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ABSTRACT OF THE DISSERTATION 

 

Analysis of Shear-horizontal Vibrations of Crystal Plates for Acoustic Wave Resonators 

and Sensors 

 

by 

 

Bo Liu 

 

Doctor of Philosophy, Graduate Program in Mechanical Engineering 

University of California, Riverside, August 2010 

Dr. Qing Jiang, Chairperson 

 

 

In this work, theoretical analysis of shear-horizontal vibrations of crystal plates under 

lateral electric field excitation (LFE) without and with a fluid layer is presented. A crystal 

plate with separated electrodes under thickness electric field excitation (TFE) in contact 

with a fluid layer is also analyzed. 

We have started with analyzing the coupled face-shear (FS) and thickness-twist (TT) 

motions of piezoelectric plates with lateral electric fields, using the Mindlin’s first-order 

theory of piezoelectric plates. Solutions for propagating waves, and for free and 

electrically-forced vibrations are obtained, leading to basic vibration characteristics for 

resonator applications including dispersion relations, frequency spectra, and motional 

capacitance. Numerical results are presented for AT-cut quartz plates.  
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We have then studied the coupled face-shear (FS) and thickness-twist (TT) motions 

of a piezoelectric plate with mass layers on the central parts of the plate surfaces, driven 

by a lateral electric field. An analytical solution is obtained. Numerical results are 

presented for an AT-cut quartz plate, including the motional capacitance of the plate as a 

resonator and vibration modes trapped under the mass layers in the central portion of the 

plate. The relationship between the dimensions of the mass layers and the number of 

trapped modes is examined. 

We have studied the thickness-shear vibration of a rotated Y-cut quartz crystal plate 

whose one surface is in contact with a fluid layer. In this study, two configurations are 

considered. For the first configuration, we have analyzed the plate vibrations driven by a 

lateral electric field, using both the theory of piezoelectricity and the theory of Newtonian 

fluids. The solutions for both free and forced vibrations are obtained. Approximate 

expressions for the frequency shifts in the crystal plate due to the fluid are presented. The 

admittance of the structure is also calculated. The results illustrate the impacts of the 

thickness, the density and the viscosity of the fluid layer on the frequency shifts in the 

plate. In the second configuration, the fluid is under an electrode separated from the 

crystal plate and the driving electric field is in the plate thickness direction. This 

configuration qualitatively describes the effect of the liquid permittivity on the frequency 

shifts in a real LFE liquid sensor. 

Finally, I studied the propagation of shear-horizontal waves in a piezoelectric plate in 

contact with a fluid layer as an acoustic wave sensor for measuring fluid viscosity or 
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density. Mindlin’s first-order theory of piezoelectric plates and the theory of Newtonian 

fluids are used. Two kinds of fluid layers are considered. One is with finite thickness, and 

the other is semi-infinite. Approximate dispersion relations for long face-shear and 

thickness-twist waves are given analytically. In the first one, numerical results only show 

the effects of the fluid on wave characteristics. In the other, numerical results showing the 

effects of the fluid and the piezoelectric coupling in the plate on wave characteristics are 

presented. 
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1.   Introduction 

1.1 Piezoelectric crystals and acoustic wave devices 

Piezoelectric materials exhibit electromechanical coupling. They experience 

mechanical deformations when placed in an electric field, and become electrically 

polarized under mechanical loads. These materials have been used for a long time to 

make various electromechanical devices. Examples include transducers for converting 

electrical energy to mechanical energy or vice versa, resonators and filters for frequency 

control and selection for telecommunication equipment and precise timing and 

synchronization, and acoustic wave sensors. Many piezoelectric devices are resonant 

devices operating at a particular frequency and mode, either a stationary or a propagating 

wave. Both surface acoustic waves (SAWs) and bulk acoustic waves (BAWs) are used. 

In the applications of resonant piezoelectric devices, basic vibration characteristics like 

frequency and wave speed are of primary interest. How wave frequencies vary under, e.g., 

a temperature change, stress, surface additional mass or contact with a fluid is the 

foundation of acoustic wave sensors.  

In principle, acoustic wave resonators and sensors do not have to be piezoelectric. 

These devices are based on mechanical vibration modes and waves. Piezoelectric crystals 

are often used so that the operating wave can be conveniently excited electrically. 

Otherwise transducers are needed for the excitation and detection of acoustic waves. 

Quartz is the most widely used material for resonant piezoelectric devices. It has little 

damping and desirable temperature behaviors buts its piezoelectric coupling is very weak. 
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During the last two decades the relatively new crystals of langasite, langanite, and 

langatate were developed which are used more and more for acoustic wave devices. 

These new crystals have relatively strong piezoelectric coupling. They are especially 

useful for high-temperature applications. Lithium niobate and lithium langasite crystals 

are mainly for SAW devices. 

For frequency analysis of quartz devices the small piezoelectric coupling can usually 

be neglected and an elastic analysis is sufficient. Compared to piezoelectric analyses, an 

elastic analysis of vibration crystals is significantly simpler and can usually exhibit the 

basic frequency behavior. Generalization from an elastic solution to include piezoelectric 

effects is not always possible analytically. There are situations in which a piezoelectric 

analysis is necessary. To obtain the admittance (or impedance) of a device, a 

piezoelectric analysis of electrically forced vibrations is needed. A free vibration 

frequency analysis and an electrically forced vibration analysis for admittance together 

provide a complete simulation of a device. Piezoelectric coupling is known to cause a 

stiffening effect that raises resonant frequencies. This effect, although often negligible for 

quartz in qualitative analyses, needs to be considered in more refined analyses or in 

materials with relatively strong piezoelectric couplings.  

1.2 Waves in crystal plates 

Piezoelectric plates are common structures for acoustic wave devices. Many waves 

can exist or propagate in a crystal plate [1, 2]. These waves can be classified as low- and 

high-frequency waves. The usual extensional (E) and flexural (F) waves in plates 
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considered in traditional structural engineering are low-frequency waves whose 

frequencies depend strongly on the length and/or width of a plate in addition to the plate 

thickness h. Face-shear (FS) is another low-frequency wave. A fundamental characteristic 

of low-frequency waves is that for long waves their frequencies go to zero or the 

dispersion curves passes the origin. A rather unique feature of plate resonant piezoelectric 

devices is that they often operate with high-frequency waves called thickness modes 

including thickness-shear (TSh), thickness-stretch (TSt), and thickness twist (TT) whose 

frequencies are determined by the plate thickness, the smallest dimension only and 

therefore they have relatively high frequencies. For long waves their frequencies do not 

go to zero but have finite intercepts with the ω axis called cutoff frequencies below which 

the waves cannot propagate. This has important and useful implications in the behaviors 

of high-frequency waves and device applications. There in fact infinitely many branches 

of dispersion curves above the ones that are shown in the figure. One of the two dotted 

lines in the figure is the well-known Rayleigh surface wave ®, which can propagate over 

an elastic half-space and is not dispersive. The other dotted line is the well known 

Bleustein-Gulyaev surface wave (BG) [3, 4] which can propagate over a piezoelectric 

half-space but does not have an elastic counterpart. These two surface waves are included 

as references. The study of waves in crystal plates for different applications is an active 

research area [5-10]. 

Pure thickness modes [11, 12] vary along the plate thickness only and do not have in-

plane variations. They can exist in unbounded plates only. In real devices thin plates are 

used to simulate unbounded plates. However, due to the presence of boundaries, two 
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complications arise. One is that the thickness modes have slight in-plane variations. The 

other is that the operating high-frequency mode of a device becomes coupled with low-

frequency mode(s). Accurate prediction of the behaviors of low- and high-frequency 

waves in crystal plates and their interaction is fundamental to the understanding and 

design of acoustic wave devices. When thickness modes have in-plane variations, there 

are two important situations. In the first case the operating TSh mode has an in-plane 

variation in the same direction as the TSh particle displacement and is coupled to the F 

mode. This case is relatively well studied and understood, see, e.g., [13-18] and a review 

article [19]. In the second case the operating TSh mode has an in-plane variation in the 

direction perpendicular to the TSh particle displacement and is coupled to the FS mode. 

This case is as important but has been studied much less compared to the first case, with 

few and scattered results [20-25]. There is a lack of basic understanding of this situation. 

This dissertation is concerned with the second case. In terms of mechanics terminology, 

this case belongs to the so-called shear-horizontal (SH) or antiplane motions.  

1.3 Quartz crystal microbalance (QCM) sensors used in the liquid phase 

Nowadays, the quartz crystal microbalance (QCM) sensors using thickness-shear 

modes (TSM) in AT-cut quartz are widely used in the liquid phase sensing applications. 

The standard QCM sensors are always driven piezoelectrically by a thickness electric 

field, known as thickness field excitation (TFE), which is generated by the two electrodes 

attached on the both parallel main surfaces of the crystal. The detections mechanism is 

based on the mechanical loading, such as mass, density and viscosity. Because of the 
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electrode configuration, the sensing surface cannot contact the liquid phase directly 

which may cause some limitations when the sensors are used as chemical sensors and 

such sensors are not sensitive to the electrical properties of the liquid, such as the 

permittivity and the conductivity. 

It is also possible to excite the TSM in the AT-cut quartz by applying a lateral 

electric field, known as lateral field excitation (LFE). There are many obvious advantages 

of LFE over TFE, such as reduced aging, higher Q values and increased frequency 

stability, since the regions of the greatest vibrational motion are free of electrodes. 

Additionally, in sensing applications, the free sensing surface allows the penetration of 

the TSM mechanical and electrical fields into the liquids, resulting in increased 

sensitivity to both mechanical and electrical properties changes of the liquids. 

So far, there are several LFE sensors fabricated [26-29]. But the fundamental 

analysis based on the theory of piezoelectricity for such LFE sensors seems to be still 

missing, which is important for understanding the wave modes and their coupling in the 

LFE sensors and also for designing the sensors. 

1.4 Modeling of plate acoustic wave devices 

Due to the material anisotropy of crystals and piezoelectric coupling, modeling of 

acoustic wave devices using the three-dimensional (3D) theory of anisotropic elasticity or 

piezoelectricity usually involves considerable mathematical difficulties. In sensor 

applications, this is further complicated by surface mass layers or fluid-structure 
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interaction. Although lengthy frequency equations for determining the wave dispersion 

relations can often be formally obtained, they are typically transcendental equations with 

multi-valued solutions and complex roots. Therefore a numerical search for the roots of 

the frequency equation is usually needed which still presents various challenges even 

with high speed computers. Sometimes roots are missing or false roots are found. Once 

the roots are numerically determined, it is often difficult to connect the data points for 

dispersion curves because of the presence of many branches of dispersion curves and it is 

not clear which roots are on the same branch. This is especially challenging in the useful 

high-frequency range when the roots and dispersion curves are crowded.  

For the analysis of plate acoustic wave devices, researchers have developed two-

dimensional (2D) equations for motions of elastic and piezoelectric plates [13,14,30-33]. 

These equations effectively reduce the dimension of the problem by one which is a major 

simplification. In addition, the plate equations usually are only involved with the 

particular operating mode of a device plus a few other modes that are coupled to the main 

mode of interest. Therefore mode identification when using the 2D equations is not as 

serious a problem as when using 3D equations. The 2D plate equations have made 

theoretical and numerical analysis possible in many practically useful cases [13-19,34-

37]. 

1.5 Scope of the present research 

In this dissertation we systematically study the useful and relatively less studied LFE 

sensors using both 2D and 3D equations. This includes pure TSh vibrations and the 
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propagation of FS waves and TT waves in unbounded plates. AT-cut quartz is considered 

among which the widely used crystals of quartz and the Langasite family are special 

cases. For LFE sensors without the fluid layers, exact solutions for resonant frequencies 

and modes in unbounded and bounded structures are obtained from the 2D equations in 

Chapter 2. Then, the effect of partial mass layers attached to the surfaces of crystal plates 

on vibration distribution are analyzed using 2D equations in Chapter 3.  This effect is 

crucial to device mounting. Lateral field excitation (LFE) and thickness field excitation 

(TFE) are studied when the plates are driven by different electric fields and in contact 

with fluid layers in Chapter 4 and Chapter 5, respectively. The effects of piezoelectric 

coupling, fluid viscosity, fluid dielectric constants, and fluid density on wave frequencies 

are examined. This is also a necessary preparation for using the 2D equations to analyze 

more complicated problems in later chapters. Finally, Chapter 6 and Chapter 7 are on 

propagating waves in unbounded plates by 2D equations. Dispersion relations for coupled 

FS and TT waves are derived. Their long wave approximations are obtained. The results 

obtained in this dissertation are useful to the fundamental understanding and design 

optimization of plate acoustic wave resonators and sensors.   
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2.   Vibrations of Piezoelectric Plates of AT-cut Quartz under Lateral Field 

Excitation  

2.1 Introduction 

Piezoelectric crystals are widely used to make resonators for time-keeping, frequency 

generation and operation, telecommunication, and sensing. Quartz is the most widely 

used crystal for resonator applications. Recently new crystals of the langasite family have 

shown great promise as materials for future resonators. A large portion of piezoelectric 

resonators operate with shear vibration modes of a plate. These modes can be excited 

either by a thickness electric field (Thickness field excitation or TFE) or by a lateral 

electric field (LFE). While there seem to be more resonators with TFE than LFE, LFE 

offers a number of advantages over TFE [1, 2]. For example, LFE can result in reduced 

aging, higher Q values and increased frequency stability because the regions of greatest 

vibrational motion are free of electrodes. This also makes LFE convenient for sensor 

applications. So far, several LFE resonators used as liquid sensor have been reported [3-

6]. 

