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COMPLETE DETERMINATION OF POLARIZATION
‘ FOR A HIGH-ENERGY DEUTERON BEAM

Janice Button

Lawrence Radiation Laboratory
University of California
Berkeley, California

May 4, 1959

ABSTRACT

Measurements have been made, by double scattering, of all
parameters necessary to describe corﬁpletely the interaction of the
deuteron with complex nuclei. . Tensor components of polarization,
which characterize the scattering of spin-one particles and which
were unobservable at low energies, were determined to be appre-
ciably different from zero. Internal targets at two different positions
were used to polarize beams undergoing differing amounts of mag-
netic bending in the field of the cyclotron in order to separate two
polarization components included in the cos¢ term of the scattering
cross section for a polarized beam. |

Deuté'ijons of 410 and 420 Mev were scattered from beryllium
and carbon, respectively. Internal angles of scattering were 10 deg
for beryllium and 11 deg for carbon; angles of .second scattering
extended from 6 to 18 deg. The usual spin polarization (vector

polarization) normal to the plane of scattering was found to reach

'a maximum of about 70%.

The impulse approximation was employed to obtain estimates
of deuteron cross section and polarization on the basis of nucleon-

scattering data.
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1. INTRODUCTION

Although the phenomenon of deuteron polarization is much
more complex than that of proton polarization, experimental
research should lead to a better understanding of the spin-orbit
_interaction between nuqleon ar_1d n1:1c1eus and, more particular ly,
of the relative importance of various effects in the scattering of the
deuteron. Many studies have been made of the spin-orbit potential
in nucleon interactions. L, Experimental work on the scatte.ring of
deuterons has been rather limited; Baldwin et al. 2 measured Cross
sections and polarizations for various elements at 94, 125, and
157 Mev, but failed to observe" any of the "tensor components'' of
polarization expected for a spin-one particle. Stapp r;nade extensive
theoretical studies of the application of the impulse appro&imafion
in various .forms to deuteron scattering; he found goo'd a.gr'eém.-ent
with exper1ment only by assuming that simultaneous scattermg of
_both nucleons of the deuteron was an important effect.~ . Neither
his assumptions as to the form. of the.nuc_leon-ngcleus potential nor
the use of nuc leon—scattering' data gave vector-polarization pre-
dictions at all comparable to the large values observed by BaldWin,
although the tensor components could be estimated as very close
to zero. Tripp carried out an experiment on the p &p —>'rr++ d Feac ~
tion to analyze the polarization of the deuteron for determ1nat1on of
the phases of meson-production amplitudes and hence differences in
p-p phase shifts; on the basis of the work of Baldwin and Stapp, he
assumed that tensor components were zero. '

Scattering measurements at a deuteron energy above 400 Mev,
available from the reconverted cyclotron, seemed desirabl"e to |
determine whether the tensor components of polarization might be
observable; further, a method of separating the two components of
polarization appearing in the cos¢ asymmetry, her.etofore'considered
very difficult, > had been suggested, % and it was thought that the

complete determination of scattering-matrix components would be

aBy Dr. Ronald Mermod, now at Cern Laboratory, Geneva.
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of interest.:’ It was to be expected that the impulse approximation
would givei better agreement with experiment at the higher deuteron v
enérgy, since nucleon polarization rises rapidly with energy near .
100 Mev and the Born approximatioh has gfeéter validity at higher
energies. _ ' l : ' ' y
The results of the scattering by beryllium and carbon of two '
polarized beams having different tensor components are reported
here. An analysis is carried out on the basis ofvthe impulse ap-
proximation and comparison made with Baldwin's reéul.ts.‘
It should be a relatively simple matter to extend these measure~
ments to lower energies by degrading before the second scattering
and thus to determine the energy dependence of polarization com-
pbnents more exactly. Further, useful information on differences
between p-p phase shifts could be obtained by analysis of deuteron
polarization in the p+p'—>1r++d reaction at proton energies of 400 to

740 Mev.
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II. THEORY '

Because the deuteron is a particle of spin one, four parameters
in addition to the unpolarized cross section are needed to specify
the intensity after double scattering. ‘These parameters are de-
pendent upon the angles of first.ar'i.d second scattering and may be
expressed in terms of the expectation values, after single scatter-
ing, of certain operators in the spin s'pace of the deuteron. Two
of them may be determined immediately from différential-cross-
section measurements, as was done by Baldwin at lower energies;
the other two, however, are combined as the coefficient of a cosé
term (where ¢ is the azimuthal angle between the normals to the
first and second scattering planes) and can be separately deter-
mined only by double scattering with and without a magnetic field
between the first and second targets |

The theory of polarization of the deuteron was given first by
Lak1n5 and subsequently treated with a dlfferent formalism by .
Stapp. 3 Just as there are four independent matrices necessary to
specify the scattering matrix of nucleons having a two-dimensional
spin space, there must be nine 1inearvly independent matrices to
describe the scattering of deuterons which have a three-dimensional
spin space. The application of parity and time-reversal restrictions
reduces this number to five.. For the nucleons, the unit matrix and
the three Pauli spin operators suffice, but for the deuteron there
must be included in the scattering matrix not only terms linear in

the spin operators, but second-rank tensor terms as well.
A Formalism

A convenient set of operators given by Lakin includes the
unit matrix, two Hnear combinations of spin operators, and three
second-rank tehsor products of spin operators, as well as the
Hermitian adjoint of three of these. The advantages of this par-
ticular representation are that the operators transform in spin

space just as the spherical harmonics transform in coordinate
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space, and further that the second-scattered intensity may be ex-
pressed in an especially simple manner. &

These matrices are:

Tyo= 1
N3

Ty,= - - (SX +>‘1Sy)
3

T1o7 - S,

- N3

= ' ' >
22 — (S _+1iS )~
2 X Yy

_ N3 e .
TZI__—Z (Sx+lsy)sz+sz (sx+1sy).

TZO— 7 (3sZ -2)
\\\
1.
.M
TJ, M (<) "TM

"Choice of a particular coordinate system causes some of the
<TJM> resulting from a scattering process to equal zero. (This
. o g + .
can be seen by considering an. explicit form of M or MM , as in

Section C.). An especially useful system is that in which the y axis

®Like the spherical harmonics, the TJM are an irreducible set of

tensor operators and hence have especially simple rotation trans-

formations associated with them. (See Appendix B for fuller dis-

cussion.)

o
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is normal to the scattering plane and the z axis is along the direc-
tion of motion of the once-scattered beam. (See Fig. 1.) For this
situation the state of polarization of the scattered particles is com-
pletely described by the expectation values of four of the T‘JM
operators as well as\th‘e normaliza’;ion {<T00> ; further, all _<T2M>
are real, while <T11/ is pure imaginary.

Lakin constructs a product of the scattered matrix and its
adjoint MM* which is invariant under space inversion and time
reversal, and in the reference system defined above he obtains for

the second-scattered intensity

L (05 00 =1, (6,) [l * <Tzo> 1 /\/.Tzo&.-\/wz' e -<<?T11>1’ <1Tu>z

) <T21>1 <T21>z> cos ¢ + 2 <T22\>1 <?zz>2 cos 2%,

where Iu is the cross section for scattering of an unpolarized beam;
¢!is the azimuthal angle between normals to the two scattering
planes; a <TJM 1 represents the expectation value of the tensor,

operator T after scattering of an unpolarized beam at an anglé

IM

91 by Target 1; and \T the same for angle 92 at Target 2.

)
(The coordinate systerr{L:[lseZ(i has its z axis along the direction of
beam incident on the second target, but the <TJM for each of
Targets 1 and 2 are defined with the z axis along the outgoing mo-
mentum because time reversal is used to obtain the iTZM 2 of
Target 2.) o

The quantity iTll> is referred to as ''vector polarization, "
as it is proportional to Sy>’ the polarization normal to the
scattering plane, while the <TZM are components of ''tensor
polarization'' and represent a spin alignment rather than an orien-
tati.on. The latter constitute a second-rank tensor, one of whose

\

principal axes is along the direction of spin or parallel to <iT1i/

®defined by cos ¢ 251 © n, or sin ¢ 2?11 X?lz . kZi
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Fig. 1. (a) Coordinate system for single scattering as
seen in the plane of scattering. .

(b) Geometry of double scattering.
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This vector polarization is evidently not affected by a magnetic field
normal to the plane of scattering, but such a field does cause rotation
of the polarization tensor relative to the beam-defined coordinate

system described above, and hence a mixing of the <T2M> components,

B. Description of State of Polarization

Description of the state of a particle following a scattering
interaction may be given by:the use of a scattering matrix M, which

defines the final state in terms of the initial state,

b = My,

‘The density matrix after scattering then takes the form

_ J oo Mo Mt

and this gives the expectation value of any spin operator s* after

scattering,

Tr (p SH) TrMp.I\./I-lL‘SFL
<Sp> f i
Tr Pe TrMpiM%

The initial-density matrix may be expressed in terms of a complete

‘ ¥
"set of these spin operators Rv, under the requirement TrRaRf3 l:ni@dﬁ’

as
-
_ <‘“ < v> v
i v
(ni being the dimensionality of the initial spin space).

Then the Wolfenstein-Ashkin re1a1:ion6 follows,
Trp 1
Ve <“> - 2B
I\s S n & R 1raurY M*s?),

with RY and s" referring to the same set of spin op'erator‘s for the

description of initial and final states, respectively.

From this relation the cross section is found for second scat-

Y v
I, = — R TrM MR ;
2 n,

tering,
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and polarizations or expectation values of spin operators after

single scattering are : o ' .
1 N - o A
I <s“> =—  Tr (MM'st). u -
u f n, 4
In the case of the deuteron, these spin operators R” and S" can of _ v
course be defined as the T of Lakin. -

JM
Evidently, expressions either for M'M and MM" or for the

scattering matrix alone would be useful in describing the scattering
of a particle. Lakin chooses to define a general form for MM+ and
also for iM"PM‘on the basis of inyariance argu‘ments;a he forms all
possible products of the abovAe-described TJM and the spherical
harmonics YJM (with arguments derived from ki and kf, incident
and final momenta) that are invariant under space inversion by
using only those YJM which are even in ki and kf, He finds the
cross section for second scattering as a function of ‘<TJM> 1’

YJM (62?‘*)” and (iz— dependent coefficients of the M+_M terms by
substituting the M M expression into the <SP'->f relation above and
taking st equal to the unit matrix; he then notes that time reversal
requires M™M to be equal to MM and finds the angle-dependent
coefficients in terms of the TFJM‘> > resulting from the scattering
of an unpolarized beam. (Subscripts refer to the geometries of
first and second scatterings.) The expression for second-scattering

cross section which he obtains is as given on page 9.

- Stapp, on the other ihand,' prefers to define M alone as

M:A(M+B”6)%+CUW)%Y

animt = E: = t ' E: — +
MM = Jo 4 0 £ Yo () Tt T £ Yo ) Toyy -
M - M
S
+ 3 Z Y. (k,k) T  +7J Z Y, . (k.xk) T , where '
3 & 2M V1T f 2M 4 IM YTt M’

_ . ¥

YZM (ki' 'k'ff) is a second-degree harmonic, bilinear, and symmetrical

in k. and k..
i f
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with the Sij representing symmet;iied product$ of spin operators. &
In/variance under space inversion and time reversal is again applied

/
tg’ restrict the types of terms. As Wolfenstein and Ashkin have
shown, only the sir.li term of the class of vector contractions is
invariant under space inversion and time reversal; similar arguments
show that of all the tensor products only Sijninj’ SijPin, and SijIEin
terms are possible if n is the normal to the plane of scattering, P
the sum of initial and final rriomenta, and K the difference of initial
and final momenta. (The TK tensor changes sign under space inver-
sion; the TP tensor, under both space inversion and time reversal;
and the PK tensor, under time reversal.) Thus the most general

scattering matrix satisfying invariance requirements is

M =a (6) +b (6) S, + E: (6) (nyn, - 1/3 3,;)
+d (6) (PP, - K Kj):] S,

Although this scatferi’ng matrix gives a rather complex expression
for cross section in second scattering, it is useful for evaluating
polarization components in terms of scattering=matrix elements,
which may be related to the scatterinvg' matrix for nucleon-nucleus

interaction.

C. Cross Section for Second Scattering

Although Stapp's notation is more cumbersome than Lakin's,
his formalism gives a better understanding of the origin of the ¢-
dependence of terms in IZ° He defines fhe scatteﬁring matrix as
given above. The vectors entering into this matrix are represented

in Fig. la, their definitions being

=3
|

= unit vector along T(—i x

f’
P = unit vecfor along T(i +_1-<f9
f{—: unit vector along k, - .Ei“

f

a — ; ' _ .
sij = 1/2 (s, sj + sj S;) 2/31 6ija
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In terms, then, of the xyz coordinates defined by the first scattering,
as above, the vector components used in the scattering matrix for

the second target may be represented as the following functions of 6
and ¢, '

n, = - sin ¢, n,y = cos ¢, n, = 0;
K =sin—6- ] K —s'n6 in ¢ K, =cos—;
2x 7 cos¢ K, =singsing, 2z 2
P, =cosL P, = cos—. m-q‘, P, = - sin—>
2x - G085 cos 9, 2y COSTZTEIm e 2z 2
I2 (6, ) is now determined by taking I = Tr sz1 ;r

with Py the density matrix after first scattering, Stapp's form of
the scattering matrix characterizing the interaction at Target 2

may be substituted to give
£

I‘2 =Tr ﬁ\ [_a +bS- n, + c(ninj _61_]'/3)2 Sl_]

» !, (% ) 6«.
d - P *inS. . RN
+ C (pipj KiKJ.)Z S, pl[a +b'S-my+c (o, 33)2 i

a* _ = a? 2 S-m).
+d" (PP, - KK)), le]} a“+2/3b%+ 4/3 Rea'b Tr (pS - m)
It is evident that the third term is proport10nal to <S >l <S % cos<1>a
or to\1T1>1>1 <T » cos ¢. Also there is a cos b term proport1ona1

to<S S

sk _ sk . &} 6
Tr {plz Rea d (PXPZ— KXKZ‘) sz}» - <sz>1 2Rea’ d sin > cos > cos b.

Further, such terms as Tr {pl Z (P P - K K )2 S2 } will reduce to

j or to\TZI)l which derives from

the form cos ¢{<S >1, part of which is proport1ona1 tO\T22> 1

cos 2¢; and Trip, 2 Rea d (P2 - KZ) Si will be of the form

2'0 A 2> < > .

i - —
(cos! > sin Z). <Sz 1» or proportional to a T20 j term independent
of .

Ty (pl ) gives the expectatmn value <S >1 and its coefficient Re a b
is proport1ona1 to the\S >2 that would result from scattering an

unpolarized beam from the second target.
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D. Single Scattering

If the coordinate system considered has its y axis alonf the
S

normal and its x and z axes in the plane of scattering, then

is the only component of spin polarization produced in the scattering
of an unpolarized beam; i. e,., v<SX> = <Sz> .= 0. Further, it can be
shown that the polarization tensor has one of its principal axes along

the y axis, or that <SyS)> = <Sysz>= 0. This can be demonstrated

formally by using either Stapp's or Lakin's expression for M

The vanishing of these expectation values follows from the require-

ment that the terms in M be invariant under the parity operation.

In the coordinate system with the z axis parallel to the scatter-

ing normal, the requirements that<‘5)>and<5)>equal zero after the

scattering of an unpolarized beam yield particular forms for the

deuteron spin functions, =~ One solution is

ael)\ . A ' » {cos 6/2)e*)‘
X A= B el)\O and the other is Y = 0 :
A iN B - i
—Q,e_1 (Sln 6/2)6

s

} 2 4 . o
where a and B are real and 2 a +I32= 1. These wave functions are

i\

of interest in that the phases can be interpreted in terms of a mag-

netic field H applied along the z axis for a time t by solving the

equation (with u the magnetic moment of the 'deuterorll)
‘ mPH
= ithjy i = -2z
—P‘Ssz X = r.ﬁ.x to find N = : t.

Formulae giving the reduction of spin-operator products are in

Stapp's thesis, 3 p. 119,

bThese X p @nd XB functions can, of course, be put in the same

form as the Lakin or the Baldwin spin functions, (See Appendix B.)

