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ABSTRACT OF THE DISSERTATION

Analysis of Shear-horizontal Vibrations of Crystal Plates for Acoustic Wave Resonators
and Sensors

by
Bo Liu
Doctor of Philosophy, Graduate Program in Mechanical Engineering

University of California, Riverside, August 2010
Dr. Qing Jiang, Chairperson

In this work, theoretical analysis of shear-horizontal vibrations of crystal plates under
lateral electric field excitation (LFE) without and with a fluid layer is presented. A crystal
plate with separated electrodes under thickness electric field excitation (TFE) in contact

with a fluid layer is also analyzed.

We have started with analyzing the coupled face-shear (FS) and thickness-twist (TT)
motions of piezoelectric plates with lateral electric fields, using the Mindlin’s first-order
theory of piezoelectric plates. Solutions for propagating waves, and for free and
electrically-forced vibrations are obtained, leading to basic vibration characteristics for
resonator applications including dispersion relations, frequency spectra, and motional

capacitance. Numerical results are presented for AT-cut quartz plates.



We have then studied the coupled face-shear (FS) and thickness-twist (TT) motions
of a piezoelectric plate with mass layers on the central parts of the plate surfaces, driven
by a lateral electric field. An analytical solution is obtained. Numerical results are
presented for an AT-cut quartz plate, including the motional capacitance of the plate as a
resonator and vibration modes trapped under the mass layers in the central portion of the
plate. The relationship between the dimensions of the mass layers and the number of

trapped modes is examined.

We have studied the thickness-shear vibration of a rotated Y-cut quartz crystal plate
whose one surface is in contact with a fluid layer. In this study, two configurations are
considered. For the first configuration, we have analyzed the plate vibrations driven by a
lateral electric field, using both the theory of piezoelectricity and the theory of Newtonian
fluids. The solutions for both free and forced vibrations are obtained. Approximate
expressions for the frequency shifts in the crystal plate due to the fluid are presented. The
admittance of the structure is also calculated. The results illustrate the impacts of the
thickness, the density and the viscosity of the fluid layer on the frequency shifts in the
plate. In the second configuration, the fluid is under an electrode separated from the
crystal plate and the driving electric field is in the plate thickness direction. This
configuration qualitatively describes the effect of the liquid permittivity on the frequency

shifts in a real LFE liquid sensor.

Finally, I studied the propagation of shear-horizontal waves in a piezoelectric plate in

contact with a fluid layer as an acoustic wave sensor for measuring fluid viscosity or

Vi



density. Mindlin’s first-order theory of piezoelectric plates and the theory of Newtonian
fluids are used. Two kinds of fluid layers are considered. One is with finite thickness, and
the other is semi-infinite. Approximate dispersion relations for long face-shear and
thickness-twist waves are given analytically. In the first one, numerical results only show
the effects of the fluid on wave characteristics. In the other, numerical results showing the
effects of the fluid and the piezoelectric coupling in the plate on wave characteristics are

presented.
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1. Introduction

1.1 Piezoelectric crystals and acoustic wave devices

Piezoelectric materials exhibit electromechanical coupling. They experience
mechanical deformations when placed in an electric field, and become electrically
polarized under mechanical loads. These materials have been used for a long time to
make various electromechanical devices. Examples include transducers for converting
electrical energy to mechanical energy or vice versa, resonators and filters for frequency
control and selection for telecommunication equipment and precise timing and
synchronization, and acoustic wave sensors. Many piezoelectric devices are resonant
devices operating at a particular frequency and mode, either a stationary or a propagating
wave. Both surface acoustic waves (SAWSs) and bulk acoustic waves (BAWSs) are used.
In the applications of resonant piezoelectric devices, basic vibration characteristics like
frequency and wave speed are of primary interest. How wave frequencies vary under, e.g.,
a temperature change, stress, surface additional mass or contact with a fluid is the

foundation of acoustic wave sensors.

In principle, acoustic wave resonators and sensors do not have to be piezoelectric.
These devices are based on mechanical vibration modes and waves. Piezoelectric crystals
are often used so that the operating wave can be conveniently excited electrically.
Otherwise transducers are needed for the excitation and detection of acoustic waves.
Quartz is the most widely used material for resonant piezoelectric devices. It has little

damping and desirable temperature behaviors buts its piezoelectric coupling is very weak.



During the last two decades the relatively new crystals of langasite, langanite, and
langatate were developed which are used more and more for acoustic wave devices.
These new crystals have relatively strong piezoelectric coupling. They are especially
useful for high-temperature applications. Lithium niobate and lithium langasite crystals

are mainly for SAW devices.

For frequency analysis of quartz devices the small piezoelectric coupling can usually
be neglected and an elastic analysis is sufficient. Compared to piezoelectric analyses, an
elastic analysis of vibration crystals is significantly simpler and can usually exhibit the
basic frequency behavior. Generalization from an elastic solution to include piezoelectric
effects is not always possible analytically. There are situations in which a piezoelectric
analysis is necessary. To obtain the admittance (or impedance) of a device, a
piezoelectric analysis of electrically forced vibrations is needed. A free vibration
frequency analysis and an electrically forced vibration analysis for admittance together
provide a complete simulation of a device. Piezoelectric coupling is known to cause a
stiffening effect that raises resonant frequencies. This effect, although often negligible for
quartz in qualitative analyses, needs to be considered in more refined analyses or in

materials with relatively strong piezoelectric couplings.

1.2 Waves in crystal plates

Piezoelectric plates are common structures for acoustic wave devices. Many waves
can exist or propagate in a crystal plate [1, 2]. These waves can be classified as low- and

high-frequency waves. The usual extensional (E) and flexural (F) waves in plates



considered in traditional structural engineering are low-frequency waves whose
frequencies depend strongly on the length and/or width of a plate in addition to the plate
thickness h. Face-shear (FS) is another low-frequency wave. A fundamental characteristic
of low-frequency waves is that for long waves their frequencies go to zero or the
dispersion curves passes the origin. A rather unique feature of plate resonant piezoelectric
devices is that they often operate with high-frequency waves called thickness modes
including thickness-shear (TSh), thickness-stretch (TSt), and thickness twist (TT) whose
frequencies are determined by the plate thickness, the smallest dimension only and
therefore they have relatively high frequencies. For long waves their frequencies do not
go to zero but have finite intercepts with the w axis called cutoff frequencies below which
the waves cannot propagate. This has important and useful implications in the behaviors
of high-frequency waves and device applications. There in fact infinitely many branches
of dispersion curves above the ones that are shown in the figure. One of the two dotted
lines in the figure is the well-known Rayleigh surface wave ®, which can propagate over
an elastic half-space and is not dispersive. The other dotted line is the well known
Bleustein-Gulyaev surface wave (BG) [3, 4] which can propagate over a piezoelectric
half-space but does not have an elastic counterpart. These two surface waves are included
as references. The study of waves in crystal plates for different applications is an active

research area [5-10].

Pure thickness modes [11, 12] vary along the plate thickness only and do not have in-
plane variations. They can exist in unbounded plates only. In real devices thin plates are
used to simulate unbounded plates. However, due to the presence of boundaries, two

3



complications arise. One is that the thickness modes have slight in-plane variations. The
other is that the operating high-frequency mode of a device becomes coupled with low-
frequency mode(s). Accurate prediction of the behaviors of low- and high-frequency
waves in crystal plates and their interaction is fundamental to the understanding and
design of acoustic wave devices. When thickness modes have in-plane variations, there
are two important situations. In the first case the operating TSh mode has an in-plane
variation in the same direction as the TSh particle displacement and is coupled to the F
mode. This case is relatively well studied and understood, see, e.g., [13-18] and a review
article [19]. In the second case the operating TSh mode has an in-plane variation in the
direction perpendicular to the TSh particle displacement and is coupled to the FS mode.
This case is as important but has been studied much less compared to the first case, with
few and scattered results [20-25]. There is a lack of basic understanding of this situation.
This dissertation is concerned with the second case. In terms of mechanics terminology,

this case belongs to the so-called shear-horizontal (SH) or antiplane motions.

1.3 Quartz crystal microbalance (QCM) sensors used in the liquid phase

Nowadays, the quartz crystal microbalance (QCM) sensors using thickness-shear
modes (TSM) in AT-cut quartz are widely used in the liquid phase sensing applications.
The standard QCM sensors are always driven piezoelectrically by a thickness electric
field, known as thickness field excitation (TFE), which is generated by the two electrodes
attached on the both parallel main surfaces of the crystal. The detections mechanism is

based on the mechanical loading, such as mass, density and viscosity. Because of the



electrode configuration, the sensing surface cannot contact the liquid phase directly
which may cause some limitations when the sensors are used as chemical sensors and
such sensors are not sensitive to the electrical properties of the liquid, such as the

permittivity and the conductivity.

It is also possible to excite the TSM in the AT-cut quartz by applying a lateral
electric field, known as lateral field excitation (LFE). There are many obvious advantages
of LFE over TFE, such as reduced aging, higher Q values and increased frequency
stability, since the regions of the greatest vibrational motion are free of electrodes.
Additionally, in sensing applications, the free sensing surface allows the penetration of
the TSM mechanical and electrical fields into the liquids, resulting in increased

sensitivity to both mechanical and electrical properties changes of the liquids.

So far, there are several LFE sensors fabricated [26-29]. But the fundamental
analysis based on the theory of piezoelectricity for such LFE sensors seems to be still
missing, which is important for understanding the wave modes and their coupling in the

LFE sensors and also for designing the sensors.

1.4 Modeling of plate acoustic wave devices

Due to the material anisotropy of crystals and piezoelectric coupling, modeling of
acoustic wave devices using the three-dimensional (3D) theory of anisotropic elasticity or
piezoelectricity usually involves considerable mathematical difficulties. In sensor

applications, this is further complicated by surface mass layers or fluid-structure



interaction. Although lengthy frequency equations for determining the wave dispersion
relations can often be formally obtained, they are typically transcendental equations with
multi-valued solutions and complex roots. Therefore a numerical search for the roots of
the frequency equation is usually needed which still presents various challenges even
with high speed computers. Sometimes roots are missing or false roots are found. Once
the roots are numerically determined, it is often difficult to connect the data points for
dispersion curves because of the presence of many branches of dispersion curves and it is
not clear which roots are on the same branch. This is especially challenging in the useful

high-frequency range when the roots and dispersion curves are crowded.

For the analysis of plate acoustic wave devices, researchers have developed two-
dimensional (2D) equations for motions of elastic and piezoelectric plates [13,14,30-33].
These equations effectively reduce the dimension of the problem by one which is a major
simplification. In addition, the plate equations usually are only involved with the
particular operating mode of a device plus a few other modes that are coupled to the main
mode of interest. Therefore mode identification when using the 2D equations is not as
serious a problem as when using 3D equations. The 2D plate equations have made
theoretical and numerical analysis possible in many practically useful cases [13-19,34-

37].

1.5 Scope of the present research

In this dissertation we systematically study the useful and relatively less studied LFE

sensors using both 2D and 3D equations. This includes pure TSh vibrations and the



propagation of FS waves and TT waves in unbounded plates. AT-cut quartz is considered
among which the widely used crystals of quartz and the Langasite family are special
cases. For LFE sensors without the fluid layers, exact solutions for resonant frequencies
and modes in unbounded and bounded structures are obtained from the 2D equations in
Chapter 2. Then, the effect of partial mass layers attached to the surfaces of crystal plates
on vibration distribution are analyzed using 2D equations in Chapter 3. This effect is
crucial to device mounting. Lateral field excitation (LFE) and thickness field excitation
(TFE) are studied when the plates are driven by different electric fields and in contact
with fluid layers in Chapter 4 and Chapter 5, respectively. The effects of piezoelectric
coupling, fluid viscosity, fluid dielectric constants, and fluid density on wave frequencies
are examined. This is also a necessary preparation for using the 2D equations to analyze
more complicated problems in later chapters. Finally, Chapter 6 and Chapter 7 are on
propagating waves in unbounded plates by 2D equations. Dispersion relations for coupled
FS and TT waves are derived. Their long wave approximations are obtained. The results
obtained in this dissertation are useful to the fundamental understanding and design

optimization of plate acoustic wave resonators and sensors.
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2. Vibrations of Piezoelectric Plates of AT-cut Quartz under Lateral Field

Excitation

2.1 Introduction

Piezoelectric crystals are widely used to make resonators for time-keeping, frequency
generation and operation, telecommunication, and sensing. Quartz is the most widely
used crystal for resonator applications. Recently new crystals of the langasite family have
shown great promise as materials for future resonators. A large portion of piezoelectric
resonators operate with shear vibration modes of a plate. These modes can be excited
either by a thickness electric field (Thickness field excitation or TFE) or by a lateral
electric field (LFE). While there seem to be more resonators with TFE than LFE, LFE
offers a number of advantages over TFE [1, 2]. For example, LFE can result in reduced
aging, higher Q values and increased frequency stability because the regions of greatest
vibrational motion are free of electrodes. This also makes LFE convenient for sensor
applications. So far, several LFE resonators used as liquid sensor have been reported [3-

6].

TFE resonators have been under sustained study theoretically, numerically, and
experimentally. In particular, in a series of papers [7-10], Mindlin and his coworkers
developed and refined the two-dimensional equations for motions of piezoelectric plates.
These equations have been used in many analyses theoretically and numerically, e.g.,
[11-15], on TFE resonators. More references can be found in a review article [16]. In

contrast, for LFE resonators, reported studies are much fewer. For example, energy
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trapping was recently studied experimentally in [17]. Theoretical results are few and
scattered. Electromechanical coupling coefficient was discussed in [18]. Electromagnetic
radiation was calculated in [19]. The few and scattered theoretical results are significant
limitations of designing a LFE resonator. In fact, Mindlin’s first-order plate theory is as
effective in LFE as in TFE, but it has rarely been used for LFE. In this chapter we use
Mindlin’s first-order plate theory to study systematically coupled face-shear (FS) and
thickness-twist (TT) vibrations of piezoelectric plates of At-cut quartz under lateral field
excitation. Both free and forced vibrations are studied. Important vibration characteristics

including dispersion relations, frequency spectra, and motional capacitance are obtained.

2.2 Plate equations for lateral field excitation

Consider a thin plate as shown in Fig. 2.1. The plate normal is along the x, axis. The
X1 and X3 axes are in the middle plane of the plate. The plate is electroded at the two end

faces at x, =+c which may be under a driving voltage 2V. For free vibrations the driving

voltage is zero or the two electrodes are shorted.

