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Abstract

We present a model of enumeration that demonstrates one
possible explanation for the limited capacity of subitizing.
This analytical approach can be contrasted with most
previous research on subitizing which has been primanly
descriptive in nature, and which has tended to assume a
structural limitation on the phenomenon. Our simulation
results suggest instead that the limitation may arise from the
functional constraints of learning to optimize among
enumeration strategies for a space whose combinatorics
increase greatly with number.

Introduction

The subitizing phenomenon has been a topic of interest and
debate among psychologists for well over 100 years (e.g.
Jevons, 1871). Kaufman, Lord, Reese, and Volkman (1949)
coined the term subitizing to refer to the ability of adult
human subjects to rapidly and accurately enumerate up to 3
or 4 discrete entities. The most typical characterization of
subitizing is in terms of a shallow slope, of about 50
ms/item, in the aggregate reaction time data of subjects
enumerating these small sets. This is contrasted with a far
steeper 250 300 ms/item slope for enumeration of larger
sets. The larger slope is taken to indicate the deployment of
more complex processes such as counting. Therefore, the
subitizing limit appears as a sharp discontinuity in reaction
time measures at around 3 or 4 items (Atkinson, Campbell,
& Francis, 1976; Chi & Klahr, 1975; Svenson & Sjoberg,
1983).

In recent years, researchers have become interested in
developing a qualitative information processing account to
explain the quantitative characterization described above
(Dehaene & Cohen, 1994; Simon & Vaishnavi, 1996; Trick
& Pylyshyn, 1993, 1994). As Simon & Cabrera (1995)
point out, an adequate theory of subitizing must include an
explanation for both the subitizing slope and the range of
numerosities to which subitizing can be applied. There is
now some consensus that the subitizing slope is in part due
to rapid individuation of small, simple displays through
processes associated with visual attention (Simon &
Vaishnavi, 1996, Trick & Pylyshyn, 1993, 1994).
However, there has been a notable absence of explanations
of why the subitizing range is limited to 3 4 entities as
opposed to 6 or even 2. Most attempts to explain the
subitizing range thus far have appealed to strucrural

limitations of the human information processing system.
These are explanations typically involving some fixed
capacity mechanism.

For example, Trick and Pylyshyn (1993) argued that
subitizing is enabled by the assignment of a limited number
of attentional tags, called FINSTs, to items in a visual
display. They claim that since human adults have a
maximum of 4 FINSTs, the number of items that can be
subitized is also 4. Previous computational models of
subitizing have also employed structural limitations. Klahr
and Wallace's (1976) model contained productions
specifically written to recognize collections of 1 through 3
items. Anderson, Matessa, and Douglass' (1995) ACT-R
model of subitizing also used special productions to
recognize small collections of one, two, and three items. An
additional production allowed for one-by-one counting of
items exceeding an initially recognized three. In that
model, latencies were directly assigned to the three pattern
recognition productions to produce the typical 50 ms slope
within the subitizing range while a steeper slope was
obtained outside the subitizing range due to firing of the
item-by-item counting production. Thus, the subitizing limit
as well as the slopes within and outside the subitizing range
were pre-specified, or built-in to the model.

An alternative approach, which we present in this paper,
is to explore the possibility that the subitizing range may
reflect a functional rather than structural capacity limit. By
a functional capacity limit we mean one that arises out of
the interaction between processing characteristics attributed,
without predetermined limits, to the agent, and the nature of
the information being processed. In other words, an
emergent rather than pre-specified property of the system.

To explore this functional hypothesis we have developed
a computational model that simulates the emergence of the
subitizing phenomenon as a result of learning to select
optimal candidate enumeration strategies. As Siegler (e.g.,
Siegler & Shipley, 1995) has shown, children can optimize
in this way by learning, not from the failure of candidate
strategies, but by computing the relative accuracy and
efficiency of each one with respect to given tasks. In a
similar way, our model learns to select between two
enumeration strategies depending on the numerosity it is
presented with. The candidates we have implemented thus
far will be referred to as recognition and counting. The
recognition strategy roughly corresponds to subitizing and
involves execution of a simple pattern-matching procedure
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that matches a newly presented pattern to a previously
stored one whose numerosity is known. The counting
strategy involves execution of item-by-item processing
where, at each step, a unit within the pattern 1s “visited" and
arunning total is incremented. Through extensive training,
our model learns to separate the problem space into two
regions: One contains patterns that can be recognized, while
the other contains patterns that must be counted.

