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the high degree of heterogeneity and intercorrelation, some 
of which is associated with functional variation, and support 
the concept that HDL-cholesterol alone is not an accurate 
measure of HDL’s properties, such as protection against 
CAD.—Pamir, N., C. Pan, D. L. Plubell, P. M. Hutchins, C. 
Tang, J. Wimberger, A. Irwin, T. Q. d. A. Vallim, J. W.  
Heinecke, and A. J. Lusis. Genetic control of the mouse HDL 
proteome defines HDL traits, function, and heterogeneity.  
J. Lipid Res. 2019. 60: 594–608.

Supplementary key words  high density lipoprotein • single nucleotide 
polymorphism • sterol efflux

HDLs are composed of a heterogeneous group of lipid-
protein complexes that circulate in the blood. HDL-
cholesterol (HDL-C) levels exhibit strong inverse correlations 
with coronary artery disease (CAD) in many populations 
(1, 2), and their (3, 4) abilities to promote reverse choles-
terol transport and suppress inflammatory responses are 
consistent with the concept that they protect against the 
disease (5, 6). However, evidence from genome-wide asso-
ciation studies (GWASs) has suggested that association 
with CAD may not be causal (7). Certain alleles that raise 
HDL-C levels at GWAS loci were not associated with protec-
tion against CAD in “Mendelian randomization” studies. 
Additionally, clinical traits with drugs that raise HDL-C did 
not show protection against CAD additional to the statin 
effect. It has been suggested that the discrepancy may be 
explained by the heterogeneity of HDL (8). Thus, it is pos-
sible that certain species of HDL, but not others, provide 

Abstract  HDLs are nanoparticles with more than 80 associ-
ated proteins, phospholipids, cholesterol, and cholesteryl 
esters. The potential inverse relation of HDL to coronary 
artery disease (CAD) and the effects of HDL on myriad 
other inflammatory conditions warrant a better understand-
ing of the genetic basis of the HDL proteome. We conducted 
a comprehensive genetic analysis of the regulation of the 
proteome of HDL isolated from a panel of 100 diverse in-
bred strains of mice (the hybrid mouse diversity panel) and 
examined protein composition and efflux capacity to iden-
tify novel factors that affect the HDL proteome. Genetic 
analysis revealed widely varied HDL protein levels across 
the strains. Some of this variation was explained by local 
cis-acting regulation, termed cis-protein quantitative trait loci 
(QTLs). Variations in apoA-II and apoC-3 affected the abun-
dance of multiple HDL proteins, indicating a coordinated 
regulation. We identified modules of covarying proteins and 
defined a protein-protein interaction network that describes 
the protein composition of the naturally occurring subspe-
cies of HDL in mice. Sterol efflux capacity varied up to 
3-fold across the strains, and HDL proteins displayed dis-
tinct correlation patterns with macrophage and ABCA1-
specific cholesterol efflux capacity and cholesterol exchange, 
suggesting that subspecies of HDL participate in discrete 
functions. The baseline and stimulated sterol efflux capacity 
phenotypes were associated with distinct QTLs with smaller 
effect size, suggesting a multigenetic regulation.  Our re-
sults highlight the complexity of HDL particles by revealing 
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protection against CAD, and that the genetic or drug per-
turbations failed to impact those mediating the protection. 
In particular, certain population studies have found that 
the efficiency of HDL in mediating cholesterol efflux from 
cells has been associated with decreased incidence of CAD 
(9–11). In addition to CAD, HDL is likely to mediate a 
variety of immune and regulatory functions (12–14). Because 
these protective functions are most likely regulated by the 
proteins associated with HDL, understanding the regula-
tion of the HDL subpopulation’s proteome heterogeneity 
is imperative.

Based on the size, density, electrophoretic mobility, and 
protein content of HDL particles, subspecies of HDL have 
been identified in a variety of species. These include small 
lipid-poor HDL species as well as larger HDL species that 
contain a large core of cholesteryl esters (3, 4). In humans, 
discrete classes of HDL based on size can be identified. In 
mice, HDL sizes are more continuous (15) and represent 
one monodisperse peak. The size and levels of HDL vary in 
both human and mouse populations (16, 17). There are 
clear functional differences associated with the various size 
classes of HDL. In particular, the small lipid-poor particles 
are the best acceptors of cholesterol from cells and thus 
should be particularly important in mediating reverse choles-
terol transport; whereas larger particles, associated with pro-
teins such as paraoxonase 1 (PON1) and APOE, are likely to 
be important in protecting against inflammation. HDL par-
ticles containing proteins such as serum amyloid A (SAA) 
species tend to lack anti-inflammatory properties (18).
HDL-C levels have a skewed normal distribution in the 

general population, and the median levels vary by sex and 
ethnicity. Linkage-based studies from the early 1980s have 
tried to identify the genetic factors that influence plasma 
HDL-C levels, but many findings have not been replicated 
due to the polygenic nature of this trait, with contributions 
from multiple small-effect gene variants. Meta-analyses and 
GWAS results do, however, support the association of HDL-C 
with variation in CETP, LIPC, LPL, ABCA1, endothelial li-
pase (LIPG), and LCAT (19, 20). Multiple genetic factors 
could be present in an individual, creating a polygenic net-
work of HDL-C determinants (21). These determinants 
include monogenic effectors such as rare homozygous mu-
tations in ABCA1, LCAT, and APOA1 causing extremely 
low HDL-C (22–24) and rare homozygous mutations in 
CETP, LIPC, and SCARB1 causing extremely elevated 
HDL-C. The mouse models of these variants have been 
supportive of the human findings (25). Polygenic determi-
nants have been recently investigated using targeted next-
generation sequencing in patients with extremely low and 
high HDL-C. About 30% of individuals at the extremes of 
HDL-C had rare large effect and common small effect vari-
ants explaining the trait (26). Whereas the genetic deter-
minants of plasma HDL-C levels have been well studied, 
the genetic determinants of the HDL proteome and lipi-
dome have never been previously investigated.
To better define the various species of HDL at the level 

of protein composition and to understand their genetic 
regulation, we used the hybrid mouse diversity panel 
(HMDP) with a systems biology approach (27, 28). The 

HMDP is a collection of 100 classical laboratory and recom-
binant inbred strains that have been genotyped at 135,000 
SNPs (27). The HMDP provides a confined genetic space 
(27) that relies on naturally occurring genetic variation 
that perturbs protein abundance. We performed a systems 
genetics approach using analytical approaches that in-
cluded genome-wide association, expression quantitative 
trait locus (eQTL) discovery, functional outcomes, and 
network analysis (27).
We identified the HDL proteome and HDL function for 

each strain. Using quantitative trait locus (QTL) analyses, 
we performed genetic mapping. First, associations between 
SNPs and HDL protein levels and function were deter-
mined. Second, the effects of SNPs on gene regulation 
were determined by eQTL analysis using hepatic and adi-
pose tissue-specific gene expression. Based on the genetic 
variation in HDL observed, we were able to identify numer-
ous genetic factors mediating HDL composition and pro-
vide an approximation of the nature of the interactions 
between the proteins. Finally, we used protein-protein 
interaction cluster analyses to build an HDL model that 
describes the group of proteins that constitute the core 
proteins and the ones that are peripheral. We identified 
moderate QTLs associated with the sterol efflux capacity of 
HDL. Our results reveal a great deal of heterogeneity and 
intercorrelation, some of which is associated with func-
tional variation, supporting the concept that HDL-C alone 
is not an accurate measure of the protective properties of 
HDL in terms of CAD.