S W
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Solution A may be interpreted as representing spin oriented
in the plane of scattering with probability [32 and spin oriented par-
allel or antiparallel to the normal with pr’obability‘az; the probability
of finding an average spin orientation along the z-axis normal thus
' is zero. For Solution B, spin is oriented on the averagé at an
angle to the normal, so thaf the probability of finding spin along the

normal is cos &. For this case,

..

il
i

D>

o

%

~~
It

1/2 (1+8ind cos 2)),

>
>
S
il

1/2 (1-sin cos. 2:\),

= 1/4 sin 5 sin 2 X.

r (6 6)

(These values, or their reciprocals, -when plotted to give <SZ> or
1/ <S2 in the x-y scattering plane, give an ellipse whose orienta-
tion relative to the direction of the motion of the deuterons is deter -
mined by the value of \ or of Hzt associated with the bending after
scattering. See Fig. 2.)

*The polarization tensor is to be interpreted as the sta.t1st1ca1
distribution of deuteron spin; expectation values of <S > < xx>
and <S )> indicate the probability of finding spin aligned along the

various axes. Hence, for Solution A above, S = 20.2, al-
though <S > is: zero; for the second solution, (S > =1,
while <S and <Syy> vary from 0 to 1 depending on the

quantities sin 0 and cos 2¢.
" The T > tensor components have the following physical
interpretations in the scattering of an unpolarized beam: 20

indicates the probability of finding spin aligned along the z axis;

T22 , the preference for spin alignment along the x rather
than the y axis; and T21 , the amount by which the orientation of
the <S.S.§ ellipse axes in the plane of scattering differs from that of

the x-z scattering coordinates. These conclusions are based on the
facts that

20> id dependent on <S > <T22> on <Si> - <S§7> ,
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z z
A |
~~_4__-Fspin S H
(Sz7=Scosd |.-s—25sins
R >y . El >y
{ 7
"’/QZ\_
dt
X X
(a) (b)
MU -17289

Fig. 2. (a) Classical representation of a general type
of wave function (XB) for sp1n one part1c1es

(b). The projection of <S > or 1/ <S ) in the
x-v scattering plane. '
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and <T2 1> on <SX_SZ> ; <T20_/> has further significance in rep-
resenting the extent by which the occupation of the m = 0 state

for the z axis differs from the unpolarized value of one-third.

E. Pure Polarization States

As is stated by Lakin and as can be shown by use of the spin
operators and wave functions in Appendix B, the cos ¢ term of the
polarized cross section for ..61 = 92 reaches a maximum of 3/2
cos ¢ if the first scattering puts all particles into the pure spin
state x | (or X‘-l) along the normal (y axis). The limit of 3/2 for
e can also be obtained by noting that the unpolarized cross section
(Iu) must be 1/3 the polarized cross section at ¢ = 0 (IO) if the

polarized beam contains only spin-up particles and these are all

scattered left. Then

e= -2 180 _ 0 = 3/2.

21, 2/3 1,

The tensor components describing the once-scattered incident beam

in this case haye the values
<T.10> = 0 or <SZ>
<iT11> = 32 or <sx>
@20> = —gl,\[_z_ or <SZZ> .
,<T21> =0 or <sz> = <szx> K
o )6y e () -

Thus all spins will be found in a cone along the +y ax1s 1/4 of them

"

0,
0, <s > - 1,
Yy
2

1/2,

It

1]

' .
f:j
L

1N

o}

H

will be along the +z or -z axis, but with average S = 0, and 1/4
along the +x or =x axis with average 'Sx. 0, while 1/2 will be aligned
along the y axis. The y axis is a principal axis of the polarization
tensor and indeed is the smallest of the three axes of the polarizativon

ellipsoid representing this tensor. (See Appendix D.2.)



-19-

= < = . The ellipsoid has the form of an oblate
2 2 2
S S, S, _ _

spheroid. Magnetic-field rotation of the tensor or elhpso1d about

the y axis does not change the values of <S > <S , Or <S >,
and hence leaves the TZM unchanged.

The cross-section cos 2¢ term attains a maximum for the
case of a pure xg state. <Sy> then_.: 0; as do also <Sx> and<SZ>.
The values of tensor components indicate that the spins of all
particles lie in the plane of scattering, buﬁ are quite randomly aligned.
Again the polarization ellipsoid is cncularly symmetrlc about the
y axis --1. e, ,- <sz> <S > = 0--but it degenerates into a

cylinder, as <SZ'> is infinite,

F. Tensor Rotation -

Two effects enter into the transformation of the <T'JM> . One
of these is the rotation of the coordinate system resulting from deflec-
tion of the deuteron by the magnetic field; the other is the precession -
of spin axes in the plane perpendicular to the field direction. For
relativistic particles, the latter must include the contribution of
Thomas precession. 7 (See Fig. 3a) The deflection of the deuteron

in the x-z plane is given by:

eH
t=1/y t=1/y t = m.

w W,
cyclotron larmor

ZmpC

The precession of the spin or magnetic moment is:

“precess t= [Hd “larmor T - Y) wcyclotronjl t

where pd is the magnetic moment of the deuteron in terms of the
nuclear magneton. Thus the angle through which the spin of the

deuteron (or more exactly the axes of the polarization tensor, as
the spin is on the average parallel to the field) is turned relatlve

to the final direction of motion z' is:

A= (w Yt=vy (u-1} 7

-
precess cyclotren

H

1.22 (.8565 - 1) n=-1/6n.
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beam
from

target (D.

MU-17290

Fig. 3 (a‘) Rotation of deuteron spin under the action
of a magnetic field. Here z and z' are the initial
and final directions of motion of the deuteron.

(b) Section of polarization ellipsoid in x-z
plane of scattering, describing the state of polari-
zation after single ,scattering of an unpolarized
beam. The axis p - is parallel to k,. for the dee-
target beam; the axis p' is parallel ¢ k,. for
the meson-target beam.? (See Fig. 1.) '
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The quantity n is positive if deflection is clockwise along the negative
y axis. (This is the cas\]e for deuterons scattered left in a field di-
rected along the positive y axis.)

The equations expressing the rotated <T2M> quant1t1es in /
terms of the original <T > may be written

Cap) = % s (o),

where the «a's are trigonometric functions of the angle \ or of the
/

angle of deflection of the beam. Explicitly, the equations are

<Tzo>"_}' = agy (To0) * og1 (T21) * “oz. (T,2)
= (1-3/2 sin x) <T20> - (3/2) 1/2 sin zx<T21>
3/.2)1/Z i -x_<T22>

<T21>' =172 3/2)Y% sin 20 <’17-;20> + cos 2\ <T21>
- 1/2 sin 2 \ <T22> L

T ) =12 6/ % sin2x (1, ) + 1/2sin2n(T,,)
22 . 20 21
+172 (1 + cos? n) <T22>

(Note that the sign of each sin 2 X term is opposite to that given by
Baldwin. 2 8)- Several methods may be used to derive these equations,
the simplest being that of exp;‘essir}g»an SiSj tensor in terms of the
complete set of TJM matrices andAthcfn tranffqrming.this ten.sor by
rotation of the-: S Y’ and SZ (or'x, y, and z) basis vectors about
the y axis. _(See discussion in Appendix D. 1.)

To show that the transfotmation represented by the above equa-
tions is equivalent to the rotation of the polarization tensor or the

ellipsoid reiﬁresenting this tensor (see Appendix D.2 and Fig. 3b),

it is useful to consider the special case of a pure spin state m_ = 0
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along the x axis; this situation gives zero values for <iT11">‘and
for e, but a maximum value for f ‘when double scattering at the
same angle is performed. As can be seen by simple calculafions
with the X o eigenfunction of Sx’ the expectation _value's of spin

(s2)
&)
<sys)> <sysz> = (5,8,) =<szsx> = 0.

The reciprocals of <Si >, <S§r > , and <Si >give the ellipsoid

axes and in this case produce a degenerate ellipsoid, namely, a

\

N

t
o

|
—
i
%

cylinder of radius 1 extending to plus and minus infinit’y—'along- the
x axis.

If this cylinder is rotated through an angle \ (change of spin
direction relative to particle motion) equal to 90 deg, the new el-
lipsoid should be a cylinder of radius 1 extending to infjnity aiong

the z axis. Then the spin-product expectation values are
(2)-1
x : :
&)
Yy

<Si> = 0, with expectation values of other products still zero.

|
—

The tensor components<T2M >may Be expressed in terms of these:
(T = gy G () - ) |
. 2'0 '\,7 N\ Z ’ - -,
_ P T '+':‘ . . , ’
<T21> 'JT/Z <<SXZ > <Szx> ti <Sys.z> o1 < Sz Sy >) ¥
LACIREY
<Tzz> N3/2 <<Sx -\S/ |

i
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" The values of <TZM before magnetic-field rotatvion'were.

(1,9
' <T21>

{,2)

'
The final value of <si> after rotation gives
: 1
‘ <T20> =1/N2 (0-2) = 2.

1
This agrees exactly with the <T20> found from the first of the

1/NZ (3-2) = INZ;

0;

rotation equations above with \ = 900,

<T20>'= (1-3/2) <TZO> + 3/2 <T22> = -2/NZ5

. : 1
and calculation of the other <T2M > values shows the two methods

to be equivalent.

G. Restrictions of Time-Reversal Invariance

Invariance under time reversal is satisfied for scattering
processes if the scattering matrix as a function of the time-reversed
momenta and spins is equal to the adjoint of the original scattering
matrix,

— = = - — =

M (-pZ’ "pls ‘S) - M (Pls pZ:S)-
Then it follows that

Tr M{p,5) M'(3,5) o, = Tr M'(5, -5) M (-5, 5) 0,
where Oi is any spin operator used in the description of scattering.
A more general statement for scatterings complicated by the action
of a magnetic field is the requirement that the transition probability
- for the forward process e.qua_l the transition probability for the time-
reversed process
iAS -iAS

™M Ml ey = e Ml My My MMl Ty,

.{,
Tr M; M 1 M M,

2



where M, is.the scattering matrix associated with Target 1 and M,
the scattemng matrlx assoc1ated with Target 2, while the rotation
operator e )'\SY descrlbes the action of the magnetlc field between
scatterings 1 and 2. Both of these conditions require that terms odd
under time reversal, such as SPK , not be included in the scattering
matrix, and with parity conservation give the form of M presented by
Stapp (or of MM+ discussed by Lakin),

Operators which are odd under the par1ty operation have expec-
tation values after single scatterlng which are zero (Section II. D) if
terms violating parity conservation and time-reversal invariance
are not permitted in the scattering matrix M. The same sort of
conclusion cannot be drawn for operators changing sign under time
reversal. In the n-P-K coordinate system (defined in Section II. C),
the scalar product SijPin = (§°f’) (§ K) + (E‘s--f{) (S P) or\ SPK is
odd under time reversal. This means that it cannot appear in the
scattering matrix M. However, permissible terms of M c.an com-
bine in the product MM+to give a nonzero expectatlon value for 5 K
after s1ng1e scatter1ng, i.e., the SnSK and S S terms of MM#D

reduce to. S and therefore give a quantity proportlonal to the Stapp

PK.
coeff1c1ents b(6)x d( 6 ) rather than zero for Tr MMJr

The orientation of the principal axes of the polar1z§tli<on ellip-
soid in the plane of scattering would have been along the P and K
directions, had SPK been re‘qui»rved to be zero by time-reversal
invariance; instead, the orientation should in general be at some
éngle to these directions. This angle can be only poorly estimated

by the impulse-approximation evaluation of the coefficients in M

it was found experimentally to be about 40 deg (see Fig. 16).

«



=25

III. EXPERIMENT

A. Introduction

A double scattering-is necessary to determine the poiérization
components produced in scattering an unpolarized beam of particles.
As has been shown in previous sections, the cross section for deu-

teron second scattering (without magnetic bending between targets)

I, (8,,0) = 1, (6,) [1 ¥ <.T20>.l (T,0), *+2 <<1T11~>1<1Tu>z
ST RCIN W) STEYCHD SYCHD e

or, more simply,

is

//

Ip(62,¢)=1u(62) l+d+ecosd+fcos2d )

where the parameters d, e, and {f contain products of the polariza-
tion components whichlwould be produced by scatterings of unpolarized
beams at first and at second targets. Evidently there is, in addition
to a left-right asymmetry arising from the cos¢term, a vertical-
horizontal asymmetry coming from the cos2 ¢ contribution. Further,
the polarized-beam cross section averaged over all ¢ is larger than
the unpolarized beam cross section by the factor d. Measurements
of the polarized cross section for at least three values of ¢ and of
the unpolarized cross section are necessary to determine the quanti-
ties d, e, and f for a particular qu |

The usual double scattering is not sufficient, however, to
determine all tensor components, as it does not separate <i’I:“>
and< T21> , the vector and tensor polarization parts of the p‘arameter
e. To do this, it is necessary to perform a second scattering of two
-different polarized beams, one of which has been appreciably changed
by the action of a large magnetic field between first and second
scatterings. The <TJM> 1 in the above expression then bevcome :

the '"rotated' components discussed in Section II.



An essential part of the work reported here (the suggestion
of Dr. Ronald Mermod) was the use of the magnetic field of the
cyclotron to produce two external beams of differing polarization;
there were ﬁtilizec_l internally first a left-scattering target and then
a right-scattering target, with the latter located some 230 deg back
of the former so that scattered beams of the same momentum and
magnitude of scattering angle passed through the exit channel to
undergo a second scattering in the cave. (See Figs. 4 and 5) As
has been shown, the rotation of the deuteron polarization tensor
relative to the direction of motion is given by y (4-1) or about
-1/6 times the angle of deflection; hence, bendings produced by the
large magnetic field of the cyclotron (23, 000 gauss) acting over
considerably different distances were necessary to produce sufficiently
different de.grees of mixing of the tensor components and, through
the comparison of the differing asymmetries, to permit reasonably
good determination of <T21> .

One set of measurements was made with beryllium targets in
which the internal scattering angles were 11 deg and the energy of
the scattered beams was about 410 Mev. A later set was made with
carbon targets, but with 10-deg scattering angles and higher energies
of about 420 Mev. Second-~-scattering angles ranged from 6 to 18 deg
and included the diffraction minimum (14.3 deg for beryllium and 13.0
deg for carbon). In both cases, the cross-section parameters d, e,

and f were all found considerably different from zero; this was not

so0 at the lower energies of 124 to 157 Mev, at which Baldwin et al.

found only the quantity e different from zero and attributed this
2 :
11/~

% had been supposed that carbon might show different polari-

mostly to <iT

zation-effects from those obtained with beryllium, since it is a spin-
zero nucleus while beryllium is not; however, the angular variations
obtained were quite similar, with the patterns for carbon a little more
compressed; e values for carbon were generally somewhat lower than

for beryllium (see Fig. 14).
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I184-inch Cyclotron
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74° d
\ / 4 9'
\
SPAERN
\
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Dee

\Mog net pole

Physics cave

Target No.2

MuUB-277

Fig. 4. View of cyclotron and paths of polarized beams.
Designated in the figure are: d, dee target used )
for first scattering; m, meson target used for
first scattering; R, regenerator; M, magnetic
channel; S, steering magnet; Q, 4-inch quadrupole;

Cp’ premagnet collimator; and cs, snout collimator.
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Dee target | Meson target
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MU=-17291

Fig. 5. Pictorial representation of dee- and meson-

' target double scatterings. Cones represent
scattering of particles into angle 6., at Target 2,
with the darker portions indicating greater in-
tensity of particles. The value of the deflection
angle m is given in the x]y 2z} system in each
figure.

2
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An attempt was made to scatter a beam from a target in the
steering: magnet (Fig. 4) in order to eliminate the effects of the’
magnetic field and perhaps"'aléb some systematic errors. However,
this'was found irripracticalbecause' of an appreciable high-energy
tail and also considerable l'ow;.enérgy contamination. {The unwanted
particles appeared to derive from deuteron stripping; the method did
subsequently prove useful for polarizing full-energy or degraded

protons.)

B. Geometry of Internal Scattering

The first target used,. fhe so-called '"dee target,' was located
at an azimuthal position of 74 deg with respect to the center of the
dee and at a radius of 81 in. (P:os'ition d, Fig. 4). The target was
placed .ra(‘iially just inside the region where regeneration starts.

The strong regenerator field perturbation (centered at an azimuthal
angle of 116 deg and extending 8.deg in either direction) and also the
field variation in the magnetic channel 1eading to the exit pipe required
some ,ca’refu.l orbit plotting for the determination of the desired target
positibn, (See Fig. 6.) -

Since polarization theory and Baldwin's results indicated that
maximum polarization occurred at ap’ﬁroximately the same value
of KR "(with K the .momentum transfer and R the nuclear radiﬁs) for
various ‘energie‘s and target nuclei, an estimate was made from
Baldwin's data that the scattering angle for maximum polarization
at some 400 Mev would be 10 or 11 deg. To avoid regenerator
action, but obtain maximum energy, 81 in. was chosen as the
greatest permissible radius. These vchoi‘ces of scattering angle and
_ fadius then determined the target azimuthal position and the momen-
tum of the scattered beém; orbits showed that a beam of
Hp = 1.70 x 10° gauss—in,‘ scattered at 11 de’g‘ from a target located
at 73 degrees azimuth passed through the magnetic channel into the
exit tube and through the beam -defining premagnet collimator.

