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Stochastic Real-Time Second-Order Green’s Function Theory for Neutral
Excitations in Molecules and Nanostructures

Leopoldo Mejía,1, 2, a) Jia Yin,3, b) David R. Reichman,4, c) Roi Baer,5, d) Chao Yang,3, e) and Eran
Rabani1, 2, 6, f)

1)Department of Chemistry, University of California, Berkeley, California 94720,
USA
2)Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA
3)Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, USA
4)Department of Chemistry, Columbia University, New York, New York 10027,
USA
5)Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel
6)The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University,
Tel Aviv 69978, Israel

We present a real-time second-order Green’s function (GF) method for computing excited states in molecules
and nanostructures, with a computational scaling of O(N3

e ), where Ne is the number of electrons. The
cubic scaling is achieved by adopting the stochastic resolution of the identity to decouple the 4-index electron
repulsion integrals (ERI). To improve the time-propagation and the spectral resolution, we adopt the dynamic
mode decomposition (DMD) technique and assess the accuracy and efficiency of the combined approach for a
chain of hydrogen dimer molecules of different lengths. We find that the stochastic implementation accurately
reproduces the deterministic results for the electronic dynamics and excitation energies. Furthermore, we
provide a detailed analysis of the statistical errors, bias, and long-time extrapolation. Overall, the approach
offers an efficient route to investigate excited states in extended systems with open or closed boundary
conditions.

I. INTRODUCTION

The computation of excited state properties is a very
active field in the molecular and materials sciences.1–12
The importance of such calculations is accentuated by
the wide range of technological applications that are de-
rived from a deeper understanding of excited state prop-
erties, as well as the fundamental physics and chem-
istry that can be learned from the development of meth-
ods to compute them. In molecular systems, time-
dependent density functional theory13–16 (TDDFT) or
wave function-based methods, such as time-dependent
Hartree-Fock17–19 (TDHF) and coupled cluster within
the equation of motion formalism (EOM-CC),20,21 are
commonly used to compute excited state energies. How-
ever, it is challenging to find a balance between accu-
racy and efficiency. While methods such as TDDFT
and TDHF can handle the computation of the excited
state properties of systems containing hundreds of elec-
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d)Electronic mail: roi.baer@huji.ac.il
e)Electronic mail: cyang@lbl.gov
f)Electronic mail: eran.rabani@berkeley.edu

trons, their accuracy highly depends on the system or
system-functional combination, in the case of TDDFT.
By contrast, while wave-function-based methods that in-
clude electron correlation beyond the level of Hartree-
Fock (e.g. EOM-CC) are usually more accurate, their
inherent steep computational cost restricts computations
to systems with a few atoms only.20–22

Alternative methods traditionally used in condensed
matter theory, such as many-body perturbation the-
ory (MBPT) within the Green’s function (GF)
formalism,23–25 have also proven to be useful to describe
excited states. Two of the most popular approximations
are the GW method26–31, a first-order approximation to
the self-energy in the screened Coulomb interaction (W )
and the GF2 method,32,33 in which the self-energy is ap-
proximated to second-order in the bare Coulomb inter-
action, allowing for the inclusion of dynamical exchange
correlations. The GW and the GF2 closures have been
successfully used to compute charged excitations (quasi-
particle energies) in molecules and bulk systems26,34–36
and have been extended to describe neutral excitations
using time-dependent approaches.6,37 Attaccalite et al.38
showed that the time-dependent GW approach is equiv-
alent to the well-known Bethe-Salpeter equation (BSE)
in the adiabatic, linear response limit. Similarly, Dou et
al.6 derived a Bethe-Salpeter-like equation with a second-
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order kernel (GF2-BSE) and tested the approach for a set
of molecules, with encouraging results for low-lying ex-
cited states, particularly for charge transfer excitations.6
However, the O(N6

e ) scaling with system size (or O(N5
e )

in real-time), where N is the number of electrons, of both
GW and GF2 approaches limit their applications to rel-
atively small systems or basis set sizes.

