems 

developed by Thomazeau et al.22 and Zanetti et al.23 used similar principles that employed 

tangent sign measurement. The scoring system developed by Patte et al. focused on the 

amount of RC retraction after tear injury.24

These assessment tools can be useful when attempting to stratify patient presentation as well 

as guide surgical interventions; however, many of these classification systems have shown 

poor inter-observer reliability. Spencer et al. demonstrated that of 19 RC MRI assessment 

parameters, the Goutallier grade had the lowest observer agreement, with a kappa of 0.1. 

The degree of muscle retraction fared moderately better at 0.63.25 In a study by Lippe et al., 
inter-observer agreement of MR RC images was 65%, 77%, and 28% for the Patte, 

Goutallier, and Warner classification systems, respectively.26 Oh et al. showed significant 

variability in inter-observer reliability in grading FI in both preoperative and postoperative 

imaging of RC tears. They also noted differences in reliability between radiologists and 

orthopedic surgeons, and between those with less and more years of experience.27 Intra-

observer reliability has also been problematic as demonstrated by a study from Slabaugh et 
al. in which surgeons were asked to review the same set of images two months apart, 

resulting in a kappa of only 0.56.28 Other studies have further highlighted these issues with 

observer reliability.29–31
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Attempts have been made to improve upon the reliability of these grading systems. Some 

studies have demonstrated that simplifying classifications by shrinking the number of grades 

can improve reliability, although these strategies may risk reducing the precision and clinical 

utility of these measurments.20, 28, 32 Alternatively, new MRI methods and sequences have 

been adapted to give more precise measurement of FI. Spectroscopic FLASH sequence has 

been used to quantitatively measure the fat/water ratio of a given RC region of interest.33, 34 

Other quantitative MRI techniques, such as iterative decomposition of echoes of asymmetric 

length (IDEAL) and Dixon, which utilize chemical-shift based fat/water separation to 

identify distinct spectroscopic peaks from fat and water molecules, allow for water–fat 

separation and calculation of more accurate fat fraction.35–39 Horiuchi et al. found an 

increased inter-observer kappa of 0.89 using Dixon quantification of RC FI as opposed to 

0.51 with Goutallier classification.40 Nardo et al. compared IDEAL fat fractions and 

Goutallier grading of 57 shoulders and found excellent reproducibility of the fat fraction 

using the IDEAL method.41 Furthermore, their comparisons of fat content assessed by 

IDEAL and Goutallier showed that for a given RC, Goutallier classification often 

overestimated fat content (Fig. 3). These advanced imaging techniques do not require 

substantial additional costs or time, and are therefore feasible for the clinical setting.42

In addition to more accurately and reliably assessing fat content through advanced 

noninvasive imaging techniques, characterizing the presence of specific fat subtypes, such as 

brown and beige fat, in the RC may further inform patient care. Although FI is mostly 

comprised of white adipose tissue, there is emerging evidence that the more metabolically 

active brown and beige fat phenotypes have pro-myogenic functions beyond their basic 

thermogenic role.43–49 Thus far, the prevailing method of brown fat quantification has been 

positron emission tomography-computed tomography (PET/CT) with 2-

deoxy-2-[18F]fluoroglucose (18F-FDG) as a tracer.50–55 This procedure is performed under 

cold exposure due to the increased activation of brown fat under these conditions, and it 

relies on increased glucose uptake by activated brown fat.50–56 In addition to the feasibility 

concerns of this technique in a clinical setting, this method’s signal reliance on 

metabolically active brown adipose tissue may underestimate fat that failed to activate with 

cold exposure.50, 56, 57 Alternatively, xenon-enhanced CT (XECT) is a newly explored 

brown fat quantification tool that utilizes xenon as a probe for brown fat that is undergoing 

thermogenesis.51 Following a period of xenon and oxygen inhalation, CT scans are 

performed prior to and during induction of non-shivering thermogenesis (NST) via 

norepinephrine administration.51 In order to test the efficacy of XECT in distinguishing 

brown fat content, Branca et al. examined both obese and lean mice.51 During stimulation of 

NST there were no significant increases in tissue radiodensity of white fat or skeletal muscle 

but significant increases were observed in brown fat from both obese and lean mice. 