METHODS

Mice
All studies were approved by the Animal Care and Use Commit-

tee of the University of California, Los Angeles. Mice were housed 
(1–3 per cage) in a pathogen-free barrier facility (22°C) with a  
12 h light/dark cycle with free access to food and water. All the 
strains were a fed low-fat diet (Wayne Rodent BLOX 8604; Harlan 
Teklad Laboratory). Mice (60–80 days old) were fasted for 16 h at 
7:00 PM and euthanized at 9:00 AM the following morning. Mice 
were bled from the retro-orbital sinus into tubes containing EDTA 
(final concentration 1 mM) after isoflurane inhalation. Plasma 
was collected and stored at 80°C until analysis. The 93 strains 
are represented by N = 1–5 with a distribution of 4, 9, 75, 9, and 
1% for N = 1, 2, 3, 4, and 5, respectively (details are presented in 
supplemental Table S1)

Plasma HDL-C measurements
Plasma cholesterol levels (Invitrogen) were determined bio-

chemically following the manufacturer’s guidelines.

Cholesterol efflux assays
Macrophage cholesterol efflux capacity was assessed with J774 

macrophages labeled with [3H]cholesterol and stimulated with a 
cAMP analog, as described by de la Llera-Moya et al. (29). Efflux 
via the ABCA1 pathways was measured with BHK cells expressing 
mifepristone-inducible human ABCA1 that were radiolabeled 
with [3H]cholesterol (30). Efflux of [3H]cholesterol was mea-
sured after a 4 h incubation in medium with APOB-depleted 
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serum HDL (2.8% v/v). ABCA1-specific cholesterol efflux capac-
ity was calculated as the percentage of total [3H]cholesterol (me-
dium plus cell) released into the medium of BHK cells stimulated 
with mifepristone after the value obtained with cells stimulated 
with medium alone was subtracted.

HDL isolation
Serum HDL was prepared by adding calcium (2 mM final con-

centration) to plasma and using polyethylene glycol (8 kDa, 
Sigma) to precipitate lipoproteins containing APOB (VLDL, IDL, 
LDL). After centrifugation at 10,000 g for 30 min at 4°C, serum 
HDL was harvested from the supernatant. HDL was isolated from 
serum or EDTA-anticoagulated plasma using sequential ultracen-
trifugation (d = 1.063–1.21 mg/ml) (31). HDL was stored on ice 
in the dark and used within 1 week of preparation. For each isola-
tion batch, control samples from the same pooled mouse plasma 
were included and further processed by tryptic digest and MS to 
control for experimental variability. The spectra for each control 
were monitored for peak intensities, resolution, retention times, 
and identified proteins.

LC-ESI-MS/MS analysis
HDL (10 g protein) isolated by ultracentrifugation and 0.5 ug 

of yeast carboxypeptidase were solubilized with 0.1% RapiGest 
(Waters) in 200 mM ammonium bicarbonate, reduced with di-
thiothreitol, alkylated with iodoacetamide, and digested with tryp-
sin (1:20, w/w HDL protein; Promega) for 3 h at 37°C. After a 
second aliquot of trypsin (1:20, w/w HDL protein) was added, 
samples were incubated overnight at 37°C. After RapiGest was re-
moved by acid hydrolysis, samples were dried and stored at 20°C 
until analysis. Prior to analysis, samples were reconstituted in 5% 
acetonitrile and 0.1% formic acid (17).
Tryptic digests of mouse HDL (1 g protein) were injected 

onto a C18 trap column (Paradigm Platinum Peptide Nanotrap, 
0.15 × 50 mm; Michrom Bioresources Inc., Auburn, CA), desalted 
(50 l/min) for 5 min with 1% acetonitrile/0.1% formic acid, 
eluted onto an analytical reverse-phase column (0.15 × 150 mm, 
Magic C18AQ, 5 m, 200 A; Michrom Bioresources Inc.), and 
separated on a Paradigm M4B HPLC (Michrom Bioresources 
Inc.) at a flow rate of 1 l/min over 180 min, using a linear gradi-
ent of 5–35% buffer B (90% acetonitrile, 0.1% formic acid) in 
buffer A (5% acetonitrile, 0.1% formic acid). ESI was performed 
using a CaptiveSpray source (Michrom BioResources, Inc.) at a  
10 ml/min flow rate and 1.4 kV setting. HDL digests were intro-
duced into the gas phase by ESI and positive ion mass spectra 
were acquired with a orbitrap mass spectrometer (Fusion, Thermo 
Electron Corp.) using data-dependent acquisition (one MS survey 
scan followed by MS/MS scans of the eight most abundant ions in 
the survey scan) with a m/z 350–1,400 scan. An exclusion window 
of 30 s was used after two acquisitions of the same precursor ion 
(17, 31). Two pooled samples were included on each 96-well tryp-
tic digestion plate (1 batch) and injected to the mass spectrome-
ter at 70 sample intervals (1 batch), one at the beginning and one 
at the end of the batch. The spectra for each control were moni-
tored for peak intensities, resolution, retention times, and identi-
fied proteins.

Protein identification
MS/MS spectra were matched using the Comet search engine 

(version 2015.01 rev. 1) against a mouse UniProt database ap-
pended with yeast carboxypeptidase Y protein sequence (52,639 
total sequences). The following Comet search parameters were 
applied: peptide mass tolerance of ±20.0 ppm allowing for C13 iso-
tope offsets, full tryptic digest allowing up to two missed cleavages, 
oxidized methionine variable modification, and carbamidomethyl 

cysteine static modification. The search results were subse-
quently processed through the Trans-Proteomic Pipeline (ver-
sion 4.8.0) using the PeptideProphet and ProteinProphet tools 
using an adjusted probability of 0.90 for peptides and 0.95 for 
proteins. Each charge state of a peptide was considered a unique 
identification (32). We used the gene and protein names in the En-
trez databases (National Center for Biotechnology Information) 
based on the nomenclature guidelines of the Human Gene 
Nomenclature Committee (https://www.genenames.org/about/
guidelines/) for human (33) and Mouse Genome Informatics 
(http://www.informatics.jax.org/mgihome/nomen/gene.shtml) 
guidelines (34) to identify HDL proteins and to eliminate the 
redundant identifications of isoforms and protein fragments fre-
quently found in databases used in proteomic analysis (35). This 
approach also permits cross-referencing of proteins from differ-
ent species.

Protein quantification
Proteins were quantified using peptide spectra matches (PSMs): 

the total number of MS/MS spectra detected for a protein (31). 
Proteins considered for analysis had to be detected in 30 analyses 
(10% of the total samples) with 2 unique peptides. Because only 
a few peptides are typically measured for a given protein, these 
peptides might not be sufficient to define all isoforms of the 
protein that are present in the sample therefore, when MS/MS 
spectra could not differentiate between protein isoforms, the 
isoform with the most unique peptides was used for further 
analysis.
PSMs for each protein, normalized to either spiked yeast car-

boxypeptidase or to total PSMs for peptides from each sample, 
were used to calculate a normalized PSM to compare the relative 
protein composition of mouse strains’ HDLs (31). Supplemental 
Table S1 provides the total calculated PSMs for each protein, the 
individual peptides that identified each protein, the total num-
ber of PSMs, and relative quantification as normalized to yeast 
carboxypeptidase Y total PSMs or total PSMs of one sample.

