
UC San Diego
UC San Diego Previously Published Works

Title
Motivational context and neurocomputation of stop expectation moderate early 
attention responses supporting proactive inhibitory control

Permalink
https://escholarship.org/uc/item/8mv3k4xs

Authors
Gupta, Resh S
Simmons, Alan N
Dugas, Nathalie N
et al.

Publication Date
2024

DOI
10.3389/fnhum.2024.1357868

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8mv3k4xs
https://escholarship.org/uc/item/8mv3k4xs#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


TYPE Original Research
PUBLISHED 02 April 2024
DOI 10.3389/fnhum.2024.1357868

OPEN ACCESS

EDITED BY

Giovanni Mento,
University of Padua, Italy

REVIEWED BY

Francisco Barceló,
University of the Balearic Islands, Spain
Vincenza Tarantino,
University of Palermo, Italy

*CORRESPONDENCE

Resh S. Gupta
rsgupta@wustl.edu

†These authors have contributed equally to
this work and share senior authorship

RECEIVED 18 December 2023
ACCEPTED 18 March 2024
PUBLISHED 02 April 2024

CITATION

Gupta RS, Simmons AN, Dugas NN, Stout DM
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Motivational context and
neurocomputation of stop
expectation moderate early
attention responses supporting
proactive inhibitory control

Resh S. Gupta1*, Alan N. Simmons2,3, Nathalie N. Dugas3,
Daniel M. Stout2,3† and Katia M. Harlé2,3†

1Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO,
United States, 2Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System,
San Diego, CA, United States, 3Department of Psychiatry, University of California, San Diego, La Jolla,
CA, United States

Alterations in attention to cues signaling the need for inhibitory control play
a significant role in a wide range of psychopathology. However, the degree
to which motivational and attentional factors shape the neurocomputations
of proactive inhibitory control remains poorly understood. The present study
investigated how variation inmonetary incentive valence and stakemodulate the
neurocomputational signatures of proactive inhibitory control. Adults (N = 46)
completed a Stop-Signal Task (SST) with concurrent EEG recording under
four conditions associated with stop performance feedback: low and high
punishment (following unsuccessful stops) and low and high reward (following
successful stops). A Bayesian learning model was used to infer individual’s
probabilistic expectations of the need to stop on each trial: P(stop). Linear mixed
e�ectsmodels were used to examinewhether interactions betweenmotivational
valence, stake, and P(stop) parameters predicted P1 and N1 attention-related
event-related potentials (ERPs) time-locked to the go-onset stimulus. We found
that P1 amplitudes increased at higher levels of P(stop) in punished but not
rewarded conditions, although P1 amplitude di�erences between punished
and rewarded blocks were maximal on trials when the need to inhibit was
least expected. N1 amplitudes were positively related to P(stop) in the high
punishment condition (low N1 amplitude), but negatively related to P(stop)
in the high reward condition (high N1 amplitude). Critically, high P(stop)-
related N1 amplitude to the go-stimulus predicted behavioral stop success
during the high reward block, providing evidence for the role of motivationally
relevant context and inhibitory control expectations in modulating the proactive
allocation of attentional resources that a�ect inhibitory control. These findings
provide novel insights into the neurocomputational mechanisms underlying
proactive inhibitory control under valence-dependent motivational contexts,
setting the stage for developing motivation-based interventions that boost
inhibitory control.

KEYWORDS

attention, inhibitory control, motivation, proactive control, stop signal task, reward,

punishment, event-related potentials
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1 Introduction

Abnormalities in inhibitory control are present across a

wide range of psychopathology (Robbins et al., 2012; American

Psychiatric Association, 2013), including substance use and

addictive disorders (Smith et al., 2014), obsessive-compulsive

disorder (Mancini et al., 2018), autism spectrum disorder (Schmitt

et al., 2018), anorexia nervosa (Bartholdy et al., 2017), and

schizophrenia (Zandbelt et al., 2011). Notably, these deficits

often predict worsening of psychiatric symptoms and generally

poorer clinical outcomes, including increased rates of intrusive

maladaptive thoughts (Craske et al., 2008; Aupperle et al., 2012),

self-harm, substance abuse, and other risky behaviors (Robbins

et al., 2012; American Psychiatric Association, 2013), underscoring

the need to understand the neural mechanisms and factors that

modulate inhibitory control success.

One promising target for modulation is proactive inhibitory

control, or the adaptive preparatory process that regulates the

potential of inhibition success in the near future (Van Den

Wildenberg et al., 2022). Indeed, this aspect of inhibitory

control optimizes inhibitory performance by maintaining learned,

top-down goal-relevant information; this can, in turn, guide

early attention and action processes rather than relying on a

reactive remediation process to abort the implementation of

an unwanted automatic response (Braver, 2012). Importantly,

motivational factors can influence inhibitory performance goals

by directly modulating attentional mechanisms deployed to

process inhibitory context and detect cues signaling the need

for inhibition (Meyer and Bucci, 2016). Yet, the degree to

which proactive inhibitory control mechanisms are modulated by

motivational factors (e.g., reward, punishment) remains poorly

understood. Recent behavioral studies have shown that reward

motivation can improve inhibitory control processes (Chiew and

Braver, 2014; Herrera et al., 2014, 2019; Giuffrida et al., 2023),

and, in line with modulation of proactive inhibitory control,

reward incentives can enhance transient neural responses of early

attention to go stimuli prior to inhibitory cues (Schevernels

et al., 2015; Langford et al., 2016). However, these studies

did not examine the impact of motivation on the predictive

neurocognitive processes supporting inhibitory performance. For

instance, does motivational context bias learning and prediction of

inhibitory actions and/or early attention independently, or do both

motivational context and prediction of the need to inhibit interact

to modulate early attention?

