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Chronic myelogenous leukemia
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Abstract
Therapy resistance in leukemia may be due to cancer cell-intrinsic and/or -extrinsic mechanisms. Mutations within BCR-ABL1,
the oncogene giving rise to chronic myeloid leukemia (CML), lead to resistance to tyrosine kinase inhibitors (TKI), and some are
associated with clinically more aggressive disease and worse outcome. Using the retroviral transduction/transplantation model of
CML and human cell lines we faithfully recapitulate accelerated disease course in TKI resistance. We show in various models,
that murine and human imatinib-resistant leukemia cells positive for the oncogene BCR-ABL1T315I differ from BCR-ABL1 native
(BCR-ABL1) cells with regards to niche location and specific niche interactions. We implicate a pathway via integrin β3,
integrin-linked kinase (ILK) and its role in deposition of the extracellular matrix (ECM) protein fibronectin as causative of these
differences. We demonstrate a trend towards a reduced BCR-ABL1T315I+ tumor burden and significantly prolonged survival of
mice with BCR-ABL1T315I+ CML treated with fibronectin or an ILK inhibitor in xenogeneic and syngeneic murine
transplantation models, respectively. These data suggest that interactions with ECM proteins via the integrin β3/ILK-mediated
signaling pathway in BCR-ABL1T315I+ cells differentially and specifically influence leukemia progression. Niche targeting via
modulation of the ECM may be a feasible therapeutic approach to consider in this setting.

Introduction

Resistance to cancer treatments may be due to cancer cell-
intrinsic mechanisms, such as alteration of the drug target,

deregulation of (anti-) apoptotic pathways, drug inactivation
or shuttling of the drug out of the cancer cell [1–3]. Cancer
cell-extrinsic mechanisms of chemoresistance may be
mediated by alterations of drug binding to plasma proteins
or their catabolism or the tumor microenvironment [4].
However, whether leukemia cell-intrinsic mutations con-
ferring resistance to therapy lead to differential interactions
with the bone marrow (BM) microenvironment (BMM), a
complex arrangement of various cell types, extracellular
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matrix (ECM) proteins, and other factors [5], has not been
shown.

The BCR-ABL1 oncogene, generated by the translocation
between chromosomes 9 and 22, results in deregulated
activity of the BCR-ABL1 tyrosine kinase driving chronic
myeloid leukemia (CML) at early disease stages [6]. BCR-
ABL1 is targeted by tyrosine kinase inhibitors (TKIs) [7].
However, resistance to TKIs such as imatinib may occur
due to the BCR-ABL1T315I and other mutations [8, 9]. BCR-
ABL1T315I arises in the ABL kinase domain interfering with
binding to TKIs like imatinib and others [8, 9] accounting
for 15–20% of mutations found in CML patients [10, 11].
Patients with imatinib resistance due to BCR-ABL1T315I

have a rapid clinical course and poor prognosis [11–13],
although other mechanisms may be contributory [14]. In the
case of BCR-ABL1T315I kinase activity does not correlate
with increased transformation potency [15, 16]. Global
phosphoproteome analysis of BCR-ABL1T315I+ cells iden-
tified a unique signature of phosphosubstrates compared
with cells positive for native BCR-ABL1 or other imatinib-
resistance conferring mutations leading to altered biological
properties [15]. However, exactly how these leukemia cell-
intrinsic alterations might influence disease outcome, for
instance via altered interactions with the BMM, has not
been demonstrated.

Niche occupation in the BMM by normal hematopoietic
stem and progenitor cells (HSPC) [17] or leukemic stem
cells (LSC) in acute myeloid leukemia (AML) [18] depends
on their maturation stage or the state of disease progression,
respectively. We hypothesized that differences in clinical
outcome of patients with CML due to imatinib-resistant
mutations in BCR-ABL1 may correlate with LSC location in
the BMM and specific interactions with the BMM. Indeed,
here we show that interactions of leukemic murine and
human cells with the BMM via the fibronectin/integrin β3/
integrin-linked kinase (ILK)-mediated signaling pathway
influence leukemia progression and clinical outcome in
BCR-ABL1T315I+ imatinib-resistant CML in vivo. Target-
ing these interactions may offer a beneficial, innovative,
additive treatment strategy for patients with BCR-
ABL1T315I+ CML, and possibly other leukemias.

Materials and methods

Statistical analysis

All statistical analyses were performed using GraphPad
Prism software. Survival curves were analyzed by
Kaplan–Meier-style curves and Log-rank (Mantel–Cox) or
Gehan–Breslow–Wilcoxon tests. Differences between
groups were assessed by student’s t-test. When multiple
hypotheses were tested, one-way ANOVA and a Tukey test

were used as post-hoc test. The data were presented as
mean ± s.d. P values ≤ 0.05 were considered significant.