HDL particle size
HDL particle size was quantified by calibrated ion mobility 

analysis (36). Briefly, HDL isolated by ultracentrifugation from 
EDTA plasma is introduced into the gas-phase ions by ESI. Be-
cause electrophoretic mobility depends chiefly on size, ion mobility 
analysis data are expressed in terms of particle diameter (nano-
meters), which corresponds to the calculated diameter of a 
singly charged spherical particle with the same electrophoretic 
mobility (36).

Association analyses
GWAS for protein levels and gene expression was performed 

using correction for population structure as described (37, 38). 
Loci were defined as cis if the peak SNP mapped within 1 Mb of 
gene position and trans if it mapped outside (cis significance 
threshold, P < 1.4 e-3; trans threshold, P < 6.13e-6).

Heritability
Broad sense heritability scores were calculated for each protein 

using R package (sommer), using the formula H2 = genetic vari-
ance/(genetic variance + residual variance).

Statistical analyses
Data are represented as mean ± SEM. Linear correlation 

among the HDL metrics of the 93 strains were assessed with Pear-
son correlations and the association of the proteins were assessed 
by Spearman correlations; both were followed with Bonferroni-Holm 

https://www.genenames.org/about/guidelines/
https://www.genenames.org/about/guidelines/
http://www.informatics.jax.org/mgihome/nomen/gene.shtml


Genetics of mouse HDL proteome 597

post hoc correction for multiple comparisons. Data were analyzed 
with Prism (Graph Pad Prism v. 7) and R (Cran R project R pro-
gram v. 3.5.1) software.

Data and software availability
The MS/MS datasets produced in this study are available in 

the PRIDE consortium (ProteomeXchange accession number 
PXD009473) and in the UCLA-based public database established 
to harbor HMDP-related data (https://systems.genetics.ucla.
edu/data).

RESULTS

Quantitation of HDL-associated protein levels in a panel 
of 100 inbred strains of mice
HDL isolated from 93 strains (N = 3, for 75% of the 

strains) of the HMDP was subjected to LC-MS/MS (17). 
This list of robustly identified proteins, ranked by average 
abundance, is presented in Table 1. A full list of the pro-
teins with PSMs per biological replicate is presented in 
supplemental Table S1.

We used two common ways to normalize the PSMs: 1) 
normalized each PSM to spiked yeast carboxypeptidase Y 
protein (39, 40); and 2) normalized every PSM to the ob-
served total PSMs (31). We present findings from both 
analyses: The main text data and figures are from yeast nor-
malized data analysis, whereas the total normalized analysis 
is presented in the supplements. Proteins that were identi-
fied with at least two unique peptides were subjected to fur-
ther analysis. Of these proteins, 34 were shared across all 
strains (Fig. 1, supplemental Fig. S1). The proteome was 
analyzed for proteins represented in strains by quintiles. 
The bottom quintile proteins, identified in less than 20% 
of the 93 strains, were discarded. The remaining 155 pro-
teins identified were used to perform the QTL analyses 
(Fig. 2, supplemental Fig. S2). To identify how the proteins 
correlated with each other and with the functional metrics 
of HDL, we used proteins that were represented in 80% of 
the strains (81 proteins total).
The heatmap representation of the log transformed rel-

ative abundance of proteins across 93 strains, the biological 
processes in which they participate, and their cellular loca-
tions are visualized to provide information about the rela-
tive abundance and their spatial (Euclidean) clustering 
(Fig. 1, supplemental Fig. S1; the variance for each protein 
across the strains is presented in supplemental Fig. S8). We 
have curated outputs from publicly available enrichment 
databases, such as DAVID, PANTHER, KEGG, and Gene 
Ontology, to classify the proteins according to the bio-
logical functions in which they participate and the cellular 
location they are most likely to operate. As expected, most 
of the proteins (65/81) were extracellular. Our results 
are in agreement with previous reports (31) and show 
that HDL is associated with proteins that play a role in 
antigen processing, cell metabolism, coagulation, com-
plement activation, immune response, lipid metabolism, 
metal ion binding, proteinase inhibition, and steroid bind-
ing. All of the proteins identified are replicated by previous 
studies, as shown by the HDL Proteome Watch website 

(http://homepages.uc.edu/~davidswm/HDLproteome.
html) by Dr. Sean Davidson’s Laboratory at the University 
of Cincinnati.

Among the 155 proteins, the ones associated with highly 
regulated and preserved metabolic pathways, such as in-
nate immunity and proteinase inhibition, displayed strain-
specific patterns. For example, H-2 class I histocompatibility 
antigen (H2-Q10) was present in relatively high abundance 
in all the strains studied, while the histocompatibility 2 Q 
region locus 1 (H2-Q1) was present in 48/93 strains and 
H-2 class I histocompatibility antigen D-D  chain (H2-D1) 
is only present in 22/93 strains (supplemental Table S1). The 
distinct strain-specific patterns were also observed for pro-
tease inhibition class proteins, such as alpha-1-antitrypsin 
1-2 (Serpin1b) present in 25/93 strains versus alpha-1- 
antitrypsin 1-4 (Serpina1d) present in 46/93 strains and 
serine protease inhibitor A3K (Serpina3K) present in 
92/93 strains studied.
We had previously shown (in a smaller study with five 

inbred strains) that the HDL proteome predicts the gene-
alogy of the strains (17), suggesting a hereditary compo-
nent. The heritability of the HDL proteome was estimated 
by calculating the broad-sense heritability scores (H2) for 
each protein (supplemental Table S1). Broad-sense herita-
bility (H2) captures the phenotypic variation due to ge-
netic factors such as dominance and epistasis (41). The 
HMDP consists of 29 “classic” inbred strains and about 
70 recombinant strains derived from five different sets 
of parental strains (BxA or AxB, BxD, CxB, and BxH) (27). 
Our cohort has N = 1–5 biological replicates per strain. 
The proteins identified are not always represented in 
each sample, leading to variable numbers. Despite the in-
crementally variable genetic canvas of the strains and 
the technical variability in MS analyses, 66/155 yeast-
normalized proteins had an H2 score between 0.10 and 
0.90, indicating up to 90% heritability due to genetic factors. 
The HDL proteome is composed of a core set of proteins 
(40) that are detected in every study across the diverse 
laboratories and sample sets, and a subset of proteins that 
are acutely regulated by the environment (i.e., diet and 
inflammation; http://homepages.uc.edu/~davidswm/
HDLproteome.html). The H2 scores for such proteins are 
expected to be zero. Furthermore, due to our study design, 
the proteins that are strain specific are also expected to 
have an H2 of zero.

