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Abstract

Structural models provide an important source of
hypothetical knowledge in scientific discovery. Informal
Qualitative Models (IQMs) are structural models which can
be applied to weak theory scientific domains. Example
models are presented for the domain of solution chemistry.
These models can be systematically generated, but, due to
the weak theory nature of the domains to which they are
applied, they cannot be verified directly. Instead, the
application of IQMs to a problem can be used to drive other
scientific discovery processes; in particular, the discovery of
numeric laws. The HUME system is a discovery system
based around the application of IQMs. HUME's discovery
goal is to construct explanations for phenomena, such as the
depression of the freezing point of salt solutions, using a
variety of reasoning strategies. HUME first attempts to
explain such phenomena using a pre-existing theory. If this
theory is not able to provide an explanation, the system uses
a combination of theory construction and numeric law
discovery. The application of IQMs provides hypotheses for
use by the other two processes. Used in this way, IQM
application can be seen to provide a degree of explanatory
support for numeric laws which would otherwise be simply
descriptive generalisations of data. An example of the
application of HUME to a problem in solution chemistry is
presented.

Informal Qualitative Models in Scientific
Discovery

Structural models can provide an important source of
hypothetical knowledge for use in scientific discovery.
Informal Qualitative Models (IQMs) are one sort of
structural models that are used by scientists. IQMs are
abstract structural descriptions of physical systems, either
actual or hypothetical. They were first introduced in
Sleeman er al. (1989), and further elaborated in Gordon
(1992, 1993) and Gordon et al. (1994, 1995).

Figure | gives an example of two models which can be
used in the domain of solution chemistry. Model A shows
the case where molecules of solvent and solute are
uniformly physically distributed throughout a solution,

" Current Address: Department of Computing, University of
Northumbria at Newcastle, Newcastle-Upon-Tyne, NE1 8ST,
UK.

with neither sets of molecules being chemically changed in
any way. This is the Physical Mixing model. Model B
shows the Association model, in which molecules of solute
form an association with molecules of solvent. The
associations thus formed are dissolved in the remainder of
the solvent. An example might be a salt which existed in a
hydrated form in solution.
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Figure 1. The (A) Physical Mixing and (B) Association
1QMs

A historical study of eighteenth and nineteenth century
solution chemistry has lead to the elaboration of a set of
increasingly complex IQMs. As we show in (Gordon et al.
1994) each of these models can be generated form the
simplest model in the domain, the Physical Mixing model,
by the application of a set of model generation operators.
The repeated application of these operators results in the
synthesis of a search space of IQMs.

Clearly, this formulation of a search space of structural
models is closely related to previous work in
computational discovery. Systems such as
STAHL/DALTON (Langley er al. 1987), REVOLVER
(Rose and Langley, 1986) and BR3 (Kocabas, 1991) all
formulate discovery as a heuristic search through a space
of models.

However, previous approaches have used strong
heuristics to constrain the generation of models, and to
confirm their validity. BR3, for example, uses a set of
quantum conservation laws to constrain the generation of
quark models in particle physics. Many previous systems
are also able to confirm the observational consequences of
generated models. This is frequently done by looking for
observed reactions (such as particle decay reactions or
chemical reactions) which confirm the generated models.
In weak theory domains, these constraints do not operate.
None of the models used historically in solution chemistry
had directly observable consequences, for example. In
early solution chemistry history, IQMs were confirmed by
looking for numeric laws. If a “good” numeric law could
be found based on the applied model, then this was
accepted as evidence for the validity of the model.

The HUME Discovery System

HUME is a discovery system which is based around the
application of IQMs. The view of scientific understanding
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Figure 2. General Architecture of HUME

that is adopted by HUME is that it depends on the
construction of deductive nomological explanations
(Hempel and Oppenheim, 1948). HUME attempts to
understand a phenomenon by explaining it in terms of an
existing domain theory. However, since HUME will be in
most cases dealing with incomplete domain theories, a
significant sub-task for the system is the construction or
extension of domain theories.

Figure 2 illustrates the general architecture of HUME.
The system is based around a deductive theorem prover.
This theorem prover takes an observation as input, and
produces an explanation for this observation on successful
exit. The explanation is based on the application of a
domain theory, and background domain knowledge.
However, if this domain theory cannot initially provide an
explanation, the other modules of HUME are called to
extend that domain theory. These modules are an IQM
application module, which is employs basically abductive
reasoning techniques; a theory construction module, based
around that of the DISCIPLE system (Tecuci and
Kodratoff, 1990); and a numeric law discovery module,
which is at present provided by the ARC’ system (Moulet,
1991). The discovery element of the system lies not merely
in the construction of explanations, but in the confirmation
of existing IQMs, the construction of new domain theories,
and the discovery of new laws.

Table 1. Freezing point data. Asterisks indicate anomalous datapoints

(See later explanation).

HUME's inputs are a set of experimental observations, a
set of theorems which constitutes a background domain
theory, and a library of IQMs. All of this knowledge is
represented in Horn clause form. A discovery problem
must then be specified to the system. This discovery
problem takes the form of a particular experimental
problem, and the result of that experimental problem.
Typically, this will be one of the experimental observations
that the system has already seen.