Results

BCR-ABL1T315I+ differ from BCR-ABL1+ cells with
regards to diverse biological functions

To test the location of CML-initiating cells (LIC) in the
BMM, we performed in vivo confocal 2-photon microscopy
of the murine calvarium. Measuring the shortest three-
dimensional distance to the endosteum [17], we demon-
strated that transplanted BCR-ABL1+ Lin− c-Kit+ Sca-1+

(LKS) cells, which harbor the LSC [19] in the retroviral
transduction/transplantation model of CML [20], and, par-
ticularly, LKS CD150+ CD48− (SLAM) cells, were located
significantly further away from the endosteum than control
cells (P= 0.0029 and P= 0.0035, respectively, Figs. 1a,
S1A and Supplementary Table 1). Prior in vitro treatment of
BCR-ABL1+ LKS cells with imatinib led to closer locali-
zation of imatinib-treated LKS cells to the endosteum (P=
0.003, Figs. 1b and S1B). However, BCR-ABL1T315I+ LIC,
which are resistant to all TKIs apart from ponatinib and the
allosteric inhibitor of the ABL1 kinase, asciminib [21],
localized closer to osteoblastic cells than BCR-ABL1+ LKS
cells (P < 0.0001, Fig. 1c). We tested whether murine
recipients of BM transduced with BCR-ABL1, BCR-
ABL1T315I, BCR-ABL1M351T, BCR-ABL1Y253F, or BCR-
ABL1E255K (the latter both P-loop mutations) [20, 22] may
recapitulate the accelerated disease course in patients.
Indeed, the survival of untreated recipients of BCR-
ABL1T315I− or BCR-ABL1Y253F− transduced BM was
significantly shortened compared with recipients of BCR-
ABL1+ or BCR-ABL1M351T+ BM (Fig. 1d). Consistent
with increased engraftment of BCR-ABL1T315I+ proviral
clones and more aggressive disease of BCR-ABL1T315I+

CML [20, 23], the disease clonality was significantly higher
in recipients of BCR-ABL1T315I+ than BCR-ABL1+ BM
(P= 0.035, Fig. 1e, f). CML was detectable 8 days after
transplantation (Fig. S1C–D), and the leukocyte count was
higher in recipients of BCR-ABL1T315I+ than BCR-ABL1+

BM (P= 0.0335, Fig. 1g). Similar to human imatinib-
resistant patients with BCR-ABL1T315I+ disease, blasts were
increased in the peripheral blood (Fig. S1E) and the BM of
mice with BCR-ABL1T315I+ CML (Fig. 1h, i). GFP+ (BCR-
ABL1+ or BCR-ABL1T315I+) Gr-1+ (Fig. 1j) and in parti-
cular GFP+ CD11bmedium+ (Figs. 1k and S1F) myeloid cells,
which likely represent the blasts (Fig. 1l), were higher in
mice with BCR-ABL1T315I+ than BCR-ABL1+ CML.
BCR-ABL1T315I+ CD11bmedium+ cells expressed the
highest levels of c-Kit (P < 0.0001, Fig. S1G), but lower
levels of myeloperoxidase (P= 0.0121, Fig. S1H–I).
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Overall, a decrease of the percentage of GFP+ c-Kit+

cells (P= 0.0095, Fig. 1m) and an increase of GFP+

CD34+ (P= 0.0003, Fig. S2A) and GFP+ CD13+

(P= 0.0019, Fig. S2B) cells were observed in mice
with BCR-ABL1T315I+ CML. The frequency of BCR-
ABL1T315I+ (GFP+) LKS cells (P= 0.0045, Fig. S2C) and
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myeloid progenitor cells (Fig. S2D) in the BM were
reduced. However, the percentage of BCR-ABL1T315I+

(GFP+) LKS SLAM did not differ compared with BCR-
ABL1+ CML (Fig. S2E). Concordant with decreased
myeloid maturation expression of the myeloid transcription
factor Cebpa in total BM cells of mice with BCR-
ABL1T315I+ CML was significantly decreased (P= 0.03,
Fig. 1n and Supplementary Table 2). There was a trend
toward reduced expression of Spi1 (PU.1), another myeloid
transcription factor, in BCR-ABL1T315I+ cells (Fig. S2F).
The migration of BCR-ABL1T315I+ BA/F3 cells (P=
0.0267, Fig. 1o), a frequently used in vitro model [24, 25],
and the adhesion of BCR-ABL1T315I+ CD11b+ cells to the
stroma cell line MS-5 in vitro (P= 0.0063, Fig. 1p) were
significantly increased compared with BCR-ABL1+ BA/F3
cells. In summary, these findings suggest that BCR-ABL1+

and BCR-ABL1T315I+ leukemia cells differ with respect to
homing localization in the BMM, migration, adhesion,
disease aggressiveness and (immuno-) phenotype.

The actin cytoskeleton and expression and function
of focal adhesion kinase differ between BCR-
ABL1T315I+ and BCR-ABL1+ cells

We hypothesized that differences in the actin cytoskeleton
and/or focal adhesion kinase (FAK) [26], which is phos-
phorylated by BCR-ABL1 [27], underlie the increased
migration (Fig. 1o) and adhesion (Fig. 1p) of BCR-
ABL1T315I+ cells. Indeed, immunofluorescence staining of
3T3 fibroblasts, frequently used as model system to visua-
lize the actin cytoskeleton in BCR-ABL1+ cells [28, 29],
revealed that the evenly distributed and polymerized actin
cytoskeleton in empty vector-transduced 3T3 cells was less
finely arranged in BCR-ABL1+ and decreased in BCR-
ABL1T315+ 3T3 cells (Figs. 2a and S3A). Staining of FAK,
a focal adhesion protein involved in actin polymerization
[30] and cytoskeletal stability [31], which lies downstream
of the integrin receptors, in 3T3 cells transduced with empty
vector-expressing retrovirus, was punctate, possibly con-
sistent with an intact focal adhesosome. However, the
punctae were reduced in BCR-ABL1+ and completely
dispersed and granular in BCR-ABL1T315I+ 3T3 cells (P <
0.0001; Fig. 2b, c). Phosphorylation at phosphotyrosine
pY397 in FAK, an autophosphorylation site [32], was
higher in BCR-ABL1+ compared with BCR-ABL1T315I+

