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1 Introduction

This paper provides characterization theorems for preferences over <n that

can be represented by U(x1; : : : ; xn) = minfxkg, U(x1; : : : ; xn) = maxfxkg,

U(x1; : : : ; xn) =
P
u(xk), or combinations of these functional forms.

We assume that preferences are symmetric, continuous, and weakly in-

creasing. We also assume throughout that preferences satisfy partial sep-

arability (see Blackorby, Primont, and Russell [4]), which is equivalent to

the condition that changing a common component of two vectors cannot re-

verse strict preference (see Mak [12]). Partial separability is weaker than the

common complete separability axiom (which states that changing a common

component of two vectors cannot reverse weak preference) typically invoked

to obtain additively separable representations. We supplement these assump-

tions with di�erent conditions to obtain the above representation functions.

These assumptions are introduced in Section 2.

If preferences are strictly monotonic, then partial separability implies

complete separability (see F�are and Primont [7]). In order to get more than

just additively separable representations we must permit some 
atness. In

Section 3 we analyze the implications of local 
atness with respect to one

variable at a point along the main diagonal. We show that if symmetry is

assumed, then the indi�erence curve through this point is either min or max.

Section 4 shows how an additional indi�erence monotonicity axiom implies

that if one indi�erence curve is described by the min function, then all lower

indi�erence curves are min as well, and that higher indi�erence curves are

either min or additively separable. Similarly, if one indi�erence curve is

described by the max function, then all higher indi�erence curves are max as

well, and all lower indi�erence curves are either max or additively separable.

The third result, presented in Section 5, shows that a linearity axiom

combines with the partial separability axiom to guarantee that preferences

must be represented throughout their domain by min, max, or
P
xi. In this

section we also point out that the linearity axiom is stronger than necessary

to obtain this trichotomy. Under a weaker condition, preferences must be

represented throughout their domain by min, max, or
P
u(xi).

Section 6 discusses the connection between our results and a social choice

problem, where the question is how should society allocate indivisible goods

when it decides to use a lottery. Section 7 describes related literature.
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2 Axioms and Preliminary Results

Consider a preference relation � on <n. We denote by � and � the strict

and indi�erence relations, respectively. The preferences � are assumed to

be complete, transitive, and continuous. Denote e = (1; : : : ; 1) 2 <n and let

e
i = (0; : : : ; 1; : : : ; 0). Assume:

(M) Monotonicity x� y implies x � y.

(S) Symmetry For every permutation � of f1; : : : ; ng and for every x,

(x1; : : : ; xn) � (x�(1); : : : ; x�(n))

De�ne x�k to be the vector in <
n�1 that is obtained from x by eliminating

component k, and let (x�k; yk) be the vector obtained from x by replacing xk
with yk. For x 2 <

n, let 
k(x) = f�x�k : (�x�k; xk) � (x�k; xk) = xg. That is,

k(x) is the intersection of the upper set of x with the hyperplane where the

k-th component equals xk. Let N denote the set f1; : : : ; ng and N�k denote

N\fkg.

De�nition 1 The set of variables N�k is separable from fkg if and only if

for each x; x0 2 <n either 
k(x0) � 
k(x) or 
k(x) � 
k(x0).

(See Blackorby, Primont, and Russell [4, pp. 43{46] and Mak [12]). If xk = x0
k
,

then 
k(x) and 
k(x0) are upper sets of the same induced preferences on

<n�1 and are of course nested. The conditions of the de�nition are therefore

restrictive only when xk 6= x0
k
. Note that the de�nition does not require that

indi�erence curves of the induced preferences on <n�1 at the level where the

k-th component is xk or x
0

k
will be the same.

Proposition 1 Let U be a continuous utility function that represents �.
The following three conditions are equivalent.

1. N�k is separable from fkg.

2. There exist continuous f : <n�1 ! < and g : <2 ! < such that

U(x�k; xk) = g(f(x�k); xk) where g is nondecreasing in its �rst argu-

ment.
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3. For all x; y 2 <n, if x = (x�k; xk) � (y�k; xk), then (x�k; yk) �

(y�k; yk) = y.

Proof Bliss [3] and Blackorby, Primont, and Russell [4, Theorem 3.2b, p. 57

and Theorem 3.3b, p. 65] prove that the �rst two conditions are equivalent.

Mak [12, Proposition (2.11)] proves the equivalence of the �rst and the third

conditions. �

All of the results of the paper depend on the following axiom.

(PS) Partial Separability For each k the set of variables N�k is separable

from fkg.1

The partial separability axiom is weaker than the common separability

axiom:

(CS) Complete Separability For all x and y and for every k, (x�k; xk) �
(y�k; xk) i� (x�k; yk) � (y�k; yk).

It follows immediately from Proposition 1, part 3 that complete separa-

bility implies partial separability. The converse is of course not true (see for

example Theorem 1). However, if we make a stronger monotonicity assump-

tion, such an equivalence will follow.

(SM) Strict Monotonicity x 	 y implies x � y.

F�are and Primont [7] show that if the preferences � satisfy strict mono-

tonicity and partial separability, then they satisfy complete separability.

Some of our arguments derive local implications of our assumptions. In

order to extend these properties, we make other assumptions. The following

one, which we do not use until Section 5, is the strongest.

(L) Linearity For all x; y 2 <n,

1. For all �, x � y i� x+ �e � y + �e.

1It is possible to amend De�nition 1, Proposition 1, and the partial separability axiom

to obtain the stronger notion of partial set separability, where a set of variables I is

partially separable from the set N n I. We do not make this assumption, but discuss it

brie
y in Section 6.
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2. For all � > 0, x � y i� �x � �y.