The direct output from HUME on the successful
completion of a discovery task is an explanation for a
specified discovery problem, in the form of a proof tree.
However, though a proof tree is the direct result of
successful discovery, there may be many indirect results.
Some of the theorems used in the proof tree might
themselves have been constructed by HUME, and some of
the “facts™ used in the proof tree might be hypotheses
introduced by the system.

An Example: HUME and Solution Chemistry

This section will describe how HUME can be used to
undertake a discovery task in the domain of solution
chemistry. The data used in this example discovery session
are taken from (Raoult, 1885, pp. 407-408). This data deals
with the freezing points of a set of thirty aqueous solutions
of the salts of various bivalent metals. Table 1 shows some
of this data. Table | shows the name and empirical formula
for some of the salts used by Raoult, together with their
molecular masses (M) and the observed freezing point (Fp)
for a solution of each salt. In each case the solution
involves 1g of solute dissolved in 100g of solvent. The
calculated term M x Fp is also shown. HUME's initial
discovery goal is to explain the observed freezing point of
the first example from Table |, a solution of Barium
Chlorate, with a freezing point of -0.145 “c.

Initially, HUME is provided with knowledge about the
solvents and solutes used in each example from Table 1,
such as their composition, mass, and the molecular mass of
the substances involved. However, the only knowledge
provided for each resulting solution is its observed freezing
point.  HUME's initial domain theory is therefore
incomplete, and the system is initially unable to explain the
observed freezing point of the selected
example. The system's discovery modules

Substance Formula Molecula Freezing M x Fp are called to extend the initial theory. The

r Mass point °c system first attempts to use its theory

(M) (Fp) construction strategy, adapted from that of
Barium Chlorate  Ba(ClO,), 304 -0.145 -44.1 the DISCIPLE system. The basis of this
Barium Nitrate Ba(NO,), 261 -0.155 405 strategy is a search for possible causal
Strontium Nitrate Sr(NO‘)," 211 -0.195 412 relationships amongst the objects implicated
Copper Nitrate Cu(NO,), 187.2 -0.244 457 in a pl_'oblem. T_his process is described in
Copper Acetate* Cu(C,H,0,), 18] -0.171 311 detail in (Tecuci and Kodratoff, 1990) and
Lead Acetate* Pb(CH0,), 325 -0.068 ) (Gordon, in preparation). However, since the
Barium Chloride  BaCl, 208 -0.233 -48.6 system initially has knowledge only about
Mercuric Hg Cl, 2171 _0.076 2205 the composition of the selvent and solute
Chloride* ' used in the first example, and not the

ARC is an extension of the ABACUS system
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resulting solution, it is unable to discover

(Falkenhainer and Michalski, 1987).



any possible causal relationships. At this stage, the system
can proceed no further without making some hypotheses
about the structure of the solution. This is done by applying
an IQM.

Each IQM in HUME is represented in the form of a Horn
clause theorem. Theorem | represents the Physical Mixing
IQM, for example.

Theorem 1:
(¢« (model physical-mixing ?eg)

(and(make-solution ?eg ?solvent ?solute ?solution)
(composed-of ?solvent [?substancel])
(composed-of ?solute [?substance2])
(composed-of ?solution [?c1 ?c2])
(composed-of ?c1 [?substancel])
(composed-of ?c2 [?substance2])))

where the symbol “«” represents logical implication,
square brackets represent lists (Prolog syntax) and “?”
preceding a symbol represents a variable. This theorem
states that the Physical Mixing IQM applies to an example
of the creation of a solution (‘‘make-solution”), where the
solvent is composed of some substance, ?substancel, the
solute is composed of some substance, ?substance2, and the
resulting solution is composed of two sub components (?cl
and ?c2) which are themselves composed of ?substancel
and 7substance? respectively. In order to apply this IQM to
a solution, the theorem is first matched against HUME's
knowledge base. Typically, this will result in a partial
match, where some of the assertions required to fully
instantiate the antecedents of the theorem are missing from
HUME's knowledge base. HUME’s abductive reasoning
strategy in these circumstances simply asserts any missing
antecedents directly into the knowledge base as
hypotheses. In the current case, since no knowledge is
initially available concerning the components of the
resulting  Barium Chlorate solution, the final three
antecedents of the theorem will fail to match assertions in
HUME’s knowledge base. These three antecedents will
then be directly asserted into HUME’s knowledge base,
with system generated symbols to replace any still
uninstantiated variables. This ammounts to hypothesising
the unknown components of the solution.

Once an IQM has been applied in this way, HUME’s
theory construction strategy can be applied again. This
time, however, the system can make use of the
hypothetical knowledge about the solution that has been
introduced by the application of the Physical Mixing IQM.
Theorem 2 results:

Theorem 2:

(«( freezing-point ?solution 7x )

(and
(composed-of ?solution [?c1 2¢2])
(composed-of 7c1 [?s1])
(composed-of ?solvent [?s1])
(composed-of 7c2 [?s2])
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(composed-of ?solute [?s2])
(make-solution ?g1 ?solvent ?solute ?solution)))

This theorem has been constructed based on the
relationships which now exist between the solvent, the
solute, and the hypothesised components of the resulting
solution. That is, it is based on the fact that the solvent and
solute are composed of the same substances as are the
hypothesised components of the solution. However, this
theorem is not complete. The value of the freezing point
property, 7X, is nowhere instantiated in the antecedents of
the theorem. In circumstances such as this, in order to
instantiate the missing property, HUME applies its third
discovery strategy: the search for numeric laws.

