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RESEARCH ARTICLE
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1 Department of Biomedical Informatics, Arizona State University, Tempe, Arizona, United States of America,

2 Biodesign Center for Environmental Security, Arizona State University, Tempe, Arizona, United States of

America, 3 Departments of Biomathematics and Human Genetics, David Geffen School of Medicine,

University of California, Los Angeles, California, United States of America, 4 Department of Biostatistics,

School of Public Health, University of California, Los Angeles, California, United States of America

* matthew.scotch@asu.edu

Abstract

Ancestral state reconstructions in Bayesian phylogeography of virus pandemics have been

improved by utilizing a Bayesian stochastic search variable selection (BSSVS) framework.

Recently, this framework has been extended to model the transition rate matrix between dis-

crete states as a generalized linear model (GLM) of genetic, geographic, demographic, and

environmental predictors of interest to the virus and incorporating BSSVS to estimate the

posterior inclusion probabilities of each predictor. Although the latter appears to enhance

the biological validity of ancestral state reconstruction, there has yet to be a comparison of

phylogenies created by the two methods. In this paper, we compare these two methods,

while also using a primitive method without BSSVS, and highlight the differences in phyloge-

nies created by each. We test six coalescent priors and six random sequence samples of

H3N2 influenza during the 2014–15 flu season in the U.S. We show that the GLMs yield sig-

nificantly greater root state posterior probabilities than the two alternative methods under

five of the six priors, and significantly greater Kullback-Leibler divergence values than the

two alternative methods under all priors. Furthermore, the GLMs strongly implicate tempera-

ture and precipitation as driving forces of this flu season and nearly unanimously identified a

single root state, which exhibits the most tropical climate during a typical flu season in the U.

S. The GLM, however, appears to be highly susceptible to sampling bias compared with the

other methods, which casts doubt on whether its reconstructions should be favored over

those created by alternate methods. We report that a BSSVS approach with a Poisson prior

demonstrates less bias toward sample size under certain conditions than the GLMs or primi-

tive models, and believe that the connection between reconstruction method and sampling

bias warrants further investigation.
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Author summary

For the better part of the last decade, epidemiological researchers have employed a Bayes-

ian framework to reconstruct phylogenetic trees and determine the spatiotemporal rela-

tionships between clades of viruses. Recently, an extension of this framework has enabled

direct assessment of how various demographic, geographic, genetic, and environmental

variables play a role in these relationships, but there has yet to be a comparison between

the former and the latter. Here, we aim to assess the differences between the two recon-

struction techniques, as well as an additional primitive method, using the 2014–15 influ-

enza season in the U.S. as a case study under a variety of population growth scenarios. We

highlight how the new method demonstrates significant increases in commonly-reported

trends in phylogenies and that the method identifies climate predictors that appear to be

consistent with known trends in seasonal trends in influenza. However, we found that this

method appears to be the most heavily influenced by the locations at which the viruses

were obtained. Our work offers valuable insight for researchers wishing to study the evo-

lutionary history of viruses and also may prove useful in determining the correct method

to choose for a given application of virus phylogeography.

Introduction

Bayesian phylogeography has emerged as a powerful approach to analyzing virus spread. It

utilizes sequence data to perform ancestral reconstruction and estimate the most likely line-

ages of the viruses in rooted, time-measured phylogenies [1] using nucleotide substitution

models, molecular clocks, and coalescent priors under a probabilistic Bayesian framework

known as Bayesian stochastic search variable selection (BSSVS) [1–3]. This framework has

improved ancestral state reconstruction and has recently been used to analyze human and

animal influenza viruses both globally [4–5] and nationally [6–7]. By identifying the relation-

ship between geospatial origins and genetic lineages, much can be learned about the complex

process in which these viruses spread. Phylodynamic analyses that aim to combine immuno-

logical, epidemiological, and evolutionary biology techniques [8] also enhance our under-

standing of virus transmission dynamics and their relationship to a phylogeny. These studies

have unveiled novel properties of several influenza viruses, including pdm09 [9], H3N2 [10]

and highly pathogenic avian influenza H5N1 [11]. Building upon the benefits of a BSSVS

framework, recent work by Lemey et al. [12] utilized a phylogeographic generalized linear

model (GLM) approach to identify environmental, genetic, demographic, and geographic

predictors that contributed to the global spread of H3N2 influenza viruses. In the GLM, the

BSSVS on the discrete location variable is instead used to estimate the posterior inclusion

probability of potential predictors in a log-linear combination to model the transition rate

matrix. Similarly, studies have followed this approach to uncover the predictors associated

with the spread of H5N1 in Egypt [13] and for HIV in Brazil [14]. Such studies have demon-

strated the utility of combining genetic and geospatial inferences from phylogeography with

surveillance data in epidemiological studies like Yang et al. [15]. These analyses may enable

actionable solutions for public health officials once consistent identification of contributing

predictors is achieved.

Although the GLM appears to show promise with its simultaneous ability to perform ances-

tral state reconstruction and also assess the contribution of predictor variables of interest,

there has yet to be an assessment of how a standard BSSVS approach and a GLM approach dif-

fer in reconstructing a phylogeny. Specifically, no study has yet compared root state
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probabilities in a phylogeny constructed via BSSVS to the same probabilities using the GLM

approach. Such information may inform researchers of differences in phylogeographic trends

that may be experienced by choosing one framework over the other. In this work we analyze

the 2014–15 H3N2 flu season within the U.S. by performing ancestral state reconstruction of a

discrete location variable via the following three frameworks: an asymmetric substitution

model without BSSVS (–BSSVS), an asymmetric substitution model with BSSVS (+BSSVS)

[1], and a GLM [12]. For the BSSVS framework, we analyze separate versions that place both a