In the decision theoretic literature this axiom is called constant risk aver-

sion, where together with the independence axiom it is known to imply ex-

pected value maximization.2 It is also widely used in the literature concern-

ing income distribution. In the social choice literature, where preferences

are de�ned over individual utilities, the axiom states that the ordering is

invariant with respect to a common positive a�ne transformation of utilities

(see Maskin [13]). In Section 6 we provide an example where this axiom may

seem acceptable.

To investigate the implications of the partial separability axiom, we need

the following de�nition.

De�nition 2 The two vectors x; y 2 <n are comonotonic if, for all k and

k0, xk > xk0 i� yk > yk0. For x 2 <n, the comonotonic sector M(x) is the

set of all points y such that x and y are comonotonic.

Two vectors are comonotonic if they have the same ranking of their com-

ponents. Observe that for � and � as in the de�nition of axiom L, the three

vectors x, x+ �e, and �x are comonotonic.

De�nition 3 Preferences � satisfy local strict monotonicity at x if and only

if for all x0; x00 2 <n, x0 	 x 	 x00 implies x0 � x � x00.

If the preferences � satisfy local strict monotonicity at x, then the linear-

ity axiom implies that � satisfy local strict monotonicity for all x0 2 M(x)

and hence symmetry implies strict monotonicity. In combination with the

other axioms, therefore, the linearity axiom implies that preferences will vi-

olate strict monotonicity everywhere, or satisfy the complete separability

axiom. Weaker assumptions su�ce for most of our analysis.

(CF) Comonotonic Flatness If the preferences are strictly monotonic

with respect to the k-th component at the point x, then they are strictly

monotonic with respect to this component for all y 2M(x).

2For an analysis of constant risk aversion without the independence axiom, see Safra

and Segal [19].
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That is, if, for all x0
k
> xk > x00

k
, (x�k; x

0

k
) � x � (x�k; x

00

k
), then for all

y 2M(x) and for all y0
k
> yk > y00

k
, (y�k; y

0

k
) � y � (y�k; y

00

k
).

Axioms relating to comonotonic vectors are popular in the literature con-

cerning income distribution and decision making under uncertainty. The

most popular alternative to expected utility theory, called rank dependent

(Quiggin [16]), assumes that the utility from an outcome xi, which is to be

obtained with probability pi, is multiplied by a function of pi, and the ad-

justed value of pi depends on xi's rank. Formally, denote p0 = 0 and let

x1 6 � � � 6 xn. The value of the lottery (x1; p1; : : : ;xn; pn) is given by

nX
i=1

u(xi)

2
4f
0
@ iX

j=0

pj

1
A � f

0
@i�1X

j=0

pj

1
A
3
5

where f(0) = 0, f(1) = 1, and f is increasing and continuous. Consider

now the set of lotteries (x1;
1
n
; : : : ;xn;

1
n
), and suppose that at a point where

all outcomes are distinct, (: : : ;xi + "; 1
n
; : : :) � (: : : ;xi;

1
n
; : : :). In expected

utility theory this indi�erence implies u(xi + ") = u(xi), therefore the indif-

ference holds regardless of the rest of the outcomes. In the rank dependent

model, on the other hand, this indi�erence may hold because f( i
n
) = f( i�1

n
)

(assume that the outcomes are ordered from lowest to highest). In that case,

indi�erence need not hold at xi if the outcome xj changes for j 6= i. On the

other hand, it does hold for all outcomes that are ranked i-th from below.

The comonotonic indi�erence axiom complies with this model.

The linearity axiom implies comonotonic 
atness, but of course not con-

versely. In combination with the symmetry axiom, however, comonotonic


atness implies that either preferences satisfy strict monotonicity globally,

or they violate this axiom globally. For Theorem 1 we need an even weaker

assumption.

(IM) Indi�erence Monotonicity Let x and y be comonotonic, and sup-

pose that x � y. The preferences � satisfy local strict monotonicity at

x if, and only if, they satisfy local strict monotonicity at y.

This axiom is weaker than comonotonic 
atness is two respects. Let x

and y be comonotonic vectors. If at x the preferences are strictly monotonic

with respect to the k-th component and 
at with respect to the `-th compo-

nent, then axiom CF requires the same at y, while indi�erence monotonicity
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is satis�ed even if preferences at y are strictly monotonic with respect to

the `-th component and 
at with respect to the k-th one. Secondly, unlike

the comonotonic 
atness axiom, where uniform behavior is required over the

whole comonotonic sector M(x), axiom IM only restricts behavior along the

comonotonic part of the indi�erence curve through x. Together with symme-

try, indi�erence monotonicity implies that if x � y, then the preferences �

satisfy local strict monotonicity at x if, and only if, they satisfy local strict

monotonicity at y. In the sequel, we use this version of axiom IM

Under the partial separability axiom, weak monotonicity of preferences

(that is, x � y implies x � y) guarantees that the functions f and g in

the representation in Proposition 1 can be taken to be weakly monotonic.

Under the stronger monotonicity condition M and under symmetry, we can

guarantee that both of the functions in the representation of Proposition 1

are increasing.3 Formally:

Proposition 2 Assume that the preferences � satisfy monotonicity, sym-

metry, and partial separability, and let U be a continuous utility function

that represents �. Then there exist increasing and continuous functions

f : <n�1 ! < and g : <2 ! < such that U(x�k; xk) = g(f(x�k); xk).

