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Introduction
Applications of artificial intelligence (AI) in medicine will 
change radiology practice in myriad ways. There is growing 
consensus that education of radiology post-graduate 
trainees and medical students should now include under-
standing AI.1,2 While the field has discussed educating 
radiologists on use of AI,3 the purpose of this review is 
to instead focus on use of AI for “precision education” in  
radiology.

We first define “precision medical education” and provide 
a brief overview of radiology education. Next, we intro-
duce challenges in modern radiology education for trainees 
and propose solutions from AI for both students and 
educators. Then, we illustrate use cases from our institu-
tion for AI in radiology education, namely an interactive 
online system built for radiology education and a digital 
neuroradiology teaching file. Integration of such tools 
will improve models of augmented radiology education. 
Finally, we explore new challenges facing AI in radiology  
education.

Artificial Intelligence and precision 
medical education
Generally, AI has potential to improve efficiency and produc-
tivity throughout medicine.4–11 AI techniques are compu-
tational models able to emulate human performance on a 
task, often without explicitly being programmed for that 
task.12 Deep learning models are one class of AI that have 
found recent success, although AI more generally refers to a 
much broader set of computational techniques that perform 
complex operations previously thought to require human 
intelligence. Currently, successful AI radiological applications 
include (i) abnormality detection, (ii) anatomic segmenta-
tion, (iii) image quality assessment, (iv) natural language 
processing (NLP), (v) improvement of protocols and work-
lists, etc..13 Further discussion of applications of AI in 
radiology is beyond the scope of this text and is reviewed else-
where.12–14 Often, the goal of AI is to understand some aspect 
of an individual’s health by taking a multitude of variables into 
account. As such, AI is closely tied to the concept of “preci-
sion medicine”, which is a healthcare framework focused on 
“prevention and treatment strategies that take individual vari-
ability into account”.15
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Abstract

In the era of personalized medicine, the emphasis of health care is shifting from populations to individuals. Artificial intelli-
gence (AI) is capable of learning without explicit instruction and has emerging applications in medicine, particularly radi-
ology. Whereas much attention has focused on teaching radiology trainees about AI, here our goal is to instead focus on 
how AI might be developed to better teach radiology trainees. While the idea of using AI to improve education is not new, 
the application of AI to medical and radiological education remains very limited. Based on the current educational founda-
tion, we highlight an AI-integrated framework to augment radiology education and provide use case examples informed 
by our own institution’s practice. The coming age of “AI-augmented radiology” may enable not only “precision medicine” 
but also what we describe as “precision medical education,” where instruction is tailored to individual trainees based on 
their learning styles and needs.
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In contrast, AI applications to medical education are relatively 
underexplored. Individual variability is thought to contribute 
substantially to learning styles.16 Although a tremendous amount 
of research has focused on precision medicine, very little has 
focused on analogous personalized medical education. The oppor-
tunity to exploit AI technologies for education in general is not 
a new concept, and indeed was presented as a “grand challenge” 
for AI in 2013.17 AI has been utilized to forecast student perfor-
mance, dropout rates and adverse academic events.18,19 Addition-
ally, several AI methods use e-learning modules to identify learning 
styles of individual students.20,21 However, it should be noted that 
there are legitimate concerns of didactic applications of AI given 
that AI has not yet been widely implemented for clinical practice 
and the majority of published papers have been retrospective and 
single institution.12 However, the potential instructive applications 
of AI warrant further discussion and research.

Here, we focus on the potential use of AI in radiology education. 
Much of the excitement about AI in education centers around the 
use of AI for taking into account unique individual needs. There-
fore, we propose the term “precision medical education” to 
illustrate the use of tools and diagnostics to personalize medical 
education to individual learners. We introduce and analyze the 
potential utility of AI in radiology education, AI-based solutions, 
and new challenges in an era of precision medical education.

Precision radiology education framed by 
learning theories
Radiology education requires acquiring skills to analyze/extract 
imaging features to find patterns, generate a differential diagnosis 
that matches the patterns and correlate the imaging features and 
differential with clinical findings to select the most probable 
diagnosis.22 To acquire and apply these skills, trainees learn and 
integrate diverse knowledge sources. Radiology training relies 
on the traditional apprenticeship model. Because this relies 
on trainee’s relationships and limited time available to review 
preliminary reports with the staff radiologist, gains in knowledge 
and skills can vary between trainees.23–25 Moreover, this learning 

is dictated by number and diversity of cases encountered, 
varying within practice and patient mix. Hence, this apprentice-
ship education model is challenged by ever-increasing workload 
demands on both attending/staff physicians and trainees and can 
be improved by better understanding relations between humans 
and tools.1

Radiology affords tremendous opportunity to leverage techno-
logical advances for education, with its inherently digital nature 
and early technology adoption. To put a proposed model for 
future radiology education into context, we briefly review three 
learning theories (behaviorist, cognitive and constructivist) 
(Table  1) that are relevant to radiology trainees and medical 
students.26 The behaviorist theory emphasizes whether the best 
gamut and diagnosis were made. Cognitive theory focuses on 
how the diagnosis was made, with proper reasoning and algo-
rithms. Finally, constructivist theory highlights with whom and 
what tools the diagnosis was made, allowing analysis of trainees’ 
collaborations with peers, supervisors, AI tools, etc.