Poisson distribution (+BSSVS(P)) and a uniform distribution (+BSSVS(U)) on the number of

rate parameters that achieve a point-mass on 1.0 in order to determine the influence of loca-

tion priors. For the GLM framework, we analyze separate versions that include and do not

include sample size predictors, which we denote as GLM(+SS) and GLM(–SS), respectively, in

order to directly quantify the effect of sampling bias on GLM-constructed rate matrices and

potential suppression of the signal of other predictors. This brings us to a total of five methods

that encompass the three frameworks. We refer readers to Materials and methods for full

details on the methods. These selections allow us to empirically evaluate differences in phylog-

enies obtained via each method and to determine whether one framework provides more accu-

rate posterior estimates given a fixed set of data. We demonstrate these trends using multiple

random samples from a large collection of flu sequences to show reproducibility as well as ana-

lyze several coalescent tree priors to show consistency among the reconstruction methods

across varying parameters. Finally, we show that support for GLM predictors can change given

the tree priors and sequence sets, but that trends among specific predictors will emerge to

allow accurate determination of their impact on viral diffusion.

Results

In Fig 1A, we show mean log marginal likelihood estimates among the six samples obtained by

path sampling (PS) and stepping stone sampling (SSS) for each prior and reconstruction

method. For PS, the two best-performing mean methods are the GLM(+SS) and GLM(-SS),

respectively, under each prior. The mean +BSSVS(U) outperforms the mean +BSSVS(P)

under each prior as well, although the mean -BSSVS exceeds both under the constant and

exponential priors. For SSS, the log marginal likelihood increases in a near-linear manner for

the +BSSVS(P), +BSSVS(U), GLM(–SS), and GLM(+SS) methods. The -BSSVS method, how-

ever, finds the largest posterior support under the constant, expansion, exponential, logistic,

and Skyline priors.

In S1 Fig, we present log marginal likelihood estimates for each individual model. From S1

Fig, we show that each GLM(+SS) and GLM(–SS) unanimously finds more posterior support

than their corresponding +BSSVS(P) for both PS and SSS. The +BSSVS(P) method demon-

strates consistently poor performance, as its posterior estimates are the worst of the five meth-

ods in 25 of 36 PS analyses and 32 of 36 PS analyses (79% overall) across all priors, while no

GLM(+SS) or GLM(–SS) yields the lowest posterior estimate of model support among the

three methods for either PS or SSS under any prior, although no pairwise t-test shows a signifi-

cant difference.

Each of the 180 models show statistically significant differences between the null and

observed means for the association index (S2 Fig). These data suggest stronger support for the

phylogeny-trait association [16] and, as all p< 0.01, suggest the evolution of influenza during

this flu season was structured by geography. The support of the sampling location-phylogeny

associations observed in S2 Fig can be explained, in part, by the amount of genetic diversity

observed within and across each region. In Fig 1B we show the average genetic distances

between intra-region and inter-region sequences. Here, we calculated the genetic distances

Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States
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among all
285

2

 !

pairwise sequences and present the mean distance of sequences sampled in

the same region (e.g. Region 1-Region 1) to those sampled in different regions (e.g. Region

1-Region 2). From Fig 1B, the pairwise intra-region sequences (n = 4,496 per sample) have a

lesser amount of genetic diversity than the pairwise inter-region sequences (n = 35,974 per

sample) in each our six sequence sets. A two-tailed t-test shows p< 0.01 for each sample, indi-

cating that sequences from within the same region demonstrate significantly lower amounts of

genetic diversity than those from external regions. The average intra- and inter-region dis-

tances in the full set of 1,163 sequences are 0.872% (95% CI = [0.867, 0.878]), and 0.929% (95%

CI = [0.926, 0.932]), respectively (p< 0.0001). These data demonstrate that our method of

downsampling maintained representative levels of genetic diversity across the six samples.

In Fig 2, we show four root state metrics obtained from the maximum clade credibility

(MCC) trees of each of the 180 models. In Fig 2A, we show the mean root state posterior prob-

ability (RSPP). Aside from the constant coalescent prior, the mean GLM(–SS) and GLM(+SS)

methods consistently show the largest mean RSPP of the five methods. The mean GLM(–SS)

finds significantly greater RSPPs under each coalescent prior than the mean -BSSVS (p< 0.03

for each coalescent prior) and significantly greater RSPPs than both the mean +BSSVS(P) and

+BSSVS(U) for the expansion and exponential coalescent priors. Similarly, the GLM(+SS)

shows a mean RSPP significantly greater than the -BSSVS and +BSSVS(U) methods for all

coalescent priors except constant, and significantly greater RSPP than the +BSSVS(P) for the

constant, expansion, Skygrid, and Skyline coalescent priors. Across all coalescent priors, the

mean RSPP for the -BSSVS, +BSSVS(P), +BSSVS(U), GLM(–SS), and GLM(+SS) methods are

0.48, 0.56, 0.49, 0.81, and 0.74 respectively, These differences per method could be influenced

Fig 1. Model comparison statistics and location-specific genetic diversity. (A) Model comparisons obtained via path sampling

(PS) and stepping stone sampling (SSS) for the six coalescent priors and five methods. (B) Average genetic distances between all

pairwise intra-region and inter-region sequences for the six samples, expressed as a percent, with 95% confidence intervals shown as

error bars.

doi:10.1371/journal.pcbi.1005389.g001

Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States
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by the sample size per discrete state, so we show the Pearson’s r correlation coefficient between

the sample size at each discrete state and its corresponding posterior probability at the root in

Fig 2B. Here we observe that the +BSSVS(P) shows a correlation coefficient less than 0.4 for

the constant, expansion, Skygrid, and Skyline coalescent priors but for the exponential and

logistic coalescent priors the coefficient is nearly doubled. Meanwhile, the +BSSVS(U),

-BSSVS, GLM(–SS), and GLM(+SS) methods are generally consistent under all priors. The

mean +BSSVS(P) shows significantly less correlation than each of the other four methods for

the constant, expansion, and Skyline coalescent priors (p< 0.02 for each) while the +BSSVS

(U), -BSSVS, and GLM methods do not show any significant differences under any coalescent

prior.