Measurements ins.ide the cyclotron tank indicated that the

dee target could be positioned to an accuracy of better than 1/2 in.
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Fig. 6. Radial variation of cyclotron magnetic field.
(Measurements taken in October 1957.) The
crosses indicate the position of the scattered
beam at0 =116 and at 6 = 143 deg.



radially and azimuthally. The uncertainties in scattering angle
arising from target radial and azimuthal positioning errors were
0.12 and 0.03 deg; the uncertéinty due to a spread of perhaps 3 x 103
gauss-in. in momentum acceptance of a 2-in. -wide premagnet collimator.
was 0.50 deg; and the error due to radial oscillations was" perhaps
0.13 deg. Thus there was an rms uncertainty of 0.53 deg in the
internal scattering angle. The radial position of a copper collimator
("probe') put at 105 deg azimuth to stop regenerated beam served
as an experimental check on the orbit of the scattered beam from the
dee target. _

The "meson target' (thus named because of its customaryvuse
~ for meson production) was located so as to scatter right tﬁrough the
same exit channel, again from a.radius of 81 in. Several orbits .v
at 1.71 % 106 gauss-in. momentum were extended back from the dee-
target poéition to determine the azimuthal setting of the meson target
necessary to send an 11-deg scaftefed beam through this dee position
at 11.deg to the equilibrium orbit. (The azimuthal coﬁstancy of the
cyclotron field between dee and meson targets assured an 11l -deg
" meson-target scattering angle for an l11-deg beam angle at the dee-
target position.) A variation of 4 deg in azimuthal setting of the
meson taz:'get was found to give a 1-deg change in acceptable scat-
tering angle. v _

| In practice, the final position of the meson target was detér—

mined by maximizing beam intensity as a function of azimuthal
position after setting the 105-deg probe as required by the dee-
target beam; this differed slightly from the orbit-defined positionﬂn
the case of beryllium, but the discrepancy could be well explained
‘b'y a slightly lower momentum (1.70 % 106 gauss-in.). The rms
eprror in scattering angle was estimated to be perhéps 0.60 deg,
only slightly greater than that of the dee-target beam because of
the focusing action of the field.

The general character of the plotted orbits is shown in Fig. 4.

The high field gradients of the regenerator and magnetic-channel
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regions gave good momentum selection. vTo determine that the meson-
tafget beam passed through the dee-target position, an attempt was
made to clip the .beém at that azimuth; however, thé scattered beam
from the clipper obscured the effe'ct in meson-target. beam. The
position of the meson target, the beam momentum, and the probe

position were considered sufficient confirmation of the orbit.

C. Polarized Beams from Beryllium Targets

In the first phase of experimental work done with beryllium,
the internal beam had a.calculated energy of 447 Mev at 81 in. radius.
Because of radial oscillations, the incident beam energy was perhaps
10 Mev lower.; ipniz_ati‘on loss in the 1-in. target was about 18 Mev
and recoil loss 3.7 Mev. ‘A range curve of the dee-target scattered.
beam (See Fig. 7a) showed it to have a mean energy of 410 Mev with
a spread of +2.5 Mev.  The enefgy of the beam scattered from the
meson target was 411 Mév vx./itbh a spread of £4.3 Mev. The degraded
regenerated beam matched the dee-scattered beam almost exactly;
its energy was 410 Mev .‘with a spread of 2.1 Mev (Fig. 7b).

In order to stop the regenerated circulating beam, which was
perhaps fifteen times as 1arge. as the scattered beam, it was nec- :
essary to position a copper -block on the main probe at 105-deg
azimuth, the block Having a 1.5-in. -diameter hole to pass the
scattered beam. This probe reduced the regenerated beam by a
factor of more than 1.6 x 10°. - | -

The pro‘cedufe in obtaining the dee-target scattered beam was
to optimize the steering-magnet current, to adjust the plrobe position
for maxim‘ufn beam intensity, :and then to reoptimize the steering
magnet. (See Figs. 8 and 9.) The meson-target beam required
in addition considerable exploration of radial and azimuthal positions
after the copper probe had been set as required by the dee target.

(See Fig. 10.) Azimuthally the meson-target beam was especially

=

well defined; with a half width of 3.0 deg; while the dee-target beam
was much broader (with a peak found at 74 deg, as predicted by
orbits). The 4-in. focusing quadrupole magnet in the exit channel

)
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Fig. 7. (a) Range curve of beam scattered by dee

target (beryllium). The energy was found equal
to 410 +£2.5 Mev, and the extrapolation factor
was 2.28. The energy threshold indicates the
amount of absorber (except for recoil correction)
used for scattering measurements.-
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Fig. 7. (b) Range curve of degraded regenerated
beam. The energy was found equal to 410+2.1
Mev. This beam was used for beryllium scatter-
ing measurements,
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Fig. 8. Variation of beam intensity with radial position
of copper probe. The dotted curve represents
one -tenth the intensity of the regenerated beam
observed with dee and meson targets withdrawn.
Circles designate the dee-target beam; triangles,
the meson-target beam. The position of the. hole
in the probe was at a radius 5/8 in. greater than
the indicated reading; the edge clipping the re-
generated beam was at a radius of 5 in. less than
indicated. '
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was set by maximizing the beam after ;:hoosing approximate currents
calculated for a focus just bleyond the point of entry into the cave.

Beryllium targets measuring | in. in the beam direction, 1
in. radially, and 1/2 in. vertically were used to obtain the polarized
beams. The premagnet collimator (designated as 5 in Fig. 4) had -
a 2x3-in. horizontal-vertical opening; and the snout collimator (cS
in Fig. 4) was 1l in. in diameter and 46 in. long. Beam intensities
obtained were :

for dee target, 1.9 x 105/sec;
. for meson target, 2.3 x 105/sec.a

For.meas”uremé.ntss of’::unpo:farized cross sections, a regen-
erated beam of about 1.1 x 106/sec was used.

For characteristics of the various beamé analyzed, see

Table I.

®The fact that the meson-target beam intensity was greater than
the dee-target intehsity could perhaps be explained by a focusing
action of the éyclotron field between meson-and dee—farget positions
and perhaps also by slightly greater circulating beam intensity near

the meson-target location.

Pt
N
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"Table I.

Beam characteristics

A. Beryllium targets

Degraded

Position

Scattering
angle

‘Hp (gauss-in.)
Energy (Mev)

" Intensity
(10°/sec)

Carbon targets

Position -

Scatterihg
angle

Hp (gauss-in,)

"Energy (Mev)

Intensity
(105 /sec)

Dee-target ‘ Meson'_targét

scattered scattered regenerated
beam beam beam
74° 81.0" - 205.5% 81, 0"

11.0 + 0.5° 11.0 + 0.6°

1.70 < 10° 1.70 x 106

410 + 2.5 411 + 4.3 410 £ 2.1
1.9 2.3 1.0

78° 81, 7" 2139 g1.7"

10.0 + 0.6° 10.0 + 0.7"

1.75 x 10° 1.75 x 10°

416 + 2.7 422 + 6 425 + 2.1
0.65 0.93 15.0
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D. Polarized Beams from Carbon Targets

Extreme difficulty was encountered in extracting polarized
beams for carbon measurements because of changes in the cyclotron
magnetic field. After beryllium measurements were concluded,
partial shorting of a coil in the main-field windings for the bottom
pole face had necessitated shunting of the lower coils; main- and
auxiliary-field values required fo‘r:a good regenerated beam had
changed.. The regenerated beam was found to have increased in
energy' from 455 to 465 Mev. Changes in field gradients over the
scattered-beam orbit could be only roughly estimated; with further
shunting of the main field and careful tuning (phases and amplitudes
of the reeds controlling the rf voltage), a meson target polarized beam .
of intensity almost comparable to the beryllium-scattered beam was
obtained. The momentum having been determined for this beam, an
orbit was plotted back from the exit channel through the experimentally
determined probe and meson-target positions. The scattering angle
at an 81-in. radius was found to be 10 deg rather than 11 deg, as a )
slightly higher-eriergy beam was selected by the magnetic channel
than for beryllium. Corroboration orf approximate orbits drawn with
estimated field values was obtained when a beam was extracted from
the dee target set at the position predicted for a 10-deg scattering.
Energies of the polarized beams from the dee and meson targets
wére 416 and 422 Mev, respectively, with energy spreads comparable
to those for the beams of earlier measurements. Other beam
characteristics are given in Table I. The carbon dee target measured
5/8 in. radially, 3/4 in. vertically, and 2 in. azimuthally; the carbon
meson target had the same radial and azimuthal measurements, but

extended 2 in. vertically.

E, Energy Degradation

In this experiment, polarized and unpolarized beams were
not matched exactly in energy and energy spreads. Greater values
of d and f required less concern over such techniques than in the

. o 2 . .
experiment of Baldwin et al. The maximum energy difference was
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9 Mev and the maximum difference in spread (6.0 -2.1) Mev.
Degrading of the regenerated beam from 455 to 410 Mev for
the beryllium experiment was accomplished by placing several inches
of polyethylene absorber at the entrance to the snout collimator
(Position p, Fig.4). In one set of carbon measurements, degrading
with copper absorber placed in the degrader box (Position q) was
found to produce a beam undergoing greater attenuation than normal
in the telescope absorber (probably because of protons.originating
from stripping in the degrader). Satisfactory unpolarized carbon
cross sections were obtained by again degrading with polyethylene

in the snout collimator from an energy of 465 to 425 Mev.
F. Apparatus

The scattering table used was similar to that described in a
report of earlier polarization worklo; it permitted independent
variation of the polar and azimuthal angles 6 and ¢. Rigidity of
the table was such that when the counter telescope Qvas rotated
through azimuthal angles from 0 to 360 deg, front and rear cross
hairs were displaced by less than 1/64 in.; as the 0-deg line for
the scattering arm was also closer than 1/64 in. to the line defined
by the cross hairs, counter misalignment due to deformation of the
scattering table during rotation should not have been more than 0.02
deg. Unlike the situation in nucleon scattering, the 0.l-deg error
in the setting of the polar angle 62 could produce errors in the deu-
teron cross-section parameters, since the ratio of polarized to
unpolarized cross sections entered into the determination of each
quantity. . A

To achieve the high azimuthal symmetry of incident beam espec-
ially necessary in deuteron measurements (done at four ¢ angles) and
also to obtain good energy definition, a l1-in. snout collimator was
used. The second target was generally 1/2 in. thick, with an
additional 1/4 or 1/2 in. added to 1ncrease the intensity at larger
angles of scattering. '

The counter telescope consisted of three plastic scintillators
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viewed by 1P21 photomultiplier tubes; the defining counter measured
1x6 in.and was placed 43.5 in. from the target. Sufficient copper
absorber was put between Counters 1 and 2 (its position later being
changed to that between Counters 2 and 3 in carbon measurements)

to stop most of the inelastically scattered deuterons, the amount
being varied slightly with scattering angle to compensate for changing
recoil loss in the target. The scintillator of Counter 1 was 1/2 in.
thick; Counters 2 and 3 were 3/8 in. in thickness. Counter 1 was
centered on the scaftering arm to within 1/64 in.

, The various factors entering into the angular resolution of the
counter telescope were well matched for scattering from the 1/2-in.
target, The uncertainty in angle 8 due to multiple scattering, to |
finite counter width, and to beam width were 0.38, 0:38,and 0.53
deg, respectively, for an rms uncertainty of 0.75 deg. (See formulae
in Pettengil'l thesis. ll) The resolution of the counter system without
target was determined experimentally and checked very well with

the theoretical estimate made:

1.5 Wi’ + wg
561/2 = = 0.57 deg.
N2 62 in,

Here Wy is the beam width at the collimator; Wos the width of the ‘
defining counter; and 62 in,, the distance from collimator to defining
counter. For comparison, the ha.lf widths of the regenerated beam
profiles given in Fig. 11 were found to be 0.52 and 0.62 deg. Reso-
lution in the direction of ¢ variation was, of course, much poorer
because of counter dimensions; however, the cross section varied

much less rapidly with ¢ than with 6.

G. Experimental Procedure

After the optimizing of various internal parameters such as
target position and steering-magnet current, the snout collimator
was aligned by using x-ray film to obtain as homogeneous a beam
as possible. As in pfevious polarization experiments, a transit
was placed at the back of the experimental cave for the purpose of

aligning the scattering table. Approxifnate alignment was

i)
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Fig. 11. Profiles of regenerated beam in horizontal
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curve); 00 and 066 are to be compared to an
estimated resolution of 0.57 deg. Displacement
of centerlines from 0 deg indicates the amount of
realignment that was necessary.
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accomplished by taking x-ray pictures of the beam at the front and
back of the table, fixing the transit at the centers of the pictures,
and moving the table to bring the cross hairs marking the axis of
rotation into coincidence with the transit line. The front of the

table was thén assumed well aligned and the rear brought into more
nearly exact alignment by equalizing counting rates both horizontally
and vertically at small'valués of 9; for homogeneous beams, this
was done without a scattering target, while for a less uniform beam,
the target was put in place and alignment made on multiply scattered
particles. Thisbeam profile was taken with telescope absorber of
an amount used for small-angle scattering. The.estimated accuracy
of alignment was 0.06 deg with the x-ray pictures and 0.03 deg with
counters; the latter was fairly consistent with observed differences
in the l1l-deg unpolarized cross-section measurements at various

¢ angles. (See Fig. 12.) \

A range curve was taken at low beam with counters at zero
deg by vé.rying the amount of copper absorber in the telescope, and
the '""energy threshold' necessary to eliminate most of the inelastic-
ally scattered particles was determined. (See Fig. 7.) The pro-
cedure followed was to set the copper absorber at 2 g/cmZ less
than the knee of’the range curve for the ll-deg scattering and then
to add or subtract small amounts to clomp"ensate for recoil loss in
the target. | |

, | As the geometry of scatter.ing;;was such that most of the
background, presumably from the snout collimator, could be ex-
pected to pass through the target, an amount of absorber equivalent
to the target should have been placed in the telescope for measure-
ments with the target out. This Wés done for the set of scatterings
with carbon targets and was found to have an effect of not more than
a few percent in the cross section.

Two scinti-llatioh counters, 1l in. and 5/8 in. thick, were
placed in the beam incident on the second target as monitors when
low intensity was desired; this was the case when the counters were

delayed and plateaued, the range curve was taken, or the table was
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Fig. 12. Unpolarized cross section vs. azimuthal angle
¢ at a scattering angle of 11 deg. Circles rep-
resent beryllium measuremsnts; squares, the car-
bon values. No correction has been made for
absorber attenuation.
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aligned. (For the first two situations, these monitors were unnec-
essary and were replaced by Counters 1 and 2 of the telescope when
absorber was put between Counters 2 and 3, as was done for carbon
measurements.) The usual intensity of incident beam used for these
" measurements was about 500 counts per second; this gave an inap-
preciable accidental rate, as there were 30, 000 to 40, 000 resolving
times a second for the Garwin coincidence circuit used.

In scattering measurements, an argon-filled ion chamber was
used as monitor; the multiplication factor for this chamber was
calculated to be 1240 for 410-Mev deuterons on the basis of cali-
bration information of earlier proton work, 12 With the scattered
beams obtainable:, this gave an electrometer charging rate of one‘
full-scale deflection per 3.5 minutes, with fulluscale being equivalént
to Q.'O':lO'4 p coulomb of accumulated charge (designated loosely as an
"int'.é.g’r'ated volt" or "I.V."). Corrections for i_on—chambef drift
were made, and amounted to as mﬁch as 3% of the actual beam rate
for the scattered beams.

To eliminate low-energy particles scattered from the end of
the snout collimator, 6in. of copper and lead shielding with a 2-in. -
square hole for the beam was placed between the snout collimator

and the target.