TFE resonators have been under sustained study theoretically, numerically, and 

experimentally. In particular, in a series of papers [7-10], Mindlin and his coworkers 

developed and refined the two-dimensional equations for motions of piezoelectric plates. 

These equations have been used in many analyses theoretically and numerically, e.g., 

[11-15], on TFE resonators. More references can be found in a review article [16]. In 

contrast, for LFE resonators, reported studies are much fewer. For example, energy 



12 

 

trapping was recently studied experimentally in [17]. Theoretical results are few and 

scattered. Electromechanical coupling coefficient was discussed in [18]. Electromagnetic 

radiation was calculated in [19]. The few and scattered theoretical results are significant 

limitations of designing a LFE resonator. In fact, Mindlin’s first-order plate theory is as 

effective in LFE as in TFE, but it has rarely been used for LFE. In this chapter we use 

Mindlin’s first-order plate theory to study systematically coupled face-shear (FS) and 

thickness-twist (TT) vibrations of piezoelectric plates of At-cut quartz under lateral field 

excitation. Both free and forced vibrations are studied. Important vibration characteristics 

including dispersion relations, frequency spectra, and motional capacitance are obtained.  

2.2 Plate equations for lateral field excitation  

Consider a thin plate as shown in Fig. 2.1. The plate normal is along the x2 axis. The 

x1 and x3 axes are in the middle plane of the plate. The plate is electroded at the two end 

faces at cx 3
 which may be under a driving voltage 2V. For free vibrations the driving 

voltage is zero or the two electrodes are shorted.  

 
Fig. 2.1 A piezoelectric plate and coordinate system 

 

x3 

x1 
x2 

2b 
2a 

2c 

V -V 
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We consider the so-called straight-crested waves without x1 dependence in a plate with 

2a=   in Fig. 2.1. In this case 032  uu  [20]. There is only one displacement 

component u1. The relevant equations in [9] reduce to the following equations of motion 

and electrostatics: 

)0(
1

)0(
3,31 2 ubT  ,                                                                (2-1a) 

)1(
1

3
)0(

2 1
)1(
3,3 1

3

2
u

b
TT  ,                                                 (2-1b) 

     0)0(
3,3 D ,                                                                        (2-1c) 

0)0(
2

)1(
3,3 DD ,                                                                    (2-1d) 

where ),( 3
)0(

1 txu is the FS displacement, and ),( 3
)1(

1 txu  is the TT displacement. They are 

related to u1 through )1(
12

)0(
11 uxuu  . The mechanical and electric resultants in (2-1) are 

related to the plate displacements )0(
1u  and )1(

1u  as well as electric potentials )0(  and )1(  

by the following constitutive relations: 
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3,35
)1(
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1561
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)0(

31  eeucucbT  ,                                   (2-2a) 
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2
1
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3,1561

)0(
12  eeucucbT  ,                               (2-2b) 
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T ,                                                    (2-2c) 
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2   ueuebD ,                                     (2-2d) 
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D .                                                      (2-2f) 
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)0(  and )1(  are related to the potential   through )1(
2

)0(  x . In (2-2), )( E
pqpq cc  , 

ipe , and )( S
ijij    are the usual elastic stiffness, piezoelectric constants, and dielectric 

constants. The other material constants in (2-2) are defined by 

,/

,/,/1

66
2
363333

553566563635355555

ce

dccees








                                         (2-3) 

where )( E
pqpq ss   is the elastic compliance and ipd  is another set of piezoelectric 

constants different from but related to ipe . For a plate unelectroded at the major surfaces 

at bx 2 , the shear correction factors 
1  in the above equations are given by [9] 

12

2
2

1


  .                                                 (2-4) 

Substitution of (2-2) into (2-1) gives four equations for the plate displacements and 

potentials:  
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33,35
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2.3 Thickness vibration 

First we study pure thickness modes independent of x3 which are the ideal operating 

modes of devices. For LFE the motion is driven by 
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)exp()0(
3, tiE   ,     (2-6) 

where )2/(2 cVE  . E is the applied field and 2V is the applied voltage. In this case 
)0(  

in linear in x3 but 
)0(

3,  is no more than a function of time. Then (2-5a) and (2-5c) imply 

that 0
)0(

1 u , 0
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3,  . (2-5b) and (2-5d) become 
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Solving (2-7), we obtain 
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When the denominator of A vanishes, we have the frequency equation that determines the 

free-vibration resonant frequency of the fundamental TT mode. Since the first-order plate 

theory is used, the only resonant frequency is found to be 
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Resonators are used as circuit elements. Two basic properties of a resonator, its 

resonant frequency and capacitance, are of primary interest for circuit analysis. The 

capacitance of a resonator can only be obtained from an electrically forced vibration 

analysis. The capacitance of a piezoelectric resonator is called the motional capacitance 

because mechanical vibration of the resonator is involved through piezoelectric coupling. 

Recently there has been growing interest in forced vibration analysis of piezoelectric 

resonators and the computation of the motional capacitance [19-21]. To calculate the 

motional capacitance, from (2-2f) and (2-2e) we find that )1(
3D =0 and  

EBAebD )(2 3323361
)0(

3   .                                                  (2-11) 

Then the charge on the electrode at cx 3  per unit length along x1 (2a=1 in Fig. 2.1) is 

given by 

c

V
BAebDQe )(2 3323361

)0(
3   .                                        (2-12) 

Hence the frequency-dependent capacitance is determined as  
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                                              (2-13) 

For later use we introduce a normalized driving frequency by  

0


 .                                                                (2-14) 
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As a numerical example b=1mm is used. Damping is introduced by allowing the elastic 

constants to assume complex values, which can represent viscous damping. In our 

calculations, cpq is replaced by )1( 1 iQcp q  where Q is a real, large and positive number. 

For quartz, Q is of the order of 10
5
. We use Q=10

4
 or smaller which is relatively low and 

represents relatively high damping for quartz. It is considered to be a single damping 

parameter representing all of the damping of the resonator. Note that the 0  in (2-14) is 

kept real.  

In Fig. 2.2 we plot |C/C0| versus   for AT-cut quartz. |C/C0| is large near 1 , the 

only resonant frequency. For smaller values of Q or larger damping, the peaks are lower.  

 

 

Fig. 2.2 Capacitance versus driving frequency for pure thickness modes. 
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2.4 Dispersion of strait-crest waves in unbounded plates 

Next we study wave propagation in unbounded plates (2c= ). Let  

),sin(),cos(

),sin(),cos(

34
)1(

33
)0(

32
)1(

131
)0(

1

txAtxA

txAutxAu








                              (2-15) 

where A1-A4 un undetermined constants,   is wave number, and   is frequency. (2-15) 

represents waves propagating in the x3 direction. They are called straight-crested waves 

because there is no x1 dependence. Substitution of (2-15) into (2-5) results in four linear, 

homogeneous equations for A1-A4. For nontrivial solutions the determinant of the 

coefficient matrix has to vanish, which yields an equation that determines   versus  , 

or the dispersion relation. It is a quadratic equation for 2 , which is too long to be 

presented here. For a given  , there are two roots for 2 . For each root of 2 , the two 

corresponding values of    only differ by a sign and examining one of them is sufficient. 

When   is real or pure imaginary, the results are shown in Fig. 2.3 in which the 

dimensionless wave number is defined by 

b
Z

2


 .                                                                  (2-16) 

The curve for FS waves looks linear and therefore has little dispersion. The curve for TT 

waves is curved and is clearly dispersive. The curve for TT waves has a finite intercept 

with the   axis which is the cutoff frequency of the waves below which the waves 

cannot propagate. There are two vertical lines. One is at Re(Z)=0. The other is at Im(Z) 
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slightly larger than 1. These two vertical lines are due to the equations of electrostatics in 

(2-5c) and (2-5d). If we neglect piezoelectric coupling and drop (2-5c) and (2-5d), these 

two vertical lines will disappear. 

 

Fig. 2.3 Dispersion curves of straight-crested waves. 

 

2.5 Frequency spectra of finite plates 

In this section we study free vibrations of a plate finite in the x3 direction with 

cx || 3
. The governing equations are in (2-5). Let the edges at cx 3  be free and 

electroded, with the electrodes shorted. The boundary conditions are  
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cxTT  3
)1()0()1(

31
)0(

31 ,0,0,0,0  .                                   (2-17) 

Different from the propagating waves in (2-15), we consider stationary waves in the form 

of 
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which may be called symmetric modes because the main displacement of interest, )1(
1u , is 

an even function of x3. There are also modes with )1(
1u  being an odd function of x3 which 

may be called antisymmetric modes. Antisymmetric modes are of less interest because 

they cannot be excited by a lateral electric field, and therefore will not be studied in this 

chapter.  

Substitution of (2-18) into (2-5) results in four linear equations for A1-A4. For 

nontrivial solutions the determinant of the coefficient has to vanish, which yields a 

polynomial equation of degree four for 2 . There are four roots which are denoted by 

2)( )( m , with m=1-4.  Corresponding to a typical )(m , let the eigenvector be 
)(m

p  with 

p=1-4. 
)(m

p  determines the ratios among A1-A4. It turns out that one of the roots for 

2)( )( m  is zero. Therefore the general symmetric solution can be constructed as  
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When (2-19) is substituted into the boundary conditions in (2-17) at x3=c, we obtain four 

linear, homogeneous equations for )(mC . For nontrivial solutions, the determinant of the 

coefficient matrix has to vanish which yields the frequency equation for determining  .  

Frequency spectra are relations of frequency versus the length/thickness ratio c/b of 

the plate. They are very useful in design when determining the dimensions of plate 

resonators. We plot the frequency spectra determined from (2-19) and (2-17) in Fig. 2.4 

(c). For comparison, two special cases are also shown in Figs. 2.4 (a) and (b). The curves 

in Fig. 2.4 are in fact formed by data points without connecting them. Each data point 

represents the frequency of a mode. Corresponding to a particular value of c/b, there are 

infinitely many modes. A few can be seen in the frequency range shown. In Fig. 2.4 (a), 

the piezoelectric coupling, the electric potentials, and the elastic coupling due to the 

relatively small elastic constant c56 are all neglected. In this case (2-5a) and (2-5b) 

become two uncoupled equations for )0(
1u  and )1(

1u . The two families of curves in Fig. 2.4 

(a) intersect with each other. The relatively flat curves are for TT modes with )1(
1u . In Fig. 

2.4 (b) the elastic coupling due to c56 is considered but the piezoelectric coupling is 

ignored. This has such an effect on the curves in Fig. 2.4 (b) that, near the intersections in 

Fig. 2.4 (a), the curves in Fig. 2.4 (b) turn away from each other (mode veering). This is 

qualitatively different from Fig. 2.4 (a). Fig. 2.4 (c) has the effects of both piezoelectric 

couplings to  
)0(  and 

)1( , as well as the relatively small elastic coupling due to c56. 

Qualitatively the curves are similar to those in Fig. 2.4 (b), with small, quantitative 

differences. The usefulness of the frequency spectra is that it is needed for determining 
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c/b. For example, for the lowest TT branch with   close to 1, those values of c/b that are 

close to the intersections with the FS curves need to be avoided. 

 

(a) 

 

(b) 
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(c) 

Fig. 2.4  Frequency spectra of symmetric modes. (a) Uncoupled elastic modes ( 0)0(  , 

0)1(  , c56=0). (b) Coupled elastic modes ( 0)0(  , 0)1(  , 056 c ). (c) Coupled 

piezoelectric modes ( 0)0(  , 0)1(  , 056 c ). 

2.6 Motional capacitance 

Finally, we calculate the motional capacitance of a finite plate with cx || 3
. Consider 

electrically forced vibrations with the following boundary conditions: 

cxtiVTT  3
)1()0()1(

31
)0(

31 ,0),exp(,0,0  .                            (2-20) 

Substituting (2-19) into (2-20), we obtain four linear, inhomogeneous equations for )(mC , 

driven by V. Once these equations are solved, the plate displacements and potentials are 

known. Then the charge and capacitance can be calculated from  
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CcxDQ e

e
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),( 3
)0(

3  .                                                     (2-21) 

Fig. 2.5 shows |C/C0| versus   for AT-cut quartz. Similar to Fig. 2.2 for the pure 

thickness mode of )1(
1u , |C/C0| is large near 1 . However, due to the dependence on x3 

and the coupling to )0(
1u , there are quite a few resonances in the frequency range shown. 

Even in the neighborhood of 1 , there are in fact two peaks. The maxima of the two 

high peaks near 1  are not fully shown in order to see the lower peaks. 

We plot |C/C0| in a narrower frequency range near 1  in Fig. 2.6, showing two 

resonances. The maximum of the left peak near 1  is slightly higher than that in Fig. 

