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Abstract

The subsurface is spatially heterogeneous in geologic material composition leading to
non-uniform groundwater flow fields. Preferential flow in highly conductive materials
and diffusion into less conductive materials such as silts and clays, commonly present in
alluvial aquifer systems in substantial volume fractions as high as 20 to 80 percent, en-
hance the dispersion, sequestration, and dilution of contaminants. This dissertation eluci-
dates processes affecting groundwater solute migration in highly heterogeneous porous
media, concentrating on (1) the role of diffusion in the dilution and sequestration of con-
taminants in the subsurface, (2) the modeling methods needed to address this phenome-
non, and (3) the implications for natural attenuation of contaminant plumes.

Simulations of contaminant migration and remediation in the alluvial-fan system
of Lawrence Livermore National Laboratory confirm the importance of molecular diffu-
sion in sequestering contaminants due to its role in promoting mass transfer in local- and
field-scale low-permeability zones. Overall transport behavior and efficacy of pump-and-
treat remediation show acute sensitivity to magnitude of effective diffusion coefficient,
particularly within the range of uncertainty as inferred through laboratory studies of sol-
ute diffusion in clays. Simulations reveal an increase in the holdback of mass near source
locations and a decrease in pump-and-treat efficiency with increase in effective diffusion
coefficient. Results help to explain observations of scale-dependent-dispersion phenom-
ena and confirm the well-founded limitations of pump and treat. Further, they emphasize

the importance of characterizing the geologic structure of low-permeability lithologic
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units in assessing the viability of remedial technologies. In light of the need for scientific
justification of natural attenuation phenomena recentiy endorsed as remedial technologies
by the EPA, this research is particularly relevant to groundwater remediation problems
confronting hydrologists and engineers.

Transport simulations are facilitated by new theory and numerical methods to
simulate diffusion processes by random walks in composite porous media, i.e., porous
media in which effective subsurface transport parameters may be discontinuous (step
functions). Discontinuities in effective subsurface transport properties commonly arise
(1) at abrupt contacts between geologic materials (i.e., composite porous media) and (2)
in discrete velocity fields of numerical groundwater-flow solutions. However, standard
random-walk methods for simulating transport and the theory on which they are based
only apply when effective transport properties are sufficiently smooth. Limitations of
standard theory have precluded development of random-walk methods that obey advec-
tion dispersion equations in composite porous media. This problem is solved by general-
izing stochastic differential equations (SDEs) to the case of discontinuous coefficients
and developing random-walk methods to numerically integrate these equations. The new
random-walk methods obey advection-dispersion equations, even in composite media.
The techniques retain many of the computational advantages of standard random-walk
methods, including the ability to efficiently simulate solute-mass distributions and arrival
times while suppressing errors, such as numerical dispersion. The results apply to prob-
lems found in many scientific disciplines and offer a unique contribution to diffusion the-

ory and the theory of SDEs.
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Chapter 1

Executive Summary

This research was motivated by the need to elucidate processes affecting groundwater
solute migration in highly heterogeneous porous media. In particular, the work focuses on
the role of diffusion in the dilution and sequestration of contaminants in the subsurface.
the modeling methods needed to address this phenomena in typical alluvial heterogeneity,
and the implications for natural attenuation of contaminant plumes.
1.1 Background
The subsurface is spatially heterogeneous in geologic material composition leading to
non-uniform groundwater flow fields. Preferential flow in highly conductive materials
and diffusion into less conductive materials such as silts and clays, commonly present in
alluvial aquifer systems in substantial volume fractions as high as 20 to 80 percent, en-
hance the dispersion, sequestration, and dilution of contaminants.

While the diffusion of contaminants into low-conductivity (K) materials can hin-
der active remediation technologies, it may also be an important process in passive reme-
diation by natural attenuation. The EPA recently endorsed natural attenuation, including

dilution and dispersion, as a means of achieving remediation objectives stating that *“natu-
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ral attenuation processes may reduce contaminant mass or concentration at sufficiently
rapid rates to be integrated into a site’s soil or groundwater remedy” [Office of Solid
Waste and Emergency Response (OSWER) Directive 9200.4-17, 1997].

Previous studies (e.g., Gillham et al., 1984; Feenstra et al., 1984; Wilson, et al.,
1993) have demonstrated how diffusion into low-K media natural attenuates the migra-
tion of contaminants. These studies relied on simple models of heterogeneity as surro-
gates of real geologic systems. Hydrologists generally agree, however, that realistic pre-
dictions of solute migration must accounrt for the spatial distribution of geologic materials
in detail. Indeed, the OSWER Directive 9200.4-17 [1997] concluded that “decisions to
employ monitored natural attenuation as a remedy or remedy component should be thor-
oughly and adequately supported with site-specific characterization and data analysis,”
stressing the need for realistic forecasts to scientifically justify natural attenuation phe-
nomena as remedial technologies.

The prospects for realistic site-specific simulations of subsurface transport hinge
on our ability to (1) characterize the subsurface in sufficient detail and (2) accurately
solve equations governing flow and transport on the ensuing immense computational
grids. New geologic characterization methods can now incorporate information from
quantitative and interpretive descriptions of stratigraphic sequences in geostatistical
simulations of facies architecture that honor lithologic data (e.g., Carle [1996] and Carle
et al., [1998]). These new methods have been used successfully to simulate detailed hy-
drostratigraphic sequences that reproduce field observations from well interference tests
[Carle, et al., 1996] and isotopic studies of mean groundwater age [Tompson et al.,

1998].
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Accurate modeling of advection and dispersion in such systems is challenging:
Heterngeneity is highly resolved in three dimensions, often entailing 10° to 10® nodes or
more, and grid Peclet numbers may be as high as 1000 [LaBolle et al., 1996]. Common
numerical techniques for solving advection-dispersion equations (ADEs) include finite
elements, finite differences, and Eularian-Lagrangian methods, such as method of char-
acteristics. All of these techniques suffer from numerical inaccuracies at high grid Peclet
numbers and/or computational inefficiencies that limit their practical application to large
detailed simulations. In contrast, random-walk particle methods (RWPMs) promise com-
putationally efficient and accurate solutions to ADEs [Ahlstrom, et al., 1977; Prickett, et
al., 1981; Uffink, 1988; Tompson et al., 1987; Tompson, 1993; LaBolle, 1996. Tompson,
1998]. In RWPMs, equations governing the movement of particles do not depend directly
on the resolution of the computational grid and do not suffer from numerical inaccuracies
at high grid Peclet numbers. These methods therefore appear ideally suited for solving
ADEs on the immense computational grids of detailed geologic characterizations
[Tompson et al., 1987; LaBolle et al., 1996].

Nevertheless, the distinct computational advantages of standard RWPMs over
other numerical solutions to ADEs have been frequently overstated. RWPMs are based
on the direct numerical simulation of diffusion processes, equations that predict trajecto-
ries (in space) of “‘solute-particles” whose density obeys ADEs. These equations are de-
scribed in diffusion theory, the fundamentals of which were first introduced by Einstein
[1905] in his classic paper on molecular diffusion in liquids and later formalized in prob-
ability theory [Kolmogorov, 1931} and the theory of stochastic differential equations [/t9,

1961]. Standard diffusion theory relies on the assumption that coefficients are sufficiently
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smooth functions of space. Discontinuities in effective transport properties, however,
arise (1) naturally in the subsurface at abrupt transitions between geologic materials (i.e.,
composite porous media) and (2) artificially on computational domains, discretized for
numerical solution of groundwater flow equations. Previously, the limitations of standard
diffusion theory precluded development of diffusion processes, and therefore RWPMs,
that obey ADEs in composite media.

The use of numerical models to elucidate processes affecting groundwater solute
migration in highly heterogeneous porous media demands highly-accurate and efficient
modeling methods. The apparent lack of such methods for solving ADEs has hindered
accurate simulation of transport in detailed geologic characterizations, key to realistic
forecasts of subsurface contaminant migration and to scientific justification of dilution
and dispersion phenomena in support of remediation by natural attenuation.

1.2 Research Scope

The specific goal of this research was to explore the role of diffusion in the natural at-
tenuation of contaminants in the alluvial aquifer underlying Lawrence Livermore Na-
tional Laboratory (LLNL). Chapters 2 (published in Water Resources Research [LaBolle
et al., 1996]), 3 (published in Water Resources Research [LaBolle et al., 1998]) and 4
(accepted for publication in Water Resources Research [LaBolle e: al., 1998]) were de-
voted to developing RWPMs that obey ADEs in composite porous media, i.e., tools nec-
essary to conduct the research. Chapter 5 comprises the first study using detailed (on the
order of meters) site-specific characterizations to explore the role of diffusion in the mi-

gration of contaminants and pump-and-treat remediation system performance.
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Chapter 2 [LaBolle ei al.. 1996] discusses numerical inaccuracies in previous
attempts to apply RWPMs to simulate transport on numerical flow solutions. We pro-
posed an accurate RWPM, based on interpolation of velocities from numerical flow solu-
tions, that has since found numerous applications in the simulation of transport. Improv-
ing accuracy with this method, however, requires simultaneously resolving both the in-
terpolation procedure and time step. The paper stressed the need for new theory and
methods that are independent of the resolution of the interpolation scheme. These meth-
ods are presented Chapters 3 and 4. In Chapter 3 [LaBolle et al., 1998)] we developed new
diffusion theory that gives necessary conditions for the convergence of diffusion proc-
esses to ADEs in composite media. This new theory was used to test the validity of sev-
eral RWPMs proposed in the literature. In Chapter 4 we generalized stochastic differen-
tial equations to the case of discontinuous coefficients to yield RWPMs that satisfy the
necessary conditions for convergence to ADEs in composite porous media. These meth-
ods do not depend on resolving an interpolation scheme to improve accuracy. Examples
relevant to the simulation of subsurface transport demonstrate the new theory and meth-
ods. The results apply to problems found in many scientific disciplines and offer a unique
contribution to diffusion theory and the theory of SDEs.

The new methods facilitate the simulations of contaminant migration and reme-
diation presented in Chapter 5. Here I explore the role of diffusion in the migration of
contaminants and pump-and-treat remediation system performance in detailed (on the
order of meters) site-specific characterizations of the LLNL alluvial-fan aquifer system.
This work lays the foundation for scientifically justifying natural attenuation phenomena

in support of negotiated waste site closure at LLNL and elsewhere.
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Chapter 2

Random-Walk Simulation of Transport in Heterogene-
ous Porous Media: Local Mass-Conservation Problem
and Implementation Methods’

2.1 Abstract

The random walk method for simulating solute transport in porous media is typically
based on the assumption that the velocity, and velocity-dependent dispersion tensor, vary
smoothly in space. However, in cases where sharp interfaces separate materials with
contrasting hydraulic properties, these quantities may be discontinuous. Normally, ve-
locities are interpolated to arbitrary particle locations when finite difference or finite ele-
ment methods are used to solve the flow equation. The use of interpolation schemes that
preserve discontinuities in velocity at material contacts can result in a random walk
model that does not locally conserve mass unless a correction is applied at these contacts.
Test simulations of random-walk particle tracking with and without special treatment of
material contacts demonstrate the problem. Techniques for resolving the problem, in-

cluding interpolation schemes and a reflection principle, are reviewed and tested. Results

) published in Water Resources Research [LaBolle et al., 1996].
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from simulations of transport in porous media with discontinuities in the dispersion ten-
sor show which methods satisfy continuity. Simulations of transport in two-dimensional
heterogeneous porous media demonstrate the potentially significant effect of using a non-
conservative model to compute spatial moments and breakthrough of a solute plume.

2.2 Introduction

The random-walk particle method (RWPM) has been used successfully for years to
simulate conservative and reactive transport in porous media [Ahlstrom, et al., 1977,
Prickett, et al., 1981; Uffink, 1985; Tompson et al., 1987; Tompson, 1993]. This method
is computationally appealing because it is grid independent and therefore, given the
proper conditions, will require little computer storage relative to finite element, finite dif-
ference and method of characteristic models. In addition, this method does not suffer
from numerical dispersion in problems dominated by advection. Traditional finite ele-
ment and finite difference models generally perform poorly under such conditions unless
the computational grid is highly resolved. As a result, a random walk is often the method
of choice for simulating transport in large, highly-resolved heterogeneous flow systems
[Tompson and Gelhar, 1990; Tompson, 1993; Tompson et al., 1994].

Global mass conservation is compulsory with the RWPM because particles cannot
disappear. This distinct advantage of the RWPM, however, is often overstated; accurate
solutions require local as well as global mass conservation.

In practice, the flow problem is often solved numerically and velocities are inter-
polated to arbitrary particle locations. Advective particle tracking models can be made
mass conservative by using a divergence-free velocity interpolation scheme [Schafer-

Perini and Wilson, 1991]. However, additional criteria are necessary to formulate a mass
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conservative random walk model. For example, discontinuities in the velocity or effec-
tive porosity may yield a dispersion tensor that is discontinuous in space. Local mass
conservation conditions for the RWPM require that the dispersion tensor be continuous in
space unless a reflection principle [Feller, 1957] or similar method is applied. Therefore,
neglecting discontinuities in the dispersion tensor will result in local mass conservation
errors. As these problems only occur when parameters are functions of the spatial coordi-
nates. model errors will not necessarily be detected during routine verification checks.

In some applications of the RWPM to transport in heterogeneous porous media
(e.g., Tompson et al. [1987] and Tompson and Gelhar [1990]), accuracy in local mass
conservation has been traded for computational efficiency by specifying coefficients in
the RWPM as block discrete (constant with a finite-difference grid block). Though we
do not believe this tradeoff led to significant errors in the simulation results of Tompson
et al. [1987] and Tompson and Gelhar [1990], results from random-walk simulations
presented herein demonstrate that this approach violates local mass conservation and un-
der certain circumstances can significantly affect solute-transport predictions. This paper
reviews the conditions required for local mass conservation for the RWPM and demon-
strates consequences of violating these conditions when the dispersion tensor is discon-
tinuous due to a discontinuous velocity field. We discuss and demonstrate techniques for
applying the RWPM in the presence of the discontinuities. Random walk simulations of
solute transport in two-dimensional heterogeneous porous media are presented that illus-
trate the potential effect of local mass conservation errors on simulation of a developing

plume.
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2.3 The Random Walk Particle Method (RWPM)

The RWPM is commonly used in the field of statistical physics to model and analyze
processes involving diffusion. In the hydrologic community, the approach has been
widely applied to simulate advective and diffusive mass transport problems in subsurface
systems (e.g., Ahlstrom, et al., 1977; Prickett, et al., 1981; Uffink, 1985; Tompson et al.,

1987). Mass concentration of an aqueous solute is represented by a finite system of Np

particles of constant mass mp via

ox)c?(x,t)= Y, m,8(x - X, (1)) (2.1)

PEN,
where @ is the effective porosity,  is a Dirac function and Xp(¢) is the location of particle

p at time ¢. Because (2.1) is discontinuous, a modified expression of the form

o(x)c’(x,0) = Y, mL(x - X (1)) (2.2)

peN,
is typically used to "smooth" the spatial distribution of concentration, where  is an inter-
polation, or projection function [Bagtzoglou et al., 1992] normalized such that faldV =1,
where Q is the domain of porous medium. The degree of smoothness obtained is con-
trolled by the shape of { and the particle resolution, N,, the number of particles used to
represent an arbitrary unit of mass. Mass in Q is M = [a®cdV = e NpMp.
Simulation of advective and diffusive mass transport may proceed by changing
particle positions with time via an Euler integration scheme given as [Gardiner, 1990]

X,(r+A) =X, ()= A(X,.1)Ar + B(X ,,¢) e AW(Ar) (2.3)
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where A is a "drift" vector [LT'I]. B is a tensor [LT’”Z] defining the strength of diffu-

sion. and W, a Wiener process [T1/2], is a vector of independent normally-distributed
random variables with zero mean and covariance

(AWAW) = 1A (2.4)

The particle number density f=(@c”/m,) obtained through repeated use of (2.1) on

all particles satisfies the /t6 Fokker-Planck Equation [Risken, 1989]

%{-+Vo(Af)—%VVO(BOBTf)=O (2.5

in the limit as N, = « and At — 0, where

.1
A=lim— (X, (c+ar) =X, (1)) (2.6)
.1 2
BeB' = B%A_;<[XP(‘+A’)' X, (1) > 2.7)

To simulate conservative transport, we specify A and B in (2.5) such that the mass den-
sity satisfies the familiar advection-dispersion equation

a(—gc—) +V o (vOc)-Ve(ODVc)=0 (2.8)

In (2.8) ¢ is the aqueous concentration [ML-3], v is the average groundwater velocity
vector in the porous medium [LT-1], and D is the local hydrodynamic dispersion tensor

[L2T-1], [Bear, 1972]

_a_’_

v

D=(a,|[vj+D )+ % vv (2.9)
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where o [L] and o [L] are the longitudinal and transverse dispersivities, respectively,

and D’ is the molecular diffusivity of the porous medium [L2T-1]. By choosing A and B

as [Kinzelbach, 1988; Uffink, 1988; Tompson et al., 1987]

A=v+éV0(@D) (2.10)

2D=BeBT", (2.11)

and noting that m, f = ©c’, equations (2.5) and (2.8) become equivalent. Substituting
(2.10) and (2.11) into (2.3) yields the equation for a particle displacement
X,(r+4ar)-X,(r)

=(v(X,.1)+6(X,)" Vo(6(X,)D(X,.7)))Ar + B(X,,7) AW (A1) (2.12)

where coefficients in the right-hand-side of (2.12) are evaluated at X,(r). Because D is
real and symmetric, elements of the tensor B can be calculated by diagonalizing D, taking
the positive root of the eigenvalues, transforming back and multiplying by an arbitrary
orthogonal matrix, R [Risken, 1989] (for details refer to Tompson et al. [1987]). In the
case |v| = O (stagnation point with a scalar diffusion function), we use By = (2D,,)""* for
(i=f) and B = 0 for (i# j). This development can be extended to treat reactive transport
for constituents that undergo binary reversible equilibrium sorption [Tompson, 1993] and

kinetic decay [Tompson and Dougherty, 1992].

2.3.1 Gradient Terms and Discontinuities in D
In some previous applications of the RWPM, the gradient terms in (2.12) have been ig-
nored or overlooked (e.g., Ahlstrom, et al., 1977; Prickett, et al., 1981) leaving simply A

= v. When D or © vary spatially, however, these gradients can be quite significant, as il-
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lustrated by applying the RWPM to find a steady state solution to the purely-diffusive
system with @ =1,

e 2 dc
> _Z — 1= 13
o ax(D(")ax) 0 2.13)

for 0 < x < |, where D(x) = | + 99x, ¢(0,¢) = 1, and c(1,t) = 0. Figure 2.1 shows the
steady-state analytical solution of this system [Crank, 1975] along with two coarse (i.e..
noisy) particle solutions obtained from equation (2.12) with and without the gradient cor-
rection quantity in the drift term. Both particle solutions were evolved over time to an
approximate steady state at t+ = 0.1, based upon a zero initial condition, and properly
maintained boundary conditions [Tompson and Dougherty, 1992]. Importance of the cor-

rection in the drift term (A) is clearly evident.

Because of their dependence on gradients of velocity, porosity, and dispersivity,
the importance of the correction terms in hydrologic applications will be most significant
near sharp wetting fronts, stagnation zones, material contacts, and abrupt changes in the
flow field [Uffink, 1988: Tompson, et al., 1987]). General incorporation of gradient terms
may require careful interpolation of velocities, porosities, dispersivites. and diffusivities.
A problem arises, however, at contacts between materials with contrasting hydraulic
properties. Here, effective porosities, dispersivities, diffusivities, and flow velocities, and

therefore the velocity dependent dispersion tensor, may be discontinuous in space.

In the case of discontinuities in the dispersion tensor or effective porosity, the
gradient terms in (2.12) are undefined. Ignoring the effect of discontinuities in the disper-
sion tensor will result in local mass conservation errors even in the limit as the time step

approaches zero. In this paper we consider particle methods that address discontinuities
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Exact solution

Coarse particle solution with
correction term (¢ =0.1)

Coarse particle solution with
no correction term (¢ =0.1)

Concentration

Figure 2.1: Analytical steady-state solution to (2.13), compared with two, approximately
steady state and coarse, particle solutions at ¢+ = 0.1 obtained with and without gradient
term.

in dispersion tensor caused by discontinuities in the velocity field only, and will consider
dispersivities and porosity to be constant. Nevertheless, methods similar to those pre-
sented here can be applied to locally conserve mass where dispersivity and porosity have

discontinuities.

In general, the statement expressing local mass conservation at an interface, de-

noted here by the surface s, is [Gardiner, 1990]

limJ en=1limJ en (2.14)
limc™ =limc” (2.15)

where J is mass flux, given as
J=0OAc-0ODeVc (2.16)
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and n is the outward normal to s, and the superscripts + and - refer to quantities on oppo-
site sides of s. When D is discontinuous at s € Q, within the simulation domain, equation
(2.14) may not be satisfied by the RWPM. Below, we review a reflection technique that
has been developed to address this problem and introduce another approach based on in-

terpolation of D.

2.4 Reflection and Interpolation Techniques

Uffink [1985] treated the problem of a discontinuous dispersion tensor through applica-
tion of a reflection principle based on the method of images [Feller, 1957]. He applied
this method to transport in stratified porous media with flow parallel to the bedding plane
where the tangential velocity and velocity-dependent dispersion tensor are discontinuous
at interfaces between strata (Figure 2.2). Here we present and test the method of Uffink

[1985] and an alternative interpolation technique .

2.4.1 Reflection Principle
A reflection principle can be developed for one-dimensional diffusion across an interface

with constant (yet different) diffusion coefficients on both sides of this interface and © =

1 (Figure 2.2). Here we have

de, 9 (, 9c ) 3
> o (Dl ) 0 forx<0
de, (. de,)_
% 3» (Dz—ax )—O forx>0

where D and D, are the diffusion coefficients, and the subscripts | and 2 refer to quanti-

ties in , and €2,, respectively. Conservation of mass requires that
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Figure 2.2: A two-layer system with a discontinuous diffusion coefficient across an inter-

face.

dc oc
lim D, — = lim D, —
x=0" ! ax =0 a.t

limc, =limc,

=0 t—=0"

For the case of a partially-reflecting interface, D) > D, > 0, an instantaneous point source

in Qy, c(x0,0) = 1, xg <0, and a system of infinite spatial extent, applying the method of

images yields a solution to (2.17a) and (2.17b) in terms of source and reflected compo-

nents (superscripts S and R, respectively) [Carslaw and Jaeger , 1959]:

s
G

(X, 1) = ———=¢x
C'(x) 1/411:D2t P

(x.1)=

a(x0)=¢c'(x,t)+cf(x,1) forx <0

('(x‘xo)l

€X
P 4Dt

4nD;t \

-

R [xtx)
yamDer | 4Dy

—(x = xB, ):

4D,t

il forx>0
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where R is a reflection coefficient and the factor B, = (DZ/Dl)”2 accounts for the differ-
ence in mean-square displacements between the two strata by effectively adjusting the
origin of the source in  (x < 0) for solution in £2; (x > 0). In order to satisly equations
(2.22a) and (2.22b), Ry = (D}*-Dy*)/(D\"* + D,*). For a source located in Q2 (xg > 0)
replace R, with R, = -R; and Bywith B, = D}"*/D,”. This solution is illustrated in Fig-
ures 3a and 3b.

Development of a reflection principle based on the method of images for applica-
tion to the RWPM in one dimension is easily accomplished by modying the transition
probability density (TPD), that is, BeAw in (2.12), for a particle that may cross the inter-
face in the following time step [Uffink, 1985]. The modification consists of summing the
component parts of the modified density function given by equations (2.19a) - (2.19d). In
this context, Figures 3a and 3b can be interpreted as TPDs for particles located at xp in £2,
and Q,, respectively. Alternatively, when approximating Aw by a uniform TPD with
mean zero and unit variance in the RWPM (see Tompson et al., 1987), the uniform TPDs
for particles located in Q; and Q3 may be modified similarly, as was done by Uffink

[1985]. For the more general one-dimensional problem with multiple interfaces, use of a
uniform TPD together with small Ar can limit necessary image densities to those arising

from a single interface.