However, the risk of radiation and norepinephrine infusion would need to be considered 

given the age demographics of the RC tear population.

Although there are emerging quantitative MRI assessments of general FI in the RC using 

chemical-shift based MRIs, quantification of brown and beige fat in the RC using this 

method has not been heavily explored.58, 59 Chemical shift–based MRIs may hold some 

promise in facilitating the quantification of BAT in a noninvasive and more affordable 

fashion compared with PET/CT using 18F-FDG.50, 52, 54–57, 60, 61 The multilocular nature of 
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brown adipocytes and their increased water content give brown fat protons a distinct spectral 

profile compared with white fat.55, 57 The difference in spectral profiles can be used to 

create fat fraction maps that distinguish fat subtypes (Fig. 4). However, there could still be 

issues with this technique in terms of inter-subject and intra-subject variability secondary to 

variance in tissue thermogenic activity. Future studies are warranted to validate brown and 

beige fat quantification techniques in the RC, such as the ones mentioned here, that would 

also be suited for the clinical setting. The ability to distinguish between fat subtypes may 

provide finer detail of RC muscle quality and help assess the response to novel interventions 

aimed at enhancing the brown fat phenotype in RC injures.

Impacts of poor RC muscle quality

Despite the issues of inter-observer reliability of qualitative systems and ongoing refinement 

of newer quantitative methods of assessing RC degeneration, many studies have been 

performed to better characterize these degenerative features and their relationship to each 

other. Gladstone et al. noted strong correlations between preoperative RC FI and muscle 

atrophy, both of which were also shown to increase with tear size.10 Barry et al. 
demonstrated that 41.4% of patients with complete RC tears had signs of FI on MRI 

compared with just 6.5% of patient without tears.62 In addition, the prevalence of 

supraspinatus atrophy was twice as high in patients with complete tears than in those 

without evidence of tear. Other studies have corroborated the association of increased 

muscle atrophy and fatty infiltration with larger tear sizes, although many of these studies do 

report evidence of FI in smaller tears.13, 63–66

The development of FI and atrophy in these muscles has important clinical ramifications, 

which include degree of pain, function, and surgical outcomes. Gladstone et al. found that 

increased muscle atrophy and FI were the only predictors of worse shoulder functional 

scores and strength testing.10 Importantly, they demonstrated no reversal of FI or atrophy 

after surgical repair, and showed that those with moderate or severe FI and atrophy had re-

tear rates of 67%–70%, compared with 22%–29% in those with no or mild FI and atrophy. 

Mall et al. showed that patients with larger tears had more pain, more fatty degeneration, and 

worse functional scores.67 The presence of FI was a strong predictor of worse shoulder pain 

and functional scores (P = 0.0009) in a study from Jain et al. that evaluated 70 non-

operatively managed RC tear patients over an 18-month period.68 Lansdown et al. recently 

used IDEAL imaging and showed increased fat fraction in the supraspinatus and 

infraspinatus six months after surgical repair, and that baseline fat fractions in the 

supraspinatus were significantly higher in patients who eventually failed repair (11.7% ± 

6.8% versus 7.1% ± 4.8%; P = 0.037).12 Multiple other studies have also detailed the poor 

functional and surgical outcomes based on the degree of degenerative features.9,11, 69–71

Fibrosis is a definite pathologic feature in a number of other musculotendinous diseases, 

such as contractures, volumetric muscle injury, and muscular dystrophies.72–75 However, the 

clinical effects of fibrosis in RC injury have not been well defined. Previous studies have 

found increased stiffness of muscle tissue when large amounts of fibrosis are present.18, 76 

Significant retraction of the RC muscle after large tears is associated with increased passive 

stiffness, which may impede surgical efforts to re-position the muscle for repair as well as 

Agha et al. Page 5

Ann N Y Acad Sci. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



affect tendon-bone healing.77–80 The role of fibrosis is further confused by its often co-

presence with significant FI in RC tears, in which the biomechanical effects of each likely 

compete.81, 82 It is, therefore, possible that increased stiffness in the RC affects patient 

outcomes, but this has been difficult to quantify given the lack of non-invasive modalities to 

assess RC fibrosis content, which could then be correlated with specific outcomes.