2.2. For finite plates the coupling to )0(
1u  affects the charge on the electrodes through (2-

2e) and (2-21) and hence affects the capacitance.  

In Fig. 2.7 we vary the aspect ratio slightly around c/b=21.5 which is right in the 

middle of a flat potion of the lowest TT curve in Fig. 2.4 (c) which represents )1(
1u

dominated modes. c/b=20.5 and 22.5 are also well within the same flat portion and are 

also )1(
1u dominated. We note that C0 depends on c/b (2-13) and therefore the difference in 

the height of the peaks in Fig. 2.7 is exaggerated.  When c/b varies slightly in Fig. 2.7, 

the two peaks on a curve in Fig. 2.7 move in opposite directions. This is a relatively more 

complicated behavior and is not uncommon when there are two coupled modes [22].  
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Fig. 2.5 Motional capacitance versus driving frequency (b=1mm). 

 

Fig. 2.6 Motional capacitance versus driving frequency for different Q (b=1mm, 

c/b=21.5). 
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Fig. 2.7 Motional capacitance versus driving frequency for different c/b (b=1mm, 

Q=10000). 

 

2.7 Conclusion 

When an At-cut quartz plate is under LFE, the dominating displacements are FS and 

TT. Within the first-order plate theory, there is only one resonance for pure thickness 

vibration. For straight-crested waves, the two electrostatic equations contribute to two 

branches in the dispersion relations, in addition to the two branches for FS and TT waves. 

Frequency spectra of finite plates consists of the ―sum‖ of those of FS and TT modes 

with mode veering at the intersections. To avoid strong couplings between FS and TT, 

certain values of the plate length/thickness ratio should be avoided. Mindlin’s first-order 

plate theory is effective in analyzing vibrations of crystal plates under LFE.  
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3.   Energy Trapping in High-Frequency Vibrations of Piezoelectric Plates with 

Partial Mass Layers under Lateral Electric Field Excitation 

3.1 Introduction 

An important situation in resonator and sensor application is when the plate is 

partially covered by additional mass layers which can be either due to the accumulation 

of another material like in mass sensor applications or due to the inertia of electrodes [1-

6]. The inertia of the mass layers is responsible for an important phenomenon called 

energy trapping in which the vibration is confined under the mass layers and decays 

rapidly outside them. Energy trapping is crucial to resonator mounting and has been the 

subject of many studies, mostly for TFE. For LFE, however, our understanding on energy 

trapping is limited. Further analysis is needed to understand the effect of mass layers on 

resonators under LFE, and the energy trapping in them in particular.  

In this chapter we use Mindlin’s first-order plate theory to study theoretically forced 

FS and TT motions of a piezoelectric plate with partial mass layers under a lateral electric 

field. An AT-cut quartz plate is used as an example for presenting numerical results. In 

addition to the motional capacitance of the plate which is important when the plate is 

used as a resonator, energy trapping and the relationship between the dimension of the 

mass layers and the number of trapped modes is also examined.  
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3.2 Structure 

Consider a thin crystal plate of thickness 2b as shown in Fig. 3.1. The plate normal is 

along the x2 axis. The x1 and x3 axes are in the middle plane of the plate. The central part 

of the plate where cx || 3
 is symmetrically covered with identical, dielectric mass layers 

of thickness 2b′ and density  . The plate is electroded at the two end faces at Lx 3 , 

with the electrodes shown by the thick lines. A time-harmonic driving voltage 

)exp( tiV   is applied across the electrodes. Under such a driving voltage, due to the 

particular anisotropy of monoclinic crystals, the plate can be excited into motions called 

straight-crested waves with one displacement component only, i.e., ),,( 3211 txxuu   and 

032  uu , which is coupled to an electric potential in the form of ),,( 32 txx  .  

 

Fig. 3.1 A piezoelectric plate with mass layers and coordinate system 
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V -V 
2b x3 
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3.3 Governing Equations 

For straight-crested waves without x1 dependence in a plate with mass layers, the 

relevant equations of Mindlin’s first-order plate theory reduce to the following equations 

of motion and electrostatics [7]: 
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where ),( 3
)0(

1 txu is the FS displacement, a low-frequency mode. ),( 3
)1(

1 txu  is the TT 

displacement, a high-frequency mode. They are related to u1 through )1(
12

)0(
11 uxuu  . The 

TT mode is the high-frequency operating mode of devices which is what we are 

interested in, but it is usually coupled to the FS mode through the elastic constant c56 as 

shown below. Therefore a coupled analysis is necessary. The mechanical and electric 

resultants in (3-1) are related to the plate displacements )0(
1u  and )1(

1u  as well as electric 

potentials )0(  and )1(  by the following constitutive relations: 
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)0(  and )1(  are related to the potential   through )1(
2

)0(  x . In (3-2), )( E
pqpq cc  , 

ipe , and )( S
ijij    are the usual elastic stiffness, piezoelectric constants, and dielectric 

constants. The other material constants in (3-2) are defined by 

,/

,/,/1

66
2
363333

553566563635355555

ce

dccees








                                         (3-3) 

where )( E
pqpq ss   is the elastic compliance and ipd  is another set of piezoelectric 

constants different from but related to ipe . For a plate with dielectric mass layers at the 

major surfaces at bx 2 , the shear correction factor 
1  and the mass ratio R in the above 

equations are given by 
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When (3-2) is substituted into (3-1), the following four equations result: 
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The equations for a plate without mass layers can be obtained from the above equations 

by setting the mass ratio R=0.  

3.4 Dispersion Relations for Waves in Unbounded Plates 

To understand energy trapping it is helpful to examine the dispersion relations for 

coupled FS and TT waves in unbounded plates. Let the wave frequency be   and wave 

number along x3 be  , and  
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where A1-A4 are undetermined constants,   is wave number, and   is frequency. (3-6) 

represents waves propagating in the x3 direction. Substitution of (3-6) into (3-5) results in 

four linear, homogeneous equations for A1-A4. For nontrivial solutions the determinant of 

the coefficient matrix has to vanish, which yields an equation that determines   versus 

 , or the dispersion relation. It is a quadratic equation for 2 , which is too long to be 

presented here. For a given  , there are two roots for 2 . For each root of 2 , the two 

corresponding values of    only differ by a sign and examining one of them is sufficient. 

We introduce the following dimensionless frequency   and dimensionless wave number 
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where 0  is the plate fundamental thickness-shear frequency and is use as a normalizing 

frequency.  

Dispersion relations for coupled FS and TT waves are shown in Fig. 3.2 for two cases 

together. One is for an infinite plate without mass layers. The other is for an infinite plate 

completely covered by mass layers, which has lower frequencies as expected. The branch 

for the TT wave has a finite intercept with the frequency axis, which is the cutoff 

frequency below which the TT wave cannot propagate. When mass layers are present, the 

TT wave cutoff frequency is also lowered a little. For a frequency in the small range 

between the two cutoff frequencies, the corresponding TT wave number for the plate with 

mass layers is real, representing a sinusoidal wave. At the same time, the corresponding 

TT wave number for the plate without mass layers is pure imaginary, representing an 

exponentially decaying field. Hence, if a plate has partial mass layers like what is shown 

in Fig. 3.1, in the small frequency range between the two cutoff frequencies, the vibration 

is sinusoidal under the mass layers and is exponentially decaying outside them, and is 

therefore confined to be within the part of the plate with mass layers (energy trapping). In 

this case, mounting at some distance away from the mass layer edges does not affect the 

vibration of the structure. 
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Fig. 3.2 Dispersion curves for plates with and without mass layers. 
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3.5 Vibrations of Finite Plates with Partial Mass Layers 

In this section we study vibrations and energy trapping in the plate with partial mass 

layers as shown in Fig. 3.1. Due to the presence of partial mass layers, we need to obtain 

solutions for plates with and without mass layers separately, and then apply boundary 

conditions at the edges of the plate and continuity conditions at the junctions between 

different parts of the plate.  

3.5.1 Central portion with mass layers  

We consider stationary waves in the form of  
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where A1-A4 are undetermined constants. (3-8) may be called symmetric modes because 

the main displacement of interest, )1(
1u , is an even function of x3. There are also modes 

with )1(
1u  being an odd function of x3 which may be called antisymmetric modes. 

Antisymmetric modes are of less interest because they cannot be excited by a lateral 

electric field in the symmetric structure in Fig. 3.1, and therefore will not be studied in 

this chapter. We look for steady-state solutions in which all fields are with the same time 

dependence which will be dropped for simplicity. Substitution of (3-8) into (3-5) results 

in four linear equations for A1-A4. For nontrivial solutions the determinant of the 

coefficient has to vanish, which yields a polynomial equation of degree four for 2 . 

There are four roots which are denoted by 2)( )( m , with m=1-4.  Corresponding to a 
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typical )(m , let the nontrivial solution of the linear equations (eigenvector) be )(m
p  with 

p=1-4. )(m
p  determines the ratios among A1-A4. It turns out that one of the roots for 

2)( )( m  is zero. The general symmetric solution can be constructed as  
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where )1(C  through )4(C  are undetermined constants, and  
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3.5.2 Side portions without mass layers 

Due to the symmetry of the structure in Fig. 3.1 and the symmetric modes we are 

studying, we only need to consider the right part of the plate in Fig. 3.1 with Lxc  3
. 

Corresponding to a frequency in the small range between the two cutoff frequencies in 

Fig. 3.2, there are real and pure imaginary roots for the wave number. In addition, both of 

the terms with )1(
1u  as an even and an odd function of x3 should be included. In a way 

similar to the procedure from (3-8) to (3-9), the general solution for this case can be 

written as 
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where )1(C  through )8(C  are undetermined constants. 

3.5.3 Boundary and continuity conditions 

Resonators are used as elements of electric circuits for alternating currents. Two basic 

properties of a resonator, its resonant frequency and capacitance, are of primary interest 

for circuit analyses. Existing theoretical results on piezoelectric resonators are 

overwhelmingly on free-vibration frequency analysis. The capacitance of a resonator can 

only be obtained from an electrically forced vibration analysis. The capacitance of a 

piezoelectric resonator is called the motional capacitance because mechanical vibration of 

the resonator is involved through piezoelectric coupling. To calculate the motional 

capacitance of the resonator in Fig. 3.1, we consider the following boundary conditions 

for electrically forced vibration: 
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Due to symmetry, we only need to consider the boundary conditions at Lx 3  and the 

continuity conditions at cx 3 . Substituting (3-9) and (3-11) into (3-12), we obtain 

twelve linear, inhomogeneous equations for the twelve undetermined constants of )1(C  

through )4(C  and )1(C  through )8(C , driven by V. Once these equations are solved on a 

computer, the plate displacements and potentials are known. Then the charge Qe on the 

electrode at the right edge and capacitance C of the resonator can be calculated from  

V

Q
CcxDQ e

e
2

),( 3
)0(

3  .                                                     (3-13) 

3.5.4 Numerical results 

As a numerical example, b=1mm is used. Damping is introduced by allowing the 

elastic constants to assume complex values, which can represent viscous damping. In our 

calculations, cpq is replaced by )1( 1 iQcp q  where Q is a real, large and positive number. 

For quartz, Q is of the order of 10
5
. We use Q=10

4
 which is relatively small and 

represents relatively high damping. It is considered to be a single damping parameter 

representing all of the damping in the resonator. Note that the 0  in (3-2) is kept real as a 

frequency unit. We also fix the plate length L/b=50 and the mass ratio R=5%. In Figs. 

3.3-3.5, we vary the length of the mass layers from c/b=8, 20, to 26.8 and plot the 

motional capacitance versus the driving frequency in Figs. 3.3(a), 3.4(a), and 3.5(a). The 

capacitance assumes maxima at resonances. When c/b increases, in the frequency interval 

considered, the number of resonances increases. The displacement distributions at 

resonances are shown in Figs. 3.3(b), 3.4 (b), and 3.5(b), respectively. The displacement 
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is large under the mass layers and small outside them. This is the co-called energy 

trapping phenomenon. Lower-order modes are trapped better. Even for a long and thin 

plate with L/b=50, the displacement field can still reach the edges. This is because we are 

considering coupled FS and TT motions. While the TT mode has a cutoff frequency and 

can be trapped, the FS mode does not have a cutoff frequency and cannot be trapped. As 

a consequence, the coupled motion can always feel the plate edges. 
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(a) 

 

(b) 

Fig. 3.3 c/b=8. (a) Capacitance versus frequency.  (b) Displacement distribution at 

resonance (=0.964845). 