As an illustrative case of the learning theories, imagine a trainee 
in her neuroradiology rotation. She encounters a real (or simu-
lated test) case of a patient presenting with acute neurological 
deficits. The brain MRI depicts a T2 hyperintense lesion with 
restricted diffusion in the basal ganglia. She generates a differen-
tial diagnosis from the radiologic and clinical features, and ulti-
mately arrives on the diagnosis of acute infarction. In assessing 
her performance, the behaviorist theory evaluates whether she 
generated the best diagnosis. Cognitive theory examines her 
reasoning of correlating radiologic features in the provided clin-
ical context. Constructivist theory focuses on how she utilized 
resources, such as consulting textbooks, colleagues and super-
visors. Together, these theories contribute to a holistic under-
standing, albeit not equally in strength at all points in time; 
portions of theories are relevant to certain learners at certain 
points in their training. AI may offer potential improvements 
to current educational practice corresponding to any of these 
perspectives (Table 2).

Table 1. Learning theories address questions that form the basis of how we understand radiology and differential diagnosis26

Learning Theory Question Addressed Description
Behaviorist theory Is the best diagnosis made? The study of behavior focuses on questions including whether 

radiology trainees formulate the most accurate differential, 
and whether significant radiologic features or lesions are 
distinguished from artefact. This context emphasizes on results 
demonstrated by trainees but treats trainees as a “black box.”

Cognitive theory How was the best diagnosis made and from what reasoning? Cognitive processes highlight reasoning involved in deciding 
diagnoses. What features were compiled by trainees and how 
did he or she rank these to determine a differential? The focus 
becomes how we can allow trainees to develop skills necessary 
for obtaining correct responses. Furthermore, this aspect 
identifies cognitive biases, or mistakes in memory recall, 
reasoning or decision-making, that are salient in practice.

Constructivist theory With whom and with what tools was the best diagnosis made? Learning is recognized to be a social process wherein trainees 
rely on and actively participate in interactions with other 
trainees, technologists, clinical colleagues, and staff physicians. 
Trainees will utilize tools to facilitate their education. 
Relationships between trainees, their mentors and supervisors, 
and study resources creates a greater understanding of how 
radiology is learnt and practiced.

http://birpublications.org/bjr
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Now, imagine the trainee is learning with an AI network that has 
already determined a potential diagnosis. Such a network allows 
her to check whether the elements of her own differential diag-
nosis are correct. Accuracy measured by percentage of correct 
diagnoses can demonstrate the behaviorist theory of trainee 
performance. Based on her differentials, AI can individualize 
its recommendations and prompt her to identify or corroborate 
her observations of T2 hyperintensity or diffusion restriction. In 
addition to image interpretation, AI can assist in clinical recom-
mendations for this acute stroke patient. This individualized 
learning guides her decisions, which may optimize measures of 
proper lesion characterization, potentially reducing complica-
tions further promoting the cognitive theory. Upon interacting 
with the human-machine interface, she can now discuss the case 
with other radiologists. Optimizing interactions can be assessed 
by turnaround time or time utilizing the AI, which are central to 
the constructivist theory.

Challenges in radiology education and 
solutions offered by AI
Radiology education faces inherent challenges. Some are unique 
to the field, including lack of high-fidelity simulation training, the 
immersion of trainees into realistic situations mimicking real-
life encounters.25 Some are common across medicine, including 
evolving apprenticeships.27 Herein, we introduce challenges and 
discuss potential solutions offered by AI. Naturally, some solu-
tions overlap between learning theories, so they are listed under 
the “best matched” theory (Figure 1). The applications presented 

here are not yet validated. Hence, we provide a critical overview 
of the challenges of implementing such solutions and possible 
evaluation methods in the “New Challenges” section.