Proof Take x�k � y�k and assume f(x�k) 6 f(y�k). To simplify notation,

assume k > 1 and a = y1 = minj 6=k yj: Let z be obtained by permuting the

�rst and k-th components of (x�k; a): It follows that x�k > z�k > y�k. Weak

monotonicity and Prop. 1(2) imply that f is nondecreasing, hence

f(x�k) = f(z�k) = f(y�k) (1)

and therefore

U(y�k; a) = g(f(y�k); a) = g(f(x�k); a) = U(x�k; a) = U(z) =

(2)

U(z�k; x1) = g(f(z�k); x1) = g(f(x�k); x1) = U(x�k; x1)

where the second and seventh equations follow from eq. (1), the �rst, third,

sixth, and eighth equations follow from the de�nition of g and f , the fourth

3The function h : <m ! < is weakly monotonic if x = y implies that h(x) > h(y). It

is increasing if x� y implies that h(x) > h(y).
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equation follows from the symmetry axiom, and the �fth equation because the

k-th component of z is x1. It follows from eq. (2) that U(y�k; a) = U(x�k; x1);

which contradictsM since a < x1. This establishes that f is increasing. That

g is increasing (when its �rst argument is in the range of f) now follows

directly from axiom M. �

3 Monotonicity Along the Main Diagonal

Although partial separability restricts upper sets, and its veri�cation there-

fore needs the analysis of the preferences � at many points, it turns out that

when monotonicity and symmetry are also assumed, much information is

contained in the preferences' behavior along the main diagonal f�e : � 2 <g.

The present section is devoted to this analysis.

Fix a point �0e. The next proposition, which does not require linearity,

comonotonic 
atness, or indi�erence monotonicity, shows that preferences

are either strictly monotonic at this point, or the indi�erence curve through

the point is either min or max. As before, ei = (0; : : : ; 1; : : : ; 0).

Proposition 3 Let n > 3. Assume monotonicity, symmetry, and par-

tial separability, and suppose that there exist �0, " > 0, and m such that

�0e+ "em � �0e. Then x � �0e if, and only if, minfxig = �0.

Axiom PS places no restriction on monotonic preferences when n = 2,

and simple examples show that Proposition 3 does not hold when n = 2 (see,

e.g., the preferences that are represented by eq. (20) below). We will prove

Proposition 3 using Lemmas 1 and 2. A symmetric argument establishes the

next result.

Proposition 4 Let n > 3. Assume monotonicity, symmetry, and par-

tial separability, and suppose that there exist �0, " > 0, and m such that

�0e� "em � �0e. Then x � �0e if, and only if, maxfxig = �0.

Lemma 1 Assume monotonicity, symmetry, and partial separability, and

suppose that there exist �0, a > 0, and 1 6 m < n � 1 such that �0e +P
m

i=1 ae
i � �0e. Then there exists � > 0 such that �0e +

P
m�1
i=1 aei +P

n�1
i=m

�ei � �0e.
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This lemma implies, in particular, that if it is possible to increase the value

of one component of a point �0e on the main diagonal without moving to a

strictly better point, then in an open neighborhood of �0e, the indi�erence

curve through �0e is derived from the min representation function.

Proof Suppose that there exist b > 0 and k such that

�0e+
m�1X
i=1

aei +
k�1X
i=m

bei � �0e (3)

but, for all " > 0,

�0e+
m�1X
i=1

aei +
k�1X
i=m

bei + "ek � �0e: (4)

We want to show that k = n. Assume that k < n. Let x�k = (x1; : : : ; xk�1;

xk+1; : : : ; xn) where xi = �0 + a for i < m, xi = �0 + b for m 6 i < k, and

xi = �0 for i > k. It follows from (3) that

(x�k; �
0) � �0e (5)

and for all 0 < " < a,

(x�k; �
0 + ") � �0e � �0e+

m�1X
i=1

aei + "ek (6)

where the strict preference follows from (4) and the indi�erence follows from

the assumption of the lemma and axiom S. By continuity, (6) implies that

there exists � > 0 such that if y = (�0 + �)e+
P

m�1
i=1 aei, then

(x�k; �
0 + ") � (y�k; �

0 + "): (7)

Furthermore, unless the statement of the lemma holds true, it must be the

case that (y�k; �
0) � �0e. It follows from (5) that

(y�k; �
0) � (x�k; �

0): (8)

Equations (7) and (8) violate axiom PS. Hence we have a contradiction,

proving that k = n. �
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Lemma 2 Assume monotonicity, symmetry, and partial separability, and

suppose that there exist �0, a > 0, and 1 6 m < n � 1 such that �0e +P
m

i=1 ae
i � �0e. Then �0e+

P
n�1
i=1 ae

i � �0e.

In other words, the value of � in Lemma 1 is at least a.

Proof Suppose that for some k > 2,

�0e+
k�1X
i=1

aei � �0e (9)

but �0e+
P

k

i=1 ae
i � �0e. We want to show that k = n. Assume that k < n

and argue to a contradiction. First, we claim that there exists b > 0 such

that

�0e+
k�1X
i=1

aei + bek � �0e: (10)

If (10) did not hold, then it follows from (9) and continuity that for all " > 0,

there exists � > 0 such that

�0e+
k�1X
i=1

aei + "ek � �0e+
k�1X
i=1

aei +
nX

i=k

�ei: (11)

Applying axioms PS and M, we can conclude from (11) that

�0e+
k�2X
i=1

aei + �ek�1 + "ek � �0e+
k�2X
i=1

aei +
nX

i=k�1

�ei � �0e: (12)

But if k < n and � and " are su�ciently small, then by Lemma 1,

�0e+
k�2X
i=1

aei + �ek�1 + "ek � �0e: (13)

Since (13) contradicts (12), (10) must hold.