H. Counting Procedure

The object of double scattering was to.detern.'line the cross;
section parameters d, e, and f as functions of 62., Measurements
of the unpolarized-beam cross section Were made first at a scattering
angle of 11 deg with ¢ = 0 deg (left), 90 deg (up), 180 deg (right),

" and 270 deg (down) to check scattering table alignment. (See Fig.12.)
With good élignment, as for beryllium unpolarized measurements,
scattering measurements for only one ¢ were considered sufficient
for the unpolarized cross section at other scattering angles 62;

for small-angle carbon scattering, the values of 1, (92) used in
calculations were averages obtained from measurements at all

¢. For the polari.zed beam;- of course, measurements had to be
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made at the four azimuthal angles for every 62,‘ Results for 62
equal to 61 were determined especially carefully, as the <T M>
values obtained from these were to be used\in finding <T M (6)
from measurements at other 62»- :

Three counting rates were measured at each (0, ¢) setting:
"target in'"' with normal delay, ''target in'' with 76 nsec delay
added to one counter, - and "target out.' Accidentals were generally
about 5% of the normal-delay measurements, while the background
was about 10%. In the beryllium measurements, accidentals were
improperly taken;the proton delay of 5.2 shakes was used and re-
sulted in an almost negligible rate. Unpolarized-beam results
obtained later as a check indicated that the accidentals should have
been higher by about 11% of the effect for the unpolarized beam and
3% of the effect for the polarized beam. Corrections in d, e, and

f were made accordingly.

J. Results of Second Scattering

The subtraction of accidental and background counting rates
from the "target in'" measurement gave the actual rate of scattering
by the target. Results for the polarized and unpolarized beams at
the various ¢ angles were used to obtain the desired cross-section

parameters at each angle 62: :
I, +1,,+1 +1
\

i T/I=1:£ 90 " 10 F 270 |
p.u 4Iu

e = (10-1180)/21u,

£= (Ig+tIgy-Igg-I70)/41, .

%76 nsec is the time between two rf fine-structure pulses of deuterons,
Accidentals were measured by delaying the first counter with respect
to the adjacent second and third counters when the absorber was be-
‘tween Counters 1 and 2 and by delaying the rear counter with respect

to Counters 1 and 2 when the absorber was placed after Counter 2.
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The subscripts designate the angle .dp or r',/efer to polarized or un-
polarized measurements. (Note that the formulae given by Baldwin
for e and £, the latter being his quantity B, are incorrect, since
the first should contain 1 +d +f and the second l%‘d in the denominator;
he did, of course, find d and f to be zero within experimenfal
error. )

For the scattering of the polarized beam, a plot of the cross
section versus azimuthal angle at a scattering angle of 8 deg (Fig. 13)
shows a large 1eft—fight asymmetry; f, the cos 2¢ coefficient, on
the other hand, is given by the difference between the horizontal

and vertical averages and is rather small. The "left-right"

asymmetry__ID__I_L&Q_ used in nucleon scattering here is equal to
I +1 =
0 180 I +I I

I -
e/(1 +d.+f), and the "horizontal-vertical asymmetry%10+11 80+190+1270
0 7180 90 270

equals f/(l1+d). These quantities are given with statistical errors
for beryllium and carbon scatterings in Table II. |
Because each of the desired quantities d, e, and f contains
the ratio between polarized and unpolarized cross sections (which
appears in d in such a way as to make this particular quantity
ve";'y sensitive to any error), a serious problem arises. Careful
extrapolations to zero absorber to determine the actual elastic-
scattering cross sections (i.e., corrections for nuclear attenuation
in the.tele."scope absorber) or some sort of normalization of un-
polarized to polarized cross sections: must be made. The former is
ordinarily subject to considerable error; in the beryllium measure-
ments reported here, the extrapolation factors (ratio of counting
rate with zero absorber to that with absor.ber used in scattering
measurements) for polarized and unpolarized beams differed by about
10% and were found to produce a considerable effect in the quantity d.
The variation of extrapolation factors was investigated to
some extent.  Displacement of the snout collimator by 1/8 in.
caused a 6% change in extrapolation factor; extreﬁne chaﬁgeé in

counter geometry had no effect. That the alignment of the beam in
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Fig. 13. Polarized cross section vs. azimuthal angle
for scattering from beryllium at an angle of 8 deg.
The solid line represents dee-target scattering;
the dotted line, meson-target scattering.
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Table II.

Asymmetries in polarized-beam scattering
Here e/(1+d+f) is the usual ""left-right'' asymmetry; f/(1+d) is

"horizontal-vertical' asymmetry. Errors are statistical.

,;'\ Dee target Meson target
6, e/ (1+d+f) £/(1+4d) ’ e/(1+d+f) f/(1+4)
Beryllium
6°  0.411+.016  -0.003£.012  0.487+.013 0.0504.008
8° 0.555+.014 0.055+.009  0.562+.011 0.041%.008
10° 0.432+.024  0.070.021 0.488+.016 ©.078+.012
11° 0.322%.016 0.069%.012  0.448+.010 0.065%.010
12° 0.294+.034 0.073 £.025 0.312%.022 0.085%.017
14° 0.213+.032 0.105+.024  0.185+.026 0.087%.020
16° | 0.206+.030 0.101+.024
Carbon
6° 0.320%.013 0.040+.010  0.444% 010 0.035%.009
8° 0.402%.02L  0.096+.024
9° 0.329£.023  0.125%.019. 0.458%,023 0,054+.017
11° 0.167+.030 0.095 .025 0.258+.026 0.098%.021
13° 0.114%.047 0.022+.035 0.201 £.033 0.069:.025
16° 0.170 +.084 0.089+.075  0.212%.040 0.065%.030
© ' 0.182+,042 0.105%,035
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the snout collimator was important was further indicated by the
fact that extrapolation factors for scattered beams centered about
one value and for regenerated beams centered about another value
slightly higher.

Thus the use of absolute cross sections to find d4, e, and f
seemed rather questionable. As a better alternative, the assumption
was made that the polarized and unpolarized cross sections at 6 deg
should be equal, a and the unpolarized cross section was normalized
to the polarized for all 6. Figure 14 shows the angular dependences
of the quantities' d, e, and  f which were obtained through normal-
ization and also extrapolation of cross sections; the differences in
(1+d), e, and f values for the two methods were about 2.5% for
beryllium and 3.5% for carbon. Had d been taken as small and
positive instead of zero at 6 deg, f would also have been increased,
since f/(1+d) depends only on Ip (92, ¢) and is unaffected bgr normal- .
ization of Iu to Tp; a behavior closer to sin2 0 for <TZO> and <T22>
then could have been obtained. ' \

The unpolarized cross sections as functions of scattering angle
are givenvin Fig. 15, These were obtained by substituting for the
integrated-volt monitor unit (I. V.) the equivalent incident intensity
of 5.24 x,lO7 particles. The unpolarized cross section for scat-
‘tering by beryllium in a later run agreed with the values given in

. Fig. 15 to within 3.0% at 8 deg and 12% at 11 deg; better agreement

could probably not be expected in view of the uncertainties discussed

" above.

1

K. Energy Asymmetry, Beam Contamination

Comparison of the range curves taken of the dee-target beam

at 6 = 0 and 6 = 10 deg left indicated that the beam was low in energy

% This assumption was based on the fact that in first Born approxima-
tion, <TZ&is proportional to terms in sin2 8 (Stapp, 3 pp. 77 and 99),

but is probably a little extreme.
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Fig. 14. (a) Cross-section parameters vs. scattering
aﬁgle, with total errors, for the beryllium dee-
target scattering. Solid lines refer to values
obtained by normalization; dotted lines, to values
from extrapolation of cross-section measurements.
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Fig. 14. (k) Cross-section parameters vs. scattering
angle, with total errors, for the beryllium meson-
target scattering. 5olid lines refer to results
from normalized data; dotted lines, to those from
extrapolated data.



54

08 T T T T T T T T
06 .
o0al | /' {\} |
al - /{ o ﬁ
L ]
£(9) \%_/%
0 = /_— e T T -E% ---- -
, d(8)_al-=""
1 | | | | 1 | |
0 2 4 6 8 0 12 14 16 18

Scattering angle 8 (lab) (deg)

MU-17301
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from extrapolation rather than normalization.
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angle, with total errors, for the carbon meson-
target scattering. The dotted curve represents
results from extrapolation rather than normalization.
The diamond at 6 deg indicates the e value obtained
from cross-section measurements at 45, 135, 225,
and 315 deg azimuth.
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15. (a) Cross section for the scattering of un-

- polarized deuterons by beryllium at 410 Mev. The

heavy curve represents experimental results, for
which errors were less than the size of the points
plotted. The H designates calculations done 'in the
impulse approximation with Hafnér proton ampli-
tudes, the solid curve including the effect of
simultaneous scattering. The B indicates impulse-
approximation results obtained with Bjorklund
amplitudes for proton scattering (solid curve) and
neutron scattering (dotted curve); both include
simultaneous scattering. Triangles show the
negligible effect of including the deuteron D state
in the Hafner calculations.



57-

T T 1717
|

I
|

T
I

T IITTIII
] llIIII

T TTTT]

T
Ll

T

Cross section (mb /sterad)

10 =

| | 1 ] | |

0 7 8 12 6 20 24
Scattering angle (c.m.) (deg)

MU-17304

Fig. 15 (b) Cross section for scattering of unpolarized
deuterons by carbon at 425 Mev. Experimental
results are indicated by the heavy line. The H
designates calculational results from the impulse
approximation with Hafner proton amplitudes,
the solid curve including the effect of simulaneous
scattering.
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on the left or ¢ = 0 side. The decrease in average range (corrected
for recoil loss at 10 deg)showed that I0 - 11‘89 or the quantity e re-
quired a 4% correction for this effect.

The ratios of counting rate at the energy threshold to that at
the average""energy were comparéd for =0 and 10 deg left. The
amount bvahich they différed indicated that, for 10 deg,' there was
an 8% inelastic contamination of the beam above the energy threshold.
However, on the basis of Tripp's determination of the negligible
effect of inelastic contamination on asymmet.ry results with nucleons,
it was concluded that the inelastic part of the deuteron beam probably
had little effect on measurements exéept perhaps in the region of the + i*

diffraction minimum.

IL.. Errors

Errors in d, e, and f derived chiefly from thr_ee sources:
statistics of counting, comparison of polarized and unpolarized
beams, and misalignment of the scattering apparatus. Systematic
errors as well as statistical are given with values of 'd, e, and
f in Table IIIL. %Sxpressions for evaluating errors from the three
sources mentioned‘ are given in Appendix E. ‘

In the normalization of fhe unpolarized cross section to the
polarized, error was introduced by the statistical uncertainties of
the 6-deg cross-section measurements. . Relative error in Iu and
hence (1+d), e, and f due to normalization amounted to 6% for
beryllium and 2.2% for carbon results. |

The expected misalignment of the scattering table in polarized-
beé.m measurements could be estimated by observing the horizontal
and the vertical misalignments evident in unpolarized-beam cross
sections. . For beryllium measurements, misalignment observed at
6 = 11 deg'was only 0.012 deg, while for carbon, it was at least 0.06
deg. Misalignment of the snout collimator also produced asymmetric
effects in scattering which were included in these estimates; and
the misalignment error indicated was perhaps an over-estimate for

the polarized beams.



Table III.

A.

Cross-section parameters with total errors for scattering from beryllium at 410 Mev

Dee-target scattering

Error in dd Error in e Err(;r in fd
92 statistics f\nrmal- misalien- d+Adrms statistics porr_nal— misalign- e+L\erms statistics porrpal- misalign- f+Afrms
_ ization ment ization ment ization ment
6° 0.0629 0.0615 0.0016 0.00+.088 0.0305 0.0253 0.0252 0.411 +,047 0.0127 0.0002 0.0016 0.003+.013
8° 0.0204 0.0611 0.0070 0.006 £ .065 0.0146 0.0359 0.0186 0.583 £.043 0.0099 0.0031 0.0070 0.050+.013
10°  0.0437 0.063¢6 0.0048 0.034+.077 0.0279 0.0287 0.0163 0.467+.043 0.0156 0.0044 0.0048 0.072+.017
11° 0.0208 0.0670 0.0029 0.090£.070 0.0194 0.0231 0.0130 0.376 £.033 0.0131 0.0046 0.0029 0.075+.014
12°  0.0527 0.0687 0.0029 0.117£.087 0.0636 0.0217 0.0132 0.354+.068 0.0411 ' 0.0050 0.0029 0.081 +.041
.14°  0.0731 0.0687 0.0013 0.117x.100 0.0543 0.0156 0.0083 0.254+£.057 0.0371 0.0067 0.0013 0.109+.038
Meson-target scattering
Error ind" Error ine " Error in "
6° 0.0620 0.0615 0.0027 0.00+.,087 0.0336 0.0314 0.0267 -0.510+.053 0.0083 0.0030 0.0227 0.050 +.009
8% 0.0152 0.0707 0.0068 0.149+.073 0.0149 0.0413 0.0214 -0.671 £.049 0.0092 0.0029 0.0068 0.047+.012
10° 0.0470 0.075¢ 0.0055 0.234+.089 0.0326 0.0399 0.0200 -0.650+.055 0.0151 0.0059 0.0955 0.096 +.017
11° 0.0208 0.0769 0.0047 0.250%.080 © 0.0177 0.0374 0.0174 -0.609+.045 0.0119 0.0051 0.0047 0.083+.014
12°  0.0660 0.0860 0.0043 0.398+.109 0.0390 0.0291 0.0153 -0.473+.051 0.0240 0.0073 0.0043 0.119+£.025
14° 0.0826 0.0785 0.0020 0.277+.114 0.0406 0.0159 0.0109 -0.259+.045 0.0263 0.0079 0.0020 0.128+.027
16° 0.0959 0.0841 0.0011 0.367%x.128 0.0492 0.0192 0.0078 -0.312+.053 0.0341 0.0085 0.0011 0.137+.035
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Table III. B.

Cross-section parameters with total errors for scattering from carbon at 420 Mev

Dee-target scattering

Error in dd

0

statistics normal- misalign-

R d
Error in e

statistics normal- misalign-

Error in fd

2 T : d+Adl_ms normn e+AermS statistics 'porr_nal- misalign- f+Afrms

_ 1zation ment ization ment ization ment

69 0.0214 0.0214 0.0054 0.00£.031 0.0162 0.0071 0.0452 0.333+£.049 0.0098 0.0009 0.0054 0.040+.011
8° 0.0290 0.0224 0.0088 0.046 +.038 0.0297 0.0099 0.0406 0.461+.051 0.0241 0.0022 0.0088 0.101%.026
9° 0.0352 0.0229 0.0098 0.068+.043 0.0342 0.0085 0.0409 0.396 +.,054 0.0210 0.0028 0.0098 0.133+.023
11° 0.0321 0.0234 0.0050 0.094+.040 0.0367 0.0043 0.0317 0.201+.049 0.0266 0.0022 0.0050 0.104.027
13°  0.0441 0.0219 0.0019 0.023+.049 0.0495 0.0026 0.0196 0.119+.053 0.0352 0.0005 0.0019 0.023+£.035
16° 0.0858 0.0237 ©0.0002 0.109.+.089 0.1016 0.0044 0.0104 0.205 £,102 0.0797 0.0021 0.0002 0.099+.080
Meson-target scattering

Error ind™ Error ine™ Error in {7

6% 0.0165 0.0165 0.0078 0.00+.025 0.0151 0.0071 0.0370 -0.442 +.041 0.0094 0.0007 0.0077 0.024+.012
9°  0.0309 0.0200 0.0083 0.200+.038 0.0366 0.0091 0.0252 -0.555+.045 0.0273 0.0010 0.0080 0.061 +.028
11° 0.0285 0.0215 0.0035 0.284+.036 0.0378 0.0060 0.0182 -0.363 £.042 0.0287 0.0019 0.0035 0.113%.029
13° 0.0519 0.0308 0.0037 0.424+.060 0.0527 0.0066 0.0274 -0.306+.,060 0.0357 0.0021 0.0037 0.098 £.036
16° 0.0597 0.0311 0.0013 . 0.440 +.067 0.0646 0.0070 0.0109 -0.326 + 066 0.0430 0.0020 0.0013 0.093 +.043
18° 0.1188 0.0304 0.0008 0.407+.123 0.0722 0.0061 0.0031 -0.281 +,072 0.0499 0.0032 0.0008 0.149+.050

—09-
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One other source of systematic error not included in Tabie II
was that resulting from the uncertainty in internal scattering angle.
For the quantity (iT; >‘, which changed by 13% and 14% per deg
for carbon and beryllium, respectively, this amounted to about a
7% error in the dee-target and a 12% error in the meson-target
scattéring. |

..Incorrect quadrupole focusing or snout-collimator misalignment
was observed to produce a slightly elliptical deformation of the normally
round beam pattern incident on Target 2; the possibility of error from
this was investigated. For an intensity pattern having a '"quadrupole
moment' with separation of 1/32 in., it was found that any vertical-
horizontal difference was negligible and corresponded to a misalign-
ment for the scattering table of 5 x 10.5 deg.