X3

2a
2b
2C

-V \Y
Fig. 2.1 A piezoelectric plate and coordinate system
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We consider the so-called straight-crested waves without x; dependence in a plate with
2a= o« in Fig. 2.1. In this case u,=u;=0 [20]. There is only one displacement
component u;. The relevant equations in [9] reduce to the following equations of motion

and electrostatics:

T = 20t @10
20°

Ts(i)s -T = 3 P, (2-1b)

b9 =0, 219

D} -D{” =0, (2-1d)
where u{® (x,,t) is the FS displacement, and u®(x,,t) is the TT displacement. They are

related to u; through u, =u® + x,uf’ . The mechanical and electric resultants in (2-1) are

related to the plate displacements u® and u® as well as electric potentials ¢ and ¢®

by the following constitutive relations:

-|-3(1O )= 2b(Cs5U13 + chssul(l) + ezs¢(l) + ess¢,(30)) : (2-2a)
1(20) = Zb(chseul(Os) +iKg Cesul(l) + K1e26¢(1) + Kle36¢,g)) ) (2-2b)
@ 2p° M O 2-2

LB —T(755U13+W35¢ ), (2-2c)
D(O) = Zb(ezsul 3t Kle26u1(1) - 522¢(l) - 523¢,(31)) ) (2-2d)

0= 2b(935u1(%) + Kle36ul(l) - 523¢(1) - 533¢,(30)) , (2-2e)
DO — 2_b3 @ o) 2-2f

3 = (WasUys —Cy’) ( )
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¢ and ¢ are related to the potential ¢ through ¢=¢ +x,6®. In (2-2), ¢ 4(=Cp,),
and &; (=&;) are the usual elastic stiffness, piezoelectric constants, and dielectric

|p'

constants. The other material constants in (2-2) are defined by

Ves =1/ Sg5,  Wag = €35 —€36Cs6 / Cog = 35755, (2-3)

2
Ga3 = &3 + €35/ Ceg,

) is the elastic compliance and d;, is another set of piezoelectric

where s, (=S,

constants different from but related to e,, . For a plate unelectroded at the major surfaces

at x, =+b , the shear correction factors «; in the above equations are given by [9]

2= (2-4)

Substitution of (2-2) into (2-1) gives four equations for the plate displacements and

potentials:

Cssul(g)s + ess¢(3%) + K1C56U1(l:3 + ezs¢(l) = pui{®, (2-5a)

7 55“1 E 35¢(1) 307 (K1C56U13 + K Cagly + 38060 +Ki8 ¢(O)) it (2-5D)
e35ul(3)3 + Kleseul(lg 833¢(3%) - c‘323¢5(1) =0, (2-5¢)

v 35“1(13)3 ¢ 33¢(1) 307 (ezsul(%) + K186 — &0 — 523¢,(30)) =0. (2-5d)

2.3 Thickness vibration

First we study pure thickness modes independent of x3 which are the ideal operating

modes of devices. For LFE the motion is driven by
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¢y =—Eexpfat) , (2-6)

where E=-2V/(2c). E is the applied field and 2V is the applied voltage. In this case ¢©
in linear in x3 but ¢,(3°) IS no more than a function of time. Then (2-5a) and (2-5c) imply

that u{® =0, ¢$ =0. (2-5b) and (2-5d) become

_ 0 .
-3 (Klzceeul(l) + Kleze¢(l) + Kle3s¢,(3 )= Pul(l)’ (2-7a)
1 1 0
K1e26u1( ) — 522¢( ) — 523¢,(3) =0. (2-7b)

Solving (2-7), we obtain
u® =—AEexp(iat), ¢% =-BEexp(iat), (2-8)
where

E0K1€36 — £23K1696
2 1
2 2.2 2
Ky 9,066 + K1 €6 — ?pa) Y]

A=—

(2-9)

2 2, o2
B—_| f23_ K1 €29826836 — K1 €258%6

2
2,2 2. 2 b7 5
K1 €22C66 T K1 €22826 Tg PO e

PP

When the denominator of A vanishes, we have the frequency equation that determines the
free-vibration resonant frequency of the fundamental TT mode. Since the first-order plate

theory is used, the only resonant frequency is found to be

2 3K12 2 77.'2 2
“ ZF(CGG +€2 1 £22) zr’bz(cee +ex/&p). (2-10)
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Resonators are used as circuit elements. Two basic properties of a resonator, its
resonant frequency and capacitance, are of primary interest for circuit analysis. The
capacitance of a resonator can only be obtained from an electrically forced vibration
analysis. The capacitance of a piezoelectric resonator is called the motional capacitance
because mechanical vibration of the resonator is involved through piezoelectric coupling.
Recently there has been growing interest in forced vibration analysis of piezoelectric

resonators and the computation of the motional capacitance [19-21]. To calculate the

motional capacitance, from (2-2f) and (2-2e) we find that DY =0 and
D = _20(x;€55A— £,5B — £33)E . (2-11)

Then the charge on the electrode at x, =c per unit length along x; (2a=1 in Fig. 2.1) is

given by
© _ v
Q. =5 =-2(ke A= 2B~ o) - (2-12)

Hence the frequency-dependent capacitance is determined as

C =%=(1—K1%A+% B)C,.
€33 €33 (2-13)
c =P
¢
For later use we introduce a normalized driving frequency by
0=2. (2-14)
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As a numerical example b=1mm is used. Damping is introduced by allowing the elastic

constants to assume complex values, which can represent viscous damping. In our
calculations, cyq is replaced by c,,(1+ iQ™") where Q is a real, large and positive number.
For quartz, Q is of the order of 10°. We use Q=10 or smaller which is relatively low and
represents relatively high damping for quartz. It is considered to be a single damping
parameter representing all of the damping of the resonator. Note that the «, in (2-14) is

kept real.

In Fig. 2.2 we plot |C/Cy| versus Q for AT-cut quartz. |C/Co| is large near Q2=1, the

only resonant frequency. For smaller values of Q or larger damping, the peaks are lower.

v Q = 6000

40

C/C,

09096 09998 1 1.0002 1.0004
Q=mlcoo

Fig. 2.2 Capacitance versus driving frequency for pure thickness modes.

17



2.4 Dispersion of strait-crest waves in unbounded plates

Next we study wave propagation in unbounded plates (2c=« ). Let

u{® = A cos(¢ Xy —ot), ud = A, sin(¢ %, —ot),

_ (2-15)
¢© = A cos(¢ Xy —ot), ¢P = A, sin(¢ %, — o),

where A;-A4 un undetermined constants, ¢ is wave number, and @ is frequency. (2-15)
represents waves propagating in the xz direction. They are called straight-crested waves
because there is no x; dependence. Substitution of (2-15) into (2-5) results in four linear,
homogeneous equations for A;-A4. For nontrivial solutions the determinant of the
coefficient matrix has to vanish, which yields an equation that determines @ versus ¢,
or the dispersion relation. It is a quadratic equation for »*, which is too long to be
presented here. For a given ¢, there are two roots for »®. For each root of »*, the two
corresponding values of @ only differ by a sign and examining one of them is sufficient.
When ¢ is real or pure imaginary, the results are shown in Fig. 2.3 in which the

dimensionless wave number is defined by

z=¢/%. (2-16)

The curve for FS waves looks linear and therefore has little dispersion. The curve for TT
waves is curved and is clearly dispersive. The curve for TT waves has a finite intercept
with the Q axis which is the cutoff frequency of the waves below which the waves

cannot propagate. There are two vertical lines. One is at Re(Z)=0. The other is at Im(Z)

18



slightly larger than 1. These two vertical lines are due to the equations of electrostatics in
(2-5c) and (2-5d). If we neglect piezoelectric coupling and drop (2-5¢) and (2-5d), these

two vertical lines will disappear.

2 . .
1.5- i
c 1
TT, Fs,
0.5- .
' 1 05 0 0.5 1 15
Im(2) Re(2)

Fig. 2.3 Dispersion curves of straight-crested waves.

2.5 Frequency spectra of finite plates

In this section we study free vibrations of a plate finite in the X3 direction with
|x;|<c . The governing equations are in (2-5). Let the edges at x,=+c be free and

electroded, with the electrodes shorted. The boundary conditions are
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TV =0, TP =0, ¢9=0 ¢®=0 x;==c. (2-17)

Different from the propagating waves in (2-15), we consider stationary waves in the form

of

u® = Asin(¢xg)expliot), Ul = A, cos(&x;)explit),

0 . _ : _ (2-18)
¢ = Asin(&xg)exp(iat), ¢ = A, cos(¢xs) expliat),

which may be called symmetric modes because the main displacement of interest, u® , is

an even function of xs. There are also modes with u®® being an odd function of x3 which

may be called antisymmetric modes. Antisymmetric modes are of less interest because
they cannot be excited by a lateral electric field, and therefore will not be studied in this

chapter.

Substitution of (2-18) into (2-5) results in four linear equations for Aj;-A4. For

nontrivial solutions the determinant of the coefficient has to vanish, which vyields a

polynomial equation of degree four for 2. There are four roots which are denoted by
(¢™)?, with m=1-4. Corresponding to a typical ¢™, let the eigenvector be B{™ with
p=1-4. A" determines the ratios among A;-A4. It turns out that one of the roots for

(¢™)? is zero. Therefore the general symmetric solution can be constructed as

u®” B sin(¢ ™Mx,) 0
ol 3 (m) (m) A
LS omyfe 08 Bl c) AL (2-19)
¢ m=1 B3 sin(g " Xs) X3
A B cos(¢ ™x,) B
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When (2-19) is substituted into the boundary conditions in (2-17) at xs=c, we obtain four
linear, homogeneous equations for c™ . For nontrivial solutions, the determinant of the

coefficient matrix has to vanish which yields the frequency equation for determining @.

Frequency spectra are relations of frequency versus the length/thickness ratio c/b of
the plate. They are very useful in design when determining the dimensions of plate
resonators. We plot the frequency spectra determined from (2-19) and (2-17) in Fig. 2.4
(c). For comparison, two special cases are also shown in Figs. 2.4 (a) and (b). The curves
in Fig. 2.4 are in fact formed by data points without connecting them. Each data point
represents the frequency of a mode. Corresponding to a particular value of c/b, there are
infinitely many modes. A few can be seen in the frequency range shown. In Fig. 2.4 (a),
the piezoelectric coupling, the electric potentials, and the elastic coupling due to the

relatively small elastic constant csg are all neglected. In this case (2-5a) and (2-5b)

become two uncoupled equations for u{® and u® . The two families of curves in Fig. 2.4

(a) intersect with each other. The relatively flat curves are for TT modes with u® . In Fig.

2.4 (b) the elastic coupling due to csg is considered but the piezoelectric coupling is
ignored. This has such an effect on the curves in Fig. 2.4 (b) that, near the intersections in
Fig. 2.4 (a), the curves in Fig. 2.4 (b) turn away from each other (mode veering). This is

qualitatively different from Fig. 2.4 (a). Fig. 2.4 (c) has the effects of both piezoelectric
couplings to 4 and 4", as well as the relatively small elastic coupling due to Css.

Quialitatively the curves are similar to those in Fig. 2.4 (b), with small, quantitative

differences. The usefulness of the frequency spectra is that it is needed for determining
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c/b. For example, for the lowest TT branch with Q close to 1, those values of c/b that are

close to the intersections with the FS curves need to be avoided.

0.9¢

08, 25 30 35 40
c/b

(a)
= = k) > —
'-..: “\ oY ~
N\ \
0.8, 25 30 35 40
clb
(b)
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0.9¢

08, 25 30 35 40
clb

(©)
Fig. 2.4 Frequency spectra of symmetric modes. (a) Uncoupled elastic modes (4® =0,

¢ =0, cs56=0). (b) Coupled elastic modes (¢© =0, ¢® =0, c;0). (c) Coupled
piezoelectric modes (¢ 20, ¢ 20, ¢, #0).

2.6 Motional capacitance

Finally, we calculate the motional capacitance of a finite plate with | x, |<c. Consider

electrically forced vibrations with the following boundary conditions:
T =0, TP =0, ¢ =tVexplat), ¢¥=0, x,=xc. (2-20)

Substituting (2-19) into (2-20), we obtain four linear, inhomogeneous equations for c™,
driven by V. Once these equations are solved, the plate displacements and potentials are

known. Then the charge and capacitance can be calculated from
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Q. =-D{’(x,=c), C= % . (2-21)

Fig. 2.5 shows |C/Co| versus Q for AT-cut quartz. Similar to Fig. 2.2 for the pure

thickness mode of u®, |C/Co| is large near (2=1. However, due to the dependence on Xxs

and the coupling to u{®, there are quite a few resonances in the frequency range shown.

Even in the neighborhood of (=1, there are in fact two peaks. The maxima of the two

high peaks near Q=1 are not fully shown in order to see the lower peaks.

We plot |C/Cy| in a narrower frequency range near Q=1 in Fig. 2.6, showing two

resonances. The maximum of the left peak near Q=1 is slightly higher than that in Fig.
2.2. For finite plates the coupling to u{® affects the charge on the electrodes through (2-

2e) and (2-21) and hence affects the capacitance.

In Fig. 2.7 we vary the aspect ratio slightly around c/b=21.5 which is right in the
middle of a flat potion of the lowest TT curve in Fig. 2.4 (c) which represents u®
dominated modes. ¢/b=20.5 and 22.5 are also well within the same flat portion and are
also u®® dominated. We note that Co depends on ¢/b (2-13) and therefore the difference in

the height of the peaks in Fig. 2.7 is exaggerated. When c/b varies slightly in Fig. 2.7,
the two peaks on a curve in Fig. 2.7 move in opposite directions. This is a relatively more

complicated behavior and is not uncommon when there are two coupled modes [22].
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Fig. 2.5 Motional capacitance versus driving frequency (b=1mm).

50 . .
= Q = 6000
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Fig. 2.6 Motional capacitance versus driving frequency for different Q (b=1mm,
c/b=21.5).
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Fig. 2.7 Motional capacitance versus driving frequency for different c/b (b=1mm,
Q=10000).

2.7 Conclusion

When an At-cut quartz plate is under LFE, the dominating displacements are FS and
TT. Within the first-order plate theory, there is only one resonance for pure thickness
vibration. For straight-crested waves, the two electrostatic equations contribute to two
branches in the dispersion relations, in addition to the two branches for FS and TT waves.
Frequency spectra of finite plates consists of the “sum” of those of FS and TT modes
with mode veering at the intersections. To avoid strong couplings between FS and TT,
certain values of the plate length/thickness ratio should be avoided. Mindlin’s first-order

plate theory is effective in analyzing vibrations of crystal plates under LFE.
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3. Energy Trapping in High-Frequency Vibrations of Piezoelectric Plates with

Partial Mass Layers under Lateral Electric Field Excitation

3.1 Introduction

An important situation in resonator and sensor application is when the plate is
partially covered by additional mass layers which can be either due to the accumulation
of another material like in mass sensor applications or due to the inertia of electrodes [1-
6]. The inertia of the mass layers is responsible for an important phenomenon called
energy trapping in which the vibration is confined under the mass layers and decays
rapidly outside them. Energy trapping is crucial to resonator mounting and has been the
subject of many studies, mostly for TFE. For LFE, however, our understanding on energy
trapping is limited. Further analysis is needed to understand the effect of mass layers on

resonators under LFE, and the energy trapping in them in particular.