Genetic regulation of the HDL proteome
Loci contributing to variations in protein levels [protein 

QTLs (pQTLs)] or hepatic transcript levels of the proteins 
(eQTLs) were mapped using the FAST LMN, an associa-
tion algorithm with a mixed model component to correct 
for population structure. Association analysis was per-
formed using about 200,000 informative SNPs (27), spaced 
throughout the genome (Table 2). Hepatic transcript lev-
els were from a previous survey of the HMDP maintained 
on the same chow diet as in this study (27). Loci averaged 
from 500 kb to 2 Mb in size and, in most cases, contained 
1–20 genes within a linkage disequilibrium block, an  
improvement of more than an order of magnitude as 
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compared with traditional linkage analysis in mice (typically 
a resolution of 10–20 Mb) (42). Loci mapping within 1 Mb 
of the gene are termed “local” QTL, suggesting that they 
probably act in cis. For example, promoter or enhancer 
variants would act in cis. Loci mapping greater than 1 Mb 
from the gene of interest are termed “distal”, implying that 
they act in trans, presumably mediated by a diffusible fac-
tor, such as a transcription factor (Table 2, supplemental 
Table S2). We applied a significance filter of P = 103 and 
106 to identify suggestive cis and trans QTLs, respectively.
A total of 19 HDL proteins showed significant evidence of 

local regulation of hepatic transcript levels or protein levels 
(Table 2). With the exception of Apoc3, all of the significant 
pQTLs also exhibited significant eQTLs, indicating that ge-
netic variation in protein levels was largely due to regulation 
of gene expression. In the case of Apoc3, while there was 
no significant eQTL in liver, there was a highly significant 
eQTL in adipose tissue (P = 1.8 × 107) (supplemental Table 
S3). Apoa2 and Saa2 exhibited more significant pQTLs than 
eQTLs (P = 1.324e-22, effect size = 0.413 vs. P = 1.276e-4, ef-
fect size = 0.0210 for Apoa2 and P = 2.559e-10, effect size = 
0.0780 vs. P = 1.533e-6, effect size = 0.780 for Saa2, respec-
tively), suggesting that the pQTLs were due to coding rather 
than regulatory variations. In the case of Apoa2, our previous 
studies indicated that structural variation affecting transla-
tion efficiency was largely responsible for the differences in 
protein levels among several common inbred strains (27). 
Also, common coding variants are present among the HMDP 
strains for both Apoc3 and Saa2 (www.informatics.jax.org). As 
shown in Table 2, many variants significantly affecting HDL 
protein expression did not exhibit corresponding variations 
in protein levels. A likely explanation in the case of HDL is 
that, for some proteins, only a limited amount of the protein 
can be incorporated into the HDL lipid-protein complex, the 
remainder presumably being degraded.
We have attempted to identify distal (trans-acting) fac-

tors affecting HDL protein levels (supplemental Table S2). 
In contrast to local eQTLs, where only SNPs within 1 Mb of 
the gene are tested for association, distal QTL analyses in-
volve genome-wide SNP tests for association, requiring a 
much higher threshold for significance. A number of the 
likely significant distal eQTLs occur with several megabases 
of the gene and, thus, probably result from either long-range 
(>1 Mb) linkage disequilibrium or chromosome looping 

TABLE  1.  List of proteins detected in mouse HDL across the HMDP

Gene Symbol Gene Name

Abpa7 Secretoglobin, family 1B, member 7
Ahsg -2-HS-glycoprotein
Alb Albumin
Antxr1 Anthrax toxin receptor 1
Antxr2 Anthrax toxin receptor 2
Apoa1 Apolipoprotein A-I
Apoa2 Apolipoprotein A-II
Apoa4 Apolipoprotein A-IV
Apoa5 Apolipoprotein A-V
Apob Apolipoprotein B
Apoc1 Apolipoprotein C-I
Apoc2 Apolipoprotein C-II
Apoc3 Apolipoprotein C-III
Apoc4 Apolipoprotein C-IV
Apod Apolipoprotein D
Apoe Apolipoprotein E
Apoh Apolipoprotein H
Apom Apolipoprotein M
Apon Apolipoprotein N
Arsg Arylsulfatase G
Bpifa2 BPI fold-containing family A member 2
C3 Complement component 3
C4b Complement component 4B (Chido blood group)
C4bpa C4b-binding protein
Camp Cathelicidin antimicrobial peptide
Cd97 CD97 antigen
Clec14a C-type lectin domain family 14, member a
Clu Clusterin
Cst6 Cystatin E/M
Ctsd Cathepsin D
Dmkn Dermokine
Egfr Epidermal growth factor receptor
F10 Coagulation factor X
Fga Fibrinogen  chain
Fgb Fibrinogen  chain
Fgg Fibrinogen  chain
Gc Group specific component
Gm5938 Predicted gene 5938
Gm94 Predicted gene 94
Gpld1 Glycosylphosphatidylinositol specific  

phospholipase D1
Grn Granulin
H2-Q4 Histocompatibility 2, Q region locus 4
H2-Q10 Histocompatibility 2, Q region locus 10
Hba Hemoglobin  chain complex
Hbb-b1 Hemoglobin,  adult major chain
Hbb-b2 Hemoglobin,  adult minor chain
Hbbt1 -Globin
Icam1 Intercellular adhesion molecule 1
Ifi27l2b Interferon, -inducible protein 27 like 2B
Igfals Insulin-like growth factor binding protein, acid  

labile subunit
Ighm Immunoglobulin heavy constant mu
Ihh Indian hedgehog
Itgb1 Integrin  1 (fibronectin receptor )
Lcat Lecithin cholesterol acyltransferase
Mug1 Murinoglobulin 1
Napsa Napsin A aspartic peptidase
Obp1a Odorant binding protein Ia
Pcyox1 Prenylcysteine oxidase 1
Pf4 Platelet factor 4
Plg Plasminogen
Pltp Phospholipid transfer protein
Pon1 Paraoxonase 1
Pon3 Paraoxonase 3
Ppic Peptidylprolyl isomerase C
Psap Prosaposin
Rab1a Ras-related protein Rab-1a
Rbp4 Retinol binding protein 4, plasma
Saa1 Serum amyloid A 1
Saa2 Serum amyloid A 2
Saa4 Serum amyloid A 4
Scgb1b2 Secretoglobin, family 1B, member 2

Gene Symbol Gene Name

Sell Selectin, lymphocyte
Serpina1a Serine (or cysteine) peptidase inhibitor,  

clade A, member 1A
Serpina1e Serine (or cysteine) peptidase inhibitor,  

clade A, member 1E
Serpina3k Serine (or cysteine) peptidase inhibitor,  

clade A, member 3K
Serpinc1 Serine (or cysteine) peptidase inhibitor, clade C  

(antithrombin), member 1
Tf Serotransferrin
Tfpi Tissue factor pathway inhibitor
Tfrc Transferrin receptor
Ttr Transthyretin
Vcam1 Vascular cell adhesion molecule 1
Vtn Vitronectin

Table  1.  Continued.
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interactions (for example, Apoh, Apom, B2m, H2-Q10, and 
Pp1c) (supplemental Table S2). The pQTL analysis also 
identified some highly significant distal (trans-acting) inter-
actions, most notably for Apoa2 (P = 4.6 × 1014). The Apoa2 
locus is about 5 Mb from the structural gene and the 
significant association is probably the result of linkage 
disequilibrium or chromosome looping.