2.4.2 Interpolation Technique
Discontinuities in the dispersion tensor can also be addressed through interpolation. This
method, also discussed in the context of random-walk particle tracking on a block-

centered finite-difference solution later in this paper, smoothes the dispersion tensor in
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Figure 2.3: Component parts (bold lines) of analytical solution given in (a) equations
(2.19a) - (2.19d) for point source in Q; and (b) equivalent form of equations (2.19a) -
(2.19d) for point source in €2, are summed to form final solution (bold dashed line) about
an interface.
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the vicinity of the interface to eliminate discontinuities and define the gradient term in the
drift vector. For convergence to the true solution, this method requires convergence in
time step as well as the spatial discretization associated the interpolation scheme. Below

we evaluate interpolation and the reflection technique.

2.4.3 Comparison with Theory

We test the interpolation and reflection techniques in a closed one-dimensional constant-
concentration system with reflecting boundaries on both ends and a partially reflecting
interface located in the center such that the two equal-volume portions of the domain, Q,
and 5, are delineated by a discrete contrast in dispersion coefficients (see Semra et al.,
1993). When there is no drift in Q, and Q> (A = 0) a correct technique will maintain a
uniform particle number density on either side of the partially reflecting interface, i.e.,
N/N, = 1. Figure 2.4 shows results of a test of the alternative methods presented above
using the RWPM for a one-dimensional system with reflecting boundaries at x = -49 and
x =49, Ar = 0.005, 588 particles, D| = 5.0 (x <0,) and D2 (x > 0) prescribed such that the
ratio. D\/D». ranges from 2.5 to 20.0. For this problem the alternative interpolation tech-
nique is applied by linearly interpolating D through a unit length across the interface at x
= 0. The results for N{/N, at an approximate steady state show that using no correction
fails to maintain uniform number density. Interpolation and the method of Uffink [1985]
correctly maintain a uniform number density. identical to the analytical solution. The

linear-interpolation method yields a close approximation.
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Figure 2.4: Comparison in ratios of particle numbers (N;/N2) on either side of disconti-
nuity in D for different alternative techniques of reflecting to conserve mass.
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Analytical solution i
= -- = No correction .
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— — — Linear interpolation Vot
= = Uffink [1985] ! \\

Concentration

Figure 2.5: Comparison of concentrations from simulations using the different alternative
techniques and the analytical solution given in equations (2.19a) - (2.19d) at r = 6.0 for xo
=-5.0, D, =5.0, and D, = 0.25. The method of Uffink [1985] produces results virtually
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To further test these methods we compare results for a point source initial condi-

tion with the analytical solution given by equations (2.192) - (2.19d) and illustrated in
Figure 2.3a. A total of 100,000 particles were used in each simulation, wherein xo = -5.0,

Dy =5.0, D2 =0.25, and Ar = 0.005. Figure 2.5 compares concentrations approximated at

discrete spatial locations by the normalized number of particles contained in a unit length
along the x-axis with the analytical solution at time ¢ = 6.0. The result labeled "no cor-
rection” clearly shows the error imposed by neglecting to reflect particles or interpolate.

Interpolation and the method of Uffink [1985] compare well with the analytical solution.

Note the distinct differences between the two successful techniques. Uffink’s
technique reconstructs the exact TPD. Thus we consider this approach to converge
strongly, when the TPD is simulated using Wiener processes (strong convergence refers

to the approach of a simulated particle path to the exact path Xp(f) [Kloeden and Platen,

1989]). Interpolation does not simulate the exact TPD but still balances mass.

2.4.4 Limitation of the Reflection Method

For many problems Uffink’s [1985] reflection method may become computationally in-
feasible because of the need for multiple images (or reflections) around two- or three-
dimensional discontinuities in the D field. A comparable situation arises with solutions to
the flow problem through image well theory (e.g., no-flow boundaries intersecting at a
right angle [Ferris et al., 1962]). Although, the number of images required for reasonably
accurate solutions is finite (due to the normally small time steps used with the RWPM,)
this problem quickly becomes intractable for heterogeneous multi-dimensional systems.

Interpolation, easily implemented in three dimensions, appears to provide a reasonable
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alternative to the mnethod of images. Convergence, however, requires convergence in the
spatial discretization associated with the interpolation as well as a simultaneous conver-
gence with decreasing time-step size. In the following section, we address the application
of velocity interpolation and a reflection principle to random walks on a block-centered
finite-difference flow solution and introduce a new algorithm based on a modified hybrid

velocity interpolation scheme.

2.5 Interpolation Methods for Implementing the RWPM

Application of the RWPM requires knowledge of the groundwater velocity and velocity
gradient at particle locations, which are typically determined by numerical solution of the
relevant flow problem. As an example, consider the solution of a two-dimensional flow

problem with no sources or sinks, as defined by

d dh) O dh
Hrq)s(cd)-o

where A is hydraulic head [L], and K, and K, are the principal components of hydraulic
conductivity in the x- and y -directions [LT-1]. In terms of the RWPM, application of a
block-centered finite difference scheme for the solution of (2.20) is particularly attractive
because particles are easily located with respect to volumetric blocks in an orthogonal
grid. Here, hydraulic conductivities are specified on a regular grid of nodes with coordi-
nates (iAx, jAy), and nodal values of the hydraulic head are determined from a finite dif-

ference approximation of (2.20):

_l_ K h(i+l-i) -h(f"i) -k . h(i.j) "h(i-l.,')
Ax x(i+1/2. j) Ax x(i=1/2. ) Ax

2.21D)
A h . —h

1 K i gy~ ) | Kirm )~ e | g

A_V ¥(i. j+112) Ay (i j-1r2
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where Ax and Ay are the constant nodal spacings [L] (Figure 2.6). Intermediate (mid-

node) values of the conductivity are usually based on a harmonic average of the adjacent

nodal values along a segment between two nodcs.

Given a nodal solution for the heads, the most obvious way to estimate velocity
components is to first compute mid-node components along segments between two

nodes, i.e.,

1 h(m.;) - h(i.j)
Viszg)y = -'G—) Kx(nl/‘l.j) T (2.22)

As shown in Figure 2.6, this will yield normal components of velocity on the volumetric
“block™ surrounding node (i,j). However, information on all velocity components at one
location is not provided in this way, nor is the velocity at any other point in the domain.
Velocities at particle locations must be interpolated from these basic mid-node values.

Several approaches can be used to do this, as reviewed below.

2.5.1 Linear Interpolation (LI)

In this approach, one approximates velocity components linearly and independently
within each block based on the available mid-node values (Table 2.1). As such, there is
no variation of v, in the y-direction, nor any variation of v, in the x-direction. Although
derivatives of specific velocity components, as required to evaluate the divergence of the

dispersion tensor, may not be fully defined, the interpolated velocity field within each
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Figure 2.6: Velocity interpolation from a block-centered finite-difference flow scheme.

Table 2.1: Velocity Interpolation Schemes

Interpolation Vx vy

Linear (LI)' , 1LV tfiVeanng (-fIViijairt Vi grirn)

Bilinear (BLI)- ( I'Fy) [( l'Fx)Vx(i‘[)"'FxVx(id-lfl‘i)] ( I- x) [( l'E\')v)'(iJ)+Evv)(iJ+lfl)]
+F[(1-FviajmntFevrisingim] +F [(1-F)Vyinnpyr Fivsisingeim]

Block Discrete (BDI) (Ve HVai-1np)l2 (VaijrrytVagi i) 2

. f = (.t-.t‘_”:)/AX and f = (_V - yH::)/Ay‘
2values apply over a block of dimension Ax/2 by Ay/2 centered on (i+1/d,j+1/4); F = z(x-x.‘/)/ Ax and
F = 2( y-y, )/ Ay and x-velocity terms are defined as Vei = Vit 120 Vet V2,

Vet =Vt P Vaiszn) 2, and v = Veigs 1200V rtisl2) e tngeh Va4
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block, vpi(x), satisfies the fluid mass balance Vev = 0 exactly. The LI scheme may yield
discontinuities in tangential velocities, and therefore the velocity-dependent dispersion
tensor, at block interfaces. Mass conservation therefore requires a reflection principle or
alternative technique be applied at these interfaces. The LI scheme has been used in the
context of advective particle-tracking by Pollock [1988], Goode [1990), Schafer-Perini

and Wilson [1991] and Cordes and Kinzelbach [1992].

2.5.2 Bilinear Interpolation (BLI)

In this approach, mid-node velocity components surrounding a node are first averaged to
provide estimates of velocity at the node (Table 2.1). In this way, both components are
available at each location. The interpolated velocity may then be estimated in a bilinear
fashion within cell volumes, or quarter segments of these volumes, as shown in Table 2.1
and Figure 2.6. Here, the interpolated velocity field, vg(x), does not satisfy fluid mass
balance, however, it allows all first-order derivatives of velocity components to be esti-
mated. An important advantage of BLI is that the dispersion tensor is continuous in this
case; a reflection principle is therefore not required. Konikow and Bredehoeft [1978] ap-
plied BLI in a method of characteristics model and Goode [1990] used it for advective

particle tracking.

2.5.3 Block-Discrete Interpolation (BDI)

In this approach, mid-node velocity components are averaged to obtain values considered
constant within specific finite-difference blocks. Tompson et al. [1987] and Tompson and
Gelhar [1990] focus on the cell volumes created by neighboring nodes to (1) average the

mid-node fluxes on each cell edge and obtain constant cell velocities, vgp, and (2) to
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form central-difference approximations for estimating velocity gradients; these are also
uniform within each grid block. This approach supports easy implementation of the
RWPM because direct interpolation onto each particle is not required, but is otherwise
very approximate. Nevertheless, if spatial variation of velocity is small with respect to the

grid resolution, erors might stili be acceptably small.

2.5.4 Hybrid Schemes

For purely advective particle tracking, the LI scheme is mass conservative and clearly an
appropriate choice. However, for the dispersive component of the random walk, the LI
scheme may be impractical because of the need for reflection corrections. This raises the
possibility of applying LI for the advective component and BLI for velocities in the dis-
persive component. Below, we compare hybrid schemes that use bilinear interpolation to
estimate velocities in the dispersion tensor, and either linear or block-discrete methods to
approximate advective terms; we will refer to these hybrid schemes as BLI/LI and
BLI/BDI, respectively. These hybrid schemes yield a continuous dispersion tensor, so a
reflection principle is not required to satisfy mass balance at block interfaces.

2.6 Test Cases

Two problems are considered, (1) transport in highly permeable stratum bounded by low-
permeability material in which transport occurs only by diffusion and (2) transport in
two-dimensional heterogeneous porous media. The first problem assesses the relative ac-
curacy, with respect to balancing mass at material contacts, of the three-interpolation
schemes and a reflection principle presented above by comparing results from numerical
experiments with a known analytical solution. This problem serves as a surrogate for the

general case where, due to the nature of the block-centered finite-difference scheme, tan-
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gential velocities, and therefore the velocity-dependent dispersion tensor, are often dis-
continuous at block interfaces. Furthermore, this problem represents the “worst case sce-
nario” of a discontinuous dispersicn tensor that might be encountered in more general
two- and three-dimensional simulations. The second problem demonstrates the poten-
tially significant effects of neglecting discontinuities in the dispersion tensor in random-
walk simulations of transport in complex heterogeneous porous media. In this case, re-
sults from hybrid interpolation schemes, BLI/LI and BLI/BDI, which locally balance
mass by bilinearly interpolating velocities in the dispersion tensor, are compared with the
BDI scheme of Tompson et al. [1987] and Tompson and Gelhar [1990], which tries to

correct for these discontinuities by including approximations for gradient terms.

2.6.1 Solute Transport in a Stratified System

The stratified saturated system shown in Figure 2.7 shows a thin horizontal high-
permeability layer of thickness 2b and length 1.0 m. This layer is bounded by low-
permeability porous layers considered to be of infinite thickness in the vertical. A conser-
vative constituent is introduced at constant concentration, cg, at the upstream end of the
high-permeability layer during a time period fp . As the constituent progresses along the
high-permeability layer, diffusive transport between this layer and the adjacent low-
permeability layers accentuates the overall dispersion of solutes in the system. Obtaining
an accurate solution to this problem is highly dependent on a correct simulation of mass
transfer across the interfaces between high- and low-permeability layers.
Initial and boundary conditions for the problem are specified as

C(x7y10)=0 (2.23&)
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Figure 2.7: A stratified system with a thin high-permeability layer bounded by a low-
permeability porous matrix.

(0, y,1) g O<it<t,~bsys<+b 2.23b)
clu, y,l)= s
Y 0 otherwise '
c(e0,y,1)=0 (2.23¢)
c(y,xoo, ,2)=0 (2.23d)

For 7p = 7 days, these conditions represent a seven day input of a conservative constituent

at the upstream end of the high-permeability layer as was addressed in the laboratory
study of Sudicky et al. [1985]. For this problem, the pore-scale longitudinal dispersivity
has been shown to contribute little to the development of the solute plume and neglecting
it will introduce little error in predictions. For simplicity, the porosity was specified as a
constant of 1.0 throughout the system. Superposition in time of the analytical solution
presented by Gillham et al. [1984], which assumes solute in the high-permeability layer

is well mixed, is used to obtain an analytical solution to (2.23a) - (2.23d).

For the numerical experiments, the various interpolation schemes were incorpo-

rated into the SLIM1 random-walk code [Tompson et al., 1987]. In all numerical simu-
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lations, the domain was discretized in a manner consistent with a velocity field computed

by a block-centered finite-difference flow model.

The average concentration, C,, across the entire high-permeability layer at a
point x may be discretely estimated from the particle mass contained within a narrow area

centered at x of length Ax and width 25, divided by the area, Aa = 2bAx. In terms of

equation (2.2), with ©® = |, T}, can be expressed by

s 1
ci(x)= (E)Z m,, VX, € Aalt i (2.24)
p

Transport in this stratified system may be modeled with the particle approach by
releasing particles along the upstream edge of the high-permeability layer and allowing
them to advect downstream and disperse into the adjacent low permeability zones. To
simulate the Dirichlet boundary condition at the upstream end of the system, the concen-
tration, ¢, in the leftmost column cells is maintained at a value of 1.0 for 7 days using a
total of 5000 particles and properly maintained boundary conditions [Tompson and

Dougherty, 1992] after which it is turned off.
Simulations were performed for three levels of discretization, Ay = 0.03 m, Ay =
0.01, and Ay = 0.006 corresponding to 1, 3, and 5 grid blocks, repectively, for the entire

width of the high permeability layer. Discretization in the x-direction, used to calculate

concentration, is specified as 0.001 m. The following parameter values were used in all
simulations: b =0.015 m, D* =1.0454 x 104 m2/day, ot = 0.01 m, v;=0.5 m/day, and At

=0.001 days
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2.6.1.1 Results and Discussion

Simulations were performed for the LI scheme with and without a reflection principle.

The results for ¢;; at x = 1.0 m are compared with the analytical solution in Figure 2.8.

Predictions using LI with a reflection principle agree well with the analytical solution.
Predictions using LI alone yield little or no solute breakthrough; mass in the high-
permeability layer is lost to the low-permeability matrix. The discretization in the y-
direction does not affect results from either LI with a reflection principle or LI alone,

hence, the cases Ay = 0.01 m and Ay = 0.006 m are not shown.

The LI scheme without a reflection principle preserves discontinuities in velocity
at material contacts and fails to address them. This is similar to the “no correction” case
considered in the tests of the various reflection principles. Without special treatment of
random walks at these contacts, mass flux from high- to low-dispersion layers is over es-

timated and mass flux from low- to high-dispersion layers is underestimated.

Predictions using BDI are compared with predictions from the analytical solution
in Figure 2.9. As expected, results from BDI compare poorly to the analytical solution
because discontinuities in the velocity-dependent dispersion tensor are not addressed. The
gradient terms in BDI seek to offset mass-conservation errors due to discontinuities.
However, the magnitudes of these terms and the areas over which they apply change with
discretization in the y-direction whereas the impulse in drift due to the discontinuity in

the transverse dispersion is independent of this discretization.
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Figure 2.8: Comparison of analytical solution with solute breakthrough curve predicted
using LI with and without a reflection principle (Ay = 0.03 m). There is no solute break-
through for LI without a reflection principle. Simulations using Ay = 0.01 m and 0.006 m
produce identical results for this test case.
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Figure 2.9: Comparison of analytical solution with solute breakthrough curves predicted
using BDL.
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Results from the BLIV/LI and BLI/BDI hybrid schemes are compared with the
analytical solution in Figure 2.10. Note that simulations using the BLI/LI and BLI/BDI
hybrid schemes yield the same results for this test case. As expected, results indicate con-
vergence of these schemes to the analytical solution as the grid is refined. As the grid be-
comes more coarse, breakthrough is shifted to later times, however, the main features of
the breakthrough curves, in particular peak concentrations, are maintained. The extent to
which this BLI/LI and BLI/BDI can approximate discontinuous tangential velocities will

depend on the resolution of the grid.

Ideally, one would also hope to test the BLI/LI hybrid scheme in cases with more
complex heterogeneity in two- and three-dimensions, however, we know of no analytical
solutions to represent a *“‘ground truth” for such conditions. Furthermore, comparing with
other numerical solutions would be circular. Nevertheless, we believe the above two-
dimensional test is sufficient to conclude that the BLI/LI hybrid scheme is capable of

producing reliable results provided the discretization is adequately refined.

2.6.2 Transport in Heterogeneous Porous Media

The transport of a conservative constituent in a heterogeneous system is considered here.
This problem is of interest because the RWPM has been proposed [Tompson et al., 1987]
to verify stochastic transport theories [e.g., Matheron and de Marsily, 1980, Gelhar and
Axness, 1983] and to investigate the effects of porous-media heterogeneity on solute
transport [Tompson et al., 1994]. In these cases, random-walk model solutions are con-
sidered true representations of transport. Accuracy in these random walk simulations is

therefore critical.
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Figure 2.10: Comparison of analytical solution with solute breakthrough curves predicted
using BLI/LI and BLI/BDI schemes. The BLI/LI and BLI/BDI schemes produce identical
resulits for this test case.

The two-dimensional conductivity field illustrated in Figure 2.11 was generated on a grid
with dimensions 85 (Az = 1) in the vertical and 1400 (Ax = 100) in the horizontal using a
Gaussian conditional simulation technique [Fogg et al., 1991] with a spherical variogram
model having vertical and horizontal variogram ranges of 10 and 400, respectively. For
flow simulations, the numerical grid is refined in the x-direction, so that Ax = 10, while
still preserving the geometry of the simulated conductivity field. A steady-state hydrau-
lic-head distribution was simulated using the MODFLOW block-centered finite-
difference flow program [McDonald and Harbaugh, 1988]. No flux boundary conditions
are specified at z=0 ft and z= 85. Constant head boundary conditions at x = 5 and x =

1395, are specified as h = 37 and /4 = 0, respectively, for all z.
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Distance

Figure 2.11: Gaussian conditional simulation of hydraulic-conductivity field with log-K
mean and standard deviation of 1.69 x 107 and 2.75 x 10”, respectively, and vertical and
horizontal variogram ranges of 10 and 400, respectively (modified from Fogg et al.,
1991).

Transport is simulated for an instantaneous injection of a coataminant in a fully
penetrating line source at location x = 10. Boundary conditions for transport simulations
are specified as reflecting no-flux conditions at z = 0 and z = 85 and open boundaries at x
= 10 and x = 1390. Initially, 50,000 particles are distributed uniformly over the vertical
in the column of grid blocks from x=0 to x=10. These particles are allowed to advect and
disperse into the domain over a single time step. After this time step, particles at locations
x < 10 are eliminated in order to approximate an instantaneous injection of mass. The

following parameter values are used in all simulations: © = 0.33, D* =1.1 x 10-3, and o

= o = 0.03.

2.6.2.1 Results and Discussion

In this example, we use BDI, BLI and the two hybrid schemes, BLI/LI and BLI/BDI and
compare results for mass-breakthrough curves and first and second spatial moments of
the mass distribution [Tompson et al., 1987]. Results for mass breakthrough at x=1390
versus time from simulations using the various interpolation schemes are compared in

Figure 2.12. Results for the first and longitudinal second moments are presented in Fig-
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ures 13 and 14, respectively. For this problem, resuits from the three schemes that biline-
arly-interpolate velocities in the dispersion tensor are virtually identical, indicating little
effect of change in advective-component interpolation method on predicted average
transport behavior. In contrast, BDI model predictions differ considerably from the three
BLI schemes, showing that average transport behavior predicted by the RWPM is sensi-
tive to the way in which D is treated for this case.

Considerable effort has been devoted to accurate interpolation of velocities for the case of
pure solute advection (A = v, B = 0) [Reddell and Sunada, 1970; Konikow and Brede-
hoeft, 1978; Pollock , 1988; Goode , 1990; Schafer-Perini and Wilson , 1991; Cordes and
Kinzelbach , 1992]. It is well known that by maintaining aquifer geometry at a given
scale and refining the computational grid, in the limit, interpolation errors in advective
components will vanish [Goode, 1990]; however, as demonstrated in the transport ex-
periment in stratified media (Figures 2.8, 2.9, and 2.10), discontinuities in the dispersion
tensor and the consequent mass-conservation errors will remain unless an interpolation or
reflection method is applied. Agreement between schemes that bilinearly interpolate ve-
locities in the dispersion tensor and disagreement between these schemes and BDI (Fig-
ures 2.12, 2.13, and 2.14) suggests that when transport is dispersive (D # 0), the choice of
interpolation scheme for advective components has relatively little effect on overall
transport compared to the choice of how one handles discontinuities in dispersion tensor.
2.7 Conclusions

In this paper we have reviewed conditions required for local mass conservation by the
RWPM and discussed consequences of violating these conditions. A problem occurs in

cases where interfaces separate materials with contrasting hydraulic properties;
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Figure 2.12: Comparison of solute breakthrough curves predicted using BDI, BLI/BDI,
BLI/LIL, and BLI.
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Figure 2.13: Comparison of first moments predicted using BDI, BLI/BDI, BLI/LI, and
BLL
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Figure 2.14: Comparison of longitudinal second moments predicted using BDI, BLI/BDI,
BLI/LIL and BLI.

dispersivities, effective porosities, and velocities, and therefore the velocity-dependent
dispersion tensor, may be discontinuous. We find that when the dispersion tensor is dis-
continuous, due to a discontinuous velocity field, mass flux can be conserved in the
RWPM through the use of a carefully chosen interpolation scheme or a reflection princi-
ple. Similar methods may be applied when dispersivities or effective porosities are dis-
continuous.

A reflection principle based on the method of images yields a mass-conservative
random walk near interfaces representing discontinuities in the dispersion tensor. How-
ever, application of this method to general three-dimensional problems in which multiple
interfaces intersect appears problematic; numerous images (reflections) must be superim-
posed to obtain the transition probability density. Velocity interpolation provides a mass

conservative approximation that does not require superposition of multiple images. Ve-
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locity interpolation is easily implemented and simulation results indicate convergence as

the spatial and tempora! discretizations are refined.

When a biock-centered finite-difference scheme is used to solve the flow equa-
tion, linear interpolation in the direction of the velocity component, although consistent
with the governing flow equations, may yield discontinuities in tangential velocities, even
when the effective porosity is continuous in space. These discontinuities are not a prob-
lem in advective particle-tracking models. However, with the RWPM, velocities tangent
to an interface also contribute to the dispersive flux across that interface. Discontinuities
in this flux violate local mass conservation. Bilinear (or trilinear) interpolation of veloci-
ties in the dispersion tensor or a reflection principle provide methods for conserving mass
in these cases. The results presented herein show that, unless one of these methods (or a
similar method) is applied, discontinuities in tangential velocities may lead to severe lo-
cal mass-conservation errors in the random walk which can significantly affect transport
predictions. Simulation results suggest local-mass conservation errors, due to incorrectly
handling discontinuities in dispersive components of the random walk, outweigh mass-

conservation errors due to inaccurate interpolation of advective components.