Automated measurement and case flow assignment: Addition of 
AI to post-graduate education may directly assist trainees in 
augmenting caseloads with necessary breadth and depth of cases. 
Automated segmentation and measurements of lesions, some-
times already at or above human accuracy,4,11,28,29 can improve 
efficiency of study interpretation, leading to more educational 
cases for trainees. At a systems-level, the “intelligent” case alloca-
tion and assignment for trainees and staff radiologists produces 
an efficient distribution of resources and education.14 Indeed, 
radiology trainee performance increases with optimal case expo-
sure and volume.30 Specific “must-see” cases can be assigned 
based on rotations to help minimize potential for inconsistency 
in individual trainee experiences, creating more time for trainees 
to review resources critical for proper case interpretation and 
improve diagnostic accuracy allowing more time to interact 
between educators and students. Importantly, for “educated 
consumerism” of AI technologies, instruction on the technology 
should be addended to core radiology and medical school 
curriculums to assist trainees identify strengths and weaknesses 
of AI,31 reinforced by its use for trainee education.

Case-based learning (Bottom-up approach): Interactive and 
problem/case-based learning are “bottom-up approaches,” 
where students gain firsthand experience in interpreting cases 

Table 2. Learning theories address challenges that form the foundation to improve radiology precision education with AI

Learning theory Challenge addressed Description
Behaviorist theory How can we improve perceptual and diagnostic 

accuracy of trainees and medical students?
Experience is a gateway between apprenticeship and autonomy, 
empowering trainees with greater accuracy.17,26 Patient care can improve 
with increased trainee experience.

Cognitive theory How can we improve radiology education and its 
use of textbooks and lectures as the main access 
points to knowledge and diagnostic thinking?

With growing knowledge requirements in medicine, and definitions 
of pathology ever-evolving, the knowledge gap between trainee and 
attending continues to widen. AI can build knowledge efficiently and 
highlight and correct individual cognitive biases.

Constructivist theory How can we optimize and maximize the time 
spent between trainees and their teachers?

One-on-one time at workstations is essential to radiology education 
environments,17 but this is not always achievable in busy reading rooms, 
with ever-increasing work-loads.1,23 AI can also automate “learning 
profiles” (discussed later).24

Figure 1. Triangular approach to learning theories and integration of AI into radiology precision education. Behaviorist, cognitive 
and constructivist learning theories each present challenges and solutions.

http://birpublications.org/bjr
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themselves. Conversely, “top-down approaches” expect students 
to learn diagnostic processes from educators first and practice 
afterwards. AI can complement existing bottom-up platforms 
used to teach radiology.32 It has been argued that case-based 
learning should be implemented because it is more effective than 
traditional, top-down approaches and is preferred by radiology 
educators and students.33–35 Similar to how weekly interesting 
case discussions are prepared, bottom-up cases for trainee 
learning may be selected by attending physicians based on the 
criteria such as the rarity of the diagnosis, the difficulty in differ-
entiating diagnoses, or the opportunity to integrate multiple lines 
of evidence. Eventually, AI may select the cases itself as it detects 
rare radiologic or clinical features. AI offers ideal opportunities 
to present case-based learning, through tools, like AI-curated 
teaching files delivered at optimally relevant times, for trainees to 
review that adapt with individualized performance. Such systems 
have been present for many years, often termed “intelligent 
tutoring systems”,36 but AI is now reaching the computational 
capacity for a broader application. In radiology education, an 
intelligent tutor might similarly create modules or virtual curric-
ulums for rotating trainees, track learning style and performance 
and reinforce challenging topics. To assess trainees’ knowledge 
base, the supervising physician and/or such an AI-based personal 
tutor can evaluate how the trainee performs with and without 
assistance. This approach of case-based milestones encourages 
both individualization of trainee learning through AI tools and 
standardization of radiology graduate and continuing education, 
in line with the Accreditation Council for Graduate Medical 
Education (ACGME).37 On-demand, case-based, standardized 
curricula may guide program directors and supervisors toward 
more thorough, equitable radiology training and education.

Guided decisions: AI algorithms have potential to directly teach 
cognitive processes related to diagnostic decisions. For example, 
a subset of AI tools utilizes “decision-trees” to search the space of 
possible decision points to acquire the simplest combination of 
points that yields the highest accuracy. Other AI tools can high-
light important anatomical regions utilized by AI to determine 
a result. When applied to different diagnoses, decision trees and 
saliency maps can allow trainees to peer “inside the black box” 
to learn radiological decision-making.4 These guided decisions 
may serve to demystify AI tools and allow for trainees to derive 
diagnostically meaningful information that might otherwise be 
hidden. This also demonstrates how precision radiology educa-
tion is distinct from precision medical education, which may 
use networks to highlight clinically visible signs, symptoms or 
lab results. Additionally, salient case features can be identified 
and cross-referenced with records or teaching files to recom-
mend additional cases for review. This database can be curated 
and adapted by supervising physicians to guide trainees on how 
to make clinical decisions. Educators can analyze trainee deci-
sions and either reinforce or discourage such decisions in future 
situations. As educators implement AI tools, cognitive biases 
can be reduced by presenting trainees with forgotten informa-
tion, strengthening proper reasoning and providing examples 
of correct decision-making. Finally, AI can optimize the relative 
contributions of “thinking slow” and “thinking fast”.38 “Slow,” 
logical decisions, like analyzing studies for planning stereotactic 