Here, we develop a stochastic real-time approach to ob-
tain neutral excitations within the second-order Born ap-
proximation (GF2), reducing the computational scaling
from O6

e ) to O(N3
e ). This is achieved using the range-

separated39 stochastic resolution of the identity40 to de-
couple the 4-index electron repulsion integrals appearing
in the Kadanoff-Baym (KB) equations.25 Furthermore,
we adopt the dynamic mode decomposition (DMD) tech-
nique41–44 to solve the nonlinear Kadanoff-Baym equa-
tions within the adiabatic approximation. The DMD
method is a data-driven model order reduction proce-
dure used to predict the long-time nonlinear dynamics of
high-dimensional systems and has been used previously
with the time-dependent GW approach.44 We assess the
accuracy of the stochastic, real-time GF2 approach with
respect to the number of stochastic orbitals, the propaga-
tion time, and the system size for hydrogen dimer chains
of varying lengths.

The manuscript is organized as follows. In Sec. II and
Sec. III, we summarize the GF2-BSE method and intro-
duce the stochastic approaches to its real-time implemen-
tation, respectively. In Sec. IV, we compare the real-time
stochastic and deterministic algorithms, analyze the sta-
tistical error in the computations, and evaluate the qual-
ity of the DMD extrapolation. Finally, in Sec. V we dis-
cuss the significance and perspectives of this work.

II. TIME-DEPENDENT GF2

In this section, we provide a summary of the
time-dependent GF2 approach for computing neutral
excitations.6 We begin by defining the electronic Hamil-
tonian in second quantization. Next, we summarize the
Kadanoff-Baym equations (KBEs) for the two-time GF
on the Keldysh contour and introduce the second-order
Born approximation. Finally, we describe the adiabatic
limit to the KBEs.

A. Hamiltonian

We consider the electronic Hamiltonian of a finite sys-
tem interacting with an explicit electric field. In second
quantization the Hamiltonian is given by

Ĥ =
∑
ij

hij â
†
i âj +

1

2

∑
ijkl

vijklâ
†
i â
†
kâlâj +

∑
ij

∆ij(t)â
†
i âj ,

(1)

where i, j, k, and l denote indexes of a general basis, â†i
(âi) is the creation (annihilation) operator for an electron
in orbital χi, and hij and vijkl are the matrix elements
of the one-body and two-body interactions, respectively.
The two-body terms are given by the 4-index electron
repulsion integral (ERI):

vijkl = (ij|kl) =

∫∫
χi(r1)χj(r1)χk(r2)χl(r2)

|r1 − r2|
dr1dr2,

(2)
where we have assumed that the basis set is real. We
use atomic units throughout the manuscript, where the
electron charge e = 1, the electron mass me = 1, ~ = 1,
the Bohr radius a0 = 1, and 4πε0 = 1.

The last term in Eq. (1) is a time-dependent pertur-
bation. Here, to describe neutral excitation, we cou-
ple the system to an external electric field, E(t), within
the dipole approximation, where ∆ij(t) = E(t) · µij
and

µij =

∫
χi(r)rχj(r)dr. (3)

We choose to explicitly include this term in the Hamil-
tonian (rather than introducing a linear-response pertur-
bation in the initial wave function) because we make no
assumption that the field is weak.

B. Kadanoff-Baym Equations

Following Ref. 6, the equations of motion for the single-
particle lesser Green’s function, G<(t1, t2), are given by
the KB equations:

i∂t1G
<(t1, t2) = F[ρ(t1)]G<(t1, t2) + I<α (t1, t2) (4)

and

− i∂t2G<(t1, t2) = G<(t1, t2)F[ρ(t2)] + I<β (t1, t2) , (5)

where t1 and t2 are projections onto the real-time branch,
ρ(t) = −iG<(t, t) is the time-dependent density matrix,
and F[ρ(t)] is the Fock operator, with matrix elements
given by

Fij [ρ(t)] = hij + vHij [ρ(t)] + vxij [ρ(t)] + ∆ij(t). (6)

In the above, the Hartree and exchange potentials are
given by vHij [ρ] =

∑
kl vijklρkl and v

x
ij [ρ] =

∑
kl vikjlρkl,

respectively.