In this chapter we use Mindlin’s first-order plate theory to study theoretically forced
FS and TT motions of a piezoelectric plate with partial mass layers under a lateral electric
field. An AT-cut quartz plate is used as an example for presenting numerical results. In
addition to the motional capacitance of the plate which is important when the plate is
used as a resonator, energy trapping and the relationship between the dimension of the

mass layers and the number of trapped modes is also examined.
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3.2 Structure

Consider a thin crystal plate of thickness 2b as shown in Fig. 3.1. The plate normal is
along the x, axis. The x; and x3 axes are in the middle plane of the plate. The central part
of the plate where | x, |<c is symmetrically covered with identical, dielectric mass layers
of thickness 2b’ and density p’. The plate is electroded at the two end faces at x, =+L,
with the electrodes shown by the thick lines. A time-harmonic driving voltage
+Vexp(wt) is applied across the electrodes. Under such a driving voltage, due to the
particular anisotropy of monoclinic crystals, the plate can be excited into motions called
straight-crested waves with one displacement component only, i.e., u, =u,(x,,%,t) and

u, =u; =0, which is coupled to an electric potential in the form of ¢ =g(x,,x,,t).

A X
2b’
V
[ ]
N
vV 2b e ——. \Vj
2c
2L

Fig. 3.1 A piezoelectric plate with mass layers and coordinate system
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3.3 Governing Equations

For straight-crested waves without x; dependence in a plate with mass layers, the
relevant equations of Mindlin’s first-order plate theory reduce to the following equations

of motion and electrostatics [7]:

TS = 2bp(+R)G®,

o <o _2b° o
Tos =Ty = P(1+3R)U 3-1)

D{3 =0,

D) -Df =0,
where u{®(x,,t) is the FS displacement, a low-frequency mode. u®(x,t) is the TT
displacement, a high-frequency mode. They are related to u; through u, =u® +x,u® . The

TT mode is the high-frequency operating mode of devices which is what we are
interested in, but it is usually coupled to the FS mode through the elastic constant csg as

shown below. Therefore a coupled analysis is necessary. The mechanical and electric

resultants in (3-1) are related to the plate displacements u{® and u® as well as electric

potentials ¢ and ¢ by the following constitutive relations:

T =2b(Cssllyy +K1Cselly” + €59 +e3565), (3-22)
T, = 2b(CsgUf + A Coglt” + "™ + ’(1336?5,(31)) , (3-2b)
TS = (755U‘” +y43) (3-2¢)

Déo) = 2b(925u + Klezsu(l) - 522¢(1) _523¢,(31)) , (3-2d)
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D3(0) 2b(e35U; 3 D+ K1e3su(l) - 5239’5(1) - 533¢,E°,0)) : (3-2e)

2b3 O

Dél) =— (‘/’35“1 3 4/33¢,(31) ). (3-2f)

¢ and ¢ are related to the potential ¢ through ¢=¢ +x,4®. In (3-2), ¢ 4(=Cp,),

&, and &; (= ¢;) are the usual elastic stiffness, piezoelectric constants, and dielectric

constants. The other material constants in (3-2) are defined by

5 =1/ Sg5,  Was =635 —€36Cs5/ Cop = Uas Vs (3-3)

_ 2
Ga3 = &3 + €35/ Ceg,

where s ) is the elastic compliance and d;, is another set of piezoelectric

pa(= Spq
constants different from but related to e,, . For a plate with dielectric mass layers at the
major surfaces at x, =+b , the shear correction factor «;, and the mass ratio R in the above
equations are given by

7* 21

K ZE(1+ R, R=£=. (3-4)

When (3-2) is substituted into (3-1), the following four equations result:

0 0 1 1 0
055U1(3)3+e35¢,( )+ chseu( ) +925¢,(3) = (1+ R)U( ),
1 1
7/55ul(3)3+‘//35¢()
1 0 1
e3511133+/c1e36u() ‘93ﬁ( ) 52@” 0,

‘//35u1(,1?23_ é/sﬁ(l) 3o~ (ezsu(o) + Klezsu(l) 522¢(1) - 523¢,(30)) =0.
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The equations for a plate without mass layers can be obtained from the above equations

by setting the mass ratio R=0.
3.4 Dispersion Relations for Waves in Unbounded Plates

To understand energy trapping it is helpful to examine the dispersion relations for
coupled FS and TT waves in unbounded plates. Let the wave frequency be » and wave

number along x; be ¢, and

ul® = A cos(¢ %, —wt), u® = A, sin(¢ x; — wt),

0 D _ p (3-6)
@ = Ajcos(& xs —wt), ¢ = A, sin(¢ x; — wt),

where A;-A, are undetermined constants, £ is wave number, and o is frequency. (3-6)
represents waves propagating in the xz direction. Substitution of (3-6) into (3-5) results in
four linear, homogeneous equations for A;-A4. For nontrivial solutions the determinant of
the coefficient matrix has to vanish, which yields an equation that determines @ versus

¢, or the dispersion relation. It is a quadratic equation for »*, which is too long to be
presented here. For a given ¢, there are two roots for »®. For each root of »*, the two

corresponding values of @ only differ by a sign and examining one of them is sufficient.
We introduce the following dimensionless frequency Q and dimensionless wave number
z

72_2

T
Q=wﬂo, Z:C/Zb’ a)gzr’bz(066+8226/822), (3-7)
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where «, is the plate fundamental thickness-shear frequency and is use as a normalizing

frequency.

Dispersion relations for coupled FS and TT waves are shown in Fig. 3.2 for two cases
together. One is for an infinite plate without mass layers. The other is for an infinite plate
completely covered by mass layers, which has lower frequencies as expected. The branch
for the TT wave has a finite intercept with the frequency axis, which is the cutoff
frequency below which the TT wave cannot propagate. When mass layers are present, the
TT wave cutoff frequency is also lowered a little. For a frequency in the small range
between the two cutoff frequencies, the corresponding TT wave number for the plate with
mass layers is real, representing a sinusoidal wave. At the same time, the corresponding
TT wave number for the plate without mass layers is pure imaginary, representing an
exponentially decaying field. Hence, if a plate has partial mass layers like what is shown
in Fig. 3.1, in the small frequency range between the two cutoff frequencies, the vibration
is sinusoidal under the mass layers and is exponentially decaying outside them, and is
therefore confined to be within the part of the plate with mass layers (energy trapping). In
this case, mounting at some distance away from the mass layer edges does not affect the

vibration of the structure.
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Fig. 3.2 Dispersion curves for plates with and without mass layers.
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3.5 Vibrations of Finite Plates with Partial Mass Layers

In this section we study vibrations and energy trapping in the plate with partial mass
layers as shown in Fig. 3.1. Due to the presence of partial mass layers, we need to obtain
solutions for plates with and without mass layers separately, and then apply boundary
conditions at the edges of the plate and continuity conditions at the junctions between

different parts of the plate.

3.5.1 Central portion with mass layers

We consider stationary waves in the form of

u® = A sin(¢x; Jexpliat), u® = A, cos(¢x, Jexpl(iat),

3-8
#* = Agsin(gx Jexpliat), @ = A, cos(gx, Jexplict) e

where A;-A4 are undetermined constants. (3-8) may be called symmetric modes because

the main displacement of interest, u®, is an even function of xs. There are also modes

with u® being an odd function of x3 which may be called antisymmetric modes.

Antisymmetric modes are of less interest because they cannot be excited by a lateral
electric field in the symmetric structure in Fig. 3.1, and therefore will not be studied in
this chapter. We look for steady-state solutions in which all fields are with the same time
dependence which will be dropped for simplicity. Substitution of (3-8) into (3-5) results

in four linear equations for A;-A,. For nontrivial solutions the determinant of the

coefficient has to vanish, which yields a polynomial equation of degree four for ¢2.

There are four roots which are denoted by (¢™)?, with m=1-4. Corresponding to a
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typical ¢£™, let the nontrivial solution of the linear equations (eigenvector) be ﬂg“) with
p=1-4. ,BS“) determines the ratios among A;-A4. It turns out that one of the roots for

(¢™)? is zero. The general symmetric solution can be constructed as

u® A sin(g“(m)xg) 0
A B 5in(§(m)xs) X3 |
O (™ cos(¢ ™x, ) B,

where C® through C® are undetermined constants, and

£29K1€36 — E93K1€96

Ai:_ 2 '

2 22 b7
K 522066""(1926_?/3@ €2

(3-10)
2. o o i 2p o2
B, =- €23 K1 €20826%36 — K1 £23506
c 2
22 2.2 2. .2 22
K1 &55Cg6 T K1 £22€56 —?pa) &

3.5.2 Side portions without mass layers

Due to the symmetry of the structure in Fig. 3.1 and the symmetric modes we are
studying, we only need to consider the right part of the plate in Fig. 3.1 with c<x, <L.
Corresponding to a frequency in the small range between the two cutoff frequencies in
Fig. 3.2, there are real and pure imaginary roots for the wave number. In addition, both of
the terms with u® as an even and an odd function of x3 should be included. In a way
similar to the procedure from (3-8) to (3-9), the general solution for this case can be

written as
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) (m)

Ul(l) _ Z cm ﬂz(m) COS(§(m)X3; + Z cm Ba )Sin(;'(m)x3

4O~ & LM sin(c™x, )5 B coslz ™M, (3-11)
¢(1) Real & ﬂim) cos ;(m)xs) Real ¢ ﬂ(m) sin(;’(m)x3)

B exple Mx, 0 0

+ z cm ﬂz(m)eng(m)xs +c A +c® 0 ‘

m=3-6 M exp ¢ X3 1

ares | pmelcm)| [,

where ¢® through c® are undetermined constants.

3.5.3 Boundary and continuity conditions

Resonators are used as elements of electric circuits for alternating currents. Two basic
properties of a resonator, its resonant frequency and capacitance, are of primary interest
for circuit analyses. EXxisting theoretical results on piezoelectric resonators are
overwhelmingly on free-vibration frequency analysis. The capacitance of a resonator can
only be obtained from an electrically forced vibration analysis. The capacitance of a
piezoelectric resonator is called the motional capacitance because mechanical vibration of
the resonator is involved through piezoelectric coupling. To calculate the motional
capacitance of the resonator in Fig. 3.1, we consider the following boundary conditions

for electrically forced vibration:

u?)=uc). uP()=ul(c")

T () =T TLE)=TL (")

pO@c) =4, 4P0c)=¢"(), (3-12)
D{”(c)=D{"(c"), D{’(c’)=D{(c"),

T (L) =0, T (L) =0, ¢V (L)=Vexpiat), ¢V(L)=0.
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Due to symmetry, we only need to consider the boundary conditions at x,=L and the
continuity conditions at x, =c . Substituting (3-9) and (3-11) into (3-12), we obtain
twelve linear, inhomogeneous equations for the twelve undetermined constants of C®
through C® and c® through c®, driven by V. Once these equations are solved on a

computer, the plate displacements and potentials are known. Then the charge Q. on the

electrode at the right edge and capacitance C of the resonator can be calculated from
__pO(y _Q ]
Q. =-D;"(x=c), C YR (3-13)

3.5.4 Numerical results

As a numerical example, b=1mm is used. Damping is introduced by allowing the

elastic constants to assume complex values, which can represent viscous damping. In our
calculations, cyq is replaced by c,,(1+ iQ™") where Q is a real, large and positive number.

For quartz, Q is of the order of 10°. We use Q=10* which is relatively small and
represents relatively high damping. It is considered to be a single damping parameter
representing all of the damping in the resonator. Note that the «, in (3-2) is kept real as a
frequency unit. We also fix the plate length L/b=50 and the mass ratio R=5%. In Figs.
3.3-3.5, we vary the length of the mass layers from c/b=8, 20, to 26.8 and plot the
motional capacitance versus the driving frequency in Figs. 3.3(a), 3.4(a), and 3.5(a). The
capacitance assumes maxima at resonances. When c/b increases, in the frequency interval
considered, the number of resonances increases. The displacement distributions at
resonances are shown in Figs. 3.3(b), 3.4 (b), and 3.5(b), respectively. The displacement
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is large under the mass layers and small outside them. This is the co-called energy
trapping phenomenon. Lower-order modes are trapped better. Even for a long and thin
plate with L/b=50, the displacement field can still reach the edges. This is because we are
considering coupled FS and TT motions. While the TT mode has a cutoff frequency and
can be trapped, the FS mode does not have a cutoff frequency and cannot be trapped. As

a consequence, the coupled motion can always feel the plate edges.
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Fig. 3.3 ¢/b=8. (a) Capacitance versus frequency. (b) Displacement distribution at
resonance (Q=0.964845).

41



i Q= 10000] |
CLs — /b =50
o/b = 20
250} ]
_ 200} |
(=]
Q
€ 150/ ]
100} ]
e L_/
0355 096 0965 097 0975 098 0985
Q= (o/coo
(a)
%
3x 10 .
—Mode 1
---Mode 2

(b)

Fig. 3.4 ¢/b=20. (a) Capacitance versus frequency. (b) Displacement distributions at
resonances (Q=0.957691, 0.973267).
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Fig. 3.5 ¢/b=26.8. (a) Capacitance versus frequency. (b) Displacement distributions at
resonances (=0.956521, 0.965944, 0.986854)
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3.6 Conclusion

When an AT-cut quartz plate under LFE has partial mass layers, there exist a finite
number of resonances in the frequency range between the cutoff frequencies of a plate
with mass layers and a plate without mass layers. The motional capacitance assumes
maxima at these resonances. The corresponding displacement distributions show energy
trapping, with the vibration mainly in the part of the plate with mass layers. The number
of trapped modes increases with the length of the mass layers. Lower-order modes are
trapped better. Due to the coupling to the FS mode which cannot be trapped, the vibration

can still feel the plate boundary slightly.

44



3.7 Reference

[1] R. D. Mindlin and P. C. Y. Lee, “Thickness-shear and flexural vibrations of

partially plated, crystal plates,” Int. J. Solids Structures, 2, 125-139, 1966.

[2] J. Wang, P. C. Y. Lee, D. H. Bailey, “Thickness-shear and flexural vibrations of

linearly contoured crystal strips with multiprecision computation,” Computers &
Structures, 70 (4), 437-445, 1999.

[3] R. J. Byrne, P. Lloyd and W. J. Spencer, “Thickness-shear vibrations in rectangular

[4]

[5]

[6]

[7]

AT-cut quartz plates with partial electrodes,” J. Acoust. Soc. Am., 43 (2), 232-238,
1968.

J. L. Bleustein and H. F. Tiersten, “Forced thickness-shear vibrations of

discontinuously plated piezoelectric plates,” J. Acoust. Soc. Am., 43 (6), 1311-1318,
1968.

P. C. Y. Lee and W. J. Spencer, “Shear-flexure-twist vibrations in rectangular AT-
cut quartz plates with partial electrodes,” J. Acoust. Soc. Am., 45 (3), 637-645, 19609.

J. S. Yang and J. A. Kosinski, “Effects of piezoelectric coupling on energy trapping
of thickness-shear modes,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 51 (9),
1047-1049, 2004.

R. D. Mindlin, “High frequency vibrations of plated, crystal plates,” in: Progress in

Applied Mechanics (the Prager Anniversary Volume), Macmillan, New York, 73-84,
1963.