 



42 

 

 

(a) 

 

(b) 

Fig. 3.4 c/b=20. (a) Capacitance versus frequency.  (b) Displacement distributions at 

resonances (=0.957691, 0.973267).  
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(a) 

 

(b) 

Fig. 3.5 c/b=26.8. (a) Capacitance versus frequency.  (b) Displacement distributions at 

resonances (=0.956521, 0.965944, 0.986854)  
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3.6 Conclusion 

When an AT-cut quartz plate under LFE has partial mass layers, there exist a finite 

number of resonances in the frequency range between the cutoff frequencies of a plate 

with mass layers and a plate without mass layers. The motional capacitance assumes 

maxima at these resonances. The corresponding displacement distributions show energy 

trapping, with the vibration mainly in the part of the plate with mass layers. The number 

of trapped modes increases with the length of the mass layers. Lower-order modes are 

trapped better. Due to the coupling to the FS mode which cannot be trapped, the vibration 

can still feel the plate boundary slightly.  
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4.   Fluid-induced Frequency Shift in a Piezoelectric Plate Driven by Lateral Electric 

Fields 

4.1 Introduction 

A vibrating crystal (resonator) when is put in contact with a viscous fluid changes its 

resonant frequencies due to the inertia and viscosity of the fluid. This effect has been 

used to make fluid sensors for measuring fluid viscosity or density [1-3]. These sensors 

belong to the general category of those acoustic wave sensors called quartz crystal 

microbalances (QCMs). More references can be found in relevant review articles [4, 5]. 

For fluid sensor applications, vibration modes of a crystal body without a normal 

displacement at its surface are ideal and are of general interest. In these modes the surface 

of the body has no normal displacement so that no pressure waves are generated in the 

fluid. The fluid produces a tangential drag only on the body surface due to viscosity and 

the tangential motion of the surface, thereby causing a frequency shift in the body.  

Quartz is the main piezoelectric crystal for resonator and sensor applications. 

Thickness-shear vibration of a quartz plate is the most widely used structure and mode 

for QCMs. The sensitivity given in the classical reference [1] for a fluid sensor is based 

on an elastic analysis without piezoelectric coupling which is small in quartz and can 

usually be neglected in a free vibration frequency analysis but must be considered in an 

electrically forced vibration analysis to obtain the impedance or admittance of a device. 

In real device operations electrodes are necessary for generating electric fields or 

collecting charges (currents). Electrodes are usually deposited on the two surfaces of a 
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crystal plate to produce a driving electric field in the plate thickness direction. This type 

of electrode arrangement is called thickness field excitation (TFE). Surface deposited 

electrodes are associated with a series of complicating effects including electrode inertia, 

stiffness, intrinsic stress, and thermal expansion which is usually incompatible with that 

of the crystal plate, etc. [6-8]. These effects of the electrodes are usually undesirable, 

especially when the electrodes are on the surface of the crystal plate where sensing is 

performed.  

One way to avoid putting an electrode on the sensing surface of a crystal plate is to 

use side electrodes and the associated lateral or in-plane electric fields, called lateral field 

excitation (LFE) [9-12]. This makes LFE convenient for sensor applications in which the 

unelectroded active area of a resonator can be put in direct contact with measurands. 

However, there are very few theoretical results for devices driven by LFE in contrast to 

the vast literature on TFE.  

In this chapter we study thickness-shear vibration of a quartz crystal plate with one 

surface in contact with a viscous fluid layer. The crystal plate is under LFE. The theory of 

linear piezoelectricity is used to model the crystal plate. The theory of Newtonian fluids 

is used for the fluid layer. For fluid sensor application we want to study fluid-induced 

frequency shift of the crystal plate from a free vibration analysis, and the capacitance of 

the plate from a forced vibration analysis.  
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4.2 Fields in different regions 

Consider the structure shown in Fig. 4.1 which is unbounded in the x1 direction. The 

crystal plate is of rotated Y-cut quartz which includes the widely used AT-cut quartz as a 

special case. The fluid is a linear Newtonian fluid. Whether the fluid is compressible or 

not does not matter because the motion to be considered is a pure shear without volume 

change. There are two edge electrodes at cx 3 . On these electrodes a driving voltage of 

  2/exp tiV    is applied where   is the electric potential. We assume thin plates with 

c>>b so that edge effects can be neglected and pure thickness-shear modes exist. We 

consider time-harmonic motions and use the usual complex notation. All fields have the 

same )exp( ti  factor which will be dropped in the following for simplicity. 

 

Fig. 4.1 A crystal plate with a fluid under a separated electrode 
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4.2.1 Upper free space 

For thickness-shear modes independent of x1 and x3 in the plate, the corresponding 

governing equations of the electric field in the free space are  

,

,

,0

2,2

202

2,2











E

ED

D

                                                                        (4-1) 

where E is the electric field and D is the electric displacement. 
0  is the free-space 

permittivity. We consider the case when 2x  are electrically open where 02 D . 

Since 2D  is a constant in the free space as dictated by (4-1)1, 02 D  in the free space. 

The free space electric potential is simply 

13 CEx  ,                                                                   (4-2) 

where cVE 2/  is a constant, C1 is an arbitrary constant. (4-2) implies that EE 3
 and 

02 D . The open circuit condition at 2x  is satisfied.  

4.2.2 Fluid 

The fluid is assumed to be without electromechanical coupling. The electric fields 

are still governed by (4-1) but the free-space permittivity 
0  needs to be replaced by the 

fluid permittivity  . The equation of motion for the fluid is [13] 

12,2 1 vT L
 ,                                                                      (4-3) 
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where the shear stress is given by  

2

1
21

x

v
T




   .                                                                     (4-4) 

  and ρL are the viscosity and mass density of the fluid. v1 and T21 are the relevant 

velocity and shear stress components. The potential and velocity fields in the fluid are  

          ,1cosh1sinh

,

24231

13

bxiCbxiCv

CEx








                                     (4-5) 

where C3 and C4 are integration constants, and  






2

L .                                                                       (4-6) 

The relevant stress and electric displacement components needed for boundary and 

continuity conditions are 

            

.0

,1sinh1cosh1

2

242321





D

bxiCbxiCiT 
                       (4-7) 

We note that the continuity of   and D2 between the upper free space and the fluid are 

already satisfied.  
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4.2.3 Crystal plate 

In the crystal plate, due to the presence of 3E , we begin with the following trial 

fields. They will be shown to satisfy all governing equations and boundary/continuity 

conditions later.  

23232211 (,0),( CExxuuxuu  ） ,                                        (4-8) 

where C2 is an undetermined constant. The nontrivial components of the strain, electric 

field, stress, and electric displacement components are, correspondingly,  

EEEuS  3,32,22,112 ,2  ,                                   (4-9) 
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The equation of motion and the charge equation of electrostatics take the following form: 

.0
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22,2622,1662,21
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ueD

ueucT
                                        (4-11) 

The displacement and potential fields determined from (4-11) are 

     bxCbxCu  26251 cossin   ,                                         (4-12) 

         23272625

22

26 cossin CExbxCbxCbxC
e

 


 ,                       (4-13) 

where C5, C6 and C7 are undetermined constants, and  



52 

 

2

66
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
c

 .                     (4-14) 

The stress and electric displacement components are 

         EeCebxCbxCcT 3672626256621 sincos   ,                    (4-15) 

ECD 237222   ,                                                             (4-16) 

       ECbxCbxCeeD 33732262526
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32
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
 ,                 (4-17) 

where )1( 2
266666 kcc  , )/( 6622

2

26

2
26 cek  . The free charge Qe on the edge electrode at 

cx 3  per unit length along x1, the current I that flows into this electrode, and the 

admittance Y of the structure are given by 
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 
                                                              (4-18) 

4.2.4 Lower free space 

For the lower free space we have  

83 CEx  ,                                                                   (4-19) 

where C8 is an arbitrary constant. The open circuit condition 02 D  at 2x  is 

satisfied.  
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4.3 Boundary and continuity conditions 

The top of the fluid layer is traction-free, i.e.,  

  021 HbT .                                                                 (4-20) 

At the interface between the fluid and the top of the crystal plate, we have the continuity 

of the velocity, electric potential, shear stress, and normal electric displacement: 
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                                                               (4-21) 

At the interface between the bottom of the crystal plate and the free space below it, we 

have: 

   
 
  .0
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                                                                (4-22) 

We note that although there are eight equations in (4-20)-(4-22), they are effectively 

seven because 2D  in the crystal plate as given in (4-16) is a constant and 0)(2  bD  are 

effectively one condition. Substitution of the relevant fields into (4-20)-(4-22) gives the 

following seven equations for C1 through C8: 
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Effectively C1-C2 and C8-C2 are two constants. Therefore the unknown constants in (4-23) 

are also seven.  

4.4 Vibration analysis 

In (4-23) E is the only driving term. In the following we consider free and 

electrically forced vibrations separately. 

4.4.1 Free vibration 

For free vibrations we set E=0. (4-23) becomes homogeneous. For nontrivial 

solutions the determinant of the coefficient matrix of (4-23) has to vanish, which gives 

the following frequency equation: 
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Quartz has a small piezoelectric coupling. If we neglect the small piezoelectric 

coupling by setting 026 e  (in this case 6666 cc  ) and consider the limit when H , 

(4-24) reduces to 

 
6666 2

12tan
c

i
c

b L




 














,                                                 (4-25) 

which is the frequency equation in [1].  

On the other hand, if we neglect the drag due to fluid viscosity in (4-24) by setting 

 =0, the right-hand side of (4-24) vanishes and the left-hand side can be factored into 

two equations. One is 0)sin( b  which is not of interest because it determines modes 

that are symmetric about 02 x . What is used in devices is the other equation 0)cos( b  

which determines modes antisymmetric about 02 x . In this case, 

2/ nb , n=1, 3, 5, … .                                                       (4-26) 

Corresponding to (4-26), from (4-14) we obtain the following frequencies for 

antisymmetric thickness-shear modes when the fluid is not present as our reference 

frequencies: 




 66)(

0
2

c

b

nn
 .                                                                    (4-27) 

We now return to the general frequency equation (4-24). Consider the case of a low 

viscosity fluid, we look for approximate roots of (4-24) by letting  
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where )(n  is small. Substituting (4-28) into (4-24), for small viscosity, we obtain  
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where )2/(
)(

0
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n
 . With )(n  known from (4-29), from (4-14) we obtain the 

relative frequency shift as 
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(4-30) is more general than the classical result in [1] by including the effect of 

piezoelectric coupling in 66c  and the effect of the finite fluid layer thickness H. When 

026 e  and H= , (4-30) reduces to  
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When n=1, the real part of (4-31) gives the classical result of [1] for the frequency shift of 

the fundamental thickness-shear mode in a crystal resonator due to contact with a viscous 

fluid. The real part of (4-31) is negative, indicating that the fluid drag lowers the 

frequency. From (4-31) higher-order modes with larger n seem to have smaller frequency 
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shifts. The imaginary part of (4-31) represents the damping effect due to the fluid 

viscosity. 

4.4.2 Forced vibration 

For forced vibrations (4-23) is inhomogeneous. Under a real driving frequency the 

coefficient matrix does not vanish. A solution always exists, is unique, and can be 

obtained directly on a computer.  

4.5 Numerical results 

We will consider several mixed fluids. For the viscosity of two mixed fluids, we use 

the following formula from [14]: 

,

,

21

212
2
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2
1







 XXXX
                                                      (4-34) 

where X1 and X2 are mole fractions. For the dielectric constant, following [15], we use  

2211 pp   ,                                                                  (4-35) 

where pi are the relative volume fractions. The mass density of the mixture is based on 

the ratio between the mass sum and the volume sum. 

Consider a resonator of AT-cut quartz with b=0.58 mm so that 6)1(
0 109  1/s. The 

fluid layer thickness is fixed to H=2b except in Figs. 4.2 and 4.3. For the fluids we use 

ethanol with density L =0.78522 g/cm
3
 and viscosity  =1.04 mPa·s, or toluene with L
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=0.8669 g/cm
3
 and  =0.5503 mPa·s, or chloroform with L =1.483 g/cm

3
 and  =0.542 

mPa·s. 

Fig. 4.2 shows the effect of the fluid layer thickness H on frequency shifts due to 

different fluids for the fundamental mode with n=1. The fluid lowers the frequency as 

expected. For small H the frequency shift is proportional to H. There is a maximal 

frequency shift of the order of 410  when H is somewhat less than b, half the thickness of 

the crystal plate. This is considered strong and clear signals because typical thermal 

noises in quartz resonators are of the order of 10
-6

. When H>2b the frequency shift 

becomes constant. In this case the fluid layer can in fact be treated as a half space. Fig. 

4.3 shows similar behaviors of the third overtone mode with n=3, with smaller frequency 

shifts and quicker decay of fields in the fluids (smaller penetration depth).  
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Fig. 4.2 
)1（  versus the fluid layer thickness H 

 

Fig. 4.3 
)1（  versus the fluid layer thickness H 
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To examine the effect of the fluid density individually, we artificially vary the 

density of ethanol and plot the result in Fig. 4.4. A heavier fluid with a larger density 

causes more frequency shift as expected. The relationship between L  and )(n  is 

essentially parabolic as suggested by (4-30). In Fig. 4.5 we artificially vary the viscosity 

of ethanol and observe similar effects.  
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Fig. 4.4 Effects of fluid density on 
)1（

  

 

Fig. 4.5 Effects of fluid viscosity on )1
1
（

  

  



62 

 

 

Fig. 4.6 is from the forced vibration analysis. It shows the admittance per unit length 

of the plate in the x1 direction. At resonance the admittance assumes maximum. (a) shows 

an isolated resonance which is ideal for resonant acoustic wave sensors. (b) is a 

magnified picture of (a) locally near resonance.  