We asked whether the local pQTLs could be used to iden-
tify causal interactions between HDL proteins. For this, we 
selected the genes with significant pQTLs and asked 
whether the peak local pQTL SNP was associated with any 
other HDL proteins, suggesting that the regulation of the 
former perturbs levels of the latter. For example, Apoe3 

(on chr. 9) protein levels were controlled by a local pQTL 
with peak SNP 46673334 (chr. 9) and the same SNP was 
significantly associated with the levels of Podx1 (chr. 6, P = 4 
× 103), Fetub (chr. 16, P = 5.5 × 103), Apoc2 (chr. 7, P = 5.9 
× 103), and a number of other proteins. Likewise, a local 
pQTL SNP for Apoa2 was associated with Apoc3 and Itgb3 
levels and an Hq-Q10 local pQTL SNP was associated with 
Apob and Apoe levels (supplemental Table S4).

Clustering of HDL metrics based on quantitation across 
strains
To understand interactions of HDL proteins with each 

other and with other metrics of HDL (ABCA1-specific sterol 

Fig.  1.  The heatmap visualization of the HDL protein abundances across 93 strains. The proteins, their biological functions, and their cel-
lular locations are represented. Logarithmic (base 10) transformation of the yeast normalized data has been performed to accommodate the 
abundance distribution from high (red) to low (blue). White squares represent values that are not available. Both the proteins and the 
strains were clustered using Euclidean distances.
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physiological and functional metrics of HDL (see Fig. 4 and 
supplemental Fig. S4 for yeast and total normalized data, 
respectively). Of the 8,100 total correlations, we have focused 
on 2,216 correlations that are |r| > 0.5 with a Bonferroni-
Holm adjusted P < 0.05, N = 2,216. The correlation and 
P values are presented in supplemental Table S2.
All sterol efflux metrics displayed up to 4-fold differ-

ences across strains (supplemental Fig. S6). The non-
proteome phenotypes clustered together; for example, 
unstimulated sterol efflux from two different cell types, 

Fig.  2.  Representative QTLs for HDL proteins. Loci associated with protein levels of APOA2 (A), APOC2 (B), SAA2 (C), H2-Q10 (D), 
SAA1 (E), and APOC3 (F).

efflux, baseline-diffusion sterol efflux, HDL particle size, 
and HDL-C), we correlated proteins that are present in 
more than 80% of the strains. We then applied hierarchical 
clustering to a matrix that contains all measured pheno-
types. The clustering of the proteome and functional met-
rics revealed the expected patterns (see Fig. 3 for yeast 
normalized data and supplemental Fig. S3 for total normal-
ized data). The complex correlation matrices represented a 
high number of strongly correlated variables, suggesting an 
organized interplay among HDL proteins and between the 
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min.cAMP and min.MF, and stimulated sterol efflux (r = 
0.909, P = 1015), plus.cAMP and plus.MF (r = 0.83, P = 
1015), correlated strongly and were part of the same clus-
ter that is modestly associated with APOA1 (Fig. 3, supple-
mental Table S2). The ABCA1-mediated sterol efflux, delta 
BHK and delta J774, correlated strongly (r = 0.73, P = 1015) 
and formed a cluster along with HDL-C and medium size 
HDL, where the latter two metrics correlated strongly (r = 
0.78, P = 1.82e-12) (Fig. 3, supplemental Table S5).
HDL-C was negatively associated with ABCA1-mediated 

sterol efflux from both BHK and J774 cells (r = 0.58, P = 
0.00036 and r = 0.49, P = 0.03, respectively) and was posi-
tively associated with the diffusional (unstimulated) efflux 

from both cell types (r = 0.62, P = 6.14e-06 for BHK and r = 
0.64, P = 2.04e-05 for J774).
Mice have 85% of their HDL-C distributed in the 

7.6–9.8 nm range (medium size) in a monodispersed peak 
(17); therefore, medium size HDL represents the majority 
of HDL-C. This latter cluster is associated with APOA2 levels 
(Fig. 3). Furthermore, proteins that participate in immune 
responses, including serum amyloids (SAA1 and SAA2) 
and histocompatibility complexes (H2-Q4 and H2-Q10), 
associated strongly and formed a distinct cluster with other 
immune response proteins (CD97, C4BPA, and APOE). 
All of the hemoglobin proteins (HBBA, HBB1, and HBBT1) 
formed a distinct cluster. Lipid metabolism proteins 

Fig.  3.  Hierarchical clustering of the HDL metrics: proteome, sterol efflux, particle concentration and size. Efflux measures for fibroblasts 
are min.MF (unstimulated), plus.MF (ABCA1-upregulated) delta.BHK (ABCA1-specific) and for murine macrophages are min.cAMP 
(unstimulated), plus.cAMP(ABCA-upregulated), and delta.J774(ABCA1-specific). m.hdl.size and l.hdl.size are medium and large HDL 
sizes, respectively. The correlation structure was determined using Pearson correlation. The protein functional groups were curated from 
DAVID, KEGG, PANTHER, and UniProt databases.

TABLE  2.  Local hepatic eQTLs and HDL protein pQTLs

Gene Symbol Gene Location

Local eQTLs Local pQTLs

SNP ID Location P rsID Location P

Antxr1 chr6:87133854-87335775 rs37023898 chr6:87529811 1.81E-04 — — —
Antxr2 chr5:97884688-98030962 rs33642547 chr5:97956955 7.35E-09 — — —
Apoa2 chr1:171225054-171226379 rs46114424 chr1:170988751 1.28E-04 rs8258227 chr1:171225758 1.63E-22
Apoc2 chr7:19671584-19681423 rs32193511 chr7:19542617 2.54E-04 rs32420618 chr7:19571593 7.92E-05
Apoc3 chr9:46232933-46235636 — — — rs48945377 chr9:46673334 5.41E-04
Apoh chr11:108343354-108414396 rs29467866 chr11:107673524 8.33E-16 — — —
Apom chr17:35128997-35132050 rs33061052 chr17:35078160 4.57E-11 — — —
Apon chr10:128254131-128255901 rs29339020 chr10:128283501 2.27E-11 — — —
Arsg chr11:109473374-109573330 rs27052095 chr11:109531899 6.33E-07 — — —
B2m chr2:122147686-122153083 rs27439233 chr2:121957890 1.02E-14 — — —
Clu chr14:65968483-65981548 rs31035575 chr14:66419322 5.69E-04 — — —
Dmkn chr7:30763756-30781066 rs8236440 chr7:30734739 5.42E-04 — — —
Gpld1 chr13:24943152-24990753 rs30001837 chr13:25375000 1.63E-05 — — —
H2-Q10 chr17:35470089-35474563 rs33079924 chr17:35760448 7.03E-54 rs33061052 chr17:35078160 2.99E-07
Itgb1 chr8:128685654-128733200 rs33614001 chr8:128711717 1.73E-04 — — —
Pltp chr2:164839518-164857711 rs27317491 chr2:164014231 5.33E-06 — — —
Pon1 chr6:5168090-5193946 rs30319905 chr6:4188552 9.52E-06 — — —
Saa1 chr7:46740501-46742980 rs32054038 chr7:47248355 4.11E-04 rs3154655 chr7:46985523 1.19E-05
Saa2 chr7:46751833-46754314 rs32054038 chr7:47248355 1.53E-06 rs3154655 chr7:46985523 1.09E-10