Role of fibro-adipogenic progenitors

Achieving improvements in patient outcomes following RC tears will likely not be possible 

without addressing the underlying biology and pathophysiology of these degenerative 

features which often progress after repair. Therefore, it is crucial to understand the main 

stem cell population that mediates these effects, fibro-adipogenic progenitors (FAPs). 

Further investigation of these resident muscle stem cells may provide insights into novel 

treatment approaches to mitigate RC degeneration and improve patient outcomes.

FAP contribution to RC FI and fibrosis

Fibro-adipogenic progenitors were first described by Uezumi et al. as a distinct stem cell 

population residing within skeletal muscle.83, 84 These cells were characterized as 

expressing the cell surface marker PDGFRα/β. They lacked Pax7 expression, a marker of 

myogenic satellite cells (SCs). In adipogenic conditions, these cells readily differentiated 

into adipocytes with increased expression of fat markers such as CEBPα and PPARγ; 

however, they did not possess the ability to differentiate into myotubes. These cells were 

located in the interstitial space between muscle fibers as opposed to beneath the basal lamina 

where SCs reside (Fig. 5).85 In addition, these cells have been shown to differentiate into 

fibroblasts and intramuscular adipocytes, colocalizing with fat deposits.16, 17, 43, 86–88

Subsequent studies have further elucidated the role of FAPs in skeletal muscle injury. After 

muscle injury, FAPs rapidly proliferate and have been shown to initially provide pro-

differentiation signaling for myogenic precursors.84, 89, 90 In a myotoxin injury model, Joe et 
al. found rapid expansion of FAPs and increased expression of pro-myogenic factors such as 

IL-6 and IGF-1, which increased myoblast terminal differentiation and myotube formation.
43 Mozzetta et al. showed that FAPs expressed greater levels of follistatin, an important 

inhibitor of myostatin, than SCs.91 FAP Wnt gene and protein expression were significantly 

increased in injured muscle, which induced SC differentiation.92 Quarta et al. found 

increased muscle cross sectional area and SC engraftment using FAP-infused bioconstructs 

transplanted in a mouse model of volumetric muscle injury.93 Based on these studies, the 

functional role of FAPs during their initial rapid expansion phase appears to be beneficial for 

regenerating muscle. After the expansion, these cells rapidly contract in number via 

apoptosis.43, 84, 94 However, the FAPs that persist after this reduction become the main pool 

of cells destined for adipogenic and fibroblastic differentiation.

It is the eventual differentiation into fibroblasts and adipocytes that complicates FAPs’ 

transient pro-myogenic role, as they become the main source of intramuscular fibrosis and 

FI.85, 86 FAPs have been implicated as the main contributors of these degenerative features 

in a range of musculotendinous conditions.94–97 In the RC, these cells are particularly 
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important for understanding the natural history of RC tears and the degenerative features that 

develop. Liu et al. used PDGFRα reporter mice to confirm colocalization of RC FAPs with 

over 83% of cells staining positive for the fat markers adiponectin and PPARγ.98 Jensen et 
al. also demonstrated similar findings of colocalization with in vitro differentiation of FAPs 

into adipocytes and fibroblasts.17 Promotion of FAP apoptosis using a TGFβ small molecule 

inhibitor resulted in a significant reduction of RC fibrosis and FI in a mouse RC injury 

model.16 These studies strongly suggest that FAPs are the main mediators of RC FI and 

fibrosis.