The last terms in Eqs. (4) and (5) are the collision inte-
grals, given by6

I<α (t1, t2) =

∫ t1

0

ΣR(t1, t3)G<(t3, t1)dt3

+

∫ t2

0

Σ<(t1, t3)GA(t3, t1)dt3

(7)
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FIG. 1: Direct and exchange correlations contained in
the Second-order Born self-energy, GF2. The ovals
represent electron repulsion integrals and the arrows are
propagators (Green’s functions). In Eq. (9), the blue
components of the diagrams (solid lines) are wrapped
into the screened Coulomb interaction, while the red
propagator (m→ n, dotted arrows) is explicitly kept as
Gmn.

and

I<β (t1, t2) =

∫ t1

0

GR(t1, t3)Σ<(t3, t2)dt3

+

∫ t2

0

G<(t1, t3)ΣA(t3, t2)dt3 ,

(8)

respectively. In the above equations, Σ is the self-
energy (which encodes all many-body interactions) and
the superscript "R/A" denotes retarded/advanced com-
ponents.

C. Second-Order Born Approximation to the
Self-Energy

To obtain an approximate expression for the self-energies,
we use the second-order Born approximation, where the
self-energy is expanded to second-order in the Coulomb
interaction. The resulting retarded component can be
written in terms of the retarded and greater screened

Coulomb integrals (δWR/>)6

ΣRij(t1, t2) =
∑
mn

iG<mn(t1, t2)δWR
imjn(t1, t2)

+ iGRmn(t1, t2)δW>
imjn(t1, t2) ,

(9)

where

δWR
imjn(t1, t2) = −i

∑
klqp

(G<kl(t1, t2)GAqp(t2, t1)

+GRkl(t1, t2)G<qp(t2, t1))vimpk(2vjnql − vjlqn)

(10)

and

δW>
imjn(t1, t2) =

− i
∑
klqp

G>kl(t1, t2)G<qp(t2, t1)vimpk(2vjnql − vjlqn).

(11)

A particular feature of the self-energy in Eq. (9) is the
inclusion of dynamical exchange as diagrammatically il-
lustrated in Fig. 1.

D. The Adiabatic Approximation

The equations of motion (4) and (5) for the GFs together
with the expression for the self-energy (Eq. (9)) form a
close set of equations, but depend on two times, t1 and
t2. To further simplify the time evolution of the GF, we
assume that the retarded self-energy responds instanta-
neously to the application of external driving forces (e.g.
the adiabatic limit)6

ΣR(t1, t2) ≈ Σ̃ad[(t1 + t2)/2]δ(t1 − t2) , (12)

while the lesser self-energy is assumed to be
negligible6

Σ<(t1, t2) ≈ 0 . (13)

In the above, Σ̃ad[t] is the so-called adiabatic GF2 self-
energy with matrix elements6

Σ̃ad
ij (t) = −

∑
mn

δW̃R
imjnρmn(t) +

1

2
<
∑
mn

δW̃R
imjnδmn ,

(14)
where

δW̃R
imjn = lim

ω→0

−1

2

∑
kq

f(εk)− f(εq)

εk − ω − εq − iη
vimqk(2vjnqk − vjkqn)

 (15)

is the Fourier transform of the screened Coulomb interac-
tion, f(ε) is the Fermi-Dirac distribution, η is a small pos-

itive regularization parameter, and εk are the quasipar-
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ticle energies obtained using a stochastic GF2 for charge
excitations (see Ref. 34 for more information on how to
calculate the quasiparticle energies using GF2). Using
Eqs. (12) and (13) for the self-energy, the time evolution
of the GFs given by Eqs. (4) and (5) can be reduced to
a simpler form for the equal time (t1 = t2 ≡ t) GF (we
assume an orthogonal basis from now on)6

i
d

dt
ρ(t) = [F[ρ(t)], ρ(t)] + Σ̃ad(t)ρ(t)− ρ(t)Σ̃ad†(t),

(16)

where, as before, ρ(t) = −iG<(t, t) and [A,B] = AB −
BA. Excitation energies obtained using Eq. (16) will be
referred to as TD-GF2 (or TD-G0F2 when the quasi-
particle energies are corrected using a single-shot, non-
self-consistent GF234).

In TD-GF2, the computational limiting step is the cal-
culation of the self-energy at time t, Σ̃ad(t). The formal
computational cost scales asO(N5

e ) with system size, lim-
iting the application of TD-GF2 to small system sizes. To
reduce the number of self-energy evaluations, we adopt
the dynamic mode decomposition (DMD) method to de-
scribe the long-time limit of the density matrix, ρ(t), as
described in the next subsection. In addition, we de-
velop a stochastic approach that reduces the scaling of
computing the self-energy to O(N3

e ) at the account of in-
troducing a controlled statistical error. This is described
in the next section.