radiosurgery, can be augmented by systematic AI-based deci-
sions which may improve the quality of trainee reasoning. “Fast” 
thinking, like interpreting acute infarcts on head CT, requires 
quick heuristics developed as individuals familiarize themselves 
with cases. By streamlining workflow with automated quantifica-
tion, such as characterizing lesions in multiple sclerosis,39 AI can 
reduce time-to-diagnosis and increase quantity of cases studied 
to improve quick decision-making. Hence guided decisions may 
assist individual trainees on multiple levels of decision-making 
and improve the quantity of training cases and quality of personal 
time spent learning from them. This is not yet proven, and we 
discuss this further in the “New Challenges” section. Nonethe-
less, similar to how graphing calculators can guide students to 
understand calculus, AI tools may be able to guide trainees in 
radiological interpretation. While there is concern that use of AI 
for clinical and diagnostic decisions will supersede the role of 
human radiologists, AI affords augmented radiologists to evolve 
new roles in data science and assessment.40

High and low-level supervision: One solution to a construc-
tivist challenge is to support human-machine interactions and 
extend human interactions to enrich learning experiences. In 
one study, US residents spent about 24 minutes reviewing a 
brain MRI and drafting a report, and greater supervision may 
assist in optimizing time spent.41 AI can be used for low-level 
education, while attending/staff physicians still provide high-
level supervision. Previous AI tools have matched students with 
preferred learning styles,20,27 and AI can identify and uniquely 
customize low-level learning experiences with trainees. Trainees 
working on draft reports may be directed by AI algorithms to 
review example case reports with similar radiologic or clinical 
features, relevant clinical literature and additional quantitative 
measures, such as the size, volume, lesion count or change over 
multiple time-points. AI-driven search queries and recommen-
dations have already been implemented in biomedical databases 
for “intelligent navigation”. Such tools may enable intelligent 
triangulation and the creation of trainee competency profiles, 
akin to online trainee logs of skills and experiences required for 
surgical training programs and are currently in development in 
radiology.24,42 For high-level training, students will still enjoy 
direct face time with attending/staff physicians but may now 
focus on synthesizing and refining information. The attending 
can review a trainee’s activity on cases and usage of AI-networks 
to address errors in reasoning and discuss more abstract consid-
erations from clinical best practices to management decisions. 
We later discuss potential metrics of performance.

Flipped learning: AI techniques promote interactive flipped 
learning for personalized education. Normal classrooms provide 
supervised (yet passive) instruction while trainees practice unsu-
pervised. Alternatively, flipped classrooms empower trainees to 
review cases and draft reports while supervised by educators 
and gather information from knowledge sources while unsuper-
vised. Flipped learning has been tested and preferred by medical 
students,43 dental students44 and radiology trainees.1,35,45 In fact, 
many medical schools have implemented flipped classrooms 
where lessons are introduced at home and ideas are synthesized 
and applied in place of lecture during class-time; workstations 

http://birpublications.org/bjr
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and reading rooms can become flipped, “precision learning class-
rooms.” Supervisors and trainees may spend less time reviewing 
basic ideas and more time on deeper discussions of radiologic and 
clinical principles and hold review/question-&-answer sessions. 
Students can utilize AI to supplement unsupervised learning 
during personal time. This change would allow human educators 
to spend more time watching trainees’ practice, correcting errors 
made in unsupervised learning and tailoring training methods 
and lesson content based on their students’ strengths and weak-
nesses, promoting bi-directional information exchange and 
learning. Thus, AI promotes unique precision education plat-
forms that balances a standardized curriculum with inherently 
individualized learning.