The exact mechanism by which FAPs are pushed towards RC adipogenesis and fibrogenesis 

is not well defined at this time, but likely includes changes in local signaling, gene 

expression, and stem cell epigenetics, as well as the presence of baseline differences in FAP 

subpopulations. For example, Itoigawa et al. found increased levels of the fat markers 

PPARγ and CEBPα in a rat RC tear model.99 The correlation between increased FAP 

number and FI with larger tear sizes suggests that different tear states can result in epigenetic 

changes in FAPs that alter their proliferative and differentiation behaviors.100 Lee et al. 
found that of the FAPs taken from multiple uninjured muscle groups in mice, those 

harvested from the RC were of the highest quantity and possessed the greatest proliferative 

and adipogenic potential. In addition, there was significantly more FI in the RC than in the 

tibialis anterior (12.6% ± 3.9% versus 1.5% ± 1.0%; P < 0.05) two weeks after each muscle 

received an intramuscular injection of glycerol, suggestive of different baseline 

characteristics of FAPs depending on anatomic location.101 Studies that detail increased FAP 

quantity in disuse and tendon transection injury models indicate that changes in mechanical 

load may influence FAPs as well.17, 98, 102

Other mechanisms that may contribute to FAP adipogenesis and fibrogenesis include 

denervation injury and interactions with inflammatory mediators. FAP number, fibrosis, and 

muscle atrophy were all increased in an amyotrophic lateral sclerosis mouse model that 

resulted in diffuse denervation.103 Madaro et al. found that denervated hind limb muscle 

possessed increased fibrosis and FAP percentages.104 In addition, Wang et al. showed 

increased FI in the RC after suprascapular nerve compression in mice.44 Therefore, 

suprascapular neuropathy, which can be seen as a result of significant RC retraction in large 

tears,105, 106 is likely another factor in RC FAP-related degeneration. Recent studies have 

also highlighted the role of FAP–immune cell interactions and how the inflammatory milieu 

within injured muscle can influence FAP differentiation.89, 107 Moratal et al. found that 

FAPs tended to cluster near macrophages and that factors secreted by IL-4–polarized 

macrophages increased FAP adipogenesis.108 TGFβ signaling, a known stimulator of FAP 

fibrosis, is upregulated in injured muscle, with macrophages being identified as a main 

source.16, 94, 109, 110 Additional studies are required to confirm and better define the relative 

contributions of each underlying mechanism of RC FAP-derived FI and fibrosis.

Although there has been convincing evidence of the presence of FAPs in the RC and their 

connection to RC degeneration in animal models, the confirmation of these cells within the 

human RC is relatively recent. Kang et al. found that supraspinatus biopsies of patients with 

chronic RC tears had significantly greater amounts of FAPs and fibrosis compared with 

those with normal RCs (Fig. 6).111 Feeley et al. demonstrated that RC FI, fibrosis, and FAP 

Agha et al. Page 7

Ann N Y Acad Sci. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number increased with tear size and thickness in human subjects.100 Furthermore, the FAPs 

from full thickness tears displayed greater fibrogenic and adipogenic differentiation capacity 

in vitro than those harvested from partial tears, suggestive of FAP epigenetic changes across 

tear states. These studies represent important steps in confirming the cellular actors involved 

in human RC FI and fibrosis.

FAP contribution to RC muscle atrophy

The role of FAPs in RC muscle atrophy is multifactorial, likely consisting of changes to the 

stem cell–signaling microenvironment as well as the extracellular matrix (ECM). When 

considering cellular actors involved in muscle atrophy, SCs are usually implicated as these 

are the main myogenic precursors responsible for regenerating muscle.112, 113 A recent 

study evaluating human supraspinatus biopsies from patients undergoing RC repair found no 

differences in SC number across different tear sizes, suggesting that RC atrophy is not 

simply due to a lack of SCs.100 Thus, there are likely other forces influencing atrophy 

progression. This is consistent with studies showing that the ability of SCs to regenerate 

muscle is highly dependent on the characteristics of their stem cell niche, which in turn is 

influenced by the surrounding cells and matrix.114 SCs rely heavily on ECM signaling to 

direct their expansion and differentiation.115, 116 For example, the ECM glycoprotein 

fibronectin has been shown to stimulate SC expansion.117 Therefore, changes in the ECM 

may alter the accessibility of SCs to different growth factors, as well as alter the 

concentration of these factors within the niche.103, 118–121 Alterations in muscle stiffness as 

a byproduct of ECM changes may also alter SC pathways, pushing them towards 

differentiation versus proliferation and replenishing their stem pool.122 Gilbert et al. 
demonstrated a reduction in SC engraftment after transplantation within stiff constructs 

compared with constructs mirroring normal muscle tissue.123 Borisov et al. found impaired 

terminal differentiation of myoblasts constricted within fibrotic ECM of degenerating 

muscle.124, 125 Taken together, FAP production of fibrosis and FI can significantly alter the 

composition of the SC niche, which may negatively impact the regenerative capacity of SCs.