E. Dynamic Mode Decomposition

The dynamic mode decomposition method allows the ex-
trapolation of the density matrix dynamics to long times
without the need to further solve the equation of motion.
As developed in Ref. 42, the DMD method is a data-
driven model order reduction procedure used to predict
the long-time nonlinear dynamics of high-dimensional
systems. The method is based on Koopman’s theory45,46
for reduced order modeling. The general strategy is to
find a few (r) modes φij` with associated frequencies ω`ij
to approximate the density matrix dynamics as

ρij(t) =

r∑
l=1

λ`ijφ
`
ije

iω`
ijt (17)

with coefficients λ`ij . This model is constructed from the
short-time nonlinear dynamics of the density matrix and
can be seen as a finite-dimensional linear approximation
to the dynamics.

III. STOCHASTIC REAL-TIME GF2 APPROACH

In this section, we adopt the stochastic resolution of the
identity39,40 to calculate the adiabatic self-energy appear-
ing in Eq. (14) and combine it with the equation of mo-
tion for the density matrix (cf., Eq. (16)).

A. Stochastic Vectors and the Resolution of the
Identity

We define a stochastic orbital θ as a vector in the Hilbert
space of the system with random elements ±1. The aver-
age of the outer product of the stochastic vectors

〈θ ⊗ θT 〉Ns→∞ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = I (18)

represents the identity matrix, referred to as the
stochastic resolution of the identity.40 Here, 〈θ ⊗
θT 〉Ns

≡ 1
Ns

∑Ns

ξ=1 θξ ⊗ θTξ is an average over the set
{θξ} of uncorrelated stochastic orbitals θξ, with ξ =
1, 2, . . . , Ns.

Analogous to the deterministic resolution of the identity
(also known as density fitting), in which 3-index (ij|A)
and 2-index VAB = (A|B) ERIs are used to approximate
the 4-index ERI as

vijkl ≈
Naux∑
AB

(ij|A)V −1AB(B|kl) , (19)

where A(B) is an auxiliary basis of dimension Naux, the
stochastic resolution of the identity can be used as a reso-
lution basis to approximate the 4-index ERIs as40

vijkl ≈ 〈RijRkl〉Ns
, (20)

where Rαβ =
∑Naux

A (αβ|A)
∑Naux

B V
−1/2
AB θB . One ad-

vantage of using this approximation is that the indexes ij
and kl are decoupled, allowing to perform tensor contrac-
tions and reduce the computational scaling.40,47

The use of the stochastic resolution of the identity to
approximate the ERIs introduces a controllable statisti-
cal error that can be tuned by changing the number of
stochastic orbitals, with a convergence rate proportional
to 1/

√
Ns. An alternative for controlling the error is to

use the range-separated stochastic resolution of the iden-
tity in which the largest contributions to the ERIs are
treated deterministically, while the remaining terms are
treated stochastically. Specifically, as proposed in Ref.
39, we first identify large contributions (denoted by the
superscript L) to the 3-index ERIs with respect to a pre-
set threshold,

(ij|A)L =

{
(ij|A) if |(ij|A)| ≥ ε′

Ne
{|(ij|A)|}max

j

0 otherwise,
(21)

where ε′ is a parameter in the range [0, Ne]. The fac-
tor ε′

N guarantees that the total non-vanishing elements
in (ij|A)L scales as O2

e ). Then, we define the large K-
tensors

[KQ
ij ]
L =

Naux∑
A

(ij|A)LV
− 1

2

AQ (22)
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and keep only their larger elements, according to a second
threshold

[KQ
ij ]
L =

{
[KQ

ij ]
L if |[KQ

ij ]
L| ≥ ε{|[KQ

ij ]
L|}max

0 otherwise,
(23)

in which ε is a parameter in the range [0, 1]. We then
define large and small (denoted by the superscript S)
R-tensors as

RLij =

Naux∑
Q

[KQ
ij ]
LθQ (24)

and

RSij = Rij −RLij , (25)

where Rij is defined as in Eq. (20). Using these ex-
pressions, a range-separated 4-index ERI can be written
as

vpqrs ≈
Naux∑
Q

[KQ
pq]

L[KQ
rs]

L + 〈RLpqRSrs〉Ns + 〈RSpqRLrs〉Ns

+ 〈RSpqRSrs〉Ns .