Computational cognitive models have proven increasingly

useful to answer these types of questions by providing detailed

mechanistic insights into complex cognition, such as learning-

based executive processes (Botvinick and Cohen, 2014), and how

these mechanisms are, in turn, impacted by affect, motivation, or

psychopathology (Huys et al., 2016). Inhibitory control, learning,

and prediction of inhibitory response needs have been well

captured by the Dynamic Belief Model (DBM) (Yu and Cohen,

2008), a Bayesian-inference learning model applied to the stop-

signal task (SST). The SST is a speeded choice reaction task in

which one must respond to “go” stimuli and occasionally receive

a stop signal (e.g., auditory tone) that cues them to withhold

their response (Logan and Cowan, 1984). Using the formalism

of probability distributions to represent expectations, the DBM

model assumes that individuals dynamically update their beliefs

about the likelihood of encountering a “stop” signal on a given

trial (i.e., the “need to stop”) based on the cumulative history of

trial type outcomes. This model further assumes that individuals

adjust their behavior as a function of these expectations, specifically

being more cautious and slowing down “go” reaction times when

expectation of a stop signal is high. Thus, the DBM model

offers a powerful quantitative account of proactive anticipatory

processes supporting inhibitory performance by isolating dynamic

predictions pertaining to inhibitory performance.

This Bayesian inference account of inhibitory control

performance is aligned with predictive coding theory (Rao and

Ballard, 1999) and the free energy principle (Friston, 2005, 2009)

according to which any self-organizing system must minimize its

free energy, i.e., unresolved uncertainty about its environment in

order to maintain equilibrium and preserve its integrity (Friston,

2005). Within this hierarchical predictive coding framework, prior

expectations about an upcoming stimulus, which we model here

with DBM, act as top-down signals that are combined with sensory

evidence via Bayes inference principles to minimize prediction

error and improve active prediction of the bottom-up input. DBM

modeling has the additional advantage of explaining behavioral

adjustments to contextual manipulations (e.g., reward/punishment

contingencies associated with performance, fluctuations in true

stop signal frequency) (Shenoy and Yu, 2011). For instance,

previous work has shown that DBM outperforms standard error-

correction models (e.g., Rescorla-Wagner) to capture individuals’

reward-based decisions (Harlé et al., 2015b, 2017), with both

higher negative and lower positive affect relating to increased

model-based expectation of reward volatility and reduced reward

maximization (Harlé et al., 2017). Therefore, DBM is well suited

to assess how motivational context impacts individuals’ subjective

expectations of the need to inhibit an automatic response and

whether these anticipatory processes interact to shape proactive

control of attention.

Prior neural investigation of DBM-based stop expectations

have mostly relied on fMRI, with evidence of expectation-weighted

activation to Go stimulus onset within the superior, medial inferior

frontal regions, and the inferior parietal lobule, as well as in

some studies within the parahippocampal and occipital cortex (Ide

et al., 2013; Harlé et al., 2014, 2016, 2019; Hu et al., 2015a,b,

2016). However, the pace of the SST paradigm and the limited

temporal resolution of fMRI can make it difficult to gage how tonic,

top-down anticipatory predictions (more likely to be effectively

captured by fMRI) modulate phasic responses during early sensory

processing stages of the Go stimulus (e.g., bottom-up visual

association cortices). To address this caveat and capitalize on

the precision of trial-level model-based predictions, event-related

potentials (ERPs) derived from the electroencephalogram (EEG)

are a critical tool to measure early attention deployment. ERPs

provide the temporal resolution necessary to identify proactive

neural responses and transient modulations of attention preceding

stop signals and prior to the implementation of response inhibition

(Schevernels et al., 2015). Within the hierarchical Bayesian brain

framework highlighted above (Friston, 2005, 2009), we predict

that DBM-based expectations would exert top-down control on
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sensory processing areas such as the visual association cortices, as

observed in some fMRI studies of DBM modulation in the SST

(Hu et al., 2015b, 2016). The P1 and N1 visual ERP components

are particularly well-suited for examining proactive allocation

of attention supporting inhibitory control. The P1 and N1

components are generated in the extrastriate cortex, are modulated

by attention, and are thought to reflect “gain control” of sensory

processing (Luck et al., 2000; Finnigan et al., 2011). In cognitive

paradigms, the P1 may reflect cognitive modulation processes,

such as engagement in attention necessary for successful cognitive

modulation of sensory processing (Kaiser et al., 2020). Additionally,

N1 amplitudes are larger in a stop signal context compared to

an ignore signal context, demonstrating that processing of the go

stimulus is influenced by anticipation of a stop signal (Elchlepp

et al., 2016). Similarly, being prepared to stop results in enhanced

attention for relevant visual signals, reflected in an increased target-

evoked visual N1 (Liebrand et al., 2017).

Thus, in this study, we investigated the role of expectation

and motivation on neural measures of proactive inhibitory control.

We used a motivated SST with concurrent EEG recording, in

which participants are presented with, in separate blocks, specific

types of feedback based on the ability to withhold their response

to the stop-signal stimulus. Each block was associated with a

unique motivational context, with low and high levels of monetary

reward (for successful stops) and punishment (for unsuccessful

stops). Our aims were threefold. First, we sought to assess

whether motivational context associated with stop performance in

the SST modulates (a) predictive neurocomputational processes

supporting proactive inhibitory control, and/or (b) early attention

processes in anticipation of inhibitory cues. Second, we examined

whether inhibitory predictions influence early attentional P1/N1

responses independently or as a function of motivational context.

Third, we investigated whether interactions between motivational

contexts, inhibitory predictions, and early attentional P1/N1

predict inhibitory control success.

2 Materials and methods

2.1 Participants and procedure

Healthy adults from the community were recruited through

ads and flyers posted around the University of California San

Diego campus, as well as through ResearchMatch. Adults had to

be between 18–55 years old and have normal or corrected vision

and hearing to be included in the study. Participants were excluded

based on report of past or current severe mental illness (i.e., mania,

psychosis, severe substance use disorder).