Fig 2C and 2D show the Kullback-Leibler (KL) divergence between the prior and posterior

probabilities at the root states calculated using two different prior assumptions (see Materials

and methods for details). KL values indicate the extent to which a model is able to generate dif-

ferent posterior probabilities at the root state from the prior probabilities at the root state. That

is, high KL values indicate strong divergence from the prior probabilities and, thus, strong pos-

terior information gain, while low KL values indicate the opposite. From Fig 2C and 2D, the

mean GLM(–SS) and GLM(+SS) KL divergences demonstrate a marked increase over the

-BSSVS, +BSSVS(P), and +BSSVS(U) methods under the expansion, exponential, logistic, Sky-

grid, and Skyline coalescent priors (p< 0.02 for all two-tailed t-tests. Under the constant coa-

lescent prior, both the mean GLM(–SS) and GLM(+SS) KL divergences exceed the mean KL

under both assumptions of the -BSSVS, +BSSVS(P), and +BSSVS(U) methods, but none of

Fig 2. Mean posterior metrics of the MCC phylogenies. Values represent the mean indicated statistic from

the six samples under each coalescent prior and method with error bars representing the standard error. (A)

Root state posterior probability. (B) Pearson’s correlation coefficient for the number of sequences per discrete

state and the root state posterior probability for each discrete state in each model. (C) Kullback-Leibler

divergence calculated assuming a uniform prior probability per discrete state. (D) Kullback-Leibler divergence

calculated assuming a prior probability proportional to the number of sequences per discrete state.

doi:10.1371/journal.pcbi.1005389.g002

Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005389 February 7, 2017 5 / 19



these values are significant. The +BSSVS(P) method, in turn, shows significantly greater KL

divergences under both assumptions than the -BSSVS method under all coalescent priors and

than the +BSSVS(U) method under the constant, exponential, and logistic coalescent priors.

We show data for each of the four metrics in Fig 2 by individual model in S3 and S4 Figs.

We summarize the identified root states of the four methods in Table 1. Here, we can see

that the -BSSVS method identified three different regions, with the majority occurring in

Region 4, while Region 5 is identified in over 30% of -BSSVS models. The +BSSVS(P) method

identified six different regions as the root state, with Regions 6 and 4 representing the most fre-

quently-identified. The +BSSVS(U) method identified Region 4 in nearly half of the models

while Regions 5 and 6 account for the remainder of models. Comparatively, 35 of the 36 GLM

(–SS) runs identified Region 4 as the root state, with the lone exception being Sample 2 using

the Skygrid coalescent prior, which identified Region 8. For the GLM(+SS) analyses, Region 4

is identified as the root state in 33 of 36 models while Region 5 accounts for the remaining

three. The root heights and corresponding Bayesian credible intervals are similar between the

three methods for each sample and each coalescent prior (S5 Fig).

As influenza viruses rarely persist for more than one season, except in tropical areas [17,

18], we obtained the geographic distribution of the number of internal nodes with a height of

at least one year (NH1s) from the MCC tree of each model and show these data in Fig 3A.

From Fig 3A, we can see that the -BSSVS method indicates that Region 4 contains the highest

volume of NH1s under each prior, while Region 5 contains the second-largest volume of

NH1s. The +BSSVS(P) method shows Region 4 containing the most NH1s for the exponential,

logistic, Skyline, and Skygrid coalescent priors, with Region 6 accounting for the next largest

volume in the latter three priors. Under the constant coalescent prior, a nearly equal amount

of NH1s are observed in Regions 4, 6, and 8, while the expansion prior shows Region 5 con-

taining the largest number of NH1s. For the +BSSVS(U) method, the NH1s are most com-

monly observed in Region 4 under each coalescent prior, with Regions 5 and 6 primarily

accounting for the remaining nodes. The frequency of NH1s in Region 8 are low under this

method, but do occur under the constant, expansion, and Skygrid coalescent priors. Finally,

the NH1s are largely concentrated in Region 4 for both the GLM(–SS) and GLM(+SS) meth-

ods under each coalescent prior.

The frequent identification of Region 4 as the root state (Table 1) and location of NH1

events (Fig 3A) indicates that there is likely at least one local variable playing a role in the tree

topologies. Given this, from Fig 3B we note that Region 4 exhibits both the highest expected

temperature and precipitation during a typical flu season as we compare the posterior support

of all predictors for both the GLM(–SS) and GLM(+SS) methods in Fig 4.

From Fig 4, we can see that sample size at the region of origin (SS(O)) is strongly supported

for the GLM(+SS) runs with Bayes factor (BF) > 69 for each coalescent prior and with each

corresponding mean regression coefficient greater than 1.33. The predictor with the second

Table 1. Frequencies of the root states identified in the MCC tree under each reconstruction method.

Method State

1 2 3 4 5 6 7 8 9 10

–BSSVS – – – 23 11 2 – – – –

+BSSVS(P) – 2 1 10 6 16 – 1 – –

+BSSVS(U) – – – 17 10 9 – – – –

GLM(–SS) – – – 35 – – – 1 – –

GLM(+SS) – – – 33 3 – – – – –

doi:10.1371/journal.pcbi.1005389.t001

Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States
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largest support for inclusion in the GLM(+SS) runs is temperature at the region of origin

(BF> 5 and regression coefficient > 0.75 for each prior except constant size), followed by gly-

coprotein at the region of origin (3.0 < BF< 4.5 for the expansion, exponential, Skyline, and

Skygrid coalescent priors) although the respective mean regression coefficients for

Fig 3. Geographic trends in coalescent events. (A) The number of internal nodes with a height of at least one year in age