(26)

B. Stochastic Self-Energy

To derive a stochastic expression for the self-energy we
insert Eq. (20) (or Eq. (26) for range-separated compu-
tations) into Eqs. (14) and (15), to yield

Σad
ij [δρ(t)] ≈ −1

2

〈 ∑
kqmn

f(εk)− f(εq)

εk − ω − εq − iη
RimRqk(2R′jnR

′
qk −R′jkR′qn)δρmn(t)

〉
Ns

, (27)

where δρ(t) = ρ(t) − ρ(t0). In the above equation,
the "prime" superscript denotes that a different set of
stochastic orbitals is used to construct the R′-tensors.
Next, we rearrange the equation of motion for the den-
sity matrix (cf., Eq. (16)) as:

i
d

dt
ρ(t) =

[
F [ρ(t0)] + ∆H + vH [δρ(t)] + vx[δρ(t)], ρ(t)

]
+ Σad[δρ(t)]ρ(t)− ρ(t)Σad†[δρ(t)] ,

(28)

where ∆H = Σ(t0) is the GF2 (or G0F2) quasiparti-
cle energy correction. Excitation energies obtained using
Eq. (28) in combination with Eq. (27) will be referred to
as sTD-GF2 (or sTD-G0F2).

IV. RESULTS

To assess the accuracy of the real-time stochastic TD-
GF2 formalism, we restrict the applications below to
systems interacting with weak electric fields and com-
pare the stochastic results to the linear-response GF2-
BSE frequency-domain approach.6 In the weak coupling
limit, the absorption spectrum (photoabsorption cross-
section) is computed by taking the imaginary part of the
Fourier transform of the induced time-dependent dipole,
averaged over the three spatial directions:

σ(ω) ∝ 1

3

∑
d=x,y,z

ω=
∫
dte−iωt(ind. µd(t)) , (29)

where the induced dipole is given by:

ind. µd(t) =
1

γ
Tr[(ρ(t)− ρ(t0))µd] , (30)

with d = x, y, z for the spatial components of the dipole
moment. In the above equations, the matrix elements of
the dipole operator are given by Eq. (3), ρ(t) is computed
using TD-GF2 or sTD-GF2, and γ � 1 is a dimension-
less parameter that scales the amplitude of the external
electric field.

A. Comparison between Deterministic and Stochastic
Dynamics

Fig. 2 shows the stochastic (sTD-G0F2) and determin-
istic (TD-G0F2) induced dipole dynamics of a hydrogen
dimer chain (H20, containing ten H2 dimers with bond
length of 0.74 Å and intermolecular distance of 1.26
Å, align along the z-axis). The equations of motion for
the density matrix were propagated using Eq. (28) with
stochastic (Eq. (27)) and deterministic (Eq. (14)) self en-
ergies, respectively. In both cases, a Gaussian-pulse cen-
tered at t0 = 1 fs, was used to represent the electric
field, with an amplitude γE0 = 0.02 V/Å and a vari-
ance of 0.005 fs; the regularization parameter appearing
in Eq. (15) η = 0.01 and the inverse temperature is set to
β = 50 in all computations. For the stochastic approach,
averages were computed using Ns = 80 stochastic or-
bitals. In all cases, the minimal basis set STO-3G was
used.

Fig. 2(a) exemplifies how the stochastic approach repro-
duces the deterministic dynamics, by comparing the TD-
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FIG. 2: Induced dipole dynamics and DMD extrapolation for H20 hydrogen dimer chain using the STO-3g basis set
and 80 stochastic orbitals. (a) Stochastic and deterministic time evolution of the induced dipole moment. The
equation of motion was propagated using Eq. 28 with stochastic (Eq. 27) and deterministic (Eq. 14) self energies,
respectively. The threshold parameters ε′ = 20 and ε = 1 (fully stochastic limit) were used. The shaded red region is
the standard deviation (SD) of the stochastic approach, computed from 6 independent runs. (b) Standard error as a
function of time, computed as SD/

√
Nr with Nr = 6 independent runs, for the data shown in panel (a). (c) DMD

extrapolation of the stochastic induced dipole dynamics. The shaded purple region signals the DMD window (6 fs)
used for obtaining the DMD reduced model. An exponential damping function, e−t/(0.1tmax), was added to the
dynamics. Inset: zoom on the long-time dynamics.