Forty-nine participants completed the motivated SST with

concurrent EEG recording under conditions of high punishment

(HP), high reward (HR), low punishment (LP), and low reward

(LR) (see Figure 1). Data from 46 participants (25 females) was

analyzed, including 34 participants retaining all 4 conditions and

12 participants missing 1–3 conditions (HP: 91.30% retained; HR:

91.30% retained; LP: 84.78% retained; LR: 91.30% retained). Three

subjects were dropped from the analyses due to noisy EEG data in

all four SST conditions. Participants’ mean age was 28.76 years (SD

= 10.81). In terms of ethnicity, 13.04% were Hispanic/Latino, and

in terms of race, 32.61% were Asian, 13.04% were Black/African

American, 41.30% were White/Caucasian, 10.87% were more than

one race, and 2.17% were unknown/not reported.

2.1.1 Ethics statement
All participants provided written informed consent and

received monetary compensation for their participation. The

study was approved by the University of California San Diego

Institutional Review Board.

2.2 Measures

2.2.1 Motivated stop-signal task

A motivated SST with simultaneous EEG recording was used

to assess how high and low levels of monetary reward and

punishment modulate ERPs associated with proactive allocation of

attention supporting inhibitory control (see Figure 1). Participants

completed, in randomized order, 4 SST blocks of 288 trials each

with 1 block for each of the following conditions: HR (+$0.25 per

successful stop), LR (+$0.05 per successful stop), LP (–$0.05 per

unsuccessful stop), and HP (–$0.25 per unsuccessful stop). In all

blocks, a go-onset stimulus (i.e., arrow) was presented for 1,200ms,

and participants were required to press a button to indicate the

arrow direction as quickly as possible. On 25% of trials (n =

72), an auditory stop signal (500ms duration) presented shortly

after the arrow indicated that participants should withhold their

button press to the arrow. Subsequently, a stop feedback screen

was presented for 600ms reflecting the monetary gain or loss

depending on the condition. Trial type order (go vs. stop trial) was

randomized based on the fixed 75%/25% non-stop vs. stop trial

contingency. Half of the trials had left-pointing arrows and half

had right-pointing arrows, which appeared in randomized order.

A 400ms inter-stimulus interval (ISI) was included between the

end of feedback presentation and next Go stimulus onset. The

task used a staircase adaptive procedure, with task difficulty (i.e.,

stop signal delays/SSD) being adjusted in 50ms up- or downward

increments based on tracked performance to target a 50% stop error

rate (Verbruggen et al., 2019). SSD was initialized at 500ms with

minimum and maximum boundaries set at 50ms and 1,200ms,

respectively. Participants first completed a practice block and were

required to meet 80% button press accuracy to receive earnings

for a given block. In addition to their standard participation fee,

all participants were paid in cash up to $25 based on their actual

earnings in all SST conditions (not including the practice block)

and were explicitly told this would be the case at the start of the

experimental session.

2.3 Data analyses

2.3.1 EEG data collection and processing
EEG was recorded continuously using Brain Vision Recorder

(Brain Products GmbH, Gilching, Germany), actiCHamp Plus

(Brain Products GmbH, Gilching, Germany), and a 64-channel

actiCAP (Brain Products GmbH, Gilching, Germany) with a
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FIGURE 1

Schematic of the motivated SST. Participants completed 4 blocks of 288 trials each with 1 block for each of the following conditions: high reward
(+$0.25 per successful stop), low reward (+$0.05 per successful stop), low punishment (–$0.05 per unsuccessful stop), and high punishment (–$0.25
per unsuccessful stop). In all blocks, a go-onset stimulus (i.e., arrow) was presented for 1,200ms, and participants were required to press a button to
indicate the arrow direction as quickly as possible. On 25% of trials, an auditory stop signal (500ms duration) presented shortly after the arrow
indicated that participants should withhold their button press to the arrow. Subsequently, a stop feedback screen was presented for 600ms reflecting
the monetary gain or loss depending on the condition. Figure created using BioRender.com.

sampling rate of 500Hz and referenced to the left mastoid. Vertical

eye movements were recorded using electrooculogram (EOG)

electrodes placed above and below the left eye, and horizontal eye

movements were recorded using EOG electrodes placed near the

outer canthus of each eye. Impedance of all channels was kept

below 30 kΩ . Data were processed using Brain Vision Analyzer

(Brain Products GmbH, Germany). Data were first filtered between

0.1 and 30Hz via zero-phase shift band-pass (IIR Butterworth)

filters. Raw data inspection was performed on the continuous EEG

data to identify and mark artifacts. Ocular artifacts were corrected

using the regression method (Gratton et al., 1983). Data were

subsequently re-referenced offline to the average of the left and

right mastoids. Topographic interpolation by spherical splines was

performed on channels where >30% of trials were bad. Within

all blocks (HP, HR, LP, LR), data were segmented from −200ms

before to 800ms after go onset stimulus presentation. Artifact

rejection was completed using automatic inspection, individual

channel mode, and the following criteria: Maximal allowed voltage

step: 50 µV/ms; Maximal allowed difference of values in intervals:

80 µV. Segments were baseline corrected using a window of −200

to 0 ms.

Primary ERP analyses focused on P1 and N1 amplitudes

elicited by the go-onset stimulus at the level of single trials.

P1 and N1 amplitudes were examined at electrodes PO7 and

PO8 based on methods used in a rewarded stop-signal task ERP

study (Schevernels et al., 2015). Subsequently, we used a collapsed

localizer approach at electrodes PO7 and PO8 to identify time-

windows for each component (Luck and Gaspelin, 2017). A 90–

120ms search window at electrodes PO7 and PO8 was used to

identify P1 peaks in each trial, and a 130–180ms search window

at PO7 and PO8 was used to identify N1 peaks in each trial. The

mean amplitude around the peaks at PO7 and PO8 were extracted

(−24ms before to 24ms after the peak) for each trial, averaged to

form a combined PO7/PO8 peak for each trial, and entered into

model-based analysis described below.

2.3.2 Computational modeling
As in previous work (Harlé et al., 2014, 2020), we used a

dynamic Bayesian model (DBM) to estimate the prior expectation

of encountering a stop signal on each upcoming trial, based on

prior trial type history. This trial-level expectation is in turn used

to adjust Go stimulus response times based on the likelihood of

the need to stop this response. According to this model, individuals

believe that stop signal frequency rk on trial k has probability α of

being the same as rk−1, and probability (1 – α) of being re-sampled

from a fixed prior beta distribution p0(rk). Probability of a trial

not having a stop signal (i.e., a “Go” trial) is assumed to be 1 – rk.