Beyond indirectly influencing the SC activity via ECM modification, FAPs in injured 

muscle may mediate anti-myogenic signaling more directly. One candidate mechanism 

could be the TGFβ pathway. Injection of TGFβ into mice hind limbs resulted in decreased 

muscle fiber size, reduced contractile force, and increased expression of atrogin-1, a muscle 

ubiquitin ligase protein involved in proteolysis and muscle atrophy.126, 127 In a mouse model 

of RC injury, administration of a TGFβ inhibitor that promoted FAP apoptosis demonstrated 

4-fold reduction in atrogin-1 and a 50% increase in supraspinatus wet weight.16 The TGFβ 
pathway has been shown to partially interact and interfere with mammalian target of 

rapamycin (mTOR), a critical signaling pathway in preserving of muscle mass.106, 128–130 In 

addition to TGFβ signaling, FAPs harvested from denervated muscle displayed increased 

expression of genes associated with muscle atrophy, and their co-culture with myoblasts 

resulted in reduced fusion and myotube diameter.104 Furthermore, their transplantation into 

normal muscle in vivo led to smaller cross-sectional area of surrounding muscle fibers. This 

suggests that nerve injury, such as in the case of suprascapular neuropathy often seen in RC 

tears, could induce a FAP phenotype that drives muscle atrophy.
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Potential therapeutic role of FAPs in RC regeneration

Because of the fibroblast and adipocyte differentiation pathways of FAPs, it plausible that 

modulating FAP number and activity could affect the amount of fibrosis and FI that develop 

after muscle injury. Indeed, many studies have examined this premise. Lemos et al. found 

that blocking TNF signaling halted FAP apoptosis, resulting in double the FAP quantity and 

twice as much fibrosis after muscle injury.94 They also demonstrated that use of nilotinib, a 

tyrosine kinase inhibitor that targets the TGFβ signaling pathway, led to increased FAP 

apoptosis and a reduction in fibrosis. In a study of dystrophic mice, administration of the 

similar small molecule inhibitor imatinib reduced PDGFRα signaling, decreased muscle 

fibrosis, and improved hind limb grip strength.109 Similar results were seen in a study by Ito 

et al.131 In regard to the RC, the small molecule inhibitor CWHM-12 was shown to decrease 

FAP-derived fibrosis in vitro.17 Furthermore, Davies et al. used a TGFβ inhibitor that 

promoted RC FAP apoptosis in vivo, resulting in significant reductions in FI and fibrosis in a 

mouse RC injury model.16

Although it appears that reducing the overall FAP number and activity can mitigate their 

downstream pathology, removing them from muscle tissue through pharmacologic means 

may run the risk of silencing any beneficial role they may have. It has been shown that FAPs 

are initially helpful in muscle regeneration.43, 84, 89–92 However, these early positive effects 

are arguably eclipsed by their contribution to muscle pathology in their latter fibroblast and 

adipocyte forms. However, this may suggest that modifying their behavior towards a more 

useful phenotype, rather than simply depleting them, could be an approach that both 

preserves and augments their initial beneficial functions. The use of histone deacetylase 

inhibitors (HDACIs) and microRNAs are approaches that have been tested with encouraging 

results in mice. Increased expression of FAP myogenic genes such as MYOD and follistatin, 

adoption of a myogenic transcription signature, and promotion of myotube formation in SC 

co-culture experiments have been shown with the use of HDACIs and microRNAs.
91, 132, 133.