  



63 

 

 

(a) 

 

(b) 

Fig. 4.6 Admittance versus driving frequency 
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4.6 Conclusion 

An exact solution is obtained for thickness-shear vibrations of a rotated Y-cut quartz 

plate in contact with a fluid driven by a lateral electric field. An approximate expression 

for the frequency shifts due to the fluid is presented. It includes the classical result in [1] 

as a special case. The fluid density and viscosity tend to lower the frequencies of the 

crystal plate. Higher-order modes are less sensitive to the fluid than lower-order modes. 

The relative frequency shift is of the order of 410 . The results obtained are fundamental 

and useful for the understanding and design of quartz crystal fluid sensors driven by 

lateral electric fields.  
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5.   Frequency Shifts in a Quartz Crystal Plate under Separated Electrodes in 

Contact with a Fluid Layer with a Finite Thickness 

5.1 Introduction 

Since the missing electrodes on the sensing surfaces, the LFE sensors can provide 

good sensitivities on the mechanical properties of the fluid. Furthermore, several 

researchers [1, 2] indicate the LFE sensors are sensitive to the liquid electrical property, 

such as the permittivity. But in the previous chapter, we cannot find the effect of the 

liquid electrical property on the frequency shift.  

In the real device, the applied electrical field cannot be ideal and homogeneously 

distributed within the entire quartz plate. As both the two electrodes are on the reference 

surface and only the sensing surface contacts the liquid layer, the electrical field lines, 

penetrating into the quartz plate and the liquid layer, also have an x2-directed component, 

but very small [3]. This resembles the traditional thickness electric field excitation, but 

the liquid layer contacts the sensing surface directly. Therefore, a model of TFE sensor 

with one electrode separated is introduced to qualitatively describe the effect of the liquid 

permittivity on the frequency shifts in a real LFE liquid sensor. 

5.2 Fields in different regions 

 Consider the structure shown in Fig. 5.1 which is unbounded in the x1 and x3 

directions. The crystal plate is of rotated Y-cut quartz which includes the widely used 

AT-cut quartz as a special case. The fluid is a linear Newtonian fluid. Whether the fluid is 



68 

 

compressible or not does not matter because the motion to be considered is a pure shear 

without volume change. One electrode is at the top of the fluid layer. Another electrode is 

at the bottom of the crystal plate. Since the mechanical effects of an electrode (or a mass 

layer) on the crystal surface including inertia and stiffness are well understood [4, 5], in 

this chapter we focus on the mechanical and electrical effects of the fluid and assume that 

the electrodes are very thin so that their mechanical effects can be neglected. A time-

harmonic driving voltage )exp( tiV   is applied across the electrodes. We consider time-

harmonic motions and use the usual complex notation. All fields have the same )exp( ti  

factor which will be dropped in the following for simplicity. 

 

 

 

Fig. 5.1 A crystal plate with a fluid under a separated electrode 
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5.2.1 Fields in the fluid 

The fluid is assumed to be without electromechanical coupling. For motions 

independent of x1 and x3, its electric and mechanical fields are governed by 

,

,

,0

2,2

22
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                                                                        (5-1) 

and [6] 
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                                                                      (5-2) 

respectively. ε, μ, and ρL are the dielectric constant, viscosity, and mass density of the 

fluid. Dielectric losses in the fluid can be represented by a complex ε [7-9]. v1 and T21 are 

the relevant velocity and shear stress components. (5-1) and (5-2) allow the following 

fields: 
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where C1 through C4 are integration constants, and  
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The free charge Qe per unit area of the electrode at Hbx 2 , the current I per unit area 

that flows into this electrode, and the admittance Y per unit electrode area of the structure 

are given by 
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5.2.2 Fields in the crystal plate 

Due to the specific anisotropy of Rotated Y-cut [10], under the given driving voltage, 

the plate vibrates in thickness-shear motions with 

)exp()(,0),exp()( 232211 tixuutixuu   .                                (5-7) 

The nontrivial components of the strain, electric field, stress, and electric displacement 

components are [10] 

2,22,112 ,2  EuS ,                                                            (5-8) 
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The equation of motion and the charge equation of electrostatics take the following form: 
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(5-10)2 can be integrated to yield  
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where C7 and C8 are integration constants. Substituting (5-11) into the expression for T21, 

D2, and (5-10)1, we obtain 
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The general solution to (5-13), the corresponding expression for the electric potential, and 

the relevant shear stress and electric displacement components are  

     bxCbxCu  26251 cossin   ,                                         (5-15) 

         8272625

22

26 cossin CbxCbxCbxC
e

 


 ,                         (5-16) 
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7222 CD  ,                                                                    (5-18) 

where C5 and C6 are integration constants, and 
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5.3 Boundary and continuity conditions  

The top of the fluid layer is traction-free and has the prescribed electric potential 
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At the interface between the fluid and the crystal plate, we have the continuity of the 

velocity, electric potential, shear stress, and normal electric displacement: 
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The bottom of the crystal plate is traction-free and grounded: 
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Substitution of the relevant fields into (5-20)-(5-22) gives the following eight equations 

for C1 through C8:  
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5.4 Free and forced vibrations 

In (5-23) V is the only driving term. For free vibrations we set V=0 and (5-23) 

becomes homogeneous. For nontrivial solutions the determinant of the coefficient matrix 

of (5-23) has to vanish, which gives the following frequency equation: 
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where )/( 6622

2

26
2
26 cek  .  

If we neglect the piezoelectric coupling in (5-24) by setting 02
26 k  (in this case 

6666 cc  ) and consider the limit when H , (5-24) reduces to 
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which is the frequency equation in [11].  
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On the other hand, if we neglect the drag due to fluid viscosity by setting  =0, the 

right-hand side of (5-24) vanishes and the left-hand side can be factored into two 

equations. One is simply 0)sin( b  which is not of interest because in the special case of 

H=0 this equation determines modes that are essentially symmetric about 02 x  which 

cannot be excited by a thickness electric field. What is used in devices is the other 

equation which can be written as 



















b
H

k
b

2

)cot(
22

2
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which agrees with [12] for a crystal plate with an air gap under a separated electrode. 

Modes determined by (5-26) are essentially antisymmetric about 02 x  and can be 

excited by a thickness electric field. (5-26) shows that in this case the fluid thickness and 

dielectric constant affect the resonant frequencies of the crystal plate. Quartz has a small 

piezoelectric coupling. For approximate solutions to (5-26), we neglect the small 

piezoelectric coupling coefficient, 2
26k ,  in (5-26). In this case (5-26) has simple roots of  

2/ nb , n=1, 3, 5, … .                                                       (5-27) 

Corresponding to (5-27), from (5-19) we obtain the following frequencies for TSh 

vibrations of a crystal plate without piezoelectric coupling as our reference frequencies: 
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We now turn back to (5-24). Consider the case of a low viscosity fluid, we look for 

approximate roots of (5-24) by letting  

)(

2
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
 .                                                                   (5-29) 

Substituting (5-29) into (5-24), for small piezoelectric coupling and small viscosity, we 

obtain  
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 . With )(n  known from (5-30), from (5-19) we obtain the 

relative frequency shift as 
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(5-32) shows that higher-order modes with larger n have smaller frequency shifts. )(
1
n  

is due to the piezoelectric coupling in the crystal and the dielectric effect of the fluid. 
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)(
2
n  is due to the density and viscosity of the fluid. (5-32)2 is more general than the 

classical result in [11] by including the effects of H. When H= , (5-32)2 reduces to  
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When n=1, the real part of (5-33) gives the classical result of [11] for the frequency shift 

of the fundamental TSh mode in a crystal resonator due the contact with a viscous fluid.  

For forced vibrations (5-23) is nonhomogeneous. Under a real driving frequency the 

coefficient matrix does not vanish. A solution always exists, is unique, and can be 

obtained directly on a computer.  

5.5 Numerical results 

Consider a resonator with 6
0 109  1/s and H=2b unless otherwise stated. The 

fluid is ethanol mixed with toluene, chloroform, or water. We plot )(
1
n  versus the 

ethanol volume fraction for n=1 and 3 in Fig. 5.2 (a) and (b), respectively. The frequency 

shift of the mode with n=1 is an order of magnitude larger than that of the mode with 

n=3.  
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(a)  

 

(b) 

Fig. 5.2 
)

1
n（

  versus the volumn fraction of ethanol. (a) n=1; (b) n=3 

  



78 

 

Fig. 5.3 shows )(
2
n  versus the ethanol volume fraction for n=1 and 3 in (a) and (b), 

respectively. Again the frequency shift of the mode with n=1 is larger than that of the 

mode with n=3. Comparing Fig. 5.3 with Fig. 5.2, we see that the frequency shifts due to 

the fluid viscosity and density in Fig. 5.3 is an order of magnitude smaller that that due to 

piezoelectric coupling of the crystal and the dielectric constant of the fluid. 
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(a)  

 

(b) 

Fig. 5.3 )(
2
n

  versus the volumn fraction of ethanol. (a) n=1; (b) n=3 
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Fig. 5.4 Effects of fluid dielectric constant on )1
1
（

  

 

Fig. 5.4 is for the case when the fluid is 100% ethanol. To examine the effects of the 

fluid dielectric constant individually, we artificially vary the parameter and plot the result. 

The fluid dielectric constant lowers the frequency monotonically. The frequency is 

relatively more sensitive to the fluid dielectric constant when it is small.  
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 Fig. 5.5 is also for the case when the fluid is 100% ethanol. We artificially vary the 

fluid density or viscosity separately. They lower the frequency as expected. These curves 

are simple and are convenient for viscosity or density sensing. 
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(a) 

 

(b) 

Fig. 5.5 Effects of fluid density (a) and viscosity (b) on )1
2

（
  
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Fig. 5.6 shows the effect of the fluid layer thickness for different volume fractions of 

ethanol in ethylene glycol. )1(
1  in (a) approaches a constant for large H. It is not 

sensitive to the volume fraction. )1(
2  approaches a constant much quicker and it is 

sensitive to the volume fraction. For small H, || )1(
2  increases with H essentially 

linearly. Before it saturates, it reaches a maximum that is slightly larger than the 

saturation. 
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(a) 

 

(b) 

Fig. 5.6 Effect of fluid layer thickness on )1
1
（

  (a) and )1
2

（
  (b) for different volume 

fractions of ethanol in ethylene glycol 
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Fig. 5.7 is from the forced vibration analysis. It shows the admittance per unit plate 

surface area of the structure for different volume fractions of ethanol in toluene. (a) 

shows an isolated resonance which is ideal for resonant acoustic wave sensors. (b) is a 

magnified picture of (a) locally near resonance. When the volume fraction of ethanol 

increases from 0 to 100%, Fig. 5.7 (b) shows that the corresponding frequency change is 

of the order of 10
-3

. With a frequency resolution of 10
-5

, the ethanol concentration can be 

determined with an accuracy of 1%.  

In the above figures, the relative frequency shift is of the order of 10
-4

 to 10
-3

 in 

general. This is considered strong and clear signals because typical thermal noises in 

quartz resonators are of the order of 10
-6

.  
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(a) 

 

 (b) 

Fig. 5.7 Admittance for different volume fractions of ethanol in toluene (TFE) 
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5.6 Conclusion 

An exact solution is obtained for thickness-shear vibrations of a rotated Y-cut quartz 

plate in contact with a fluid driven by a thickness electric field. An approximate 

expression for the frequency shifts due to the fluid is presented. The expression contains 

two parts. One is exactly what we got in last chapter and includes the classical result in 

[11] as a special case. The other is related to the permittivity of the fluid. The fluid 

permittivity, density and viscosity tend to lower the frequencies of the crystal plate. The 

frequency shift caused by the fluid permittivity is approximately one-order larger than the 

frequency shift caused by the fluid density and viscosity. These results show the same 

tendency given by the experimental results in [1]. Furthermore, the higher-order modes 

are less sensitive to the fluid than lower-order modes. The results obtained are 

fundamental and useful for the understanding and design of quartz crystal fluid sensors 

driven by lateral electric fields.  
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6.   Propagation of Shear-horizontal Waves in a Quartz Crystal Plate Carrying a 

Fluid Layer of Finite Thickness 

6.1 Introduction 

Certain shear modes in plates called thickness-shear (TSh) are widely used for fluid 

sensor applications [1-3]. Theoretically these modes can only exist in unbounded plates 

without edge effects. In these modes, motions of material particles are parallel to the 

surfaces of the plates, and particle velocities only vary along the plate thickness direction, 

without in-plane variations. From the viewpoint of wave propagation, TSh modes in a 

plate are waves propagating along the thickness direction of the plate and are bounced 

back and forth between the surfaces of the plate. The wave vector is parallel to the plate 

thickness direction, and the in-plane wave numbers are zero or the in-plane wave lengths 

are infinite. These TSh waves or modes are the idealized operating modes of many 

acoustic wave devices.  