G0F2 and sTD-G0F2 induced dipole dynamics for the
H20 chain. The shaded region in red is the standard
deviation (SD) obtained from 6 independent runs. The
statistical error can be reduced by increasing the number
of stochastic orbitals (with a convergence rate propor-
tional to 1/

√
Ns) or by changing the range separation

parameters ε and ε′, as is further discussed in Sec. IVC
below.

We find that for a fixed number of stochastic orbitals and
for fixed values of ε and ε′, the statistical error increases
with the propagation time, as shown in Fig. 2(b). This
is consistent with our previous finding for the stochas-
tic time-dependent density functional theory48 and for
the stochastic BSE approach.49 Since the induced dipole
decays rather rapidly in time, the increase in the statis-
tical error at long times does not affect the absorption
spectrum in any significant way. Nonetheless, to miti-
gate the divergence of the dynamics at long times, we
have multiplied the induced dipole by a damping function
e−10t/tmax , where tmax corresponds to the total propaga-
tion time and plays a similar role as the regularization

parameter, η.

The long-time dynamics of the density matrix and the
resultant time-dependent induced dipole were obtained
using the DMD technique outlined above. Fig. 2(c) shows
a comparison between the extrapolated DMD dynamics
and the dynamics obtained by solving Eq. (28) for both
the deterministic and stochastic methods. The shaded
region (first 6 fs in Fig. 2(c)) indicates the portion of the
dynamics that was used to train the reduced DMD model
(defined as DMD window), while the remaining 34 fs (of
which 14 fs are shown in Fig. 2(c)) corresponds to the
extrapolated dynamics. We find that the DMD technique
accurately captures the main dynamical features, even for
the noisy stochastic data. Naturally, the time scale of the
events that can be captured by the reduced DMD model
depends on the DMD window length. Below, we analyze
the accuracy of the DMD approach in reproducing the
absorption spectra.
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FIG. 3: Absorption spectra for two representative Hydrogen dimer chains with varying lengths. (a)-(b) Computed
from 6 fs real-time stochastic and deterministic dynamics, and their comparison with the linear-response equivalent
in the frequency domain (G0F2-BSE). (c)-(d) Computed from stochastic trajectories with DMD extrapolation for
varying DMD window lengths. In all cases, the absorption spectra were shifted vertically for clarity, Ns = 80,
ε′ = 20 and 100 for H20 and H100, respectively, ε = 1 (fully stochastic limit), and STO-3G was used as the basis set.

B. Comparison between Deterministic and Stochastic
Absorption Spectra

In Fig. 3 panels (a) and (b) we compare the absorp-
tion spectra obtained from the stochastic and determin-
istic real-time dynamics and the reference determinis-
tic frequency-domain linear-response approach (G0F2-
BSE), for two representative hydrogen dimer chains. The
absorption spectra obtained from the three different ap-
proaches (vertically shifted for clarity) are numerically
identical, demonstrating that the real-time implemen-
tations are consistent with the frequency domain refer-
ence methods (in the weak coupling-linear response limit)
and, in particular, that the stochastic approach can re-
produce the benchmark results with only 80 stochastic
orbitals.

The frequency resolution of the absorption spectra can be
improved by propagating the density matrix dynamics to
longer times using the DMD technique. Fig. 3 panels (c)
and (d) show the corresponding absorption spectra for a
40 fs extrapolated trajectory (sTD-G0F2+DMD) consid-
ering three different DMD window lengths. Even a short
(2fs) window length provides a reasonable description of
the low-excitation features (main absorption peak at ∼15
eV), but the quality of the spectra improves with in-

creasing DMD windows lengths, especially for the higher-
excitation peaks. Specifically, for the sTD-G0F2+DMD
method, we observed that the average DMD spectral er-
ror is proportional to 1/

√
tDMD, with tDMD being the

DMD window length.