Along similar lines, manipulating FAP-specific receptor signaling is another strategy which 

may prove beneficial. Mosich et al. generated a novel mesenchymal stem cell population 

from human embryonic stem cell precursors that displayed PDGFRβ expression but no 

PDGFRα expression.134 They showed that this novel stem cell lineage, which lacks the 

classical PDGFRα expression of FAPs, did not contribute to fatty infiltration or fibrosis and 

resulted in a four-fold decrease in myofiber atrophy when transplanted into a mouse RC 

injury model. This study and others suggest that FAP fibroblast and adipocyte differentiation 

may be specifically dependent on PDGFRα signaling.109 Therefore, investigation of 

strategies that inhibit FAP PDGFRα expression and activity are warranted as this could be 

an approach that retains the positive effects of FAPs while simultaneously reducing their 

negative ones.

A more recently explored approach to mitigating FI and fibrosis while simultaneously 

promoting muscle regeneration has been to investigate the ability of FAPs to differentiate 

into a more beneficial fat phenotype. Brown fat is known for its thermogenic capacity via 

expression of uncoupling protein 1 (UCP1), which disrupts cellular respiration. Beige fat is 

similar in this respect to brown fat in that it can also express UCP1, but it a shares a common 

Agha et al. Page 9

Ann N Y Acad Sci. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



origin with white adipose tissue.135–138 The vast majority of FI in skeletal muscle is 

comprised of white adipocytes, which represents a much less metabolically active form of 

fat than the beige or brown phenotype.43–45 Beyond its thermogenic role, beige fat has also 

been shown to influence muscle quality.46 This includes paracrine signaling and secretion of 

anabolic and myogenic factors, such as follistatin and IL-6.47, 48, 139–142 For example, 

Meyer et al. demonstrated that RC epimuscular fat exhibited a beige fat phenotype and was 

able to increase myotube formation in co-culture experiments with myogenic progenitors.49

Because of the possibility that beige fat may be more beneficial to muscle health than white 

fat, successful attempts have been made to push FAPs towards a beige fat phenotype.44, 45 In 

a mouse RC muscle cardiotoxin injury model, transplantation of brown fat reduced muscle 

atrophy and increased contractile force and fiber cross-sectional area.143 Transplantation of 

beige-like FAPs into the supraspinatus in a delayed RC repair model resulted in reduced 

muscle atrophy, FI, and fibrosis, while improving vascularity and shoulder gait function 

(Fig. 7).144 Similar findings were reported in a massive tear and suprascapular nerve 

transection model without repair.145 Wang et al. found that reversal of RC FI after 

suprascapular nerve compression and release involved a process of “browning” white fat 

cells.44 Recently, FAPs from the human RC have been shown to adopt a beige fat phenotype 

in vitro after treatment with the beta-3 agonist amibegron.100 Furthermore, these beige like 

FAPs displayed markedly increased gene expression of IGF-1 and follistatin. Beta-3 agonists 

like amibegron have been shown to enhance brown fat characteristics, which may point to a 

potential clinical use in RC injury.146–148 These compounds are of interest in treating 

metabolic syndrome and overactive bladder conditions (e.g., FDA-approved Mirabegron), 

and multiple studies have demonstrated encouraging safety profiles with very low rates of 

mild adverse side effects.148–151 Additional studies that investigate transplantation and 

pharmacologic techniques to increase RC FAP transition to a beige fat phenotype may 

elucidate whether this approach is viable in reducing FI and fibrosis while supporting RC 

regeneration via secretion of myogenic factors.

Conclusion and future directions

In summary, RC tears are an extremely common orthopedic injury encountered by the health 

care system. These injuries involve significant health care expenditures and represent a 

substantial source of morbidity for patients. Current assessment tools of RC degeneration 

have historically focused on FI and muscle atrophy as these degenerative features have 

significant influence on patient function and rates of successful RC repair; however, these 

tools possess significant inter-observer reliability concerns that undermine their clinical 

utility. New quantitative imaging techniques, such as IDEAL MRI, may improve assessment 

reliability across different observers. In terms of the cellular mechanism underlying RC 

degeneration, FAPs have emerged as a consequential resident stem cell source, characterized 

by their dichotomous role in muscle quality over time. After muscle injury, FAPs rapidly 

proliferate and initially provide pro-differentiation signaling for SCs to assist in 

regeneration. The FAPs that persist after initial expansion and contraction differentiate into 

adipocytes and fibroblasts, becoming the main contributors of intramuscular FI and fibrosis. 