45



4. Fluid-induced Frequency Shift in a Piezoelectric Plate Driven by Lateral Electric

Fields

4.1 Introduction

A vibrating crystal (resonator) when is put in contact with a viscous fluid changes its
resonant frequencies due to the inertia and viscosity of the fluid. This effect has been
used to make fluid sensors for measuring fluid viscosity or density [1-3]. These sensors
belong to the general category of those acoustic wave sensors called quartz crystal
microbalances (QCMs). More references can be found in relevant review articles [4, 5].
For fluid sensor applications, vibration modes of a crystal body without a normal
displacement at its surface are ideal and are of general interest. In these modes the surface
of the body has no normal displacement so that no pressure waves are generated in the
fluid. The fluid produces a tangential drag only on the body surface due to viscosity and

the tangential motion of the surface, thereby causing a frequency shift in the body.

Quartz is the main piezoelectric crystal for resonator and sensor applications.
Thickness-shear vibration of a quartz plate is the most widely used structure and mode
for QCMs. The sensitivity given in the classical reference [1] for a fluid sensor is based
on an elastic analysis without piezoelectric coupling which is small in quartz and can
usually be neglected in a free vibration frequency analysis but must be considered in an
electrically forced vibration analysis to obtain the impedance or admittance of a device.
In real device operations electrodes are necessary for generating electric fields or

collecting charges (currents). Electrodes are usually deposited on the two surfaces of a
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crystal plate to produce a driving electric field in the plate thickness direction. This type
of electrode arrangement is called thickness field excitation (TFE). Surface deposited
electrodes are associated with a series of complicating effects including electrode inertia,
stiffness, intrinsic stress, and thermal expansion which is usually incompatible with that
of the crystal plate, etc. [6-8]. These effects of the electrodes are usually undesirable,
especially when the electrodes are on the surface of the crystal plate where sensing is

performed.

One way to avoid putting an electrode on the sensing surface of a crystal plate is to
use side electrodes and the associated lateral or in-plane electric fields, called lateral field
excitation (LFE) [9-12]. This makes LFE convenient for sensor applications in which the
unelectroded active area of a resonator can be put in direct contact with measurands.
However, there are very few theoretical results for devices driven by LFE in contrast to

the vast literature on TFE.

In this chapter we study thickness-shear vibration of a quartz crystal plate with one
surface in contact with a viscous fluid layer. The crystal plate is under LFE. The theory of
linear piezoelectricity is used to model the crystal plate. The theory of Newtonian fluids
is used for the fluid layer. For fluid sensor application we want to study fluid-induced
frequency shift of the crystal plate from a free vibration analysis, and the capacitance of

the plate from a forced vibration analysis.
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4.2 Fields in different regions

Consider the structure shown in Fig. 4.1 which is unbounded in the x; direction. The
crystal plate is of rotated Y-cut quartz which includes the widely used AT-cut quartz as a
special case. The fluid is a linear Newtonian fluid. Whether the fluid is compressible or
not does not matter because the motion to be considered is a pure shear without volume

change. There are two edge electrodes at x, = +c . On these electrodes a driving voltage of
¢=1Vexp(imt)/2 is applied where ¢ is the electric potential. We assume thin plates with

c>>b so that edge effects can be neglected and pure thickness-shear modes exist. We
consider time-harmonic motions and use the usual complex notation. All fields have the

same exp(iot) factor which will be dropped in the following for simplicity.

$= Fluid $ H ¢ =0.5Vexp(iot)

0.5Vexp(io ouartz <I> b X3 . /
@ b

<

2C

Fig. 4.1 A crystal plate with a fluid under a separated electrode
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4.2.1 Upper free space

For thickness-shear modes independent of x; and X3 in the plate, the corresponding

governing equations of the electric field in the free space are

D,, =0,
D, =&,E,, (4-1)
E,=—4,,

where E is the electric field and D is the electric displacement. &, is the free-space
permittivity. We consider the case when x, =+o are electrically open where D, =0.
Since D, is a constant in the free space as dictated by (4-1);, D, =0 in the free space.

The free space electric potential is simply

p=—EBx3 +Cy, (4-2)

where E=-V/2c is a constant, C; is an arbitrary constant. (4-2) implies that E, =E and

D, =0. The open circuit condition at x, =+oo is satisfied.

4.2.2 Fluid

The fluid is assumed to be without electromechanical coupling. The electric fields

are still governed by (4-1) but the free-space permittivity &, needs to be replaced by the

fluid permittivity ¢ . The equation of motion for the fluid is [13]

T, 12~ ALV, (4-3)
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where the shear stress is given by

T = N671 . (4-4)
2

4 and p_ are the viscosity and mass density of the fluid. v; and T,; are the relevant

velocity and shear stress components. The potential and velocity fields in the fluid are

¢=—Ex; +C,,

v, ={C, sinh[L+ (x, —b)]+C, cosh[d+ I J(x, —b)], (4-5)

where Cz and C4 are integration constants, and

_ |PL@ -
n= Z (46)

The relevant stress and electric displacement components needed for boundary and

continuity conditions are

Ty =L+ )un{C, cosh[(L+i)7(x, —b)]+ C, sinh[(L+i)(x, —b)]},

D, =0. (4-7)

We note that the continuity of ¢ and D, between the upper free space and the fluid are

already satisfied.
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4.2.3 Crystal plate

In the crystal plate, due to the presence of E,, we begin with the following trial

fields. They will be shown to satisfy all governing equations and boundary/continuity

conditions later.

U =t (Xz), Uy =U3=0, @=g(x)—Ex+C;, (4-8)

where C, is an undetermined constant. The nontrivial components of the strain, electric

field, stress, and electric displacement components are, correspondingly,
2812 =U 5, Ez = _¢,2 Es :_¢,3 =E, (4-9)

T, =Ceel, , +€ —exE, T, =CgU,, +€ —eyE,
31 56™+1,2 25¢,2 35 21 66-'1,2 26¢,2 36 (4_10)

D, =€xU;, =&, +Ex3E, Dy =egxU, —epd, +e5E.
The equation of motion and the charge equation of electrostatics take the following form:

2
T21,2 = CeeUy +e26¢,22 =—pao-U,

(4-11)
D,, =€xU,, —&,0, =0.
The displacement and potential fields determined from (4-11) are
u, =C; sin[&(x, —b)]+C, cod&(x, —b)] . (4-12)
p=S2 {Cs sin[&(x, —b)]+ Cq cog&(x, —b)]}+C, (x, —b)—Ex, +C,, (4-13)

Ex

where Cs, Cg and C- are undetermined constants, and
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&=L (4-14)
C66

The stress and electric displacement components are

Ty = Eeeé{cs Cos[ég(xz - b)]_ Cgsi n[§(x2 - b)]} +€,6C; —egE, (4-15)

D, =—£,C, + £5E, (4-16)

D; = (636 - &ezs ]§{C5 COS[SE(Xz - b)] -Cq Sin[f(xz - b)]} —&3C7 +e5E, (4-17)
22

where Cg; =Cos (L+k%) , k3 =2 /(¢5,Cg). The free charge Q. on the edge electrode at

X, =c per unit length along x;, the current | that flows into this electrode, and the

admittance Y of the structure are given by

b
Q. :J.b_ D,dx,,

I :Qe = ia)Qe’ (4'18)
Y=1/V.

4.2.4 Lower free space
For the lower free space we have
¢=—Ex; +Cgq, (4-19)

where Cg is an arbitrary constant. The open circuit condition D, =0 at x, =—o IS

satisfied.

52



4.3 Boundary and continuity conditions

The top of the fluid layer is traction-free, i.e.,

T,(b+H)=0. (4-20)

At the interface between the fluid and the top of the crystal plate, we have the continuity

of the velocity, electric potential, shear stress, and normal electric displacement:

o )=o) 4-21
Tub)=T,ub0") (#-20)
D, (b )=0.

At the interface between the bottom of the crystal plate and the free space below it, we

have:
, (4-22)

We note that although there are eight equations in (4-20)-(4-22), they are effectively
seven because D, in the crystal plate as given in (4-16) is a constant and D,(+b™)=0 are

effectively one condition. Substitution of the relevant fields into (4-20)-(4-22) gives the

following seven equations for C; through Cs:
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C,cosh[(L+i)yH]+C, sinHL+i)H]=0,
c,-#c, -c,,
€22
£2)Cq = &3,
C, —iaC, =0, (4-23)
—(L+1)urCy +TeelCs +,5C, =e5E,
Cso[Cs cos(26b) + Cg sin(280)] + €,5C; =e56E,

%2 e sin(2¢b) - C, cos(280)] + C, (2b) + C, = C,.

Y]

Effectively C;-C, and Cg-C; are two constants. Therefore the unknown constants in (4-23)

are also seven.
4.4 Vibration analysis

In (4-23) E is the only driving term. In the following we consider free and

electrically forced vibrations separately.
4.4.1 Free vibration

For free vibrations we set E=0. (4-23) becomes homogeneous. For nontrivial
solutions the determinant of the coefficient matrix of (4-23) has to vanish, which gives

the following frequency equation:

tan(Zba) JCZJ _ i) J% tanH+ iJH]. (4-2)
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Quartz has a small piezoelectric coupling. If we neglect the small piezoelectric
coupling by setting e, =0 (in this case Cqs =C4q) and consider the limit when H — oo,
(4-24) reduces to

tan{Zba) iJ:—(l—i) LAk (4-25)
Ces 2Ceq

which is the frequency equation in [1].

On the other hand, if we neglect the drag due to fluid viscosity in (4-24) by setting

1 =0, the right-hand side of (4-24) vanishes and the left-hand side can be factored into
two equations. One is sin(@)=0 which is not of interest because it determines modes
that are symmetric about x, =0. What is used in devices is the other equation cos(h)=0

which determines modes antisymmetric about x, =0. In this case,
db=nz/2,n=1,3,5,.... (4-26)

Corresponding to (4-26), from (4-14) we obtain the following frequencies for
antisymmetric thickness-shear modes when the fluid is not present as our reference

frequencies:

o _ N7 G 4-27
20 2\ p ( )

We now return to the general frequency equation (4-24). Consider the case of a low

viscosity fluid, we look for approximate roots of (4-24) by letting
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Sz A, (4-28)

where A™ is small. Substituting (4-28) into (4-24), for small viscosity, we obtain

i D
A 2171 Mtanh[aﬂ)n(")m , (4-29)
0
2 2T

where 7" =/ p & I(2u) . With A™ known from (4-29), from (4-14) we obtain the

relative frequency shift as

_ s (n)
AW =L T 2 e 1TU PO i s iy H]. (4-30)
n 0
" nz nz | 2pCq

(4-30) is more general than the classical result in [1] by including the effect of

piezoelectric coupling in ¢, and the effect of the finite fluid layer thickness H. When

e, =0 and H=, (4-30) reduces to

—i n)
A" =0 - " = L oM P Lﬂ_a{(’ : (4-31)
nz 20C¢s

When n=1, the real part of (4-31) gives the classical result of [1] for the frequency shift of

the fundamental thickness-shear mode in a crystal resonator due to contact with a viscous
fluid. The real part of (4-31) is negative, indicating that the fluid drag lowers the

frequency. From (4-31) higher-order modes with larger n seem to have smaller frequency
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shifts. The imaginary part of (4-31) represents the damping effect due to the fluid

viscosity.
4.4.2 Forced vibration

For forced vibrations (4-23) is inhomogeneous. Under a real driving frequency the
coefficient matrix does not vanish. A solution always exists, is unique, and can be

obtained directly on a computer.
4.5 Numerical results

We will consider several mixed fluids. For the viscosity of two mixed fluids, we use

the following formula from [14]:

= XL+ X5ty + Xy Xl
M=y +

(4-34)
where X; and X, are mole fractions. For the dielectric constant, following [15], we use

=& P t&P;, (4-35)

where p; are the relative volume fractions. The mass density of the mixture is based on

the ratio between the mass sum and the volume sum.

Consider a resonator of AT-cut quartz with b=0.58 mm so that " =9x10° 1/s. The

fluid layer thickness is fixed to H=2b except in Figs. 4.2 and 4.3. For the fluids we use

ethanol with density p, =0.78522 g/cm® and viscosity z.=1.04 mPa s, or toluene with p,
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=0.8669 g/cm® and £=0.5503 mPa s, or chloroform with p, =1.483 g/cm® and £,=0.542

mPa s.

Fig. 4.2 shows the effect of the fluid layer thickness H on frequency shifts due to
different fluids for the fundamental mode with n=1. The fluid lowers the frequency as
expected. For small H the frequency shift is proportional to H. There is a maximal
frequency shift of the order of 10™ when H is somewhat less than b, half the thickness of
the crystal plate. This is considered strong and clear signals because typical thermal
noises in quartz resonators are of the order of 10°. When H>2b the frequency shift
becomes constant. In this case the fluid layer can in fact be treated as a half space. Fig.
4.3 shows similar behaviors of the third overtone mode with n=3, with smaller frequency

shifts and quicker decay of fields in the fluids (smaller penetration depth).
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Fig. 4.3 AQ® versus the fluid layer thickness H
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To examine the effect of the fluid density individually, we artificially vary the

density of ethanol and plot the result in Fig. 4.4. A heavier fluid with a larger density
causes more frequency shift as expected. The relationship between p, and AQ™ is

essentially parabolic as suggested by (4-30). In Fig. 4.5 we artificially vary the viscosity

of ethanol and observe similar effects.
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Fig. 4.5 Effects of fluid viscosity on AQ”
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Fig. 4.6 is from the forced vibration analysis. It shows the admittance per unit length
of the plate in the x; direction. At resonance the admittance assumes maximum. (a) shows
an isolated resonance which is ideal for resonant acoustic wave sensors. (b) is a

magnified picture of (a) locally near resonance.
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Fig. 4.6 Admittance versus driving frequency
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4.6 Conclusion

An exact solution is obtained for thickness-shear vibrations of a rotated Y-cut quartz
plate in contact with a fluid driven by a lateral electric field. An approximate expression
for the frequency shifts due to the fluid is presented. It includes the classical result in [1]
as a special case. The fluid density and viscosity tend to lower the frequencies of the
crystal plate. Higher-order modes are less sensitive to the fluid than lower-order modes.
The relative frequency shift is of the order of 10™. The results obtained are fundamental
and useful for the understanding and design of quartz crystal fluid sensors driven by

lateral electric fields.
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5. Frequency Shifts in a Quartz Crystal Plate under Separated Electrodes in

Contact with a Fluid Layer with a Finite Thickness

5.1 Introduction

Since the missing electrodes on the sensing surfaces, the LFE sensors can provide
good sensitivities on the mechanical properties of the fluid. Furthermore, several
researchers [1, 2] indicate the LFE sensors are sensitive to the liquid electrical property,
such as the permittivity. But in the previous chapter, we cannot find the effect of the

liquid electrical property on the frequency shift.

In the real device, the applied electrical field cannot be ideal and homogeneously
distributed within the entire quartz plate. As both the two electrodes are on the reference
surface and only the sensing surface contacts the liquid layer, the electrical field lines,
penetrating into the quartz plate and the liquid layer, also have an x,-directed component,
but very small [3]. This resembles the traditional thickness electric field excitation, but
the liquid layer contacts the sensing surface directly. Therefore, a model of TFE sensor
with one electrode separated is introduced to qualitatively describe the effect of the liquid

permittivity on the frequency shifts in a real LFE liquid sensor.