High-fidelity simulating training: High-fidelity simulations 
(HFS) allow trainees to practice for clinical encounters. 
Radiology utilizes highly advanced technology, but compared 
to other medical fields, there is lack of HFS and situational 
learning that can provide real-time feedback tailored to specific 
learning skills or modules.25 From surveyed US radiology resi-
dency program directors, department chairs and chief residents, 
one third of respondents highlighted issues like lack of faculty 
time and training, cost of equipment and lack of support-staff 
as barriers for HFS in diagnostic radiology; many of these 
barriers can be overcome with AI. In fact, AI clinical learning 
tools, like models for sepsis, pediatric asthma management and 
breast cancer risk prediction, are currently being developed 
to potentially improve clinical management.46–48 Such models 
must be rigorously validated by different investigators across 
different populations of training data before clinical adoption. 
While such tools have not yet been approved for widespread 
clinical practice, they might be helpful in training clinicians on 
how or how not to act.49 Furthermore, the construct validity of 
whether certain AI tools actually “learn” has been debated, and 
the use of such tools in medical education and simulation has 
not been thoroughly tested. Nevertheless, it is certainly worth 
determining whether such models may one day be applied to 
simulation training to prepare students on how to best manage 
clinical scenarios. An AI-integrated call preparation platform 
might allow trainees to better simulate mini-call conditions, 
expeditiously extract information from patient charts and 
increase autonomy under faculty supervision. These initiatives 
are cost-effective and may prevent morbidity associated with 
unexpected situations or life-threatening events faced during 
traditional post-graduate medical education and training.50 
Precision education can promote a better learning environment 
where trainees are tested with simulation calls and assessed 
by performance. Real-time feedback and situational learning 
tailored to unique events can be provided by AI networks and 
supervisors, who can track progress and proficiency from simu-
lations. Based on performance, simulations can be adapted to 
fit the learning needs of trainees, as is further discussed in the 
use cases. Moreover, learning environments might be adapted 
to individual learners on case-by-case basis, leveraging previous 
research on applying AI to match students’ learning styles and 
provide feedback.20,21,51

Use cases for radiology precision 
education
Given these potential solutions from AI, we now examine two 
use cases and propose a model for AI in radiology precision 
education.

Bayesian networks
Textbooks and lectures in radiology generally focus on knowl-
edge and important imaging findings required for image inter-
pretation. Additionally, years of training and experience with 
many exemplars, augmented by direct workstation teaching, 
empower trainees with skills of reasoning and basic under-
standing of probability/rank-ordered differential diagnosis. 
Currently, Clinical Decision Support (CDS) systems are being 
developed to improve diagnosis and management that can inte-
grate with electronic health records.52,53

Rather than trainees memorizing lists and mnemonics, a system 
that supports development of differential diagnosis may be a 
more effective educational tool. The Adaptive Radiology Inter-
pretation and Education System (ARIES) is an open source 
software (https://​github.​com/​jeffduda/​aries-​app), developed 
at our institution as a tool for integrating imaging and clin-
ical features to formulate a differential diagnosis, as well as for 
teaching probabilistic reasoning in forming these differential 
diagnoses.54,55 Specifically, ARIES is a web-based interface to a 
Bayesian network allowing users to select observed features for 
any imaging examination. It computes probabilities of specific 
diseases based on reported combinations of imaging and/or 
clinical features. Real-time probabilities of a pre-defined list of 
differential diagnoses are calculated according to a specified 
Bayesian network with expert-derived conditional probabilities 
from specialists or published findings.54,55 Further validations 
are underway to determine whether systems such as ARIES are 
effective in improving educational outcomes and diagnostic 
performance of trainees. While such networks are yet to be vali-
dated for clinical practice, they hold promise in streamlining 
education given the current alternatives are inefficient textbook/
literature searches.

ARIES is a Bayesian network, rather than a deep learning-based 
AI algorithm and has specific networks developed for several 
organ systems (including preliminary MRI sub networks for 
musculoskeletal system, spine, lung, and renal lesions) with a 
tailored differential diagnosis. Specific sub networks may be used 
for trainees during individual rotations or selected based on the 
indication or clinical description of the imaging study. Further 
description of methods is found in 54,55 and Supplementary 
Material. While deep learning methods often demonstrate high 
performance, integrating Bayesian networks into digital plat-
forms offers the advantage of access to internal features “under 
the hood.”

ARIES assesses features to predict diagnoses, from common to 
uncommon to rare frequency. To better illustrate utility of such 
software for education, consider a trainee on neuroradiology 
rotation. A patient presenting with nonspecific acute neurological 
manifestations undergoes a brain MRI, which the trainee reviews 

http://birpublications.org/bjr
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using ARIES for diagnostic assistance. The trainee can select rele-
vant imaging/clinical features (for example, single large lesion 
with mass effect, increased FLAIR signal, absence of reduced 
diffusion and heterogeneous contrast enhancement) (Figure 2a). 
Clinical information can also be specified to improve differen-
tial diagnosis (age, immune status, gender). These features are 
integrated by the Bayesian network to calculate probabilities for 
certain diagnoses relevant to the organ system. Two sets of prob-
abilistic diagnoses are provided, one accounting for only imaging 
findings (“Radiographic Differential Diagnoses”) (Figure  2b), 
and the second calculating disease probabilities given imaging 
findings in the given clinical setting (“Clinical Differential Diag-
noses”) (Figure 2c). In addition, ARIES allows users to highlight 
(in orange in Figure  2a) the most relevant diagnostic features 
for differentiating the items in the current differential diagnosis. 
This feature can guide a radiology trainee in assessing the most 
relevant imaging features for a particular diagnosis.

