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Abstract

Purpose of review: Opioids remain the most potent form of pain relief currently available, yet 

have a high abuse liability. Here we discuss underlying neurobiological changes in Opioid Use 

Disorder (OUD) that likely contribute to drug craving, which in turn drives continued drug use and 

relapse.

Recent findings: Craving has emerged as a strong indicator in drug-seeking and relapse. 

Studies have demonstrated a number of allostatic changes in circuitry that facilitate learning of 

drug-stimuli relationships, thereby augmenting cue-triggered drug use and relapse.

Summary: This review will focus on key neurobiological changes in underlying circuitry 

observed during the initial and continued exposure to opioids that result in an increase in neural-

reactivity to drug-related intrinsic and extrinsic drug cues, and to enhanced learning of drug-

context correlations. This sensitized learning state may be an indication of the underlying 

framework that drives craving and ultimately, motivates increased salience of drug cues and drives 

drug-seeking.
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Introduction

While opioid prescriptions in the United States declined from 2012 to 2018 [1], partially due 

to increased awareness of risks for both patients and physicians and measures implemented 

by the Center for Disease Control, opioid-related overdoses and deaths continued to rise [2]. 

Also worrying is the increasing availability of illicit, low cost and very potent alternatives, 

including etorphine, fentanyl and fentanyl derivatives such as carfentanyl and sufentanil 

[3-5]. Despite decades of research on the underlying mechanisms leading to Opioid Use 

Disorder (OUD), there has been limited progress in stemming its impact.

Though it is likely that a number of genetic, biological, and environmental factors play a role 

in the development of OUD, ultimately, it is the allostatic changes within the brain that 

continue to support many OUD behaviors, including drug-seeking and relapse. In this 

review, we will focus on the role of craving, as craving has been strongly correlated with 

ongoing OUD, as well as relapse [6-10]. For those vulnerable to addiction, we argue that the 

neurocircuitry changes that occur during the initial exposure to the drug allow for a 

potentiation of learning of drug related cues and contexts that drive craving [7,10-13]. This 

enhanced craving network in turn drives drug-seeking behavior.

Historically, in the context of addiction research, craving has often been overlooked as 

merely a subjective feeling of desire to take a drug. This limited definition has stunted 

research with a focus on craving as a primary driver in the development, continuance, and 

relapse of substance use disorders. However, in more recent years, many studies have 

embraced craving as a major component of OUD, acknowledging a broader definition that 

includes a complex and dynamic interplay between three main behavioral-affective domains: 

reward & motivation, stress & negative affect, and learning, memory & executive function 

[7,10,14-16]. Dysregulation of the balance within and between the circuitries that underlie 

these behavioral domains can contribute to the manifestation of craving, and each domain 

plays a different role in the continuance and relapse of drug use. Recent extensive reviews 

have described underlying mechanisms of this dysregulation precipitated by opioid use 

[17-23], including in the context of pain and pain treatment [8,24-26].

Etiology of OUD

Though there are numerous theories and models of addiction, in this review we focus on 

aspects of two popular models that emphasize the neurobiological and behavioral changes 

that occur during the addiction cycle that we believe best support the role of craving in 

OUD. One model, originally proposed by Robinson and Berridge in 1993 [27], describes the 

neurobiological changes following escalating drug use that results in a hyper-reactive 

dopaminergic state that facilitates learned associations between drugs and drug related cues, 

also known as incentive sensitization. Though this model has been updated over the years 

[11], the central idea is that the allostatic changes occurring in the brain during the 

development of substance use disorders facilitate learning between the drug and internal and 

external cues, thus enhancing craving, while potentially driving drug seeking and relapse. 

And in fact, there is much evidence that this sensitized state is able to give salience to 

otherwise neutral stimuli, and these cues can in turn stimulate desire for the drug, 

Lueptow et al. Page 2

Curr Anesthesiol Rep. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consciously or subconsciously [28-32]. However, while this model primarily focuses on 

positive reinforcement as a driver for aberrant drug use, in OUD it is thought that the neural 

adaptive changes that occur after repeated drug use result in a switch to negative 

reinforcement, rather than due to any positively rewarding aspects of the drug [17].

A second model by Koob and colleagues addresses the impact of negative reinforcement in 

OUD and focuses on the idea of negative reinforcement as the main driver of continued drug 

use and relapse, arguing that the development of the “antireward” state motivates users to 

seek drugs as a means of relieving the negative affect and withdrawal states [17,19,33-35]. 