Lastly, we find that additional development of the theory behind the RWPM for
the advection-dispersion equation with discontinuous coefficients is needed. While the
interpolation approach has been applied with some success here, it appears that a more
accurate, efficient method without the need for grid refinement might arise from such an

effort.
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Chapter 3

Diffusion Theory for Transport in Porous Media: Tran-
sition-Probability Densities of Diffusion Processes Cor-
responding to Advection-Dispersion Equations”

3.1 Abstract

Local-scale spatial averaging of pore-scale advection-diffusion equations in porous media
leads to advection-dispersion equations (ADEs). While often used to describe subsurface
transport, ADEs may pose special problems in the context of diffusion theory. Standard
diffusion theory only applies when characteristic coefficients, velocity, porosity and dis-
persion tensor, are smooth functions of space. Subsurface porous-material properties,
however, naturally exhibit spatial variability. Transitions between material types are often
abrupt rather than smooth, such as sand in contact with clay. In such composite porous
media, characteristic coefficients in spatially-averaged transport equations may be dis-
continuous. Although commonly called on to model transport in these cases, standard dif-
fusion theory does not apply. Herein we develop diffusion theory for ADEs of transport

in porous media. Derivation of ADEs from probabilistic assumptions yields (1) necessary

" published in Water Resources Research [LaBolle et al., 1998].
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conditions for convergence of diffusion processes to ADEs, even when coefficients are
discontinuous, and (2) general probabilistic definitions of physical quantities, velocity
and dispersion tensor. As examples of how the new theory can be applied to theoretical
and numerical problems of transport in porous media, we evaluate several random-walk
methods that have appeared in the water resources iiterature.

3.2 Introduction

The need to forecast long-term transport phenomena such as groundwater remediation at
complex field sites is placing more stringent demands on models of transport in porous
media. Detailed site characterizations based on geostatistical simulations that are condi-
tional to subsurface core and geophysical data are producing ever more realistic models
of heterogeneity, perhaps including most of the intricacies that strongly govern scale-
dependent dispersion (e.g., Carle et al. in press; Copty and Rubin [1995], McKenna and
Poeter [1995], and Sheibe and Freyburg [1995]). These models commonly include large
contrasts in hydraulic conductivity (K) characterized by both gradational and abrupt
contacts between geologic materials (e.g., clean sand resting on a clay bed) and with In K
variances as high as 24. Furthermore, the volume fraction of low-K media composed of
silts and clays, where diffusion tends to dominate over advection, is often substantial at
20 to 80 percent. Accurate modeling of advection and dispersion in such composite me-
dia is challenging because (1) the heterogeneity must be highly resolved in three dimen-
sions, often entailing 10° to 10° nodes or more, and (2) even small errors in the numerical
solution can result in significant, erroneous distribution of contaminant mass among the

high- and low-K materials (see Chapter 2 and LaBolle et al. [1996a] and [1996b}).
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The random walk particle method (RWPM) is attractive for simulating transport
in highly resolved heterogeneous media because of its computational efficiency and lack
of numerical dispersion [Prickett et al., 1981; Uffink, 1985; Ahlstrom et al., 1985; Kinzel-
bach, 1988; Tompson et al., 1987; LaBolle et. al., 1996a]. Standard diffusion theory un-
derlying the RWPM, however, relies on the assumption that material properties vary
smoothly in space. This paper is motivated by the desire to eventually develop and apply
a RWPM to simulate local-scale transport in composite media. To accomplish this in a
mathematically rigorous way, one must first develop diffusion theory for local-scale,
spatially-averaged subsurface diffusion processes in composite media.

Herein we develop new diffusion theory for problems of subsurface transport in
composite media described by local-scale, spatially-averaged advection-dispersion equa-
tions (ADEs) and demonstrate relevance of the theory to analyses published previously in
the water-resources literature. In the spirit of Kolmogorov [1931], this paper derives
ADEs from principles of probability to yield (1) necessary conditions for convergence of
diffusion processes in composite porous media to ADEs with discontinuous coefficients
and (2) probabilistic definitions of velocity and dispersion tensor that are consistent with
the mass balance principles referred to in the physics literature as detailed balance. We
finish with an evaluation of several RWPM'’s that have appeared in the water-resources
literature.

3.3 Background and Problem Description
Rigorous treatment of transport in porous media must begin with diffusion theory applied
at the pore scale. In flowing pore water, diffusion theory predicts transport according to

advection-diffusion equations. Fundamentals of this theory were first introduced by Ein-
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stein [1905] in his classic paper on molecular diffusion in liquids. Therein, Einstein
mathematically defined a diffusion process through probabilistic assumptions regarding
the appareui stochastic motion of Brownian particles and showed that the densities of
such processes obey diffusion equations for the time evolution ot concentration. While
this work laid the foundations of diffusion theory, the mathematics of diffusion processes
have since been improved and formalized in probability theory, the theory of stochastic
differential equations and the theory of stochastic processes. Diffusion theory has seen
diverse hydrogeological applications and has played a key role in developing theories of
water flow [Scheidegger, 1974; Bhattacharya et al., 1976], theories for effective-medium
properties and macroscopic transport in heterogeneous media [Matheron and de Marsily.
1980, Dagan, 1984; Van Den Broeck, 1990; Brenner, 1991; Bhattacharya and Gupta,
1990] and RWPM'’s for numerical simulation [Prickett et al., 1981; Uffink, 1985; Ahl-

strom et al., 1985; Kinzelbach, 1988; Tompson et al., 1987; LaBolle et. al., 1996].

3.3.1 Governing Equations
The process of local-scale, spatial averaging of pore-scale advection-diffusion equations

commonly gives rise to ADEs of the form [Scheidegger, 1974; Bear, 1972; Koch and

Brady, 1985; Plumb and Whitaker, 1990; Quintard and Whitaker, 1993]

dc(x.1)

—%[@(x)c(x,t)]+a—?r7[®(x)vi(x,t)c(x,t)]—%[@(X)D,j(x,t) o }=O 3.1)

where ¢(x,t) is aqueous concentration [ML‘3], O(x) is effective porosity, v(x,?) is average
groundwater-velocity vector [LT-1], and D(x.r) is a hydrodynamic dispersion tensor

[L2T-1]. When there is free flow of mass across material interfaces in composite media

(Figure 3.1), continuity requires
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Figure 3.1: Porous media system composed of subdomains €2, and €, with contrasting
material properties that give rise to discontinuous characteristic transport coefficients at
the interface I'.
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where subscripts | and 2 represent smoothly-varying quantities or fields in Q; and Q,
respectively, n; is a unit outward normal in £2; to the interface denoted by I, and |; means
the approach to I"in ;. Similar equations arise in the description of thin films optics, the
electrical and thermal properties of composite materials, and numerous other applica-
tions. Such problems have received considerable attention in the literature, particularly
diffusive transport between flowing and stagnant water in rock [Neretnieks, 1980; Bibby,
1981; Grisak and Pickens, 1981; Neretnieks et al., 1982; Mutch et al., 1993], <oil parti-

cles [van Genuchten and Wierenga, 1976; Koch and Brady, 1985; Quintard and Whi-
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taker, 1993] and low-permeability granular materials [Gillham et al., 1984, Sudicky et al.,

1985; Wilson et al., 1993; Berglund and Cvetkovic, 1995].

3.3.2 Diffusion Processes and Kolmogorov’s Equations

As with advection and diffusion at the pore scale, one can also develop diffusion proc-
esses that correspond to local-scale, spatially-averaged transport equations in the form of
(3.1). Diffusion processes are Markov processes with continuous sample paths. In the
context of subsurface transport, it is conceptually appealing to consider a realization of a
diffusion process X(f) as a continuous function of time describing the “average” trajec-
tory of a solute molecule (or particle) in three-dimensional Euclidean space. Standard dif-
fusion theory relates the dynamics of a diffusion process to Kolmogorov's equations
[Kolmogorov, 1931], diffusion equations which describe its probabilistic evolution in
time.

The Markov property, can be expressed in terms of conditional probabilities as
[Jazwinski, 1970]

p(xmtnlxn- 1 :tn-l I -1x07t0) = p(xmtnlxn- 1 Jn-l ) (3 .33.)

Jx,,en p(Evtnlxml vha )d§ = P[x(t“) € le(tn'l) - xn.l] (3.3b)

where X,, X,.1 and Xo are values of X at discrete times ¢, S La1 S to and the conditional (or

transition) probability density function, p(X,,tslXn-1,¢,-1) is positive with integral one. The
Markov process X is a diffusion process if its transition-probability density satisfies

[Arnold, 1974]

.1
lim — [ (@ = x.)p(z.t + Arix,r)dz = A,(x,1) (3.4)
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1

-{}-%-Z_At- (z, - x, )(z,. -x, )p(z,t + Arlx, t)dz = D, (x,) (3.4b)
1 _
lim — [ oe P(2et + AtIX1)dZ = 0,VE >0 (3.4c)

where z and x are values of X, A [LT"] is a drift vector and D [LZT"] is a diffusion or
dispersion tensor. Condition (3.4c) ensures that the process X has continuous sample
paths.

Evolution of the probability density p(x,t) of a diffusion processes satisfying
(3.4a) - (3.4c) is given by a diffusion equation referred to as Kolmogorov’s forward (or

the Fokker-Planck) equation (for a derivation, see p 126 - 129 of Jazwinski [1970])

op(x.t) 9 S .
e m G1URTE) 9x,0x, (D, (x.1)p(x.1)] =0 (3.5)

with initial condition p(x,f0), ¢ 2 ro. In applications of diffusion theory to subsurface
transport, equation (3.1) has normally been treated as a special case of Kolmogorov’s
forward equation (3.5) with p(x,f) = @(x)c(x,t) [Tompson et al., 1987; Bhattacharya and
Gupta, 1990]. Using this relationship in equation (3.5), one finds that equivalence be-

tween (3.5) and (3.1) is obtained by specifying the drift as [Tompson et al., 1987]

A (x,1)=v,(x,1)+O" (x)a%[@(x)D,, (x,t)] (3.6)

As the need for gradient terms in equation (3.6) suggests, standard theory [Ein-
stein, 1956; Kolmogorov, 1950; Feller, 1968; Feller, 1971; It6, 1961] only applies to
ADEs when coefficients, porosity © and dispersion tensor D, are smooth functions of

space. This theory cannot generally address diffusion processes in composite porous me-
dia in which abrupt transitions between materials with contrasting hydraulic and transport

properties lead to discontinuous characteristic coefficients. In some cases, limitations of
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standard theory have been discounted or have gone unnoticed. This has led to published
results and the proliferation of numerical models with unintended, unphysical meaning
(see LaBolle et al., 1996a). Clearly, development of a rigorous theory that applies to lo-
cal-scaic, spatially-averaged equations of transpert in composite porous media is impor-
tant to forecasting long-term transport phenomena. In the following section, we develop
(1) more general results for subsurface transport described by ADEs and (2) conditions
necessary to ensure conservation of mass and convergence of diffusion processes to these
equations in the presence of material interfaces (discontinuous coefficients).

3.4. Diffusion Processes and Advection-Dispersion Equations
Here we derive ADEs from principles of probability. Similar derivations for concentra-
tion described by Kolmogorov’s forward equation are given in Einstein [1905; 1956] (for
constant coefficients) and in various texts on stochastic processes (e.g., p. 48-50 of Gar-
diner [1990] and p. 126-129 of Jazwinski [1970]) for spatially varying coefficients. How-
ever, these results do not generally apply to subsurface transport described by ADEs. To
generalize theory for transport in composite porous media, we use the mathematical ab-
straction of a “weak” form of ADEs. This new form of the governing equations can be
found by forming the integral of (3.1) against a smooth test function f{x,t):

d®c) 9 dc d
[]r [ ® s (@D,, aTJ-&-g(Gvic)}uds—O 3.7)

i

and integrating by parts to yield
t t 00 )
| fcdu(x)lo - ja—fscdu(x)ds +['] aﬁ (D,, P v,.c]dp(x)ds =0 (3.8)
i X

where the quantity du(x) is referred to as a measure and du(x) = ©@dx. This measure

arises naturally in the formulation of a probabilistic description of transport in a phase
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that occupies a fraction © of the entire domain. Distributions ¢ satisfying (3.8) for smooth
and bounded f are said to converge weakly to (3.1). Derivation of (3.8) will relate the
physical quantities v, D and © to concepts from probability, i.e., transition-probability

densities of diffusion processes that correspond to this new governing equation.

3.4.1. Transition-Probability Densities of Diffusion Processes Corre-
sponding to ADEs

For derivation of (3.8), we begin with the time derivative of the probability density

pe(x,0)du(x) integrated in space and time against the test function f{x,z):

&[22 £ syaux)as + of )

(3.9)
= [ [ 2e(x.5+ €)= po(x,5)] £ (x.5)du(x)ds
where €” = Ar. Integrating the left-hand side by parts yields
ef | Ope(x.s) £ (x,5)dp(x)ds +o(e?)
00 (3.10)
af (x,s)
=g’ I F(x,5)p(x,s)du(x) I j' j Pe(x,s)dp(x)ds
Substituting this result into (3.9) gives
ar (
ejfxspc(xsdu l J'J‘f pe(x,s)dp(x)ds G
—Joj[pc(x,s-f-!-:“)— p.(x,s) ]f x,s)du(x)ds-f-o(e’) =0
Substituting the relationship
pe(x.5+€%) = [ p.(x,5+€%2,5)p, (2.5)du(2) (3.12)

into the last term in (3.11) yields
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[[pe(x.s+€2) = b (%,5)] £ (%, 5)du(x)

= [[[ pe(x.s+ €%12.5)p. (2. 5)du(2) - b, (x.5)]  (x, 5)dus(x)

= [ [ pe(x.5+€%12,5)p, (2.5) f (x, 5)dn(2)du(x) )= [ po(x.5)f (x,5)du(x)
= [ [ pe(z.5+€%1%,5)p, (x,5) £ (2. 5)dn(2)u(x) - [ p, (x.5)f (x.5)du(x)

Inserting the relationship
J p.(2.s+€%Ix,s)du(z) =
into the last integral in the right-hand-side of (3.13) gives
[[e(x.5+ €)= p.(x.5)] £ (x,5)dus(x)
= ” Pe(Zs+€%1X,5)p, (X.5) f (2, 5)du(z)du(x)
—I [ I p(z.s+€%Ix, s)dp(z)] P (x,5)f(x,5)dp(x)
= JI p.(z.s+€%IX,5)p, (x,5)f (z,5)du(z)du(x)

—” p. (2.5 +€°1X,5)p, (x,5) f (x,5)du(z)du(x)
= ” pc(z, s+€°1x,5)p, (x,s)[f(z, s) = f(x, S)]du(l)du(x)

Substituting (3.15) into (3.12) yields

ejfxspcxsdu I jj'af dp(x)ds
—.[ .” f(2s) Jp(z.s+€%ix, S)dll( z)p,(x,s)du(x)ds + o(e*) =0

For the last integral in (3.16) we have
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(3.13)

(3.14)

(3.15)

(3.16)
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”[f(z,s) = f(x.5)]p.(z.5 +£%1x,5) p, (X, 5)du(z)du(x)
= JI f(x.5)= £(2.9)]p. (x.s +€12,5)p, (2,5)du(z)dp(x)
—J' f(z.5)= £(x,5)]p. (x5 +€%Iz,1) p, (2. 5)du(z)du(x)
= 7” f(z.5) —f(x,s)][pz(x,s)p(z,sd-s'lx,s) - p(z.5)p.(x,5 +€%12,5) ]du(z )du(x)

” : , 1 (3.17)
=%J-Jlpi(z,si-i-:'lx.s)—pskx,s+8'lz,s ]pE z.s)[ (z.5) = £(x.s)du(z)dp(x)
——;—J-Jpe(z,s+ezlxs[f F(%,5)][ P (2:5) - pe(x,5)]du(z)dp(x)
=§J'J'[pe(z,s+ezlx, 5)— pt(x s+€%lz,s) ]pe (x, s[f(z s) = £ (x,5)du(z)du(x)
—%”pe(z,s+szlx s)[f (z.5) = £ (%, 8)][ P (2.5) = pe (x,5)]du(z)du(x)

Formally expanding f(z,r) and p(z.t) in Taylor series yields

f(z.t)= f(x,0)+(z — i)afg:' ) (3.18a)
p(z,1) = p(x.1) +(z; -xi)g—ps(;(—’t)+... (3.18b)

Note that the Taylor series expansion in (3.18b) is usually unjustified when p is not
smooth. However, in this case, one does expect p to have one generalized derivative, i.e.,
p should have one derivative that is continuous with discontinuities at subdomain
boundaries. For such functions, one expects (3.18b) to be correct. Substituting (3.18a)
and (3.18b) into (3.17) and retaining terms to order (z;-X;)(z;-x;) gives

-{-J‘J'[pe(z,s-i-ezlx,s)- pe(x,s+€°lz, .s')]pE (x,5)(z, ‘&-)Mu(z)dp(x)
ox,

t

4] fpdlmretina)s, - o) ZEN, ) 2D gy gy

! SFlx (3.19)
= -Q-Ij[pg(z,s-i- e*lx,s) - p.(x,s+ ellz,s)]p: (x,5)(z, - x, )—Jcé(—j-c‘-}"g—)du(z)du(x)
—-l_-jjpc(z,si-ezlx, s\z, -x,)@(z, - J)aps( )du( z)du(x)

i i

Substituting (3.19) into (3.16) yields
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ejfxspg(xsdu | jjafxs X, s)dp(x)ds

+%J;J.I(Z, ~x,)z, - x,)p. (25 +€71x,5) afa(x: J apsit,s) dp(z)dp(x)ds .20
_-J Jj [pE (2.5 +€%Ix,5) - p(x,s +€7l2,5) ]pE (x, s)a—fa(z'i)du(Z)du(X)ds
+o(e*)=0

Finally, in the limit, equation (3.20) converges to (3.8) provided p¢(x.t) converges

to c(x,7) and v and D are chosen as

lim— (z, - x, )[pe(z,t +eIx,1) - p (. +£2Iz,t)]d|.1(z) =v,(x,t) (3.21a)

€0 282

1 Z
lim— (2 = x )z, - x,)pe (2.t + €71x,1)du(2) = D, (x,1) (3.21b)

Equations (3.21a) and (3.21b) are the main theoretical results of this paper. They give
general probabilistic definitions of physical quantities, velocity and dispersion tensor, in
terms of the transition-probability density function of a diffusion process that simulates
ADEs. These conditions must be satisfied by the transition-probability density of a diffu-
sion process corresponding to ADEs. As derivation of (3.8) was not restricted to smooth
v, D or O, the new theory does not preclude representing (3.2) by a diffusion process sat-
isfying (3.21a) and (3.21b). For ADEs, these definitions of the physical quantities. veloc-
ity and dispersion tensor, are more general than, and can replace, the usual definitions for
drift and dispersion given in (3.4a) and (3.4b). Next we consider a probabilistic analogy
to mass balance that is referred to in the physics literature as “detailed balance.” We will
show that the principle of detailed balance arises naturally from the definition of velocity

given in (3.21a).
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3.4.2. Detailed Balance

The principle of detailed balance is a probabilistic analogy to mass balance for steady-
state solutions to equation (3.1}, with time-independent transport coefficients and v = 0,
in which the mass (or probability) flux vanishes (for a discussion of detailed balance as it
relates to Kolmogorov’s equations, see p. 148-155 of Gardiner [1990]). For the mass flux
to vanish, transitions of mass from one location to another must balance, on the average,
with reverse transitions at any instant in time. A statement of detailed balance in terms of
conditional probabilities may be written as

P(z,t+AlX,)ps(X) = p(X,t+Allz,t)ps(Z) (3.22)
where py(x) = c(x) is a steady-state solution to an ADE with time-independent transport
coefficients and v = 0. A process satisfying (3.22) will maintain detailed balance regard-
less of whether or not coefficients are smooth.

The form of (3.22) closely resembles that of (3.21a). In particular, consider diffu-
sion in a closed system with domain Q. Here the steady-state solution (invariant distribu-
tion) is a uniform concentration distribution (probability density) such that py(x) = ps(z),
for any x and z in €2 (this is not necessarily true for Kolmogorov's equations with zero
drift). This result in combination with (3.22) leads to the following detailed-balance con-
dition:

p(z,r+ALX, 1) = p(X,t+Atlz,t) (3.23)
Subtracting p(x,t+Atlz,t) from both sides of (3.23), multiplying by (AN (z-x)0, inte-

grating over all z, and taking the limit as Az — 0 yields

. 1
lim EA—[J'(z,. — x, ) p(z.t + Atlx,t) - p(x,t + Atlz,t)|dp(z) = 0 (3.24)
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which is (3.21a) for the case of v = 0. For this case, equation (3.21a) is a statement that
detailed balance holds microscopically, in the limit of small Az (as opposed to the defini-
tion of drift in {3.4a) which displays no obvious connection with the physics and is less
general for ADEs). Equation (3.21a) also shows how lack of detailed balance relates to
the advective flux. It is no surprise that the probabilistic definition of velocity embraces
the principle of mass balance.

Equation (3.24) is a necessary condition to simulate the dynamic dispersion proc-
ess described by (3.2) with v = 0. A diffusion process can satisfy (3.24) by satisfying
(3.23), i.e., by maintaining a symmetric transition-probability density. However, symme-
try is not a necessary condition; standard RWPM’s based on numerical integration of sto-
chastic differential equations (e.g., as discussed in Tompson et al. [1987] and Kinzelbach
[1988]) will satisfy (3.24) when coefficients are smooth, but do not necessarily maintain
a symmetric transition-probability density. The concept of detailed balance is used in the
following examples in which we evaluate several RWPM'’s presented in the water re-
sources literature.

3.5. Examples: Random-Walk Simulation Methods

Here we apply the results above to evaluate RWPM'’s for ADEs with discontinuous coef-
ficients [Uffink, 1985; Ackerer, 1985; Cordes et al., 1991; Semra et al., 1993] about
which the literature reports conflicting claims of success. The approximations considered
here address the simple problem of random walk simulation of one-dimensional disper-

sive transport in an infinite domain with instantaneous point source at xg, constant ©,

constant coefficients within subdomains ; (x<0) and Q, (x>0), and discontinuous dis-
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persion coefficient at x = 0. In this case, the coupled boundary-value problem in (3.2) re-

duces to:
dc, 90 dc :
—L=—| p — Q 3.25

o ax( ‘ax) n Sk (3:232)

dc, 0 dc, .

~=—1| D,—= Q, 3.25b
ot Bx( -ax) n &k (3.258)
c,=C, onx=0 (3.25¢)
. dc, .. de,

lim D, == lim D, == (3.25d)
¢,(—e0,1) = ¢y (+00,2) =0 (3.25¢)
¢,(x,0)=8(x-x,) forxeeQ (3.25f)
c,(x,0)=8(x-x,) forxeQ, (3.25g)

In applications of the RWPM’s to be presented, Markov-chains will be constructed
within subdomains by discrete-time Euler approximations to stochastic differential equa-
tions as

AX(t) = B(x)AW(?) (3.26)
where B> = 2D and W [T”z] is a Wiener process (Brownian motion). Furthermore, the
Wiener process will be “discretized” and simulated by a uniformly distributed random
variable U with mean zero and variance At. Individual approximation methods discussed
below differ by their construction of Markov chains at the boundary between subdo-

mains.

3.5.1. Methods
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The method of Uffink [1985] constructs transition-probability densities by superposition
of uniform densities according to an analytical solution to (3.25) (see LaBolle er al.,
1996a). Particles that may cross the interface in the following time step use this modified
transition-probability density.

The method of Ackerer [1985] splits the time step of a random walker into two

smaller time steps for all particles that would cross the interface over a span Ar. The first
step occurs over a time interval A¢| that moves the particle to the interface. The second
step occurs over a time interval Ar, = At - Aty starts from the interface, and is performed
such that there is a 50% probability of entering either Q; or Q, with uniform transition-
probability density on the intervals (-M ,0) and (O,m ), respectively.

Cordes et al. [1991] conclude that the methods of Uffink [1985] and Ackerer
[1985] both fail, and present another alternative. They reason that for a constant concen-

tration in the vicinity of the interface, the same number of particles must cross the inter-

face from either side in a given amount of time. They propose, based on the difference in

mean-square displacements in Q; and Q;, fully reflecting a fraction of particles (,/D, -

./ D, )/\|D, crossing from the region of high to low dispersion. For each particle that

crosses the interface from the region of high to low dispersion, this operation can be per-

formed by drawing a random number from a uniform distribution over the interval from 0
to 1: when this number is less than (,/Dl -,/D2 )/y/ D, , the particle is reflected about the

interface with no loss of momentum.
More recently, Semra et al. [1993] conclude that the methods of Uffink [1985],

Ackerer [1985], and Cordes et al. [1991] all fail to conserve mass; they present a third
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alternative. As with Ackerer’s method, they split the time step. Once at the interface,

however, the transition-probability density is specified by a uniform distribution on the

interval (-4/6D,At, ,\/6D,At, ).