In reality, however, due to the finite size of devices, pure TSh modes cannot exist 

because of edge effects. Therefore, in real devices, usually the operating modes are in 

fact related to waves whose wave vectors have a small in-plane component. These waves 

have been referred to as essentially TSh waves, or transversely varying TSh waves. In the 

case when the transverse variation is in a direction perpendicular to the TSh particle 

velocity, the corresponding waves are called thickness-twist (TT) waves. These 

transversely varying waves are long waves in plates whose in-plane wave lengths are 

much larger than the plate thickness. Both stationary waves in resonators and propagating 
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waves in waveguides have been used for resonators and sensors. Understanding the 

behavior of long waves in plates is fundamentally important to plate acoustic wave 

devices.  

The propagation of waves in crystal plates, elastic or piezoelectric, has been an 

active research subject for a long time [4-9]. In particular, waves in plates in contact with 

a fluid have been studied for fluid sensor applications, e.g., [10, 11]. Due to material 

anisotropy, modeling of crystal devices using the three-dimensional (6-3D) theory of 

elasticity or piezoelectricity usually involves considerable mathematical difficulties. In 

fluid sensor applications, this is further complicated by the fluid-structure interaction. 

Although long equations for determining the wave dispersion relations can often be 

formulated, they are typically involved with transcendental equations with multi-valued 

solutions and complex roots. Therefore numerical searches for the roots of the frequency 

equations are usually needed which still present various challenges even today with high 

speed computers. Sometimes some of the roots are missing. Once the roots are found it 

may be difficult to determine which roots are on the same dispersion curve because of the 

presence of many branches of them, especially in the high frequency range when the 

roots are crowded.  

In this chapter we use Mindlin’s first-order plate equations to study certain SH waves 

in a crystal plate in contact with a viscous fluid layer. In addition to pure TSh modes, we 

are interested in the propagation of long waves and how they are affected by the presence 

of the fluid. The use of 2D plate equations simplifies the problem and allows us to obtain 
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some simple and fundamental analytical results useful to the understanding and design of 

plate wave fluid sensors.  

6.2 Two-dimensional plate equations 

The equations for crystal plates vary considerably according to the symmetry of the 

crystals. Quartz is a crystal widely used for acoustic wave devices. Therefore we focus on 

quartz in the following. Quartz has very weak piezoelectric coupling. For frequency 

analysis the small piezoelectric coupling can be neglected and an elastic analysis is 

usually sufficient. This is common practice in the frequency analysis of resonant quartz 

devices. A particular cut of a quartz plate refers to the orientation of the plate when it is 

taken out of an anisotropic bulk quartz crystal. As a consequence quartz plates of 

different cuts exhibit different anisotropies in coordinates normal and parallel to the plate 

surfaces. Rotated Y-cut quartz plates are effectively monoclinic. They include the most 

frequently used AT-cut quartz plates as a special case. In this section we summarize the 

2D plate equations for rotated Y-cut quartz [12, 13]. 
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Fig. 6.1  A crystal plate with a fluid layer 

Consider such a plate as shown in Fig. 6.1. It is in contact with a Newtonian fluid 

layer of thickness H. For rotated Y-cut quartz plates, shear-horizontal or antiplane 

motions with only one displacement component are allowed by the linear theory of 

anisotropic elasticity. These motions are particularly useful in device applications. They 

are described by  

0),,,( 323211  uutxxuu ,                                                   (6-1) 

where u is the displacement vector.  u1 is governed by [14] 

123,15633,15522,166 2 uucucuc  .                             (6-2) 

Exact solutions to (6-2) can be attempted for relatively simple problems. Due to c56, 

solving (6-2) is not easy and the results are usually complicated. (6-2) includes all SH 

modes. Since an acoustic wave device usually operates with a particular mode, it is 

simper to use 2D plate equations which describe the modes of interest only. The ideal 

operating mode is TSh which does not have x1 and x3 dependence. The variation of 

x2 

x3 

H 

b 
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these modes along x1 has been reasonably well understood. Therefore this chapter is 

concerned with the x3 dependence only without the x1 dependence, the so-called 

straight-crested waves or modes. For straight-crested SH motions, the displacement 

field of the first-order plate theory is approximated by [12, 13] 

),(),(),,( 3
)1(

123
)0(

1321 txuxtxutxxu                                                (6-3) 

where ),( 3
)0(

1 txu is the face-shear (FS) displacement, and ),( 3
)1(

1 txu  is the fundamental TT 

displacement. When ),( 3
)1(

1 txu  is independent of x3, it reduces to the fundamental TSh 

which is the ideal mode of an infinite plate. Both )0(
1u  and )1(

1u  have tangential surface 

displacements only and are very useful for fluid sensor application. They are governed 

by the following plate equations of motion [12, 13]: 

)0(
1

)0(
1

)0(
3,31 22 ubbTT  ,                                      (6-4a) 

)1(
1

3
)1(

1

3
)0(

21
)1(
3,31

3

2

3

2
u

b
T

b
TT  .                    (6-4b) 

The plate resultants )0(
31T , )0(

21T  and )1(
31T  represent plate internal forces and moments. They 

are related to the plate displacements )0(
1u  and )1(

1u  by the following constitutive relations 

[12, 13]: 

)(2
)1(

1561
)0(

3,155
)0(

31 ucucbT  ,                         (6-5a) 

)(2
)1(

166
2
1

)0(
3,1561

)0(
12 ucucbT   ,              (6-5b) 
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2 )1(
3,35

)1(
3,155

3
)1(

31   u
b

T ,               (6-5c) 
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where pqc  is the usual elastic stiffness, 5555 /1 s , and pqs  is the elastic compliance. 
1  

in the above equations is a shear correction factor [12, 13] which will be determined later. 

The mechanical surface loads in (6-4) are defined by 

      

       ,
2

3

,
2

1

21213

1
1

2121
0

1









bbTbbT
b

T

bTbT
b

T

                                                  (6-6) 

where b  is the lower limit of b. Substitution of (6-5) into (6-4) gives two equations for 

)0(
1u  and  )1(

1u :  

)0(
1

)0(
1

)1(
3,1561

)0(
33,155 uTucuc   ,                               (6-7a) 

)1(
1

)1(
1

)1(
166

2
1

)0(
3,1561

2)1(
33,155 )(3 uTucucbu   

.                                      (6-7b) 

Clearly, c56 causes the coupling between )0(
1u  and )1(

1u . Therefore a coupled analysis is 

necessary. (6-7) has spatial derivatives with respective to x3 only but not x2 due to the 

plate approximation, and therefore is much simpler than (6-1). 

6.3 Thickness-shear vibration 

The shear correction factor 
1  in the plate equations in the previous section is 

determined by requiring the resonant frequencies of the fundamental TSh mode 

calculated from the 3D exact equations and the 2D plate equations to be the same [12, 

13]. The relevant 3D solution was given in Chapter 4. In this section we calculate the 2D 

solution and determine 
1 .  
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Consider the unbounded plate in Fig. 6.1. Whether the fluid is compressible or not 

does not matter because the motion to be considered is a pure shear without volume 

change. For time-harmonic motions we use the usual complex notation. All fields have 

the same )exp( ti  factor which will be dropped later for simplicity. 

6.3.1 Fluid 

The equation of motion for the fluid is [15] 

12,2 1 vT L
 ,                                                                      (6-8) 

where the shear stress is given by  

2

1
21

x

v
T




   .                                                                     (6-9) 

  and ρL are the viscosity and mass density of the fluid. v1 and T21 are the relevant 

velocity and shear stress components. The velocity field can be determined as  

          ,1cosh1sinh 22211 bxiCbxiCv                                 (6-10) 

where C1 and C2 are undetermined constants, and  






2

L .                                                                       (6-11) 
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The shear stress needed for boundary and continuity conditions is 

            bxiCbxiCiT  222121 1sinh1cosh1  .                       (6-12) 

6.3.2 Crystal Plate 

 For thickness vibrations independent of x3, with the use of (6-6), (6-7) reduces to 

      
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                               (6-13) 

The bottom of the plate surface is traction free, with 0)(21  bT . At the top of the plate 

the shear stress is continuous, i.e., )()( 2121
  bTbT  where b  is the upper limit of b. 

With these (6-13) becomes  

   

     .
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                                         (6-14) 

We let 

    )exp(),exp( 4
1

13
0

1 tiCutiCu                                              (6-15) 

where C3 and C4 are undetermined constants.  
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6.3.3 Boundary and Continuity Conditions 

At the top of the fluid layer, we have the following traction-free condition: 

  021  HbT .                                                                     (6-16) 

At the interface between the crystal plate and the fluid, we have the continuity of particle 

velocity: 

  bvubu 1
)1(

1
)0(

1
  .                                                               (6-17) 

Substituting the relevant fields in (6-10), (6-12), and (6-15) into (6-14), (6-16) and (6-17) 

results in four linear and homogeneous equations for C1 through C4: 

     

 

    .06213

,021
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22
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432

21
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
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







                                            (6-18) 

For nontrivial solutions the determinant of the coefficient matrix of (6-18) has to vanish, 

which gives the following frequency equation: 

 
  Hi

b
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 

















 1tanh4
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66
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1

2

66
2
12

.                             (6-19) 

6.3.4 Correction Factor 

The exact fundamental TSh frequency from the 3D equations when the fluid is not 

present is given by [16] 
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


 66

0
2

c

b
 .                                                                (6-20) 

When the plate is in contact with a low viscosity fluid layer, the fundamental TSh 

frequency is approximately given by Chapter 4 

)1(0  ,                                                               (6-21) 

where 

])1tanh[(
2

1
0

66

0 Hi
c

i L 








 ,                                          (6-22) 

)2/(00  L .                                                              (6-23) 

Substitution of (6-21) into (6-19) determines 

  1
12

2
2
1


 .                                                        (6-24) 

We note that (6-24) is complex. Its real part is a frequency shift. Its negative part 

represents damped modes due to viscosity.  

6.4 Propagation of face-shear and thickness-twist waves 

With 
1  determined, the plate equations are ready to be used to study propagating 

waves in the plate which is the main purpose of this chapter. We begin with coupled FS 

and TT waves and then examine uncoupled long FS and long TT waves separately. 
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6.4.1 Coupled waves 

For propagating waves with both x2 and x3 dependence, the equations for the fluid 

are 

.,

,
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1
31

2
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21

13,312,21

x
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T
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vTT L


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 

                                                       (6-25) 

Substituting the stresses into the equation of motion gives  

133,122,1 )( vvv L
   .                                                             (6-26) 

We consider the following propagating waves: 
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11 exp2cosh2sinh  ,    (6-27) 

where C1 and C2 are undetermined constants, and (6-11) is still valid. For propagating 

waves in the crystal plate, we have 
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                        (6-28) 

At the top of the fluid layer the traction-free boundary condition in (6-16) still holds. The 

continuity of velocity at the top of the plate surface given by (6-17) is also still valid. Let 

     txiCutxiCu   34
)1(

133
)0(

1 exp,exp ,                                   (6-29) 



100 

 

where C3 and C4 are undetermined constants. Substitution of (6-27) and (6-29) into (6-16), 

(6-17) and (6-28) yields the following four linear and homogeneous equations for C1 

through C4: 

 
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                    (6-30) 

For nontrivial solutions the determinant of the coefficient matrix has to vanish, which, 

together with (6-11), gives the flowing frequency equation that determines the dispersion 

relation of   versus ζ: 
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In device applications usually long waves with a small or infinitesimal ζ are used. 

Therefore we expand the relevant terms in (6-31) into power series of ζ and neglect 

powers higher than two. Then (6-31) can be written as 

0)()( 2   GF ,                                                            (6-33) 
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where  
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                          (6-35) 

In the special case when the fluid is not present, for thickness modes with ζ=0, (6-33) 

determines two frequencies of 0 and 0 . For small but nonzero values of ζ, (6-34) 

determines two dispersion relations for FS and TT waves. The FS branch goes through 

the origin ),(  = )0,0( . The TT branch has a finite intercept at ),(  = )0,( 0  and 0  is 

called the cutoff frequency below which the TT wave becomes exponential in x3 and 

cannot propagate. When the fluid is present, for low-viscosity fluids, we expect the two 

branches are modified slightly and discuss them separately below. 

6.4.2 Long FS Waves 

For the FS branch, when ζ is small, ω is also small and is of the same order (see [17] 

for the case when the fluid is not present). In this case, neglecting higher powers of ω, (6-

34) can be approximated by 
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where the effect of the fluid is represented by the second term on the right-hand side. 

When the fluid is not present and the crystal plate is alone, denoting the wave frequency 

by 
Plate , (6-36) reduces to the following known dispersion relation for long FS waves 

[17]: 
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c

ccc
,                                                      (6-37) 

which is nondispersive. An immediate observation is that the second term on the right-

hand side of (6-36) makes the waves dispersive. For numerical results an AT-cut quartz 

plate with b=1mm is used, which is a typical thickness for quartz devices. For the fluid 

we choose as an example chloroform with 33kg/m101.483L  and a relatively low 

viscosity of s0.542mPa  (smaller than the viscosity of water). We consider real 

frequencies and solve (6-36) for complex wave numbers. For figure plotting we introduce 

the following dimensionless frequencies and wave number: 

       iYX
b


)2/(

,,
0

Plate
Plate

0 










.                                     (6-38) 

Long waves are described by small values of the real part Z.  

Figure 2 shows the effect of viscosity on the dispersion relation of long FS waves. 