Also, if the center of gravity of the beam were as much as
}1/64 in. displaced from the cross hairs at the front and at the rear
of the scattering apparatus, the error in angle was only 0.08 deg,
and correction of rear-end alignment with’vfhe use of counter measure-
ments as described above generally reduced this by a factor of at
least two.

One notable deviation from expected results was a difference

between 90- and 270-deg measurements for the polarized beam.

This was observed first in scattering from the beryllium dee target,

for which 90;270 deg differences were four to seven standard devi-
ations for angles of scattering ranging from 6 to 14 deg. Relative

differences appeared essentially independent of angle; after sub- .

traction of the known error due to misalignment, vertical asymmetries

‘for beryllium were found to average about 7+4%. Within experimental

error,. no differences were observable in meson-target measurements.
In carbon écatterings, there again were found 90-270 deg differences
for the dee-target beam and practically no differences for the meson-
target beam. The asymmetrié's after subtraction of misalignment
errors were found to average about 2.5%.

The poési.bility that the spin (1/2) of the beryllium nucleus
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might cause these deviations from expected cross-section behavior
can be ruled out on theoretical grounds. Thus it would appear that
there was some systematic error inherent-in dee-target scattering‘
.and perhaps associated with vertical misalignment of the fixed
entrance end of the snout collimator;" such effeé_t,s mig};he expected
to differ for beryllium and carbon scatterings beeause of slightly
different conditions, such as source size and position and orientation
of beam in the exit channel. Since errors in the 90- and 270-deg
measurements can;elled approximately when' fhey were summed for

.d- and f evaluations, no attempt was made at further investigation
of the differences. '

In summary, manir possible sources for expefimental error
were investigated. These included counter and cross-hair alignment
relative to the scattering appafatus, counter geometry, internal
target positions, accidental counting rate, beam attenuation of the
te 1e‘scope absorber (extrapolation factor), and beam -energy‘ asymmetry.
Extreme changes in counter geometry produced no effect in the range
curve; that accidentals were correctly subtracted was verifiéd by
obtaining the same cross-section values at several beam levels.
Measurements at ¢ angl'es of 45, 135, 225, and 315 deg agreed very
well with those at the usual angles. Double scatterings using a
beryllium internal tar’get‘and carbon second target gave consistent
results with the separate sets of measurements for each element.

(Section IV. K)

2If the nonconservation of parity should be possible in strong inter -
actions, a reasonable explanation of dee-target vertical asymmetries
and meson-target vertical symmetries would be the pi'oduction of a
small component of polaiization in the plane of scattering (violating
parity restrictions) such that the differe-nce in relative spin rotation
angle N, equal to 60 deg', would cause this component of polarization
to have a near -maximum value for dee-target scattering and a near-

minimum value for meson-target scattering.
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IV. ANALYSIS OF RESULTS

A. Cross-Section Parameters

Measurements of cross sections for each of the two polarized

beams ga\}e values of
!
<TZO>1 <T20>a’
2[<1T11>1 <iT“>2 - <T21§1 <TZ>Z},
f= 2 <_Tzz>'1 (2202

where the subscripts 1 and 2 refer to internal scattering at angle

d

[¢]
I

61 and external scattering at angle 62 and primes indicate transfor -
mation of the original tensor polarization components by action of
the cyclotron fieid. The beam from the'dee target was scattered
left and underwent a deflection of aboutv 66 deg before second scattering;
thé beam from the meson target was scattered right and was deflected
through an angle. of about 272 deg. (See Fig. 5. )' At the second tar-
gef, more particles were scattered left than right for the dee-target
beam (positive asymmetry), and more scattered right than left for
the meson-target beam (negative asymmetry), as viewed in the usual
coordinate system with the y axis parallel to the dee-target scattering
normal. -

Since the normal to the plane of scattering at the meson-tar-
get was opposite to that at the dee target, the coordinate system for
the former was obtained by rotation about the z axis of the dee-target
system and had its y axis directed downward. Thus if the angle of
deflection m was defined as positive for the usual left scattering in
the cyclotron field, it was then negative for a right scattering; X,
the angle of spin rotation relative to particle direction, was negative
for the left scattering and positive for the right scattering. Values
of N\ were -9.4 and +39 deg for the dee and meson targets, respec-

tively,
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The effect of the cyclotron field then was to mix the < T2M>
tensor components of polarization produced by the first scattering.
- With the above values of X used to calculate coefficients, the ''rotated" b
componeénts characterizing the beam at the point of second scattering -
could be expressed in terms of the <TZM> for angle 61 .from the -
equations give in Section II. F.
An alternate method of finding the rotated <T is the use
of the x-z plane ellipse (Fig. 16 and Appendix D). Z'>20> is de-
- pendent on <S > <T22> on <S >-, and <T21> < )
thus their behavior may be easﬂy determined by taking the inverse
squares of the rotated p' and Py intercepts for evaluations of
<I'20> and <T'22> ) respectwely, and by substituting snome associ-
ated pZ and Py into the equathn of the ellipse for <T21> .
As an example of the use of the ellipse, consider the carbon,

Case B value of <T20 without magnetic field rotation; it is -.405

and gives a P, intercept of

1%/5_5 PR ='1.,45,

NG.476

() = kT 6() -9)

. Rotation of 39 deg corresponding to meson-target scattering brings
¥

since

It

the P, axis into approximate coincidence with the major axis of

Z

the ellipse:

1.58

and

<TZO> 1//-2_ (3x%.400-2) = =0.565.

{This increase in the magnitude of T20> compared to the unrotated
value is reasonable, as <TZO> or d 1is observed experimentally

to be greater for meson-target than for dee-target scattering.)
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!
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Fig. 16. Polarization ellipse in the plane of scattering.
This was determined with tensor components from
carbon measurements with systematic errors.
Sohd\cu,rves represent Case B solutions for negative

o {curve 1) and positive <TZO {(curve 2); the
tted curve represents Case A with negative gTZ
The principal axes of the Case B elhpses are desig-

nated by a and B.
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\
The same answer is found by substitution in the formulae giVen

above: v
1 : .
<TZO> = 0.158 (.405) - 1.22 x.255 + 0.687 (-.235) =-0.536

As viewed in the coordinate system of meson-target 'scattering,

lemj = <iT11>1 <iT11> 2 - <T21> '1 <T_21> 2’

2

where <T21> ' is calculated with positive X. (No sign c?rréction hals
to be made in the 'd™ and ™ expressions, as <T20> and<T22>
are even under rotation about the z axis. To eliminate {iT1 1> products
- from the e parameters obtained from experiment, the expression

for e/d was subtracted from that for l’em| for each value ‘622
' m a _ | 'd \' < -
__.e__'z_-.ﬁ_. = (<T21>1 - <T21>1 > T21>2 .

. The difference between ( em' and ec‘l was in general sufficiently

great to yield a fairly precise value for TZ

1)
\
B. Solution of Equations for 62 = 91

Double scattering with the two different internal targets gave
six measured quantities at each angle 62; the values at 62 = 91 |
(11 deg for beryllium and 10 deg for carbon measurements) then
yielded six quadra’cic equations in the four unknowns <iTll>«~ ,< TZO\/ .
<T21> s and<T22> . Reduced to five equations in three unknowns,

these were:

o Basn o) <12 (o) w2 (5, (1)
£7/2 =(é.34,4 (T, 0)+10.49 (T,,)+0.720 {T,,)) {T,,) .
(| e™l —ed)./2-=<%:;:0.855 (T,) +1.04 (T, )+0.698(r,,)) (T,).
a% =(g.936 (T,,) +0.494 (T,)) + 0052 <T22>> (1.0

¢d/2 ':-('(':5;026 <T20>l0.202 <T_21>+%0'.979 <T22>>' QT“> ,
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where the m and d superscripts designate meson- and dee-target
values and the coefficients pertain to the scatterings done with

carbon,
The ( Ieml - ed)/Z equation contains the difference between-

’ t
dee-target and meson-target rotated T21 components as indicated
above. Substitution of the numerical values for the <T JM> of carbon
obtained from the given system of equations shows that it was possible

for the Ieml and ed quantities to differ appreciably in magnitude:

Ieml -ed

= [0.285 -¢ 160)] x 0.255 = 0.114,
2

Experimentally determined values for em/Z and e_d/Z were
-0.235%.040 and 0.140%.035. | |
The dd and 47 quantities were subject to considerable error,

especially because of the difficulty ih matching range curves of
polarized and regenerated beams (Section III. J). Thus there was to
be expected considerable error in <T20>. However, IBM qalculations
showed that these uncertainties in d and d' affected inappreciably
the results obtained from the search program. In other words, the
more accurate determinations of e and f were dominant in the |
analysis and served to determine <T20> even if the d measurements
were ignored. » ,

'~ As the system of equations for the <T2M> at the angle 61 was
overdetermined, different procedures for solution were found to
give slightly different results. Three methods were utilized:
simultaneous solutions of pairs of equations; use of- dir‘ec_t expressions
for <TJM> involving dd/dm and fd/fm ("ByO -formulae' given in
Appendix F); and the application of a Xz_search program. The second
method, although most direct, gave a rather biased set of results
because of the large errors in the d .and f. ratios.

The best method of solution appeared to be the x; fit, similar

to the Fermi phase-shift determination m pion-nucleon scattering;

applied to the problem here considered, it~required the determination
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of that combination of <T2M> values for which

i S TN
E : xE ,
M =45 <xexp - . calc ) {-= XZ)
1 : .Axi’
exp

was a minimum. Here xi repi'esents each of the five d, e, and {
quantities given ab0ve'>, x- and 'Ax;xp being experimental measure- -
ment and error and X::al the correSponding calculated quantity for

a particular set of <T2M values.

To find first an approximate set of solutions, T21> was
plotted as a function of <T20 for each of the five quadratic equations
in <T2M given by the"‘n.')easured parameters and with several
values assumed for <T22> ;1. e., two-dimensional cuts perpendicular
to the <T22> axis were taken in the three-dimensional . <T2M
surfaces representing the five given equations. (See Fig. 17.) This
preliminary use of a graphical mét_hod of solution was found helpful
in making systematic errors evident. For example, the sensitivity
of d and d' values to normalization of cross sections was reflected
to some degree in the -divergence of the associated curves from tho'se
.of other experimental quantities. .

Some calculations to minimize M were done by hand (Fig. 18),
but final solutions were obtained with slightly greater accuracy by
setting up an' IBM search program. All IBM work was done with
the d, e, and f qua‘ntities'at 62 = 91 obtained by normalizing .to” 4
give equality of polarized and unpolarized cross sections at 6 deg.
Effects of normalization are indicated in the curves used in the
graphical analyses of beryllium data, only the d and d' values
showing appreciable-differences with and without normalization.

IBM fits to data at 61 were made with statistical errors and with
systematic plus statistical errors, where the s‘ystar’n—;aj:{tiﬁzc included
normalization and misalignment errors as given in Talble Ir.

Best-fit TJM values and their rms errors for the various
cases cbnsidered in IBM calculations are shown in Table IV. The

Case A IBM solutions were quite comparable to the "simultaneous -
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Fig. 17. (a) Plots of <T > vs. <T > representing
- 21 20 . 2
cross-section parameters for béryllium scattering
at angles 6,=6_=11 deg. Signs are those of Case B.
) 2 .
Normahzeé data were used except for the poinis
designated by circles, which were obtained with
nonextrapolated, unnormalized data, (Appreciable
differences were observed only for the d quantities.)
The solid (and the unnormalized) curves were
obtained with <T22> =x0.20; the dotted curves,
with T2 =+0.25. (Values do not agree exactly
with finalzresults because the relativistic Thomas
precession was not included in calculation of the

<T JM>‘ )
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Fig. 17 (b) Plots representing cross-section parameters
for beryllium scattering at angles 91 =0, =11 deg.
Signs are those of case A. Normalized data were
used except for the points designated by circles.

The solid (and unnormalized)curves were obtained
with (T,,y =%0.225, the dotted curves, with

(T,,y =%0.20.
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Fig. 18. Variation of M with the tensor component <T
in fitting berylhum unnormalized data (wi
statlstlz e>rrors) at 11 deg. Values of { 20>

0.495 =0.22, and (iT ]> = £0.52 wére

1
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V.

Best-fit <TJM> values and associated M values for 91 = 62, deter -

mined with cross-section parameters calculated from normalized

measurements.

signs for the <TZM> components are also possible.)

(Solutions with the same magnitudes but opposite

Beryllium (8 = 11°)

Carbon (6 = 10°)

~ Case A Case B Case A Case B
With systematic and statistical '
errors in -d, e, and f{
<T20> -0.305+.070 -0.446 +.050 -0.420%£.090 -0.405+.030
21 +0.210£.025 +0.215%.035 +0.230£.030 . +0.255.026
<T22) +0.230+.012 -0.185%.015 +0.260+.025 -0.235+.014
<iT11> £0.494+.012 +0.502+.010 +£0.425 +.024 +0.465 +.020
M 7.61 3.43 31.3 1,80
Q(>M) 0.02 0.18 ~0 0.41
With statistical error in d, e, and f
<T20> -0.402+.022 -0.438 £.007 -0.450+.038 -0.405+.015
(r,))  +0.233£.013 +0.257+.018  +0.226 £.026 +0.270%.026
T22> +0.206 £.010 -0.196 +.009 +0.244+.021 -0.240+.011
1T11>_ +0.498 +.007 +0.515+.007 +0.430+.014 +0.465+.014
M 38.4 14.3 27.3 2.01
Q(>M) 0 003 0 .36

%These results differ more from the systematic fits than they should
because the relativistic Thomas precession effect was not included in

calculating the rotated tensor components.
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equation' and the "Byd-formulae' solutions; but the Case B com-
bination of signs also appeared acceptable and indeed proved to be

the better choice, ds indicated by the M values of Table IV.

C. Search Program

For normally distributed errors in experimental measurements,

the probability that M lies between M and M+dM is approximately

1
e-M/z M(MO—-Z)/Z

P (M) dM= - - dM,

M, 2 My/2 (My/2)
if MO is the number of degrees of freedom or the number of obser-
vations minus the number of determined quantities. (See Fig. 19. )

The average value of M obtained for many sets of measurements is
MO; the probability that M is greater than a certain value M' is
QPM') = P (M) dM

M
M! 0

and for MO = 2 is given in Table IV for the M values found for
each set of <TJM> solutions.

Large M values indicated that actual errors were considerably
greater than statistical; but with some systematic errors included, the
M values were close to 2 for a few cases considered. The values
found for Q(PM') showed that the Case B solution was définitely pre-
ferred to Case A for carbon .and at least as good as Case A for
beryllium. |

| The <TJM> values found by the IBM search program did not
differ greatly with the inclusion of systematic errors from values"
found with statistical errors alone. Solutions are indicated on the
<T21> vVS. <T20 plots of Fig. 17. To ascertain that the IBM
solutions were not appreciably affected by the large uncertainties -
in dd and dm, these quantities were removed from calculations

and the search program used to satisfy the remaining three equations.

There was found only a negligible effect on <T20> and none on <T21>
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05 7 T T — T

Probability of obtaining M in a fit to given data

14
MU=17309
Fig. 19. M distribution. is the number of degrées _

of freedom, or the num%er of observations minus
the number of determined quantities.
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or <T22> .

@0 | T T2z

-0.405 ] 0.255 | -0.235

with a9, a™

m

without dd, d | -0.405 | 0.255 | -0.230

(Values obtained are for the carbon, Case B solution with systematic
errors.)

Also, to determine that the four cases (two sets of Case A
solutions with opposite absolute signs and two.sets of Case B solu-
tions with opposite signs) represented all possible solutions to the
data, the fd/Z equation (which has a negligible <T20> <T22> term)
was used to plot & <T22> vs. T21> curve on which any solution
had to lie for an arbitrary value of T20> . Then M was cpmputed
by IBM program for successive points along the curve between limits
<T21>; +x3. Only  one minimum M was found, for negative or
for positive T20> , on each of thevfcwo curves representing the two
roots of <T22 obtained from fd/Z, Calculations with and without
dd and d™ gave identical solutions. All cases were computed with-
out dd and d™. The four minima found corresponded very closely

to the four Case A and Casé B solutions.