3.5.2. Comparison with Theory

To test the four RWPM’s discussed above, we (1) examine their ability to maintain the
invariant distribution (i.e., uniform number density) in a closed system with discontinu-
ous dispersion coefficient, (2) compare simulation results with an analytical solution to
equations (3.25a) - (3.25g), and (3) qualitatively evaluate the transition-probability den-
sities for symmetry. The theory presented above suggests that those approximations that
maintain a symmetric transition-probability density should be successful and correctly

pass tests (1) and (2).

3.5.2.1 Invariant distribution

Consider a closed one-dimensional constant-concentration system with reflecting
boundaries on both ends and a material interface located in the center such that the two
equal-volume portions of the domain, €, and 5, are delineated by a discontinuity in
dispersion coefficients (see Semra et al. [1993] and LaBolle et al. [1996a]). When trans-
port is purely dispersive, a correct approximation will maintain steady-state uniform par-
ticle number density, i.e., N|/N; = 1, where N| and N, are the numbers of particles at lo-
cations x < 0 and x > 0, respectively. Figure 3.2 shows results from tests of the four
methods for a one-dimensional system with reflecting boundaries at x = -49 and x = 49,

Ar = 0.005, 588 particles, D| = 5.0 (x <0,) and D2 (x > 0) prescribed such that the ratio,

D\/D», ranges from 2.5 to 20.0. The methods of Ackerer [1985] and Cordes et al. [1991]
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do not maintain uniform number density. The methods of Uffink [1985] and Semra et al.

11993] correctly maintain uniform number density.

3.5.2.2 Correspondence with an analytical solution

Figure 3.3 compares results for 100,000 realizations from a point source initial condition
Xo = -5.5 with an analytical solution to (3.25a) — (3.25g) at time ¢ = 6.0 [see LaBolle et al.,
1996a] for parameter values D| = 5.0, D, = 0.25, and Ar = 0.005. Concentrations are ap-
proximated at discrete spatial locations by the normalized number of particles contained
in a unit length along the x-axis. Results from the methods of Ackerer [1985] and Cordes
et al. [1991] do not match the analytical solution. The methods of Uffink [1985] and

Semra et al. [1993] correctly simulate the problem.

£ 06
Z —e— Uffink [1985]
o S S TTTTTTTTT e Ackerer [1985]
02 +---amnn- A Lo s . —A—Cordes et al. [1991]
| | : | —%—Semraetal. [1993]
0-0 1 Lo L) | L 1
2.5 5.0 15 100 125 150 175 200

D,/D,

Figure 3.2: Ratios N|/N, simulated by alternative Markov-chain approximations for vari-
ous values of D/D».
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0.15 - ; ;
—— Analytical : ‘ ‘A
o Uffink [1985] | '

£0.101 A Ackerer [1985] T - N
.§ O Cordesetal. [1991] | ' |
[-%]
§ Semra et al. [1993]
S 0.05 -

0.00 -

Figure 3.3: Comparison of concentrations from simulations by the alternative Markov-
chain approximations with the analytical solution to equations (3.25a) - (3.25g) at t = 6.0
for xo = -5.5, D; = 5.0, and D, = 0.25. Methods of Semra et al. [1993] and Uffink [1985]

produce results virtually identical to the analytical solution.

3.5.2.3 Symmetric transition-probability density

For an infinite system with an interface located at x = 0, D, = 5.0, D, = 1.0, and Ar =
0.003, the graphs in Figure 3.4 each plot 40,000 particle locations after a single time step
versus initial location uniformly distributed over the interval from [-1/2, 1/2]. Particle
number density illustrates the transition-probability density in the region near the inter-
face at x = 0. The methods of Uffink [1985] and Semra et al. [1993] show symmetric

transition-probability densities; those of Ackerer [1985] and Cordes et al. [1991] do not.

3.5.3. Discussion
The RWPM’s for ADEs given by Uffink [1985] and Semra et al. [1993] are successful

and correspond with theory by maintaining symmetric transition-probability density.
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However, since one can conceive of a process that satisfies (3.24), in the limit, without
symmetric transition-probability density, these results fail to explain how the methods of
Ackerer {1985]) and Cordes et al. [1991] violate theory. Although a detailed analysis of
these methods is beyond the scope of this paper, consider that the method of Ackerer
specifies a constant probability of reflection, independent of the contrast in dispersion
coefficients between subdomains. Taking the limit as D, — O, the interface should ap-
proach a fully reflecting boundary, yet the method of Ackerer [1985] incorrectly does
nothing to impede diffusion of particles across the interface from Q, to ,.

The method of Cordes et al. [1991] falls short for more subtle reasons. Brownian
motion is a rapidly fluctuating process. A particle undergoing Brownian motion at an in-
terface will, in theory, attempt to cross that interface an infinite number of times in any
finite time interval. Therefore, provided the probability of reflection is less than one and

the time step approaches zero, i.e., the simulated process approaches a theoretical

(a) _ (b)

Figure 3.4: Transition-probability density illustrated by evolving Markov chains for
40,000 particles initially uniformly distributed over the interval from [-1/2, 1/2] over a
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single time step using the approximations of (a) Uffink [1985] (b) Ackerer [1985] (c)
Cordes et al. [1991], and (d) Semra et al. [1993]. Asymmetry in the method of Ackerer
results in a contrast between particle densities in the second and fourth quadrants.

BRrownian motion, application of the method developed by Cordes et al. [1991] will have
no effect. This suggests that a successful one-sided *‘reflection technique,” such as that
proposed by Cordes et al. [1991], would specify a probability of reflection that depends
not only on the contrast in dispersion coefficients, but also on time-step size.

Success with the method of Uffink [1985] confirms the obvious: transition-
probability densities of Markov-chain approximations to ADEs may be constructed from
an analytical solution to the governing initial boundary-value problem. However, in con-
trast to the simple one-dimensional problem considered above, analytical solutions are
normally not at hand for more complex multidimensional problems. Success with the
method of Semra et al. [1993] demonstrates that conditions (3.21a) and (3.21b) may be
satisfied by other, more simple, techniques; knowledge of an analytical solution is not
generally needed to construct successful approximation methods.

The RWPM'’s presented above apply to one-dimensional diffusion problems with
constant coefficients in subdomains and discontinuous coefficients at material interfaces.
Alternative methods must be developed for more general multidimensional problems that
may include advection, smoothly varying coefficients in subdomains and discontinuous
coefficients at material interfaces. Nevertheless, the transition-probability density of a
successful Markov-chain approximation must satisfy conditions (3.21a) and (3.21b).

3.6. Summary and Conclusions
Diffusion theory has played an important role in developing theory for subsurface trans-

port. Standard diffusion theory only applies to subsurface transport described by ADEs
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when coefficients, velocity, porosity, and dispersion tensor, are smooth functions of
space. Subsurface porous-material properties, however, commonly exhibit abrupt transi-
tions between material types, such as where sand is in contact with clay. Abrupt transi-
tions between materials with contrasting hydraulic and transport properties may lead to
discontinuous coefficients in macroscopic equations of transport. Although commonly
called on to model transport in such cases, standard diffusion theory does not apply.

In this paper we have developed new diffusion theory for transport in porous me-
dia. Development of the theory relied on a weak form of ADEs, a mathematical abstrac-
tion that facilitates development of diffusion processes that apply when coefficients, ve-
locity, porosity, and dispersion tensor, are discontinuous. Derivation of this equation
from principles of probability related these coefficients to the transition-probability den-
sity of a diffusion process that simulates ADEs. A diffusion process that simulates sub-
surface transport described by ADEs must satisfy these relationships.

The new theory adds to our knowledge of diffusion processes corresponding to
local-scale, spatially-averaged equations of transport in porous media and is important to
forecasting long-term transport phenomena. Conditions that arise from diffusion theory
for ADEs are consistent with probabilistic mass balance principles, referred to in the
physics literature as detailed balance. Theory and examples demonstrated that a diffusion
process with symmetric transition-probability density satisfies the necessary conditions to
simulate ADEs with discontinuous coefficients. Evaluation of several random-walk
methods for transport in one-dimensional composite porous media showed which meth-
ods are successful and correspond with theory. In a subsequent paper, we will show how

one can generalize stochastic differential equations to the case of discontinuous coeffi-
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cients to yield simple Markov-chain approximations for subsurface transport that satisfy

the necessary conditions presented here.
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Chapter 4

Diffusion Processes in Composite Porous Media and
their Numerical Integration by Random Walks: Gener-
alized Stochastic Differential Equations with Discon-
tinuous Coefficients’

4.1 Abstract

Discontinuities in effective subsurface transport properties commonly arise (1) at abrupt
contacts between geologic materials (i.e., composite porous media) and (2) in discrete
velocity fields of numerical groundwater-flow solutions. However, standard random-walk
methods for simulating transport and the theory on which they are based (diffusion theory
and the theory of stochastic differential equations (SDEs)) only apply when effective
transport properties are sufficiently smooth. Limitations of standard theory have pre-
cluded development of random-walk methods (diffusion processes) that obey advection
dispersion equations in composite porous media. In this paper we (1) generalize SDEs to
the case of discontinuous coefficients (i.e., step functions) and (2) develop random-walk
methods to numerically integrate these equations. The new random-walk methods obey

advection-dispersion equations, even in composite media. The techniques retain many of

" accepted for publication in Water Resources Research, 1999.
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the computational advantages of standard random-walk methods, including the ability to
efficiently simulate solute-mass distributions and arrival times while suppressing errors
such as numerical dispersion. Examples relevant to the simulation of subsurface transport
demonstrate the new theory and methods. The results apply to problems found in many
scientific disciplines and offer a unique contribution to diffusion theory and the theory of
SDEs.
4.2 Introduction
Facilitated by geostatistical methods, detailed characterizations of the subsurface can
capture the character of intricate heterogeneities that strongly control transport [Copty
and Rubin, 1995; Sheibe and Freyberg, 1995; McKenna and Poeter 1995; Carle et al.,
1998]. Adequately resolving subsurface heterogeneity can yield immense computational
grids, commonly with greater than 10° nodes (e.g., Tompson [1993]), that demand spe-
cialized numerical techniques to solve governing transport equations. In many cases, ran-
dom-walk methods are favored over finite-difference, finite-element, and method of
characteristic techniques for large problems of this type (e.g., see Tompson et al. [1987];
Tompson and Gelhar [1990] and Chapter 2,i.e., LaBolle et al. [1996]) because of their
ability to efficiently simulate solute-mass distributions and arrival times while suppress-
ing errors such as numerical dispersion [Prickett et al., 1981; Uffink, 1985; Ahlstrom et
al., 1985: Kinzelbach, 1988; Tompson et al., 1987].

Spatial averaging [Plumb and Whitaker, 1990] of pore-scale equations for trans-
port by advection —and molecular diffusion in porous media gives rise to advection-

dispersion equations (ADEs) commonly used to model subsurface transport:

%(@(x,t)c(x,t)) = —Za%(vi (x.0)0(x,t)c(x,1)) + ;%{G(x £)D,(x,r) aca(:f )] 4.1)

i YU i 7
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where ¢ [ML"] is concentration, v [LT '] is a velocity, © [LJL'l] is effective porosity, and
D (LT} is a real symmetric dispersion tensor. Standard random-walk methods (e.g.,
Kinzelbach [1988] and Tompson et al. [1987]) approximate solutions to equation (4.1) by
simulating sample (particle) paths corresponding diffusion processes described by sto-
chastic differential equations (SDEs). Here, “diffusion processes” refers to Markov proc-
esses with continuous sample paths as mathematical models of real subsurface-transport
phenomena. Therefore, in the present context, the term “diffusion process” refers to “‘ad-
vection dispersion process.”

Use of equation (4.1) as a model of transport in heterogeneous porous media
poses problems in the context of random-walk simulation methods: Standard methods.
and the theory on which they are based (i.e., diffusion theory and the theory of SDEs),
only apply when coefficients, porosity and dispersion tensor, are sufficiently smooth
functions of space (see Chapters 2 and 3, i.e., LaBolle et al. [1996] and[1998]). Disconti-
nuities in effective transport properties, however, commonly arise (1) at abrupt contacts
between geologic materials (i.e., composite porous media) and (2) in discrete velocity
fields of numerical groundwater-flow solutions. As a result, standard random walk
methods (and SDEs) cannot simulate transport in heterogeneous porous media with
abrupt contacts between geologic materials.

Both interpolation [LaBolle et al., 1996] and “reflection” [Uffink, 1985; Ackerer,
1985; Cordes et al., 1991; Semra et al., 1993] techniques have been proposed to address
the aforementioned limitations of standard random-walk methods. By spatially interpo-
lating coefficients, one can ensure they remain sufficiently smooth throughout the domain

such that standard random-walk (or /t4-Euler integration) methods can be applied. Accu-
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racy of this approach, however, suffers unless one refines the interpolation (i.e., the re-
gion over which coefficients are smoothed) and time step, simultaneously [LaBolle et al.,
1996]. which commonly leads to undesirable increases in computational effort. Further-
more, refining the interpolation ultimately gives rise to the original problem, discontinu-
ous coefficients.

LaBolle et al. [1998] developed necessary conditions for the convergence of dif-
fusion processes to ADEs in composite porous media and applied the new theory to test
four one-dimensional “reflection” techniques [Uffink, 1985; Ackerer, 1985; Cordes et al.,
1991; Semra et al., 1993]. The term “reflection” is derived from the usual method of re-
flecting particles to maintain no-flux boundary conditions in a random walk (see
Tompson et al. [1987]). These techniques rely on either an analytical solution to the spe-
cific problem, or the specialized numerical treatment of particle displacements to main-
tain mass balance at an interface between regions with constant, but different, diffusion
coefficients. LaBolle et al. [1998] showed that two of these reflection techniques fail to
solve the specified problem, while the methods of Uffink [1985] and Semra et al. [1993]
succeed. One can show that these methods relate to an analytical solution to the problem
of one-dimensional diffusion at an interface. The method of Semra et al. [1993] has been
recently extended to three dimensions, but remains limited to constant coefficients within
subdomains (Semra [1994], as referenced in Ackerer [1999]). General mathematical rep-
resentations of multi-dimensional diffusion processes obeying ADEs in composite porous
media (i.e., porous media characterized by discontinuous coefficients) have remained un-

developed because of limitations of standard diffusion theory [LaBolle et al., 1998].
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In this paper, we generalize SDEs to the case of discontinuous coefficients to de-
velop (1) new mathematical representations of diffusion processes that simulate advec-
tion and dispersion in composite porous media and (2) random-walk methods for numeri-
cal integration of these equations. The new methods retain many of the computational
advantages of standard methods (e.g., Kinzelbach, 1988; Tompson et al., 1987). Exam-
ples demonstrate application of the new theory and methods to problems of transport in
porous media. However, our results apply to problems found in numerous scientific dis-
ciplines. Further, since the treatment of diffusion processes with discontinuous coeffi-
cients is presently not covered in stochastic theory (e.g., as described in Arnold [1992]),
our results offer a unique contribution to diffusion theory and the theory of SDEs. Before
considering the new approximations, we review standard stochastic methods for simu-
lating diffusion processes.

4.3 Standard Methods for Simulating Diffusion Processes

Standard stochastic methods for simulating subsurface transport (e.g.. Kinzelbach, 1988;
Tompson [1987]) may be applied when effective transport properties vary smoothly in
space. In this case, diffusions corresponding to (4.1) are commonly represented by an /t6

SDE (It6 and McKean, 1961]:

[ax,(r)=[ aXr)de+@f Y, B,(X.r')dw,(¢) (4.22)
o to 1) j

A(Xn)=v,(X0) + e"(x,:)za%[e(x,:)o,,(x,:)] (4.2b)
i i

X(1,) =X, (4.2b)

where the last integral in (4.2a) is referred to as a stochastic integral, (I) denotes the /6

interpretation of this integral (defined below), X(¢) [L] is a sample path in space, BeB" =
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2D, and W(¢) [’I“”"’] is a Brownian motion process such that AW = W(r)-W(#) has mean
zero and covariance Atd;;. Note that B is generally not unique. The coefficients A [LT')

and D are referred to as adrift vector and diffusion tensor, repectively, and are defined as

1 - d
lim — —(X,(1)= X,(t,)) = A, =v, +© lz,“E(GD”) (4.3a)
lim &—([X )= X, (0] X, (6) - X, (2o)]) = EB,kB,k =2D, (4.3b)

where (o) denotes the expectation. We will refer to a component of the drift that involves

gradient terms, such as the second term in the right-hand-side of (4.3a), as a “‘gradient
drift term.”

In general, to arrive at a unique definition for a stochastic integral, it is necessary
to specify how it is to be evaluated (see Chapt. 10 of Arnold [1992}]). The [t stochastic

integral specified in (4.2a) is defined as

(I)'[:ZB,](X,t’)de( —ms—llmZZBq[X(r“ N ,][ (t)- W/([k-l)] (4.4)

n—oo Periae

where ms-lim denotes the limit in the mean square [Gardiner, 1990]. The [t6 definition
given in (4.4) evaluates B at location X(#.;) rendering B statistically independent of dW
thus ensuring that the integral in (4.4) has mean zero. One well known alternative to the
It6 interpretation of the stochastic integral is that of Stratonovich [1963] in which B is
evaluated at location [X(z..)+X(2)]/2, i.e.,

<S>I;ZB.-,«(x'z')dw,~(r')
4.5)

. hmzqu[x(n )+ X(r, _l),,k_l}[m(,,‘)-m(tk_.)]

n-—so0 k=1 j
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where the (S) denotes the Stratonovich interpretation. For convenience, herein we will

adopt the following notation:

(DY B;(X.r)dW,(r) = 3 B;(X.r)dW,(r) (4.6a)

i J
(S)ZBU (X.£)dW, (¢ 23 (X+dY,0)dW,(¢) (4.6b)
dyY(r) = -;-dx(:) (4.6¢)

where we have written stochastic integrals as differentials, leaving all integration implied.
We will say that B is evaluated at location X and X + dY in the /76 and Stratonovich inte-
grals of (4.6a) and (4.6b), respectively. For dX=B(X+dY,f)*dW and assuming that B is
sufficiently smooth, expanding the Straronovich equation (4.6b) in a Taylor series shows

the relationship between /16 and Stratonovich integrals is given as

dX, =(S)Y, B;(X,t)dW
i

-y BU(X+ldx,z)dv1/,
- 2
B.(X,
-y 5,(x.aw, ++ 3 BXD)
! 2 i X
3B, ( ) &7
ZB,,(x AW, +2 ,z::‘ka—x, By (X,1)dW,dW,
| « 9B,(X,1)
z (X, 1)d E%—’aTB,i(X,t)dt
B,(X,
=D, B;(X,t)dW, +lza—"(—t)3,j(x, t)de
r 247 ox

where we have used dW,dW; = dtd;;. Assuming constant ©, one can show that the fol-

lowing Stratonovich SDE obeys equation (4.1) and is equivalent to the /16 SDE (4.2a):
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dX (1) = v‘.(x,t)-f-lZB,jiB,i(X,t) dr
247 7 ox 38)

+Y B,.I.(X +—;-dx,t)de(t)
F 2
where By, of the stochastic integral is evaluated at time ¢ and location given by the vector
X +1dX. Therefore, evaluating B at various locations, which differ infinitesimally from
the current location, and adding or subtracting necessary gradient drift terms allows one
to formulate variety of equations that are mathematically equivalent to (4.2a).

Standard random-walk methods for simulating (4.1) are normally based on Euler
integration of the /t6 SDE in (4.2a) (e.g., see Tompson et al. [1987]). However, equation
(4.2a) only applies when coefficients @ and D are sufficiently smooth. Therefore, when
either D or © are discontinuous, these standard methods fail [LaBolle, 1996]. For exam-
ple, Euler approximations to (4.2a) that either evaluate gradient drift terms by finite dif-
ferences [Tompson et al., 1987] or neglect gradient drift terms all together [Prickett et al.,
1981] cannot simulate (4.1) in composite media. Further, results from these methods can-
not be improved by refining the time step of the integration scheme. In summary,
standard stochastic theory fails to provide a definition for such equations in composite
media in which © and D are discontinuous. We address this problem in the following
section.

4.4 Diffusion Processes in Composite Media

The methods developed here stem from the premise that SDEs may be generalized to
consider discontinuous coefficients, yielding diffusion processes that obey equation (4.1)
for both smooth and discontinuous transport properties. By inspection, the principle ob-

jection to applying the SDE (4.2a) in composite media is the presence of the gradient drift
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term therein, not formally defined when © and/or D are discontinuous, i.e., step func-
tions. We will show that one can formulate equations equivalent in meaning to (4.2a), but
free of gradient drift t=rms. Numerical integration by random walks will demonstrate that
these equations correspond to (4.1) in composite media where © and D are discontinuous.
These new methods preserve many of the computational advantages of standard random-
walk techniques. In Appendix 4A, we consider the new methods in one-dimension and
show that they indeed correspond to equation (4.1) in composite media. In Appendix 4B,
we show that a similar result may be obtained by applying a stochastic calculus using
generalized functions. Next we present these methods and demonstrate their application
to subsurface transport problems beginning with the simple case of isotropic dispersion in

composite media and then consider the case of anisotropic dispersion.

4.4.1 Isotropic Diffusions

The mathematical representation of isotropic diffusion processes arising from ad-
vection and dispersion in composite porous media is relevant to the simulation of trans-
port in heterogeneous porous media. As we will demonstrate in a subsequent paper, the
dispersion tensor can often be approximated as isotropic without loss of accuracy where
the pore-scale dispersion tensor can be approximated as isotropic with respect to its mi-
nor axes (assumed to be orthogonal to the velocity vector), and longitudinal spreading
due to explicitly modeled heterogeneities is much greater than longitudinal spreading rep-
resented by the pore-scale dispersion tensor. Beginning with the case of constant © and
isotropic D, we develop an equation that is equivalent to (4.2a) and yet free of gradient
terms. We seek an equation that takes the form of (4.2a) after expanding in Taylor series.

By inspection we arrive at the following result:
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dX,(f) = v,(X,r)dr + ) B(X +dX,r)dW,(r) (4.92)
7

By (x,1) = JMx.1)8; (4.9b)
where A is the eigenvalue of 2D and Bj; is evaluated at time ¢ and location given by the
vector X + dX. For smooth coefficients, equation (4.9a) has been referred to as the
“backward /16" stochastic integral [Karatzas and Shreve, 1991]. Expanding (4.9a) in a
Taylor series shows that (4.9a) and (4.2a) are indeed equivalent for constant © and iso-
tropic D: For all D we have

dX, = v(X.r)dr + Y B,(X +dX,r)dW,
i

=v,(X,)de + Z[BU(X,[) + ;%ﬂ B, (X,r)dW, + --)dWI (4.10a)
] .

dB.(X,
=v,(X,1)dr + z,_”a(x 1) B, (X, t)dr + 2 B;(X.1)dW,
Jo ! J

and when D is diagonal

9B.(X,:
dX, = v,(X.t)dr + ZL) By(X,t)de+ Y B;(X.r)dW,
o ox -
3D, (X.1) (4.10b)
=v,(Xt)dr+ Y —L—"2dr+ Y B,(X.t)dW,
I X i

Formally, this Taylor series expansion is not allowed for discontinuous
D;however, in Appendix 4B we show that one can expand (4.9a) for discontinuous D
using generalized functions. In the following section we introduce a method for numeri-
cally integrating (4.9a) and apply this method to clearly demonstrate convergence to

equation (4.1) in composite media.
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4.4.1.1 Numerical integration
Equation (4.9a) may be integrated over a time step At by taking two particle displace-
ments, AY and AX, as

AX; =v,At+Y B(X, +AY,,0)AW, (4.11a)
J

AY, = B, (X,0)AW, (4.11b)
k

Note that advective transport is not included in equation (4.11b); here velocity only con-
tributes to higher-order terms that can be neglected in the limit, e.g., as in the Taylor se-
ries expansion in (4.10a) and (4.10b). To implement (4.11a) and (4.11b), equation (4.11b)
is first evaluated to determine the particle displacement AY. The result is used in (4.11a)
to determine AX. This simulation method is illustrated in Figure 4.1. Boundary condi-
tions must be implemented in the application of both (4.11a) and (4.11b). If a particle ex-
its an absorbing or reflecting boundary in the application of (4.11a) or (4.11b), it is either
removed from the simulation or reflected in the usual way (see Tompson et al. [1987]),
respectively.