5.2 Fields in different regions

Consider the structure shown in Fig. 5.1 which is unbounded in the x; and X3
directions. The crystal plate is of rotated Y-cut quartz which includes the widely used

AT-cut quartz as a special case. The fluid is a linear Newtonian fluid. Whether the fluid is
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compressible or not does not matter because the motion to be considered is a pure shear
without volume change. One electrode is at the top of the fluid layer. Another electrode is
at the bottom of the crystal plate. Since the mechanical effects of an electrode (or a mass
layer) on the crystal surface including inertia and stiffness are well understood [4, 5], in
this chapter we focus on the mechanical and electrical effects of the fluid and assume that
the electrodes are very thin so that their mechanical effects can be neglected. A time-

harmonic driving voltage Vexp(i«t) is applied across the electrodes. We consider time-
harmonic motions and use the usual complex notation. All fields have the same exp(iwt)

factor which will be dropped in the following for simplicity.

AX,
¢ =Vexp(iot)
Fluid H
A
Quartz ‘D b >
Nb -

§=0
X3/

Fig. 5.1 A crystal plate with a fluid under a separated electrode
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5.2.1 Fields in the fluid

The fluid is assumed to be without electromechanical coupling. For motions

independent of x; and Xs, its electric and mechanical fields are governed by

Dz,z =0,
D, =¢E,, (5-1)
Ez = _¢,21
and [6]
Tuo =PV,
ov (5-2)
Ty = ,Ua_l’
X,

respectively. ¢, i, and p_ are the dielectric constant, viscosity, and mass density of the
fluid. Dielectric losses in the fluid can be represented by a complex ¢ [7-9]. v; and T»; are
the relevant velocity and shear stress components. (5-1) and (5-2) allow the following
fields:

¢=Ci(x, —b) +C,,

5-3
o e (53)

v; = {Cysinh[(1+i)(x, —b)]+ C, cosh[(L+i)(x, —b)]}

Ty0 = (L ) Cy cosh[(L+ 1 )n(x, —b)]+ C, sinh[(L+ 1 )n(x, —b)]} (>-4)

where C; through C, are integration constants, and
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n= L@ . (5'5)

The free charge Q. per unit area of the electrode at x, =b+ H , the current | per unit area

that flows into this electrode, and the admittance Y per unit electrode area of the structure

are given by

Qe =_D2 = 5C1’

I zQe =iaQ,, (5-6)
Y =1/V.

5.2.2 Fields in the crystal plate

Due to the specific anisotropy of Rotated Y-cut [10], under the given driving voltage,

the plate vibrates in thickness-shear motions with
up =u(x;)expliot), u, =u; =0, ¢=4¢(x;)explint). (5-7)

The nontrivial components of the strain, electric field, stress, and electric displacement

components are [10]

25, =U;,, E,=—9,, (5-8)

Ty =CoeUy +€50,, Tip =Ceslly, +€x505,

(5-9)
D, =€y, —€x0,, D3 =exl;, —&5¢,.

The equation of motion and the charge equation of electrostatics take the following form:
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2
T21,2 =CeUy 2 +eze¢,22 =—pwo-uU,

(5-10)
D,, =€l — &0, =0.
(5-10), can be integrated to yield
p=54 ++C, (X, —b)+Cq, (5-11)

Ex

where C7 and Cg are integration constants. Substituting (5-11) into the expression for T,

D,, and (5-10)1, we obtain

Ty =CeelUy, +€5C7, D, =—£,C5, (5-12)
CosUy = _pa)zul . (5-13)
where
Q2
Cos = Cos (L+ k226 ) k226 =—2 (5-14)
22Ces

The general solution to (5-13), the corresponding expression for the electric potential, and

the relevant shear stress and electric displacement components are

U, =Cg sin[&(x, —b)]+C; cod&(x, —b)] , (5-15)
= iﬁ {Cs Sin[f(xz - b)] +Cs COS[f(XZ - b)]}+ C,(x, —b)+Cg, (5-16)
Ty =Ce6£1Cs COS[§(X2 - b)] —Cgsi n[f(xz - b)]} +e5Cy, (5-17)
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D, =-5L;, (5-18)

where Cs and Cg are integration constants, and
=L (5-19)
C66

5.3 Boundary and continuity conditions
The top of the fluid layer is traction-free and has the prescribed electric potential

T,,(b+H)=0

#b+H) v. (5-20)

At the interface between the fluid and the crystal plate, we have the continuity of the

velocity, electric potential, shear stress, and normal electric displacement:
(5-21)

The bottom of the crystal plate is traction-free and grounded:

#(-b)=0,

T21(_ b)zO. (5-22)

Substitution of the relevant fields into (5-20)-(5-22) gives the following eight equations

for C; through Cg:
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HC, +C, =V,
cosh[L+i)yH |C, +sinH(@+i)H]C, =0,
C, —iaCqs =0,
C,- % ¢, -c, =0,
N (5-23)
(l+ ')/”)Cg Ces6Cs —€6C7 =0,
¢C, — £,C, =0,

—2 sin(- 2b&)C, +—cos( 2b&)C, — 2bC, +Cy =0,

Y] &

Cop& €OS(— 20£)Cg — e Sin(— 2bE)C +€56C; =0.
5.4 Free and forced vibrations

In (5-23) V is the only driving term. For free vibrations we set V=0 and (5-23)
becomes homogeneous. For nontrivial solutions the determinant of the coefficient matrix

of (5-23) has to vanish, which gives the following frequency equation:

@ i Kyg? —~
E(H—==+2b)sin@b<&) + 2k, “[cos@bs) —1] (5-24)

(1')7’;’7‘”[@6 sin@b&) — E(H "322 +2b)cos@b&) tanh[L+i)H],

Ces
L 2 2 =
where Ky =€, /(£Ce) -

If we neglect the piezoelectric coupling in (5-24) by setting k% =0 (in this case

Ces =Cq) and consider the limit when H — oo, (5-24) reduces to
tan(wa iJ:_(l_i) 2AE (5-25)

which is the frequency equation in [11].
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On the other hand, if we neglect the drag due to fluid viscosity by setting =0, the
right-hand side of (5-24) vanishes and the left-hand side can be factored into two
equations. One is simply sin(&) =0 which is not of interest because in the special case of
H=0 this equation determines modes that are essentially symmetric about x, =0 which

cannot be excited by a thickness electric field. What is used in devices is the other

equation which can be written as

£ +bj§ |

cot(¢h) = L (5-26)
( 2

which agrees with [12] for a crystal plate with an air gap under a separated electrode.
Modes determined by (5-26) are essentially antisymmetric about x, =0 and can be
excited by a thickness electric field. (5-26) shows that in this case the fluid thickness and
dielectric constant affect the resonant frequencies of the crystal plate. Quartz has a small
piezoelectric coupling. For approximate solutions to (5-26), we neglect the small

piezoelectric coupling coefficient, k2, in (5-26). In this case (5-26) has simple roots of

b=nr/2,n=1,3,5, ... (5-27)

Corresponding to (5-27), from (5-19) we obtain the following frequencies for TSh

vibrations of a crystal plate without piezoelectric coupling as our reference frequencies:

n _ nrx (_:66
Wy, =—  |—. 5-28
" = ,/ - (5-28)
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We now turn back to (5-24). Consider the case of a low viscosity fluid, we look for

approximate roots of (5-24) by letting

(5-29)

Substituting (5-29) into (5-24), for small piezoelectric coupling and small viscosity, we

obtain
4k i | " :
A" = v z +12I sz,u_aé tanh[L+i)n"H] , (5-30)
f2 2 1 g Pes
e 2b

where 78" =/ p ™ I24) . With A™ known from (5-30), from (5-19) we obtain the

relative frequency shift as

o® _o®

AQD = ——— =— = A" = AQ" + AQ;Y, (5-31)
wy Nz
where
Ag}j(_n) = 4k226 ’
(822 H + ljn 2t
e 2b (5-32)

i (n)
AQW = 17U [P ot i)y H].
nz \ 2pCq

(5-32) shows that higher-order modes with larger n have smaller frequency shifts. AC™

is due to the piezoelectric coupling in the crystal and the dielectric effect of the fluid.
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A is due to the density and viscosity of the fluid. (5-32), is more general than the

classical result in [11] by including the effects of H. When H=« , (5-32), reduces to

i | n)
A" =™ - " = L o |2 L’u_aé : (5-33)
nz 2/Ce

When n=1, the real part of (5-33) gives the classical result of [11] for the frequency shift

of the fundamental TSh mode in a crystal resonator due the contact with a viscous fluid.

For forced vibrations (5-23) is nonhomogeneous. Under a real driving frequency the
coefficient matrix does not vanish. A solution always exists, is unique, and can be

obtained directly on a computer.

5.5 Numerical results

Consider a resonator with @, =9x10° 1/s and H=2b unless otherwise stated. The

fluid is ethanol mixed with toluene, chloroform, or water. We plot ACX" versus the

ethanol volume fraction for n=1 and 3 in Fig. 5.2 (a) and (b), respectively. The frequency
shift of the mode with n=1 is an order of magnitude larger than that of the mode with

n=3.
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Fig. 5.2 AQ"™ versus the volumn fraction of ethanol. (a) n=1; (b) n=3
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Fig. 5.3 shows ACX™ versus the ethanol volume fraction for n=1 and 3 in (a) and (b),
respectively. Again the frequency shift of the mode with n=1 is larger than that of the
mode with n=3. Comparing Fig. 5.3 with Fig. 5.2, we see that the frequency shifts due to
the fluid viscosity and density in Fig. 5.3 is an order of magnitude smaller that that due to

piezoelectric coupling of the crystal and the dielectric constant of the fluid.
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Fig. 5.3 AQ" versus the volumn fraction of ethanol. (a) n=1; (b) n=3
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Fig. 5.4 Effects of fluid dielectric constant on AQ"

Fig. 5.4 is for the case when the fluid is 100% ethanol. To examine the effects of the
fluid dielectric constant individually, we artificially vary the parameter and plot the result.
The fluid dielectric constant lowers the frequency monotonically. The frequency is

relatively more sensitive to the fluid dielectric constant when it is small.
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Fig. 5.5 is also for the case when the fluid is 100% ethanol. We artificially vary the
fluid density or viscosity separately. They lower the frequency as expected. These curves

are simple and are convenient for viscosity or density sensing.
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Fig. 5.5 Effects of fluid density (a) and viscosity (b) on AQS
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Fig. 5.6 shows the effect of the fluid layer thickness for different volume fractions of

ethanol in ethylene glycol. AQ®" in (a) approaches a constant for large H. It is not
sensitive to the volume fraction. AQ{" approaches a constant much quicker and it is

sensitive to the volume fraction. For small H, |AQY® | increases with H essentiall
y

linearly. Before it saturates, it reaches a maximum that is slightly larger than the

saturation.
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Fig. 5.6 Effect of fluid layer thickness on AQ" (a) and AQY (b) for different volume
fractions of ethanol in ethylene glycol
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Fig. 5.7 is from the forced vibration analysis. It shows the admittance per unit plate
surface area of the structure for different volume fractions of ethanol in toluene. (a)
shows an isolated resonance which is ideal for resonant acoustic wave sensors. (b) is a
magnified picture of (a) locally near resonance. When the volume fraction of ethanol
increases from 0 to 100%, Fig. 5.7 (b) shows that the corresponding frequency change is
of the order of 107, With a frequency resolution of 10, the ethanol concentration can be

determined with an accuracy of 1%.

In the above figures, the relative frequency shift is of the order of 10™ to 10 in
general. This is considered strong and clear signals because typical thermal noises in

quartz resonators are of the order of 10°°.
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Fig. 5.7 Admittance for different volume fractions of ethanol in toluene (TFE)
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5.6 Conclusion

An exact solution is obtained for thickness-shear vibrations of a rotated Y-cut quartz
plate in contact with a fluid driven by a thickness electric field. An approximate
expression for the frequency shifts due to the fluid is presented. The expression contains
two parts. One is exactly what we got in last chapter and includes the classical result in
[11] as a special case. The other is related to the permittivity of the fluid. The fluid
permittivity, density and viscosity tend to lower the frequencies of the crystal plate. The
frequency shift caused by the fluid permittivity is approximately one-order larger than the
frequency shift caused by the fluid density and viscosity. These results show the same
tendency given by the experimental results in [1]. Furthermore, the higher-order modes
are less sensitive to the fluid than lower-order modes. The results obtained are
fundamental and useful for the understanding and design of quartz crystal fluid sensors

driven by lateral electric fields.
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6. Propagation of Shear-horizontal Waves in a Quartz Crystal Plate Carrying a

Fluid Layer of Finite Thickness

6.1 Introduction

Certain shear modes in plates called thickness-shear (TSh) are widely used for fluid
sensor applications [1-3]. Theoretically these modes can only exist in unbounded plates
without edge effects. In these modes, motions of material particles are parallel to the
surfaces of the plates, and particle velocities only vary along the plate thickness direction,
without in-plane variations. From the viewpoint of wave propagation, TSh modes in a
plate are waves propagating along the thickness direction of the plate and are bounced
back and forth between the surfaces of the plate. The wave vector is parallel to the plate
thickness direction, and the in-plane wave numbers are zero or the in-plane wave lengths
are infinite. These TSh waves or modes are the idealized operating modes of many

acoustic wave devices.

In reality, however, due to the finite size of devices, pure TSh modes cannot exist
because of edge effects. Therefore, in real devices, usually the operating modes are in
fact related to waves whose wave vectors have a small in-plane component. These waves
have been referred to as essentially TSh waves, or transversely varying TSh waves. In the
case when the transverse variation is in a direction perpendicular to the TSh particle
velocity, the corresponding waves are called thickness-twist (TT) waves. These
transversely varying waves are long waves in plates whose in-plane wave lengths are

much larger than the plate thickness. Both stationary waves in resonators and propagating
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waves in waveguides have been used for resonators and sensors. Understanding the
behavior of long waves in plates is fundamentally important to plate acoustic wave

devices.

The propagation of waves in crystal plates, elastic or piezoelectric, has been an
active research subject for a long time [4-9]. In particular, waves in plates in contact with
a fluid have been studied for fluid sensor applications, e.g., [10, 11]. Due to material
anisotropy, modeling of crystal devices using the three-dimensional (6-3D) theory of
elasticity or piezoelectricity usually involves considerable mathematical difficulties. In
fluid sensor applications, this is further complicated by the fluid-structure interaction.
Although long equations for determining the wave dispersion relations can often be
formulated, they are typically involved with transcendental equations with multi-valued
solutions and complex roots. Therefore numerical searches for the roots of the frequency
equations are usually needed which still present various challenges even today with high
speed computers. Sometimes some of the roots are missing. Once the roots are found it
may be difficult to determine which roots are on the same dispersion curve because of the
presence of many branches of them, especially in the high frequency range when the

roots are crowded.