The viscosity of chloroform is artificially varied while other parameters are fixed. Fig. 

6.2 (a) shows a fundamental and qualitative effect of the fluid viscosity which changes 
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the dispersion curve from real to complex indicating attenuation due to fluid viscosity, 

and from a straight line to a curve showing dispersion. Fig. 6.2 (b) shows the real part of 

the dispersion relation which is essentially linear and hence the fluid induced dispersion 

is small. Fig. 6.2 (c) shows the difference between the real part of (6-36) and (6-37), in 

which the fluid induced dispersion becomes visible. It can be seen from Fig. 6.2 (c) that, 

although long waves are usually used in real devices, the frequency shift is larger when 

the wave number X is larger or the wave is shorter. This is because shorter waves have 

lager velocity gradients in the x3 direction and hence a larger viscous stress T31. Fig. 6.2 

(c) also shows that the fluid lowers the frequency, and higher viscosity causes more 

frequency shift. The relative frequency shift is of the order of 10
-5

 which is considered a 

significant frequency change because the thermal noise in crystal resonators is typically 

of the order of 10
-6

. Therefore a 10
-5

 frequency shift is a clear and measurable signal. Fig. 

6.2 (d) shows the imaginary part of the complex wave number. It is positive, representing 

attenuation for the right-traveling waves given in (6-29). For a fixed frequency, higher 

viscosity causes larger attenuation.  
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(a)                                                                           (b) 

 

(c)                                                                            (d) 

Fig. 6.2 Effects of fluid viscosity on FS waves, H=2b. 

  



105 

 

Figure 3 shows the effect of the fluid density. The behaviors in Fig. 6.3 are similar to 

those in Fig. 6.2. This is as expected because, as shown in (6-22), the fluid viscosity and 

density appear together in a product in the first-order approximation of the frequency 

shift. In a typical application, one needs to know either the fluid density or viscosity and 

then uses an acoustic wave fluid sensor to measure the other. How to separate the density 

from viscosity still remains a challenging problem in acoustic wave fluid sensors. 
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(a) (b) 

 

(c)                                                                            (d) 

Fig. 6.3 Effects of fluid density on FS waves, H=2b. 
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Figure 4 shows the effect of the fluid layer thickness H. The cases of H=0.5b and 

H=1b are indistinguishable in the figure. In this case effectively the fluid layer can be 

treated as a semi-infinite half space. The frequency shift is an increasing function of H for 

small H only (Chapter 4). When H reaches a certain value, there exists a maximal 

frequency shift after which the frequency shift decreases with H (Chapter 4). What is 

shown in Fig. 6.4 (c) is the case when a larger H has a smaller frequency shift. 
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(a)                                                                    (b) 

 

(c)                                                                    (d) 

Fig. 6.4 Effects of fluid layer thickness on FS waves (H=0.5b and H=1b overlap). 
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6.4.3 Long TT Waves 

For the TT branch, when ζ is small, ω is finite. In this case, we denote 

  10 ,                                                                        (6-39) 

where  is small. Substituting (6-39) into (6-31), for small , we obtain 
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In (6-41), for low-viscosity fluids, since B1 and B2 are always multiplied with A1 or A2 

which depend on μ, B1 and B2 have been approximated by 

       02
0
201

0
1 ,  BBBB  .                                                (6-42) 

(6-40) shows that locally, near cutoff, the dispersion curve can be approximated by a 

parabola and therefore long TT waves are dispersive. When 0 , (6-40) reduces to 
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 ,                                                           (6-43) 

which is complex. Numerical results for the effects of fluid viscosity, density, and layer 

thickness on long TT waves are shown in Figs. 5, 6, and 7, respectively. When there is no 

fluid, part of the dispersion curve of TT waves is real and the rest is pure imaginary. The 

dispersion curve does not go through the origin. It has a finite intercept with the Ω axis 

which is the cutoff frequency. The basic effects of the fluid on long TT waves are similar 

to the case of FS waves. The dispersion curve becomes complex. TT waves are with 

higher frequencies than FS waves and therefore decay faster in the fluid.  
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(a) 

 

(b) 

Fig. 6.5 Effects of fluid viscosity on TT waves, H=2b. 
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(a) 

 

(b) 

Fig. 6.6 Effects of fluid density on TT waves, H=2b. 

  



113 

 

 

(a) 

 

(b) 

Fig. 6.7 Effects of fluid layer thickness on TT waves (H=0.005b and H=0.02b overlap). 
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6.5 Conclusion 

Analytical solutions are obtained for TSh modes and FS as well as TT waves in a 

crystal plate carrying a viscous fluid layer. Approximate expressions for frequency shifts 

and dispersion relations are presented. The frequencies and dispersion relations become 

complex due to the fluid, indicating damped modes and waves with attenuation. The fluid 

viscosity and density lower the frequencies together in a combined manner, causing 

(additional) dispersion. Shorter waves tend to have larger frequency shifts. Long FS 

waves become dispersive due to the fluid. Typical relative frequency shifts are of the 

order of 10
-5

 which is detectable by crystal resonators and waveguides. The results 

obtained are fundamental and useful for the understanding and design of quartz crystal 

fluid sensors.  
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7.   Propagation of Shear-horizontal Waves in a Piezoelectric Plate in Contact with a 

Semi-infinite Fluid 

7.1 Introduction 

In this chapter we use Mindlin’s first-order plate equations to study shear-horizontal 

(SH) or antiplane waves in a piezoelectric plate in contact with a semi-infinite viscous 

fluid. The analysis applies to both quartz and langasite because they have the same 

crystal symmetry. In addition to pure TSh modes, we are interested in the propagation of 

long waves and how they are affected by the presence of the fluid. In the frequency range 

of interest, there are two coupled SH waves. One is the TT wave and the other is called a 

face-shear (FS) waves. The use of 2D plate equations simplifies the problem and allows 

us to obtain some fundamental results analytically. These results are useful to the 

understanding and design of plate wave fluid sensors.  

7.2 Two-Dimensional Plate Equations 

The equations for piezoelectric plates vary considerably according to the symmetry of 

the crystals. A particular cut of a crystal plate refers to the orientation of the plate when it 

is taken out of an anisotropic bulk crystal. As a consequence crystal plates of different 

cuts exhibit different anisotropies in coordinates normal and parallel to the plate surfaces. 

The widely used rotated Y-cut plates of quartz and langasite are effectively monoclinic. 

In this section we summarize the 2D plate equations for rotated Y-cut quartz and 
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langasite [1]. Consider such a plate as shown in Fig. 7.1. It is in contact with a semi-

infinite Newtonian fluid.  

 

Fig. 7.1 A piezoelectric plate in contact with a semi-infinite fluid 

 

For monoclinic piezoelectric crystals, SH or antiplane motions with only one 

displacement component are allowed by the linear theory of piezoelectricity [2]. These 

motions are particularly useful in device applications. They are described by  
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where u is the displacement vector and   is the electric potential. u1 and   are governed 

by [2] 
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There are many waves governed by (7-2). In the frequency range from zero to slightly 

above the most widely used fundamental TSH frequency, the displacement and potential 

fields are approximated by [1] 
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123
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                                              (7-3) 

where ),( 3
)0(

1 txu is the FS displacement, and ),( 3
)1(

1 txu  is the fundamental TT 

displacement with one nodal point only along the plate thickness. When ),( 3
)1(

1 txu  is 

independent of x3, it reduces to the fundamental TSh mode which can exist in an infinite 

plate only. Both )0(
1u  and )1(

1u  have tangential surface displacements only and are ideal 

useful for fluid sensor application. )0(
1u , )1(

1u , 
)0(  and )1(

1  are governed by the 

following plate equations of motion and electrostatics [1]: 
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 The plate mechanical resultants )0(
31T , )0(

21T  and )1(
31T  as well as the plate electric resultants 

)0(
3D , )0(

2D  and )1(
3D  in (7-4) are related to the plate displacements )0(

1u  and )1(
1u  as well as 

electric potentials )0(  and )1(  by the following constitutive relations [1]: 
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where )( E
pqpq cc  , ipe , and )( S

ijij    are the usual elastic stiffness, piezoelectric constants, 

and dielectric constants. The other material constants in (7-5) are defined by 
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where )( E
pqpq ss   is the elastic compliance and ipd  is another set of piezoelectric 

constants different from but related to ipe  [2]. 
1  in the above equations is a shear 

correction factor [1] which will be determined later. The mechanical and electric surface 

loads in (7-4) are defined by [1] 
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where b  is the lower limit of b. Substitution of (7-5) into (7-4) gives four equations for 
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(7-8a) and (7-8b) describe the so-called straight-crested waves propagating in the x3 

direction without x1 dependence. (7-8c) and (7-8d) are from electrostatics. They do not 

describe waves but will affect the wave frequencies through piezoelectric coupling. 

Clearly, c56 causes the coupling between )0(
1u  and )1(

1u . Therefore a coupled analysis of 

FS and TT is necessary no matter which one we are interested in. (7-8) has spatial 

derivatives with respective to x3 only but not x2 due to the plate approximation and 

therefore is much simpler than (7-1). 

7.3 Thickness-Shear Vibration 

The shear correction factor 
1  in the plate equations in the previous section is 

determined by requiring the resonant frequencies of the fundamental TSh mode 

calculated from the 3D equations of piezoelectricity and the 2D equations of piezoelectric 

plates to be the same. The 3D solution was given in Chapter 4. In this section we 

calculated the 2D solution and determine 
1 . Consider the plate in Fig. 7.1. Whether the 
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fluid is compressible or not does not matter because the motion to be considered is a pure 

shear without volume change. We consider time-harmonic motions and use the usual 

complex notation. All fields have the same )exp( ti  factor which will be dropped in the 

following for simplicity. The electric field in the fluid and the free space is neglected. 

This is a common approximation valid when the dielectric constant of the plate is larger 

than that of the fluid and the free space.  

7.3.1 Fluid 

The equation of motion for the fluid is [3] 

12,2 1 vT L
 ,                                                                      (7-9) 

where the shear stress is given by  
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  and ρL are the viscosity and mass density of the fluid. v1 and T21 are the relevant 

velocity and shear stress components. The velocity field in the fluid is 

    ,1exp 211 bxiCv                                                             (7-11) 

where C1 is an undetermined constant and  
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(7-11) decays from the plate surface into the fluid. The relevant stress component needed 

for boundary and continuity conditions is 

      bxiCiT  2121 1exp1  .                                               (7-13) 

7.3.2 Crystal Plate 

 For thickness vibrations independent of x3, with the use of (7-7), (7-8) reduces to 
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The bottom of the plate surface is traction free with 0)(21  bT . At the top of the plate 

the shear stress is continuous, i.e., )()( 2121
  bTbT  where b  is the upper limit of b. 

Since 02 D  in the fluid and the free space, the continuity of D2 at the plate surfaces 

requires that 0)(2  bD . With these (7-14)3 is trivially satisfied and (7-14)1,2,4 become  
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We let 
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where C2 through C4 are undetermined constants.  

7.3.3 Boundary and Continuity Conditions 

At the interface between the crystal plate and the fluid, we have the continuity of 

particle velocity 

  bvubu 1
)1(
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 .                                                             (7-17) 

Substituting the relevant fields in (7-11), (7-13) and (7-16) into (7-15) and (7-17) results 

in four linear equations for C1 through C4. For nontrivial solutions the determinant of the 

coefficient matrix has to vanish, which gives the following frequency equation: 
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7.3.4 Correction Factor 

The exact fundamental TSh frequency from the 3D equations when the fluid is not 

present was given by [4] 
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When a piezoelectric plate is in contact with a semi-infinite, low-viscosity fluid, the 

fundamental TSh frequency is approximately given by Chapter 4 

)1(0  ,                                                               (7-20) 

where 
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)2/(00  L .                                                              (7-22) 

Substitution of (7-21) into (7-18) determines 

  1
12

2
2
1


 .                                                             (7-23) 

We note that (7-23) is complex. Its real part is a negative frequency shift. Its imaginary 

part represents damped motion due to viscosity.  

7.4 Propagating of FS and TT Waves 

With 
1  determined, the plate equations are ready to be used to study propagating 

waves in the plate, which is the main purpose of this chapter. We begin with coupled FS 

and TT waves and then examine uncoupled long FS and long TT waves separately. 
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7.4.1 Coupled Waves 

For propagating waves with both x2 and x3 dependence, the equations for the fluid 

are 
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Substituting the stresses in (7-24)2 into the equation of motion in (7-24)1 gives  

133,122,1 )( vvv L
   .                                                             (7-25) 

We consider the following propagating wave that already satisfies (7-25): 

  txibxiCv  




  32

22
11 exp)(2exp ,                              (7-26) 

where C1 is an undetermined constant, and (7-12) is still valid. In the square root 

operation in (7-26) the root with a positive real part should be taken for decaying 

behavior at 2x . The stress component needed in the interface condition is given by  
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For propagating waves in the crystal plate, we have 
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where C2 through C5 are undetermined constants.  