In Appendix 4A we show that distributions approximated by (4.1 1a) satisfy (4.1).
In Appendix 4B we show that a similar result can be obtained through the use of a sto-
chastic calculus using generalized functions. To our knowledge, this result has not been
described elsewhere in the literature. We do not, however, present a formal proof of con-
vergence of these approximations. Such a lengthy proof usually demonstrates conver-
gence only; it does not guarantee a robust approximation. To this end, we will demon-

strate convergence and applicability of these approximations through numerical exam-
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ples. In all examples, Brownian motions will be simulated by uniformly distributed ran-

dom variables with mean Q and variance At.

4.4.1.2 Diffusion in one-dimensional composite media.

In this example we consider one-dimensional diffusion in an unbounded domain with

governing equation (4.1), constant ©, v = 0 and initial and boundary conditions

¢;(x,0) =8(x—x,) for xp € Q, (4.12a)
¢,(=o0,1) =, (+e0,t) =0 (4.12b)
c,(x,1) = c,(x,1) onx=0 (4.12b)
’ a ~y
tim b, 2058 _ i, p, 62(520) 4.12¢)
-0~ ax =0+ ax

D, forx<0
D(x) = 4.12d)

D, forx>0

where { = 1,2 denotes quantities within subdomains €; and €2, to the left and right, re-
spectively, of the interface located at x =0. First, we apply (4.11a) performing three
simulations corresponding to At = 100.0, 10.0., and 1.0 to demonstrate convergence with
decreasing time step of simulated moments to analytical moments of the distribution. In
each simulation we use D; = 10.0, D> = 1.0 and begin with 1000 particles located at x; = -
1.0. Figures 4.2a and 4.2b plot the mean and standard deviation computed from an ana-
lytical solution [see Carslaw and Jaeger, 1959] against values computed from particle

displacements, given respectively as

M=

X(t) = (x (1)) =7v'- X, (1) (4.132)

=1

'ﬁ
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Figure 4.1: The two step process of random-walk simulation of advection and isotropic
dispersion in composite porous media for the algorithm given in equations (4.11a) and
(4.11b).

12
5(0)=([x()- ()" = {;‘-Nz’l[x,,m— wz} (4.130)
p o=
where N, is the total number of particles and X,(¢)is the location of the pth particle at time
L.

Second, using (4.11a), we perform three simulations corresponding to D> = 2.5,
0.5 and 0.05. In each simulation we use D; = 5.0, At = 0.01, xo = -5.5 and10° particles.
Figure 4.3 compares simulated density at time r = 6, computed by summing particle
masses within unit lengths along the x-axis, with analytical distributions (see Carslaw
and Jaeger, 1959) to (4.1) with initial and boundary conditions (4.12a) — (4.12d).

Numerical simulation results presented here compare well with analytical solu-
tions and demonstrate convergence of (4.11a) and (4.92) to equation (4.1) in one-
dimension with discontinuous coefficients. As we will show, extension to (multi-
dimensional) isotropic diffusions for hyper-plane interfaces follows directly from this re-
sult by noting that diffusion processes in the different coordinate directions are independ-

ent in this case.
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Figures 4.2a and 4.2b: Simulation results for (a) X(¢) and (b) X(t)are compared with

analytical values for Ar = 10.0, 1.0, 0.1, and 0.01.
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Figure 4.3: Simulation results for concentration are compared with analytical solutions
for Dy =5.0 and D> = 2.5 (diamonds), 0.5 (squares), and 0.05 (circles).

4.4.1.3 Effective diffusivity of composite media.

In this example, we estimate effective diffusivity of composite media. The specific ge-
ometry considered here is that of circular cylinders packed in regular square arrays within
a matrix of contrasting material as shown in Figure 4.4. Dispersion tensors of both mate-
rials are constant and isotropic. Transport is described by (4.1) with constant © and v = 0.
This classic problem has received much attention [Rayleigh, 1892; Runge, 1925; Keller,

1963; Sangani and Acrivos, 1983; Quintard and Whitaker,.1993] and accurate experi-

mental and analytical values of effective diffusivity are available [Perrins et al., 1979].

We estimate the effective diffusivity of a periodic array by specifying reflecting

boundaries at lines ABC and DEF and absorbing boundaries at lines AF and CD as
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Figure 4.4: Square array of cylinders with known diffusivity, D,, embedded in a matrix
with contrasting diffusivity, D,.

shown in Figure 4.4. Simulation proceeds by releasing particles at time =0 and random
locations with uniform distribution along the line BE that bisects the system. Particle
paths are simulated using (4.11a) until particles exit the system by crossing absorbing
boundaries at lines AF or CD. Effective diffusivity is given by the relationship

N

2 & Y
5=wa[—- ‘tp) (4.14)
p p=l
where T, is the elapsed time from release until particie p exits the system and L,g is the
length of line AB.
The matrix diffusivity is arbitrarily chosen as 1.0. Simulations are performed for a
range of cylinder volume fractions, controlled by varying cylinder diameter, and diffu-

sivities. In each simulation 1,000 particles are released; time step is dynamically con-

trolled to ensure particles cannot bypass subdomains in any single step of the algorithm
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given by (4.11a). Figure 4.5 compares simulated effective diffusivities with values re-
ported by Perrins et al. [1979] for a range of cylinder volume fractions and diifusivities.
Simulation results compare well with reported values as expected due to the previous

success of (4.11a) in one dimension.

4.4.1.4 Discussion
Our results show that diffusions described by (4.9a) obey equation (4.1) in composite
media with discontinuities in effective transport properties. Furthermore, the numerical
integration method (4.11a) “accurately” solves this equation.

Convergence and analysis of errors associated with the numerical simulation of
SDE:s is a developing field (e.g., see Kloeden and Platen [1992]). Verification of conver-
gence and quantification of accuracy may generally be addressed by comparing numeri-
cal results with known analytical solutions, as we have done here, or benchmarking
against established numerical methods as in the following section. Since we cannot con-
sider all of the many problems to which (4.11a), and the other approximations that fol-
low, may be applied, we suggest verification by a similar procedure to assess accuracy
and convergence when the methods are used under circumstances other than those con-
sidered herein.

The examples presented above were for isotropic diffusions with constant ©® and
v=0. Next we present a more general multidimensional approximation for anisotropic
diffusions. Examples that follow will consider advection and dispersion in composite po-

rous media.
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Effective Diffusivity
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Volume Fraction of Cylinders
Figure 4.5: Simulated effective diffusivities are compared with values reported by Per-
rins et al. [1979] for cylinder volume fractions of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.75,

matrix diffusivity D; = 1, and cylinder diffusivities, D= 2 (solid circles), 5 (triangles), 10
(diamonds), 20 (squares), and 50 (open circles).

4.4.2 Anisotropic Diffusions

As with the isotropic case, we find ourselves faced with the following problem: Eliminate

the gradient drift term in (4.2a) in the anisotropic case. Note that this problem is not triv-

ial. Nevertheless, with considerable effort, we arrived at the following inspired resuit:
dX,(¢r) = v,(X,r)dr

+%—Z®"’2(X, 1)B, (X (+072(X.0)Y B, (X.r)dW, ,t}lW, (4.15a)
- jk m.n

1 " . ,
+= Y Z,.(X.0)07(X,1) B, (X, + N2 (X, 1)dW,,1)dW,

= jk.mn
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By (x.1) = © (X, )M (x.1)Zy, (x. 1) (4.15b)

Z,, (x,1) = (e, (x.1)) (e, (x,t))l (4.15¢)

where e, is the normalized eigenvector corresponding to the kth eigenvalue A; of 2D and,

for example, in the first term on the rhs of (4.15a), l?,.jk is evaluated at time ¢ and location

given by the vector whose Ith component is X, +©™"*(X,¢ ZB,M X,1)dW,, . For iso-

tropic D, A = A4, Vk, and using relationships given in Appendix 4C, equations (4.15a) and

(4.15b) simplify considerably:

dX,(r) = v,(X,t)de
+@7"( 1)2 B,(X+©7*(X,t)dX,r)dW (r) (4.163)
Bij(x’t)= e(x’t))"(x’t)si/ (4.16b)

Further, for constant ©, (4.16a) and (4.16b) reduce to (4.9a) and (4.9b). Therefore, (4.9a)

can be viewed as a special case of (4.15a).

Integration of (4.15a) may proceed according to a discrete-time random walk that

includes the approximations

AX, =v,(X,1)Ar
2@‘“’ 2,:' « (X, +AY, 1AW, (4.17a)
% 07 kz B, (X, +AU,, . t)AW,
AY, =07%(X,)Y B, (X.1)AW, (4.17b)
AU,, = N2 (X,0)AW, (4.17¢)
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First, equations (4.17b) and (4.17c) are evaluated to determine AY and AU, V n. These
results are used in (4.17a) to determine AX. As with the (4.11a) and (4.11b), boundary
conditions musi be implemented 1n the application of each step of the algorithm, (4.17a) -
(4.17c).

When coefficients are sufficiently smooth, (4.15a) is a SDE. In Appendix 4C, we
expand this SDE in Taylor series to show that it is indeed equivalent to (4.2a) in this case.
Standard stochastic theory (e.g., see Arnold [1992]) shows that diffusions described by
(4.2a), and therefore (4.15a), obey equation (4.1) when coefficients are smooth. Next we
demonstrate that (4.17a) converges to equation (4.1) in composite media and is applicable

to the simulation of subsurface transport.

4.4.2.1 Anisotropic diffusion in composite media

In this example we simulate anisotropic diffusion in composite media. The system illus-
trated in Figure 4.6 is a composite of two media with contrasting diffusion (dispersion)
tensors whose principle axes, designated by A,, are oriented at an angle ¢ with the x-axis;
eigenvectors corresponding to Ajand A, are given as e; = (sind, cos¢) and ex = (-sind,
cos®), respectively. Two problems are considered. In the first problem we test the ability
of approximation (4.17a) to maintain the invariant distribution, i.e., a uniform number
density, for the system in Figure 4.6 given periodic boundaries in the x-direction and re-
flective, no-flux boundaries at y = 0 and y = 2. In each of the four simulations, a total of
5,000 particles are initially distributed uniformly over the domain and the system is
evolved over time using the parameters specified in Table 4.1. Results for first moments
in the x- and y-directions plotted in Figures 4.7a — 4.7d indicate that approximation

(4.17a) can successfully maintain the invariant distribution for these problems.
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Figure 4.6: Composite media with anisotropic diffusion tensors.
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Table 4.1: Parameters corresponding to simulation results presented in Figures 4.7a-4.7d

and 4.8a-4.8d.
Region 1 Region 2
Figures Ay A> (i) Ay Aa [0}
7a & 8a 2x10°  2x10°  90° 2x107° 2x10°  Q°
7b & 8b 2x102  2x10°  -45° 2x102  2x10°  45°
7c & 8¢ 2x102  2x10°  30° 2x10°  2x10*  30°
7d & 8d 2x102  2x10°  70° 2x107 2x10*  0°

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

Mean

0 100 200 300 400 5S00 600 700 800 900 1000

Time

(4.7b)
1.05
1.04 X-mean — y-mean
1.03 7----- """ """ """
1.02 - : : : : ' ' ' : :
1.01

Mean
[y

0.99 4----¥ i SLTUNE LT
0 O L
0,97 - om e
0.96 4~~~ It RRCEET EERELEEEEREE SRR IRTRRT SRS SR
0.95 ———————————————1——

0 100 200 300 400 500 600 700 800 900 1000

Time

Figures 4.7a — 4.7b: Simulated first moments in the x- and y-directions as a function of
time for the system illustrated in Figure 4.6 with periodic boundaries in the x-direction
and reflective, no-flux boundaries at y = 0 and y = 2, initially uniform number density,
and parameters given in Table 4.1.
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Figures 4.7c — 4.7d: Simulated first moments in the x- and y-directions as a function of
time for the system illustrated in Figure 4.6 with periodic boundaries in the x-direction
and reflective, no-flux boundaries at y = 0 and y = 2, initially uniform number density,
and parameters given in Table 4.1.
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In the second problem, we compare predictions for evolution of concentration

from approximation (4.19a) with finite difference numerical solutions to (4.1) for the
system in Figure 4.6 with absorbing {zero-concentration) boundarieson x =0, x =2,y =
0, and y = 2 and initial distribution ¢(x,0) = ¢y in the region 0.99 <x < 1.00and 0.99 <y <
1.00 and ¢(x,0) = O outside this region. The finite difference algorithm is implemented (a)
using an explicit updating scheme. Choosing Ax = Ay = 0.005 and Ar = 0.0005 satisfies
criteria for numerical stability [Peaceman, 1977]. Particle simulations are implemented
using 10° particles. Coarse particle and finite difference solution contours of c¢(x,t)/co at ¢
= 5.0 plotted in Figures 4.8a — 4.8d for parameters given in Table 4.1 compare well. The
results herein clearly demonstrate that diffusions described by equation (4.15a) and ap-

proximation (4.17a) obey equation (4.1) for the cases considered here.

4.4.2.2 Advective-dispersive transport in composite media

In this example we simulate advective-dispersive transport according to (4.1) for the
system illustrated in Figure 4.6 with absorbing (zero concentration) boundaries on x = 0,
x=2,y=0, and y = 2. The functional form of the hydrodynamic-dispersion tensor used
here is given as

D; =(vjar + D)3, +(ar —a, Jv,v; /|| (4.18)
where o and oy [L] are transverse and longitudinal dispersivities, respectively, and D" is
effective molecular diffusivity LT Velocity direction is oriented at an angle ¢ with
the x-axis as illustrated in Figure 4.6. We compare predictions from approximation
(4.17a) with finite difference numerical solutions to (4.1). Again, the finite difference al-

gorithm uses an explicit updating scheme. Choosing Ax = Ay = 0.005 and At = 0.0005
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Figures 4.82-4.8d: Contours of c(x,f)/co from simulations of anisotropic diffusion in the
composite media shown in Figure 4.6 with absorbing (zero concentration) boundaries on
x=0,x=2,y=0, and y = 2, initial distribution ¢(x,0) = ¢p in the region 0.99 < x < 1.00
and 0.99 < y < 1.00 and ¢(x,0) = 0 outside this region, and parameters given Table 4.1.
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satisfies the stability criteria referenced in section 2.3.1 and ensures a grid Peclet number
P. = Av/a;. less than one. Particle simulations use 10° particles. As in the previous simu-
lations, the initial distribution in each simulation is c(x,0) = co specified within a square
region of Ax = Ay = 0.01, as shown in Figures 4.9a — 4.9¢c, and ¢(x,0) = 0 outside of this
region.

Coarse particle and finite difference solution contours of c(x,t)/co at t = 2.5, 5.0,
and 5.0 plotted in Figures 4.9a, 4.9b and 4.9c, respectively, for parameters given in Table
4.2 compare well. These and the previous results show that diffusions described by equa-
tion (4.15a) correspond with equation (4.1) and that approximation (4.17a) simulates
equation (4.1) in composite media with surprising accuracy.

4.5 Discussion and Conclusions

Standard diffusion theory only applies when effective transport properties are sufficiently
smooth, yet discontinuities in transport properties arise naturally in porous media at
abrupt contacts between geologic materials with contrasting transport properties. Limita-
tions of standard diffusion theory have precluded development of diffusion processes that

obey spatially-averaged transport equations in composite media.

Table 4.2: Parameters Corresponding to Simulation Results Presented in Figures 4.9a-

49c
Region 1
Figure ©, Oylv| oL or o D’
4.9a 1/3 e, (10'h 10" 10° -45°  10°
4.9b 173 e,(10h 10" 102 30°  10°
4.9¢ 1/3 Q,107h 10" 10 60° 107
il!_e_gion 2
Figure ©; Ozlvl 0/ oT (0} D’
“4.92 i3 0,(10h 107 107 45°  10°
4.9b 12 e (10'h 02(10%/0, 1.5x10°  30° 107
4.9¢ 12 0,(5x10) 0,(2x10%/0,  3.0x10° 0©° 107
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Figures 4.9a-4.9c: Contours of c(x,t)/co from simulations of advective-dispersive trans-
port in the composite media shown in Figure 4.6 with absorbing (zero concentration)
boundaries on x =0, x =2, y = 0, and y = 2, initial distribution ¢(x,0) = ¢ as shown and
c(x,0) = 0 outside this region, and parameters given Table 4.2.
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In this paper we have (1) generalized SDEs to the case of discontinuous coefficients and
(2) developed random-walk methods for numerically integrating these equations. The
new results apply to problems found in many scientific disciplines and offer a unique
contribution to diffusion theory and the theory of SDEs. Examples demonstrated conver-
gence of the new methods to ADEs in composite media and applications to subsurface-
transport problems including: (1) one-dimensional diffusion in composite porous nedia
with constant ccefficients in subdomains, (2) isotropic two-dimensional diffusion in a
system of circular cylinders packed in regular square arrays within a matrix of contrasting
material, (3) two-dimensional anisotropic diffusion in a composite system with contrast-
ing diffusion tensors and (4) transport by advection and dispersion in composite porous

media.

Standard theory shows that diffusions described by the new generalized SDEs
obey ADEs when coefficients are sufficiently smooth. Further, we have demonstrated
that these diffusions obey ADEs in composite media. Thus, in cases where coefficients
are smooth, we conclude that the new methods may often be more robust approximations
than standard /t6-Euler techniques.

The new simulation techniques possess the computational advantages of standard
random-walk methods, including the ability to efficiently simulate solute-mass distribu-
tions and arrival times while suppressing errors such as numerical dispersion, common to
finite difference methods when Peclet numbers are large. As such, the new methods are
appropriate for problems characterized by immense computational grids, such as those
now commonly produced through the use of geostatistical simulation techniques for sub-

surface characterization. Finally, unlike alternatives relying on [t6-Euler integration and
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spatial interpolation to ensure smooth coefficients, the new methods will converge ex-
actly in the limit, without the need to simultancously refine the interpolation scheme and

time step.
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Appendix 4A: Necessary Conditions for Weak Ccnvergence

LaBolle et al. [1998] use a graphical technique to show that approximations with sym-
metric transition-probability density satisfy necessary conditions for weak convergence
developed therein. Since transition-probability densities specified by (4.11a) and similar
approximations are asymmetric, however, the simple graphical techniques used in
LaBolle et al. [1998] are not applicable here. Instead, here we will show mathematically
that (4.11a) approximates the diffusion equation of interest.

Functions p(x,?) satisfying the one-dimensional diffusion equation

[ £(xr) D(x,t) f(x,t)+ D(x, 1) f (1)) p(x,5)dx  (4A.1)

for all smooth and bounded test functions f are weak solutions of (4.1) with v = 0
[LaBolle et al., 1998], where the f’ and f” denote the first and second partial deriva-
tives of f with respect to x. For the problem at hand, it is convenient to consider the case
in which D(x,t) has constant values within subdomains and a single jump of size 1D2-D)l
at xo, D = D) for x < xo, and v = 0. Here, D’=0 except at xo where it is given as

D’ =(D, - D,)8(x-x,) (4A.2)

Substituting this result into (4A.1) yields

jfg—’:dr=j(07'+of")pdx

= [[(D, = D,)8(x— x,)f "+ Df “]pdx = [ Df ‘pdx +(D, - D,)f 4]

(4A.3)

We will show that the density pe(x,t) generated by (4.11a) satisfies (4A.3).
To facilitate computations, we will consider the following variation of approxi-

mation (11a):

AX(r)= %[B(X +B(X)Z)+2B(X)-B(X - B(X)Z))Z (4A.4)
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where Z has distribution ®(Z) with mean zero and variance Az = 2. We could work di-
rectly with (4.11a). but use of (4A.4) simplifics the math that follows. The density p
generated by the Markov-chain approximation (4A.4) satisfies the equation [LaBolle et

al., 1998]

_”f ( dxds ij f(x,5)p(x,5)dxds + o(e ) (4A.5a)

Lf(xt)= t_:lj( F(2.8)= F(x.0))pe (2t +€5x,0)dz (4A.5b)

where Lgis commonly referred to as the generator (or infinitesimal operator) of the

Markov chain [Arnold, 1992]. Expanding f in a Taylor series yields

azi f f(x,s)%ds

O ey~ © ey,

[ [(£(z.8)- £(x.5)) (2.5 + €*1x,5)p, (x, 5)drdzds + ofe*) GA6)

J J[(z -x)f’(x,5)- %(z -x)'f "(x,s):l pe(z.5 +€%1x,5)p, (x,5)dxdzds
o(e?)

Noting that (z-x) is a realization of AX(r). we have. retaining terms to order €7,

+

I(z —x)p(z.t +€%1x,1)dz
= %I[B(x + B(x)Z) +2B(x) - B(x - B(x)Z))Z®(Z)dZ (4A.72)

- % [[B(x+ B(x)Z) - B(x - B(x)Z)|2(2)dZ

l“.(z - %) p(z.t +€%1x,1)dz
[B(x+B(t)Z )+2B(x) - B(x- B(x)Z)]' Z*®(Z)dz (4A.7b)

E(x) +0o(g*)
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where D = (D, + D)2 at x; and D = B2 elsewhere. Substituting these relationships

into (4A.6), we have

=% f j [B(x + BZ) - B(x - BZ)|2f b, ®(Z)dxdZds (4A.8)

where we have dropped explicit reference to (x,f). On the interval [xo-B\Z.xo+B2Z], B on
either side of xp will take on the value of B from the remaining side. For all such cases. in

the limit,

lim— [ [ *[B(x + B(x)2) - B(x - B(x)2)]2f p.®(Z)dxdZ

e—»O')g x-82
1 . |
":‘5‘3? | jg (B, - B,)Zf b, d(Z)dxdZ = (Bz+3,)(32—31)fp£‘ (4A.9)
1
==(B; - B!)fb| =(D,-D))fb.

%o

QOutside of this interval we have

llm-—

€0 2g? II(![% B1Z. mewz][ (r + BZ) - B(x - BZ)]Zf'pE(D(Z)dde =0 (4A.10)

because D is constant in this case. From (4A.9) and (4A.10) we have, in the limit,

um——j | [B(x+BZ)- B(x - BZ)|7f p®(Z)dZdx = (D, - D, )} (4A.11)
e—0 78
Substituting this result into equation (4A.8) yields, in the limit,

t a 4 —,, : ,

ffr %dxdﬂ”Df bedxds + [ (D, = D)) f b, ds

0 0 0 (4A.12)

- J f Df'bedxdﬁ,:[(Dz ~D))fb,| ds
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where the last equality is justified since singular values of D > 0 have no effect on the
diffusion process. Equation (4A.12) has the same form as (4A.3), therefore the density
generated by (4A.4), and version (4.11a) of this approximation, satisfy (4A.3) associated
with this equation. Similar resiilts can be developed for the algorithm in (4.19a). In Ap-
pendix 4B we show how this result implies a stochastic calculus with generalized func-
tions.

Appendix 4B: Stochastic Calculus with Generalized Functions
The forgoing result suggests that one can apply a stochastic calculus with generalized
functions to obtain the desired result. For example, in one dimension expanding (4.9a)
yields

dX = B(X + BAW, t)dW
dB(X,!)
ox

de

= B(X,1)dW + B(X,¢) dWdw

dD(X,1)
ox
dD(X,t)
ox

= B(X,1)dW + (4B.1)

= B(X,1)dW + dr+[D,(X,1) = D(X,1)]6(X - xo)de

Xzx,y

which from standard theory corresponds to the diffusion equation

o ox* ox

i=05"_13+[9_0
ox

+(D, = D,)8(x - x, )]a—" (4B2)

X#Xg
Equation (4B.2) is equivalent to (4A.3) for the problem considered therein.