BA/F3 (Figs. 2d, e and S3B) and Lin− cells (Fig. S3C),
while phosphorylation at pY925 was similar. shRNA-
mediated knockdown of Ptk2 (FAK) (Fig. S3D) or the gene
of another adapter protein at focal adhesion sites, paxillin
(Pxn), (Fig. S3E) in BCR-ABL1+ or BCR-ABL1T315I+

donor BM did not lead to survival prolongation in recipient
wildtype mice. Taken together, these data suggest
that the cytoskeleton differs between BCR-ABL1+ versus

Fig. 1 BCR-ABL1T315I+ differ from BCR-ABL1+ cells with
regards to diverse biological functions. a–c Measurement of the
shortest three-dimensional distance of (a) normal (black circles) or
BCR-ABL1+ LKS (open circles) (P= 0.0029, t-test) or LKS CD150+

CD48− (LKS SLAM) (black (normal) or open (BCR-ABL1+) squares)
(P= 0.0035, t-test) cells or (b) BCR-ABL1+ LKS in vitro treated with
vehicle (black circles) or 10 μM imatinib [56] for 4 h (open circles)
(P= 0.003, t-test) to bone and (c) BCR-ABL1+ (black circles) versus
BCR-ABL1T315I+ (open circles) LKS cells to osteoblasts (P < 0.0001,
t-test) in μm. Hematopoietic cells were labeled with the lipophilic dye
DiD and injected into unirradiated Col2.3 kb GFP mice. Imaging was
performed 2 h after injection. The horizontal black line represents the
mean. Each symbol represents a distinct cell from three separate
experiments. d Kaplan–Meier-style survival curve of untreated BALB/
c recipient mice transplanted with 2.5 × 105 BCR-ABL1-(blue), BCR-
ABL1Y253F-(red), BCR-ABL1T315I-(gray), BCR-ABL1E255K-(brown),
or BCR-ABL1M351T-(black) transduced bone marrow. The difference
in survival between BCR-ABL1+ and BCR-ABL1T315I+ (P= 0.002,
Log-rank test) or BCR-ABL1Y253F+ (P= 0.001, Log-rank test) CML
is significant (n= 8-9). e, f Southern blot showing distinct proviral
integration events (e) and disease clonality (f) in spleens of BALB/c
recipients of BCR-ABL1-(lanes 1–5) or BCR-ABL1T315I-(lanes 6–10)
transduced bone marrow at the time of death (P= 0.035, t-test).
g Leukocyte counts (WBC) × 103 per μl in the peripheral blood of
BALB/c recipient mice transplanted with BCR-ABL1-(black) or BCR-
ABL1T315I-(gray) transduced bone marrow on days 8, 12, and 15 after
transplantation (P= 0.0335; ANOVA, Tukey test, n= 4–5).
h Hematoxylin and eosin stain of bone sections of mice with BCR-
ABL1+ (top) or BCR-ABL1T315I+ (bottom) CML. The open arrows
are pointing toward mature myeloid cells, while the closed arrows are
pointing toward blasts. The scale bar depicts 200 μm (n= 5). i Giemsa
stain of the cytospins of total bone marrow of representative BALB/c
recipient mice transplanted with BCR-ABL1- or BCR-ABL1T315I-
transduced bone marrow on day 15 after transplantation. A total of
50,000 bone marrow cells had been plated. The open arrows are
pointing towards mature myeloid cells, while the closed arrows are
pointing towards blasts. The scale bar depicts 100 μm (n= 5). j Per-
centage of GFP+ (BCR-ABL1+) Gr-1+ myeloid cells in peripheral
blood of mice with BCR-ABL1+ (black) or BCR-ABL1T315I+ (gray)
CML on day 15 after transplantation (P= 0.0387; t-test, n= 4–6).
k Percentage of GFP+ (BCR-ABL1+) CD11bmedium+ myeloid cells
in peripheral blood of mice with BCR-ABL1+ (black) or BCR-
ABL1T315I+ (gray) CML 15 days after transplantation (P= 0.0011;
t-test, n= 4–6). l Giemsa stain of the cytospins of sorted CD11b
medium+ bone marrow cells from representative BALB/c recipient
mice transplanted with BCR-ABL1- or BCR-ABL1T315I-transduced
bone marrow on day 15 after transplantation. A total of 10,000 CD11b
medium+ bone marrow cells had been plated. The open arrows are
pointing toward mature myeloid cells, while the closed arrows are
pointing towards blasts. The scale bar depicts 100 μm (n= 3).
m Percentage of GFP+ (BCR-ABL1+) c-Kit+ cells in the bone marrow
of mice with BCR-ABL1+ (black) or BCR-ABL1T315I+ (gray) CML
(P= 0.0095; t-test, n= 4–6) on day 15 after transplantation. n Relative
expression of Cebpa in total bone marrow of murine recipients of
empty vector (white)-, BCR-ABL1+ (black)-, or BCR-ABL1T315I+

(dark gray)-donor bone marrow 15 days after transplantation (P=
0.03; ANOVA, Tukey test, n= 5). o Percentage of empty vector
(white)-, BCR-ABL1+ (black)-, BCR-ABL1T315I+ (dark gray)- or
BCR-ABL1Y253F+ (light gray)-BA/F3 cells which migrated to the
bottom chamber containing MS-5 stroma cells in medium containing
10% serum in a transwell migration assay after 8 h (P= 0.0267;
ANOVA, Tukey test, n= 3). 105 cells had been plated. p Percentage
of BCR-ABL1+ (black) or BCR-ABL1T315I+ (gray) (GFP+) myeloid
CD11b+ cells adhering to MS-5 stroma cells in vitro (P= 0.0063;
t-test, n= 3). 1.5 × 105 cells had been plated and allowed to adhere for
72 h. The data are representative of three independent experiments.
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BCR-ABL1T315I+ cells. Possibly due to differing phos-
phorylation of FAK by BCR-ABL1 versus BCR-ABL1T315I

focal adhesions may be dysfunctional in BCR-ABL1T315I+

cells.