This model is especially relevant in OUD, as studies show that the majority of individuals 

that misuse and go on to abuse opioids had experienced pain or chronic pain prior to their 

first exposure to developing OUD [36,37]. The alleviation of pain and negative affect from 

chronic pain may be a significant reinforcing factor in the initial development of OUD in 

these populations, rather than reinforcement purely from the hedonic effects of the drugs, 

and perhaps the etiology of OUD differs between these groups. In the context of these 

models, we will discuss the most relevant allostatic changes in the underlying circuitry of 

OUD, across the domains of reward and motivation, stress and negative affect, and cognitive 

function, that most likely drive craving (Figure 1).

Reward and Motivation

For decades researchers have pinned the pathophysiology of addiction on changes in the 

mesolimbic, dopaminergic pathways in the brain [38]. This classical pathway involves 

projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) in the 

ventral striatum. However, while the dopamine release in these regions was originally 

thought to correlate with the hedonic value of drugs, or ‘liking’, studies have since shown a 

much stronger correlation with ‘wanting’, or craving of the drug [11]. ‘Liking’ is defined as 

the pleasurable experience associated with a drug while ‘wanting’ is the preoccupation of 

craving and desire to take more drug [11]. Even though conceptually these terms overlap, the 

circuitry responsible for each differs, both in terms of initial activation and response to 

repeated drug exposure. Recent research suggests that the ‘liking’ system is made up of 

small, neurochemically-stimulated hotspots that are found within subregions of mesolimbic 

structures, whereas general sensitization and stimulation of the mesolimbic pathways is 

correlated with enhanced ‘wanting’ [11,39-41]. For example, one such hotspot in the 

posterior ventral pallidum (VP) is critical for experiencing “liking”, and lesioning of this 

spot is sufficient enough to cause a loss of hedonic value [40]. Furthermore, reciprocal 

connections between hotspots, such as the NAc and VP, can work to enhance or decrease 

‘liking’ [39]. Over time and with repeated drug use, it appears that while the ‘wanting’ 

circuitry becomes more sensitized, the ‘liking’ hotspots may actually shrink or become 

desensitized (Figure 1 [41]). And in fact, a central tenet of incentive sensitization theory is 

that focus is narrowed to drug-wanting and seeking, as well as to drug relevant cues, often at 

the expense of devaluing other available non-drug rewards, including natural rewards 

necessary for survival such as food and sex. Rather than a distinct switch from ‘liking’ to 

‘wanting’, this sensitization is more a change in ‘potency’ or strength of circuitry between 

and within each system, with the mesolimbic dopamine system ramping up incentive 

salience, while reducing engagement of circuits responsible for the ‘liking’. Such changes in 
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sensitization of the mesolimbic subregions can also be correlated to the differing 

contributions of positive versus negative reinforcement.

It is important to note that hyper-reactivity does not mean an overall increase in dopamine 

activity, but instead an altered dopaminergic state that has been sensitized to respond to drug 

cues [11]. Positron emission tomography (PET) and single-photon emission computed 

tomography (SPECT) studies in humans have demonstrated this sensitization by showing 

increased dopamine release following the presentation of drug cues [38,42], while functional 

MRI (fMRI) studies have also shown increased reactivity of mesolimbic circuitry in 

response to drug cues [43,44]. However, in contrast to this enhanced cue-reactivity, 

individuals with OUD have shown blunted dopamine release in response to opioid 

administration [38,42,45]. One explanation for apparent divergence is the extent of tolerance 

versus sensitization within the same circuitry, and in fact, similar studies have shown that 

while drug-induced dopamine is blunted, users show robust dopamine hyper-reactivity to 

drug cues [11,44,46-48]. Considering the relatively fast and robust onset of tolerance (i.e., a 

decline in pharmacological effect with equivalent doses) from repeated opioid use, this is 

likely an important distinction. Furthermore, studies have shown that the rewarding and 

reinforcing properties of opioids do not always require dopamine to drive drug-seeking 

behavior, likely due to the opioid system itself, as well as other neurotransmitter systems 

activated by opioids [49,50]. However, it is now generally accepted that dopamine release is 

involved in modulation of cue salience, and while some drug seeking may continue to be 

driven through other relevant neurotransmitter systems, cue-encoding and cue-induced drug 

seeking is likely driven mainly via dopamine [35,51]. Furthermore, emerging evidence 

demonstrates that this reward and motivation circuitry is inextricably interconnected with 

affective and cognitive circuitry that also plays a role in driving drug craving, as discussed 

below.