An ACT-R Model of Enumeration

We developed our model using the ACT-R (Anderson,
1993) production system. ACT-R is a general theory of
human cognition which assumes that cognitive processing is
carried out through production rules operating on
declarative memory. Our model takes advantage of two
important features of the ACT-R system: conflict resolution
and base level learning. Conflict resolution 1s a mechanism
that determines which of a set of matched productions to
select for execution. Candidate production instantiations
are evaluated in terms of their expected values. The
expected value of a production instantiation is, roughly, the
value of the goal that can be achieved by firing the
production minus the cost of firing it. The production
instantiation with the highest expected value wins. Ties are
resolved in favor of the production instantiation that can
match its condition most quickly to declarative memory.

Learning in ACT-R can be accomplished in a variety of
ways. For the present model we have chosen to focus solely
on learning base level activations of the stored patterns in
declarative memory. Base level activations are values
associated with declarative memory elements indicating
how “active” they are. In other words, base level activation
is a measure of the strength of an item's memory trace based
on recent processing. In general, higher activation implies
faster retrieval. The effect of base level learning is to
produce increases in activation of declarative memory
elements as they are matched or retrieved. There is also a
general decrease, or decay over time of these values. The
rate at which this decay occurs is controlled by a global
parameter in the ACT-R system which we have set to the
value 0.1, representing a relatively low rate of decay. In
combination with the conflict resolution mechanism
described above, base level learning allows for a scenario in
which strategy choice is mediated by activation levels of
declarative memory elements. That is, one strategy applies
when activation is below a certain threshold and another
applies when activation is above that threshold. In our
model, the recognition strategy requires that the base level
activation of a stored pattern exceeds a certain threshold
value. Once this threshold is reached, conflict resolution
selects recognition over counting because the pattern-
matching production can match more quickly to declarative
memory than can the counting production. Repeated
execution of the counting strategy serves to increase base
level activations of the counted patterns to the point where
recognition can take over. However, the combinatorics of
the domain has the effect that only a subset of presented
numerosities have patterns that can maintain the threshold
level of activation over a period of time.

As a starting point, we have programmed our model to
incorporate the enumeration knowledge of a 3- or 4-year old
child who has two available enumeration strategies
recognition, and counting (see Fuson, 1988 and Siegler,
1991 for reviews of the enumeration capabilities of
preschoolers). The recognition strategy is modeled through
a single production which matches a new pattern to a
previously stored pattern from which the numerosity can be
directly retrieved. The counting strategy is modeled by a
small set of productions that sequentially visit unprocessed
objects in a pattern and accumulate the total. Counting facts
are provided to allow for sequential assignment of number
names to objects. Each pattern represents one possibltle
configuration of up to 6 objects on a 4 x 4 grid of locations.

The model operates as follows. For each training pattern,
the recognition and counting strategies participate in a
competition to produce an enumeration. Early in training,
activations on the stored patterns are low. This represents
the assumption that children will have low confidence in
their ability to recognize the numerical value of any given
pattern until some learning has taken place. Thus, early in
training, the counting strategy dominates, leading to
predominant use of counting for all patterns.

Training serves to increase activations of the stored
patterns. Whenever the counting strategy is applied to
enumerate a training pattern, the final step is to increase the
activation of the corresponding stored pattern in declarative
memory. This represents increasing familiarity with one of
a set of possible patterns for that numerosity. After a
sufficient number of exposures to a particular training
pattern, the corresponding stored pattern becomes active
enough that the recognition strategy will win the strategy
competition.  Successful recognition, like successful
counting also generates an increase of activation, or
familiarity, for the enumerated pattern. The number of
stored patterns in declarative memory for each numerosity
is shown in Figure 1. This represents all possible patterns
ona4x4grid.
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Figure 1: Number of stored patterns for each numerosity.

"The 16 cell grid was employed due to current limitations in
computing resources, and is not theoretically motivated.
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Figure 2: Percentage use of the recognition strategy for each numerosity as a function of the number of training trials.

With extensive training, the small numerosities (N = 1-3)
as a whole become active enough such that the recognition
strategy is generally used for all of their patterns. Large
numerosities (N = 4-6), on the other hand, fail to reach this
level of activation because of the relatively large number of
possible patterns. For example, given our 4 x 4 grid for
patterns, there are 560 possible patterns of 3 objects, but
1820 possible patterns of 4 objects. Thus, the number of
training patterns required to achieve an overall increase in
activation level for numerosity 4 is at least three times
larger than the number required for numerosity 3.
Furthermore, decay of activations becomes an increasingly
important factor as the number of possible patterns grows.
This is because the increasing number of patterns leads to a
greater ime delay between sutcessive occurrences of each
individual pattern. For many of the larger numerosity
patterns, decay will decrease activation such that the
recognition threshold is never reached. Thus, use of the
counting strategy dominates for larger numbers. This
behavior of the model after extensive training is consistent
with empirical data suggesting that 5-year olds subitize
small collections and count larger ones (Chi & Klahr,
1975).