Integrin β3 expression on BCR-ABL1T315I+ cells
influences CML progression

Given our above observations, the known involvement of
pY397 of FAK for FAK-mediated cell migration and the
phosphorylation of FAK at pY397 upon clustering of
integrins [32], we assessed expression of various integrins.
While there was no difference in mean fluorescence inten-
sity of integrin α5 (CD49e) (Fig. S4A), integrin α IIb
(CD41), which forms a heterodimer with integrin β3 [33],
was less expressed on BCR-ABL1T315I+ compared with
BCR-ABL1+ cells (P= 0.0103, Fig. S4B). Further, integrin

β3, previously implicated in the development and progres-
sion of AML [34], was more highly expressed on BCR-
ABL1T315I+ versus BCR-ABL1+ or empty vector-
transduced BA/F3 cells by immunoblotting (Figs. 3a and
S4C) and super-resolution microscopy [35] (P= 0.0228,
Figs. 3b and S4D). Primary Gr-1+ BCR-ABL1T315I+ mye-
loid cells (P= 0.0306, Fig. 3c) and total GFP+ BM cells
(P= 0.0021, Fig. 3d) from CML mice also revealed sig-
nificantly increased expression of integrin β3. This was also
independently confirmed using stable isotope labeling with
amino acids in cell culture-based quantitative mass spec-
trometry (Fig. S4E, Supplementary Table 3). Consistently,
coimmunoprecipitation of BA/F3 cells transduced with
BCR-ABL1 or BCR-ABL1T315I with an antibody to integrin
β3 revealed increased binding of FAK to integrin
β3 in BCR-ABL1T315I+ cells (Fig. S4F). Exogenous
overexpression of integrin β3 on BCR-ABL1+ or
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vector, BCR-ABL1 or BCR-ABL1T315I grown on coverslips and
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of the focal adhesions (FA) per 3T3 fibroblast transduced with empty
vector (white), BCR-ABL1 (black), or BCR-ABL1T315I (gray) from (b)
(P < 0.0001; ANOVA, Tukey test, n= 3). The data in (a–c) are from
three independent experiments. d Immunoblot showing the expression

of FAKpY397 (130 kDa), FAKpY925 (130 kDa), FAK (125 kDa), or
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (38 kDa) in
lysates of BA/F3 cells transduced with empty vector, BCR-ABL1 or
BCR-ABL1T315I. The immunoblot is representative of three experi-
ments. e Immunofluorescence studies of BA/F3 cells transduced with
empty vector-, BCR-ABL1-, BCR-ABL1T315I-, or BCR-ABL1Y253F-
expressing retrovirus, stained with an antibody to FAKpY397 and 4′,6-
diamidino-2-phenylindole (DAPI). The data are representative of two
experiments.
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BCR-ABL1T315I+ donor BM by retroviral cotransduction
[20] (Fig. S3G), led to significantly reduced leukocyte
counts in peripheral blood (P= 0.0031 for BCR-ABL1+

and P < 0.0001 for BCR-ABL1T315I+, Fig. 3e) and pro-
longed survival (P= 0.0018 for BCR-ABL1+ and P=
0.0025 for BCR-ABL1T315I+, Fig. 3f) in most recipients of
integrin β3+ compared with empty vector-transduced BCR-
ABL1+ or BCR-ABL1T315I+ donor BM. Homing of empty
vector- or integrin β3-overexpressing LIC did not differ
(Fig. S4H–I). In contrast, knockdown of integrin β3 on
BCR-ABL1+ or BCR-ABL1T315I+ donor BM did not
alter survival (Fig. S4J–K). Testing phagocytic activity,
characteristic of mature myeloid cells, we demonstrated
that` phagocytosis was significantly reduced in
BCR-ABL1T315I+ versus BCR-ABL1+ myeloid cells

(P= 0.0256, Fig. 3g). However, overexpression of integrin
β3 on BCR-ABL1T315I+ myeloid cells ‘rescued’ or restored
the phagocytosis of bacterial particles (P= 0.0418, Fig. 3g).
In summary, these data suggested that integrin β3 plays a
role in the outcome of, particularly, BCR-ABL1T315I+

CML, while also influencing the differentiation of BCR-
ABL1+ and BCR-ABL1T315I+ myeloid cells.