Appendix 4C: Taylor Series Expansion of Equation (4.15a)
When coefficients are smooth, (4.15a) is a SDE. Here we expand this equation to show
that it is indeed equivalent to the SDE given in (4.2a). Expanding the second term in the

right-hand-side of (4.15a) in Taylor series for sufficiently smooth D and © yields:
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0™ (X.1)Y B, ( X, +07"*(X.1)3 B, (X.t)dW, ,t}in
]k mn

..m 2(; é.‘.} (x,t)_'_@-:;:(x’t) z an/lc( )

B, (X,t)dW +--- [dW
kdman axl IM( ) " ] !

-2 D - aéi‘k D
=0 ;a,.,kdw, +07 Y —% B, dr +o(dr) @c.1

jkdn !

=Y NEZ,dW, +07 Y _a_( NP Z, NP Z,,dt +o(dt)
1.k

" jkdn axl
=Y A’Z,dw, +07" Y o —(07"*AZ,, NV Z,,, dr + odr)
1k jk.man ax

where we have omitted explicit reference to evaluation of terms at (X,r) and used the

following relationships

Z,=2, (4C.2a)
>z, =3, (4C.2b)
k

Z o Zomt = ZO (4C.2¢)

where d,=1 for n=k and O otherwise. Expanding the third term on the right-hand-side of
(4.15a) in Taylor series yields

0™(X.1) ZZ""'" (x,t)émjk (X, + N:z(x,t)dm,t)iwj

J.k.man

oB
=@‘”2(X,I) 2 Zim(x,t[ m/k(x I) "BL)A‘,{Z(X,t)dVV,-h..},W,-
X,

Jk.mn

. B, . (4C.3)
=0 Y z,|B,.dw, + 2 —E\dr |+0(de)
X

j.k.man J

=Y APz, dw, +0™ Y %(e-"zx"’ it )N Z et + o(dlt)
jk i

jk.mn
where again we have used (4C.2a)-(4C.2c) and omitted explicit reference to evaluation of

terms at (X,?). Expressing (4.15a) in terms of (4C.1) and (4C.3) we have
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ijk

dX, =v,dr+ Y APZ,dW,
jk

1 _n 2 0 2
+;G i Z }\lkl ik a (GIIZAI’: mﬁt (4C.4)

- 1.k.mn

| 0 2~ 112 9
2@ =y o —(0"Ayz ,,,I,‘)k',f'z,mdt +o(dr)

1. k.mn

which one can show is equivalent to (4.2a) using the following relationships:

Z )\' mll: = k%kl’{’ }\l/" = ZD (4C.5a)
Z )‘ll" Z )\.“1 _ ((,)D)l/‘l )
2N Ly =\2D) ), (4C.5b)
_l_e-uz 2 d (@m;\m )kmz + z A2z J (em A2z )
2 jok.mn ax ] ik 1.k.man " "M a "l/k
(4C.5¢)
=0 %(@D&‘)
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Chapter 5

On the Role of Molecular Diffusion in Contaminant Mi-
gration and Remediation in an Alluvial Aquifer System

5.1 Introduction
In this paper, we explore the role heterogeneity and diffusion in the migration and recov-

ery of a conservative solute in an alluvial aquifer system underlying Lawrence Livermore
National Laboratory (LLNL), Livermore, California (Figure 1). Specifically, we are con-
cerned with the sequestration of contaminants in low-permeability materials, the role of
diffusion in this process, and its effects on pump-and-treat (PAT) remediation at the site.
Other mechanisms known to sequester contaminants, including entrapment of non-
aqueous phase liquid (NAPL) contamination or biogeochemical conditions favoring deg-
radation and significant reduction of mobility due to sorption, have not been observed in
the saturated sediments of the site [Hoffman et al., 1997]. Nevertheless, contaminant con-
centrations persist near suspected source areas, even after years of active PAT remedia-
tion. As the LLNL site is highly heterogeneous with a large volume fraction of low-
permeability silts and clays, dispersion, accelerated by diffusion into these materials,
arises as a primary mechanism for the natural attenuation of contaminant migration. This

study is facilitated by generic numerical simulations of flow and transport in detailed
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Figure 5.1: Location Lawrence Livermore National Laboratory.

transition-probability based geostatistical simulations of the LLNL site [Carle, 1996;
Carle et al., 1998]. Models are resolved to a discretization of 10.0 m, 5.0 m and 0.5 m in
the strike, dip and vertical directions of the alluvial fan system. To our knowledge, this
work constitutes the first use of geologic characterizations in such detail to explore the
role of diffusion in contaminant migration and remediation in highly heterogeneous aqui-
fers.

5.2 Background

Extraction of contaminated groundwater by means of wells (PAT) is the most common
remedial technology employed today [NRC, 1994; Berglund, 1995]. The National Re-
search Council (NRC) [1994] recently acknowledged that, at most waste sites, aquifer
restoration by PAT is theoretically possible, but time frames to achieve drinking water
standards may be unreasonably long, in some cases perhaps centuries. At many contami-
nation sites, reasons for long times to cleanup using PAT technology have been attrib-

uted, in part, to the sequestration of contaminants in regions relatively inaccessible to
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flow [Mackay and Cherry, 1989; Mercer et al., 1990; Nyer, 1993; NRC, 1994, Berglund,
1994 Berglund and Cvetkovic, 1995].

Alluvial aquifer systems ccmmonly contain substantial volume fractions, as high
as 20 to 80 percent, of low conductivity (K) silts and clays. The groundwater in such re-
gions is not necessary immobile; nevertheless, transport may often be approximated as
purely diffusive when time-scales associated with advective transport are very long com-
pared to those of molecular diffusion. Once present in low-permeability materials, con-
taminants may act as long-term sources with migration rate controlled by molecular dif-
fusion [Mackay and Cherry, 1989; Mercer et al., 1990; NRC, 1994; Cohen et al., 1997].
Mean residence times for contamination in low-permeability materials with length scales
on the order of meters. and transport controlled by the rate of diffusion, may be on the
order of centuries to millennia.

Matrix diffusion has been recently acknowledged as an effective passive, or natu-
ral attenuation, remedial technology {OSWER Directive 9200.4-17, 1997]. In 1997, the
EPA endorsed natural attenuation as a means of achieving remediation objectives stating
that “natural attenuation processes may reduce contaminant mass or concentration at suf-
ficiently rapid rates to be integrated into a site’s soil or groundwater remedy” [OSWER
Directive 9200.4-17, 1997]. The role of dilution in the risk posed by contamination de-
pends on the character of the structure and distribution of subsurface materials, as well as
their hydraulic and transport properties. The OSWER Directive 9200.4-17 [1997] con-
cludes that *“decisions io employ monitored natural attenuation as a remedy or remedy
component should be thoroughly and adequately supported with site specific characteri-

zation data and analysis.”
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Realistic site-specific predictions of transport must account for the complex ge-
ometry of subsurface materials and their associated hydraulic and transport propertics,
while honoring lithologic data [NRC, 1994]. Due to the practical limitations of most site
characterization efforts, however, data are usually gathered from only a fraction of a per-
cent of the subsurface. Because the subsurface is inherently heterogeneous, the usual
paucity of data renders deterministic site characterization an impossible task. Indeed,
previous studies demonstrating the important role of matrix diffusion ir attenuating the
contaminant migration (e.g., Gillham et al., 1984; Feenstra et al., 1984; Wilson, et al.,
1993) have relied simple models as surrogates for real heterogeneous systems.

Sparse data in the face of complex heterogeneity has motivated development of
stochastic subsurface transport theory (e.g., Gelhar and Axness, 1983; Gelhar, 1986;
Gelhar, 1993; Dagan, 1989). Stochastic theoretical models treat subsurface flow and
transport in a probabilistic framework with hydraulic and transport properties as random
functions of space. Prevailing models generally rely on simple boundary conditions and
characterizations of heterogeneity amenable to analytical solution. Such simplifications
can lead to unrealistic results, e.g., that predict effects of pore-scale dispersion and diffu-
sion are negligible for statistically isotropic media (e.g., Gelhar and Axness, 1983; Gel-
har, 1986; Gelhar, 1993) or completely ignore these processes [Dagan, 1989; Cvetkovic
et al., 1991]. Cvetkovic et al. [1991] state that “except for stratified formation[s] with
flow parallel to stratifications and large travel time (Matheron and de Marsily, 1980) pore
scale dispersion [including molecular diffusion] has been found to play a minor role
compared to heterogeneity ...” This conclusion begs the question: How can pore-scale

dispersion “play a minor role” in the migration of contaminants when large volume frac-
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tions of low-permeability clays and silts, often as high as 50% or more, are common to
most sedimentary systems, including many alluvial-fan and fluvial deposits of the west-
ern United States and elsewhere. At present, theoretical models applicable to complex
geologic systems and boundary and initial conditions of real flow problems are not avail-
able, emphasizing the need for alternative approaches that account for uncertainty and
complex heterogeneity in predictions of contaminant migration.

One alternative to dealing with complex heterogeneity is to construct detailed
numerical models that describe the character of subsurface heterogeneity and honor
lithologic data crucial for prediction. Geologic process-based models [Tezlaff and Har-
baugh, 1989; Koltermann and Gorelick, 1992] and geostatistical simulation methods
[Deutsch and Journel, 1992; Poeter and Mckenna, 1995; Carle et al., 1998] can simulate
three-dimensional stratigraphic sequences in detail [Carle, 1996]. It is generally difficult
to generate process-based simulations that honor lithologic data [Carle, 1996]. Condi-
tional geostatistical simulation methods can honor lithologic data, but most techniques
rely on abundant data (not generally available) to quantify spatial variability. Alterna-
tively. the transition probability-based geostatistical approach of Carle et al. [1998] can
be used to build plausible models of spatial variability from interpretive and quantitative
analyses of geologic systems; these models are used to simulate detailed three-
dimensional stratigraphic sequences that honor lithologic data [Carle, 1996]. Importantly,
this approach acknowledges the role of uncertainty in subsurface characterization and has
been used successfully to simulate hydrostratigraphic sequences that reproduce field ob-
servations from well interference tests [Carle, et al., 1996] and isotopic studies of mean

groundwater age {Tompson et al., 1998].
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Presently, detailed characterizations of subsurface heterogeneity are not used in
the design of remediation systems and the study of processes that affect their perform-
ance. To our knowledge, this paper presents the first study using detailed (on the order of
meters) site-specific characterizations to explore the role of diffusion in the migration of
contaminants and PAT remediation system performance on a decadal time scale. This
paper is organized as follows: a brief introduction to the LLNL site is presented followed
by a description of the stochastic modeling procedure including geostatistical site char-
acterization and flow and transport simulations; finally, we explore the role of diffusion
in contaminant migration and PAT system performance.

5.3 Study Area

Lawrence Livermore National Laboratory (LLNL) is located in the Livermore Valley of
the Coast Range of California (Figure 5.1). The aquifer system consists of a network of
ancient stream channel, levee and debris flow deposits embedded in fine-grained low-
permeability floodplain deposits [Noyes, 1991; Carle et al., 1998]. The saturated
unconsolidated materials of the site generally exhibit a low organic carbon content (<
0.1%) and biogeochemical conditions favoring contaminant degradation and significant
reduction of mobility due to sorption have not been observed [Hoffman et al., 1997].
Thus dispersion and dilution appear to be the primary mechanisms for the natural at-
tenuation of contaminant migration.

The numerous contaminants, primarily volatile organic compounds, present in the
alluvial fan deposits underlying the site extend over a region of several km> and to depths
as great as 100 m [Thorpe et al., 1990; Carle et al., 1998]. This study focuses on a por-

tion of the upper aquifer, the detailed study described in Chapter 5 of Carle [1996] (Fig-
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ure 5.2). Groundwater contamination, consisting primarily of trichloroethylene (TCE)
and perchloroethylene (PCE), is believed to have originated from multiple sources some
50 years ago [Tompson, 1998]. The coarse monitoring network of the site has generally
been in operation largely less than 10 years, so detailed observations of contaminant
transport are limited. Contamination is believed to exist primarily in the dissolved phase
as non-aqueous phase liquids (NAPLs) have not been observed. Nevertheless, high con-
centrations are generally observed close to suspected or known contaminant source areas.
Contamination is slowly moving toward municipal wells of the City of Livermore; PAT
is currently being used for remediation and plume containment. During the course of
more than 8 years of remediation, distal plumes have shown dramatic reductions in con-
centration whereas concentrations of source areas have generally persisted [Hoffman,
1997]. One objective of this study is to explore the role of diffusion in the phenomenon
through the use of detailed simulations of flow and transport.
5.4 Simulation Procedure
The simulation procedure consists of (1) generating 10 conditional simulations of hy-
drostratigraphic architecture, (2) specifying hydraulic and transport properties of hydro-
facies, (3) simulating steady-state ambient and stressed (in response to pumping)
groundwater flow fields, (4) simulating scenarios of ambient contaminant migration fol-
lowed by migration in response to PAT remediation.

Ideally, to fully describe ensemble transport characteristics, one would hope to
implement this procedure with many more than 10 conditional simulations. However, the
scope of this work does not include a characterization of transport in a large ensemble of

realizations. Computational limitations at the time this work was performed prohibited
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Figure 5.2: Detailed study area (after Carle [1996]).

such a study. Nevertheless, the 10 realizations considered are associated with a wide

range of transport behavior likely characteristic of such an ensemble.

5.4.1 Geostatistical Simulations

Details of the transition probability-based indicator geostatistical simulations of the field
site are described in Carle [1996] and [Carle et al., 1998]. A brief description of these
simulations is given here for completeness.

Four hydrofacies, debris flow (7%), floodplain (56%), levee (19%), and channel

(18%), were identified from detailed interpretations [Noyes, 1991; Fogg et al., 1998] of
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5,500 m of core and subsequently used in the classification of the remainder of the core
through interpretation of geophysical logs and textural descriptions of site geologists.
This data encompassed a much larger area than the field site considered herein. Vertical
transition probability models were measured directly from the data whereas strike and dip
direction models are established through geologic interpretation as described in Carle
and Fogg (1997) and Carle et al. [1998]. Mean lengths of the 4 hydrofacies in the dip,
strike and vertical directions are summarized in Table 5.1. Elliptical interpolation of tran-
sition rates was used to construct the three-dimensional Markov chain models shown for
the strike-vertical (x-z), strike-dip (x-y) and dip-vertical (y-z) planes in Figures 5.3, 5.4
and 5.5, respectively. Finally, the geostatistical techniques described in Carle [1996] and
Carle et al. [1998] were used to conditionally simulate 10 realizations of hydrostratigra-
phy on a rectilinear computational grid with discretization Ax (strike) = 5.0 m, Ay (dip) =
10.0, and Az (vertical) = 0.5 m, and dimension 81 cubed, as shown in Figures 5.6 and 5.7
for realizations 4 and 7, respectively. The top of the simulation roughly corresponds to
the observed water table. On the average, approximately 80% of the channel hydrofacies
form a connected network extending in all directions and connecting all boundaries of the
domain. Simulations 1 through 10 of this paper are identical to simulations 2 through 11

of Carle [1996].

Table 5.1: Mean lengths (m) of hydrofacies in the strike, dip and vertical directions in
Markov-chain model.

Direction
Hydrofacies Strike Dip Vertical
Debris flows 8.0 24.0 1.1
Floodplain 26.6 66.9 2.1
Levee 6.0 20.0 0.8
Channel 10.0 50.0 1.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

debris flow floodplain levee channel

§ .
S EI
= ] '
< ’
« lllllllllllll
= .
§§ :
:D E
) N
Qq LEBBAREARRAR A
3 | RARRSRARRE
» O 3
S == : _
2 & 41 =
NQ -
> -IIITIIIIIII_I
i :
S 0 1 -
S :
-4

lllllllrlll1l

20 0 20 gtrike Lag (M)

lllllll ll]]

00 02 04 0.6 08

1.0

Figure 5.3: Cross section in strike-vertical (x-z) plane of interpolated Markov chain
model (after Carle [1996]).
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Figure 5.4: Cross section in strike-dip (x-y) plane of interpolated Markov chain model
(after Carle [1996]).
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Figure 5.5: Cross section in dip-vertical (y-z) plane of interpolated Markov chain model
(after Carle [1996]).
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5.4.2 Flow Simulations

Steady-state saturated flow in the system illustrated in Figure 5.8 is described by
d oh(x)
—| K(x)——=|= o(x —-x 5.1
2 k%) 5 0.5x-x.) 50

where h(x) is hydraulic head [L], K(x) is hydraulic conductivity [LT'] (assumed to be
isotropic) and Q. {L*T"'"] is the rate withdrawal due to pumping at location x,,. Boundary
conditions of the flow problems include general head boundaries (GHBs) [McDonald and
Harbaugh, 1988] assigned to grid block on vertical and bottom faces and recharge from
above assigned to grid blocks on the top face. The saturated flow problems are solved via
a block-centered finite difference scheme (see Chapter 2). Due to computational limita-
tions, the model domain includes only a small fraction of the flow system as defined by
natural hydrologic boundaries of the aquifer system. The use of GHBs allows for flow to
and from the model in response to stresses without the need to extend the computational
grid. GHBs are assigned to model nodes on all sides of the domain (Figure 5.8), with the
exception of the top (as described in Appendix 5A) to maintain an ambient regional gra-
dient of approximately 0.002 in the dip direction and a small vertical gradient consistent
with the recharge boundary at the water table. Recharge is distributed to nodes at the wa-
ter table as described in Appendix 5A at a rate of 0.034 m/year.

The simulation methodology used here assigns hydraulic properties to the direct
outcome of transition probability-based indicator simulations without further grid refine-
ment, i.e., with no variability of properties within hydrofacies. This approach will result.
for example, in some instances where grid blocks are isolated in a matrix of contrasting
conductivity (see Figure 5B.1). In most cases, a facies body contains multiple nodes ver-

tically
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Figure 5.8: Schematic of flow system. The mean direction of flow is in the dip direction.

and horizontally. Nevertheless, as numerical grids are refined (Figure 5B.1), accuracy of
flow solutions will improve. Effects of these improvements on flow and transport are
considered in grid refinement experiments described in Appendix 5B. Results of these
experiments suggest that resolving the numerical grid does not necessarily result in a
systematic trend in change in solution. Further, changes with grid refinement are small
enough so as to not affect the general nature of the results to be presented herein.

The distributions of field and core measurements of hydraulic conductivity within
hydrofacies are shown in Figure 5.9. Hydraulic conductivity values in flow simulations
are assigned as constants to hydrostratigraphic units under the assumption that spatial
variability within units is small compared to variability between units [Carle, 1996; Fogg

etal., 1998]. Carle [1996] successfully calibrated hydraulic conductivity (Table 5.2) of
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Figure 5.9: Hydraulic conductivity distribution categorized by hydrofacies (from Fogg et
al., 1998).

the hydrofacies of the study area to a 24-hour well interference test conducted in April of
1994. Carle [1996] observed that system response was particularly sensitive to the speci-
fied conductivity of floodplain hydrofacies. Recent measurements of conductivity core
from the site (see Tompson [1998]) confirm the assumed range, indicated in Figure 5.9 by

the question marks, and support use of the calibrated value shown in Table 5.2.

Two steady-state hydraulic scenarios are considered, natural gradient conditions
(ambient) and stressed hydraulic conditions corresponding to pumping from well MW-
612 (Figure 5.8) at a rate of 50 m>/day, comparable to rates applied at the site. Simulated
hydraulic heads of realizations 4 and 7 for ambient and stressed hydraulic conditions are
shown in Figures 5.10 and 5.11, respectively. Average drawdown of the water table
ranged from approximately 0.5 m to 1.0 m, suggesting that the approximation of uncon-
fined conditions as confined has introduced little error in the flow field. Flow simulation

results define velocities used in the transport simulation, which are described below.
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Figure 5.10: Hydraulic head of realization 4 with (a) ambient and (b) stressed hydraulic
conditions - pumping well located at the center of the system.
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Figure 5.11: Hydraulic head of realization 7 with (a) ambient and (b) stressed hydraulic
conditions - pumping well located at the center of the system.
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Table 5.2: Hydraulic Properties of Hydrofacies

Hydrofacies K (m/day)
Debris flows 0.432

Floodplain 4.32x107
Levee 0.173
Channel 5.184

5.4.3 Transport Simulations

For the purposes of this study, the solute is assumed to be conservative and nonsorbing.
Further, we assume that, due to the highly-resolved numerical grids, variability of hy-
draulic properties within hydrostratigraphic units is small compared to variability be-
tween units and that transport within hydrostratigraphic units is described by a local-scale

advection-dispersion equation of the form

a—c(a’;’—’h —Zai&(vi(x,t)c(x,t)%%%(Dq(x,t)%igﬁ] (5.3)
where c is aqueous-phase contaminant concentration, v = - KVA/© is pore-water velocity,
where © is an effective porosity (approximated as a constant), and D is a hydrodynamic
dispersion tensor with form

D, (x,t) = ([v(x, )otr + D)8, + (0t — 0, v, (%, £)v (%, £) /|¥(x. 1) (5.4)
where ar and o are transverse and longitudinal dispersivity [L], respectively, D" is an

effective molecular diffusivity [L*T"'] that accounts for tortuosity, but not a porosity flux

correction, as described in the following section.

5.4.3.1 Transport Parameters

Parameters of equation (5.3) include ®, oy, ot and D". Dispersivities are approximated as

constants. Results presented in Appendix 5C for sensitivity of
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contaminant migration to dispersivity show that field scale transport is relatively insensi-
tive to local-scalc o. Therefore, all simulations will use an isotropic dispersivity, o =
or. Based on the assumption of a small degree of local-scale heterogeneity, a iocal-scale
dispersivity of 10” m is assumed. This value is much closer to reported pore-scale trans-
verse dispersivity values, on the order of 10 mto 10° m [Robbins, 1989; Gelhar, 1993],
than to asymptotic field-scale values reported for LLNL, on the order of 0.5 m and S m in
the vertical and strike directions, respectively [Tompson, 1998].

Effective pore-scale aqueous-phase molecular diffusivity in a porous medium is a
function of the pore geometry of that medium and the aqueous-phase molecular diffusiv-
ity Dgq of the constituent. The mean-squared displacement of aqueous-phase solute mole-
cules diffusing in porous media during a time interval Az is given by the relationship (see

equation 3.4b of Chapter 3)

<2 AX,.2> 77D, At = DAt (5.3)
where the tortuosity 7= [/[ ac;counts for the tortuous paths of length /. [L] molecules
must travel on average to move a distance / in a straight line. Application of D" in a
model of diffusive transport must also account for porosity © such that the diffusive flux
J' takes the form

J; =-0©(x)D’(x,t)dc(x,t)/ox; (54)
The molecular diffusivity in water-saturated pores of a porous medium will be in-

dependent of pore geometry and equivalent to the aqueous-phase molecular diffusivity
D, provided the mean-free path of a solute molecule is sufficiently smaller than the pore

diameter. In cases where the pore diameter is small enough to affect significantly the
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molecular diffusivity in the pores, the molecular-diffusion-controlled diffusion process is
referred to as Knudsen diffusion. While the latter occurs to some extent in most natural
porous media, the mean-free path of most solutes in groundwater under typical field con-
ditions is small relative to the pore geometry of most of the subsurface. Therefore, Knud-
sen diffusion effects in the current context are assumed to be negligible [Grathwohl,
1998].

Molecular diffusion at the local scale can be an important component of the dis-
persion process and may be the dominant transport process where time scales associated

with advection are much smaller than those of molecular diffusion. These time scales are

on the order of (At,) = a/lvl and (Ato.> = a*/D" (note that the latter may be deduced from

equation 5.3), respectively, where a is a length scale associated with the hydrofacies unit

of interest. The ratio (At o ) /(At‘.) yields a Peclet number P, = Ivia/D" that describes the

relative role of advection and diffusion (where we neglect mechanical dispersion). Where
P. << 1, diffusion may be considered the dominant transport process. Table 5.3 describes
the relative influence of diffusion and advection in the 4 hydrofacies units. Calculations,
based on regional gradients, calibrated hydraulic conductivity values, and average length
scales of hydrofacies units, show that diffusion will tend to control transport in low-
permeability floodplain hydrofacies. Due to a moderate dip in the bedding plane and the
presence of vertical gradients due to recharge, flow will tend to be horizontal in high-K
units and predominately vertical in low-K units. Therefore, these calculations are based
on horizontal length scales for channel, levee and debris flow hydrofacies, and vertical
length scales for floodplain hydrofacies. Similar results, to those shown in Table 5.3, can

be expected under stressed conditions, except in the direct vicinity of the pumping well,
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Table 5.3: Controlling Transport Process in Hydrofacies
Hydrofacies Length Scale a (m) P} Dominant Transport Process

Debris flows 24.0 5.9x10° Advection
Floodplain 2.1 5.1x10 Diffusion
Levee 20.0 2.0x10° Advection
Channel 50.0 1.5x10° Advection

3p, = Kia/D ©, where © = 0.35, the regional gradient i = 0.002, and D* = 10 m’/day.
where gradients could be large enough to induce significant flow through floodplain
units. Note that hydraulic conditions may also give rise to low-velocity regions (stagna-
tion zones) in high-permeability hydrofacies.