Now let �b � supfb : �0e +
P

k�1
i=1 ae

i + bek � �0eg. We know that �b > 0

and we want to show that �b > a. Assume �b < a. Again by continuity it

follows that for all " > 0, there exists � 2 (0;�b) such that

�0e+
k�1X
i=1

aei + (�b+ ")ek � �0e+
k�1X
i=1

aei +
nX

i=k

�ei:

9



By PS

�0e+
k�2X
i=1

aei + �ek�1 + (�b+ ")ek � �0e+
k�2X
i=1

aei +
nX

i=k�1

�ei: (14)

However, by axiom S,

�0e+
k�2X
i=1

aei + �ek�1 + (�b+ ")ek � �0e+
k�2X
i=1

aei + (�b+ ")ek�1 + �ek (15)

and, provided that �b+ " 6 a, axiom M implies that

�0e+
k�2X
i=1

aei+(�b+")ek�1+�ek � �0e+
k�1X
i=1

aei+�ek � �0e+
k�1X
i=1

aei+�bek: (16)

Since

�0e+
k�1X
i=1

aei +�bek � �0e

by the de�nition of �b, (14), (15), and (16) combine to imply that

�0e � �0e+
k�2X
i=1

aei +
nX

i=k�1

�ei

a violation of axiom M. This contradiction establishes the lemma. �

Proof of Proposition 3 From Lemma 2 it is su�cient to show that supfx1 :

�0e + x1e
1 � �0eg = 1. Denote the supremum by a and assume that a is

�nite. By assumption a > �0. By Lemma 2 and n > 2, there exists � > 0

such that �0e+ ae1 + �en � �0e. Therefore, by continuity and monotonicity,

there exists "0 > 0 such that

(�0 + �)e � �0e+ (a+ "0)e1 + �en: (17)

On the other hand, for su�ciently small �,

�0e+ (a+ "0)e1 � �0e � �0e+ �
n�1X
i=1

e
i (18)

where the indi�erence follows from Lemma 1 and the strict preference fol-

lows from the de�nition of a. Eqs. (17) and (18) violate axiom PS. This

contradiction establishes the proposition. �

10



4 Indi�erence Monotonicity

Consider the function U : <n ! <, given by

U(x) =

8><
>:
Q
xi x 2 <n

++

minfxig otherwise

(19)

(See Fig. 1 for the case n = 2). This function satis�es monotonicity, sym-

metry, partial separability, and indi�erence monotonicity. As we show in

this section, to a certain extent, it is typical of the functions satisfying these

axioms.

Figure 1: The function U for n = 2

Theorem 1 Let n > 3. The following two conditions on � are equivalent.

1. � satisfy monotonicity, symmetry, partial separability, and indi�erence

monotonicity.

2. � satisfy one of the following conditions.
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(a) There exists �� 2 [�1;1] and a function u : (��;1) ! < with

limx#�� u(x) = �1, such that for � 6 ��, x � �e i� minfxig = �,

and for � > ��, x � �e i�
P
u(xi) = nu(�).

(b) There exists �� 2 [�1;1] and a function u : (�1; ��)! < with

limx"�� u(x) =1, such that for � > ��, x � �e i� maxfxig = �,

and for � < ��, x � �e i�
P
u(xi) = nu(�).

Adding a quasi concavity assumption in Condition 1 eliminates possi-

bility 2(b). Likewise, assuming quasi convexity eliminates 2(a). As noted

above, axiom PS is not restrictive when n = 2. Consequently the theorem

requires that n > 2. Even if we invoke the stronger linearity axiom instead of

indi�erence monotonicity, when n = 2, indi�erence curves in a comonotonic

sector must be parallel straight lines, but they are otherwise not restricted

(see Roberts [18, p. 430]). For example, the preferences over <2 that are

represented by the utility function

U(x1; x2) =

8><
>:

x1 + 2x2 x1 6 x2

2x1 + x2 x1 > x2

(20)

satisfy axioms M, S, L, and PS but cannot be represented by any of the

utility functions in the theorem.

By Propositions 3 and 4 we know that lack of strict monotonicity at a

point along the main diagonal implies that the indi�erence curve through

this point is either max or min. The next lemma utilizes the indi�erence

monotonicity axiom to obtain restrictions on upper and lower sets of such

indi�erence curves.

Lemma 3 Assume that the preferences � satisfy monotonicity, symmetry,

partial separability, and indi�erence monotonicity. If for some point �0e and

for some " > 0, �0e + "ei � �0e, then for all � 6 �0, x � �e if and only if

minxi = �.

Proof Let V be a continuous representation of �. Suppose that for some

�0 and " > 0, �0e + "ei � �0e. By Proposition 3, x � �0e i� minxi = �0.

Suppose that for some � < �0, j, and "0 > 0, �e+ "0ej � �e. By symmetry,

these preferences hold for every j. We show that such preferences contradict

our assumptions. Suppose �rst that for some "00 > 0 and j, and for the same

12



�, �e � "00ej � �e. Then by Proposition 4, x � �e i� maxxi = �. Let
~� = supf� 6 �0 : x � �e i� maxxi = �g. The sup is attained by continuity.

If ~� = �0, then �0e +
P

n�1
i=1 e

i � �0e � e
n, a violation of monotonicity.