(NH1s) under each method and for each coalescent prior. Bars represent the average number of such nodes across all six

samples, with error bars representing the standard error. (B) Map of the contiguous U.S., colored by the ten discrete states

used in this study. Each region is annotated with its average temperature (T, in ˚C) and precipitation (P, in cm) during the

September—May months. Temperature and precipitation data represent the point estimates used in our GLMs for those

respective predictors.

doi:10.1371/journal.pcbi.1005389.g003

Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States
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glycoprotein remain near zero. For the GLM(–SS) runs, temperature at the region of origin

yields the largest mean posterior inclusion probability across all coalescent priors (BF> 20 for

each prior, BF> 400 for the expansion, exponential, logistic, and Skyline priors) followed by

precipitation at the region of origin (5.0< BF< 8.5 for all priors). Mean posterior estimates of

the corresponding regression coefficients and their standard errors, shown as E(β|δ = 1), indi-

cate strictly positive values for these two predictors in the GLM(–SS) runs, although the 95%

highest posterior density (HPD) of the regression coefficient for precipitation at the region of

origin spans zero for each model (S6 Fig). If the entire HPD lies on the positive side of zero,

this suggests that the predictor is driving the diffusion of the virus. Conversely, if the entire

HPD lies on the negative side of zero, this suggests that the predictor is rather preventing the

diffusion. Thus, we show the proportion of GLMs in which the absolute value of the HPD is

positive in Table 2. The 95% HPDs of temperature at the region of origin are strictly positive

in 26 of the 36 GLM(–SS) runs and span zero in the remaining ten. The glycoprotein predictor

at the region of origin finds the highest mean support for the constant prior (BF = 1.1), which

is a sharp turn from the GLM(+SS) runs. See Materials and methods for more information on

metrics of support and interpretations of our predictors. We show the posterior regression

Fig 4. Mean posterior estimates of supported predictors. We show the inclusion probabilities and regression coefficients for all predictors

for both the GLM(–SS) and GLM(+SS) analyses. Point estimates represent the mean of each statistic across the six models for each prior, with

error bars representing the standard error of these estimates. Predictor abbreviations are: air travel (AT), glycoprotein content (GP), median

age (MA), precipitation (PC), population density (PD), sample size (SS), temperature (TP) and vaccination rate (VR).

doi:10.1371/journal.pcbi.1005389.g004

Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States
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coefficients and inclusion probabilities of every predictor from each of the 36 GLM(–SS) runs

in S6 and S7 Figs, respectively, and corresponding data for the 36 GLM(+SS) runs in S8 and S9

Figs, respectively.

Discussion

In this paper, we compared three ancestral state reconstruction frameworks and five total

methods using six randomly-drawn sequence samples and six coalescent priors for a total of

180 models while fixing the nucleotide substitution process for each. We compared each of

our analyses with established model selection techniques [19, 20] and compared features of

each model’s MCC tree to identify posterior statistical support and discrepancies in the phylo-

geographic reconstructions. Regarding model selection, we found that PS shows the most pos-

terior support for either the GLM(–SS) or GLM(+SS) in 34 of 36 runs (with one -BSSVS and

one +BSSVS(U) accounting for the remaining two), while SSS shows the most support for 29

of 36 –BSSVS models, five GLM(+SS), one GLM(–SS), and one +BSSVS(U). Each GLM(–SS)

and GLM(+SS) outperformed its corresponding +BSSVS(P) under both PS and SSS. Both sta-

tistics agree that +BSSVS(P) models offered the poorest posterior support, as 72% of PS analy-

ses and 89% of SSS analyses (81% combined) show the +BSSVS(P) model as the least-

supported among the five frameworks (Fig 1A and S1 Fig), although we note that no frame-

work shows significantly more support than any other framework for PS or SSS via t-tests.

Although the -BSSVS method is highly supported under SSS, the method fails to find

strong support regarding both RSPP and KL divergence (Fig 2C, 2D and S4 Fig). The RSPPs

using the -BSSVS method are significantly lower than those obtained via the GLM(–SS)

method (p = 0.03 for the constant coalescent prior, p< 0.001 for the expansion, exponential,

logistic, Skygrid, and Skyline coalescent priors), while the GLM(–SS) also show a significant

increase for KL divergence for both the uniform and sample size assumptions over the -BSSVS

models under each coalescent prior except for constant size. Similarly, the GLM(+SS) method

shows significantly greater RSPPs and both KL divergences than the -BSSVS models (p< 0.03

for all coalescent priors except constant). Meanwhile, the +BSSVS(P) method finds signifi-

cantly greater RSPPs than the -BSSVS method under only the constant coalescent prior

(p< 0.001) and significantly greater KL divergences over the -BSSVS method under each coa-

lescent prior, each with p< 0.03. The +BSSVS(P) method also found significantly greater KL

divergences for the constant, exponential, and logistic coalescent priors. The +BSSVS(U)

method only found significantly greater support over the -BSSVS method via KL with the sam-

ple size assumption for the expansion coalescent prior. While these results show that the

-BSSVS method finds poor statistical support at the identified root state, we also found that

Table 2. Frequency of GLM predictor support.

Method Criterion Predictor at the Region of Origin

AT GP MA PC PD SS TP VR

GLM(–SS) BF� 3 – 3% 25% 36% 3% NA 94% 19%

GLM(+SS) BF� 3 – 17% – 3% – 97% 36% 3%

GLM(–SS) |95% HPD (β)| > 0 – – – – – NA 72% –

GLM(+SS) |95% HPD (β)| > 0 – 3% – – – 61% 8% –

Values represent the percentage of models that show BF support for a predictor and the percentage of 95% HPD intervals of the regression coefficient that

do not span zero. Predictor abbreviations are: air travel (AT), glycoprotein content (GP), median age (MA), precipitation (PC), population density (PD),

sample size (SS), temperature (TP) and vaccination rate (VR).

doi:10.1371/journal.pcbi.1005389.t002

Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States
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both the GLM(–SS) and GLM(+SS) methods in turn significantly outperformed both the

+BSSVS(P) and +BSSVS(U) models both for both KL divergences under five of the six coales-

cent priors (excluding constant). The GLM(–SS) runs also found significantly greater RSPPs

than the +BSSVS(P) and +BSSVS(U) under each coalescent prior except constant, while the

GLM(+SS) runs found significantly greater RSPPs than the +BSSVS(P) and +BSSVS(U) meth-

ods for the expansion, Skygrid, and Skyline priors.