D. Error

After a best fit has been obtained for experimental data giving
. . . 1
a minimum M, an "error matrix' Grs can be defined: 5 such that
for variations €_ and e _1in the determined quantities (here the
<TZI\/[> ) designated by r and s, M becomes
M=M . + Z e e G .
min r s rs
r,s

The inverse of the error matrix is given by -

fde1 dez. e de e_M/Ze

-1 _ , _ . n _r€s
(G )rs - <€r€s> - M/2 ’
fdeld52°°°de e
n
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and its diagonal elements are the mean-square errors of the quanti-
ties determined by minimizing M. .

An IBM program was set up to compute from the G -1 expression
above the statls‘tlcal and tota.l errors in the <TZM> found by the
search program. As is shown in Table III, the largest is about
20%. |

-~ E. Restriction of Solutions

By choos1ng a particular coordlnate system namely, that
with the z axis normal to the plane of scattering, Lakin obtains
a sim le form for the density matrix in terms of just three of the
TJM components By considering the ilimitations on the poss1b1e
statistical weights of the pure states of polar1zat10n, he is able to
impose a restr1ct10n on the<TJM> components resulting from single
scattering such that any possible state must fall within a truncated
cone defifned 1n Lakin's- <T10> - < '_T20> b@22> space. (Appendix C.)
The 1nequa11ty to be satisfied is

| <Tio> + [v2 <Tzz] < 1/3 [<fzo> t N2 ]
In order to apply this to the solutions obtained above, one expresses

JM
are ‘-Sk" Sz, -and -Sy’ respectively, in the usual scattering coordinate

the T _., .of Laykin_'s‘,s’ystem in,terms'of Sx’ Sy’ and Sz . (These

system with the S and S‘ taken along"tl'l'eapi"}inci’pa'l axes of the
polarization elhpse in the plane of scatterlng to give a real quantity
for <T22>) |

To this end, it 1s convenient to construct the section of the
<S S)> elhpsmd in the plane of scatter1ng (See Appendlx D.2 and
Fig.3.) Substltutlon of the Case B solutions for <TJM> in the

equation for the tensor e111p501d x-z section (usual coordinate system),
1 = <s > <s > oo+ ( <sxsz + <stx>> PP,

gives the curve of Fig. 16.  The pri.nt':i-pal axes of the ellipse,
a and [3, correspond to Lakm s x and y axes, and the inverse squares

of the 1ntercepts are his <S > and <S > As indicated in the
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figure, the major and minor axes of the ellipse are interchanged by
~a reversal in sign of all the <TZM> .
For Case B solutions (IBM best fit), the <TJM> of Lakin's

system assume the following values for scattering at 10 deg by

carbon:
B Solution with B Solution, with
negative <T20> positive <T20> (in usual system)
<T10>= 0.649 0.649 (in Lakin's system)
NT <T2)= 0.392 o -0.472
<T20 = 0.490 -0.489

F"of Case B solutions, the inequality is definitely not satisfied for
positive <T20> , but .:_is a very reasonable relation for negative <T20> .
For Case A; the inequality is not satisfied for negative ETZO ; but
~its restriction is just barely met by the solution for positive <T20> .
Conclusions are the same for both beryllium and carbon scatterings.
Quantities appearing in the inequélity are tabulated f,br all possible

solutions to beryllium and carbon data in Table V.

F. Born-Approximation Predictions of Tensor Components

It has been shown that an inequality of Lakin may be applied
to determine the abso‘lute. signs of tensor components. This predic-
tion of sign and further the'prediction of behavior at small angles
are pos=sAib.le also through use of the impulse approximation. ‘

The thesis of Henry Stapp treats the impulse approximation
(see Section V) in the first Born approximation, the first Born
approximation with the D state of the deuteron included, and the
second Born approximation; a Gaussian nuclear form factor and an
integral form of the deuteron wave function are used to estimate
parameters of the scattering matrix. 3 The first Born approximation
(with simultaneous scattering included) using deuteron-scattering
amplitudes obtained directly from proton and neutron amplitudes is

. . . . a
sufficient to fit cross sections at low energies and also vector

#See introduction of article by Stapp3.



Table V.

Quantities characterizing <TJM> fits.

Terms of Lakin inequality

Occupation of

m, = 0 spin state

Relative Absglu.te P ' ‘ > - 2
<T2M>31gns <TZO’ sign <T10> <\[7 @222- ) <<T20> +'\/2)' /3 ' 1/3 - N(0)/N
Beryllium ' .
Casec A + 0.488  0.291 0.797 +0.061
| o 0.488 0.254 0.550 -0.061
Case B+ 0.503 - 0.168 0.311 -0.212
- 0.503 0.158 1,16 +0.212
Carbon : .
Case A + 0.361 0.406 0.773 +0.051
| - 0.361 0.327 0.570 -0.051
Case B + 0.420 0.222 0.285 -0.231
- 0.420 0.154 1.21 +0.231,

...ZL.-



-78-

-polarization at high energies; it appears that inclusion of D state

in the deuteron wave function is unnecessary, but that use of the
second Born approximation is probably required to bring pred1ct10ns
of <TZO> and <T22> into better agreement with experiment.

In the first Born approximation, the scattering matrix is the
usual expression proportional to the matrix element of the central
plus spin-orbit potentials taken between initial and final states.

It is necessary to include the D state to obtain tensor terms c (6)

d..

— = 1)
M = a(8)+b(0)S- n+ c\(@)(NiNj— —3—)

SC

and d (6) of the scattering matrix,

+4d (8) (PiPJ. - Kin):l sij.,

In this approximation, ¢ (8) is found equal to d (8), but very small
in comparison with a (8) and b (0).
The second Born approximation is the evaluation  of the matrix

element H .
fm Tmi

E-E_ +ie
™
between initial and final states; it indicates that at small angles
there is dominant a particular tensor term, such that ¢ (6) equals

-d (0).

In the first Born approximation, Stapp found

c(6)=d (8) =1/6 kzré a (6) sin® _‘29_,
where k is the incident momentum of the deuteron and T = 1.4x10—13cm,

For 410—Me-v deuterons, this is 9.0 a (8) sinz—g—; and with the approxi-
mate expressiona for b {08) of 10'ki k2 a sin @, T20> and T22 may
be calculated from Eqs. (25} and (28) of the Stapp article:

v
aIn first Born approximation, b(6) = i)\(z: k2 a (9) sin 8 Lg__,
v

c | r=0
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£6) = «/2_<T20> (6) = (1/1) {z cos 6 Rei [d(@tc/3 +ibtan 6) |

-2/3 Re [c(afc/?:);':}a 1/3dd" - 1/3bb +1/3 cc*} ,

wif) = 243 <T > (8) = (1/Iu) {-2 cos 6 Re [ d(a+c/3 + ib tan 9)>J

_] >: x* sk
-2 Re l:c(a+c/3) i- -bb + cc
At smallangles, these expressions become
N 2,2
(1,0) 6) = (1/1)) (-32 a%6%),

<Tzz> (0) = (1/1,) (-44 a%6%);

in scattering from beryilium, they yield the values

<’I’20> -0 16 and <T22/ x=.0.22 for 8

<TZO> ~-0.27 and < TZZ/ ~.0.38 for 6

Comparlson with exper1menta1 results shows that Stapp's first Born-

° lab, and

11° 1ab.

approximation -estimates of > ‘and <T are too large at
small angles.and for <T20 too small at larger angles. However,
this approximation definitely substantiates the choice of one of the
Case B solutions as preferable to Case A.

The sgcond Born agproximationf should not appreciably change
the estimate of the <T22/ polarization component at small angles;
this results from the fact that c¢(8) and d(6) are found to have similar
magnitudes, but opposite signs, so that the first two terms of the
<T22 expression above should cancel; and these are the chief tensor
contributions at small angles, <TZO> will, however, be affected by
second Born-approximation contributions to its first two terms. At
iarger angles, '<T > will not become so large negatively as in the
first Born approximation because the positive contribution of cc’
becomeslarge as Im (a) goes to zero. (The behavior of deuteron
amplitudes is assumed si.milar to that of proton amplitudes. ‘See
Fig. 20 for plots of proton-carbon scattering amplitudes. 16)

In conclusion, it can be said that the first Born apprdximation
predicts a sin® 6 dependence for both -<T20> and <T22> at small
angles; the second Born approximation predicts the same .T‘22 )
but a more complex behavior of TZ , approaching a sin 6

dependence only for moderately large angles.
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20. (a) Spin-independent proton-carbon scat-
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obtained by Hafner through fitting a Woods -
Saxon potential to his experimental data with a
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Fig. 20. (b) Spin-dependent proton-carbon amplitudes
obtained by Hafner at 220 Mev.
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G. Physical In.te‘rpretation :

An examination of the physics of the scatféring prbcess may
help further to select a uniq_ﬁe set of TJM> signs, Such an argu-
ment has been appealed to before in choosing the sign of 'iT'11>
to be positive on the basis of the type of interaction observed in

! Here certain conclusions may

shell-model spin-orbit coupi‘.ving° ‘
be drawn upon consideration of the occupation of quantum -mechanical
states and the behavior of the cross-section parameter d with in-
creasing scattering angle.

Some indication of the proper <TJM> signs is given by the
values of <T20> and <T22>' under the assumption that there are
possible only the three pure spin states associated with the normal
to the scattering plane. The occupation of the ms = 0 spin state

associated with the y axis in the usual coordinate system can be

shown to differ from the unpolarized va"hie of 1/3 by an amount

1/3 - N(0)/N =1/3 (3<si>~z)

1 1 '
1/3 N(O.)/N = <T22> T T,
For the sign combination Case A, N(0}/N is very close to 1/3, while
for Case B, it is O.55ﬂtor 0.10 for the two choices of absolute sign. '
(See Table V.) As is further confirmed by estimating the occupation
of the +1 and -1 spin states through the combining of the measured
<~1T11> with N(0) values; neither set of signs for Case A seems to
give unreasonable results, but for Case B only the negative <T20> -
negative <T22> solution appears acceptable, the fractional occupations

being

N(+)  NE=) o, NO) - 570 . 0.20:000.
N N N o

It has been shown through analysis of experimental data that

the major and minor axes of the polarization tensor ellipse in the

x-z scattering plane differ appreciably and for some‘sign choices
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indicate a predominant spin aiignment along the x or z axis. It
seems possible to relate the direction of predominant spin align-
ment to the behavior of the cross-section quantity d (or of<T20> )
with variation in scattering angle; d is observed‘to increase from
practically zero, or perhaps slightly negative values, to appreciable
positive ones as 6 increases. To explain this increase in polarized
over -unpolarized cross section, there should be a predominant spin
alignment transverse to the direction of motion, giving a greater
effective geometrical cross section than for the unpolarized beam.
(Thié assumes single scatteri.ng or the usual impulse approximation.
Stapp says that simultaneous scattering predominates at large angles,
but calculations indicate this to be less important than his formulae
suggest. ) '

‘The. deuteron is a prolate spheroid with its long axis coinci-
dent with the axis: of spin, the length being 1.14 times the average
radius of the deuteron; in a simple picture, one can think of the

loosely bound nucleons as being placed one after the other along the

{ .
spin axis. Then it is evident that with this axis preferentially traﬂ;\s—

verse to the direction of motion, there is greater mdbability for pol-
ariéed than unpolarized scattering and hence a positive value for d.
The above argument does not support the positive <T20 signs
of Case A, as <Si> / <S}2(> is 0.86/0.71.. For the negative 2.0>
negative T22 set of Case B solutions favored by the IBM f{it and
Lakin inequality, it can be seen from the polarization ellipsoid
section in the plane of scattering that there is some preference for
alignment along the x axis in that plane; also, there is predominant
an alignment normal to the plane. ( <Si> =0.63 and <S§7> = 0.90,
while <Sz> = 0.48.) Thus, for this set of solutions, the polarized

should be greater than the unpolarized cross section, as observed in

experiment,

<TZO> =— <S > , which indicates z-axis alignment, would

tend toward a max1mum negative value with increasing d.

s
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H. Choice of Signs .

It has been shown that e‘xpefimehtal xeéults detérmine the
relative but not the absolute signs of the '<T2M> po.larization com-
ponents. In fact, even the relative signs were not definitely deter -
miriéd, and two possible sign combinations were found, because of
the small magnitude of cross terms in the e-d-f quadratic equations.
Thus it hds been necessary to discuss theoretical and physical inter-
pretations of the various sets of experimentally possible solutions.

In conclusion,; there have been a number of considerations
mentioned that should permit a definite statement as to the absolute
signs of the tensor components. These support predominaﬁtl-y Case
B relative signs with <T20> and <T22>- broth,négative and <T21
‘positive. Only the py0d formulae, which involve considerahle error,
tend to favor the positive <TZO> s1gns The negatlve T2~(l> —Case
B solution must be chosen on the basis of

(a) m1n1m1Zat10n of M, _

(b) application of Lakin inequalif‘y;

(c) predictions of Stapp's Born approximation,

(d) physical interpretation of spin aligninent,

(e) results of impulse approximation with the use
of nucleon-nucleus scattering amplitudes
(Sectvioh V)

J. Dete'rm‘ina_ﬁibn of;.i";<w

The experimentally determined functions of second scattéring

angle, d, f, andl es| dee
T2M> (6 ) and the rotated <T2M

measurements,
d (62)'"; <Tzo.>"‘(“0) <Tzo> (63,

£18,0= 2 <Tzz> (11° <Tzz> (85):

,‘emes(ez) l'edee(ez) - 2[<T21>%:d(“0>; - <T21>.%{ivm'(“o) 1€, 10

; X)ntam products of the various

(8y). - For the beryllium
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Also, | o '
e(0,) = 2[ '.<T21>i (11°) <T21> (6,) + <iT1'1>(“O) <iT11> (0,) ] .

The rotated <T2M> (6?H) quantities can be obtained either from the
x-z ellipse or from their expressions.in terms of the untransformed
<T2M> and functions of the tensor rotation angle \; another method,
simply the division of parameters obtained at 62 = 61 by the <TJM
(62) obtained from the search program, was thought preferable in
.perhaps minimizing systematic error. TJM (6) values were then
calculated from the d, e. and f values for various ,62 ; and averages

of dee- and meson-target results were plotted with the total errors

of Table III. (Fig. 21 and 22.)

K. Consistency of Results

The sets of measurements for beryllium and for carbon were
made at different times and under somewhat different cyclotron field
conditions; orbits had been known quite exactly for the beryllium
measurements, but were less dependable for carbon because of lack
of exact field information following the change. Thus it seemed of‘
considerable importance to compare beryllium and carbon results.

-This was done by determining cross-section parameters for
a beryllium-~-carbon double scattering (béryllium as first target and
carbon as second target) at three different values of 62; two of these
measurements were taken in the carbon run and one in the beryllium
run. Tensor components giving internal .consistency for beryllium-
beryllium &nd for carbon-carbon results were used to calculate the
beryllium-carbon parameters; and these were found in good agreement

with measured values. (See Table VI.)
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Fig. 21. (a) Polarization components for 410-Mev
deuterons scattered by berylliumm. Errors on
experimental points include statistical and
systematic effects. Impulse-approximation
calculations were done with Hafner proton amplitudes

The vertical arrow indicates the position of the
diffraction minimum.
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21. (b} Polarization components for 410-Mev
deuterons scattered by beryllium., Errors on
experimental points include statistical and
systematic effects. Impulse-approximation cal-
culations were done with Hafner proton amplitudes.
The vertical arrow indicates the position of the dif-
fraction minimum. Z"f‘ is zero in the usual
impulse approximation,
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Fig. 22. (a) Polarization components for 420-Mev

deuterons scattered by carbon, with impulse-
approximation predictions from Hafner proton
amplitudes. Total errors are indicated. The
arrow designates the diffraction minimum.
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Table VI.

Beryllium-carbon double =-s'cattering results

Cross-section Scattering angle, 61
__parameters (deg) ab
6 11 14
measured 0+£.022 0.142 +.032
‘ calculated 0 0.197
measurea ) 0.572x.017 0.354%.039
© calculated 0.552 0.520 .7
measured . 0.041 +.011 0.060 +.026
f calculated  0.026 0.075 -
measured 0.199+.034
TFaiT calculated 0.177
measured VA 01.088 +.,027
_-1-%3— calculated 0.058

Errors indicated are statistical only.
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V. IMPULSE APPROXIMATION

A. Born Approximation in Scattering of Nucleons

A complex spin-dependent potential is necessary to account for
the observed polarization of nucleons scattered by nuclei. The general

form representing a scattering interaction may be. writtenlsas
2
V)=V (r) -0 -Vpxplre] ,
¢ +r

where VC (r) is 2 complex central potential,

V p represents the gradient of nuclear density,

G and p are the spin and momentum of the incident

nucleon,

")C‘-C is the proton Compton wave length.