Furthermore, FAP-related changes in the ECM and signaling microenvironment likely 

impact SC function, which may contribute to muscle atrophy. Additional studies are needed 
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to assess the efficacy of different strategies of FAP modification to aid in RC regeneration as 

attempts to improve patient outcomes will likely require addressing the degenerative 

pathology caused by these cells. These potential strategies include reducing FAP number, 

activity, and driving them towards a more beneficial phenotype, such as beige fat. 

Concurrent advancements in the ability to differentiate fat subtypes through non-invasive 

imaging techniques may aid in the development and evaluation of these novel cellular 

approaches to reducing RC degeneration.
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Figure 1. 
Representative proton density–weighted images using the Goutallier classification (top row) 

and fat fraction maps (bottom row) for different degrees of fatty infiltration of the 

supraspinatus muscle. Images were obtained in the sagittal-oblique plane. Gray scale bar 

corresponds to fat fraction values (in %). Reprinted with permission from Nardo et al. 
(2014).41
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Figure 2. 
Warner RC atrophy classification. Measurement of muscle atrophy is based the amount of 

muscle (gray area) above or below a line drawn from the edge of the coracoid to the inferior 

scapular tip, from the inferior tip of the scapula to the spine, and from the scapular spine to 

the coracoid process. Reprinted with permission from Warner et al. (2001).21
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Figure 3. 
Comparison of fat fraction measurements of a set of RC MRI images as assessed by 

quantitative IDEAL MRI techniques (y-axis) versus qualitative Goutallier classification (x-

axis). Blue vertical lines represent standard deviation for IDEAL fat fraction measurements 

at each Goutallier grade. Reprinted with permission from Nardo et al. (2014).41
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Figure 4. 
(A) Chemical-shift MRI technique demonstrating the ability to differentiate between 

interscapular brown fat (white arrows) and white adipose tissue (WAT) more dorsally in an 

adult (top) and juvenile (bottom) mouse. (B) Anatomic reference for MRI using axial 

cryosection of mouse demonstrating the location of interscapular brown adipose tissue 

(IBAT) and WAT. Reprinted with permission from Hu et al. (2010).57
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Figure 5. 
(A) Immunostaining and histologic images showing the relative position of FAPs 

(PDGFRα-positive) and SCs (M-cad–positive) in skeletal muscle tissue. FAPs are located in 

the interstitial space between muscle fibers while SCs reside beneath the basal lamina of the 

muscle fiber. (B) Schematic of the image above. Reprinted with permission from Uezumi et 
al. (2014).85
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Figure 6. 
(A) Immunofluorescence for FAPs (PDGFRα-positive) and laminin in muscles from human 

subjects with normal rotator cuff muscle (RCN) versus those with rotator cuff tears (RCT). 

(B) Quantification of number of FAPs in muscles from subjects with RCT. (C) 

Immunofluorescence for collagen I in muscles from subjects with RCT. (D) Quantification 

of percentage of collagen deposition area in muscles from subjects with RCT. (E) qPCR 

analysis of mRNA expression of IL-15 in samples from patients with RCT. (F) Pearson’s 

correlation analysis for mRNA level of IL-15 and number of FAPs in samples from patients 

with RCT. (G) Pearson’s correlation analysis for mRNA level of IL-15 and percentage of 

area of collagen deposition in samples from patients with RCT. Reprinted with permission 

from Kang et al. (2018).111
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Figure 7. 
Top: Trichrome staining of mouse supraspinatus after tendon transection injury and delayed 

repair with specific treatment at the time of repair. Three treatment groups were included: 

repair only, repair plus intra-supraspinatus injection of phosphate-buffered saline (PBS) 

vehicle, and repair plus intra-supraspinatus injection of 250,000 beige-like FAPs. Mice were 

sacrificed and supraspinatus muscles harvested 6 weeks after the procedure. Bottom: 

Fibrosis and fat quantification comparing different treatment arms. Solid line denotes P < 

0.05. Reprinted with permission from Lee et al. (2019).144
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