Specifically, given the previous posterior distribution p(rk−1 | Sk−1)

on trial k−1, where Sk−1 is a vector from s1 to sk−1, representing all
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past trial outcomes up to k-1, the iterative prior distribution of stop

signal frequency on trial k is given by:

p(rk | Sk−1) = α p( rk−1

∣

∣ S k−1

)

+ (1− α) p0(rk)

The prior distribution p0(rk) is assumed to be a beta

distribution Beta(a,b), reparametrized with prior mean m =

a/(a+b) and scale parameter s = (a+b). The new posterior

distribution is then computed from the prior distribution and the

observed outcome according to the Bayes’ rule:

p(rk | Sk) ∝ P(sk | rk) p(rk | Sk−1)

The predicted probability that trial k is a stop trial, i.e.,

“P(stop),” can be expressed as P(sk = 1|Sk−1), which is the mean

of the predictive distribution p(rk | Sk−1):

p(sk = 1| Sk−1) =

∫

P (sk = 1 | rk)p (rk | Sk−1)drk

=

∫

rkp (rk | Sk−1)drk = 〈 rk | Sk−1〉

Based on the model assumption of a positive linear relationship

between expectation of a stop signal and Go stimulus reaction

times (RTs), best fit parameters (α, m, s), and associated P(stop)

sequence for each trial were estimated by maximizing the robust

linear regression fit (R2) of P(stop) and all non-omission Go RT for

each condition block of each participant (search spaces tested: α =

[0.25, 0.26,. . . , 1.00],m= [0.01, 0.02,. . . , 0.99], s= [2, 4, . . . , 20]).

2.3.3 Statistical analyses
Individual-level behavioral measures (e.g., SSRT; see Harlé

et al., 2014; Berner et al., 2023 for computation) and best fit DBM

model parameters were compared across motivation conditions

with linear mixed-effect models (LME), testing main effects and

interaction of condition valence (reward vs. punishment) and stake

(low vs. high), treating subject as a random factor. To examine

the impact of motivation on the modulation of reaction times

by P(stop), we applied a LME to participants’ Go RTs during

non-stop trials, treating subject as a random factor and condition

valence, stake, and trial-level P(stop) as fixed effects. A generalized

LME with a logit link function was applied to binary stop error

performance (0 = no button press; 1 = failed inhibition of button

press) with the same predictor structure was used to investigate

modulation of stop performance. Finally, two similar LMEs tested

the main effects and interactions of condition valence (reward

vs. punishment), condition stake (low vs. high), and trial-wise

P(stop) on participants’ trial-level standardized peak amplitude

of parietal/occipital P1 and N1 ERPs, respectively (see above for

ERP description). To ensure results from these analyses would

not be confounded by stop signal processing related activity, trials

with SSD ≤ 150ms (n = 287 trials, 0.6% of total number of

trials) were removed from LMEs involving trial-level ERP data.

For binary dependent variables (e.g., trial-level stop and go error

data), we applied a binomial distribution and logit link function

in generalized LME analyses. To gage whether the modulating

effects of incentive motivation on the neural markers of proactive

control further extended to inhibitory performance, we included

in two separate LMEs, trial-level P1 and N1 peak amplitude,

respectively, as a 4th predictor of stop error in addition to

motivation valence, stake, and P(stop). We only highlight here

significant effects and interactions involving P1 or N1 amplitude

[see above for effects of P(stop) and its interaction with condition].

All mixed-linear model analyses were estimated within a Bayesian

framework (Wagenmakers et al., 2018; Keysers et al., 2020),

using the Rstan based package brms (Bürkner, 2017). Uniform

Beta(1,1) were specified for model coefficient priors. Posterior

median and median absolute deviation (MAD)-based 95% high-

density/credible intervals (HDI) were used to provide a robust

estimate of each model parameter.

3 Results

3.1 Impact of motivation on behavior and
model parameters

3.1.1 Model parameters
There were no credible effects or interactions of incentive

valence and stake on individual-level model parameters, including

α and fixed prior parameters m and s (95% HDI included 0; see

Table 1). Thus, motivational context did not significantly impact

individuals’ perceived stability of the stop signal rate, nor did

it influence initial (i.e., first trial) expectations about stop signal

frequency (fixed prior mean; see Methods).

3.1.2 Go reaction times
A main effect of condition stake, but not valence, on Go RT

was observed (β = 0.028, 95% HDI = [0.019, 0.036], 99.9% of

posterior > 0), pointing to slower Go RTs in high relative to low

stake (see Table 1 for condition-specific mean RT as well as Go

accuracy, which did not differ as a function of condition). As

predicted by DBM, a positive linear relationship between Go RTs

and P(stop) was observed independently of motivation condition

(β = 0.083; 95% HDI = [0.074, 0.091], 99.9% of posterior >

0; See Supplementary Figure S1). Importantly, these effects were

qualified by a credible P(stop) × stake interaction (β = −0.022;

95% HDI = [−0.031, −0.014], 99.0% of posterior > 0), consistent

with a stronger positive linear relationship between RT and P(stop)

in low stake relative to high stake incentives. As can be seen in

Figure 2, reaction time differences were most apparent for lower

P(stop) values. No other credible main effect nor interactions

were observed.

3.1.3 Stop performance
Individuals’ stop signal reaction times (SSRTs) differed based

on condition valence. Specifically, longer SSRTs were observed in

the punishment conditions (M = 312ms) relative to the reward

conditions (M = 299ms; β = 0.14, 95% HDI = [0.01, 0.29], 97.7%

of posterior > 0; see Table 1). Neither condition valence nor stake

significantly directly predicted stop error (see Table 1 for error rates

within each condition). Participants had a lower likelihood of error

on trials with higher P(stop) values (odd ratio = 0.95; 95% HDI

= [0.921, 0.985], 99.7% of posterior < 0), in line with our model’s
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TABLE 1 Behavioral performance by motivation condition.