The association index of each model obtained via BaTS (S2 Fig) demonstrate a strong asso-

ciation between sampling location and the phylogeny for each of the 180 models, which sug-

gests that the diffusion was spatially-structured. Some of the phylogeny-location association

can be attributed to the smaller amount of genetic diversity in sequences from the same region

(Fig 1B), however the statistical significance of the intra- and inter-region genetic distances

could not fully account for the differences in RSPP and KL divergence, regardless of the coales-

cent prior. Furthermore, Region 4 was the most frequently-identified root state for the

-BSSVS, +BSSVS(U), GLM(–SS), and GLM(+SS) methods, the second most frequently identi-

fied root state for +BSSVS(P) method (Table 1), and was also the location of the most NH1s

(Fig 3A). These NH1s are biologically important for seasonal influenza, as these viruses typi-

cally experience bottlenecking at this height as part of a sink-source ecological dynamic [17,

21, 22]. As Region 4 experiences the highest temperature and most precipitation during flu

season, at 6.9˚C warmer and 10.3 cm wetter, respectively, than the remaining nine regions (Fig

3B) we describe it as the most “tropical” in the U.S. during a typical flu season. This provides a

well-supported explanation for the observed trends in Region 4, especially under both GLM

methods. As the data for the GLM(–SS) and GLM(+SS) runs indicate strong support for tem-

perature at the region of origin (Fig 4), our results would suggest that Region 4 is the most

likely origin of each of the six samples using those two methods.

This conclusion, however, is hindered by the strong sampling bias exhibited by the GLM(–

SS), and GLM(+SS) methods. These two methods (as well as the -BSSVS and +BSSVS(U))

demonstrate consistently strong, positive Pearson’s r correlation coefficients between the root

state posterior probability and sample size at each discrete state, regardless of coalescent prior

(Fig 2B and S3B Fig). Furthermore, the inclusion of the sample size predictors in the GLM

(+SS) runs shows that sample size at the region of origin is strongly influencing its posterior

estimates, with 35 of 36 runs showing BF > 3 and 22 of 36 showing a positive 95% HPD on the

regression coefficient (Table 2, S8 and S9 Figs). The mean posterior inclusion probability for

the sample size predictor at the region of origin corresponds to BFs of 1317.9, 70.0, 122.9,

102.7, 92.6, and 101.8 for the constant, expansion, exponential, logistic, Skygrid, and Skyline

priors, respectively. Given the similarities in RSPP, Pearson’s r, and KL data between the GLM

(–SS) and GLM(+SS) runs (Fig 2, S3 and S4 Figs), we believe that sample size is influencing the

GLM(–SS) runs to a similar degree, although its BF support cannot be measured. Thus,

although it would appear that both GLM methods presented in this paper are providing bio-

logically justifiable and statistically supported evidence regarding the diffusion of this influenza

virus over our selected time period, the strong sampling biases give us pause. Instead, the sig-

nificant decrease in Pearson’s r for the +BSSVS(P) models from the other four methods under

the constant, expansion, and Skyline coalescent priors provide more confidence in those data,

despite its poor performance with respect to log marginal likelihoods via PS and SSS (Fig 1A

and S1 Fig).

We compared the -BSSVS, +BSSVS(P), +BSSVS(U), GLM(–SS), and GLM(+SS) methods

for modeling a single discrete trait, sampling location, which highlighted differences in diffu-

sion of seasonal influenza in the U.S. Our results collectively indicate that the GLMs provide

the strongest posterior support for MCC metrics of the three ancestral state reconstruction

frameworks used in this study, however the strong sampling bias exhibited by that method
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marginalizes confidence in their reconstructions. As mentioned, the strong support for sample

size is consistent with previous studies that used the phylogeographic GLMs [12, 13]. Air travel

was previously shown to be a driver of the global diffusion of H3N2 using a GLM [12], but

none of the GLM(–SS) or GLM(+SS) runs showed support for this predictor. However, our

study was performed within a single country and aggregated all air travel data from each indi-

vidual state into a matrix of region-to-region passenger flux, which perhaps limits its contribu-

tion to these models. Furthermore, the paper by Lemey et al. [12] discretized by “air

communities” (p. 2) to better reflect trends in air travel, while we partitioned strictly based on

pre-defined, arbitrary geographic regions. We also assumed a single introduction into the U.S.

and did not include incoming travel from international flights that could certainly have intro-

duced strains with more genetic diversity than those used in this study.

We recognize several limitations with this study including the omission of international air

travel. In addition, our assumption of a single introduction into the U.S. could also have lim-

ited inference regarding the contribution of air travel and may explain the lack of BF support

for that predictor from both region of origin and destination when a previous study has impli-

cated these data as a driver of the diffusion [12]. Also, the transportation predictor fails to

incorporate inter-region travel via ground transportation, which certainly could have implica-

tions within a single country. Furthermore, we only analyzed hemagglutinin sequences in this

study and did not investigate neuraminidase or any other segments of the influenza genome.