Likewise, we assume, wlg, that �0 = minf� > ~� : x � �e i� minxi = �g. It
follows that for every � 2 (~�; �0), the preferences � are strictly monotonic

at �e, and by axiom IM, the preferences are strictly monotonic along the

indi�erence curve through �e.

By axiom IM and continuity it is possible to �nd an open box B =

(�0��; �0+�)n around �0e such that the preferences� are strictly monotonic

on the set C = B
T
fx : minxi < �0g. Since, by monotonicity, indi�erence

curves are connected on C, and since strict monotonicity and axiom PS

imply axiom CS, it follows from Segal [20] that � on C can be represented

by a transformation of an additively separable function. Using symmetry we

obtain that on C, V (x) = h(
P

n

i=1 v(xi)) for continuous, strictly increasing

functions h and v. Choose 0 < a0 < �, and for a 2 (0; a0] construct a

sequence xm(a) 2 C of the form xm
j
(a) = �0 + a for j > 1 and xm1 (a) " �

0.

Let x(a) = limm!1 xm(a) = �0e+a
P

n

i=2 e
i. By assumption, V is continuous

at x(a0), and since �0 + a 2 (�0 � �; �0 + �), it follows that v is continuous

at �0 + a for all a 2 (0; a0]. Moreover, for all a 2 (0; a0], h is continuous at

v(�0) + (n� 1)v(�0+ a). To see this, note that by the strict monotonicity of

v, v(a) < v(a0) for all a 2 (0; a0). Hence v(�0) + (n � 1)v(�0 + a) = v(x1) +

(n � 1)v(�0 + a00) for some x1 < �0 su�ciently close to �0 and a00 2 (a; a0).

Since x1e
1+a00

P
n

i=2 e
i 2 C, h is continuous at v(�0)+(n�1)v(�0+a). Since

V (xm(a)) = h(v(xm1 (a))+ (n� 1)v(�0+ a)), we have, by the continuity of V ,

h, and v,

V (x(a)) = h((n� 1)v(�0 + a) + v(�0)):

Since V (x(a)) is constant for a > 0, this equation contradicts the strict

monotonicity of h and v. �

Proof of Theorem 1 (2) =) (1): Monotonicity, symmetry, and indi�er-

ence monotonicity are obviously satis�ed. We will use the second part of

Proposition 1 to obtain the PS axiom. For part 2(a), let

f(x1; : : : ; xn�1) =

8>>>><
>>>>:

minfxkg minfxkg 6 ��

exp

 
n�1X
k=1

u(xk)

!
+ �� minfxkg > ��
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and

g(y1; y2) =

8>><
>>:

minfy1; y2g minfy1; y2g 6 ��

exp
�
ln(y1 � ��) + u(y2)

�
+ �� minfy1; y2g > ��

For Part 2(b) of the theorem, let

f(x1; : : : ; xn�1) =

8>>>><
>>>>:

maxfxkg maxfxkg > ��

� exp

 
�

n�1X
k=1

u(xk)

!
+ �� maxfxkg 6 ��

and

g(y1; y2) =

8>><
>>:

maxfy1; y2g maxfy1; y2g > ��

� exp
�
ln(�y1 + ��) � u(y2)

�
+ �� maxfy1; y2g 6 ��

(1) =) (2): If, for all �, � are locally strictly monotonic at �e, then by IM

the preferences � satisfy SM. By symmetry it follows that such preferences

can be represented by
P
u(xi) for a strictly increasing, continuous function

u (see Debreu [5] and Gorman [8]).

If there exists � such that the preferences � are not locally strictly mono-

tonic at �e, then, by symmetry, there are three possibilities.

1. There exists " > 0 such that for all "0 < ", �e+ "0e1 � �e � �e� "0e1.

2. There exists " > 0 such that for all "0 < ", �e+ "0e1 � �e � �e� "0e1.

3. There exists " > 0 such that for all "0 < ", �e+ "0e1 � �e � �e� "0e1.

As in the proof of Lemma 3, it follows by Propositions 3 and 4 that the

third case violates monotonicity. We show here that the �rst case implies the

representation of part 2(a) of the theorem. The proof that the second case

implies 2(b) is similar.

Suppose the �rst case holds, and let �� = supf� : 9" > 0 such that

�e + "e1 � �eg. If �� = 1, we are through. Otherwise, it follows by

Lemma 3 that for all � 6 ��, x � �e i� minfxig = �.

14



By de�nition, for all � > �� the preferences � are strictly monotonic at

�e. By IM, they are strictly monotonic on (�;1)n. Again by Debreu [5]

and Gorman [8], there exists a function u : (��;1) ! < such that these

preferences satisfy x � �e i�
P
u(xi) = nu(�). Finally, if limx#� u(x) >

�1, then there are two points y; y0 such that minfyig = minfy0
i
g = �, but

limx#y

P
u(xi) 6= limx#y0

P
u(xi), while y � y0, a contradiction. �

Note the role that axiom IM plays in the proof.

Example 1 De�ne U : <n ! < by

U(x) =

8>>>>>>>><
>>>>>>>>:

minfxig minfxig > 1

nY
i=1

minfxi; 1g minfxig 2 [0; 1]

minfxig minfxig < 0

The preferences that are represented by this function are monotonic, sym-

metric, quasi-concave, and satisfy axiom PS. They fail to satisfy the conclu-

sion of the theorem, as an interval over which preferences are strictly mono-

tonic along the diagonal is sandwiched between two non-empty sets in which

preferences are minxi. The example fails to satisfy the assumptions of the

theorem. Although preferences are strictly monotonic at �e for � 2 (0; 1),

preferences are not strictly monotonic for all points on such an indi�erence

curve.