Low reward High reward Low punishment High punishment Significant condition di�erences

DBM α 0.95± 0.09 0.94± 0.10 0.94± 0.15 0.92± 0.16 n.c.a

DBM prior mean 0.33± 0.35 0.32± 0.36 0.28± 0.34 0.37± 0.40 n.c.a

DBM prior scale 14.26± 7.72 13.87± 7.59 15.91± 6.35 15.17± 7.04 n.c.

Mean Go RT (ms) 943± 188 954± 182 944± 187 953± 180 High>Low∗

Go Success (%) 96.4± 18.7 96.8± 17.6 96.7± 17.8 96.7± 17.7 n.c.b

Stop Success (%) 54.2± 49.8 53.6± 49.9 53.9± 49.9 52.8± 49.9 n.c.b

SSRT (ms) 297± 56 300± 56 311± 41 312± 52 Punishment > Reward∗

Values displayed are condition-level mean± SD (N = 46); DBM,Dynamic BeliefModel; SSRT, Stop Signal Reaction Time; aBoxCox transformationwas applied given non-normal distribution of

this parameter; bdata analyzed with a generalized linear mixed effect (LME) with a binomial distribution applied to trial-level binary data and logit link function; n.c. indicates condition-related

contrast not a credible effect (95% HDI included 0); ∗indicate a credible effect or interaction of condition valence and/or stake (95% HDI does not include 0); HDI, High Density Interval.

assumption that slowing down when stop expectation are higher

helps improve stop accuracy.

3.2 Modulation of ERP peak amplitude by
motivation and model-based stop
expectations

3.2.1 Modulation of P1 amplitude
A Bayesian LME model applied to standardized trial-level P1

peak amplitude revealed a significant main effect of condition

valence (β = 0.008; 95% HDI = [0.001, 0.016], 97.8% of posterior

> 0). This effect was qualified by a statistically significant P(stop)

× valence interaction (β = −0.010; 95% HDI = [−0.018, −0.003],

99.4% of posterior < 0). Upon further examination P(stop) linear

trends in each condition, P(stop) was positively related to P1

amplitude in punishment (β = 0.018; 95% HDI = [0.006, 0.030],

99.8% of posterior > 0) but not in reward conditions (β = −0.001;

95% HDI= [−0.011, 0.010], 51.1% of posterior< 0); see Figure 3A

and see Figure 3B for average ERP timeseries as a function of

condition and P(stop) level. For visualization purposes, we plotted

average ERP timeseries as a function of motivation valence and

P(stop) categories, i.e., low: P(stop)< 0.23, medium: 0.23≥ P(Stop)

< 0.27, high: P(Stop)≥ 0.27 [representing each tertile of the P(stop)

distribution)]. See Supplementary Figure S2, top panel, for P1 scalp

topographies across conditions.

3.2.2 Modulation of N1 amplitude
A similar LME model was applied to standardized trial-level

N1 peak amplitude. This analysis first revealed significant main

effects of condition valence (β = 0.011; 95% HDI = [0.004, 0.019],

99.7% of posterior > 0) and stake (β = 0.022; 95% HDI = [0.014,

0.030], 99.9% of posterior > 0), with greater negative amplitudes in

punishment relative to reward conditions and in low stake relative

to high stake conditions, respectively. Importantly, these condition

effects were qualified by a significant P(stop) × valence × stake

interaction (β = −0.012; 95% HDI = [−0.020, −0.004], 99.8% of

posterior < 0). More specifically, P(stop) was positively related to

N1 amplitude in the high punishment (β = 0.019; 95% HDI =

[0.002, 0.036], 98.5% of posterior > 0) but was negatively related

FIGURE 2

E�ect of motivation on model-based inhibitory control. Relationship
between Go RTs and P(stop) as a function of motivation condition: a
Stake × P(stop) interaction was observed such that, for trials with
low P(stop)/low expectations of a stop signal, a P(stop) was
negatively related to RTs in high reward and high punishment
conditions, which was less pronounced for low stake conditions.

to N1 amplitude (i.e., larger N1) in the high reward condition

(β = −0.016; 95% HDI = [−0.032, −0.001], 97.5% of posterior

< 0). However, P(stop) did not credibly predict N1 amplitude in

low stake conditions (95% HDI included 0; see Figure 4A and see

Figure 4B for average ERP timeseries as a function of condition

and P(stop) category. For visualization purposes, average ERP

timeseries was plotted as a function of motivation and P(stop)

categories, i.e., low: P(stop) < 0.23, medium: 0.23 ≥ P(Stop) <

0.27, high: P(Stop) ≥ 0.27 [representing each tertile of the P(stop)
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FIGURE 3

E�ect of motivation and stop expectations on P1 ERP amplitude. (A)
A Valence × P(stop) interaction was observed such that, trial-level
P(stop) was positively related to P1 peak amplitudes in the
punishment conditions, but not in the reward conditions; linear fit
lines (with 95% Confidence Interval represented by shaded band);
error bars represent SEM for binned P(stop). (B) For visualization
purposes, we plotted average ERP timeseries as a function of
motivation valence and P(stop) categories, i.e., low: P(stop) < 0.23,
medium: 0.23 ≥ P(Stop) < 0.27, high: P(Stop) ≥ 0.27 (representing
each tertile of the P(stop) distribution); P1 peak is situated in a
90–120ms window (see arrow); P1 peak amplitude appears lower in
the punishment relative to reward conditions for low P(stop)/low
stop expectations trials; this pattern was less apparent for medium
and high P(stop) trials.

distribution)]. See Supplementary Figure S2, bottom panel, for N1

scalp topographies across conditions.