Fibronectin is decreased in the BMM of mice with
BCR-ABL1T315I+ CML

Next, we tested the adhesion of empty vector-, BCR-ABL1-
or BCR-ABL1T315I+ primary BM cells to the ECM protein
fibronectin, one of the ligands of integrin β3. This revealed
increased adhesion of BCR-ABL1T315I+ cells to fibronectin
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Fig. 3 Integrin β3 is involved in progression of BCR-ABL1T315I+

CML. a Immunoblot showing the expression of integrin β3 (ITGB3)
(92 kDa) or GAPDH (38 kDa) in lysates of BA/F3 cells transduced
with empty vector, BCR-ABL1 or BCR-ABL1T315I. The immunoblot
is representative of three experiments. b Results of super-resolution
microscopy (dSTORM) for immunolabeled integrin β3 showing
enhanced expression of the epitope on the surface of BA/F3 cells
transduced with BCR-ABL1T315I versus BCR-ABL1 (P= 0.0228;
t-test, n= 3). The data are representative of three experiments.
c Percentage of GFP+ (BCR-ABL1+) Gr-1+ integrin β3+ myeloid cells
in peripheral blood of mice with BCR-ABL1+ (black) or BCR-
ABL1T315I+ (gray) CML on day 15 after transplantation (P= 0.0306;
t-test, n= 4–6). d Mean fluorescence intensity (MFI) of integrin β3 on

CD11b+ cells from bone marrow of mice with BCR-ABL1+ (black) or
BCR-ABL1T315I+ (gray) CML on day 15 after transplantation (n= 5).
e, f Leukocyte counts (WBC) × 103 per μl in peripheral blood (P <
0.0001 for BCR-ABL1T315I+; t-test, n= 7-8) (e) and Kaplan–Meier-
style survival curve (f) of BALB/c recipient mice transplanted with
bone marrow cotransduced with BCR-ABL1- or BCR-ABL1T315I-
expressing retrovirus and integrin β3 (ITGB3)-overexpressing retro-
virus (P= 0.0025 for BCR-ABL1T315I, Log-rank test). g Percentage of
BCR-ABL1+ or BCR-ABL1T315I+ CD11b+ myeloid cells cotrans-
duced with empty vector or integrin β3 (GFP+) from mice with
established disease after incubation for 90 min with pHrodo-
phycoerythrin (PE)-labeled Escherichia coli particles (P= 0.0256;
t-test, n= 5).
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compared with empty vector- or BCR-ABL1-transduced
cells (P < 0.0001, Fig. 4a). We hypothesized that BCR-
ABL1T315I+ CML cells, similar to other cancers [29], may
deposit less fibronectin. Indeed, 3T3 fibroblasts transduced
with BCR-ABL1T315I deposited significantly less fibro-
nectin than BCR-ABL1+ fibroblasts (Fig. S5A). Deposition
of fibronectin was kinase-dependent, as treatment of BCR-
ABL1+, BCR-ABL1Y253F+, or BCR-ABL1T315I+ 3T3
fibroblasts with the TKI ponatinib significantly increased
fibronectin deposition, while imatinib had no effect on
imatinib-resistant BCR-ABL1 mutants (Fig. 4b). Less
fibronectin was also found in the BMM of mice with CML
due to BCR-ABL1T315I, BCR-ABL1E255K, or BCR-
ABL1Y253F, but not BCR-ABL1M351T compared with con-
trol mice (Figs. 4c and S5B). In order to test whether the
generation of fibronectin by leukemia cells influences leu-
kemia progression and accelerates BCR-ABL1+ CML
similar to BCR-ABL1T315I+ CML, we transduced the BM of
fibronectin flox/flox ×Mx1-Cre (FN Mx1-Cre) mice with
BCR-ABL1 or BCR-ABL1T315I, before transplantation into
wildtype recipients and subsequent administration of poly I:
C to induce Cre (Fig. S5C). This led to a significant increase
of the number of leukocytes in the peripheral blood
of mice that had received BCR-ABL1+ FN Mx1-Cre BM
(P= 0.0403, Fig. 4d) and significant shortening of survival
of those mice which received BCR-ABL1+ (P= 0.0162,
Fig. 4e) or BCR-ABL1T315I+ FN Mx1-Cre BM compared
with their respective controls (P= 0.0018, Fig. S5D). All
mice succumbed to CML-like disease. Later deletion of
fibronectin in LIC had the same effect (Fig. 4f, g). In con-
trast, no effect on survival was observed when BCR-ABL1+

or BCR-ABL1T315I+ wildtype BM was transplanted
into fibronectin flox/flox × Col1a2-Cre (FN Col1a2-Cre)
mice (Fig. S5E–F), characterized by lack of production
of fibronectin by fibroblasts [36]. In summary,
these data suggest that BCR-ABL1T315I+ CML cells pro-
duce less fibronectin than BCR-ABL1+ cells and that
fibronectin production by leukemia cells influences CML
progression.

Integrin-linked kinase is involved in fibronectin
deposition and influences survival in BCR-ABL1T315I+

CML

Hypothesizing that BCR-ABL1T315I+ leukemia cells deposit
less fibronectin than BCR-ABL1+ leukemia cells due to
differences in signaling pathways, we focused on ILK, a
pseudokinase belonging to the family of RAF-like kinases
involved in integrin-mediated signal transduction [37] and
fibronectin deposition [38, 39]. ILK is linked to the cyto-
plasmic domains of integrins β1 and β3 [40]. We demon-
strated that levels of total ILK and ILK phosphorylated at its
autophosphorylation site S246 (ILK pS246) were increased

in BCR-ABL1T315I+ compared with BCR-ABL1+ BA/F3
(Figs. 5a and S6A–B) or Lin− cells (Fig. S6C–D). Treat-
ment with ponatinib reduced levels of ILK, and ILK pS246
in BCR-ABL1+ and BCR-ABL1T315I+ BA/F3 cells, sug-
gesting that protein levels of ILK and possibly phosphor-
ylation of ILK may be BCR-ABL1-dependent (Figs. 5b and
S6E–F), though not directly mediated by the tyrosine kinase
BCR-ABL1. ILK and integrin β3 colocalized in BCR-
ABL1+ and BCR-ABL1T315I+ BA/F3 cells, but the staining
pattern for ILK and integrin β3 was more diffuse and less
punctate in BCR-ABL1T315I+ compared with BCR-ABL1+