In the provided example, the neuroradiology white matter 
network is queried with features described above, pointing 
towards the diagnosis of high-grade glioma. Addition of clinical 
findings suggests an alternative diagnosis of tumefactive multiple 
sclerosis. This difference in rank-ordering of differential diag-
nosis teaches importance of clinical presentations in imaging 
contexts.

Platforms like ARIES are also applicable for rare diagnoses. For 
the basal ganglia network (Figure 3a), a trainee may encounter 
a young adult with acute neurological symptoms with increased 
FLAIR signal located in deep gray nuclei, brain stem and white 
matter, with focal heterogeneous enhancement. Differential 

diagnosis may include neoplastic, demyelinating, infectious and 
inflammatory etiologies. Yet, the diagnosis with highest proba-
bility based on ARIES is Neuro-Behçet’s disease (Figure 3b–c). 
This specific imaging pattern in a young individual with an acute 
presentation preferentially suggests this rare condition.

Learning tools like ARIES empower trainees with the capacity to 
develop and test hypotheses with interactive analysis by adding, 
removing, or changing features to see how they affect the differ-
ential diagnosis. Real-time probabilistic feedback from authen-
ticated, proven cases supports direct education in radiological 
decision-making, integrating all learning theories and radiology 
triangulation. For another neuroradiology example, see Supple-
mentary Video 1. This demonstrates how dynamic a differential 
diagnosis can be. Localization of signal abnormality to a certain 
thalamic subregion can change probabilities for the top diag-
nosis from Wilson disease (anterolateral thalamic involvement) 
to flavivirus encephalitis (posteromedial thalamic involvement). 
This illustrates how incomplete input into systems such as ARIES 
may lead to erroneous interpretations, and hence careful consid-
eration of each important feature is required by both network 
designers and end users to determine a complex diagnosis. 
When utilized thoughtfully, this dynamic diagnostic process may 
assist trainees to better understand key features that distinguish 
disorders of similar clinical and/or radiological presentations.

Such interactive systems have the potential to augment radiology 
and medical education. As we will discuss in the next use case, 
platforms such as ARIES can be augmented with aspects of 
machine learning to create a truly personalized learning expe-
rience. After identifying important features and formulating 

Figure 2. The Adaptive Radiology Interpretation and Education System (ARIES) distinguishes between a high-grade glioma and 
tumefactive multiple sclerosis in the white matter neuroradiology network. (a) Features based on signal, spatial and clinical infor-
mation are selected by the trainee in blue; unselected features are gray. The most differentiating unanswered features are high-
lighted in orange and updated in real-time. Differential diagnosis by (b) imaging features only versus (c) a combination of clinical 
and imaging features derived from the features selected in (a). Probabilities of diagnoses are calculated by a naïve Bayes network 
with prior probabilities based on expert consensus.

http://birpublications.org/bjr
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differential diagnoses, trainees can consult AI platforms for 
probabilistic differential diagnoses, with specific questions high-
lighting clinical decision points for review. This system leverages 
existing Bayesian AI and can be integrated with teaching file 
databases to further enhance aspects of learning.

Comprehensive digital teaching file databases
Teaching files are an important component of radiology educa-
tion, with collections originally developed in printed film form 
but now taking advantage of the digital environment.56–59 Typi-
cally, these teaching file cases are presented digitally, in native 
picture archiving and communication system (PACS), but case 
curation continues to be labor-intensive. Moreover, the onus 
of deciding which cases are most valuable falls on trainees. 
Instead, one might imagine large collections of automatically 
curated cases, which are presented to trainees based on their 
own “learning profile,” accounting both for their individual 
educational needs and subspecialty interests, reflecting precision 
education. Such profiles are a logical progression and extension 
of experiential logs already required for many post-graduate 
programs, including radiology.24

At our institution, we developed a neuroradiology teaching file 
of over 1000 cases, anonymized in our PACS. These include over 
100 common and rare neurological diagnoses and are classi-
fied according to brain sub regions involved and clinical diag-
nosis, with up to eight examples per diagnosis. These files were 
collected using semi-automated, random searches and selection 
criteria (Supplementary Material). Thus, the file’s distribution of 

diagnoses reflects the underlying distribution of diagnoses in our 
health system’s patient population with varying imaging appear-
ances and are truly representative cases for training. Addition-
ally, future NLP algorithms working on reports or health records 
may automatically populate collections over time.60,61