In this chapter we use Mindlin’s first-order plate equations to study certain SH waves
in a crystal plate in contact with a viscous fluid layer. In addition to pure TSh modes, we
are interested in the propagation of long waves and how they are affected by the presence

of the fluid. The use of 2D plate equations simplifies the problem and allows us to obtain
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some simple and fundamental analytical results useful to the understanding and design of

plate wave fluid sensors.

6.2 Two-dimensional plate equations

The equations for crystal plates vary considerably according to the symmetry of the
crystals. Quartz is a crystal widely used for acoustic wave devices. Therefore we focus on
quartz in the following. Quartz has very weak piezoelectric coupling. For frequency
analysis the small piezoelectric coupling can be neglected and an elastic analysis is
usually sufficient. This is common practice in the frequency analysis of resonant quartz
devices. A particular cut of a quartz plate refers to the orientation of the plate when it is
taken out of an anisotropic bulk quartz crystal. As a consequence quartz plates of
different cuts exhibit different anisotropies in coordinates normal and parallel to the plate
surfaces. Rotated Y-cut quartz plates are effectively monoclinic. They include the most
frequently used AT-cut quartz plates as a special case. In this section we summarize the

2D plate equations for rotated Y-cut quartz [12, 13].
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Fig. 6.1 A crystal plate with a fluid layer

Consider such a plate as shown in Fig. 6.1. It is in contact with a Newtonian fluid
layer of thickness H. For rotated Y-cut quartz plates, shear-horizontal or antiplane
motions with only one displacement component are allowed by the linear theory of
anisotropic elasticity. These motions are particularly useful in device applications. They

are described by

U, =U;(Xy, Xs,t), U, =U;=0, (6-1)

where u is the displacement vector. u; is governed by [14]

CepUp2p + Cssly g3 +2C55Uy 05 = oy . (6-2)

Exact solutions to (6-2) can be attempted for relatively simple problems. Due to Csg,
solving (6-2) is not easy and the results are usually complicated. (6-2) includes all SH
modes. Since an acoustic wave device usually operates with a particular mode, it is
simper to use 2D plate equations which describe the modes of interest only. The ideal

operating mode is TSh which does not have x; and x3 dependence. The variation of
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these modes along x; has been reasonably well understood. Therefore this chapter is
concerned with the x3 dependence only without the x; dependence, the so-called
straight-crested waves or modes. For straight-crested SH motions, the displacement

field of the first-order plate theory is approximated by [12, 13]

Uy (Xp, X3, 1) = Ul(o) (X5, 1) + qul(l) (X3:1) (6-3)

where u{” (x,,t) is the face-shear (FS) displacement, and u® (x,,t) is the fundamental TT
displacement. When u{® (x,,t) is independent of xs, it reduces to the fundamental TSh

which is the ideal mode of an infinite plate. Both u{® and u® have tangential surface

displacements only and are very useful for fluid sensor application. They are governed

by the following plate equations of motion [12, 13]:

Tauh + 20T, = 20piif”, (6-4a)
o+, 20 _20° 6-4b
Taiz — T +?Tl ZT/aJl : (6-4b)

The plate resultants 7,2, T2 and T,7 represent plate internal forces and moments. They

are related to the plate displacements u{® and u® by the following constitutive relations

[12, 13]:
T =2b(CssU D + mCeu ), (6-5a)
Tl(ZO) = 2b(KlC56u1(,%) + K12C66u1(1)) , (6-5b)
@ 2p° M ® 6-5
Ta —T(7/55U1,3 +Yds ), (6-5¢)
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where c,, is the usual elastic stiffness, y55=1/ss5, and s, is the elastic compliance. «;

in the above equations is a shear correction factor [12, 13] which will be determined later.

The mechanical surface loads in (6-4) are defined by

T = % [T21(b7 )_Tu(_ b )] ’

70 = % bT,o(b™)+bT,(-b7 )]

(6-6)

where b~ is the lower limit of b. Substitution of (6-5) into (6-4) gives two equations for

u® and u®:

0 1 0 ()
C55U1(,3)3 +K1C56U1(,§ +T,0 = ai?, (6-7a)
1 -2 0 2 1 1 -+ (1
755“1(,923 -3b (K1C56u1(,3) + K7 CegU M) + T = plifY (6-7b)
Clearly, css causes the coupling between u(® and u{®. Therefore a coupled analysis is

necessary. (6-7) has spatial derivatives with respective to xs only but not x, due to the

plate approximation, and therefore is much simpler than (6-1).
6.3 Thickness-shear vibration

The shear correction factor «, in the plate equations in the previous section is
determined by requiring the resonant frequencies of the fundamental TSh mode
calculated from the 3D exact equations and the 2D plate equations to be the same [12,
13]. The relevant 3D solution was given in Chapter 4. In this section we calculate the 2D

solution and determine «; .
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Consider the unbounded plate in Fig. 6.1. Whether the fluid is compressible or not
does not matter because the motion to be considered is a pure shear without volume
change. For time-harmonic motions we use the usual complex notation. All fields have

the same exp(iwt) factor which will be dropped later for simplicity.
6.3.1 Fluid
The equation of motion for the fluid is [15]
To1 =PV, (6-8)
where the shear stress is given by

ov
Ty = ,U671 : (6-9)
2

4 and p_ are the viscosity and mass density of the fluid. v; and T,; are the relevant

velocity and shear stress components. The velocity field can be determined as
v, ={C, sinh[@+i)7(x, —b)]+ C, cosh[(@ +i)(x, —b)]}, (6-10)

where C; and C, are undetermined constants, and

n= |22 (6-11)
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The shear stress needed for boundary and continuity conditions is

T,, =@+ i)un{C, cosh[(L+i)y(x, —b)]+ C, sinh[@+i)7(x, —b)]}.

6.3.2 Crystal Plate

(6-12)

For thickness vibrations independent of x3, with the use of (6-6), (6-7) reduces to

2_1b [T21 (bf)_Tﬂ (_ b )]: o,

- 3b_2/(12c66 U£1) + % [bT21 (b_ )"’ bTy (_ b™ )]: p[jl(l).

(6-13)

The bottom of the plate surface is traction free, with T,,(—b™)=0. At the top of the plate

the shear stress is continuous, i.e., T, (b7)=T, (b") where b* is the upper limit of b.

With these (6-13) becomes

We let
ul =C, expliat), ul =C, exp(iat)

where C; and C,4 are undetermined constants.
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6.3.3 Boundary and Continuity Conditions

At the top of the fluid layer, we have the following traction-free condition:
T,(b+H)=0. (6-16)

At the interface between the crystal plate and the fluid, we have the continuity of particle

velocity:
0 +bu® =v,(b*) . (6-17)
1 1 1

Substituting the relevant fields in (6-10), (6-12), and (6-15) into (6-14), (6-16) and (6-17)

results in four linear and homogeneous equations for C; through Cy:

cosh(1+i)yH ]C, +sinh|+i)H]C, =0,
C, —iwC, —iwhC, =0,

(@L+i)urnC, +2pbw’C, =0,

31+ i)urC, +(2pb%0? - 6x2ces IC, =0.

(6-18)

For nontrivial solutions the determinant of the coefficient matrix of (6-18) has to vanish,

which gives the following frequency equation:

3kiCes  (L—i)um [ 3xic :
W — plb266: > he plb266 —40® [tanh[(L+i)H] (6-19)

6.3.4 Correction Factor

The exact fundamental TSh frequency from the 3D equations when the fluid is not

present is given by [16]
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_ 7 S 6-20
@y M\ p ( )

When the plate is in contact with a low viscosity fluid layer, the fundamental TSh

frequency is approximately given by Chapter 4
= (1+AQ), (6-21)

where

A =171 [PLED yannia 4 iy HI, (6-22)
7\ 2pCe

Mo =~ PL@ 1(2p) . (6-23)

Substitution of (6-21) into (6-19) determines

2
K2 =’l’—2(1-AQ). (6-24)

We note that (6-24) is complex. Its real part is a frequency shift. Its negative part

represents damped modes due to viscosity.
6.4 Propagation of face-shear and thickness-twist waves

With «, determined, the plate equations are ready to be used to study propagating

waves in the plate which is the main purpose of this chapter. We begin with coupled FS

and TT waves and then examine uncoupled long FS and long TT waves separately.
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6.4.1 Coupled waves

For propagating waves with both x, and x; dependence, the equations for the fluid

are

To12 + Ta13 =P V1,

ov ov (6-25)
T, =u—=, T, =u—=r.
21— H ox, 31— H ox,

Substituting the stresses into the equation of motion gives
H(Vyz +Vigs) =PV . (6-26)

We consider the following propagating waves:
v ={c1 sinh[\/g“z “2in? (x, —b)} e cosh[\/gz “2in? (x, —b)}}exp[i({xs —at)], (6-27)

where C; and C, are undetermined constants, and (6-11) is still valid. For propagating

waves in the crystal plate, we have

1
0 1 .. (0
C55u1(,3)3 + K1056U1(,3) + 2_sz1 (b)) = Pul( ),

W) _ g2 O 4 26 uDY 1 S T (b*) = oi® (6-28)
Vs5Ur3s (K1CsUy 3 + K CogUy )“‘F n(b7) = pli”.

At the top of the fluid layer the traction-free boundary condition in (6-16) still holds. The

continuity of velocity at the top of the plate surface given by (6-17) is also still valid. Let

u® =C;expli(cx; —at)]  u® =C, exdli(cx; —at)] , (6-29)
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where C3 and C,4 are undetermined constants. Substitution of (6-27) and (6-29) into (6-16),
(6-17) and (6-28) vyields the following four linear and homogeneous equations for C;

through Ca:

C,+C, tanh(,/(2 —2in® H): 0,

C, +iaC, +ibaC, =0,

u¢E = 2in?

2b
3 : .
oMY §? =2in°C, = 3ik,C56(T; + (0’ @ —y5b®¢? — 37 Ce6)C, = 0.

, 6-30
C, +(pa® = 5ol *)Cy +iK1C564C4 =0, (6-30)

For nontrivial solutions the determinant of the coefficient matrix has to vanish, which,
together with (6-11), gives the flowing frequency equation that determines the dispersion

relation of @ versus ¢

(IABw + pw® — s £ %) (BIABD 0+ g 0® — ysb®C % — 3K Cyg)

6-31
— (/ABb + i;Cep ) (3iABb — 3y Cep ) = O, (6-3)

where
Azi“w;zmz, B:tanh(\/g”z—ZinzH)- (6-32)

In device applications usually long waves with a small or infinitesimal { are used.
Therefore we expand the relevant terms in (6-31) into power series of { and neglect

powers higher than two. Then (6-31) can be written as

F(0)¢? +G(e) =0, (6-33)
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where

F(w) = 4A,B,ipb’0® +4A,B,iph’0®'? — A Bliysb’w®?
—3AB,ix’cem—3A,BjixCe 0" ? —3A Blicgh’ (6-34)
—}/55pb2a)2 _Csspbza)2 +3K12C66C55 _SKIZCE%G’

G(w) :4AlBlipb2a)7/2 —3AlBliK12C65a)3/2 +/)2b2a)4 —31(12066,0(02,

and

(6-35)

H[l—tanhz[WH ﬂ i

A
2 PL

B,(w) = tanh[ —2iq2H], B,(w) =

In the special case when the fluid is not present, for thickness modes with (=0, (6-33)
determines two frequencies of 0 and o, . For small but nonzero values of , (6-34)
determines two dispersion relations for FS and TT waves. The FS branch goes through
the origin (®»,¢)=(0,0). The TT branch has a finite intercept at (@, <) = (w,,0) and o, is
called the cutoff frequency below which the TT wave becomes exponential in x3 and
cannot propagate. When the fluid is present, for low-viscosity fluids, we expect the two

branches are modified slightly and discuss them separately below.
6.4.2 Long FS Waves

For the FS branch, when {is small, w is also small and is of the same order (see [17]
for the case when the fluid is not present). In this case, neglecting higher powers of w, (6-

34) can be approximated by
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(3K CygCes — IK2CE)C % = 3K C p0° +3A Bl Cee”?, (6-36)

where the effect of the fluid is represented by the second term on the right-hand side.
When the fluid is not present and the crystal plate is alone, denoting the wave frequency

by @, (6-36) reduces to the following known dispersion relation for long FS waves

[17]:

2
Ce6Cs5 — Cos

O = |22 o= |V (6-37)
Yo,

which is nondispersive. An immediate observation is that the second term on the right-
hand side of (6-36) makes the waves dispersive. For numerical results an AT-cut quartz

plate with b=1mm is used, which is a typical thickness for quartz devices. For the fluid
we choose as an example chloroform with p, =1.483%10°kg/ni and a relatively low
viscosity of x=0.542mPas (smaller than the viscosity of water). We consider real

frequencies and solve (6-36) for complex wave numbers. For figure plotting we introduce

the following dimensionless frequencies and wave number:

=2 Qu =2 7o __x.iiv, (6-38)
@, w, 7 1(2b)

Long waves are described by small values of the real part Z.

Figure 2 shows the effect of viscosity on the dispersion relation of long FS waves.
The viscosity of chloroform is artificially varied while other parameters are fixed. Fig.

6.2 (a) shows a fundamental and qualitative effect of the fluid viscosity which changes
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the dispersion curve from real to complex indicating attenuation due to fluid viscosity,
and from a straight line to a curve showing dispersion. Fig. 6.2 (b) shows the real part of
the dispersion relation which is essentially linear and hence the fluid induced dispersion
is small. Fig. 6.2 (c) shows the difference between the real part of (6-36) and (6-37), in
which the fluid induced dispersion becomes visible. It can be seen from Fig. 6.2 (c) that,
although long waves are usually used in real devices, the frequency shift is larger when
the wave number X is larger or the wave is shorter. This is because shorter waves have
lager velocity gradients in the x3 direction and hence a larger viscous stress Ts;. Fig. 6.2
(c) also shows that the fluid lowers the frequency, and higher viscosity causes more
frequency shift. The relative frequency shift is of the order of 10™ which is considered a
significant frequency change because the thermal noise in crystal resonators is typically
of the order of 10°®. Therefore a 10” frequency shift is a clear and measurable signal. Fig.
6.2 (d) shows the imaginary part of the complex wave number. It is positive, representing
attenuation for the right-traveling waves given in (6-29). For a fixed frequency, higher

viscosity causes larger attenuation.
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Fig. 6.2 Effects of fluid viscosity on FS waves, H=2b.
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Figure 3 shows the effect of the fluid density. The behaviors in Fig. 6.3 are similar to
those in Fig. 6.2. This is as expected because, as shown in (6-22), the fluid viscosity and
density appear together in a product in the first-order approximation of the frequency
shift. In a typical application, one needs to know either the fluid density or viscosity and
then uses an acoustic wave fluid sensor to measure the other. How to separate the density

from viscosity still remains a challenging problem in acoustic wave fluid sensors.
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Fig. 6.3 Effects of fluid density on FS waves, H=2b.
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Figure 4 shows the effect of the fluid layer thickness H. The cases of H=0.5b and
H=1b are indistinguishable in the figure. In this case effectively the fluid layer can be
treated as a semi-infinite half space. The frequency shift is an increasing function of H for
small H only (Chapter 4). When H reaches a certain value, there exists a maximal
frequency shift after which the frequency shift decreases with H (Chapter 4). What is

shown in Fig. 6.4 (c) is the case when a larger H has a smaller frequency shift.
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Fig. 6.4 Effects of fluid layer thickness on FS waves (H=0.5b and H=1b overlap).
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6.4.3 Long TT Waves

For the TT branch, when {'is small, w is finite. In this case, we denote
where AQ is small. Substituting (6-39) into (6-31), for small AQ, we obtain

®-0 _,~__Ds DD,=D,Ds

20 D, Df
where

D, =4ABlipb?w: + 4A,BLipp?wi'? — A Bliy.b?wd'?
—3A1|3§ixfc66a)0 3A,BLix cgsmr’? — yespb?w? — 3ABLic b2md?