cells (Figs. 5c and S6G). Consistently, in spite of the
overexpression of integrin β3, binding between ILK and
integrin β3 was reduced in BCR-ABL1T315I+ compared
with BCR-ABL1+ cells (Figs. 5d and S6H). Cotransduction
of donor BM with BCR-ABL1- versus BCR-ABL1T315I-
expressing retrovirus and scrambled- or Ilk shRNA-
expressing lentivirus (P= 0.0133, Fig. S6I) led to a sig-
nificant reduction of leukocyte counts (P= 0.0018, Fig. 5e)
and significant prolongation of survival (P= 0.0476,
Figs. 5f and S6I) in recipients of BCR-ABL1T315I+ sh Ilk+

donor BM compared with controls, also when knockdown
of Ilk was induced at a later timepoint after transplantation
(P= 0.0028, Figs. 5g and S6J). Knockdown of Ilk also led
to an increase in fibronectin deposition by BCR-ABL1T315I+

sh Ilk+ 3T3 fibroblasts (Fig. 5h) and in the BMM of reci-
pients of BCR-ABL1T315I+ sh Ilk+ donor BM compared
with controls (Figs. 5i and S6K). As BCR-ABL1 only
phosphorylates tyrosine and not serine residues, we tested
the phosphorylation of ILK at pS246 after treatment of
BCR-ABL1T315I+ BA/F3 cells with vehicle, the ILK inhi-
bitor Cpd22, ponatinib or the phosphoinositide-3-kinase
(PI3K) inhibitor wortmannin, as PI3K is activated by BCR-
ABL1 [41]. This revealed that levels of pS246ILK were
decreased by Cpd22, ponatinib, and wortmannin, while
total ILK was mostly decreased by ponatinib (Figs. 5j and
S6L–M), suggesting that PI3K may differentially phos-
phorylate ILK in BCR-ABL1+ versus BCR-ABL1T315I+

cells. Taken together, these data suggest that binding
between ILK and integrin β3 is impaired in BCR-
ABL1T315I+ cells and that ILK plays an important role in
progression of BCR-ABL1T315I+ CML, at least partly via
modulation of fibronectin levels in the BMM.

Treatment with fibronectin prolongs survival in
BCR-ABL1T315I+ CML

Hypothesizing that replenishing reduced fibronectin levels
in mice with BCR-ABL1T315I+ CML may decelerate leu-
kemia progression, we transplanted LIC, resuspended in
vehicle or fibronectin, intrafemorally into mice as proof of
principle. This plus two further intrafemoral applications of
fibronectin led to a significant reduction of leukocytes in
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Fig. 4 Fibronectin is decreased in the BMM of mice with BCR-
ABL1T315I+ CML. a Optical density read at 570 nm after adhesion of
sorted empty vector+, BCR-ABL1+, or BCR-ABL1T315I+ (GFP+)
CD11b+ splenocytes to fibronectin (FN) in vitro (P < 0.0001 for BCR-
ABL1 versus BCR-ABL1T315I; ANOVA, Tukey test, n= 3). 105 cells
had been plated and allowed to adhere for 72 h. The data are repre-
sentative of three independent experiments. b Immunofluorescence of
3T3 fibroblasts transduced with BCR-ABL1-, BCR-ABL1T315I-, or
BCR-ABL1Y253F-expressing retrovirus, treated with vehicle, 750 nM
imatinib or 60 nM ponatinib for 6 h, stained with an antibody to fibro-
nectin (pink). The nuclei are counterstained with DAPI.
c Immunohistochemistry for fibronectin (detected by immunoperoxidase
using yellow–brown horseradish-peroxidase chromogen) on bones of
BALB/c recipient mice transplanted with empty vector-, BCR-ABL1-, or
BCR-ABL1T315I-transduced bone marrow at time of death. The scale bar
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after transplantation (d) and Kaplan–Meier-style survival curve (e) of
C57BL/6 recipient mice transplanted with FN fl/fl Mx1-Cre− or FN fl/fl
Mx1-Cre+ bone marrow transduced with BCR-ABL1 (P= 0.0162, Log-
rank test) (e) or BCR-ABL1T315I (d). 10 mg/kg polyinosinic:poly-
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5 after transplantation. f, g Leukocyte counts (WBC) × 103 per μl in
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ABL1+; t-test, n= 5–6) (f) and Kaplan–Meier-style survival curve (g) of
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8, 9, and 10 after transplantation.
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peripheral blood (P= 0.0096; Fig. 6a) and significant sur-
vival prolongation (P= 0.0246; Fig. 6b) in mice with BCR-
ABL1T315I+ CML compared with controls. Intravenous
administration of fibronectin also significantly prolonged

the survival of mice with BCR-ABL1T315I+ CML (P=
0.017; Fig. 6c) and increased fibronectin levels in the BM
(Fig. S7A). However, administration of fibronectin to mice
with BCR-ABL1+ B-cell acute lymphoblastic leukemia
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(Fig. S7B) [23] or MLL-AF9+ AML (Fig. S7C) [20, 42] did
not lead to significant differences in survival. Taken toge-
ther, these data suggest that fibronectin may be involved in
regulating the progression of BCR-ABL1T315I+ CML.