5 Linearity and Comonotonic Flatness

In this section we discuss the implications of axiom L on our results.

Theorem 2 Let n > 3. The following two conditions on the preferences �
over <n are equivalent.

1. � satisfy monotonicity, symmetry, linearity, and partial separability.

2. � can be represented by one of the following functions.
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(a) U(x1; : : : ; xn) = maxfxkg.

(b) U(x1; : : : ; xn) = minfxkg.

(c) U(x1; : : : ; xn) =
P
xk.

When partial separability is replaced with complete separability, Maskin

[13] proves the equivalence of the �rst condition and the third possible rep-

resentation in a social choice framework.

Proof (2) =) (1): Since on comonotonic sectors, the three functions sug-

gested by the theorem are linear, and since the changes that are permitted by

axiom L do not take a point to a new comonotonic sector, it follows that all

three functions satisfy axiom L. Monotonicity and symmetry are obviously

satis�ed. Using Proposition 1, the PS axiom follows easily. For case (a),

let f(x1; : : : ; xn�1) = maxfxkg and g(x1; x2) = maxfx1; x2g; for case (b), let
f(x1; : : : ; xn�1) = minfxkg and g(x1; x2) = minfx1; x2g; and for case (c), let

f(x1; : : : ; xn�1) =
P
xk and g(x1; x2) = x1 + x2.

(1) =) (2): Since axiom L is a property of preferences, rather than of rep-

resentation functions, we can choose U such that U(�e) = �. Then for every

x,

U(�x) = �U(x) and U(x+ �e) = U(x) + � (21)

We �rst analyze preferences that satisfy the complete separability axiom.

Lemma 4 Let M be a comonotonic section of <n. If the preferences � on

M satisfy monotonicity, linearity and complete separability, then they can be

represented by a function of the form
P
akxk.

Maskin [13] proved this lemma (with a1 = � � � = an = 1) under the

additional assumption of symmetry.

Proof By an extension of theorems of Debreu [5] and Gorman [8] (see

Wakker [22]), we know that � on M can be represented by
P
uk(xk), so

on M , U(x) = h(
P
uk(xk)) for some increasingly monotonic function h. By

eq. (21) we obtain for all x 2M and su�ciently small �

h
�X

uk(xk + �)
�
= h

�X
uk(xk)

�
+ � (22)
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and for � su�ciently close to 1

h
�X

uk(�xk)
�
= �h

�X
uk(xk)

�
: (23)

The functions h and uk, k = 1; : : : ; n are monotonic, therefore almost ev-

erywhere di�erentiable. The rhs of eq. (22) is di�erentiable with respect to

�, therefore h and uk are di�erentiable functions. Di�erentiate this equation

with respect to � to obtain

h0
�X

uk(xk + �)
�
�
X

u0
k
(xk + �) = 1: (24)

In particular, for � = 0 we obtain

h0
�X

uk(xk)
�
�
X

u0
k
(xk) = 1: (25)

Di�erentiate eq. (22) with respect to x` and obtain

h0
�X

uk(xk + �)
�
u0
`
(x` + �) = h0

�X
uk(xk)

�
u0
`
(x`): (26)

From eq. (24) and eq. (25) it follows that h0(
P
uk(xk +�)) and h0(

P
uk(xk))

are not zero. Therefore, if u0
`
(x`) = 0, then by eq. (26), for all �, u0

`
(x`+�) =

0, and u`(x`) � a`. If, for all `, u0
`
(x`) = 0, then by the above argument

the claim is satis�ed with a1 = � � � = an = 0. Otherwise, suppose wlg

that u01(x1) 6= 0. If, for all other `, u0
`
(x`) = 0, then � are represented by

v(x1) := h(u1(x1) +
P

n

k=2 ak), where for every �,

v(x1 + �) = h

 
u1(x1 + �) +

nX
k=2

ak

!
=

h

 
u1(x1) +

nX
k=2

ak

!
+ � = v(x1) + �:

(The second equation follows by eq. (22)). Similarly, by eq. (23), v(�x1) =

�v(x1). Hence v is linear. So suppose u01(x1) 6= 0 and u02(x2) 6= 0. From

eq. (26) it follows that

u01(x1 + �)

u01(x1)
=

h0 (
P
uk(xk))

h0 (
P
uk(xk + �))

=
u02(x2 + �)

u02(x2)

17



Fix x2 and consider x1 and � as variables to obtain that

u01(x1 + �)

u01(x1)
= g(�) =) u01(x1 + �) = g(�)u01(x1) (27)

The solution of this functional equation is u01(x1) = �e�x1 and g(�) = eb�

(see Acz�el [1, p. 143, Theorem 2]). Hence u1(x1) = a1e
b1x1 + c1 if � 6= 0, and

u1(x1) = a1x1 + c1 if � = 0. Similarly, for every k, if u0
k
(xk) 6= 0, then either

uk(xk) = ake
bkxk + ck, bk 6= 0, or uk(xk) = akxk + ck. Since we can de�ne

h�(z) = h(z +
P
ck), we can assume wlg that ck = 0 for all k.

If for some k, uk(xk) = akxk, then from eq. (27) it follows that g(�) = 1.

On the other hand, if uk(xk) = ake
bkxk , then g(�) = ebk�. In other words,

either for every k such that u0
k
6= 0 we have uk(xk) = ake

bkxk , or for all such

k, uk(xk) = akxk.