In order to search for numeric laws, HUME uses partial
theorems such as Theorem 2 as contexts for numeric law
discovery. All of the numeric properties of objects which
are implicated in the partial theorem are gathered together
and passed to HUME'’s law discovery module. However,
this is not done only for the example currently under
investigation, but for all examples known to the system.
All of the examples from Table 1 would be used in this
case, for example. Using this data, HUME’s numeric law

—42986

discovery module discovers the law Fp = where

Fp is the freezing point of the solution, and M is the

molecular mass of the solute’. Figure 3 shows the graph of
freezing point against molecular mass for Raoult’s data.
Figure 3 also shows the newly discovered law
superimposed over this data. Once discovered, this law is
then incorporated into the previously seen partial theorem,
to produce Theorem 3:

Theorem 3

(«( freezing-point ?solution (/ -42.986 ?m )

(and
antecedents as in Theorem 2

(molecular-mass ?s1 7m)))

Once this theorem is constructed, HUME is able to
construct an explanation for the observed freezing point of
the first solution from Table 1. The resulting proof tree is
shown in Figure 4. The basis of this proof tree lies in the
application of Theorem 3, but some of the grounded
assertions in this proof tree are only available because of
the abductive application of the Physical Mixing IQM.
These are the assertions shown underlined in Figure 4.
These assertions concern the hypothetical composition of
the solution (named solution1 in this case).

Conclusions

The previous section showed how HUME was able to
undertake a discovery task in the domain of Solution
Chemistry. The system was able to explain the observed

“This law can also be expressed as Fp x M = -42.986. Values
for Fp x M are shown in Table 3.
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Figure 3. Graph of Freezing point against molecular mass
for Raoult’s data.

freezing point of a particular example solution. However,
the theorem that the system constructed, and the numeric
law embodied in that theorem, are also able to explain the
observed freezing points of a significant number of other
solutions from Table 1. Thus, by starting from the careful
analysis of a single example the system is able to construct
a generally useful domain theory for a particular aspect of
solution chemistry.

Although the system uses a number of different modes of
reasoning, the general discovery strategy is guided by the
application of IQMs. IQM application provides hypotheses
for use in theory construction, and frequently allows the
derivation of numeric data for use in law discovery
(Gordon, 1992, 1993). Furthermore, IQMs also lend a
degree of explanatory support for discovered numeric laws.
In the case of Theorem 3 above, the two parts of the
theorem are mutually supporting. The explanatory
component represented by the antecedents of the theorem
(which have been constructed after IQM application)
supports the discovered numeric law. Similarly, the
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Figure 5. The Solute Dimerism [QM

(freezing-point solution1 -0.145)

(freezing-point ?solution (/ -42.986 ?M))

L co(?solution [?c1 ?2¢2) §—(co ?solute [?s2])

co(solutiont [c1 ¢2]) (co solute1 [BaClO3-2))

b (co 7c2 [?s2))

(mm ?s2 ?m)

—(co ?solvent [?s1]) (mm BaClO3-2 304)

(co solvent1 H20)) (c0 c2[BaCIO3-2])

— (make-solution ?G1 ?solvent
?solute ?solution)

(co ?c1 [?s1))

co(c1 [H20]) (make-solution ex1 solvent1 solute1 solution1)

Figure 4. Proof tree for “(freezing-point solution]
0.145)”. mm = “molecular mass”, co = “composed-of”,
BaClO3-2 = Barium Chlorate, H20 = water.

discovered numeric law also serves to confirm the validity
of the applied IQM.

IQMs can also explain away anomalies in a domain
theory. As Figure 3 shows, there are three examples in the
data of Table 1 which appear to be anomalous with regard
to the numeric law discovered by HUME. That is, the
observed value of the freezing point of each of these
examples differs significantly from that predicted by the
law (these examples are labelled with asterisks in Table 1).
As can be seen in Table 1 the three anomalous examples
have a value for the term Fp x M which is roughly half of
that observed for the other examples. However, if we
assume that the molecules of each of the substances in the
anomalous cases exist in solution associated two by two,
then the value of their molecular masses, M, would be
doubled in each case, and the substances would then fit the
general law fairly closely. Hypothesising that these salts
associate two by two in solution in fact corresponds exactly
to the application of a new IQM to each of these examples.
This is the Solute Dimerism model shown in Figure 5.
Raoult himself explained away these apparent anomalies in
precisely this way. A careful study of the history of
solution chemistry offers numerous other examples in
which new IQMs, or variations on existing IQMs were
used to derive and justify numeric laws, and explain away
seemingly  anomalous  observations  (Gordon, in
preparation).
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