Treatment with the ILK inhibitor Cpd22 and
ponatinib prolongs survival in BCR-ABL1T315I+ CML

In order to test whether inhibition of ILK may have a role
for the treatment of BCR-ABL1T315I+ CML, we treated
mice with BCR-ABL1T315I+ CML with vehicle, ponatinib,
the ILK inhibitor Cpd22 [43], or the combination of
Cpd22 and ponatinib. Cotreatment with the ILK inhibitor
Cpd22 and ponatinib led to a modest, but significant
prolongation of survival compared with treatment with

ponatinib alone (P= 0.0036; Fig. 7a). Consistent with a
presumed role of ILK in fibronectin deposition, treatment
with Cpd22 alone, ponatinib alone, or the combination of
Cpd22 and ponatinib increased the levels of fibronectin
in bone sections (Fig. 7b). Treatment with Cpd22 or
ponatinib increased the percentage of integrin β3+ BCR-
ABL1+ (Fig. S8A) and BCR-ABL1T315I+ (Fig. S8B) cells.
Integrin β3 clusters per area, which fortify the interaction
with focal adhesosomes [44], also significantly increased
by treatment of BCR-ABL1T315I+ cells with Cpd22 (P=
0.0051, Fig. S8C). In summary, inhibition of ILK with
Cpd22 in combination with ponatinib prolongs survival in
BCR-ABL1T315I+ CML. The benefit of ILK inhibition
may lie in the combination of increasing fibronectin levels
in the BMM, as well as in the further increase of integrin
β3 on leukemia cells.

The fibronectin/integrin β3/ILK-axis in human BCR-
ABL1T315I+ CML cells

Validating our results in the human setting, we demon-
strated increased levels of integrin β3 (P= 0.025, Figs. 7c
and S8D–E), increased migration (P= 0.0439, Fig. 7d) and
adhesion of K562T315I (P= 0.0288, Fig. 7e) compared with
K562 cells [45]. Transplantation of K562 versus K562T315I

cells into NOD SCID interleukin-2 receptor γ (NSG)
knockout mice led to increased percentages of human
CD45+ leukocytes in peripheral blood (P= 0.0133, Fig. 7f)
and BM (P= 0.0357, Fig. 7g) in recipients of K562T315I

cells. Similar, but less striking results were observed after
transplantation of KCL-22T315I compared with KCL-22
cells (Fig. S8F–G). Treatment of NSG mice transplanted
with K562T315I cells with Cpd22, ponatinib or their com-
bination led to a trend towards reduced engraftment of
human CD45+ leukocytes compared with vehicle (Figs. 7h
and S8H). Furthermore, fibronectin levels were significantly
reduced in bone sections (P= 0.043; Fig. 7i, j) and levels of
ILK, ILK pS246 and integrin β3 were higher in leukemia
cell samples from most patients with BCR-ABL1T315I+

compared with BCR-ABL1+ CML, though inter-
patient variability was observed (Figs. 7k and S8I).
Lastly, transplantation of human BCR-ABL1+ versus BCR-
ABL1T315I+ CML cells into NSG mice treated in pairs
with vehicle or fibronectin led to a nonsignificant reduction
of the engraftment of human CD45+ leukocytes in the
majority of treated versus untreated mouse pairs (Fig. 7l).
Treatment with fibronectin also led to a reduction of
oncogene transcript levels in 2/4 (50%) recipients of human
BCR-ABL1+ and 4/5 (80%) recipients of BCR-ABL1T315I+

CML cells (Fig. 7m). In summary, our data with human
material suggest that the described link between fibronectin/
integrin β3/ILK may also be applicable to human BCR-
ABL1T315I+ CML.

Fig. 5 Integrin-linked kinase influences fibronectin deposition and
survival in BCR-ABL1T315I+ CML. a Immunoblot showing the
expression of ILK pS246 (65 kDa), ILK (51 kDa), or
glycerinaldehyde-3-phosphate dehydrogenase (GAPDH) (38 kDa) in
lysates of BA/F3 cells transduced with empty vector, BCR-ABL1 or
BCR-ABL1T315I. The immunoblot is representative of three indepen-
dent experiments. b Immunoblot showing the expression of ILK
pS246 (65 kDa), ILK (51 kDa), or GAPDH (38 kDa) in lysates of BA/
F3 cells transduced with BCR-ABL1- or BCR-ABL1T315I-expressing
retrovirus treated with vehicle, 60 nM ponatinib or 750 nM imatinib
for 4 h. The immunoblot is representative of three independent
experiments. c Immunofluorescence of BA/F3 cells transduced with
BCR-ABL1- or BCR-ABL1T315I-expressing retrovirus, stained with an
antibody to ILK (red) or integrin β3 (green). The nuclei are counter-
stained with DAPI. The images are representative of three experi-
ments. The scale bar represents 50 μm. d Coimmunoprecipitation (IP)
of lysates of BA/F3 cells transduced with BCR-ABL1 or BCR-
ABL1T315I with an anti-integrin β3 (ITGB3) antibody. The immuno-
blot was performed with an antibody to integrin β3 (92 kDa) and ILK
(51 kDa). e, f Leukocyte counts (WBC) × 103 per μl in peripheral
blood (P= 0.0018 for BCR-ABL1T315I+; t-test, n= 8–10) (e) and
Kaplan–Meier-style survival curve (f) of BALB/c recipient mice
transplanted with bone marrow cotransduced with BCR-ABL1- or
BCR-ABL1T315I-expressing retrovirus and Scrambled or Ilk shRNA-
expressing lentivirus (P= 0.0476 for BCR-ABL1T315I+, Log-rank test,
n= 10). g Kaplan–Meier-style survival curve of BALB/c recipient
mice transplanted with bone marrow cotransduced with BCR-ABL1-
or BCR-ABL1T315I-expressing retrovirus and a lentivirus expressing
inducible nontarget control or Ilk shRNA (P= 0.0028 for BCR-
ABL1T315I+ and P= 0.0386 for BCR-ABL1, Log-rank test, n= 10).
50 mg/kg of doxcyclin to induce shRNA-expression was administered
intraperitoneally to recipient mice on days 8, 9, 10, and 12 after
transplantation. h Immunofluorescence of normal wildtype (WT) 3T3
fibroblasts or 3T3 fibroblasts transduced with BCR-ABL1- or BCR-
ABL1T315I-expressing retrovirus and Scrambled or Ilk shRNA-
expressing lentivirus. The nuclei are counterstained with DAPI. The
images are representative of four independent experiments. i Immu-
nohistochemistry for fibronectin (detected by immunoperoxidase using
yellow–brown horseradish-peroxidase chromogen) on bones of
representative BALB/c recipient mice transplanted with BCR-ABL1-
or BCR-ABL1T315I- and sh Scrambled or sh Ilk-cotransduced bone
marrow. j Western blot showing the expression of ILK pS246 (65
kDa), ILK (51 kDa), AKT pS473 (62 kDa), or GAPDH (38 kDa) as
loading control in lysates of BA/F3 cells transduced with BCR-
ABL1T315I and treated with vehicle, 50 nM Cpd22, 60 nM ponatinib,
or 40 nM wortmannin for 6 h.
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Discussion