Effects of diffusion will be most significant in low-permeability clays of the
floodplain hydrofacies. Grathwoh! [1998, p. 92] reported measured values of D’ for TCE
in natural clays at 20° C (approximately the average groundwater temperature at LLNL)
ranging from approximately 1x10° to 5.0x10™ m2/day. Here, measured values of D° may
include sorption effects; this may account for the large range of reported values. One
should expect that the high end of this range must be limited to a theoretical maximum of
D'=D¢,(,~9.Ox10'5 mZ/day at 20° C [Grathwohl, 1998]. To arrive at a theoretical estimate
for a maximum value for D°, we use the relationship 772 = @"* [Grathwohl, 1998, p. 34],
and assume a maximum © = 0.45 for clays of floodplain hydrofacies, to yield a value of
D = GI’ZD,,‘, = (+/045)(9.0x10°8 m?*day) = 5.2x10°%, roughly equal to an average of the
measured values given in Grathwohl [1998, p. 92]. We will assume that the range of un-
certainty for D" is between 10 and 5.2x10° mzlday; simulations will be performed for a
range of D" from 107 to 10™* m*/day.

The magnitude of D will effect the rate of contaminant mass transfer between
mobile and immobile regions. In the same time span, the leading edge of contamination

may penetrate into a floodplain unit more than 7 times further for D" = 5.2x10° m%day
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than for D" = 10" m*/day, i.e., over the range of uncertainty in D’. Similarly, with a de-
crease in the rate of diffusion, the mean residence time (AtD.> within hydrofacies in-

creases; in the present case, residence times for D’ = 10°® m%day are approximately 50
times those for D* = 5.2x10”° m*/day. Transport parameters used in the experiments that
follow are given in Table 5.4. Specific values used in the various experiments are cited

where appropriate.

5.4.3.2 Numerical Simulation

Equation (1) is simulated via the random-walk methods described in Chapter 4. Time step
is dynamically controlled and analytical advective paths lines (see Chapter 2) are incor-
porated to ensure greater accuracy in regions dominated by advective transport. Absorb-
ing boundary conditions are prescribed on all model boundaries and in grid blocks corre-
sponding to pumping under stressed hydraulic conditions. A single pumping well is lo-
cated at the center of the system with screened interval corresponding to grid blocks i =
41, j =41, and 39 < k < 43. In these grid blocks with active pumping, particles are ab-
sorbed within a time step At with probability of absorbing a particle in grid block (i,j,k) of
ArQ,/(OAV ) < 1, where AV is the volume [L3]of grid block (i,,k), and i, j, and k in-
dex nodal location in the x, y, and z directions, respectively.

The contaminant source is always released in the same 4 grid blocks near the up-
streamn edge of the model as illustrated in Figure 5.8. These grid blocks correspond to ob-
served channel lithologies used to condition geostatistical simulations. The source loca-
tion is part of the primary channel network (i.e., the largest connected channel network,
typically comprised of approximately 80% of the total volume of channel hydrofacies) in

all realizations but 2 and 10. In realizations 3 and 9, the source region is somewhat poorly
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Table 5.4: Transport Parameters

Parameter Value
Porosity, © 0.35
D’ (m*/day) 107 -10"
oy = ar(m)* 0.01

*Results of Appendix 5C show that use of an isotropic local-scale dispersivity
yields accurate results.

connected with this network. Experiments, not shown, demonstrate that field-scale trans-
port is not particularly sensitive to the initial lateral distribution of the contaminant source
within these 4 grid blocks. Therefore, particles of the source are distributed uniformly
along a vertical line at x = 207.5 m, y = 25.0 m, and 20.75 m < z £ 22.25 m to simulate an
instantaneous point source in plan view. In all scenarios, a total of 40,000 particles,
10,000 particles per grid block, define the initial source. For the purposes of evaluating
remediation scenarios, source concentrations on a finite difference grid-block basis (as
defined in the following section) are assumed to be 5 mg/l (5 ppm), approximately 3 or-
ders of magnitude greater than the maximum contaminant level (MCL) 5 pg/l (5 ppb).
Transport simulations results are presented after the following section, describing analy-

ses of particle mass distributions.

5.4.3.4 Analysis of Particle Mass Distributions
Simulation of equation (1) by random walks yields particle mass distributions (see
Chapter 2). This section presents various analyses used to describe these distributions in-
cluding computation of total mass, spatial moments, average plume velocity, macro-
scopic dispersivity, average concentration, and concentrations at wells.

Consider a distribution of particles with locations X,(r) and mass m,(t), X ()€ Q.

Then the total mass M(¢) contained in Q is given by the sum
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M(t) = m,(r),9X,(t)eQ (5.5)

The aqueous-phase concentration c(x,t) for any x contained in grid block (ij.k) will be

reported as the average concentration within that block, calculated as

veav, =®(c(x,t))Av"‘ = \l/ J'c(x',t)dx’

ijk xeAV,,

Oc(x,1)

(5.6)

Zm (1), VX, (1) e AV,

ijk p

A

For an idealized vertical line source located at x,, normalized concentration averaged over

the z coordinate can be approximated for constant © as

N S S Ta VX, €AV, (56
L o =5 0%, eV, 69

where AV, = ZAVj and (e)° indicates the spatial average over the z-coordinate.

Similarly, concentration averaged over the x and z coordinates can be approximated by

(c(x,1))™

[ e(x, r)dr'az’

(e, 0) 7|y (e(x0) 7 LL i, 5.7)

= —LZmp(t),VXp €AV,
o’p

, L 3 : ,
Average concentration <cw(xw,t)> [ML"] at the well location x,, is calculated as an av-

erage of the flux-weighted concentrations c.(Xw,) along the length L,, of the well screen

as

(cw(xw,t»L'Lm - ((cw(xw,t)>"'>~
Y (5.8)

IQ (x,) w(xw,t)dzdt~—— m, (1)

AtQroraL pell,,

_ L f ——
At ¢ LwQTOTAL
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where Q,(X.) [L3T"] is the flow to the well at point x,, along the well screen, OroraL
[L*T'] is the total flow to the well, and Iy, is the set of particles absorbed in the time

span At. First and second spatial moments of the mass distribution in € are given as

X,( M(: ——=> m,(1)X,,(e). VX, (r)eQ (5.9)

5 =Twl_z m, ([ X,.(0)- X ()] X,,()- X, (0} vX,(eQ  (5.10)

The spatial moments can be transformed such that coordinates are aligned with the prin-
ciple axes of . Transformed spatial moments are denoted by X and X" with i=1 corre-
sponding to the direction of principle axis (assumed to be roughly constant for simplic-

ity). Macroscopic dispersivities as a function of these moments can be approximated as

1 dXi(n) 1
A"(’)’zv(:) de  4v(n)Ar

[t +a0)- 23 (e - )] (5.11)

where V is the average velocity of the particle mass distribution in the principle direction

given as

=—1—[Y,'(t+At)—)-{','(t—A:)] (5.12)

Forward and backward difference approximations are substituted where needed. Trans-
port experiments are described in the following section.

5.5 Transport Experiments

The transport experiments considered here explore the role of matrix diffusion in con-
taminant migration and remediation using the LLNL site as a model. Scenarios | - 4 of
Table 5.5 simulate ambient contaminant migration for 40-years followed by PAT at a 50

m’/day rate. Diffusion coefficients D" of these 4 scenarios range from 107 to 10™ m*/day.
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Table 5.5: Scenarios 1 — 6

Scenario D’ (m*/day) Equation
1 10° ADE
2 5.2x10° ADE
3 10° ADE
4 107 ADE
5 5.2x10° Advection diffusion equation
6 0 ADE. No diffusion

Because results will show contaminant migration and remediation is significantly sensi-
tive to the diffusion coefficient within the range of uncertainty, it is important to know if
this sensitivity is overwhelmed by uncertainty in other transport parameters, chiefly dis-
persivity. This issue is addressed by comparing results of scenario 2 with those of sce-
narios 5 and 6 (Table 5.5) that simulate ambient transport according to an advection dif-
fusion equation (0. = ot = 0), and advection dispersion equation (ADE) with no diffu-

sion (D" =0), respectively.

5.5.1 Results and Discussion

Results for transport under ambient hydraulic conditions in scenarios 1 — 4, stressed hy-
draulic conditions in scenarios 1 - 4, and scenarios 5 and 6 are addressed separately in the

sections that follow.

5.5.1.1 Ambient Hydraulic Conditions, Scenarios 1 - 4

Scenarios | — 4 simulate transport under ambient hydraulic conditions for 40 years fol-
lowed by PAT. Scenarios correspond to a range of effective molecular-diffusion coeffi-
cient D’. Results presented here explore the role of diffusion in the ambient migration

phase of these scenarios.
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5.5.1.1.1 Concentration and mass distributions. Figures 5.12 and 5.13 plot log
normalized 40-year x-z average concentrations for scenarios | — 4, realizations | — 10. A
plume generated for a homogeneous system with o, = or = 0.0l m and K = 5.184 m/day,
corresponding to the K of the channel hydrofacies, is shown for reference. Results gener-
ally show an increase in holdback of mass, particularly close to the source location at 25
meters, and a corresponding decrease in contaminant mass near the leading edge of the
plume, with increase in D°. For example, all realizations, but 2, 3 and 10, show greater
than a half order of magnitude (i.e., more than a three-fold) increase in mass holdback
near the source with increase in D° from 10 to 5.2x10” mZ/day, i.e., over the range of
uncertainty in D’. This result is illustrated more clearly with normalized z-average con-
centrations at year 40 for scenarios 2 and 3 of realizations 4 and 7 as shown in Figures
4.14 and 4.15, respectively. Note that results for greater values of D" are consistent with
observations of persistent high concentrations near source locations at the LLNL site
[Hoffman, 1997].

Realizations 2, 3 and 10 show relatively little downstream migration of mass. Re-
sults confirm independent observations that channel hydrofacies of source locations in
realizations 2 and 10 do not percolate (i.e., they are not part of a connected channel net-
work that spans the domain in the dip direction), whereas in realization 3, they are poorly
connected with the main channel network. Thus, transport behavior depends strongly on
the details of the channel network and the distribution of results presented appears to be
bimodal. One mode corresponds to realizations in which channel hydrofacies of the
source location are a part of the primary network of channels that percolates (connects)

completely through the domain. The other mode corresponds to realizations in which
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Figure 5.12. Normalized x-z average concentration at year 40 for scenarios 1 — 4, realiza-
tions | — 5. A plume generated for a homogeneous system with 0. = 0r=0.0l mand K=
5.184 m/day is shown for reference.
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Figure 5.13. Normalized x-z average concentration at year 40 for scenarios | - 4, realiza-
tions 6 — 10. A plume generated in a homogeneous system with o = or = 0.0l m and K
= 5.184 m/day is shown for reference.
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channel hydrofacies of the source location are either not part of, or are poorly connected
with, the primary network of channels. Three dimensional particle distributions are pre-
sented in Appendix 5D for scenarios 2 and 3, year 40. These plots clearly illustrate the
flow paths of the high-K channels connected with source locations. Increasing D" results
in a noticeable increase in traverse spreading (dispersion) by accelerating diffusion in the
low-K matrix surrounding these channels.

5.5.1.1.2 Macrodispersive behavior. Longitudinal first and second spatial mo-
ments as a function of time for scenarios 1 — 4, realizations 1 — 10, are shown in Figures
5.16 - 5.19. First moments show a dramatic increase in sequestration of mass with in-
crease in D°. Surprisingly, results are particularly sensitive in the range of uncertainty,
between D" = 10 and 5.2x10”° m*/day. In realizations 4 and 7, for example, there is more
than a 25% decrease in the extent of downstream migration of the center of mass at year
40 with increase in D from 10 to 5.2x10°° m?*/day. Because source locations are in high-
permeability channel hydrofacies, an increase in D generally results in an initial increase
in the net flux of mass from high- to low-permeability hydrofacies, resulting in greater
sequestration of contaminants.

With the exception of realization 5, second moments generally show little sensi-
tivity to D". An increase in D° results in a general reduction of mass in the distal plume
and a corresponding increase in mass near source locations. Apparently, this shift of mass
generally has little affect on second moments. Realization 5, however, shows a signifi-
cant mass peak near 550 m. Here, increasing D" flattens the mass distribution enough to

significantly increase in the second moment.
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Figure 5.14: Normalized z-average concentrations at year 40 for scenarios 2 (D" =
5.2x10” m%day) and 3 (D" = 10" m*/day), realization 4.

Figure 5.15: Normalized z-average concentrations at year 40 for scenarios 2 (D" =
5.2x10° m%day) and 3 (D" = 10® m*/day), realization 7.
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Figure 5.16. First spatial moments for scenarios | - 4, realizations 1 - 5.
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Figure 5.17. First spatial moments for scenarios | — 4, realizations 6 - 10.
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Figure 5.18. Second spatial moments for scenarios 1 — 4, realizations 1 - 5.
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Figure 5.20. Macrodispersion coefficient A, a function of time for scenarios | - 4, reali-
zations 1 - 5.
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Figure 5.21. Macrodispersion coefficient A; a function of time for scenarios | — 4, reali-
zations 6 — 10.
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The effect of diffusion on longitudinal macrodispersivity A; for scenarios 1 - 4 is
illustrated in Figures 5.20 and 5.21. At long times results are particularly sensitive over
the range of uncertainty in D", In several realizations dispersivities appear to reach as-
ymptotic values. However, results presented in the following section show that the parti-
tioning of mass among hydrofacies has not reached an “asymptotic” state, suggesting that
asymptotic behavior is not achieved within the 40-year time span. Further, at long times
one should expect Taylor-dispersive behavior [Gelhar, 1993}, i.e., an inverse relationship
between D" and A,, whereas the opposite is generally observed here. Indeed, these results
are consistent with estimates for diffusion-rate limited residence times in floodplain hy-
drofacies on the order of centuries to millenia. Clearly, stochastic theory neglecting diffu-
sion [Dagan, 1989] or that predicts negligible effects due to diffusion [Gelhar, 1993]
cannot describe the macrodispersive behavior observed here.

5.5.1.1.3 Partitioning of mass among hydrofacies. Figures 5.22 and 5.23 illus-
trate how contaminant mass partitions among hydrofacies with time in realizations 1 - 4.
In all realizations, increasing D" results in a significant increase in mass within floodplain
hydrofacies and a corresponding decrease in mass within channe! and levee hydrofacies.
Note that this effect is most pronounced over the range of uncertainty in this parameter,
from D" = 10 to 5.2x107 mzlday. For example, in both realizations 4 and 7, increasing
D’ from 10° to 5.2x10° m?day results in approximately three times as much mass in
floodplain hydrofacies.

Figures 5.24 and 5.25 illustrate the partitioning of mass among hydrofacies at year
40 as a function of distance in the dip direction for scenario 2. Realizations in which

channel hydrofacies percolate and are well connected tend to show 2 distinct plumes, one
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Figure 5.22. Fraction of total mass contained in each of the 4 hydrofacies as a function of
time for scenarios 1 —4, realizations 1 - 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146

Realization 6

—— Debris Flow

wanssaenens Elgodplain
=104 m2
mwesas |[gvee D-10 m/day
= = = = Channel N\ -
~=—— Debris Flow 5 e~ -\‘
* Floodplain . ==~ -
= 5 me 7’ -—
______ Levee D°=5.2x10-5 m2/day - ﬁ;- ~_
~ = - = Channel - - T~ N
< e
Debris Flow 1 RN
Floodplain . So
—10-6 m2 - .
Levee D"=10% m2/day
-~ = - — Channel 4
-~ seeaned
Debris Flow o et
Floodplain . - - M ‘,:" “.‘ul‘;‘ﬁ:"“f g:._q B )
Leves D’=107 m2/day i~ e
Channel -
-
Realization 7
)
I‘ \\
|}
) 4%
@ A
3 F I
= '
- 4 v,
° ‘ i -~ -~
< LI e - ~ o
g "( N <~ PR N =~
(14 - '0.\_‘,_ _'—‘f'_" hadin Ly
a A 7\;‘ %:.:G-‘é-’ﬁ?;rr.-r.?.;
N ‘\“ . )
‘ ’.‘J B ~ i ‘ it
k 4 . == ‘. " 184 , . -
4 & somee -4 yw Pid serestearascseratosasessnnsasasesas
‘!! ....... e resmesaessemsa s SSeR s e 3 R
12T i | Beeeaseaen” AU e e e e
- v(::&-.“-g? iy 1 Y F‘g S Q T T T T | T
10 Realization 9 Realization 10
. o s
v T
\
0.8—J \ Y = T‘ -~
) | z ~
i v - \
4 1 4! ,
1S
064 %- 1 AT R Ly
- > ' ~
. - ! e Fd Cwm o,
\\“-l,s‘_t’ " 1 B‘ /'" 8 s
u F niavsnesuimedl | ¥
0.4 Ny --.3‘_":":."::""-'-"‘!- emmam, A
-~ p g.‘:"“.m Y
- ) ,,{te-:‘ ~ S h 2 Vo,
RCIRIT Sl - q “Saa
. - ~ - Jtans.euf
0.2— ‘YJ s~ émm“"mum‘uuq“?., .
F!a;’w—'%’ Caatant—

Time (years)

Figure 5.23. Fraction of total mass contained in each of the 4 hydrofacies as a function of
time for scenarios 1 — 4, realizations 6 — 10.
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Figure 5.24: Fraction of total mass contained in each of the 4 hydrofacies as a function of
distance in the dip direction for scenarios 1 - 4, realizations 1 ~ 5.
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Figure 5.25: Fraction of tctal mass contained in each of the 4 hydrofacies as a function of
distance in the dip direction for scenarios 1 — 4, realizations 6 — 10.
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associated with floodplain hydrofacies and the other associated with channel hydrofacies.
In all cases, mass in floodplain hydrofacies significantly lags behind mass in channel hy-
drofacies. This separation between plumes is most pronounced in realizations 4 and 7.
Note that mass in channel hydrofacies shows several distinct peaks. These peaks likely
correspond to the time spent in the lower-K hydrofacies, e.g., the peak toward the leading
edge corresponds to mass that has spent little or no time in non-channel hydrofacies. The

following section presents results for the PAT remediation phase of scenarios | — 4.

5.5.1.2 Pump and Treat, Scenarios 1 -4

This section presents results and discussion for the PAT phase of scenarios 1 — 4.
5.5.1.2.1 Mass recovery. Figures 5.26 and 5.27 show the normalized mass re-
maining M(#)/Mg as a function of time from the start of the remediation process at year 40
for all 10 realizations of heterogeneity. Results show a systematic trend, a decrease in
mass remaining in the system with decrease in D". Results are most sensitive in the range
of uncertainty for D, between 10° and 5.2x10°% mzlday. In those realizations where
channel hydrofacies of the source location in do not percolate (realizations 2 and 10), or
are poorly connected (realizations 3 and 9), plumes at the start of pumping in year 40 are
more isolated near the source than for the other realizations. In this case, PAT with well

located at the center of the system results in less recovery of contaminant mass.

Note, that an increase in D" decreases residence time (Ato.> of diffusion proc-

esses in floodplain hydrofacies which could, in some instances, result in more rapid re-
mediation. To clearly illustrate the effect of residence time on mass recovery, one would

ideally specify the same initial conditions at the start of PAT in all scenarios.
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5.5.1.2.2 Partitioning of mass among hydrofacies. Figures 5.28 and 5.29 show
the partitioning of mass among hydrofacies as a function of time during the PAT process.
These results show a trend of decrease in mass remaining with decrease in D" that is con-
sistent swith the distribution of mass between hydrofacies at the start of pumping (year
40). During ambient migration, an increase in D" results in corresponding increase of
mass in floodplain hydrofacies. Some of this mass in floodplain hydrofacies at the start of
pumping is sequestered during the remediation process, as shown.

5.5.1.2.3 Contaminated volume. The effects of D" on remediation performance
as measured by the volume of porous media with concentrations above MCL (c/cq > 10%)
is illustrated in Figures 5.30 and 5.31 for scenarios | — 4, realizations | - 10. All simula-
tions show significant tails, indicating long times to site remediation. Results are re-
markably sensitive to D, particularly within the range of uncertainty, between D"=10
and 5.2x10”° m%day. Trends with change in D" are mixed due to competing effects of dif-
fusion. With an increase in D" there is an increase in holdback of mass in floodplain hy-
drofacies, but also an increase in the rate at which concentrations in floodplains become
more diffuse. In those realizations where channel hydrofacies of the source location in do
not percolate (realizations 2 and 10), or are poorly connected (realizations 3 and 9),
plumes at the start of pumping in year 40 are more isolated near the source than for the
other realizations. In this case, PAT with the well located at the center of the system may
result in increased spreading of plumes. Results stress the need for detailed hydro-
geologic characterization, particularly with respect to assessing connectivity of high-

permeability hydrofacies.
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Figure 5.26. Mass remaining M(f)/My as a function of time from year 40, the start of
pump-and-treat, for scenarios 1 —4, realizations 1 - 5.
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Figure 5.27. Mass remaining M(t)/M, as a function of time from year 40, the start of
PAT, for scenarios | — 4, realizations 6 — 10.
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Figure 5.28. Fraction of total mass contained in each of the 4 hydrofacies as a function of
time for scenarios 1 -4, realizations 1 - 5.
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Figure 5.29. Fraction of total mass contained in each of the 4 hydrofacies as a function of
time for scenarios 1 — 4, realizations 6 — 10.
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Figure 5.30. Volume of porous media in which concentration is greater than MCL (c/co >
10'3) as a function of time from the start of PAT for scenarios 1 — 4, realizations | — 5.
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Figure 5.31. Volume of porous media in which concentration is greater than MCL (c/co >
10’3) as a function of time from the start of PAT for scenarios | — 4, realizations 6 — 10.
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5.5.1.2.4 Concentration and mass distributions. Figures 5.32 and 5.33 plot
normalized x-z average concentrations at the start of pumping and after 30 years of PAT
for scenarios 1 — 4, realizations 1 - 10. In realizations where channel hydrofacies perco-
late and are well connected with the source, plume sizes and concentrations diminish
considerably as aresult of PAT. Again, results are most sensitive to D" in the range of un-
certainty, i.e., between 10° and 5.2x107 mz/day, with an increase in D* resulting in a
corresponding increase in sequestration of contaminants during remediation. After 30
years of PAT, realizations 1, 3, 4 and § for D’ = 5.2x10” m*/day show as much as an or-
der of magnitude greater x-z average concentration than results for D* = 10 mZ/day.

Plumes at the start of pumping in year 40 are more isolated near the source for
realizations in which channel hydrofacies of the source location fail to percolate (2 and
10), or are poorly connected with the main channel network (3 and 9). These realizations
show increased spreading of the plume and/or less reduction in concentration near the
source in response to PAT. In realizations where channel hydrofacies percolate and are
well connected with the source, Figures 5.32 and 5.33 show the largest decreases in con-
centration in the distal plume, downstream from the well located at 405 m. Therefore, the
distal plume is more easily remediated than the plume near the source, even though the
source is located upstream from the well whereas portions of the distal plume are not.
This effect is primarily due to the greater extent of contaminant migration into floodplain
hydrofacies near source locations and the difficulty in accessing this contamination by
advection, and less dependence on location of the pumping well in the distal plume. The
effect of diffusion on sequestration of mass near the source is clearly illustrated in Fig-

ures 5.34 (realization 4) and 5.35 (realization 7) showing normalized z-average
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Figure 5.32. Normalized x-z average concentrations at the start of pumping and after 30
years of PAT for scenarios 1 - 4, realizations 1 — 5.
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Figure 5.33. Normalized x-z average concentrations at the start of pumping and after 30
years of PAT for scenarios 1 - 4, realizations 6 ~ 10.
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concentrations at the start of, and after 30 years of, PAT for scenarios 2 (D" = 10
m?/day) and 3 (D" = 5.2x10”° m%day). The degree of increase in sequestration of con-
taminants with increase in D°, within the range of uncertainty, is remarkable. These re-
sults show that NAPLs need not be present for significant sequestration of mass near
source locations.