Suppose the �rst case. By eq. (25), if
P
uk(xk) does not change, then

neither should
P
u0
k
(xk). Moreover, since by monotonicity h0 is almost ev-

erywhere non-zero,
P
uk(xk) and

P
u0
k
(xk) have the same indi�erence curves.

In particular, at each point
P
uk and

P
u0 should have the same MRS

(marginal rate of substitution). The MRS between k and ` for
P
uk is given

by akbke
bkxk=a`b`e

b`x`, while the corresponding MRS for
P
u0
k
is given by

akb
2
k
ebkxk=a`b

2
`
eb`x`, hence bk = b` = b. Di�erentiate eq. (23) with respect to

�, set � = 1, and obtain

h0
�X

uk(xk)
�
�
X

xku
0

k
(xk) = h

�X
uk(xk)

�

. Therefore, the MRS between k and ` for the function
P
xku

0

k
(xk) must be

the same as the corresponding MRS for
P
uk(xk). It follows that

akbe
bxk + akb

2xke
bxk

a`bebx` + a`b2x`ebx`
=

akbe
bxk

a`bebx`
=) b = 0

hence the claim of the lemma. �

Conclusion 1 If we add symmetry to the assumptions of Lemma 4 we ob-

tain that � can be represented by
P
xk (see Maskin [13]).

Suppose now that there exists a point x where the preferences � satisfy

local strict monotonicity. As noted above (see discussion after De�nition 3),
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the linearity axiom then implies that the preferences� are strictlymonotonic.

Lemma 4 then implies the third possible representation of the theorem. On

the other hand, if for some x, i, and " > 0, x + "ei � x, then linearity

implies that for all �, �e+ "ei � �e. Proposition 3 then implies the second

possible representation of the theorem. Finally, if for some x, i, and " > 0,

x � "ei � x, then the �rst possible representation of the theorem likewise

follows by Proposition 4. �

The linearity axiom plays two roles in the proof of Theorem 2. First,

it enables us to show that when preferences are completely separable, then

they can be represented by a linear function. Second, it guarantees that a

failure of monotonicity will hold throughout a comonotonic sector. Theorem

1 provides one characterization of preferences when the linearity axiom does

not hold, while Example 1 demonstrates that some assumption is needed to

have control over the way in which local violations of monotonicity in
uence

the global behavior of preferences. To isolate the second role of the linearity

axiom, we discuss the implications of replacing linearity with the weaker

condition of comonotonic 
atness.

Theorem 3 Let n > 3. The following two conditions on the preferences �
are equivalent.

1. � satisfy monotonicity, symmetry, comonotonic 
atness, and partial

separability.

2. � can be represented by one of the following functions.

(a) U(x1; : : : ; xn) = maxfxkg.

(b) U(x1; : : : ; xn) = minfxkg.

(c) U(x1; : : : ; xn) =
P
u(xk) for some strictly increasing u.

Proof AxiomCF implies IM, therefore Propositions 3 and 4 guarantee that

when preferences fail to be strictly monotonic, they can be represented by

either the min or the max function. By Proposition 2, if preferences satisfy

axiom SM, then they satisfy axiom CS. By Debreu [5] and Gorman [8] the

theorem follows. �

Figure 2 summarizes Theorems 1{3. In all three cases we assume that

the preferences satisfy monotonicity, symmetry, and partial separability.
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Linearity
=)

� �

Comonotonic

Flatness

Indi�erence

Monotonicity=)

m m m

maxfxig

minfxig

P
u(xi)

maxfxig

minfxig

P
xi

minfxig below �0e

h(
P
u(xi)) above

maxfxig above �
0
e

h(
P
u(xi)) below

Figure 2: Theorems 1{3

Remark All the results of the paper can be obtained for a symmetric box

(a; b)n � <n. The only place where a more detailed (but trivial) argument

is needed is when the linearity axiom is invoked. We omit this discussion.

Note however that the box needs to be symmetric, as our results strongly

depend on the symmetry axiom. This is in contrast with papers dealing with

complete separability, where the main diagonal usually plays no important

role.4

6 Harsanyi and Rawls

In this section we discuss applications of our representation theorems to social

choice theory.

An n-person society has to allocate, with probability p, m units of an

indivisible good. For example, there is a p-probability that the country will

have to go to war, in which case the army will need to draft m extra soldiers.

Because of indivisibility, it seems best to draw a lottery. The probability

that individual i will be drafted is pi, and the constraints are

4An exception is Wakker [22], where preferences are de�ned over a comonotonic sector.
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1.
P
pi = pm; and

2. pi 6 p, i = 1; : : : n.

The second constraint assumes, in particular, that m 6 n. Moreover, al-

though not everyone may receive a unit of the allocated good, no one will

receive more than one unit of it.5

Society has preferences � over probability distributions of the form (p1;

: : : ; pn). Next we try to justify the assumptions of Theorem 1 in the context

of this social choice problem. Monotonicity and partial separability need

some explanation. If p and m are �xed, then the �rst constraint makes

the \if" part of the monotonicity axiom empty. We therefore assume that

p and m can vary, and that social preferences are over the set (0; 1)n. The

monotonicity axiom asserts that if p or m are increasing, and each member of

society receives at least some of the added probability, then society is better

o�.6

Partial separability too is reasonable in the present context. Changing

the probability for one person should not strictly reverse the induced order on

the rest of the probability distribution. This assumption makes sense even if

there are special links between individuals. Suppose, for example, that 15%

or the population are of race r1, while the remaining 85% are of race r2. For

simplicity, let n = 100. Let " be close to zero, and consider the following

four distributions.