— Cgspb@g + 3y CCss — 37 Cg,
D, =12ABlipb?wd +10A,Bipb’wi'? — A1|3 Oiyesb?md’? —3ABlixicq m,
gA BYix{ Coey © — 275500° @ __AlB icssh?ap'? — 2c55pb* g,
D, =4ABipb?w!'? 3A15 i c%a)g“ + p?b2wy —3KcCepol,

D, =14A,Blipb?w]’? ——AiB iKk2Cos? +4p° 02wy — 6K Cogpr.

(6-39)

(6-40)

(6-41)

In (6-41), for low-viscosity fluids, since B; and B, are always multiplied with A; or A;

which depend on x, B; and B, have been approximated by

B?(a)); Bl(a’o)’ Bg(a)); Bz(a’o)-

(6-42)

(6-40) shows that locally, near cutoff, the dispersion curve can be approximated by a

parabola and therefore long TT waves are dispersive. When ¢ =0, (6-40) reduces to
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D, )
wza)o[ —D—Aj, (6-43)

which is complex. Numerical results for the effects of fluid viscosity, density, and layer
thickness on long TT waves are shown in Figs. 5, 6, and 7, respectively. When there is no
fluid, part of the dispersion curve of TT waves is real and the rest is pure imaginary. The
dispersion curve does not go through the origin. It has a finite intercept with the Q axis
which is the cutoff frequency. The basic effects of the fluid on long TT waves are similar
to the case of FS waves. The dispersion curve becomes complex. TT waves are with

higher frequencies than FS waves and therefore decay faster in the fluid.
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Fig. 6.5 Effects of fluid viscosity on TT waves, H=2b.
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Fig. 6.7 Effects of fluid layer thickness on TT waves (H=0.005b and H=0.02b overlap).
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6.5 Conclusion

Analytical solutions are obtained for TSh modes and FS as well as TT waves in a
crystal plate carrying a viscous fluid layer. Approximate expressions for frequency shifts
and dispersion relations are presented. The frequencies and dispersion relations become
complex due to the fluid, indicating damped modes and waves with attenuation. The fluid
viscosity and density lower the frequencies together in a combined manner, causing
(additional) dispersion. Shorter waves tend to have larger frequency shifts. Long FS
waves become dispersive due to the fluid. Typical relative frequency shifts are of the
order of 10° which is detectable by crystal resonators and waveguides. The results
obtained are fundamental and useful for the understanding and design of quartz crystal

fluid sensors.
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7. Propagation of Shear-horizontal Waves in a Piezoelectric Plate in Contact with a

Semi-infinite Fluid

7.1 Introduction

In this chapter we use Mindlin’s first-order plate equations to study shear-horizontal
(SH) or antiplane waves in a piezoelectric plate in contact with a semi-infinite viscous
fluid. The analysis applies to both quartz and langasite because they have the same
crystal symmetry. In addition to pure TSh modes, we are interested in the propagation of
long waves and how they are affected by the presence of the fluid. In the frequency range
of interest, there are two coupled SH waves. One is the TT wave and the other is called a
face-shear (FS) waves. The use of 2D plate equations simplifies the problem and allows
us to obtain some fundamental results analytically. These results are useful to the

understanding and design of plate wave fluid sensors.

7.2 Two-Dimensional Plate Equations

The equations for piezoelectric plates vary considerably according to the symmetry of
the crystals. A particular cut of a crystal plate refers to the orientation of the plate when it
is taken out of an anisotropic bulk crystal. As a consequence crystal plates of different
cuts exhibit different anisotropies in coordinates normal and parallel to the plate surfaces.
The widely used rotated Y-cut plates of quartz and langasite are effectively monoclinic.

In this section we summarize the 2D plate equations for rotated Y-cut quartz and
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langasite [1]. Consider such a plate as shown in Fig. 7.1. It is in contact with a semi-

infinite Newtonian fluid.

X2
Fluid
b X
Plate <I> °s
$o
Free space

Fig. 7.1 A piezoelectric plate in contact with a semi-infinite fluid

For monoclinic piezoelectric crystals, SH or antiplane motions with only one
displacement component are allowed by the linear theory of piezoelectricity [2]. These
motions are particularly useful in device applications. They are described by

Up =U; (X5, X3,1), U =U3 =0,

7-1
§= 400, %3,0), ()

where u is the displacement vector and ¢ is the electric potential. u; and ¢ are governed

by [2]

Coglly 2 + Csglly 33 + 2Cs6Uy o3

+ 856027 + €35033 + (€25 + €36) P25 = Pl
€61 92 + €3glly 33+ (€25 + €36)Uy o3

— &322~ €333~ 26,9025 = 0.

(7-2)

118



There are many waves governed by (7-2). In the frequency range from zero to slightly
above the most widely used fundamental TSH frequency, the displacement and potential

fields are approximated by [1]

Up (X5, X3, 1) = U1(0) (X3,t) + X2U1(l) (X3, 1),

. . (7-3)
P(X3, X3,1) = ¢ )(X3,t) + X2¢( )(X3,t),

where u{”(x;,t) is the FS displacement, and u®(x,t) is the fundamental TT
displacement with one nodal point only along the plate thickness. When u® (x,,t) is
independent of xs, it reduces to the fundamental TSh mode which can exist in an infinite
plate only. Both u{® and u® have tangential surface displacements only and are ideal
useful for fluid sensor application. u® , u® , ¢© and ¢® are governed by the

following plate equations of motion and electrostatics [1]:

T + 20T, @ =2bpti? (7-4a)
2b® 20°
Ts(ll,)a TP + T =i, (7-4b)
3 3
DY +2bD? =0, (7-4c)
3
DY - DO + % DY =0, (7-4d)

The plate mechanical resultants T?, T/ and T; as well as the plate electric resultants
DS”, DI” and DY in (7-4) are related to the plate displacements u{® and u® as well as

electric potentials ¢ and ¢ by the following constitutive relations [1]:
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0 0 1 1 0
( )= 2b(c55u1(3) +K1C56U1() +ezs¢() +e35¢’(3)), (7-5a)

T1(20) = 20(#5Csglh 3 SR K12 CG6U1(1) + Klezs¢(l) + K1936¢,(31)) : (7-5b)
w _2b° ® o)

Ta —T(%SU +Yds ), (7-5¢)

Déo) = 2b(e25u1 3t K1e26u1(1) - 522¢(1) - 523415,%1)) ’ (7-5d)

D =2b(es5U3 + Kiesell” — 5" — 38 (7-5e)

o _20° (1) 8 f

D;” = 3 (WassUys —CP3’) (7-5f)

where ¢, (=C5,), &, and &; (= &;) are the usual elastic stiffness, piezoelectric constants,

Ip?

and dielectric constants. The other material constants in (7-5) are defined by

55 =1/ Sg5, W35 = €35 —€35Cs6 / Cog = Uas Vs (7-6)
a3 = &35+ €5/ Cg,
where qu(zsgq) is the elastic compliance and d;, is another set of piezoelectric
constants different from but related to e;, [2]. x; in the above equations is a shear

correction factor [1] which will be determined later. The mechanical and electric surface

loads in (7-4) are defined by [1]

1) =2_1b[T21(b—)_T21(— b~ ]
T = % [bT21 (b‘ )+ bT,, (— b~ )] ,
5 =%[Dz(b)— D,(-b7)]

DO _ 23 [bD, (b~ )+ bD, (b7,

(7-7)
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where b~ is the lower limit of b. Substitution of (7-5) into (7-4) gives four equations for

ufo)1 ufl), ¢(0) and ¢(l)

CSSUI(,%)B + ess¢,(303) + K1C56U1(,13)> + ezs¢,(31) + T, = pli{? (7-8a)

VosUias + Wast5s =307 (KiCoglys + K7 Coglly” +K1€y6p" + Ki€5685) ) + T, = plif?, (7-
8b)

e35“1(,%)3 + Kle36ul(,l?2 - 533¢,(303) - 523¢,(31) +D® =0, (7-8c)

l/’ssul(,le),y, —¢. 33¢,(31% -3~ (ezsul(g) + K;86UL) — £ — 523¢,(30)) +D% =0, (7-8d)

(7-8a) and (7-8b) describe the so-called straight-crested waves propagating in the X3
direction without x; dependence. (7-8c) and (7-8d) are from electrostatics. They do not
describe waves but will affect the wave frequencies through piezoelectric coupling.
Clearly, cse causes the coupling between u® and u®. Therefore a coupled analysis of
FS and TT is necessary no matter which one we are interested in. (7-8) has spatial
derivatives with respective to x3 only but not x, due to the plate approximation and

therefore is much simpler than (7-1).
7.3 Thickness-Shear Vibration

The shear correction factor «, in the plate equations in the previous section is
determined by requiring the resonant frequencies of the fundamental TSh mode
calculated from the 3D equations of piezoelectricity and the 2D equations of piezoelectric
plates to be the same. The 3D solution was given in Chapter 4. In this section we

calculated the 2D solution and determine «;, . Consider the plate in Fig. 7.1. Whether the
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fluid is compressible or not does not matter because the motion to be considered is a pure
shear without volume change. We consider time-harmonic motions and use the usual

complex notation. All fields have the same exp(iwt) factor which will be dropped in the

following for simplicity. The electric field in the fluid and the free space is neglected.
This is a common approximation valid when the dielectric constant of the plate is larger

than that of the fluid and the free space.
7.3.1 Fluid

The equation of motion for the fluid is [3]
T =PV, (7-9)
where the shear stress is given by

ov
Ty 2”571 : (7-10)
2

4 and p_ are the viscosity and mass density of the fluid. v; and T,; are the relevant

velocity and shear stress components. The velocity field in the fluid is
v, =C, exp[— (@ +i)(x, — b)) (7-11)

where C; is an undetermined constant and

n= PLO . (7'12)
2u
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(7-11) decays from the plate surface into the fluid. The relevant stress component needed

for boundary and continuity conditions is
T, =1+ )C exd— (@ +ipAx, —b)]. (7-13)
7.3.2 Crystal Plate
For thickness vibrations independent of x3, with the use of (7-7), (7-8) reduces to
)Tl ),

-3« C66u1 +Klezs(é ) 5% [bT21(b_)+ bTZl(_ b_)]zpul(l)’

Db )-p, o]0

302 (ye,0ul!) — 0" )+ 33[bD2(b’)+bD2(—b’)]:0.

(7-14)

The bottom of the plate surface is traction free with T,,(—b™)=0. At the top of the plate

the shear stress is continuous, i.e., T, (b7)=T, (b") where b* is the upper limit of b.

Since D, =0 in the fluid and the free space, the continuity of D, at the plate surfaces

requires that D, (+b™) =0. With these (7-14)3 is trivially satisfied and (7-14), 2.4 become

ZibT21(b+):pU1(o)’

3

= T,ulb* )= pul, (7-15)

—3b2 (K12C66U1(1) + zcle26¢(1))+ 207

Klezeuil) - ‘922¢(l) =0

We let
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u® =C, expat), uf =Cyexp(at),
Y =C, expfat),

(7-16)
where C, through C, are undetermined constants.

7.3.3 Boundary and Continuity Conditions

At the interface between the crystal plate and the fluid, we have the continuity of

particle velocity
0 +bu® =v,0*) . (7-17)

Substituting the relevant fields in (7-11), (7-13) and (7-16) into (7-15) and (7-17) results
in four linear equations for C; through C,4. For nontrivial solutions the determinant of the

coefficient matrix has to vanish, which gives the following frequency equation:

w? — 3¢ Cos _ (L—i)u 77(3’(12666 —4a)2j . (7-18)

ob?  2pbw | pb?

7.3.4 Correction Factor

The exact fundamental TSh frequency from the 3D equations when the fluid is not

present was given by [4]

S S S 1 (7-19)
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When a piezoelectric plate is in contact with a semi-infinite, low-viscosity fluid, the

fundamental TSh frequency is approximately given by Chapter 4
w=ap(1+AQ), (7-20)

where

AQ- 171 /w , (7-21)
7\ 2pCqq

Mo =~ PLO 1(21) . (7-22)

Substitution of (7-21) into (7-18) determines
kZ="—(1-AQ). (7-23)

We note that (7-23) is complex. Its real part is a negative frequency shift. Its imaginary
part represents damped motion due to viscosity.

7.4 Propagating of FS and TT Waves

With «, determined, the plate equations are ready to be used to study propagating

waves in the plate, which is the main purpose of this chapter. We begin with coupled FS

and TT waves and then examine uncoupled long FS and long TT waves separately.
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7.4.1 Coupled Waves

For propagating waves with both x, and x; dependence, the equations for the fluid

are

To12 + Ta13 =P V1,

ov. ov.
Ty=pu—2, Ty=pu—=.
21 ﬂaxz 31 /Uaxa

Substituting the stresses in (7-24), into the equation of motion in (7-24); gives
H(Vy g0 +V1g3) =P Vs

We consider the following propagating wave that already satisfies (7-25):

v, =C, exg ~ % ~2in? (x, ~b) |explilg ~ at)].

(7-24)

(7-25)

(7-26)

where C; is an undetermined constant, and (7-12) is still valid. In the square root

operation in (7-26) the root with a positive real part should be taken for decaying

behavior at x, =oo. The stress component needed in the interface condition is given by

Tou= s == =27 C expl 27 =20 (x, —b) |explilex, - ot)]

oX,
For propagating waves in the crystal plate, we have

ul(O) =C, ex F{i(gxa - a)t)], Ul(l) =C;ex F{i(gxs - a)t)],
$0 =C, exli(gxs —at)] 49 =C, exfli(gxg —at)],
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where C, through Cs are undetermined constants.

Substituting of (7-26)-(7-28) into (7-8) and (7-17), using D, (+b~)=0, we obtain five
linear and homogeneous equations for C; through Cs. For nontrivial solutions the
determinant of the coefficient matrix of has to vanish, which yields the frequency
equation that determines the dispersion relations of @ versus ¢ which is symbolically

written as
f(w £)=0. (7-29)

As a reference, the dispersion curves for the special case when the fluid is not present

are shown in Fig. 7.2 for quartz in which the dimensionless wave number is defined by
(0] T .
Q:_,Z=§/=X+|Y. (7-30)
@, 2b

The curve for the FS waves looks linear and therefore has little dispersion. The curve for
the TT wave is curved and is clearly dispersive. The TT dispersion curve has a finite
intercept with the Q axis which is the cutoff frequency below which the wave cannot
propagate. There are two vertical lines. One is at X=Re(Z)=0, the other is at Y=Im(Z)
slightly larger than 1. These two lines are due to the equations of electrostatics in (7-8c)
and (7-8d). If we neglect piezoelectric couplings and drop (7-8c) and (7-8d), these two
vertical lines will disappear. When the fluid is not present, there is no damping in the

system. The dispersion curves of FS and TT waves are either real or pure imaginary.
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Fig. 7.2 Dispersion relations for coupled FS and TT waves in a plate alone without fluids.