Through integration of teaching files with AI platforms, from 
novel deep learning architectures to more intuitive Bayesian 
networks, potential for implementing real-time searchability and 
delivery of clinical cases/knowledge increases dramatically. Here, 
we propose a model for an AI-based supervision of case selec-
tion, report drafting, and live teaching file cataloguing (Figure 4). 
The model depends on the creation of a trainee learning profile, 
based on a standard curriculum of diagnoses or clinical scenarios 
that trainees should be proficient with before program comple-
tion. After exposure to a new diagnosis with satisfactory perfor-
mance, judged by a supervisor, a trainee may be considered 
proficient in that particular item. Our model utilizes AI to facil-
itate introduction and learning of novel diagnoses or scenarios, 
either real time or through standardized file cases, and gives 
attendings the opportunity to fine-tune trainees’ skills. Suppose a 
patient is scanned and the imaging study is added to the task list. 
The AI system may perform a cursory sweep of lesion segmen-
tation, such as FLAIR lesions62 to identify potential diagnoses. 
It then compares the putative diagnosis with profiles of trainees 
unfamiliar with this diagnosis and assigns the case to the trainee 
predicted to benefit most from it, with or without informing the 
trainee of the putative diagnosis. Such options may be custom-
ized from individual learning styles identified by AI or utilized 

Figure 3. The Adaptive Radiology Interpretation and Education System (ARIES) distinguishes between Neuro-Behçet's disease 
and other diagnoses in the basal ganglia neuroradiology network. (a) Features based on signal, spatial and clinical information 
are selected by the trainee in blue; unselected features are gray. Differential diagnosis by (b) imaging features only versus (c) a 
combination of clinical and imaging features derived from the features selected in (a).
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for deliberate performance assessments, promoting opportu-
nities for high-fidelity case simulations. The trainee identifies 
important clinical and radiologic features from the study and 
formulates a tentative differential diagnosis within a draft report. 
The diagnosis can either be generated completely unassisted, with 
supplementation from AI quantitation tools, or with AI-guided 
decision making and putative diagnosis sharing. The trainee and 
supervising radiologist will collaborate on the final report and 
sign off. The AI utilizes its NLP to anonymize the case, add it 
to a teaching file, extract the diagnosis and categorize the case, 
and update the trainee’s case experiential learning profile. The AI 
will deliver additional cases from the teaching file to trainees as 
they read similar cases, akin to “suggested readings.” This inte-
grated AI-augmented radiological education promotes greater 
independence under attending supervision, HFS and real-time 
situational feedback. Development of platforms to track trainees, 
their activity and case-logs demonstrates utility of virtual tools 
for post-graduate education24,52 and can be integrated with AI 
as a tool for supervisors to assess individual strengths and weak-
nesses. Such approaches have potential to improve efficiency in 
radiology education and practice by targeting specific trainee 
needs.

New challenges
AI-augmented radiology has the potential to greatly advance 
radiology precision education. Yet, there are certain obstacles 
to be surmounted to reach this goal. Still in infancy stages of 
investigation, AI techniques require significant, rate-limiting 
research, development and real-world validation. For gener-
ating and maintaining of AI-empowered teaching files, quality of 
input data segmentation will influence accuracy of AI networks 
in delivering initial estimated diagnosis.4,63 Currently, many 
high-quality clinical imaging data sets to be used for training 

and validation are not easily accessible. We believe, an interna-
tional consortium for collecting and curating heterogeneous, 
high-quality labeled data for imaging of a vast multitude of 
clinical conditions would critically support this modern model 
of radiology education. Integration of existing image platforms 
into AI networks will improve radiology through standardiza-
tion and personalization, from academic centers to communities 
worldwide.37,64–66

For successful implementation, precision education will 
encounter other challenges. Use of AI will require agreement 
from all parties, including trainees, program directors, etc. There 
will be a significant learning curve, for physicians, technologists 
and engineers. From a 2018 study, 71% of surveyed radiologists 
do not currently use AI/ML. Yet, buy-in may not be a substantial 
hurdle as 87% of respondents plan to learn and 67% are willing 
to help develop and train such algorithms.3 Learning to use AI 
will require some pre-clinical and on-the-job training. End-user 
training for physicians can be introduced in medical school 
and deepened in post-graduate training. Importantly, the role 
of attending physicians in precision education is strengthened, 
not reduced. As described in the text, the supervisor can utilize 
AI platforms as a first pass didactic tool and save time. AI can 
help trainees learn simpler concepts and indicate which topics 
trainees may need attending physicians to teach. Integrated plat-
forms allow supervisors to monitor progress of trainees. Such 
changes may occur more seamlessly at academic centers that 
have existing infrastructures for teaching files and a cohort of 
trainees and educators with vested interest for reform. Collabo-
rations between academia and industry may yield user-ready AI 
tools. The major incentive for AI-augmented radiology precision 
education is the opportunity to potentially improve performance 
through individualized learning.