Substituting of (7-26)-(7-28) into (7-8) and (7-17), using 0)(2  bD , we obtain five 

linear and homogeneous equations for C1 through C5. For nontrivial solutions the 

determinant of the coefficient matrix of has to vanish, which yields the frequency 

equation that determines the dispersion relations of   versus ζ which is symbolically 

written as 

0),( f .                                      (7-29) 

As a reference, the dispersion curves for the special case when the fluid is not present 

are shown in Fig. 7.2 for quartz in which the dimensionless wave number is defined by 

0


 , iYX

b
Z 

2


 .                       (7-30) 

The curve for the FS waves looks linear and therefore has little dispersion. The curve for 

the TT wave is curved and is clearly dispersive. The TT dispersion curve has a finite 

intercept with the   axis which is the cutoff frequency below which the wave cannot 

propagate. There are two vertical lines. One is at X=Re(Z)=0, the other is at Y=Im(Z) 

slightly larger than 1. These two lines are due to the equations of electrostatics in (7-8c) 

and (7-8d). If we neglect piezoelectric couplings and drop (7-8c) and (7-8d), these two 

vertical lines will disappear. When the fluid is not present, there is no damping in the 

system. The dispersion curves of FS and TT waves are either real or pure imaginary. 
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Fig. 7.2 Dispersion relations for coupled FS and TT waves in a plate alone without fluids. 

 

When the fluid is present, for long waves which are important in applications, we 

expand (7-29) into power series of ζ and neglect powers higher than four. Then (7-29) 

can be approximated by  

0)()( 24   GF ,                                                              (7-31) 
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Next we examine (7-31) for FS and TT waves separately.  

7.4.2 Long FS Waves 

For the FS branch, when ζ is small, ω is also small and is of the same order (see Fig. 

7.2). In this case, neglecting higher powers of ω, (7-31) can be approximated by 
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7   GGF ,                                                       (7-36) 

where the effect of the fluid is represented by the second term. When the fluid is not 

present, denoting the wave frequency by 
Plate , (7-36) reduces to the following known 

dispersion relation for long FS waves [5]: 
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which is nondispersive.  

For numerical results we consider three common crystal plates of AT-cut quartz, Y-

cut langasite, and Y-cut langanite. The plate thickness is fixed with b=1mm which is 

typical for crystal devices. For the fluid we choose, as an example, chloroform with 

33kg/m101.483L  and a relatively low viscosity of s0.542mPa  (smaller than the 

viscosity of water). We consider real frequencies and solve (7-36) for complex wave 

numbers.  
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Figure 3 shows the effect of viscosity on the dispersion relation of long FS waves 

with a small Z. The 0  of quartz is used as a common normalizing frequency. The curves 

for langasite and langanite are close to each other because their material constants are 

close. When the fluid is present, an immediate observation is that the second term of (7-

36) makes the dispersion curves complex in Fig. 7.3 (a), indicating energy absorption in 

the fluid due to viscosity and the related wave attenuation. Fig. 7.3 (b) shows the real 

parts of the dispersion relations which are essentially linear and hence the fluid induced 

dispersion is small. Fig. 7.3 (c) shows the imaginary parts of the dispersion curves which 

are positive, representing attenuation for the right-traveling waves given in (7-28).  
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(a) 

 

(b) 

 

(c) 

Fig. 7.3 Dispersion curves of long FS waves for different materials. 
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Fig. 7.4 shows the effects of the fluid viscosity and piezoelectric coupling on wave 

frequencies through the real parts of the dispersion relations. The results for quartz, 

langasite, and langanite are shown separately in (a), (b), and (c). For each material the 

special case when the plate is alone without the fluid and piezoelectric coupling is used as 

a reference. This special case may be denoted by 0  and e=0 where e represents 

piezoelectric coupling. Since the effects of viscosity and piezoelectric coupling are small, 

the relative frequency shifts from the reference (
Plate ) are shown in the figure. 

The effect of piezoelectric coupling is roughly of the order of 10
-4

. Therefore it should be 

included in the analysis, or it can be experimentally determined through calibration of 

devices. Once the piezoelectric effect is taken into consideration, the effect of viscosity 

on frequency can be used to measure fluid viscosity. The fluid viscosity lowers the 

frequency as expected, whether piezoelectric coupling is considered or not. The relative 

frequency shift due to viscosity is of the order of 10
-5

 which is considered a significant 

frequency change because the thermal noise in crystal resonators is of the order of 10
-6

. 

Therefore a 10
-5

 frequency shift is a clear and measurable signal. As shown in (7-21), the 

fluid viscosity and density appear together in a product in the first-order approximation of 

the frequency shift. In a typical application, one needs to know either the fluid density or 

viscosity and then uses an acoustic wave fluid sensor to measure the other. How to 

separate the density from viscosity still remains a challenging problem in acoustic wave 

fluid sensors.  
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(a) 

 

(b) 

 

(c) 

Fig. 7.4 Effects of viscosity and piezoelectric coupling on long FS waves. 
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7.4.3 Long TT Waves 

For the TT branch, when ζ is small, ω is finite (see Fig. 7.2). In this case, we denote 
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where 0/  is small. Substituting (7-38) into (7-31), for small 0/ , we obtain 
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(7-39) shows that locally, near cutoff, the dispersion curve of TT waves can be 

approximated by a parabola and therefore long TT waves are dispersive.  

Numerical results for long TT waves are shown in Figs. 7.5. When there is no fluid, 

part of the dispersion curve of TT waves is real and the rest is pure imaginary (Fig. 7.5 

(a)). When the fluid is present, the dispersion curves in Fig. 7.5 (b) look the same as those 

in Fig. 7.5 (a). To see the difference we magnify Fig. 7.5 (b) for smaller values of Z and 

show the results in Fig. 7.5 (c). It can be seen from Fig. 7.5 (c) that the dispersion curves 

become complex and do not go through the   axis. We note that when 0  (7-39) 

reduces to 
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which is complex. The last term on the right-hand side of (7-40) depends on 23 , 
33 , and 

36e . Therefore it is related to E3 which is not present in the analysis of TSh modes in 

Section 3. This accounts for the small deviation from 1 when Z=0 in Fig. 7.5 (a). 
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(a) 

 

(b) 

 

(c) 

Fig. 7.5 Dispersion relation of long TT waves. (a) Without fluid. (b) With fluid. (c) With 

fluid (magnified).  
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7.5 Conclusion 

Analytical solutions are obtained for TSh modes and long FS as well as long TT 

waves in a piezoelectric plate in contact with a viscous fluid. Contrasted to Chapter 6, 

this chapter has a simpler fluid layer. Therefore, we consider the electrical coupling in the 

plate. The frequencies and dispersion relations become complex due to the fluid, 

indicating damped modes and waves with attenuation. The fluid viscosity and density 

lower the frequencies together in a combined manner, causing (additional) dispersion. 

Long FS waves become slightly dispersive due to the fluid. The effect of piezoelectric 

coupling is roughly of the order of 10
-4

. As a consequent, it should be included in the 

analysis. Typical relative frequency shifts due to the fluid are of the order of 10
-5

 which is 

detectable by crystal resonators and waveguides. The results obtained are fundamental 

and useful for the understanding and design of quartz crystal fluid sensors.  
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8.   Conclusion 

Since piezoelectrical plates with lateral electrical field as fluid sensors attract more 

and more attentions, the lack of the theoretical research on such plates will be a limitation 

to the development of those fluid sensors. Hence, we did several theoretical analyses on 

the piezoelectrical plates with lateral electrical field.  

When an At-cut quartz plate is under LFE, the dominating displacements are FS and 

TT. Within the first-order plate theory, there is only one resonance for pure thickness 

vibration. For straight-crested waves, the two electrostatic equations contribute to two 

branches in the dispersion relations, in addition to the two branches for FS and TT waves. 

Frequency spectra of finite plates consists of the ―sum‖ of those of FS and TT modes 

with mode veering at the intersections. To avoid strong couplings between FS and TT, 

certain values of the plate length/thickness ratio should be avoided. Mindlin’s first-order 

plate theory is effective in analyzing vibrations of crystal plates under LFE. 

Then, we find that when an AT-cut quartz plate under LFE has partial mass layers, 

there are a finite number of resonances in the frequency range between the cutoff 

frequencies of a plate with mass layers and a plate without mass layers. The motional 

capacitance assumes maxima at these resonances. The corresponding displacement 

distributions show energy trapping, with the vibration mainly in the part of the plate with 

mass layers. The number of trapped modes increases with the length of the mass layers. 

Lower-order modes are trapped better. Due to the coupling to the FS mode which cannot 

be trapped, the vibration can still feel the plate boundary slightly. These results can be 
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utilized in mounting a LFE sensor to avoid the external perturbation introduced by the 

mounts. 

As these plates are used as fluid sensors, an exact solution is obtained for thickness-

shear vibrations of a rotated Y-cut quartz plate in contact with a fluid driven by a lateral 

electric field. An approximate expression for the frequency shifts due to the fluid is 

presented. The fluid density and viscosity tend to lower the frequencies of the crystal 

plate. Higher-order modes are less sensitive to the fluid than lower-order modes. The 

relative frequency shift is of the order of 410 .  

In the real LFE sensors, the electrical field lines, penetrating into the quartz plate and 

the liquid layer, also have an x2-directed component, which makes the real LFE sensors 

sensitive to the fluid electrical property, such as permittivity. We introduced a model of 

TFE sensor with one electrode separated to qualitatively describe the effect of the liquid 

permittivity on the frequency shifts in a real LFE liquid sensor. An exact solution is 

obtained for thickness-shear vibrations of such model in contact with a fluid. An 

approximate expression for the frequency shifts due to the fluid is presented. The 

expression contains two parts. One is exactly what we have in Chapter 4. The other is 

related to the permittivity of the fluid. The fluid permittivity, density and viscosity tend to 

lower the frequencies of the crystal plate. These results show the same tendency given by 

the experimental results. Furthermore, the higher-order modes are less sensitive to the 

fluid than lower-order modes.  
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Finally, we studied the propagation of shear-horizontal waves in a piezoelectric plate 

in contact with a fluid layer as an acoustic wave sensor for measuring fluid viscosity or 

density. Two kinds of fluid layers are applied. One is with finite thickness, and the other 

one is semi-infinite. Approximate dispersion relations for long face-shear and thickness-

twist waves are given analytically. In the first one, the results only show the effects of the 

fluid on wave characteristics. In the other, the results showing the effects of the fluid and 

the piezoelectric coupling in the plate on wave characteristics are presented. Analytical 

solutions are obtained for TSh modes and long FS as well as long TT waves in a 

piezoelectric plate in contact with a viscous fluid. The frequencies and dispersion 

relations become complex due to the fluid, indicating damped modes and waves with 

attenuation. The fluid viscosity and density lower the frequencies together in a combined 

manner, causing (additional) dispersion. Long FS waves become slightly dispersive due 

to the fluid. Typical relative frequency shifts due to the fluid are of the order of 10-5 

which is detectable by crystal resonators and waveguides. Furthermore, the second case 

shows the effect of piezoelectric coupling is roughly of the order of 10
-4

. Therefore it 

should be included in the analysis. The results obtained are fundamental and useful for 

the understanding and design of quartz crystal fluid sensors. 
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Appendix A 

Electroelastic Material Constants 

Material constants of a few piezoelectrics are summarized below. The numerical 

results given in this dissertation are calculated from these constants. 

Permittivity of free space mFaraday /10854.8 12
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AT-cut quartz is special case of rotated Y-cut quartz, whose material constants are [1] 
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00067.00187.0152.0171.0
2mCeip

























 

VmCij /10

42.4086.00

86.082.390

0021.39
12

















 . 
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Langasite 

The material constants of Langasite are [2] 

,/5743 3mkg  

  ,/10

2.4412.10000

412.135.50000

0035.50412.1412.1

00014.26589.9589.9

00412.1589.9875.18475.10

00412.1589.9475.10875.18

210 mNc pq 





































 

,/

000000

44.008.00000

0008.0044.044.0
2mCeip















 



 

VmCij /10

9.44800

05.1670

005.167
12

















 . 
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Langanite 

The material constants of Langanite are [3] 

,/5934 3mkg  

  ,/10

07.435.10000

35.104.50000

0004.5035.135.1

00005.2682.982.9

0035.182.907.1993.10

0035.182.993.1007.19

210 mNc pq 

































 

,/

000000

44.005.00000

0005.0044.044.0
2mCeip























 

.

4.7900

02.200

002.20

0
















ij  

  



146 

 

References 

[1] H. F. Tiersten, ―Linear Piezoelectric Plate Vibrations‖, Plenum, New York, 1969. 

[2] B. P. Sorokin, P. P. Turchin, S. I. Burkov, D. A. Glushkov and K. S. Alexandrov, 

―Influence of static electric field, mechanical pressure and temperature on the 

propagation of acoustic waves in La3Ga5SiO14  piezoelectric single crystals,‖ in: Proc. 

IEEE Int. Frequency Control Symp.,161-169, 1996. 

[3] Yu. V. Pisarevsky, P. A. Senushencov and P. A. Popov B. V. Mill, ―New strong 

piezoelectric La3Ga5.5Nb0.5·O14 with temperature compensation cuts,‖ in: Proc. IEEE 

Int. Frequency Control Symp., 653-656, 1996. 