Expressed in its more usual form, with VS (r) as the spin-orbit

interaction, the potential is >
dv, (r) _ _ —)rc

Vi(r)=V_ (r) -1/r ————"0-1
dr "

/

The V_ (r) must have real and imaginary parts to accci nt for
scattering and absorption processes; further, an imaginary part is.
ngcesséry- to produce the interference with the spin-dependent term
which is manifested in polarization phenomena. Extensive optical-
model studies have been made to determine the general form and
magnitude of the central potential.

The existence of a spin-orbit term is suggested by the observ-
ance of spin-orbAit coupling in bound nuclear systems and by the
presence of the Thomas term in atomic interactions; also, it can be
shown by optical-m odelvc_onsiderations19 that the term is a necessary
consequence of the spin dependence of nucleon-nucleon interactions.
The spin-orbit potential was first proposed by Fermi as giving rise
to polarization phenomena, and its form has since been determined

by many authors through analysis of scattering data.
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The Born approximation, which is valid for energies greater
than 300 Mev, for forward scattering angles, and for 1ight nuclei,
permits the determination of the scattering matrix from the inter-
action potential: .

m
f(6) = M = S $. Vi, dr,
| sc thz f i |
with m the nucleon mass and LlJf and LIJi the final and initial wave
functions. If the scattering matrix M_. is defined as

M__ = g(K)+h(K)3T" &,

and if there is made the usual assumption that VC (r) and VS (r)
have the same radial dependence, the quantities g(K) and h(K) are

seen to take the forms

- m T —_ : —

—ike - e

g=|(-— e Kf - r Vc(r) elkl T a7
2whH .

Ql
=]
o

m . = _
= [ ) % BT 55 vV, xK&)dr
2R '

i<‘m) e KTy (a-kxii)df

'Zﬁﬂh c s
™m N
:1‘2752> =2 7 -k xk e ' Ty dr.
c i f s
Thus there results
m iK- r
g (K) = [-—— e * Vc (r) dr
21h%
2 2. | Vs| z=0
h (K) = iX_ K~ sin 8 g (K)
¢ s
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(Stapp chooses to define the spin-orbit potential as- VS = G Re Vc’
and finds that G .is approximately 20 for fits to proton data at
300 Mev and about 24 for deuteron data at 165 Mev.;. The 410-Mev

deuteron measurements reported here give a G value of about 19.)

B. Born Approximation in Scattering of Deuterons

The impulse approximation can be applied to deuteron scattering

by assuming charge independence and a Hamiltonian of the form

W T, 4 U ) F Y, PO F Y, (5,8, 0,),

%z%” @’Ql

or

with _
9{ 0° T1 + T2 + Ud andﬁ—Ql=V1 + V.2 y

where the 1 refers to ‘Nudleon 1 and the 2 to Nucleon 2 of the deu-
teron; Ud represents the interaction between the two nucleons, and
V, the interaction between the nucleon and the nucleus. The idea of
the 1mpulse approximation is contamed in M 1 whose form indicates
that an impulse given by the nucleus to either Nucleon | or 2 produces
scattering of the whole deuteron (unless dissociation occurs), but has
no direct effect on the partner nucleon. v

As a first approximation, the intﬂernal wave function ¥x (rlz),
is assumed to represent just the deuteron S state. Then, with the

assumption that l V, is equalto V2 and that the nucleon potential

has the form given above, the 'scattering matrix in Born approximation

becomes 5
md , . — | — -
: X - B
M, = (- dr, dr, x . (r,) e " (1/2) (ry #15)
d 2R 1772 12

ik - (1/2) (kT

.[V( ) + V(r } x(ry,) - e 5)

-

m . ’ I(. e /" ) .
d Tl : CiTes
R dr XZ (r,.) e'Z I‘12/ dr e tke.w r
2 12 12

2wh .

I
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.['2 V_(r) -5V, 'X?] ,

or

M, = /2 (k) [2g4() + hy (K, 1) 5 7

(This corresponds to Stapp's M = a + bS - n.) The sticking factor

f(K), whose square root is the Fourier transform of the square of

the deuteron ground-state wave function, 20 represents the probability

of the deuteron's stvaying intact during the scattering process.
Evidently the g,(K) and h,(K) of the deuteron scattering

matrix can be expressed in terms of the nucleon scattering amplitudes:

ka¥ sin 65 /My S
hy (K, kg) =[—] —— [—] b, KKk).
k sin Qn m

n

Thus the values for g3 and hd (hence_those for Iu and the polari-
zation components) may be predicted from known values for g, and
h_; the nucleon data used should be for nucleons of momentum about
half that of the deuteron and scattering angle twice as large, so that
the momentum per nucleon and the total momentum transfer are the
same in both nucleon and deuteron scatterings. |

By using the above expression for Msc and the expression for

'TJM expectation values,
_ t
I <TJM> = (1/3) Tr (MM'T ),
2

it can be shown that in first Born approximation,

| If‘l =(1/3) Tr MTM = 1K) 4 gi +2/3) hi] ,
I <iT“>= f(K) (2/N3) 2 Re gz h = ~N3/2 I <sy> ,

1 (1,0= 4@ (/WD |yl 2,
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I <T2> =0,

I <T22> = <£ (K) (1/243)| hdl‘Z ‘,

C. Determination of g4 and hd in First Born Approximation

Cross-section and polarization data from the scattering of
nucleons can be used to determine the values of nucleon and deuteron
scattering amplitudes if there is some meaﬁs of estimating the
relative phase of the spin-independent and spin-dependent nucleon:
amplitudes. Alternatively, nucleon scattering amplitudés may be
obtained directly from phase shifts determined through the fitting of
a potential to scattering data.

Various methods were -used to estimate the phases of the
" amplitudes for nucleon scattering by befyllium and carbon at 220
Mev: comparison of potentials from Riesenfeld-Watson calculations;,
Hafner experimental data, 16 and the Ferbach-=Serber-Taylor model. 21
The average phase difference between spin-dependent and spin-
independent amplitudes at small angles was about 20 deg.

v;;\Calculations. for deuteron.cross,seétions and.polarization com-
ponﬁent“s were carried out for the complete range of experimental
angles with nucleon scattering amplitudes obtained from Hafner at
- Rochester (Fig. 20) and Bjorklund at Livermore. (See Figs. 21, 22,
and 23.) Both.used a Woods-Saxon potential to fit experimental data,

but with somewhat differing parameters:
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Fig. 23. (a) Calculated polarization components for
410-Mev deuterons scattered by beryllium.
Bjorklund amplitudes for proton scattering were
used in the impulse approximation with simultaneous
scattering included.
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Fig. 23. (b) Calculated polarization components for
410-Mev deuterons scattered by beryllium.
Bjorklund amplitudes for neutron scattering were
used in the impulse approximation with simultaneous
scattering included.



Hafner Bjorklund Rigsenfeld-Watson
Re V_ 10 Mev 3 Mev 3.5 Mev
Im V_ 25 16 | 13
Re V_ 225 450 45,
Im V_ 0 -240 | 61
a
ry  (1.09 Al/3-a)‘f) 10 a3

a 0.1f1 0.5 1

Rie;éenfeld-Watson potential wells determined by superposition of
nucleon-nucleon amplitudes are indicated for comparison. The
Hafner amplitudes gave a considerably better fit to the Rochester
nucleon-nucleus cross sections than did the Bjorkluﬁd amplitudes,
which were too small at all angles; the former also gave a some-
what better fit to nucleon polarization.

Calculations to determine the characteristics of deuteron
scattering were done first in the simplest approximation with only
the S-state deuteron wave function and without the inclusion of
simultaneous scattering effects. These results are indicated in
Figs. 18a and 18b. The deuteron cross section as calc;alated with
Hafner amplitudes was larger than experimental measurements by a
factor of five or six at small angles in the simplest approximation
for both beryllium and carbon scatterings.

Deuteron cross-section results for beryllium using Bj{prklund
amplitudes dropped much too rapidly with angle. However, cross-
section and polarization calculations with Bjorklund proton and neutron

émpli'tudes did indicate that charge independence could be approximately

®Note that the value of s used is small. Hafner found it to give a
low absorption cross section and suggesteci that his choice of Im VS '
as zero had perhaps required a small ry to fit cross section and
polarization. Bjorklund, however, also found a small ry necessary

even with a nonzero Im Vs.
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assumed, even though Coulomb intei‘ference was efféétive out to
rather ‘l.arge angles. The real part of the spin-independent amplitude
was foand to go negative (at angles below the diffraction minimum) and
the real part of the spin-dependent amplitude somewﬁét reduced for
proton in comparison with neutron scattering ;. but realvamplitudeS-
were much less than the unchanged imaginary parts of the amplitudes
at all angles except very small ones. Thus Coulomb interference had
very little effect on polarization, where it entered into the product' of
two small terms, and no appreciable effect on cross section. In
other words, the Coulomb effect was inappreciable because the phases
of the scattering amplitudes were close to 90 deg.

The magnitude of iTl'1> was well predicted by the impulse
approximation at small angles. _ T22> was given reasonably well,
and the sign and general behavior, if not the magnitude, of TZO
were corroborated (again indicating Case B signs to be preferable

to those of Case A). <T was zero without simultaneous scat-

21/
tering. :

D. Higher-Order Approximations

‘Tensor terms in the scattering matrix resulting in appreciable
tensor polarization components arise either from a higher-order
Borﬁ approximation or from the inclusion of the D state in the deu-
teron wave function uséd in the first Born approximation. In.the

latter case, the scattering matrix-takes the particularly simple form

M, =2 (0) +b(8) S n; +c(6)S;; K KJ.’,

with a (65 and b (6) as given above in terms of the gd(G) and hd(6)
amplitudes. (K represents the unit vector in the direction of momentum
transfer.) The sticking factor becomes much more 'ciornip'leﬁc3 and
includes various orders of Bessel functions taken between S~ and
D-state wave functions. | | _ (

Calculations utilizing the D-state wave function were done for -
two angles of s'cattering and gave results for cross section éﬁd polari-

zation components differing inappreciably from those for the S-state

-
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wave function alone.

Tensor terms of the scattering matrix arise also from simultan-
eous scattering of both particles in the deuteron with a contribution
to the..-t;'»ansition matrix element proportional to V1 V2 in addition to
the linear combination of V; and V2 describing scattering in the
usual impulse approximation. Stapp treated this effect in some
detail with the use of time-dependent perturbatlon theory and found
expressions for the additional elements of the scatter1ng amphtude,
he determined simultaneous scattering to be the dominant effect at
large angles and was able to obtain good agreemeﬁt with experimental
cross section at low energies (neer ‘150‘Mev') only with the inclusion
of this effect, which infreased the large angle and decreased the
small- angle estimate of scattering. ' o

Stapp's formulae were used to calculate the contributions of
simultaneous scattering to the amplitudes for deuteron scattering
from carbon and beryllium at 420 and 410 Mev, respectively. Re-
sults obtained for cross&-’section and polarizafion co:rnpoheﬁts, as
calculated with the Hafner proton data and with the Bjorklund proton |
and neutron data, are given in Figs. 15 and 21 through 23. Calcu-
lations with the impulse approximation including simultaneous scat-
tering are not given beyond the diffraction fninimdm, as unreasonable
results were obtained--probably because the assumptions made by
St'app that the amplitudes for nucleon scattering did nof chaynge phase
rapidly with angle were not good in the region of the diffraetion
minimum. o ‘

Inclusion of simultaneous scattering effects reduced beryllium
and carbon cross sections to within a factor of 2.5 to 3 of experiment
at small angles and'brought agreement at moderate angles. However,
the inclusion of simultaneous scattering effects gave rather poor results
for tensor components of polarization. : TZl' values predicted were '

much smaller than experimental results.
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VI.. CONCLUSIONS

A. Values of Tensor Components

The vector polarization <iT11> y prbpbrtion-al to the probabitity
of finding deuteron spin normal to the plane of scattering, reaches
a maximum at 8 deg, with behavior similar to that of fhe quantity
e ; its value indicates that the maximum <Sy> polarization is 73%
for beryllium and 62% for carbon, Although scattering could not be
done at angles smaller than 6 deg, measurements suggested that
<iT1~]> probably rises rather rapidly with angle, as in Baldwin's
experiment at lower energies. <iT11> for the various energies of
scattering on beryllium and carbon is plotted as a function of angle

1/3
(proportional to momentum transfer titmes nuclear radius); this
graph shows that at the higher energies, <iTll> is displaced from

: ) 1 .
the function of KA obtained at the lower energies and is perhaps

in Fig. 24. Figure 25 gives its ldependence on the quantity KA

less uniform for different scatterers.

For deuterons of about 100 to 150 Mev, T21> was estimated
by Stapp as less than 15% of the-quantity <iTll> and was assumed
equal to zero by Ba,ldwip and Tripp for purpose of calculations. Here
it is _evidently a considerable fraction of the vectbr' polarization, as
much as 30 to 40% at moderate angles of scattering. The tensor
components <T20 ‘and <T22> also assume values appreciébly
different from zero; they increase uniformly with scattering angle,
<T20> approaching 70% and <T22> going to approximately 30% at
16 deg.

B. Utilization czf_Results

Complete knowledge of the tensor components in deuteron polar-
ization provides a useful tool for the. determination of transition

amplitudes in the reaction

p+p"ﬂ++d.
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Fig. 24. Vector polarization{ vs. scattering angle
for various energies and arg t materials.
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Fig. 25. Vector polarilzfécion <iT11> vs. momentum
transfer times A . '
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If only S- and P-wave pions are produced, five parameters serve to
describe the three. pgssible types of transitions and thus to give
information on differences between p-p phase shifts. 4,22,23 These
five 'quantities can be taken as the parameters a and B. of the

total cross section in terms of the center-of-mass pion momentum ;-
the A defined by the unpolarized differential cross section

(0 (6)=A + cos2 6) in the center—of-mass‘.system; the Q which
derives from the asymmetry'of pions produced by an incident
unpolarized beam (e = PQA sin0/A + cos2 0); and finally a quantity

wg which enters into the expression for vector polarization iT11>

of the outgoing deuterons produced by an unpolarized proton beam.
Analyses for these last quantities were performed by Crawford and
St:evenson24 and Tripp4 at proton energies of 315 and 340 Mev; the
latter was forced to accept an estifnate by Stapp that T21> was

much smaller than <iT11> » s he-could analyze only for a combination
of these components by utilizing Baldwin's results.

Deuterons of 435 Mev would be produced by the p + p = 1r++d _
reaction with the 740-Mev protons now available at the cyclotron.
However, a determination of deuteron polarization using the known
analyzabilities of carbon or beryllium at 410 to 420 Mev would be of
no value unless the p + p - 1r++ d formalism could be »revised.v As
suggested by Wolfenstein ot and confirmed by Akimov, Savcheunko,
and‘Soyokb"; 25 the D-wave production of pions becomes important
above 400 Mev, as shown by the variation of asymmetry with angle;
and further it becomes impossible to describe the p + p -~ 1r++ d
cross section as an + ﬁn3 for a pion momentum above n = 1.2
(or proton energy above 490 Mev). Thus the parameters defined
above can no longer describe the reaction.

Breakdown of the formalism at very high energies does not,
however, preclude the possibiiity of extending knowledge of 1r+—d

transition amplitudes and p-p phase shifts above 400 Mev. Scatter'ing

%For S- and P-waves, 0 () = an + ﬁn3, with 1 the pion momentum in

units of m C.



_105’_

of deuterons on carbon at an energy of 420 Mev, degrading, and ana-
lyzing at a much lower energy of 235 Mev could be done to obtain
values of polarization components which would be useful for analyzing
the p+p— nlid reaction at proton energies of 415 Mev. The
quantities a, B, A, and Q are already known at this energy; A

is approximately 0.22 and Q 1is 0.45+.08. 26 A maximum 1’1‘11
would be obtained at a center-of-mass angle of about 60 deg, for
which the deuteron would . be emitted at an angle of about 7 deg in

the laboratory system. The ’<T21 produced in the reaction could

be estimated in terms of iTll) ; and with knowledge havmg been
obtained separately of the analyzing T21> and <1T1 1> < 11
produced inthe p + p= T + d reaction could be definitely deterrrnned.

Other polarization components could also be utilized for analysis.