Stress and Negative Affect

In addition to sensitized cue reactivity, individuals experiencing OUD often present with 

altered affective states [16,52,53] and sensitized stress reactivity [17,18,23,54-56]. Allostatic 

changes observed in many brain regions have been implicated in mediating the negative 

affective components of OUD, both as a result of chronic opioid use, and especially in 

withdrawal states. More specifically, the extended amygdala, which includes a transition 

portion of the NAc-shell, bed nucleus of the stria terminalis (BNST) and central nucleus of 

the amygdala (CeA), is a central brain region involved in stress and negative affect [17]. 

Within the extended amygdala, the corticotropin-releasing factor (CRF) system has been 

consistently implicated [57]. Changes in CRF expression correlated with escalation of 

heroin intake [58], and CRF antagonists were able to attenuate compulsive-like drug taking 

in rats [59]. CRF is upregulated in the amygdala during opioid withdrawal, and CRF 

antagonists blocked withdrawal-induced anxiogenic-like behaviors in rats, which is thought 

to be a potential driver of relapse [57]. Concurrently, while CRF levels increased with 

repeated opioid exposure [58,60], neuropeptide Y (NPY), which has been shown to exert 

opposing effects to CRF, appears to be downregulated in the extended amygdala, and this 

imbalance is a potential mechanism for the sensitized stress response in OUD [17,20,23,33].
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The dynorphin-kappa opioid receptor system has also been strongly linked to stress induced 

opioid seeking behavior. Stressors induce release of dynorphin, and kappa opioid antagonists 

have been shown to block the development of both pain and stress-induced negative affect in 

mice [61-63]. Kappa opioid antagonists have also been shown to block compulsive-like 

responding for heroin in rodent self-administration, as well as decrease anxiety-like behavior 

observed during withdrawal [64]. Moreover, stress-induced reinstatement of heroin self-

administration is blocked by kappa opioid antagonists [65,66], and more specifically 

antagonist administration directly into the NAc shell blocked stress-induced reinstatement 

and escalation of drug taking [19].

Chronic kappa opioid receptor activation results in decreases in dopamine release in 

mesolimbic brain regions and presents a potential mechanism for the intersection of opioid 

use and pain- and stress-induced negative affect. One study demonstrated that inflammatory 

pain decreased dopamine release as a result of disinhibition of dynorphin releasing neurons 

and subsequent activation of kappa opioid receptors in the NAc shell, and this was sufficient 

to drive a negative affective state [63]. Stress-induced negative affect has implicated both 

CRF and kappa opioid receptors, where the CRF system is shown to mediate kappa/

dynorphin activation, which in turns drive the dysphoric component of stress [62,67]. 

Currently, there is much promise in a kappa opioid antagonist that recently entered clinical 

trials under the National Institute of Mental Health (NIMH) ‘fast-fail’ approach showing the 

compound to be well tolerated, and to lower anhedonia in patients suffering from mood or 

anxiety disorders [68,69].

Learning, Memory, and Executive Function

The crux of incentive sensitization is the facilitation of learning and memory for drug related 

cues. Within the mesolimbic circuitry, conditioned reinforcement, which is the driver of 

learned cue-drug relationships, has been strongly correlated with activation of the basolateral 

amygdala (BLA) and dorsal and ventral hippocampal brain regions, as well as prefrontal 

cortical regions [22]. While it may seem obvious that cues are generated by conditioned 

reinforcement of external stimuli and contexts, this circuitry is also robust at encoding 

internal emotional changes as cues, such as the alleviation of negative affective states 

following drug use during acute or protracted withdrawal [14,22]. The learned association 

between taking a drug and relief of symptoms is likely a strong component of continued 

opioid use, and the salience of these learned associations appears to persist and often grow 

over time, even under protracted abstinence, a phenomenon referred to as incubation of 
craving [11,18]. And in fact, conditioned opioid withdrawal cues, including things as 

seemingly innocuous as smells, have been shown to produce craving in humans and induce 

drug seeking in rodents [19]. In terms of underlying circuitry, during withdrawal, the BLA 

specifically has been implicated in altered reward processing, with generalized enhanced 

reward value encoding early on [70,71], and skewed reward value encoding towards drug 

related cues after many weeks [71]. More generally, the BLA has been heavily implicated in 

encoding both the salience of reward [72], as well as reward-related cues, and mediating 

reward expectations [73,74].
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While conditioned reinforcement and reward learning may be enhanced in the mesolimbic 