3.3 E�ect of P1/N1 ERPs on stop
performance and its modulation by
motivational context and stop expectancy

3.3.1 P1 amplitude
On stop trials, P1 peak amplitude did not significantly predict

the odds of making stop error (i.e., failing to withhold response

to Go stimulus; odd ratio = 0.99; HDI = [0.95, 1.03], 72.2% of

posterior < 0), nor did it interact with valence, stake, or P(stop)

to predict stop error (ps > 0.05; see Supplementary Table S1 for full

model summary).

3.3.2 N1 amplitude
The main effect of N1 peak amplitude on stop trial error was

not statistically significant (odd ratio = 0.98; HDI = [0.94, 1.02],

86.5% of posterior < 0). However, a significant 4-way interaction

was observed between N1 amplitude, P(stop), valence and stake

(odd ratio = 1.04; 95% HDI = [1.01,1.08], 98.0% of posterior

> 0; see Supplementary Table S2 for full model summary). To

unpack this interaction, we assessed, for each of the four motivation

conditions (i.e., Low Punishment, High Punishment, Low Reward,

and High Reward), the interaction of N1 amplitude and P(stop)

predicting stop error. This interaction was not significant in the

high punishment condition (odd ratio = 0.95; HDI = [0.88,1.02],

92.3% of posterior < 0; see Figure 5A [tertile split: low: P(stop)

< 0.23, medium: 0.23 ≥ P(Stop) < 0.27, high: P(Stop) ≥ 0.27].

In the high reward condition, more negative N1 amplitudes

were associated with lower error likelihood as P(stop) increased

(odd ratio = 1.12; 95% HDI = [1.04,1.20], 99.9% of posterior

> 0; see Figure 5B). The inverse pattern was observed in the

low punishment (odd ratio = 0.91; HDI = [0.84,0.98], 99.2% of

posterior< 0) and low reward (odd ratio= 0.92; HDI= [0.85,0.99],

98.8% of posterior < 0) conditions, in which more negative N1

amplitudes were associated with higher error likelihood as P(stop)

increased (see Figures 5C, D). For visualization purposes, we also

provide Johnson-Neyman plots of these 2-way interactions in each

motivation condition (see Supplementary Figure S3), as well as

violin plots of stop error rates as a function of N1 amplitude (i.e.,

small/less negative vs. large/more negative) and P(stop) category

(by tertile; see Supplementary Figure S4).

4 Discussion

The present study investigated the role of motivation on

neurocomputational markers of proactive inhibitory control. To

do so, we assessed whether motivational context associated with

stop performance in the SST (low or high reward/punishment)

moderates anticipation of the need to stop as well as early

attention neural responses (i.e., P1/N1 in parietal-occipital

regions), and, critically, whether such potential biasing effects

impact inhibitory performance. We observed three important and

novel findings. First, motivational context interacted with model-

based expectations at the trial level, i.e., P(stop), to modulate

behavior, including proactive inhibitory control (Go reaction

times) and reactive inhibitory control (stop signal reaction time,

i.e., SSRT). Second, motivational context and P(stop) interacted

to modulate P1 and N1 neural responses to the Go stimulus.

Specifically, increasing levels of P(stop), i.e., higher expectation of

the need to stop, in the punishment (but not reward) conditions

was associated with greater P1 amplitudes. Moreover, higher

P(stop) in the high-stake reward condition was associated with

more negative N1 amplitudes, while the inverse pattern was seen

in the other conditions, particularly the high-stake punishment

condition. Third, in the high reward condition, increasing N1

amplitudes were associated with greater stop success when P(stop)
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was higher. These findings provide compelling evidence that

subjective expectations to inhibit on a trial-to-trial basis modulate

the effect of motivational context on neural measures of proactive

control of attention. To our knowledge, the present study is the

first to use DBM modeling to explore how monetary incentives

interact with computationally driven anticipatory processes to

modulate early attention ERPs associated with proactive allocation

of attention supporting inhibitory control.

Previous studies in healthy populations (Ide et al., 2013)

and in individuals with stimulant use disorder (Ide et al., 2015;

Harlé et al., 2019), alcohol use disorder (Hu et al., 2015b), and

eating disorders (Berner et al., 2023), have demonstrated that

individuals slow down their Go reaction time in the SST as

their expectation of the need to inhibit increases, according to

a Bayesian inference anticipation process (Yu et al., 2009). Our

findings add to this prior work as we found that, relative to low-

stake conditions, high-stake motivation (high punishment and

high reward) was associated with longer RTs primarily when

P(stop) values were lower. Thus, while the typical positive linear

relationship between P(Stop) and Go RT was observed for low

stake conditions, high stakes of punishment or reward resulted

in a dampening of this effect when expectation of a stop trial

is low. One possible interpretation is that high stake monetary

incentives associated with stop performance results in maintained

cautiousness and slowing down in response to Go stimulus onset

even when the need to inhibit the response is unlikely. We also

found that reward motivation, i.e., wining money for successful

inhibition, was associated with shorter stop signal reaction times

(SSRTs). Overall, these results are consistent with prior findings

that SST performance and measures of response inhibition are

influenced by motivational context; participants respond more

accurately on stop trials and respond more slowly overall as

rewards and punishments increasingly favor stop accuracy over

speed (Leotti and Wager, 2010). They are also consistent with

findings that reward can enhance both proactive inhibitory control

(slower Go RTs, physiological evidence of enhanced attention)

(Chiew and Braver, 2014; Giuffrida et al., 2023) and reactive

inhibitory control (lower SSRTs) (Herrera et al., 2019). However,

we did not find any significant impact of motivation stake or

valence on individuals’ learning parameters that capture initial, pre-

observation expectations and perceived stability of the stop signal

frequency. Therefore, the present findings suggest that the influence

of monetary incentives on inhibitory control may not be by biasing

learning and development of stop expectations, but instead suggest

that such motivational factors, particularly reward, may interact

with top-down, model-based anticipatory processes to modulate

inhibitory control performance.

Outcomes of prior experiences informs future expectations and

directs attention to motivationally relevant features, particularly

to cues predicting punishment (Suárez-Suárez et al., 2019).