C. Error analysis and scaling

The variation of the range-separated threshold parame-
ters, ε and ε′ (see Eqs. (21) and (23)), allows us to control
the ratio of deterministic to stochastic Coulomb tensor
elements. As ε′ → N or ε → 1 the approach reduces
to the fully stochastic limit. By contrast, when ε′ → 0
or ε → 0 the approach is fully deterministic. Fig. 4(a)
shows the dependence of the statistical error on ε′ and
ε for H20. The average error was estimated using n = 6
independent stochastic runs as

〈Error〉 =
1

Nω

Nω∑
ω

1

n

√√√√ n∑
i

(σi(ω)− 〈σ(ω)〉)2 , (31)

where Nω is the number of frequencies used in the range
E = 10 − 30 eV. As ε increases the statistical error in-
creases and approaches the fully stochastic limit (dotted
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FIG. 4: (a) The average spectrum error for the H20

hydrogen dimer chain using the range-separated
sTD-G0F2 method for varying threshold parameters, ε′
and ε. (b) Log-log plot of the computational cost as a
function of system size for hydrogen dimer chains with
varying lengths. For time-dependent methods, the
propagation time was 2 fs. For the stochastic
computations, threshold parameters ε′ = N and ε = 1
(stochastic limit) were used. The observed scaling with
system size is O(N3

e ) for sTD-GF2, O(N4
e ) for TD-GF2,

and O(N4.5
e ) for GF2-BSE. In all cases, Ns = 80 and

the STO-3G basis set were used.

line in Fig. 4(a)). For the case with the lowest statistical
error in Fig. 4(a) (ε′ = 0.002, ε = 0.001), the amount of
ERI elements computed deterministically corresponds to
≈ 10% for H20, resulting in an error reduction of almost
2 orders of magnitude compared to the fully stochastic
limit.

The main advantage of using the stochastic formulation
of GF2 in the real-time domain is the reduction in the
computational complexity and scaling. Formally, GF2 in
the frequency-domain scales as O(N6

e ) with the system
size (N) while the real-time deterministic implementa-
tion scales as O5

e ). By contrast, when the stochastic res-
olution of identity is used in the time-domain, the compu-

tational scaling is further reduced to O3
e ), as long as the

number of stochastic orbitals does not increase with sys-
tem size to achieve a similar statistical error (which is the
case for the systems studied here). The computational
limiting step in the sTD-GF2 method is the computa-
tion of the self-energy (Eq. (27)), with a formal scaling of
O(NsN

3
e ) when appropriate tensor contractions are used.

Figure 4(b) shows the computational cost associated
with the stochastic and deterministic real-time meth-
ods and the equivalent frequency-domain linear-response
implementation for hydrogen dimer chains with varying
lengths. The lowest scaling corresponds to the stochas-
tic real-time implementation, sTD-GF2, which exhibits
an O3

e ) behavior, with a large pre-factor. For the cur-
rent target statistical error, the stochastic approach is
computationally more efficient than the deterministic ap-
proach for system sizes that exceed N ≈ 200 basis func-
tions.

V. CONCLUSIONS

We presented a stochastic real-time approach to com-
pute excited state energies in extended systems based on
the adiabatic approximation to the Kadanoff-Baym equa-
tions using the second-order Born approximation to the
self-energy (referred to as sTD-GF2). We showed that
the sTD-GF2 approach reproduces the benchmark linear-
response results from analogous deterministic methods,
namely TD-GF2 and GF2-BSE,6 but at a much milder
computational cost that scales as O(N3

e ) with system
size, in contrast to the formal O(N5

e ) and O(N6
e ) of TD-

GF2 and GF2-BSE, respectively. The reduction in scal-
ing is achieved by introducing a statistical error that can
be controlled by varying the number of stochastic or-
bitals or by tuning the fraction of ERIs that are computed
deterministically using the range-separated resolution of
the identity.

Within the adiabatic approximation, the Kadanoff-Baym
equations can be reduced to a single-time integro-
differential equation, which is efficiently solved using the
dynamic mode decomposition method. We assessed the
performance of the DMD method for a chain of hydrogen
dimers of various lengths and found that it is sufficient to
train the systems for times as short as 2 fs (independent
of the system size) to greatly improve the resolution of
the absorption spectra.

The method presented in this work offers the possibil-
ity to study neutral excitations in systems with hun-
dreds to thousands of electrons at the GF2 closure. This
complements the growing manifold of stochastic meth-
ods capable of elucidating the electronic structure of the
ground and excited states in extended systems with open
or closed boundary conditions. Further directions in-
clude the development of stochastic techniques that al-
low the efficient propagation of the two-time Kadanoff-
Baym equations (Eq. (4) and 5), opening the possibility
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to describe strongly driven system beyond the adiabatic
limit.
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