structures of the brain to facilitate learning and memory of rewards and affective states, 

layered over these adaptations are changes in connectivity with important cortical structures, 

often resulting in decreased top-down control. In order to encode the proper salience for any 

given cue following a drug stimulus, and thus modulate appropriate behavioral output, a 

certain level of executive control is needed. For example, frontal cortical lesions enhance 

morphine self-administration in rats [75], and medial prefrontal cortical (mPFC) lesions 

enhance acquisition of cocaine self-administration [22], likely due to loss of inhibitory 

control. Human studies report that OUD results in impairment of working memory, 

increased impulsivity, and poor decision making, all behaviors dependent on frontal cortical 

function [19]. These findings are consistent with results from imaging studies, where OUD 

patients show decreased cerebral perfusion and resting state activity in the frontal cortex 

[76]. Researchers have also found altered function of reciprocal glutamatergic and 

GABAergic connectivity between regions of the cortex, including mPFC and orbitofrontal 

cortex (OFC) with mesolimbic structures (See [77] for extensive review of glutamate 

homeostasis on cortico-limbic function in addiction). Taken together, the mesolimbic 

incentive sensitization to internal and external drug cues, combined with a lack of 

appropriate top-down control, results in neurocircuitry that is strongly primed for continued 

drug use and/or potential relapse.

A focus on craving as a driver of OUD

Prior to 1990, research pertaining to craving was very limited with much of the early craving 

research centered around alcohol use disorder. Craving was historically thought of as a 

“secondary outcome”, and in fact, it was only added to the DSM-5 criteria for substance use 

disorders in 2013 [78]. Under this criteria, craving is defined as the “strong desire or urge to 

use the substance” where craving “makes it difficult to think of anything else” and “often 

results in the onset” of use or relapse of use [78]. More recent studies show that craving is 

one of the most strongly correlated symptoms with likelihood of relapse, often independent 

of other factors such as pain and even negative affect [7,9,19,79,80], though these states, 

along with stress, can trigger craving [23,55,81].

While the inclusion of craving in the DSM-5 is a step in the right direction, in this review, 

and in agreement with other previously published work, we support the argument that the 

definition of craving should be expanded to encompass a neurocognitive state beyond just 

the conscious, subjective experience [14,15]. While the subjective state of excessive 

“wanting” is central to most definitions of craving, a comprehensive definition of craving 

includes subconscious elements such as increased activity in attention networks involving 

drug cues, physiological, psychological, and emotional reactions to drug-related cues, 

episodic memories related to drug use, and impaired concentration due to intrusive or 

craving-related thoughts [14,15]. A drug cue could be any number of external physical 

objects, locations, or people, as well as internal physiological states, or any number of 

affective states that becomes a learned association with drug use. Within this definition, we 

suggest that the learned associations of negative reinforcement associated with the relief of 

stress or anxiogenic states that contributed to the development of an OUD is generalizable to 

future stressful or anxiogenic states (independent of the original learned association), and 
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thereby will precipitate craving. Here, we argue for the broadened definition of both craving 

and drug cues, which means that any form of craving discussed is a form of cue-induced 

craving, regardless of whether that cue is an internal emotional, psychological, or 

physiological change, or a context. Furthermore, by broadening the definition of craving, 

research has begun to more concisely identify underlying neurocircuitry as well as its role in 

numerous aspects of the pathophysiology of OUD.

Rodent and human studies on craving-Current findings

Very recently, researchers have used functional near-infrared spectroscopy (fNIRS) to 

quantify activation of PFC regions in response to drug-cues in an attempt to develop a 

measurement predictive of the likelihood of current and future opioid use. This study 

showed that left lateral PFC activation upon drug cue presentation was correlated with a 

lower percentage of current opioid negative urine drug screens, and interestingly was 

independent of self-reported or cue-induced craving [31]. Furthermore, activity of the left 

lateral PFC was highly predictive of abstinence or relapse in the 90-day follow-up period. 

This highlights the necessity for a broader definition of craving, as self-reported, subjective 

craving may not accurately reflect underlying, subconscious neurophysiology. And in fact, 

numerous studies have correlated neurophysiological responses with cue presentation in the 

absence of self-reported craving [28,31,82-85].