5.5.1.2.4 Technical impracticability. Consider the results in Figure 5.36 plotting
the maximum concentration in the system and concentration at the well for realizations 4
These results, consistent with the character of PAT remediation projects at LLNL
[Hoffman, 1997], demonstrate the persistence of high concentrations within the system
despite apparent remediation based on concentration at the pumping well. These results
show that total remediation of the site within a reasonable time frame is technically im-
practicable. Concentrations near source locations persist for decades, possibly centuries,
due to matrix diffusion, emphasizing the need to account for detailed heterogeneity and
diffusion at local and intermediate scales in predictions of contaminant migration and re-

mediation.

5.5.1.3 Ambient Transport, Scenarios S and 6

Results presented show contaminant migration and remediation are significantly sensitive
to diffusion coefficient within the range of uncertainty. Therefore, it is important to know
if this sensitivity is overwhelmed by the uncertainty in local-scale dispersivities. Scenar-
ios 9 and 10 (Table 5.6) simulate ambient transport according to an advection diffusion
equation (o = ot = 0), and ADE with D" = 0, respectively. Figure 5.37 shows normal-
ized x-z average concentrations at the start of pumping and after 30 years of PAT for sce-

narios 2 (ADE), 5 (advection-diffusion equation) and 6 (ADE, no diffusion), realizations
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Figure 5.36. Maximum concentration in the system compared with concentration at the
pumping well during PAT for scenarios 1 - 4, realizations 4 and 7.
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Figure 5.37: Normalized x-z-average concentrations at year 40 and at year 70, 30 years

after the start of pump and treat, for scenarios 2 (ADE), 5 (advection diffusion equation)
and 6 (ADE, no diffusion), realization 4 and 7.
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4 and 7. Advection diffusion equation results are closer in character than results from an
ADE wiih no diffusion to ADE results which include both mechanical dispersion and dif-
fusion. In other words, here the pore-scale diffusion process appears more important than
local-scale mechanical dispersion in predicting overall transport behavior.
5.6 Summary and Conclusions
In this paper we have reported on detailed simulations that explore the role of diffusion in
contaminant migration and PAT remediation in an alluvial-fan aquifer underlying Law-
rence Livermore National Laboratories (LLNL). These experiments have led to insights
regarding
e the observed sequestration of contaminants near source locations at LLNL and else-
where;
e the important role of matrix diffusion in contaminant migration and remediation in
alluvial aquifers;
the need for detailed geologic characterization honoring data;

the technical impracticability of PAT remediation at LLNL and elsewhere; and
the feasibility of natural attenuation as a remediation technology.

5.6.1 Sequestration of Contamination near Source Locations

Diffusion of contaminants into low-permeability floodplain hydrofacies (matrix diffu-
sion) can explain the observed sequestration of contamination at LLNL, and elsewhere,
characterized by persistent concentrations near suspected source locations. This result,
together with the lack of observed NAPL contamination and data suggesting that sorption
plays a relatively minor role in the transport of contaminants in saturated sediments of the
site [Hoffman, 1997], suggests that effective molecular diffusivity is a key factor gov-

erning time to cleanup in the active PAT remediation project at the site.
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5.6.2 On the Role of Diffusion in Contaminant Migration and Remedia-
tion

Ambient contaminant migration and PAT remediation perfcrmance were found to be
acutely sensitive to the magnitude of the diffusion coefficient, particularly in the range of
uncertainty from 10 to 10 mzlday. Results for the partitioning of mass, as a function of
time, between hydrofacies show that this acute sensitivity is due to the influence of “im-
mobile” water associated with low-permeability floodplain hydrofacies, and their ge-
ometry and distribution in the subsurface.

Migration of contaminants into the relatively immobile water of floodplain hydro-
facies significantly sequesters contaminants. In ambient transport experiments, increasing
diffusion coefficient from 10 to 5.2x10"° m*/day resulted in as much as a 300% increase
in the total mass of contaminants residing within floodplain hydrofacies. This effect cor-
responded to as much as a 25% decrease in the extent of downstream ambient migration
in the center of mass by year 40, as exhibited in results for longitudinal first spatial mo-
ments. In the same way, longitudinal macrodispersivity was also sensitive to diffusion.
However, results were inconsistent with Taylor dispersion theory suggesting that, even
by year 40 and several correlation lengths of migration, ambient transport was still
preasymptotic with regards to macrodispersive behavior [Gelhar, 1993; Dagan, 1989].
Indeed, this result is consistent with estimates for diffusion rate limited residence times in
floodplain hydrofacies on the order of centuries to millenia.

Once present in the immobile water of low-permeability floodplain hydrofacies,
sequestered contaminants behave like long-term sources with rate controlled by the mag-

nitude of diffusion. This effect was clearly illustrated in simulations of PAT wherein re-
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sults were particularly sensitive to diffusion coefficient. The PAT phase of scenarios | —
4 showed an increase in the mass remaining in the system, with increase in diffusion co-
efficient, due to a corresponding increase in the extent of migration of contaminants into
floodplain hydrofacies during ambient transport, preceding PAT. Remediation of distal
contamination was more rapid than contamination near source locations, not only because
the pumping well was located in the distal plume, but also due to the greater extent of
contaminant migration into floodplain hydrofacies near source locations and the difficulty
in accessing this contamination by advection. Predicted sequestration of contaminants

near source locations is consistent with results from active remediation projects at LLNL.

5.6.3 Geologic Characterization

Trends in geologic characterization are evolving toward greater consideration for the
geologic processes that formed the subsurface. Theoretical models for the spatial correla-
tion of hydraulic properties, amenable to the stochastic analysis of flow and transport, are
not necessarily appropriate or accurate descriptions of complex geologic systems. On the
other hand, models of facies architecture, for example, are based on characterizations of
the geometry and distribution of lithologies related to distinct depositional processes. as
opposed to hydraulic properties alone. Thus, there is a scientific basis for modeling the
spatial correlation of facies as the processes that deposited them are necessarily spatially
correlated.

The character of hydrofacies architecture may be inferred from depositional mod-
els and the quantitative analysis of geophysical, core, water quality and hydraulic data.
Our results and those of Carle [1996] suggest that geologic characterization facilitated by

geostatistical methods can be used to simulate the character of alluvial-fan deposits of
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LLNL in detail. Carle {1996] showed that the calibrated hydraulic models can approxi-
mate observations from well interference tests. Simulations of contaminant migration and
remediation presented herein capture the character of observations from the field, namely
persistent concentrations, particularly near source locations, even with active PAT reme-
diation.

Results emphasize the important role that details of hydrofacies architecture play
in contaminant migration and remediation performance. In this regard, the connectivity of
channel hydrofacies arises as an important factor controlling migration and remediation.
On the average, approximately 80% of channel hydrofacies (18% by volume) at the
LLNL site form a connected network extending in all directions. Transport behavior de-
pends on the details of this network and the distribution of results presented appears to be
bimodal. One mode corresponds to realizations in which channel hydrofacies of the
source location are a part of the primary neiwork of channels. The other mode corre-
sponds to realizations in which channel hydrofacies of the source location are either not
part of, or are poorly connected with, the primary network of channels. Importantly,
knowledge of connectivity extrapolated from well-interference tests and/or water-
chemistry data may be sufficient to constrain predicted connectivity of geologic charac-
terizations, thereby restricting the range of predicted transport behavior to one mode of

the distribution.

5.6.4 Technical Impracticability and Natural Attenuation as a Remedia-
tion Technology

The experimental results presented herein suggest that total remediation of the site within

reasonable time frame is technically impracticable. The U.S. Environmental Protection
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Agency bases technical impracticability (TI) determinations on inability to achieve re-
quired cleanup levels within a reasonable time frame using available remedial technolo-
gies. A TI determination is used to rationalize a change in remediation objectives. Resulits
presented here show that concentrations near source locations will persist for decades,
possibly centuries, due to matrix diffusion.

A TI determination does not necessarily imply adoption of monitored natural at-
tenuation as a remedial option. Indeed, such determinations are made independent of one
another. However, in the case of LLNL, those processes that render active remediation
impracticable, i.e., the sequestration of contaminants in low-permeability materials, sig-
nificantly dilute contaminant concentrations and limit the extent of migration. In a future
paper, we will show how a combination of limited PAT remediation, followed by ambi-
ent migration of contaminants, may be an effective remediation alternative for the pro-
tection of water quality down gradient from the site, despite the continued persistence of

high concentrations near source locations.
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Appendix SA: Boundary Conditions of the Groundwater-Flow

Simulations
This appendix describes the boundary conditions of the groundwater-flow simulations.

The flow simulations include general head boundaries GHBs [McDonald and Harbaugh,
1988] assigned to grid blocks on vertical and bottom faces, recharge from above assigned
to grid blocks on the top face, and pumping at nodes in the center of the domain. Due to
computational limitations, the model domain includes only a small fraction of the flow
system as defined by natural hydrologic boundaries. The use of GHBs allows for flow to
and from the model in response to model stresses.

A GHB specifies a head h',jk at some location outside of the model domain and
conductance C',-jk that hydraulically connects this location to a model node with head hy,
where i,j, and k index nodal locations in the x, y, and z directions. Flow Qi to model
node (i,j,k) from outside of the model is computed as Qi = C.ijk(h.gjk- hii). Conductances
associated with GHBs are computed based on the overall conductance, or capacity for
flow, of model boundary nodes. Capacity for flow of a boundary node is a function not
only of K of that node, but also K of adjacent regions. Capacity for flow may be com-

puted independently from flow simulations as described below.

5A.1: GHB Conductances

Specified GHB conductances are designed to minimize adverse boundary effects (e.g.,
unrealistic convergence of flow into low-K hydrofacies near boundaries). The total con-
ductance for all grid blocks on a face of the model is computed as K A/L where A is the
area [L?] of that face, K is the effective hydraulic conductivity {LT™'] in the direction

perpendicular to that face (determined from the steady-state flow simulations described
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below), and L (= 1600, 400 and 100 m in the x-, y-, and z-coordinate directions) is the
specified distance between nodal locations of grid blocks on that face and locations
where h is supposed to apply. This total conductance is distributed among GHBs of its
corresponding face by the relative flow, to each model node of that face, computed inde-
pendently from a steady-state flow simulation. Boundary conditions of this steady-state
flow simulation include constant heads, for grid blocks on faces perpendicular to the co-

ordinate direction of interest, and no-flow for grid blocks on the remaining faces. Con-
ductance for node (iyj,k) is computed as C;, = (Q,,.k I—{-A)/(LQTOTAL), where QroraL is the

total flow normal to that face. Three steady-state flow simulations, one for each of the
coordinate directions, are required to assign conductances to GHB nodes of the model.
Heads ", are specified to maintain, under ambient flow conditions, a dip-direction gra-
dient of 2x10°, net-zero-flux boundary conditions in the strike direction, and a vertical

gradient of 5x10™,

5A.2: Recharge

Uniformly distributing recharge within the model will result in significant groundwater
mounding above grid blocks with a low capacity for flow. To minimize mounding, the
total recharge is distributed among boundary nodes of the top face of the model by the
relative flow to each node computed independently from a steady-state confined flow
simulation. Boundary conditions of this steady-state simulation include constant heads
for grid blocks on faces on the top and bottom of the model and no-flow for grid blocks

on the remaining faces.
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Appendix 5B: Grid Refinement Experiments

Here the effect of grid resolution on flow and contaminant transport is considered. The
simulation methodology of Chaptcr S assigns conductivities to the direct outcome of tran-
sition probability based indicator simulations without further grid refinement. The ap-
proach will result, for example, in grid blocks isolated in a matrix of contrasting conduc-
tivity (Figure 5B.1, (1x)). As numerical grids are refined (Figure 5B.1), accuracy of flow
solutions will improve. Effects of these improvements on transport may be significant.
For experiments in Chapter 5, computational limitations at the time precluded refining
the numerical grid. Nevertheless, results of the experiments described below suggest that
resolving the numerical grid does not necessarily result in a systematic trend in the solu-
tions. Further, changes with grid refinement are small enough so as to not affect the con-

clusions of Chapter 5.

5B.1 Simulation Procedure

Flow and transport simulations are performed at the three different grid resolutions, 1x,
3x and 5x, as illustrated in 2-D in Figure 5B.1. Note that grids are resolved while main-
taining simulated geometry at I1x resolution. Ten conditional simulations of dimension
105.0, 210.0, and 10.5 m in x-, y- and z-directions, respectively, Ax = 5.0, Ay = 10.0, and
Az =0.5 m at 1x resolution, are generated from the Livermore data set and conductivities
are assigned as described in Chapter 5.

Boundary conditions for the steady-state flow simulations are #=0.2 maty = 5.0
m and 2 =0.0 m at y = 205 m, for all x and z; no flow at x =0 and x = 105 m, for all y and
Z, and no flow at z = 0 and z = 10.5, for all x and y. Boundary conditions for transport

simulations are specified as absorbing on all sides of the domain, i.e., when particles
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(1x) (3x) (5x)

Figure 5B.1: Two-dimensional Illustration of the 3 grid resolutions used. Contrast in
shades represents different hydrostra*igraphic units. Typically one hydrostratigraphic unit
contacts at least several grid blocks in any given direction.

leave the domain through one of the sides, they are eliminated from the simulation. Pa-
rameters include @ = 0.35, o, = ar = 0.01 m, and D” = 10”° m?*/day. An instantaneous
source of 9000 particles at time ¢ = 0 is distributed uniformly within the region 55 < x <
60, 20 <y < 30, 4.5 < z < 6.5. This region is conditioned on data that designate channel

facies such that facies type of the source location is the same for all ten realizations.

5B.2 Results and Discussion

Simulated hydraulic heads for realization 1 are compared for the three resolutions in Fig-
ure 5B.2. These results show an increase in variability of hydraulic head, and therefore
velocity, as the grid is refined. Computed 10 year and 20 year x-z-average plumes at the
three resolutions and for all ten realizations are compared Figures 5B.3 and 5B.4. Aver-
aging of mass is performed on a grid corresponding to the 1x resolution. Note that mass
has exited the end of the domain at 20 years in all simulations, with the exception of re-
alization 2, where channel facies connected with the source location do not percolate (i.e.,

do not connect in the dip direction). Perhaps the most notable differences between
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Figure 5B.2: Simulated hydraulic head for realization 2 at 1x (top), 3x (middle) and 5x
(bottom) resolutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



176

Realization 1
— 1 x resolution, 10 years
~-ee 3 X resolution, 10 years 1
5 x resolution, 10 years
1 x resolution, 20 years
3 x resolution, 20 years
5 x resolution, 20 years

.........

T
L L o T e
Realization 2 Realization 3
L
? - I’ \‘{ -
AT : i
f.\.} | : j
Y _ _
3 1R -
=
S
4 “ b
T § ¥ ¥ lllllllll'llll lvl'lrl“ll"fr'llllll
0.0 Realization 4 Realization 5
-1.04 -
-2.0- -
-3.0- -
- ﬁ H
4.0 lllr
0 50 100 150 200

Distance, Dip Direction (m)

Figure 5B.3: Normalized x-z-average plumes, realizations 1 — 5, at years 10 and 20 are
compared for 1x, 3x and 5x resolutions.
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Figure 5B.4: Normalized x-z-average plumes, realizations 6 — 10, at years 10 and 20 are
compared for 1x, 3x and 5x resolutions.
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simulations at the three resolutions occur at leading edges of the plumes. In all cases, re-
solving the grid to 5x results in further migration of the leading edge of the plume. How-
ever, with the exception of realizations 5 and 7, this increase in downstream migration of
the leading edge at 10 years is only between 10 and 20 m, i.e., I to 2 grid blocks. Further,
changes in extent of migration of the leading edge of the plume with increase in grid
resolution do not follow a systematic trend, e.g., in some cases, increasing from 1x to 3x
resolution results in a decrease in the extent of migration. In all cases, the upstream edge
of the plumes remain essentially unchanged, even though the source was instantaneous.

Transport simulation results for longitudinal first spatial moment at the three grid
resolutions and for all ten realizations are compared in Figures 5B.5 and 5B.6. In consid-
ering these results, one should bear in mind that the leading edge of most plumes have
exited the downstream end of the domain at later times (see Figures 5B.3 and 5B.4). The
first moment at 5x resolution is generally greater than at 1x resolution: the exceptions
being realizations 5 and 8 that may be discounted due to significant breakthough of mass
at the downstream end of the domain at later times. However, the trend of increase in first
moment with increase in grid resolution is not systematic; increasing grid resolution from
1x to 3x does not necessarily result in an increase in the first spatial moment.

Transport simulation results for longitudinal second spatial moment at the three
resolutions and for all ten realizations are compared Figures 5B.7 and 5B.8. The second
moment at 5x resolution is generally greater than at 1x resolution. However, again, the
trend is not systematic; increasing grid resolution from 1x to 3x does not necessarily re-

sult in an increase in the second spatial moment.
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Figure 5B.5: Longitudinal first spatial moments for realizations 1 — 5 are compared for
1x, 3x and 5x resolutions.
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Figure 5B.6: Longitudinal first spatial moments for realizations 6 — 10 are compared for
1x, 3x and 5x resolutions.
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Figure 5B.7: Longitudinal second moments for realizations 1 — 5 are compared for 1x, 3x
and 5x resolutions.
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Appendix 5C: Sensitivity of Contaminant Migration to Local-
Scale Dispersivities

Appropriate values for local-scale longitudinal and transverse dispersivity, o and o,
within hydrofacies are uncertain. Here we consider the effects of local-scale longitudinal

and transverse dispersivities on solutions of the advection dispersion equation (1).

5C.1 Simulation Procedure

Five scenarios with values of o and o that range over two orders of magnitude (Table
5C) are considered. These scenarios test the relative influence oy and oip in contaminant
migration. A value of D" = 10 mzlday is used in all simulations. Transport simulations
are performed for all 10 realizations of heterogeneity with ambient flow conditions
through year 40 followed by stressed conditions at the 25 m*/day pumping rate. Initial

conditions are specified as an instantaneous line source.

5C.2 Results and Discussion

Normalized x-z average concentrations at year 20 are shown in Figures 5C.1 and 5C.2.
Results for scenarios 5C.1 — 5C.3, in which ot = 0.01 m, are nearly identical, with the
exception of a detectable increase in longitudinal dispersion for o = 0.1 m, even though

o varies over two orders of magnitude among them. Results show an increase in

Table 5C: Longitudinal and Transverse Dispersivities of Scenarios 5C.1 - 5C.5

Scenario o (m) ot (m) Description
5C.1 1.0 0.01 Anisotropic
5C.2 0.1 0.01 Anisotropic
5C3 0.0l 0.01 Isotropic
5C4 0.1 0.1 Isotropic
5C.5 0.001 0.001 Isotropic
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Figure 5C.1: Normalized x-z-average plumes, realizations 1 -5, at year 20 are compared
for scenarios 5C.1 — 5C.5.
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dispersion and attenuation of mass with increasing o, scenarios 5C.3 — 5C.5. Simulated
longitudinal first and second spatial moments are shown in Figures 5C.3 - 5C.6. Again,
results for scenarios 5C.1 - 5C.3 are nicarly identical, even though oy varies over two or-
ders of magnitude among them, whereas results for scenarios 5C.3 — 5C.5 show a signifi-
cant increase in sequestration of mass with increase in orr. Response of PAT to changes
in dispersivities is represented by log concentrations in the pumping well as shown in
Figures 5C.7 and 5C.8. Again, results are relatively insensitive to o, and sensitive to or.
Results demonstrate that solutions are not particularly sensitive to o within the
ranges considered here. This result was expected as longitudinal dispersion tends to
spread mass along velocity streamlines, the effect of which is masked by the much larger
macrodispersivity. Results for scenarios 5C.3 — 5C.5 demonstrate significant sensitivity
of solutions to oit, which varies over two orders of magnitude. As transverse dispersion at
the local scale increases with o, mass more rapidly moves between streamlines. As a
result, the plume experiences greater variations in velocity. If initial conditions were un-
conditional, i.e., distbributed uniformly between hydrofacies, increasing ot could be ex-
pected to reduce macrodisperion and attenuation {Gelhar, 1993]. Results demonstrate that
use of an isotropic local-scale dispersivity equal to the transverse dispersivity yields an
accurate approximation for predicting field-scale transport. This result shows that one can
use the more efficient isotropic versions of algorithms presented Chapters 1 and 3 with-
out sacrificing accuracy. Further, although changes in solution with our are significant and
could affect conclusions with regard to specific remediation scenarios to be presented,
none appear great enough to affect the more general conclusions regarding the role of dif-

fusion in contaminant migration and remediation at LLNL.
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Figure 5C.2: Normalized x-z-average plumes, realizations 6 — 10, at year 20 are compared
for scenarios 5C.1 - 5C.5.
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Figure 5C.5: Longitudinal second spatial moments for realizations 1 — 5 are compared for
scenarios 5C.1 - 5C.5.
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Figure 5C.0: Longitudinal second spatial moments for realizations 6 — 10 are compared
for scenarios 5C.1 - 5C.5.
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Figure 5C.7: Concentration at the pumping well for realizations 1 ~ 5 are compared for
scenarios 5C.1 - 5C.5.
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Figure 5C.8: Concentration at the pumping well for realizations 6 — 10 are compared for
scenarios 5C.1 - 5C.5.
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Appendix 5D: Three Dimensional Particle Distributions

Figure 5D.la: Three dimensional particle distribution for scenario 2 (D'=5.2x107
m-/day), realization 1, year 40.

Figure 5D.1b: Three dimensional particle distribution for scenario 3 (D'=10"° m%day),
realization 1, year 40.
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Figure 5D.2a: Three dimensional particle distribution for scenario 2 (D'=5.2x107
m~/day). realization 2, year 40.

Figure SD.2b: Three dimensional particle distribution for scenario 3 (D'=10"° m?¥day),
realization 2, year 40.
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Figure 5D.3a: Three dimensional particle distribution for scenario 2 (D=5.2x10°
m~/day), realization 3, year 40.

Figure 5D.3b: Three dimensional particle distribution for scenario 3 (D'=10" m%day),
realization 3, year 40.
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Figure 5D.4a: Three dimensional particle distribution for scenario 2 (D'=5.2x10"
m-/day), realization 4, year 40.

0’! Figure

5D.4b: Three dimensional particle distribution for scenario 3 (D'=10"° m’/day), realization 4, year 40.
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Figure 5D.5a: Three dimensional particle distribution for scenario 2 (D'=5.2x10'5
m-/day), realization 5. year 40.

Figure SD.5b: Three dimensional particle distribution for scenario 3 (D"=10° m*/day),
realization 5, year 40.
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Figure 5D.6a: Three dimensional particle distribution for scenario 2 (D'=5.2x107
m~/day), realization 6, year 40.

Figure 5D.6b: Three dimensional particle distribution for scenario 3 (D'=10’6 mzlday),
realization 6, year 40.
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Figure 5D.7a: Three dimensional particle distribution for scenario 2 (D'=5.2x107
m~/day), realization 7, year 40.

Figure 5D.7b: Three dimensional particle distribution for scenario 3 (D'=10° m%day),
realization 7, year 40.
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Figure 5D.8a: Three dimensional particle distribution for scenario 2 (D'=5.2x107
m-/day), realization 8, year 40.

Figure 5D.8b: Three dimensional particle distribution for scenario 3 (D'=10"° m%day),
realization 8, year 40.
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Figure 5D.9a: Three dimensional particle distribution for scenario 2 (D'=5.2x107
m-/day), realization 9, year 40.

Figure 5D.9b: Three dimensional particle distribution for scenario 3 (D'=10"° m%day),
realization 9, year 40.
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Figure 5D.10a: Three dimensional particle distribution for scenario 2 (D'=5.2x107
m-/day), realization 10, year 40.

Figure 5D.10b: Three dimensional particle distribution for scenario 3 (D"=10° m?¥day),
realization 10, year 40.
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