Local eQTLs and pQTLs with P < 0.001 are listed along with SNP identifiers and their locations.
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(APOC1, APOA5, APOA4, PLTP, and GPLD1) clustered to-
gether. Most interestingly, APOC3 correlated negatively with 
39 proteins on HDL. Among these were proteins with roles in 
immune response, such as APOE, PON1, SAA1, and SAA4 
(supplemental Table S5). Insulin-like growth factor binding 
protein, IGFALS, clustered strongly but negatively with 
APOC3 (r = 0.53, P = 0.002). Recent studies suggest a role 
for APOC3 in  cell insulin resistance (43) and according 
to proteome interactome by Harmonizome [a tool curated 
from 100 public databases (44)], APOC3 is one of the 73 
proteins found to interact with IGFALS.
We observed significant correlations between HDL-C 

levels and GM94, ITGB1, APOC1, and APOC2 (positive) 
and APOA2, SERPINA1A, ALB, and TFRC (negative) re-
gardless of PSM normalization method used (supplemental 
Table S5). All the New Zealand strains studied (NZB BIN/J, 
NZW LAC/J, and KKHI/J) were in the top quintile of 
HDL-C distribution and the bottom quintile of APOA2 

distribution. The QTL analysis indicated the same genomic 
regions for regulation of APOA2 and HDL-C levels (sup-
plemental Fig. S8). APOA2 seems to be the main genetic 
regulator of plasma HDL-C levels in mice.
Among the HDL proteins, APOD, with high homology 

to carrier proteins, such as lipocalins, and with strong 
innate immune response roles, such as antioxidative (45) 
and neuroprotective effects (46), had the most significant 
correlations with other HDL proteins involved in immune 
response. Twenty of these correlations exhibited |r| > 0.7, 
suggesting that it is a highly interactive apolipoprotein that 
acts as a carrier for other proteins on HDL.
Another way to visualize the relationships among the pro-

teins is to present them as a correlation network (Fig. 5, sup-
plemental Fig. S5). The network consists of multiple layers of 
spatial organization, a core, an outer layer, and the periphery. 
The “core” proteins, including AHSG, NAPSA, plasminogen 
(PLG), SAA4, HBA, APOD, APOJ, APOM, APOH, FGA, and 

Fig.  4.  The relationship between HDL metrics is represented by a correlation matrix. A total of 8,100 correlations were observed, among 
which 2,216 Pearson correlations with Bonferroni-Holm correction having |r| values >0.5 (positive in blue, negative in red) that are P < 0.05 
are presented.
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TFPI, are surrounded by common HDL-associated apoli-
poproteins, such as APOA4, APOA5, APOC1, APOC3, and 
APOC4, in addition to proteins that have been de-
scribed to be associated with HDL in most proteomic stud-
ies (Davidson HDL Proteome Watch, http://homepages.
uc.edu/~davidswm/HDLproteome.html), such as H2-Q4, 
H2-Q10, SELL, ANTRX1/2, PF4 RBP4, SERPINs, GPLD1, 
FGA, and FGB. More peripheral are known associated pro-
teins such as PLTP, PON3, LCAT, APOE, SAA1, and SAA2. 
HDL core proteins formed a tight network, suggesting that 
they are coregulated. Inflammation response and comple-
ment activation proteins, such as SAA1, SAA2, H2-Q4, H2-
Q10, C3, C4b, and C4BPA, were distal to the core coregulatory 
network, suggesting that they are mostly regulated by exter-
nal factors, such as an inflammatory stimulus. The two major 
structural proteins, APOA1 and APOA2, along with APOC3 
were on the outer layers and periphery and are negatively 
correlated with other proteins, suggesting that their presence 
requires the displacement of other proteins.

Genetic regulation of sterol efflux
The sterol efflux capacity was measured in two differ-

ent cell lines (J774 and BHK) in basal (no ABCA1) and stimu-
lated (with ABCA1) conditions, with ABCA1-specific sterol 

efflux calculated by subtracting basal from stimulated. The 
QTL analysis for the efflux traits revealed shared global 
association profiles that are condition specific and in agree-
ment between cell types. The significant QTLs that are 
shared by both cell types are presented in Table 3. The lack 
of strong QTLs that associate with the sterol efflux capacity 
of HDL suggests that either sterol efflux is under limited 
genetic control or its control is multigenic with small effect 
sizes.

Lipid and clinical trait interactions
The HMDP strains have been examined in separate stud-

ies (47) using chow (27), high fat/high sucrose (48, 49), or 
high cholesterol (48) diets. We compared our data with 
results from these studies, reasoning that while power to 
detect correlation will be diminished given that the data 
were collected in separate animals and at different times 
with incomplete overlap of strains, traits significantly im-
pacted by genetics should still retain some correlation 
structure. The most significant correlations between HDL 
proteins and clinical traits are summarized in Table 4 and 
detailed in supplemental Table S6.
A total of 22 HDL proteins significantly and positively 

correlated with lesion area in the hypercholesterolemia 

Fig.  5.  Cytoscape visualization of all the protein-protein interactions presented in Fig. 1. Self-loops were removed and edges were bundled 
for clarity. Node locations are assigned using an edge-weighted spring-embedded layout algorithm using the negative log of the Benjamini-
Hochberg corrected P value, and edge transparency is directly proportional to the same value. Red, negative correlation; blue, positive 
correlation. Shorter distances indicate stronger correlations.
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study (50), among which PLG, the immunoglobin chain C 
region (IGHM), and platelet factor 4 (PF4) were strongest 
(r = 0.469, P = 0.00026; r = 0.461, P = 0.00034; r = 0.37, P = 
0.0049, respectively). We have recently shown that PLG is 
an effective sterol acceptor through ABCA1, and this could 
be the mechanism by which PLG contributes to atheroscle-
rosis (51).
Aligned with the recently identified role of APOC3 in 

insulin resistance, HOMA-IR, plasma insulin levels, body 
weight, and adiposity correlated positively with HDL-associ-
ated APOC3 levels (r = 0.50, P = 0.00017; r = 0.44, P = 0.0015; 
r = 0.23, P = 0.048; r = 0.26, P = 0.021, respectively).