i = 1; : : : ; 14 i = 15 i = 16; : : : ; 100

A pi =
1
2

pi =
1
2

pi =
1
2

B pi =
1
2

pi = 1 pi =
1
2
� 1

170

C pi = " pi =
1
2

pi =
1
2

D pi = " pi = 1 pi =
1
2
� 1

170

If the allocation is not racially biased (as is the case with allocations

A and B), then society will probably (strictly) prefer the more egalitarian

5If individuals could receive more than one unit (while others received none), then the

assumption that society is indi�erent regarding the actual receiver of each unit (see below)

is much less appealing.
6Of course, if the items to be allocated are considered \bads" (for example, draft

service), then either the monotonicity axiom should be reversed, or one should rede�ne

the commodity to be allocated. In the draft example, the good should be \not serving in

the army," and society will have n�m units of this good.
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distribution A to B. However, if the allocation favours group r2, society may

prefer to compensate at least some of the members of group r1, henceD � C.

Partial separability does not rule out such preferences, since changing person

1 outcome from 1
2
to " may make society indi�erent, and then changing

person 2 outcome from 1
2
to " may reverse these preferences. Note, however,

that such a reversal of preferences is ruled out by partial set separability (see

footnote 1).

The linearity axiom has two parts, homogeneity and additivity. In the

present context, homogeneity suggests that social preferences for probability

distributions conditional on p are always the same. In other words, soci-

ety has preferences for distributions of the probabilities needed to select m

individuals out of n. These preferences do not depend on the probability

that society will actually need to select these people. The additivity part

suggests that if m increases, and the added probability is equally distributed,

the preferences between two distributions do not change.

The most controversial of our assumptions is symmetry. This axiom is of-

ten used in the social choice literature in reference to utilities.7 Our model so

far has no utilities (in fact, we did not even introduce individual preferences),

so the symmetry axiom needs a fresh defense. In the absence of information

about individual well being, it is plausible for the social planner to treat

individual members of society as having equal rights to allocations. That

is, the preferences over allocations should be independent of the identities of

the agents. The symmetry axiom requires precisely this level of anonymity,

namely that probability distributions are ranked with no reference to the

identity of the individuals receiving these probabilities.8

Given our assumptions, Theorem 2 implies9 that society ranks probability

distributions of the form (p1; : : : ; pn) by one of the following three social

welfare functions: 1.
P
pi; 2. minfpig; and 3. maxfpig. Note that given the

constraint
P
pi = pm, rule 1 e�ectively says that society is indi�erent over

all feasible probability distributions.

Suppose that all members of society are expected utility maximizers.

Choose a normalization of the utilities from the indivisible good such that

u1(0) = � � � = un(0) = 0, and u1(1) = � � � = un(1) = 1. Then pi stands

7See, for example, Diamond [6], or Ben-Porath, Gilboa, and Schmeidler [2]
8For a similar intuition, but with a di�erent notion of symmetry, see Segal [21].
9See the remark after Theorem 3.
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not only for the probability that person i will receive a unit of the good,

but also for his expected utility from the lottery this probability generates.

Rule 1 above is therefore the same as Harsanyi's [9, 10] social welfare func-

tion, while 2 is a Rawlsian-like [17] function. Note that we do not claim

that 1 yields a utilitarian social ranking, because nothing in our model en-

ables us to compare individual utilities. Indeed, as argued by Weymark [23],

utilitarianism is inconsistent with the above normalization unless initially

u1(1) = � � � = un(1).

If instead of linearity we assume indi�erence monotonicity we may get a

combination of Harsanyi and Rawls. For example, de�ne

Ua;�(p1; : : : ; pn) =

8><
>:

minpi minpi 6 a

exp(
P
u�;a(pi)) + a minpi > a

Where

ua;�(p) =

8><
>:

log(p� a) a < p 6 �

log(��a)

�
p p > �

As � ! a, the area where indi�erence curves of Ua;� are linear becomes almost

the whole upper set of the indi�erence curve minfpig = a. In other words,

these social preferences are Rawlsian up to a certain threshold, beyond which

they are Harsanyian.

7 Related Literature

Several authors studied the problem of decision making under ignorance in

the 1950s. Luce and Rai�a [11] surveys this work. Perhaps the most elegant

contribution in this group is due to Milnor [15]. He presents axiomatic treat-

ments of the maximin and sum criteria. His characterization of the Hurwicz

� criterion (weighted average of maxmax and maxmin) is based on a \column

duplication" assumption that stipulates that the ranking between a pair of

vectors does not change if a component is added to each vector that dupli-

cates an existing component. This assumption is plausible for problems of

choice under ignorance (where the duplicate component could be the result

of an arbitrary rede�nition of the states of the world), but is harder to justify
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in other applications. His characterization of the sum criterion (in the con-

text of decision making under ignorance, this is the principal of insu�cient

reason) depends on monotonicity and separability assumptions.

Maskin [14] provides a characterization of the sum and maximin crite-

ria similar to Milnor's. He relates his results to the social choice literature.

Maskin relaxes the continuity assumption to provide characterizations of lex-

icographic maxmin and lexicographic maxmax criteria as well.

By focusing on partial separability rather than the stronger complete

separability axiom, this paper provides a characterization of sum preferences

under a weaker condition than linearity and a new result in which di�erent

types of indi�erence curves coexist.
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