In continuation of previous studies [15, 16] we demonstrate
here that the increased oncogenicity of the BCR-ABL1T315I

mutation is at least partly due to differences in the inter-
action with the BMM and its remodeling compared with
native BCR-ABL1. BCR-ABL1T315I+ cells differ from BCR-
ABL1+ cells with regards to the actin cytoskeleton,
migratory properties, expression of integrin β3, the levels
and phosphorylation of FAK and ILK, as well as ILK-
dependent deposition of fibronectin in the BMM. Further
increased expression of integrin β3 led to increased myeloid
maturation and a deceleration of leukemic progression,
while a decrease of fibronectin expression in BCR-ABL1+

cells accelerated the disease similar to BCR-ABL1T315I+

CML. Administration of fibronectin decelerated BCR-
ABL1T315I+ disease. In summary, our data suggest that
interactions with proteins of the ECM influence CML pro-
gression and that therapeutic manipulation of the levels of
ECM proteins may be beneficial in (resistant) CML.

Our data extend the observation that integrin β3 is
essential for leukemogenesis and influences outcome in
AML [34] and suggest that integrin β3—possibly via its
interaction with ECM proteins such as fibronectin—may
be involved in myeloid maturation, as suggested for integrin
β1 [46].

Our findings on the differential location of normal HSPC
and BCR-ABL1+ or BCR-ABL1T315I+ LIC are consistent
with a previous study on the distinct physical engagement
of the BMM by MLL-AF9+ AML cells, which is dependent
on the degree of leukemic progression [18]. Our results
further suggest that niche location of malignant cells may

influence survival, possibly also in response to TKI
treatment.

The involvement of ILK in the pathophysiology of BCR-
ABL1T315I+ (and BCR-ABL1+) CML, given its linkage to
the cytoplasmic domains of integrin β1 and β3, its support
of scaffolding proteins [40] and its known role in the
deposition of fibronectin by epithelial cells [47]—though
opposite from our results in hematopoietic cells—and other
ECM proteins [48] was not surprising and may be context
dependent. The expression and activity of ILK is known to
be increased in several epithelial cancers [49], where it may
also contribute to chemoresistance via regulation of adhe-
sion to fibronectin [50]. In addition, ILK has been postu-
lated to be a novel target in solid cancers [49] and leukemia
[51], though a connection to the BMM was not established.
In our work, treatment with Cpd22 and ponatinib sig-
nificantly prolonged survival in BCR-ABL1T315I+ CML
compared with ponatinib alone.

Fibronectin is overexpressed in certain cancers and
contributes to the tumorigenic process [52] contrary to our
findings in BCR-ABL1T315I+ CML, where decreased
levels of fibronectin exacerbate leukemia progression. In
hematopoiesis, fibronectin supports the growth of HSPC
[53, 54], whereas fibronectin may inhibit the proliferation
of B-ALL cells in vitro [55]. Our data suggest that
administration of fibronectin—or an increase of fibro-
nectin levels via inhibition of ILK—may be beneficial in
BCR-ABL1T315I+ CML, for which limited therapies or
only treatments with significant side effects exist.
Although fibronectin did not lead to a significant survival
prolongation in BCR-ABL1+ B-ALL or MLL-AF9+

AML, it is likely that this may have been due to
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suboptimal dosing and timing of the administration of
fibronectin, whose high purchasing costs were prohibitive
of further exploration in this study.

In conclusion, we have demonstrated that a point
mutation in the kinase domain of BCR-ABL1, which leads
to imatinib resistance, in our models has altered biological
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activity and is associated with more aggressive disease
due to altered interactions with the BMM via the
fibronectin-integrin β3-ILK pathway. We confirmed
altered, though variable expression levels and targetability
of these proteins in human BCR-ABL1T315I+ CML cells.
This may also explain the accelerated phenotype in
humans. These altered interactions and specifically
decreased levels of fibronectin or ILK in BCR-
ABL1T315I+ CML are valuable targets. It is to be hoped
that modification of this pathway will lead to the

development of novel therapies for imatinib-resistant
CML and, hopefully, other leukemias.
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