DISCUSSION

We report the analysis of the HDL proteome across a set 
of 93 inbred strains of mice exhibiting common genetic 
variation. The genetic variation across this mouse panel re-
sembles that in human populations, based on the number 
of common SNPs (about four million). Previous studies in 
mice have revealed genetic variations in the levels of HDL-C, 
HDL apolipoproteins, and HDL composition (52). Our re-
sults are consistent with a high level of heritability of HDL 
proteins, including the identification of a number of novel 
pQTLs. One significant conclusion that has emerged  
is that certain proteins cluster together in response to 
genetic perturbations, presumably reflecting physical or 
regulatory interactions. These clusters then help define the 
heterogeneity of HDL particles, although our analyses  
do not address lipid heterogeneity. Another important 
conclusion is evidence of a relationship between protein 

composition and HDL function. Finally, we have identified 
potential links between HDL proteins and various clinical 
or molecular traits studied previously in the HMDP strains. 
We discuss each of these points in turn below.
Normalization of shotgun proteomic data is a continu-

ous struggle in the field (53). HDL is a rather uncompli-
cated mixture containing only 100 proteins. However, its 
proteome is driven by the 10 most abundant proteins, with 
65% being made up of APOA1 and 15% of APOA2 (54). 
The normalization strategy should conserve the composi-
tional bias of the HDL. The normalization that directly ad-
justs scale, such as total count (TC) and upper quartile, 
fails to accommodate compositional bias. The normaliza-
tion strategies that adjust scales using landmarks in the 
distribution [median (Med), differentially expressed 
(DESeq), and trimmed mean (TMM)] are promising 
approaches for the HDL proteome; however, detailed 
analyses need to be performed for their validation to be 
used on smaller libraries of stochastic count data from 
MS. The quartile (Q) and reads per kilobase per million 
mapped (RPKM) (equivalent of normalizing spectral 
counts to protein length) have adverse effects on intra-
sample variance and on distribution bias (55). The TC and 
upper quartile normalizations favor the most abundant 
proteins and are unfriendly for mixtures with a distribution 
bias. That said, TC normalization is often the preferred 
method for shotgun HDL proteomics, as it controls for dif-
ferences in instrument response, digestion efficiency, and 
amounts of loaded protein digest, but fails at conserving 
the distribution bias as it tends to accommodate the 
changes in the abundant proteins (31). That is partly why 
the HDL protein quantification by shotgun proteomics is 

TABLE  3.  The peak QTLs for sterol efflux capacity of HDLs

SNP CHR BP P Beta

Baseline efflux
  rs30557586 3 55764730 4.13E-07 8.19E-01
  rs31424282 3 57945327 1.74E-06 8.38E-01
  rs29379333 10 69242755 6.21E-06 8.73E-01
  rs6333057 12 58206555 5.43E-07 8.76E-01
  rs50224465 12 53464782 8.55E-07 1.07E+00
  rs31810918 15 37462413 2.74E-08 9.80E-01
  rs3718535 16 9212865 1.65E-06 7.18E-01
  rs6284288 18 4398494 8.11E-06 6.97E-01
  rs13483883 20 93699907 5.59E-06 8.40E-01
Stimulated efflux
  rs30557586 3 55764730 6.61E-06 6.68E-01
ABCA1-dependent efflux
  rs31551612 1 171208377 2.75E-06 5.86E-01
  rs45738488 6 67533600 4.43E-06 6.30E-01
  rs31630237 8 118112906 2.04E-07 6.28E-01
  rs26919597 11 68048005 6.78E-06 6.30E-01
  rs46923442 13 5984274 1.40E-07 7.33E-01
  rs47306105 13 6601243 2.27E-06 7.10E-01
  rs51267071 13 6240479 4.24E-06 6.80E-01
  rs46153864 13 6257029 4.24E-06 6.80E-01
  rs50517602 13 6322879 4.24E-06 6.80E-01
  rs49326176 13 6416532 4.24E-06 6.80E-01
  rs47351631 13 6520213 4.24E-06 6.80E-01
  rs46431216 13 6087220 4.48E-06 6.82E-01
  rs6373590 13 6229579 4.48E-06 6.82E-01
  rs37828224 13 8785486 9.10E-06 6.93E-01
  rs36839806 19 57424289 8.34E-07 7.01E-01

The peak phenotypic QTL locus with P < 106 are listed along with SNP identifiers and their locations.
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not optimal and the correlation with immunobased assays 
is moderate (56). Therefore, we opted to include a second 
normalization approach by spiking yeast carboxypeptidase 
at levels 8-fold lower than APOA1 and to correspond to 
the median/mean abundance of the typical HDL proteome 
(39, 40). The QTLs identified using both proteomic infor-
mation (stemming from two distinct normalization meth-
ods) are mostly overlapping with TC normalization, resulting 
in 30% more significant QTLs.
The relationships among inbred lines of mice were in-

ferred from the high-density SNP map where strains cluster 
according to their genealogy (57). We employed the same 
approach: the 155 proteins that were present in at least 
20% of the strains loosely predicted the relatedness of the 
strains according to their genealogy for inbred strains and 
according to the breeding scheme for recombinant strains. 
Almost half of these proteins (81 proteins) were present in 
greater than 80% of the strains and only 34 were shared by 
all the strains. The strain-dependent distribution of the 
HDL proteome across 93 strains validates our previous 
studies with only five strains (17). However, the compari-
son of the clustering patterns between microarray data or 
the SNPs did not reach full agreement, as genetic variation 
explains only a fraction of the variation, and a very small 
part of the genome is involved in regulating HDL (data not 
shown). The 93 strains are represented by N = 1–5 with a 
distribution of 4, 9, 75, 9, and 1% for N = 1, 2, 3, 4, and 5, 
respectively. Even though these numbers are not optimal 

to calculate intra- and inter-strain variation, the broad 
sense heritability calculations captured 65 proteins that 
have greater than 10% heritability; among which, APOA2 
has a score of 0.62, which is consistent with its strong asso-
ciation with HDL-C loci, a highly heritable trait.
The high-level heritability of the proteins is demonstrated 

by >20,000 pQTL-associated SNPs that map to >66 loci. To 
understand whether a pQTL results from structural or regu-
latory variation, we have incorporated gene expression in-
formation. A positive finding in such analysis suggests that 
the genotype-dependent differential gene expression is the 
basis of most of the association (58). In our studies, we used 
adipose and liver tissue global gene expression profiles to 
map distinct loci in liver (5) and adipose tissue (20) that are 
associated with the gene expression levels for the SNPs as-
sociated with pQTLs. Adipose tissue exhibited only inflam-
matory gene-associated SNPs (Saa1, Saa2, Tfrc, and Vtn) 
that were almost exclusively trans-acting. Liver tissue had 
cis and trans eQTLs associated with multiple genes, includ-
ing Apoc4, Apoh, Fgb, Tfrc, and Saa2. The complex regulation 
at the protein and gene expression level dictates the pro-
tein composition of HDL and its hereditary preservation.
Correlation networks, such as weighted gene coexpres-

sion network analysis, are a systems biology method for 
describing the correlation patterns among genes. The 
weighted correlation network analysis revealed that core 
HDL proteins, composed of most common apolipoproteins, 
are highly correlated and coregulated. The coregulated 

TABLE  4.  Correlations between HDL proteins and clinical traits measured within HMDP