For example, early visual attention ERPs generated from the

visual cortex are enhanced to stimuli associated with monetary

loss relative to reward (Rossi et al., 2017). Consistent with

this, we observed that in the punishment but not reward

conditions, Go-related P1 amplitudes increased with higher

levels of P(stop) expectations. The posterior visual P1 reflects

engagement in attentional processing necessary for successful

cognitive modulation of sensory processing (Kaiser et al., 2020) via

the extrastriate cortex (Di Russo et al., 2002). This finding indicates

that attentional enhancement to cues associated with punishment

are modulated by an individual’s expectations, particularly when

there is a high expectation for the need to deploy inhibitory

control when a failure to do so results in monetary loss.

Punishment is a potent learning process that shapes behavior, and

aberrations in neural circuits instantiating learning from negative

consequences are thought to partially underlie internalizing and

externalizing psychopathology (Jean-Richard-Dit-Bressel et al.,

2018). Therefore, characterizing how punishments interact with

cognitive features such as expectations and their underlying neural

circuitry will be important for informing interventions that target

these motivational processes (Mogg and Bradley, 2018).

Motivational incentives are key drivers of value-based attention

(Anderson, 2016). Stimuli paired with high reward elicit larger

visual attention ERPs originating from the visual and extrastriate

cortices (i.e., P1 & N1) than stimuli paired with low reward (Hickey

et al., 2010; MacLean and Giesbrecht, 2015; Schevernels et al.,

2015). Midbrain and ventral striatal dopaminergic signaling bias

early visual cortex to enhance attention to cues that have a history

of being rewarded (Failing and Theeuwes, 2018; Anderson, 2019).

Indeed, a positron emission tomography investigation showed that

D2/D3 receptor signaling from the caudate when being rewarded

predicted subsequent attention capture to stimuli that were

previously rewarded (Anderson et al., 2017). Our findings build

upon this literature showing that in the high reward condition,

posterior N1 amplitudes to Go cues, an ERP associated with early

visual attention (Boehler et al., 2009), were larger on trials with

high P(stop) values relative to lower P(stop) values. Critically, this

relationship predicted subsequent behavioral inhibitory control

success. This pattern of findings suggests that trial-by-trial reward

history, likely via striatal dopaminergic signaling (Anderson, 2019),

informs or is informed by top-down proactive or expectancy signals

likely emanating from the dorsolateral prefrontal cortex, pre-

supplemental motor area, or the anterior cingulate cortex to guide

inhibitory control (Watanabe, 2007; Harlé et al., 2014; Hu et al.,

2016; Wang et al., 2018; Nobre and Stokes, 2019) enhances early

visual attention to cues that signal the potential of obtaining a high-

value reward. This early attentional enhancement subsequently

facilitates the ability to inhibit motor responses in this high-stake

reward context, even before the actual signal indicating the need to

inhibit occurs (i.e., stop-signal). Collectively, these results provide

compelling evidence that rewarded or motivationally relevant

contexts interact with expectations tomodulate proactive allocation

of attention to support inhibitory control and maximize obtaining

future rewards (Locke and Braver, 2008; Jimura et al., 2010).

The observed discrepancy between P1 and N1 findings are

intriguing and may appear somewhat paradoxical. Specifically, P1

amplitude appears more broadly modulated by motivation valence

and P(stop), whereas the level of stake plays an additional role

in moderating N1 amplitude to in turn more robustly predict

stop performance (which was not the case for P1 amplitude).

These findings fit well with the hierarchical Bayesian nature of

the brain predicted by the free-energy formulation of sensory

learning and ERPs (Friston, 2005, 2009). In this framework,

an ERP reflects the transient expression of free energy (i.e.,
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FIGURE 4

E�ect of motivation and stop expectations on N1 ERP amplitude. (A) Valence × Stake × P(stop) interaction predicting N1: P(stop) was negatively
related to N1 amplitude in the high reward condition, but positively related to N1 in the high punishment condition; linear fit lines (with 95%
Confidence Interval represented by shaded band); error bars represent SEM for binned P(stop). (B) For visualization purposes, average ERP timeseries
was plotted as a function of motivation and P(stop) categories, i.e., low: P(stop) < 0.23, medium: 0.23 ≥ P(Stop) < 0.27, high: P(Stop) ≥ 0.27
[representing each tertile of the P(stop) distribution]; N1 peaks are situated in a 130–180ms window (see arrows); N1 amplitude was more negative in
high reward condition for high P(stop)/high stop expectations trials; this pattern was less apparent for low and medium P(stop) trials.

prediction error), which is suppressed by top-down predictions

from higher level cortical areas to varying degrees depending

on prior learning. That is, those components may be quickly

minimized if sensory input feedback matches expectations, or less

so if the new information is novel or incongruent with the context

(Friston, 2005). Through this lens, our findings would suggest

that the P1 amplitude may be suppressed to a larger extent than

N1, with N1 reflecting a different component of predictor error

being unresolved and promoting subsequent action to resolve this

unexplained discrepancy, hence more direct impact on behavior.

Relatedly, and in line with the hierarchical organization of visual

cortical layer and this Bayesian brain framework, the differential

findings between P1 and N1 could reflect the temporal buildup

of unexplained prediction error modulation on the Go stimulus

onset processing. Later components may reflect Bayesian inference

at more supraordinate level in the hierarchy, with longer latency

responses reflecting increasing levels of Bayesian inference to

integrate top-down contextual priors and bottom-up sensory input

mediated by backwards connections (Friston, 2005, 2009; Garrido

et al., 2007). Although P1/N1 are relatively early ERP components

and we did not look at traditionally late components such as the P3

given its relevance to reactive vs. proactive cortical responses, our

findings may point to the fact that N1 amplitudes are integrating a

more relevant motivational context to trigger actions that minimize

prediction error, i.e., fine-tuning stopping behavior to reduce

sensorimotor surprise (Barceló and Cooper, 2018). This is reflected

by the latter component (N1) having a richer, valence and stake-

specific modulation andmore direct influence on stop performance

relative to P1.