When the fluid is present, for long waves which are important in applications, we
expand (7-29) into power series of (" and neglect powers higher than four. Then (7-29)

can be approximated by

F(w)* +G(w)¢? =0, (7-31)

where

Fl@)=FRo''? +F,0""% +F,0** + F,0"? + F,o" + F,0® + F,,

G(a))=G1a)7/2 +G,0%? + G0 +G,0°,

(7-32)
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F, = 4iA L gemm?, (7-33a)

F, =12iA &,,64,00° —12IA, 5,007, (7-33b)

Fy = 9i'A‘15223055b2 - 9iA1“922<‘333C55b2 - 3iA1§33533’<12C66b2 - 3iA1§33€§6K12b2
— 1AW 3564538565, b? + BIAY 3562383651 b? + :”i'°‘1?/555223b2 - ?’iAﬁ/ss“?zz533b2 (7-33c)
+18iA £5€,:€550° — 9iA £,,85D% — 9iA £5,05:02,

SN2 . 2 . 2 o 2 2 o 2 2
Fy = 9iA 53k, Cog — iAyE,,E33K Cop +181Ay 6,538,636k — IAyE,,855K7 — iAyE55855K7 , (7-33d)

Fs = Cwenpd, (7-33¢)

2 2 2 2 42 2 2 2
Fo =—30 33633k Cos D™ — 30358367 P0” + 35560307 —3ye5 65583300
2 2 2 2 2
+ 6135655835 K P07 — B/ 356538 55K; P +3653Ce5 P07 =365, E55C5 D (7-33f)
2 2 42 2 42
+ 655385585500 —3633855/00" — 365,855,007,

F; =96,k Cs — 96 2,K7 CogCog + 969 £33 K7 CosCog — 9639 Ea3 K7 Cig
+ 1863855836 K1 Cs + 18653808557 Cog —186€5 €55 K7 Cog — 18633855855 K1 Cog
+ 985,05 ki Cos + 985305 K1 Cs — 1863855856 K1 Csg (7-33g)
+9¢ 5 Ky Cos + 965055 K7 Cos — 186 €55L5 K1 Cog

2.2 2 2.2 2 2
+9e503k; +985€5K] —188,5€56€3856k7 ,

G, =12iAgpe500° —12iA el 7, (7-34a)

‘N 202 : 2 . 2 o 2 2 o 2 2
G, = 9iA ek, Cop — A E2yE33K1 Co +18IA £3896835k, — ALK, — ALKy, (7-34D)

G, = 36pE50 0% —3c5p%b?, (7-34c)

2 2 2 2 2 2 2 2
Gy = 9653k, Cop /0 — 9622633k Cop 2 + 1865856836k 0 — 96€36K7 P — 935856k P (7-34d)
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\/7 (7-35)

4b ,DL

Next we examine (7-31) for FS and TT waves separately.
7.4.2 Long FS Waves

For the FS branch, when is small, e is also small and is of the same order (see Fig.

7.2). In this case, neglecting higher powers of w, (7-31) can be approximated by
F,¢%+G0°2 +G,0° =0, (7-36)

where the effect of the fluid is represented by the second term. When the fluid is not

present, denoting the wave frequency by wy,,.. (7-36) reduces to the following known

dispersion relation for long FS waves [5]:

CorCer —C2
O =,/—66 s oo 78 g, (7-37)
P Ces P

which is nondispersive.

For numerical results we consider three common crystal plates of AT-cut quartz, Y-
cut langasite, and Y-cut langanite. The plate thickness is fixed with b=1mm which is

typical for crystal devices. For the fluid we choose, as an example, chloroform with
p.=1.48%10°kg/mt and a relatively low viscosity of x=0.542mPas (smaller than the

viscosity of water). We consider real frequencies and solve (7-36) for complex wave
numbers.
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Figure 3 shows the effect of viscosity on the dispersion relation of long FS waves
with a small Z. The o, of quartz is used as a common normalizing frequency. The curves

for langasite and langanite are close to each other because their material constants are
close. When the fluid is present, an immediate observation is that the second term of (7-
36) makes the dispersion curves complex in Fig. 7.3 (a), indicating energy absorption in
the fluid due to viscosity and the related wave attenuation. Fig. 7.3 (b) shows the real
parts of the dispersion relations which are essentially linear and hence the fluid induced
dispersion is small. Fig. 7.3 (c) shows the imaginary parts of the dispersion curves which

are positive, representing attenuation for the right-traveling waves given in (7-28).
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Fig. 7.3 Dispersion curves of long FS waves for different materials.
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Fig. 7.4 shows the effects of the fluid viscosity and piezoelectric coupling on wave
frequencies through the real parts of the dispersion relations. The results for quartz,
langasite, and langanite are shown separately in (a), (b), and (c). For each material the
special case when the plate is alone without the fluid and piezoelectric coupling is used as
a reference. This special case may be denoted by =0 and e=0 where e represents
piezoelectric coupling. Since the effects of viscosity and piezoelectric coupling are small,
the relative frequency shifts from the reference (AQ=Q -, ) are shown in the figure.

The effect of piezoelectric coupling is roughly of the order of 10™. Therefore it should be
included in the analysis, or it can be experimentally determined through calibration of
devices. Once the piezoelectric effect is taken into consideration, the effect of viscosity
on frequency can be used to measure fluid viscosity. The fluid viscosity lowers the
frequency as expected, whether piezoelectric coupling is considered or not. The relative
frequency shift due to viscosity is of the order of 10™ which is considered a significant
frequency change because the thermal noise in crystal resonators is of the order of 10°®.
Therefore a 10 frequency shift is a clear and measurable signal. As shown in (7-21), the
fluid viscosity and density appear together in a product in the first-order approximation of
the frequency shift. In a typical application, one needs to know either the fluid density or
viscosity and then uses an acoustic wave fluid sensor to measure the other. How to
separate the density from viscosity still remains a challenging problem in acoustic wave

fluid sensors.
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Fig. 7.4 Effects of viscosity and piezoelectric coupling on long FS waves.
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7.4.3 Long TT Waves

For the TT branch, when {is small, w is finite (see Fig. 7.2). In this case, we denote

o (1 . A—‘"J (7-38)

W
where Aw/w, is small. Substituting (7-38) into (7-31), for small Aw/», , We obtain

w — o, Fla)ow2 + an)QS/2 + F3a)03/2 + F4a)01/2 + F5a)04 + Fea)o2 +F I
) 7 3

0 ZGw, " + 2 Gw,Y + 46,0, + 26,0,
2 2

(7-39)

712 32 4 2
G, " +G,0, " +G0, +G,0,

;Gla)owz +262w03’2 +4G,0," + 2G,w,’
(7-39) shows that locally, near cutoff, the dispersion curve of TT waves can be

approximated by a parabola and therefore long TT waves are dispersive.

Numerical results for long TT waves are shown in Figs. 7.5. When there is no fluid,
part of the dispersion curve of TT waves is real and the rest is pure imaginary (Fig. 7.5
(a)). When the fluid is present, the dispersion curves in Fig. 7.5 (b) look the same as those
in Fig. 7.5 (a). To see the difference we magnify Fig. 7.5 (b) for smaller values of Z and
show the results in Fig. 7.5 (c). It can be seen from Fig. 7.5 (c) that the dispersion curves

become complex and do not go through the Q axis. We note that when £ =0 (7-39)

reduces to
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712 3/2 4 2
o 4 Gw, " +G,0," " +G0, +G,m,

“o %Gla)owz +ngw03’2 +4G,m," +2G,w,’

: (7-40)

which is complex. The last term on the right-hand side of (7-40) depends on ¢,;, &,,, and
e,;- Therefore it is related to E; which is not present in the analysis of TSh modes in

Section 3. This accounts for the small deviation from 1 when Z=0 in Fig. 7.5 (a).
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Fig. 7.5 Dispersion relation of long TT waves. (a) Without fluid. (b) With fluid. (c) With
fluid (magnified).
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7.5 Conclusion

Analytical solutions are obtained for TSh modes and long FS as well as long TT
waves in a piezoelectric plate in contact with a viscous fluid. Contrasted to Chapter 6,
this chapter has a simpler fluid layer. Therefore, we consider the electrical coupling in the
plate. The frequencies and dispersion relations become complex due to the fluid,
indicating damped modes and waves with attenuation. The fluid viscosity and density
lower the frequencies together in a combined manner, causing (additional) dispersion.
Long FS waves become slightly dispersive due to the fluid. The effect of piezoelectric
coupling is roughly of the order of 10*. As a consequent, it should be included in the
analysis. Typical relative frequency shifts due to the fluid are of the order of 10° which is
detectable by crystal resonators and waveguides. The results obtained are fundamental

and useful for the understanding and design of quartz crystal fluid sensors.
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8. Conclusion

Since piezoelectrical plates with lateral electrical field as fluid sensors attract more
and more attentions, the lack of the theoretical research on such plates will be a limitation
to the development of those fluid sensors. Hence, we did several theoretical analyses on

the piezoelectrical plates with lateral electrical field.

When an At-cut quartz plate is under LFE, the dominating displacements are FS and
TT. Within the first-order plate theory, there is only one resonance for pure thickness
vibration. For straight-crested waves, the two electrostatic equations contribute to two
branches in the dispersion relations, in addition to the two branches for FS and TT waves.
Frequency spectra of finite plates consists of the “sum” of those of FS and TT modes
with mode veering at the intersections. To avoid strong couplings between FS and TT,
certain values of the plate length/thickness ratio should be avoided. Mindlin’s first-order

plate theory is effective in analyzing vibrations of crystal plates under LFE.

Then, we find that when an AT-cut quartz plate under LFE has partial mass layers,
there are a finite number of resonances in the frequency range between the cutoff
frequencies of a plate with mass layers and a plate without mass layers. The motional
capacitance assumes maxima at these resonances. The corresponding displacement
distributions show energy trapping, with the vibration mainly in the part of the plate with
mass layers. The number of trapped modes increases with the length of the mass layers.
Lower-order modes are trapped better. Due to the coupling to the FS mode which cannot

be trapped, the vibration can still feel the plate boundary slightly. These results can be
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utilized in mounting a LFE sensor to avoid the external perturbation introduced by the

mounts.

As these plates are used as fluid sensors, an exact solution is obtained for thickness-
shear vibrations of a rotated Y-cut quartz plate in contact with a fluid driven by a lateral
electric field. An approximate expression for the frequency shifts due to the fluid is
presented. The fluid density and viscosity tend to lower the frequencies of the crystal
plate. Higher-order modes are less sensitive to the fluid than lower-order modes. The

relative frequency shift is of the order of 10™.

In the real LFE sensors, the electrical field lines, penetrating into the quartz plate and
the liquid layer, also have an x,-directed component, which makes the real LFE sensors
sensitive to the fluid electrical property, such as permittivity. We introduced a model of
TFE sensor with one electrode separated to qualitatively describe the effect of the liquid
permittivity on the frequency shifts in a real LFE liquid sensor. An exact solution is
obtained for thickness-shear vibrations of such model in contact with a fluid. An
approximate expression for the frequency shifts due to the fluid is presented. The
expression contains two parts. One is exactly what we have in Chapter 4. The other is
related to the permittivity of the fluid. The fluid permittivity, density and viscosity tend to
lower the frequencies of the crystal plate. These results show the same tendency given by
the experimental results. Furthermore, the higher-order modes are less sensitive to the

fluid than lower-order modes.
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Finally, we studied the propagation of shear-horizontal waves in a piezoelectric plate
in contact with a fluid layer as an acoustic wave sensor for measuring fluid viscosity or
density. Two kinds of fluid layers are applied. One is with finite thickness, and the other
one is semi-infinite. Approximate dispersion relations for long face-shear and thickness-
twist waves are given analytically. In the first one, the results only show the effects of the
fluid on wave characteristics. In the other, the results showing the effects of the fluid and
the piezoelectric coupling in the plate on wave characteristics are presented. Analytical
solutions are obtained for TSh modes and long FS as well as long TT waves in a
piezoelectric plate in contact with a viscous fluid. The frequencies and dispersion
relations become complex due to the fluid, indicating damped modes and waves with
attenuation. The fluid viscosity and density lower the frequencies together in a combined
manner, causing (additional) dispersion. Long FS waves become slightly dispersive due
to the fluid. Typical relative frequency shifts due to the fluid are of the order of 10-5
which is detectable by crystal resonators and waveguides. Furthermore, the second case
shows the effect of piezoelectric coupling is roughly of the order of 10™. Therefore it
should be included in the analysis. The results obtained are fundamental and useful for

the understanding and design of quartz crystal fluid sensors.
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Appendix A
Electroelastic Material Constants

Material constants of a few piezoelectrics are summarized below. The numerical

results given in this dissertation are calculated from these constants.

Permittivity of free space &, = 8.854x10**Faraday/m.

AT-cut quartz

AT-cut quartz is special case of rotated Y-cut quartz, whose material constants are [1]

p =2649kg/m°,

86.74 -825 2715 -366 O 0
—-8.25 129.77 -7.42 5.7 0 0
2715 -—-7.42 10283 9.92 0 0
[Cpq]z x10°N/m?,
-366 5.7 992 3861 O 0
0 0 0 0 68.81 2.53
0 0 0 0 253 29.01]
0.171 -0.152 -0.0187 0.067 0 0
e, =| O 0 0 0 0.108 —0.095|C/m?,
0 0 0 0 -0.0761 0.067

3921 O 0
&= 0 3982 086 x107*C/Vm.
0 0.86 40.42
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Langasite

The material constants of Langasite are [2]

p =5743kg/m?,

[18.875 10.475 9.589 -1.412 0 0
10.475 18.875 9.589 1.412 0 0
9.589 9.589 26.14 0 0 0 10 )
[c q]: x107N/m?,
P -1.412 1.412 0 5.35 0 0
0 0 0 0 535 1412
|0 0 0 0 -1412 42

-044 044 0 -008 O 0
e, =| O 0 O 0 0.08 0.44 [C/m?,
0 0 O 0 0 0

1675 0 0
e =| 0 1675 0 [|x10™**C/Vm.
0 0 4489
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Langanite

The material constants of Langanite are [3]
p =5934kg/m?,

19.07 10.93 982 135 0 0
1093 19.07 982 -135 0 0
]| %2 o8 2605 0 0 0
Pi71135 -135 0 504 0 0
0O 0 0 0 504 135
0 0 0 0 135 407

-044 044 0 0.05 0 0
e, =| O 0 0 0 -0.05 044|C/m?,
0 0 0 O 0 0

202 0 0
g;=| 0 202 0 |g.
0 0 794
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