We arbitrarily selected 25% of samples from each region for our subsampling in order to better

reflect the observed sampling frequencies, but it is possible that larger subsample sizes or an

alternative sampling approach could have resulted in stronger or weaker support for the pre-

dictors in the GLM as well as the RSPPs via the three reconstruction approaches. However,

our use of Pearson’s correlation coefficient between sample size and root state posterior proba-

bility (Figs 2B and 3B) and comparison of GLMs that include and do not include sample size

predictors aim to outline the impact of sampling bias within our dataset. We plan to conduct

similar research on additional influenza seasons and using alternative sampling methods in

order to further study whether this sampling bias is a systematic function in the GLMs or is

limited to the dataset used in this study. Sampling bias is a known issue in phylodynamics [23,

24] and may not be possible to eliminate, although varying approaches may differ in their sen-

sitivity to such biases. Finally, we limited our study to a single influenza season which prevents

seasonality comparisons and impacts from local persistence.

Overall, this study aimed to investigate the phylogeography of the H3N2 influenza viruses

that circulated in the U.S. during the 2014–15 flu season and to also investigate three estab-

lished methods of ancestral state reconstruction. While our GLM results provide superior pos-

terior support than either +BSSVS method or the -BSSVS framework, these results appear to

be dominated by a strong sampling bias. Although these results are not necessarily incorrect,

the investigation of additional frameworks reveals that the +BSSVS(P) is likely the “best”

approach for this dataset to minimize such concerns, depending on the selection of coalescent

prior, if given the choice among the five presented in our work for this particular virus and

time frame. Furthermore, we demonstrate that our approach of subsampling to compare mul-

tiple models may not only reflect subtle changes to the phylogeny but also to the contribution

of the predictor variables in the GLMs. Although we do not believe that the GLM provides an

ideal, unbiased reconstruction framework for our dataset, this type of assessment could be

valuable for understanding the true nature of the phylogeny-sampling location association in

future work. Such studies may also encourage researchers to utilize the GLM framework as a

means of obtaining more information-driven variables into their phylogeographic studies and

to unlock the potential for more accurate ancestral state reconstructions to better aid epidemi-

ological and public health efforts.
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Materials and methods

Sequence and model setup

Nucleotide sequences. We used the EpiFlu database from the Global Initiative for Sharing

All Influenza Data (GISAID) to collect H3N2 hemagglutinin (HA) sequences from the 2014–

15 flu season. We obtained our dataset on 2015-10-16 using the following search terms: Host =

Human, Location = United States, Collection Date = 2014-09-29 to 2015-05-17, Submitting

Laboratory = [United States, Atlanta] Centers for Disease Control and Prevention, Required Seg-

ments = HA, Min Length = 1,659. This search resulted in 1,220 sequences, and we further elim-

inated sequences from Alaska, Hawaii, and the District of Columbia and those that did not

have a specific state listed to obtain a final set of 1,163 sequences. In order to reduce the size of

the transition rate matrix, we discretized the states into the ten U.S. Department of Health and

Human Services (HHS) regions [25], which we show in Fig 3B.

Ancestral state reconstruction methods. Our phylogeographic assessment assumes that

geographic sampling traits follow a continuous-time Markov chain (CTMC) process along the

branches of an unknown phylogeny that is informed through sequence data. The models we

compare differ in how one parameterizes the infinitesimal rates of the among-location CTMC

process. Here, we first parametrized the discrete location trait with a basic asymmetric substi-

tution model (–BSSVS). Next, following Lemey et al. [1], we retained the asymmetric substitu-

tion model but specified a truncated Poisson prior on the number of non-zero rates (+BSSVS

(P)). Here, 50% of the prior probability lies on the minimal rate configuration (i.e. nine non-

zero rates connecting the ten HHS regions). Similarly, we also placed a uniform probability on

the location prior in order to test the effects of the selected location prior on the BSSVS proce-

dure +BSSVS(U). We compare the -BSSVS and +BSSVS(P) methods with recent developments

in virus phylogeography that have advanced modeling of among-location transition rates as a

log-linear GLM of predictors of interest [12]. Here, we followed this framework and parame-

terized GLMs with seven demographic, environmental, and genetic factors that we take from

both region of origin and region of destination for a total of 14 predictors in the GLM(–SS)

runs. In the GLM(+SS) runs we also include an additional two sample size predictors for a

total of 16 predictors. This approach yields a quantifiable assessment of the inclusion and con-

tribution of each predictor variable to the overall transition rate matrix between our ten loca-

tions by estimating posterior probabilities of all 214 or 216 possible linear models via a BSSVS

procedure. We specified a 50% prior probability that no predictor will be included to enable

calculation of Bayes factors (BFs) as a metric of support for the inclusion or exclusion of any

given predictor. Here, we consider any predictor with BF> 3.0 to be supported for inclusion.

For further details on the underlying theory and mathematical definitions of this GLM

approach, we refer readers to Lemey et al. [12].

Summary of rate parameters. For both the -BSSVS and +BSSVS frameworks, there are K

(K–1) relative rate parameters where K = 10 discrete states for our dataset [1]. For the -BSSVS

framework, these rate parameters are each a priori independently gamma distributed with

scale and shape parameters of 1.0, and for the +BSSVS framework these rate parameters are

each a priori with a mixture of point-mass on 1.0 and on the same gamma distribution as the

-BSSVS rate parameters. The number of parameters that achieve the point mass on 1.0 for the

+BSSVS framework are Poisson distributed with a mean of 9.0 (for the +BSSVS(P) method)

and uniformly distributed for the +BSSVS(U) method. For the GLM framework, there are 14

and 16 regression parameters (i.e. predictors) for the GLM(–SS) and GLM(+SS) methods,

respectively, as outlined below. The regression parameters are each a priori in part a mixture

of point-mass on 0 and in part normally distributed with a mean of 0 and a variance of 4.0

[12].
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Sequence subsampling. In order to investigate the effects of sampling biases, we per-

formed multiple analyses using random samples from our full set of 1,163 sequences. We cre-

ated six independent sequence samples by selecting 25% of the sequences in each region at

random without replacement and assume that each is representative of the entire flu season.