Figure 4. Future model for radiology precision education (spanning low to high level supervision) with an AI-augmented team and 
teaching file. (Step 1) The patient study is cataloged by the AI system, which quantitatively segments lesions, assesses images, and 
detects a potential rare diagnosis. (Step 2) The AI assigns it to a third-year trainee who has never seen this proposed diagnosis in 
practice. (Step 3) The trainee uses an AI system such as ARIES and measurement tools to supplement her differential diagnosis 
as needed to draft a comprehensive quantitative report. (Step 4) The trainee reviews with the attending/staff radiologist and their 
report is signed off. (Step 5) After confirmation by the attending, NLP detects the rare disease description; the case is anonymized 
and added to teaching files for other trainees to review, or for teaching conferences. (Step 6) Moreover, this case is now linked with 
not only other cases of identical diagnosis, but also other cases in the teaching file with similar findings (but potentially different 
diagnoses), which the AI can recommend to interpreting radiologists or other trainees viewing cases for learning.
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There have been few if any head-to-head comparisons between 
traditional learning and AI-augmented medical or radiology 
education. To determine and verify the utility of AI in precision 
education, trainee performance must be assessed through reli-
able and valid measures. If AI demonstrates utility in improving 
trainee performance through previously discussed assess-
ments such as simulated mini-calls, then such assessments can 
be utilized to track longitudinal trainee performance. Quality 
measures are integral to the improvement of radiology educa-
tion, especially with the utilization of AI.67,68 The learning 
theories frame several outcomes that can be evaluated in the 
improvement of radiology training and may potentially serve as 
metrics of the successes and failures of AI in implementation and 
practice. For example, quality in practice and outcome measures 
can assess how behaviorist theory standards are met, through 
metrics such as the percentage of cases with correct diagnosis 
during simulated mini-calls. Cognition and constructivist inter-
action may be difficult to directly quantify, although metrics 
may still be able to indirectly assess such learning. Cognitive 
theory can evaluate the ability of trainees to integrate reasoning 
in formulating differential diagnosis and clinical management, 
potentially by the percentage of cases with correct qualitative and 
quantitative lesion characterization. Constructivist theory can 
illuminate how networks of care-providers collaborate produc-
tively. Trainees may log the number of colleagues or resources 
consulted in each report and receive metrics such as report turn-
around time or satisfaction of referring physicians. Wide-scale 
adoption to community practices will follow only after such AI 
didactic methods are assessed and proven to be beneficial at 
pioneering centers.

There may be unintended implications of integration of AI 
in diagnostic medicine. When guiding diagnosis, AI may not 
necessarily improve human interpretation. In the application 
of mammography, some forms of computer-assisted diagnosis 
can increase false-positive and false-negative errors.69 Hence, 
continual refinement of AI tools is required to improve sensi-
tivity and specificity, and care must be taken not to detrimen-
tally affect trainee learning opportunities. Additionally, part of 
the curriculum of AI in precision medical education is under-
standing the strengths, weaknesses, applications and limita-
tions of AI in radiology. AI may be time-saving and beneficial 
for flipped learning, which emphasizes low-level supervision, 

such as comparing scans over time. Trainees can learn patterns 
and trends of what types of imaging features may or may not be 
detected as lesions by AI, in comparison to attending physicians. 
AI can also detect what features may or may not be detected as 
lesions by trainees.70 In this way, we envision that both radiology 
trainees and the AI network can maintain a system of “checks 
and balances” on each other. Therefore, AI may support some 
but not all aspects of diagnosis and the use of AI in education 
and diagnosis should be balanced with a holistic understanding 
of its pearls and pitfalls.

Conclusion
Recent developments in AI demonstrate its viability for 
augmenting radiology education. The next generation of 
radiology trainees may learn how AI technologies are used in 
practice, but similar tools will also be used to enrich their educa-
tion. A reference frame from behaviorist, cognitive, and construc-
tivist aspects of radiology education presents current challenges 
and potential solutions of how to tailor allocation of resources to 
individual trainees, adapting to personal learning needs. While 
progression to radiology precision education is approaching, it 
will encounter significant challenges and require measures to 
assess effectiveness. Hence, integrating AI into radiology preci-
sion education requires a dynamic collaboration from research, 
clinical, and educational perspectives.
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