The Simulation

Training and Testing

We conducted several simulation runs, each consisting of a
training phase and a test phase. The length of the training
phase was varied across the different simulation runs, from
200 to 50,000 training trials. The purpose of this training
was to demonstrate the effects of increasing amounts of
training on stored pattern activations, enumeration strategy
choices, and enumeration latencies.

During the simulation, execution of each training trial
proceeds as follows. First, a random numerosity between |
and 6 is selected and a random pattern for that numerosity is
generated. The pattern is then presented to the model to be
enumerated by either the recognition or counting strategy.
Either type of enumeration results in a strengthening of the
activation for the stored pattern corresponding with the
enumerated test pattern. Stronger activation of the stored
pattern increases the likelihood that an identical test pattern
will be recognized on some later trial. Currently, each test
pattern must be presented at least twice before it will be
recognized. More than two presentations may be required,
however, depending on the time (number of trials) between



presentations, since every stored pattern is subject to
decaying activation during trials where it is not presented.

The last 120 trials of each modeling run constituted the
test phase. During this phase, 20 random patterns for each
of the six numerosities were presented to the model.
Strategy choice and enumeration latency data (as computed
by ACT-R) were collected during each test trial. After the
completion of the test phase, the average activation level
was computed for each numerosity.

Results

Figure 2 shows the effects of training on strategy selection.
After very little training, patterns for numerosity 1 are
enumerated using the recognition strategy exclusively.
Patterns for numerosities 2 and 3 require somewhat longer
training periods, but eventually are also enumerated
exclusively by the recognition strategy. Patterns
representing numerosities 5 and 6 continue tg be primarily
counted, even after thousands of training trials”

Recognition Threshold

Average Activation
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Figure 3: Average stored pattern activation for each
numerosity as a function of the number of training trials.

The effect of training on the average activation level for
the stored patterns of each numerosity is shown in Figure 3.
All stored patterns begin with a base level activation of
close to zero (i.e. 0.038). During training, activations of
stored patterns for numerosities 1 3 quickly increase (on
average) to a level above the threshold (depicted as a dashed
line at 0.405 in Figure 3) required for exclusive use of the
recognition strategy. Therefore, recognition becomes the
primary strategy used for these numbers. The stored pattern
activations for the larger numbers, however, do not reach a
sufficiently high level for recognition to occur consistently.

2

“The values shown in this graph, as well as in Figure 4, represent
averages of two simulation runs at each level of training. Each
simulation run has some variability due to random generation of
training patterns.
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As described above, this is a result of the greater number of
stored patterns for larger numerosities, and the decay which
occurs because each individual pattern 1s presented less
often.

For numerosities 5 and 6, counting continues to be the
primary strategy, with recognition occurring intermittently
and only for those relatively few patterns that happen by
chance to be presented several times. Our simulation runs so
far have indicated that the recognition rate for numerosity 4
appears to reach a maximum somewhere near 65%. The
fact that this numerosity is neither conclusively counted nor
recognized is consistent with experimental results. For
example, Svenson & Sjoberg (1983) produced regressions
for their 1 3 range and 5 8 range but were unsure with
which range to associate N = 4.

Figure 4 shows the average latencies for a set of test trials
(40 random patterns for each numerosity) before and after
50,000 training trials’  Before training, the counting
strategy is used exclusively, resulting in a linear increase in
latency of about 1 second from one numerosity to the next
throughout the entire range of numerosities. It takes nearly
3 seconds to enumerate one object and about 8 seconds to
enumerate 6.

After training, recognition is used almost exclusively for
numerosities 1 3, resulting in a small increase in latency as
numerosity increases in this range. In contrast, a relatively
large slope, similar in magnitude to the pre-training slope, is
obtained for numerosities 4 6, reflecting extensive use of
the counting strategy for these numerosities. The difference
in slopes for the two ranges of numerosities is at least
qualitatively consistent with experimental response time
data. Improvement of the quantitative fit will be addressed
in a future version of the model as discussed below.