These samples allow us to reveal whether the three frameworks will agree on the root location,

root state posterior probability, height, and other trends in the phylogenies as well as show the

reproducibility of the support for our GLM predictor variables. We did not identify any dupli-

cate sequences from the same discrete state in any of the six samples. We aligned these six sam-

ples, each of which contained 285 sequences, using MAFFT v7.017 in Geneious Pro v.6.1.8

(Biomatters Ltd., Auckland, New Zealand). We treated each alignment as an independent

dataset for our phylogeographic reconstructions and report all GISAID accession numbers

and discrete state assignments in S1 Table. The six samples and six coalescent priors result in

180 total models, 36 from each of the -BSSVS, +BSSVS(P), +BSSVS(U), GLM(–SS), and GLM

(+SS) methods.

GLM predictors

Human population and age. We obtained population estimates and land area per state

from the U.S. Census Bureau (USCB) MAF/TIGER database (https://www.census.gov/). Popu-

lation data are released annually and represent the population as of 2014-07-01 for the 2014–

15 flu season, and we used these values to create a density per region. We also obtained the

median age per state from the USCB and used these values as a separate predictor, aggregated

by region.

Temperature and precipitation. For our climate predictors, we obtained data from the

National Climatic Data Center of the National Oceanic and Atmospheric Administration

(NOAA). We collected temperature and precipitation data for the 30-year climate normal

from 1981–2010 for the 9,359 stations in the contiguous 48 states, not including the District of

Columbia. As we are interested in the typical temperatures and precipitations observed during

a flu season, we computed the average of all September-October-November, December-Janu-

ary-February, and March-April-May summary datasets from stations in each region. We take

these values for temperature (in degrees Celsius) and precipitation (in centimeters) to repre-

sent the typical flu season climate for each region.

Influenza vaccination rates. We obtained state-level data on the vaccination rates for the

2014–15 flu season from FluVaxView by the Centers for Disease Control and Prevention

(CDC) [26] and aggregated them to a region-wide average. These data represent all individuals

at least six months of age that received the annual flu vaccine at any point in time during the

season.

Air travel. In order to account for travel between the ten regions, we obtained data from

the Official Airline Guide, Ltd. as the number of seats on domestic flights from each airport

each other airport within the contiguous U.S. for the 2012 calendar year. We assumed that the

number of seats is proportional to the number of passengers on each flight and that the 2012

travel data is proportional to that of 2014–15. We discretized the data from each individual air-

port into a total number per HHS region to create a matrix of travel flux. These data do not

include flights originating from international locations and thus strictly represent passenger

flux among the ten HHS regions used in this study. We held this predictor constant through

each of the six samples.

Glycoprotein content. Influenza vaccines are designed to induce neutralizing antibodies

of both the hemagglutinin and neuraminidase viral surface glycoproteins [27] in order to pro-

tect against future infections with similar antigenic properties to the vaccinated strain [28].
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The glycoprotein (GP) content of a sampled virus thus provides an indication of the sample’s

similarity to the strain vaccinated against during that season. Of the 1,163 sequences in our

dataset, 533 (46%) contained metadata regarding the GP content of the sample. The authors

annotated these sequences with the binary “LOW GP” or “GP” to represent the similarity of

the GP to the A/Texas/50/2012 (H3N2)-like virus strain vaccinated against during the 2014–15

flu season [29]. For each sample, we calculated the proportion of sequences with “LOW GP” to

the total sequences with known antigenic content per region as a measure of the circulating

strain’s disparity from the strain vaccinated against. This is the only predictor in which the val-

ues are not fixed among the six samples.

Sample size. Previous phylogeographic studies using GLMs have included and found

strong posterior support for sample size at the location of origin and/or the location of destina-

tion [12, 13] so we included both as predictors (Table 3) in the GLM(+SS) runs. The GLM

(+SS) runs thus contain 16 predictors while the GLM(–SS) run contain 14 predictors.

Influenza phylogeography

Molecular clock fitting. We performed a preliminary analysis with Path-O-Gen v1.4

(http://tree.bio.ed.ac.uk/software/pathogen/) which showed that relaxed molecular clocks may

have overparameterized our models. We therefore selected a strict molecular clock with a rate

of 0.001 substitutions per site per year.

Coalescent priors and substitution model. In addition to the three reconstruction meth-

ods and six sequence samples, we also investigated six coalescent priors in this study: constant

size [30], exponential growth [31], logistic growth [31], expansion growth [31], Bayesian Sky-

line [32], and Bayesian Skygrid [33]. Thus, we completed 180 individual ancestral state phylo-

geographic reconstructions, one for each sample/coalescent prior/reconstruction method

combination (e.g. Sample 1/constant size/GLM, Sample 1/constant size/+BSSVS(P), Sample

1/constant size/–BSSVS, etc.). We specified an HKY+G [34] substitution model following

recent phylogenetic studies of H3N2 [12, 35] and preliminary performance analyses using

other substitution models. We enabled each of the six samples to parameterize the diffusion

process between HHS regions using the -BSSVS, +BSSVS(P), +BSSVS(U), GLM(–SS), and

GLM(+SS) methods. We evaluated each model using the BEAST v1.8.4 software package [36]

with a chain length of 100 M, logging estimates every 10,000 steps while specifying a single

seed across all models. These methods aim to minimize all sources of variance but the ran-

domly selected sequences, tree priors, and glycoprotein content.

Table 3. Summary statistics of the predictors used in this study for the ten discrete states.

Predictor Mean SD Median IQR

Population Density (people/mi2) 165.9 141.0 143.9 161.3

Median Age (years) 38.0 1.6 37.8 2.0

Vaccination Rate (%) 42.6 3.5 43.2 4.5

Temperature (˚C) 7.7 4.1 6.5 6.5

Precipitation (cm) 22.4 7.0 23.7 8.2

Low Glycoprotein Content (%, overall) 88.3 3.7 87.8 3.1

Sample Size * 28.5 11.5 27.5 16

Air Travel ** 6.1E+06 6.0E+06 4.1E+06 6.7E+06

* Accession numbers for the samples and location data are provided in S1 Table.