Trait 1 Trait 2 Bicor Value P

Apoc3 HOMA-IR (pre-bleed) 0.50 0.0001
Apoc1 Liver collagen 0.49 0.0011
Ttr Liver residual 0.49 6.67E-06
Ihh Insulin (pre-bleed) 0.47 0.0005
Plg Lesion area 0.46 0.0002
Ighm Lesion area 0.46 0.0003
Gm5938 Lesion area 0.45 0.0004
Apoc3 Insulin (pre-bleed) 0.44 0.0015
Ihh HOMA-IR (pre-bleed) 0.44 0.0012
Apoc2 Kidney (left) 0.43 0.0001
Gc Unesterified cholesterol 0.43 0.0002
Obp1a Lesion area 0.42 0.0012
Alb Liver residual 0.38 0.0006
Mup4 RBC 0.38 0.0007
Apoc3 Triglycerides (pre-bleed) 0.38 0.0009
Mup4 HGB 0.36 0.0014
Gc VLDL + LDL 0.36 0.0016
Gc Total cholesterol 0.35 0.0017
Apoc2 PLT 0.34 0.0025
Pon3 Free fluid 0.41 0.0002
Acta2 HOMA-IR 0.40 0.0003
Apoh MONO 0.37 0.0011
Ihh Free fluid 0.36 0.0014
Fetub MCV 0.35 0.0020
Scgb2b7 Adiposity 0.35 0.0024
Acta2 Insulin 0.34 0.0024
Apoa1 Average fat mass (liver) 0.34 0.0025
Psap GRAN percent 0.34 0.0026
Apoa5 WBC time 0.34 0.0027
Acta2 Insulin 0.34 0.0024
Psap GRAN percent 0.34 0.0026
Antxr1 GRAN percent 0.34 0.0027
Gc Triglycerides (liver) 0.34 0.0040
Ighm Free fatty acids (pre-bleed) 0.34 0.0035
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gene network is consistent with HDL’s role in innate im-
munity and lipid metabolism, as it reveals a tight network 
of coregulation among the proteins with primary roles in 
immunity and lipid metabolism. The histocompatibility 
protein isoforms, such as H2-Q4 and H2-Q10, which have 
been shown to be associated with mouse HDL in multiple 
studies (17, 59, 60), are part of the core coregulated pro-
teins. In mice, histocompatibility proteins play a role in 
innate immunity by antigen presenting via major histocom-
patibility complex class 1. H2-Q10 is the only murine major 
histocompatibility complex class 1 protein found in the 
serum in appreciable concentrations (61). While these in-
nate immune proteins with roles in antigen presentation 
are part of the core coregulation network, acute phase pro-
teins, such SAA1 and SAA2, are not, as they are primarily 
regulated by an inflammatory stimulus.
While up to 50% of the HDL-C level can be heritable, 

less is known about heritability of its sterol efflux function 
or its proteome (62, 63). The sterol efflux capacity of HDL 
seems to be regulated by a multigenic architecture with a 
small effect size. The loci captured using 93 strains of mice 
have moderate P values and small effect sizes. In a human 
cohort of 846 individuals, Villard et al. (64) tested seven 
preselected SNPs with known effects in HDL metabolism, 
such as ABCA1, CETP, APOA1, and APOA2. The seven 
SNPs tested accounted together for approximately 6% of 
total plasma efflux capacity, supporting our findings of 
moderate strength QTLs.
The classic linear view of HDL genesis from discoidal 

lipid-poor nascent particles to spherical cholesterol- and 
phospholipid-rich particles packed with a combination of 
over 100 different proteins has been recently challenged by 
the finding that HDL is secreted directly from hepatocytes 
in four distinct sizes, with little interchange between them, 
and representing all of the plasma HDL subparticle pools 
(62). Although our analyses do not incorporate the lipi-
dome of HDL, which can contribute to the orchestration of 
the composition of HDL subpopulations, a highly intercor-
related proteome reveals the complexity of HDL particle 
composition. We captured a remarkable 2,216 correlations 
among the proteins that survived multiple comparison 
correction, and that explains at least 25% of the variation 
(R2 > 0.25). The hierarchical clustering of the correlated 
proteins regrouped the proteins according to their biological 
functions, emphasizing the coordinated coregulation. The 
protein-protein interaction modeling identified layers 
of protein groups that are likely to be coregulated (Fig. 5) 
and that shape the HDL subparticle protein cargo. In our 
model, the most abundant structural proteins, APOA1, 
APOA2, and APOC3, correlate negatively with other pro-
tein groups, which suggests that these proteins regulate the 
HDL’s particle proteome. The immune response and com-
plement cascade proteins (SAA1, SAA2, H2-Q10, C3, etc.) 
represented a group of proteins that are unlikely to be co-
regulated with weaker interactions with the core proteins, 
suggesting that these pathways are mostly regulated by in-
flammatory stimuli rather than genetic coordination.

In our studies, we applied a stringent statistical approach 
that led to dismissal of certain biological relationships. For 

example, APOC3 significantly and exclusively negatively 
correlated with 36 other HDL proteins (supplemental  
Table S2). In humans, increased circulating APOC3 levels 
are associated with cardiovascular disorders, inflammation, 
and insulin resistance (64, 65). On the other hand, hu-
mans with an APOC3 mutation benefit from a favorable 
lipoprotein profile, increased insulin sensitivity, lower inci-
dence of hypertension, and protection against cardiovascu-
lar diseases (68–70). The negative correlation of APOC3 
with 36 other proteins and its association with plasma insu-
lin levels and HOMA-IR levels conforms to its newly appre-
ciated role as a brake on the metabolic system. Efforts to 
identify the proteomic, lipidomic, and functional finger-
prints of HDL subspecies are of critical importance and 
may open paths to novel pharmacological targets.

Clinical and epidemiological studies show a robust in-
verse association between HDL-C levels and coronary 
heart disease risk (2, 71). However, pharmacological in-
terventions aimed at raising HDL-C levels in humans 
showed no cardiovascular benefits (72–75). Since the col-
lapse of the HDL-C hypothesis for atherosclerosis, a new 
generation of HDL metrics are under investigation to 
be used in the clinic (76). For example, greater HDL-C 
efflux capacity, independent of levels of HDL-C and 
APOA1 (the major structural protein of HDL), is associ-
ated with a lower prevalence of atherosclerotic vascular 
disease (9, 10, 77). Most changes in HDL function are 
likely to be a reflection of changes in the HDL proteome 
(31, 78). Thus, identification of the protein signature re-
sponsible for the loss of sterol efflux capacity could pro-
vide biomarkers of clinical validity to assess coronary 
heart disease risk. The interplay between HDL sterol  
efflux function, particle concentration and size, and the 
HDL proteome is still poorly understood. HDL-C levels 
correlated strongly with all the efflux measures. While we 
captured strong associations between expected metrics 
such as diffusional or ABCA1-specific efflux from two dif-
ferent cell types, no single HDL protein explained the 
majority of the variation in sterol efflux, suggesting that 
it is a polygenic process. That said, APOA2 explained 
about 10% of ABCA1-dependent sterol efflux from both 
cell types and the Apoa2 locus was strongly associated 
with ABCA1-specific sterol efflux (data not shown). In 
mice, APOA2 seems to impact the sterol efflux function 
at the protein and gene level. It is important to note that 
the Apoa2 locus aligns with the HDL-C QTL.
In summary, a systems biology approach reveals the highly 

complex and intercorrelated nature of HDL protein compo-
sition, its heritable contributions to HDL cholesterol levels, 
and its association with disease. We show that HDL pro-
teins preserve hereditary patterns that are likely to harbor 
ancestral/lineage information. It is likely that inheritance 
controls the production of HDL particles of a certain pro-
tein and lipid composition that have different functions. 
At present, we lack a model for the assembly of HDL pro-
tein and lipid cargo. Our results provide the ground work 
to support future studies aimed at characterization of the 
genetic architecture regulating HDL function and compre-
hensive composition in humans.
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