The results of the current investigation demonstrate that

motivational contexts and inhibitory expectations modulate

neural markers of proactive control of attention and ultimately

inhibitory control performance. Bayesian models offer a powerful,

quantitative account of top-down cognition, such as inhibitory

control, by isolating mechanistic markers of learning and

anticipatory processes (e.g., dynamic predictions of the need to

inhibit). This study combined such a cognitive computational

modeling approach with high temporal resolution EEG methods

to delineate where and how motivational factors are integrated

into proactive inhibitory control. From a clinical perspective,

our findings provide a roadmap for testing inhibitory deficits

in psychopathology. First, leveraging computational modeling to

understand inhibitory control deficits in psychopathology allows

for the discovery of refined and nuanced relationships that

non-computational analytic strategies may miss (Schall et al.,

2017; Howlett et al., 2023). Indeed, DBM-based markers of

inhibitory control show higher sensitivity and specificity in

predicting clinical severity of substance use disorders (Harlé

et al., 2015a, 2019; Hu et al., 2015b; Ide et al., 2015) and

bulimia nervosa (Berner et al., 2023). Second, our results offer

novel avenues for therapeutics that may improve inhibitory

control. The ability to train and improve inhibitory control

performance through cognitive training leveraging motivational

incentives may be of great clinical relevance and a critical

first step toward understating how such training effects can be

transferred to intrinsic motivational factors (Jaeggi et al., 2014).

It may also be fruitful to explore how motivational performance

contingencies may enhance various therapeutic modalities, such

as neurostimulation targeting early proactive control of attention

(Pulopulos et al., 2022).

The present study is not without limitations. First, our

sample consisted of adults with limited psychiatric exclusions

and without formal diagnostic assessment. Therefore, we were

unable to address whether findings are generalizable to individuals

with or without psychiatric disorders. Future research recruiting

both psychiatrically healthy and those with psychiatric disorders

using clinician-administered diagnostic interviews are needed

to explicate the role of psychopathology in these processes.

Additionally, the present paradigm was not designed to assess

feedback-related ERPs, which in turn limits our ability to
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FIGURE 5

E�ect of motivation, stop expectations, and N1 ERP amplitude on stop performance. Logistic model-based prediction of stop error as a function of
N1 peak amplitude and P(stop) [based on tertile split: low: P(stop) < 0.23, medium: 0.23 ≥ P(Stop) < 0.27, high: P(Stop) ≥ 0.27]; each graph
represents di�erent motivation condition/block, including high punishment (A), high reward (B), low punishment (C), and low reward (D); shaded
band represent 95% Confidence Interval; in the high reward condition (B), more negative N1 amplitudes were associated with lower error likelihood
for higher P(stop) values (odd ratio = 1.12; 95% HDI = [1.04,1.20]); the inverse pattern was observed in the low punishment (odd ratio = 0.91; HDI =
[0.84,0.98]) and low reward (odd ratio = 0.92; HDI = [0.85,0.99]) conditions, in which more negative N1 amplitudes were associated with higher error
likelihood for higher P(stop) values.

capture how temporal and sensorimotor surprise, an important

component of this inhibitory control task, furthermodulate sensory

disambiguation of the Go stimulus, as predicted by Bayesian

accounts of the brain (Friston, 2005; Friston et al., 2017). More

specifically, the impact of prior stop trial prediction errors (e.g.,

in terms of SSD, but particularly stop outcome processing) may

drive a significant portion of the P1/N1 modulation observed here,

reflecting a hierarchy of sensorimotor loops (Garrido et al., 2007;

Friston et al., 2017; Barceló and Cooper, 2018). There are practical

reasons why we did not include neural responses pertaining to stop

signals in the analyses, including the relative imbalance of Go vs.

Stop trials (the latter being much fewer), the unattractable nature

of the stop feedback processing (which includes both the auditory

stop stimulus and the later explicit feedback), the absence of explicit

feedback on non-Stop trials, and the relatively modest sample size,

which further limits statistical power to tease apart the respective

effect of these various types of surprise. Ideally, a more balanced

design in which feedback trials are more frequent and feedback

onset times can be reliably measured across both types of outcomes

(e.g., go/nogo task, including explicit outcome type feedback on go

trials) may be more suitable to investigate such complex dynamics.

The use of information theory metrics (e.g., stimulus and response

entropies) within a Bayesian framework may also be well suited

to quantify additional contextual information predictive of ERP

responses pertinent to proactive control (Friston et al., 2017;

Barceló and Cooper, 2018). Ultimately, such an approach would be

necessary to fully understand how the contextual feedback provided

by value-based feedback drives individuals’ dynamic adjustments

of behavior in the SST. While it is not trivial to disentangle the

dynamic interplay of these outcomes vs. sensorimotor surprise in

the SST, our study provides a first window into understanding these

mechanisms. Additionally, there may be neural sources other than
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the extrastriate cortex important for proactive inhibitory control.

Given prior fMRI studies of DBM-based neuromodulation in the

SST and evidence of P(stop)-weighted activation in frontoparietal

regions, another interesting avenue for future studies will be

to investigate more anterior modulations of the N1 within a

potentially broader hierarchy of top-down influences on visual

attentional processing. Finally, the present stop task included a

relatively easy continuous performance task, which resulted in few

Go errors (e.g., incongruent arrow direction/button press). An

important next step would be to assess how additional sources

of sensorimotor surprise stemming from heightened Go stimulus

task difficulty further interact with motivational factors and stop

expectations to shape early visual processing during proactive

inhibitory control.

In conclusion, the present study demonstrates that the

interaction between motivationally relevant contexts (i.e., different

degrees of reward and punishment) and dynamic predictions

supporting inhibitory control modulate proactive allocation

of attentional resources to relevant visual features, which

subsequently affects inhibitory control success. Findings from

the present study contribute to a comprehensive understanding

of the intricate interplay between motivational states, attention,

and proactive inhibitory control. By integrating computational

modeling and neural measures, these findings provide valuable

insights into the mechanisms supporting inhibitory control and

set the stage for illuminating how these mechanisms may be

impaired in psychopathology, paving the way for more effective

therapeutic targets.
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