**Air travel represents the indicated statistic among all 90 pairwise region-to-region combinations.

doi:10.1371/journal.pcbi.1005389.t003
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Analysis of support for models. We used path sampling (PS) and stepping-stone sam-

pling (SSS) to estimate marginal likelihoods of each model, as this procedure has been shown

to be an improvement over harmonic mean estimators [19, 20]. Here, we specify a chain length

of 1M with 100 path steps, logging every 1,000 steps. For the GLM predictors, we obtained the

mean posterior probability of inclusion, BF support values, and the contribution of each pre-

dictor to the log-linear rate matrix. In order to determine the impact of geography on the phy-

logeny, we utilized Bayesian Tip-association Significance Testing (BaTS) [16]. This application

tests the null hypothesis that other than by chance, adjoining tips are not more likely to share

the same discrete traits. Here, we used our ten HHS regions as discrete traits to be tested under

this null hypothesis.

Comparison of phylogenies. We used TreeAnnotator v1.8.4 to construct a maximum

clade credibility (MCC) tree for each of the 180 runs after discarding the first 10% of trees as

burnin. We viewed and annotated the MCC trees using FigTree v1.4.2 for direct comparison

of the ancestral state reconstructions. From each MCC tree, we recorded the root state, root

height and its 95% Bayesian credible interval, root state posterior probability, and the location

of all nodes with a height exceeding one year. We also calculated the Kullback-Leibler (KL)

divergence at the root state of each model. Here, we assumed two different prior probabilities

at each discrete state: a uniform prior probability per discrete state (i.e. 0.1 for each of the ten

discrete states), and second, a prior probability that is proportional to the number of taxa from

that state (e.g. as 26 of 285 taxa were sampled in Region 1 we set its prior probability to 26/

285 = 0.0912). The latter approach allows us to account for potential sampling bias in the KL

calculations. For several GLMs, we found that the posterior probability of at least one root

state was zero, which yields a KL divergence of infinity. In order to present a finite KL value,

we assigned these states a posterior probability of 1.0 x 10−16 and subtracted this artificial prob-

ability from the most probable root state. As an additional step to investigate possible sampling

bias, we calculated the Pearson correlation coefficient (r) between the sample size for each of

the ten discrete states and its corresponding root state posterior probability for each individual

model.

Data availability. We have made the XML file and MCC phylogeny for each of our 180

models available for download at https://figshare.com/projects/Magee-Flu-PLoS/16638. We

have also made available the six sequence alignments as well as the full set of 1,163 unaligned

sequences from which we created our samples.

Supporting information

S1 Table. GISAID accession numbers and discrete states for the 285 sequences in each

sample.

(CSV)

S1 Fig. Model comparisons for the 180 analyses. (A) Log marginal likelihood obtained via

path sampling (PS). (B) Log marginal likelihood obtained via stepping-stone sampling (SSS).

Metrics are shown for each sample, prior, and method.

(TIFF)

S2 Fig. Association index scores obtained via BaTS. For each model, we show the null mean

(larger value) and observed mean (smaller value) and their respective 95% confidence inter-

vals. For each model, we observe p< 0.0001 between the null and observed means.

(TIFF)

S3 Fig. Individual root state posterior probabilities and potential sampling bias analyses.

(A) Root state posterior probability from the MCC tree of each model. The corresponding
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root state is shown below each bar. See Fig 3B for the locations of these root states. (B) Pear-

son’s r correlation coefficient between the number of sequences per discrete state and the

RSPP for each discrete state in each model.

(TIFF)

S4 Fig. Individual Kullback-Leibler divergence statistics of the root state prior and poste-

rior probabilities for each model. (A) Values are calculated assuming a uniform prior proba-

bility per discrete state. (B) Values are calculated assuming a prior probability proportional to

the number of sequences per discrete state.

(TIFF)

S5 Fig. Root heights for the MCC phylogenies. Mean heights are represented by the colored

circles with 95% Bayesian credible intervals shown as error bars.

(TIFF)

S6 Fig. Posterior regression coefficients of all predictors per sample and prior for the GLM

(–SS) runs. Predictor abbreviations are: air travel (AT), glycoprotein content (GP), median age

(MA), precipitation (PC), population density (PD), sample size (SS), temperature (TP) and vac-

cination rate (VR), each evaluated from both region of origin (O) and region of destination (D).

(TIFF)

S7 Fig. Posterior inclusion probabilities of all predictors per sample and prior for the

GLM(–SS) runs. We consider predictors with inclusion probabilities exceeding the dotted

horizontal line, which corresponds to BF = 3.0, to be supported in that model. Predictor abbre-

viations are: air travel (AT), glycoprotein content (GP), median age (MA), precipitation (PC),

population density (PD), sample size (SS), temperature (TP) and vaccination rate (VR), each

evaluated from both region of origin (O) and region of destination (D).

(TIFF)

S8 Fig. Posterior regression coefficients of all predictors per sample and prior for the GLM

(+SS) runs. Predictor abbreviations are: air travel (AT), glycoprotein content (GP), median age

(MA), precipitation (PC), population density (PD), sample size (SS), temperature (TP) and vac-

cination rate (VR), each evaluated from both region of origin (O) and region of destination (D).

(TIFF)

S9 Fig. Posterior inclusion probabilities of all predictors per sample and prior for the

GLM(+SS) runs. We consider predictors with inclusion probabilities exceeding the dotted

horizontal line, which corresponds to BF = 3.0, to be supported in that model. Predictor abbre-

viations are: air travel (AT), glycoprotein content (GP), median age (MA), precipitation (PC),

population density (PD), sample size (SS), temperature (TP) and vaccination rate (VR), each

evaluated from both region of origin (O) and region of destination (D).
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