Discussion and Conclusion

These results suggest a functional explanation for the origin
of the subitizing limit. While most previous models of
subitizing have simply assumed a limit of 3 or 4 (e.g. Klahr
& Wallace, 1976; Trick & Pylyshyn, 1993, 1994) we have
demonstrated one way that this limit might emerge as a
function of the combinatorics of the space of patterns
interacting with a simple learning and decay mechanism.
Repeated counting of the same pattern serves to increase its
activation to the extent that, at some point, that pattern is
familiar enough for the child to confidently employ the
recognition strategy. For small numerosities, the number of
possible patterns is sufficiently small that all patterns get
seen enough times to raise their activations above threshold.
Since the number of possible patterns increases dramatically
for larger numerosities (as shown in Figure 1), it is not
surprising that even rather large amounts of training are not
sufficient to raise activations above the recognition
threshold. Furthermore, decay becomes a factor for the

The latency associated with each training trial is analogous to
response time for an experimental trial. However, the actual
latency values generated by the model are not intended to replicate
experimental values since the pattern matching and counting
processes have not been closely modeled.
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Figure 4: Average latency for each numerosity.

larger numerosities because more possible patterns also
means more time between exposures to the same one.

In addition to this explanation for the limited subitizing
range, our results also suggest a potential explanation for
the origin of the subitizing slope. According to the ACT-R
theory, response latency is composed of production
matching latency and production action latency. Therefore,
as matching latency increases, so does response time.
Further, activations of declarative memory elements have a
direct influence on production matching latency; the higher
the activation, the shorter the matching latency. Thus,
patterns with high activations will match faster than patterns
with low activations, and therefore will result in shorter
response latencies. This suggests that the subitizing slope
may arise from differences in the average level of activation
across numerosities.

Thus, we have been able to create a model which
generates an explanation of the subitizing limit, and which
may also be able to explain the slope. Unlike the previous
models of Klahr and Wallace (1976) and Anderson, et al.
(1995), our model is able to do this without pre-specifying
either the subitizing limit or the subitizing slope. Rather,
both emerge as by-products of learning along with the
increases and decay in the activations associated with
individual patterns.

Despite the promise of our results, we would like to
mention some of the limitations of this model and suggest
some possible future research directions. First, we have not
attempted to address the mechanics of the recognition and
counting processes in terms of detailed information
processing specifications. Therefore, although we have
qualitatively replicated the standard discontinuity in

enumeration performance, the quantitative results produced
by the model (such as the actual latency and slope values)
do not match very well to empirical data at present. Future
work will concentrate on trying to close this quantitative
gap between simulation and empirical results. Second, this
model does not address the issue of generalization. It must
certainly be the case that children develop somewhat
abstract representations of patterns so that recognition is not
necessarily based on an exact match to a previously seen
pattern. Perhaps matching a pattern to an abstract pattern
representation is a third strategy that could be added to a
future version of the model. Another possible solution
might be to utilize the partial matching capability of the
ACT-R system to allow inexact matching which is sensitive
to the similarities between patterns. A further finding to be
simulated, which would be a good test for the model, is the
transition from counting to recognition of consistently
presented large displays. There is clear evidence (e.g.
Mandler & Shebo, 1982; Wolters, van Kempen, &
Wilhuizen, 1987) that repeated presentations enable subjects
to move from deliberate enumeration of individual items to
recognition of entire patterns. We believe that the present
model should be able to simulate that result. The principles
upon which it would do so are consistent with automaticity
theories based on consistent versus varied mapping (Shiffrin
& Schneider, 1977) or the retrieval of familiar instances
(Logan, 1988). In a future version of the model we would
also like to examine the effect of increasing our assumed
pattern grid size, e.g., from 4 x 4 to 6 x 6. Our expectation
is that the same qualitative behavior patterns will emerge,
although more training will be required due to the increased
number of possible patterns for each numerosity.



Finally, an intriguing issue with respect to individual
differences arises from our model's "indecisiveness” about
which strategy to use for the numerosity 4. In its present
incarnation the asymptote recognition level for 4 ilems is
around 65%. To some extent, this probably reflects the fact
that some larger patteins are just more "memorable” than
others. However, the result is more interesting because not
all human subjects subitize the same number of items, and
there is no strict consensus on what the absolute limit of
subitizing 1s, if indeed there is one. Since our model
represents a functional rather than a structural explanation
of the limit, we may be able to use other functional
parameters to explain individual differences. For example,
working memory span and information processing speed
have both been implicated as functional limitations on
processing. Varying approximations of these in future
versions of the model should enable us to investigate the
true nature of subitizing by modeling individual data, rather
than the often misleading aggregated results which may
obscure individual variance and characterize no single
individual at all.
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