Usually there is calculated from the gquantity A a value for the param-

eter X, where the cross section for P-wave mesons produced is
,Gp = X + cosze, <T22> , which is proportional to X/A at 6=90
deg, might give a value for X more nearly exact than asymmetry
experiments with polarized protons, (Ci'awfoi'd and Stevenson found

= 0.082+.034 from the latter.) < ZZ> should have an appreciable
value of approximately‘ 0.33 ata proton energy of 440 Mev,z'3
however, . T22 for the analyzer (e.g., beryllium or carbon) would
very 11ke1y not have a value greater than 0.25 at a reasonable deuteron
analyzing angle. <T20> measured at 6 = 0 deg could also give X/A
and would be approximately equal to —0,6’\_’7, but somewhat larger
errors would be involved in the analysis;, as it depends on absolute
cross section. <T21> measurements probably would not be helpful.

In conclusion, deuteron polarization components at the energies

reported here are not directly useful for p +p - Tr++d work unless
the theory can be reformulated. Double scattering as described in
this report could yield useful information through a degraded second
scattering for p +p = Tr++d analysis near 400 Mev; or remeasurement
of tensor components at about 150 Mev through a degraded second
scattering could be utilized to check the 315-Mev a_naly-sis with greater

accuracy.

-
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APPENDIX A,

Formulae fBE Nucleon gﬁgi Deuteron Scatteron

As an aid in comparing nucleon and deuteron polarization on
a mathematical and physical basis, the more important formulae

are here summarized.

General Formulae

Density matrix de_s'cribing final polarization state of a beam of

particles:

p. Trpl Z <-,3f‘t> or Mp, M+

-Expect’:ahonf‘value of any operator in terms of density matrix:
Tr{pA)

[O2-—at

- Wolfenstein-Ashkin rela.t:ion6 describing beam after scattering:
o1
_g-
I <s“> = — z <R“‘>. T (MR 'MtsH).
f n, v 1 ’

Here o, is the dimensionality of the initial spin space, M is the
scattering matrix, and R or S is a set of basis operators in terms
of which the density or scattering matrix may be expressed (for-

example, the Pauli matrices or the TJM)'

Nucleon Formulae: (spin-zero nucleus)

" Density matrix: p = Z_u (1 + Z<<Z1> .Oi) = fzeu— (1 + P . 0).

N, - N_

N, +N_

(with N+ the number of particles with spin up;

" Polarization of singly scattered beam: P_ =

N , the number with spin down).
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Cross section after second scattering: 12 = Iu (1 + e cos 6).

IL‘IR

IL+IR

Asymmetry: e = PIPZ =

In terms of quantities obtained from impulse approximation,

M =g (@) +h(6) -5

SC

b

I = gz-i-h'2

2 Re g h/(g+h°)

s
i

Deuteron Formulae (spin-zero nucleus)

. - _ t
Density matrix: p = 1/3 ;';/1 <TJM> TJM

N, - N_
N, +N_+N

Polarization of singly scattered beam: Py =

: 0
(with N, the particles having spin in

plane of scattering).

Cross section after second scattering: I2 = Iu (l+d+ e cos '¢

+f cos 2 ¢). '

Asymmetry of second scattering:

2 (<1T11>1<iT11>z g <.T;_1>1<T21>2)

(I; -Ig)/2 1,

e

"

N3

‘where <iT11> equals Py'
In terms of quantities obtained from impulse approximation,
— T . H4+C L ~ 1/2 : <. _]
M, =2+bT B+C;; S or =1 /Y(K) [zgdfhds s

I~ f(K) [4gi + 2/3 hi],
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P =~ 4/3{(K)2Reg. h,/I
y (K) €83 "a u

(f(K) being the sticking factor).

- Polarization expressions may be written in terms of spin wave

functions:
i
2, :
n. = . for the ith nucleon,
i a1 S
2
1
%1
X; = ! a; for the ith deuteron.
| \ a3 -
+ +(10 - o P>
Then S/_—”i 9% M Z”i <0=1 o ,Zalfz - af_2
n i i
P = = = - -
: i2 i2
4 Zﬂf’ﬂi Znt n, Zal t a,

P =

’ ZXT X3

with the sums taken over all particles in the beams.

‘and ‘ Z +/100 | |
t s Xiloo00}Xi Zaiz_aiz
d Exi y Xi i 00-1 1 3
2

-
<
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APPENDIX B. 1.

Operators in the Deuteron Spih Spacé

Usual Spin Operators

T —~ . -~
SX=—101 , Syz——-—i,oq sz=
NZ o1 0 N2 oo g0
101] ,, 1 0-1
> ,
S2 =L 020 S = L 020 SZ,=
x 2 y 2 z
101 10 1
1 i 0-i 1 000 1
sty-':_z— 000 SYSZZ'\IT i0i SX'SZ:'\I—Z—
i0-i 0.0 0 |
[ ] [0-i 0
X i 0-1 1 _ 1
i0i] 0-i
TJM. (Irreducible) Operators
100
r_I‘OlO =1=1010
001
- NF NER R +
T S p—— (S +iS ) = « o 0 01 = - T
11 X 1, -1
2 y 2 ’
. 000

. . 3
TlO_ 2 Sz

—

00
000
00-1

J1o00

000
001

10-1

-

000

LO-1 Q)
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001
.2
S £+i8 )% = N = 1
(S, 1y) N3 000 TZ,_2
Jooo
010
. A N
{(Sx{-lsy)sz{_sz (SX+1Sy)} = - Z00—1
' o000

, 100
1

- 2) =— 0-2 0

2 001

t
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APPENDIX B. 2.

: Eigenfuncti‘onsxg'g_h_e Deuteron Spin Space

It is convenient to know the eigenfunctions of the spin oper-
ators in a representation having the z axis as the axis of quanti-
zation. These may be found by solving eigenvalue equations or by
transforming the usual Sz eigenfunctions by performing a rotation

about the x or y axis; for example,

\
!

XiY= exp (iSX 6) Xiz = l\+ (cos 9-l)Si+isinGSXj\ XiZ»

The eigenfunctions found are given in the followipg table. Those
associated with SY give the spin functions used by Baldwin, 7 while
the usual SZ eigenfunctions are special cases of the functions

discussed by Lakin.

Eigenvalues Operators
S S
.nl i—
1] [
1
+1 > iN'Z 0
_1'4
T r—
0
1
0 — O 1
Ve 0
1 1 0
-1 S -i N2 0
-1 : 1
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APPENDIX C. 1.

Density Matrix -

The density matrix in the representation in which the z axis
is the axis of quantization and is parallel to incident momentum,

but the y axis is the normal to the scattering plane, takes the form

p=1/3 ;%/1 <TJM>
N <<T+> < )\/s—@;)

2

- P Y Y Gy <T2)1+ =00

(I is taken as 1; <T (> does not appear because it is zero in this
r‘epresentatlon). The deuteron wave function in this system for

time =0 (or'\ =p Hzt/'h =0) as expressed by Baldwirf2 is

- ..1... (a-b)—l
N2

va+b

gt
1

L (a-b)
| NZ |

and follows from the combination of y-axis wave functions (Appendix

B.2) given by

. iN ESN
§_=1'\/7<-ale.e +bXY1 e +cXO)
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Taking c as zero and hence eliminating the trivial 'case when <Sy>

must equal zero gives the self-adjoint form of the density matrix:

/ - N
. az' + b2 iNZ (a2 -bZ _al . bZ
. ) * % sk 3 % e
-a b - ab +a b -ab ) +a b + ab
Y 2
1 —iNZ (a2 -b2 aZ +b iNZ (az - b2
p = — | _* * * % s &
2 -a b+ ab) +a b + ab -a b+ ab’)
-a? bl N7 (2% - b2 2% + p?
% £ % ¥ *. S
+a b + ab +a b -ab ) -a b - ab

where the defi\m'tion of p given in Section II. B has been used.
Comparison of these two forms of the density matrix yields

values of the tensor components for special states, for example,

the +1 state when b =0 and a = 1/J2Z.(Compare Section IL. E.)

O
.
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Lakin Inequality

In another representation, that with the z axis along the normal
to the scattering plane, the density matrix takes quite a different
form and permits the derivation of an inequality given by Lakin and
useful for restricting the values of tensor corﬁ“ponents. If the pure

states of polérization are described by

.‘1’1 = XO’_

<
V)
i

o B* N
Y3 = Boxyy oA Xy,
with X410 Xg o and x _j the eigenstates of Sz , and if these

states have statistical weights of )\1 Y )\2' , and )\3 , the density

matrix has the form

/ oy
2 2 sk e
)\ZA + )\3B 0 )\ZAB - )\3B .A
p = 0 )\1 0
N ¢ 2 2
XZBA - )\3A B 0 )\ZB> + )\3A
~ -

Equat1ng terms in this matrix to those in the TJM representation

and noting that <T“> <T21> = 0 (also making A and B real

by choosing the X and Y axes in the plane of scattering as the tensor

pi‘incipal axes) gives A
| f_§_ _l_< > _ 2 2
1/3 (148 <T10> +«l’z‘ T,0) ) = 2A% +2yB%,
1/3 (1 A3 @)t @,00) = A, BZ
10 \f‘ 20

<Tzz> _ N3, - A3) AB,
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Obviously, then, since ()\Z - )\3)2 < (9\2 + )\3)2 there results

<T10>'2 * [“ﬁ‘_ <Tzz>]2$%[:<Tgo> +V7:|-Z

This inequality is represented by Fig. 26, which shows the cone
containing all possible states. Pure states are at extreme points

on the cone, as indicated.
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MU-17320

26. Lakin cone showing restriction of <}’I“

values in the spin space defined by the choiceé

of z axis normal to the scattering plane. The Y's '
refer to the pure polarization states described in

' the Lakin article.
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APPENDIX D. 1.

Rotation of the Polarization Tensor by a Magnetic Field

Three methods may be used to transform the <TJM> :

(a) Finding the expectation values of spin operators as

_transformed in coordinate space with the use of precessed spin wave

functions; i.e., making separate spin-system and coordinate-system
t‘ranstrmations, ,

(b) Transforming the <TJM> directly for a relative spin rota-
tion X = y(n-1) n by means of the Kramers method of transforming
the spherical harmonic YJM’ which uses the analogy between the

three -dimensional r'otation of the YJM and a two-dimensional trans-

formation of §J+MnJ-M, where £ and 1 are unit vectors of the
spinor plane. (An equivalent method is the use of the rotation
matrix given by Fano and Racabh, 27)

(c) Expressing ‘Sisj (like Stapp's ‘SiSj’ but without his
-2/3 (fij) in terms of the -T

transformation fepresenting rotation through the angle A\.

and carrying out an orthogonal
The last is most easily understood physically. Just as a spin
vector expressed in the x-y-z coordinate system can be transformed

for rotation N\ about the y axis by taking

cos A 0O -sin\ S

1 1 X
ST:= Za. S or S = {0 1 0 S
1 1m m —_ . Yy b}
™ sinN 0 coshk SZ

so the tensor spin products can be transformed with the same

matrix A:

! Nenl 1
- (- ' . -1
(Sisj) = Z L. aim amn Snsj or (SS) = é (§§) é .

The first problgm is to express Sisj in terms of TJM .
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By using .
s +8°+8% = s(S+1)=2
x "y

z

and

SS -S S =iS , etc.,

X'y y X Z

it can be shown on combining the TJM and TJ, M terms, that
2 _ ' .
s, =1/N3 T,, + 2/3'- (1/382) T,

s, S, = (1/N3) (-T,, -2 Ty) , etc.
. . ]
Carrying out the above transformation, one obtains (_S §) in terms

of the original _S §' ‘(TJM) and trigonometric f'unctions of '\.
Equating the TJM expression for each (S S) term to the associated
(TJM, \) expression then gives the formulae included in Baldwin's
appendix. (though with opposite signs for the sin2\ terms). - For

example, the stz element gives |
A3 (- <Tz>' -2 @N»: [-unND <T2(> + (1/N3) <T22>:](51n zx/zl

+ A3 ((T,) -2 <T11>) sin®\ + (1/3) < (T, -2 <T1>) cos®X.
Thus, | '

| <T21>' :. <T20> (1/2)N3/2" sin 2\ I+ <T21> cos 2\ -<T22>(sin 27/2).

J—
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APPENDIX D. 2.

Polarization Ellipsoid

The ellipsoid representing the polarization tensor provides a
simple way of performing the above transformation by geometry
rather than algebra. This ellipsoid is analogous to the moment of
inertia ellipsoid.

The moment of inertia for rotation of a body about an axis n is

I =1 x2+I y2+l z2+ZI xy+21 xz+21  vyz,
n xx vy zz Xy XZ yz

and if an ellipsoidal surface is represented by

2 2
b= Lby t Iyy Py te Ixyvapy:; ’

with p = /NI, then I for this particular axis n can be
found by taking l/p2 in the direction of n.
Similarly, the spin tensor SS can be represented by a surface whose

equation is '
2 2 2 2 i '
1=<> +<>+ )>+<> :
S pni Sy py: { <S Sy p p‘

The effects of rotating the polarization tensor (with a magnetic
field) about one of its principal axes can be easily determined by
consideration of the effect of rotation of the ellipsoid cross section

in the plane perpendicular to this axis. (See Fig. 3b.)



-121-
APPENDIX E.

Errors in Cross-Section Parameters -

The expi‘essions for the d, e, and f cross-section parameters
were given in Section III. J. Efrors_ entering into the determination
of these quantities were caused by three factors: statistics, normal-
ization, and misalignment. _

For statistical error, the usual Aexpression for error in a
quantity A dependent upon variables x1 was used:

NIVSLEEDY (6%.)% -
: ax4 ! _ ' .

This resulted in the foilowing exp»ressions for the errors in the

quantities d, e, and f{:

e ‘ <2 2 \2

Ad = 1/T @Ip) + (1+d)” (A1),

e = 121, Na1)? 4 (an 0 ¥ e (81)%

Of = 1'/41u «/(AIO)Z + (AII8O)Z +(A190)2+ (AIZ7O)2+ (4_f)2(41u)2.

The polarized and regenerated beams differed in their degree
of cbntaminati.dn by low-energy particles, and in calculations which
colmpens.ated .f‘or this by ''normalizing'' the unpolarized to the polarized
:_cro._ss sections by the ratio of values ét 62 =6 dég (where d could
be considered almost zero), the error was at least that resulting from
the statistical uncertainty of the ratio of the 6-deg cross sections.
If -I— /Iu was equal to r + Ar , the relative error in 1+d, -e, and
f due to normalization was Ar/r
) "For error in alignment, Io and_llSO and also 190 and 1270
could not be considered as independent variables, as the associated
errors were determined by horizontal and by vertical alignments,
respectively. The effects of the latter cancelled, since V

8 1 . =.8 I,4o 3 and because the unpolarized cross section
96

90 56
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was corrected for misalignment on the basis of the ¢-dependence
at one 8 (beryllium) or by averaging over ¢ for every 6 {carbon),
only the horizontal setting for the polarized beam caused error.

The expressions for the misalignment errors obtained were

1 ' '
Ad =Af = _?.__ I - _a.._. I A6,
A1 0 180
u 96 86
1 < 3 E )
le = I + I AG.
5 6 0 5 0 180

21
u
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APPENDIX F.

Formulae for TJM (61) in Terms of Cross-Section Parameters

("ByQ® Formulae')

" If internal and external angles of scattering are the same,

' eM|_ed —1/2"
<T21>_(61) *d_—l'——>

2 N
(T,0) ()= *v/B (em'zed>l/2
(r,) (@) -

<1.Tu> (6y) == [e%m ¥ ecyzr: - ed)J

H

!
H
(]
~
)
N
o
Y LB
1
o =
Q.
N—
—
~
13"

where

_ d_‘_ic_l_m d £d m d_f m><d_fdam>
B =1%0"3m %00/ \%22" 73 %22/ "\ %02 %92/ %0 m %2079
d £ d £

<d ad m> (d 4 > <a.d ad s > <ad £d am>
= laq,- a G -— . /- -— - ;
Y 02~ 7m %02/ 21” jm 21 01~ 7m0l 22" m %22/ 5
5 = qd m> <d £d m> <d ad (ad _f_ am>
o170l Y20 T Y20/ T Yoo —m%00 21 m %21
d £ d f
_ d ™ > + d ™ > + ( d ™m > 8
T51\%10 - %10/ —7 \%11 " %11 “12 7 %12/ ],
)
d, m_ d, m l + d, m : d, m kS
€ %10 B 211 o2 By



9

-124-

Although these expressions give direct <T JN> evaluation, they are
not very useful because of producing considerably biased results

owing to the combination of d and f errors.

I
i
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