In patients that report high levels of craving, stimulation of regions of the dorsal lateral PFC 

using transcranial magnetic stimulation was very effective at reducing cue-induced craving 

in heroin users [82,86]. Rodent studies also show that the mPFC to NAc drive cue-induced 

reinstatement, whereas the ventromedial PFC and subiculum to NAc connections drive 

context-induced reinstatement [19,23]. Other cortical projections have also been implicated 

in cue encoding and cue-induced drug seeking, including OFC projections to the NAc and 

BLA [87,88]. Both the mPFC- and OFC connectivity has been strongly implicated in 

incubation of craving during abstinence [23,89], while OFC to BLA projections have been 

shown to be involved in encoding and retrieval of reward value, an important component of 

salience attribution for encoding drug cues [74].

Stress and negative affect are strong drivers of drug craving, especially in OUD individuals 

[14,15,87]. Studies have shown that OUD patients often have a dysregulated hypothalamic-

pituitary-adrenal (HPA) axis, which is an indicator of chronic stress [15,19], as well as 

increases in dynorphin and CRF within the extended amygdala, which contribute to OUD 

stress and dysphoria, especially during withdrawal periods [34]. Acute heroin administration 

has been shown to diminish anxiety levels, decrease HPA-axis related hormones, and 

decrease activation of the left amygdala [56], likely contributing to the incentive value of 

alleviating acute and conditioned withdrawal states. In rodents, drug cues paired with 

naloxone-precipitated withdrawal increase heroin consumption and elevated intracranial 

self-stimulation thresholds [90], and even naloxone (an opioid receptor antagonist) itself can 

induce drug-seeking [23]. Many stressors reinstate drug-seeking behavior, where extended 

amygdala, and more specifically, the BLA has been strongly implicated in stress-induced 

drug seeking and reinstatement [21,23]. In rats, silencing the BLA induced reinstatement of 

drug seeking produced by either a conditioned stimulus- or drug-priming with heroin 
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[91,92]. Studies have also shown that reversible inhibition of other extended amygdala 

regions, including CeA and BNST, decrease both cue- and footshock stress-induced 

reinstatement for heroin seeking [23].

While few preclinical studies have examined sex differences, women have been shown to be 

more sensitive to stress-induced craving in response to both stress- and drug- related cues 

[21,93,94], though when controlling for drug access, women and men show similar rates of 

drug use [21]. Retrospective studies have shown that women tend to initiate drug use as a 

means for coping with negative affective states [21], and women also report more negative 

affect during withdrawal compared to men [21,94]. This is consistent with rodent studies 

showing females acquire heroin self-administration more quickly than males [95,96] and 

females showed much higher break points (work effort) for heroin in progressive ratio tests 

[96].

How the etiology of OUD contributes to the development of craving

Though specific cortico-limbic circuitry has been correlated with craving, the precise 

underlying circuitry and mechanisms are still be fully understood. In agreement with 

previously reviewed research [7,8,10,13,14,41,87,97], we argue here that drug craving 

results from enhanced state of incentive salience to drug-related stimuli, which results in 

aberrant learned associations between the drug and drug cues and drives motivation to drug-

seeking. We also argue that craving is more than just a “subjective urge” to consume a drug 

and is involved in both conscious and subconscious desire, making it an integral component 

of each phase of the addiction cycle. While changes to reward and motivation circuitry may 

be the most obvious allostatic changes driving craving, other domains of behavior and 

neurocircuitry must also be considered. Executive function is often compromised, while 

certain drug-related learning and memory functions are enhanced, and associations between 

the negative affective states of withdrawal and the alleviating effects of opioid use will also 

be learned [7,15,17,19].

In terms of development of OUD, it seems likely that both positive and negative 

reinforcement play a role in its etiology, and perhaps the contribution and timing of each is 

dependent on the drug involved, as well as the baseline level of stress, physical or affective, 

prior to opioid exposure. In the context of opioids, we suggest that the initial exposure likely 

exploits a neurocircuitry primed to react to enhanced dopaminergic tone, that then quickly 

adapts to a new baseline functioning, ultimately dampening down the positively reinforcing 

aspects of the drug, and instead enhancing learning of drug cues that alleviate the negative 

allostatic load that has been created. A salient example of this potential difference in 

circuitry primed for cue encoding is found in rodent studies. Rats trained to press a lever for 

a reward (including opioids) in the presence of a cue can be grouped according to one of two 

distinct behaviors. Some rats quickly engaging with the cue that predicts a reward, and are 

willing and motivated to work for the reward (i.e., sign-trackers), while others instead are 

more interested in the area where the reward is dispensed (i.e., goal-trackers) [11,12]. The 

sign-tracker rodents show higher incentive-salience towards the cues and appear more 

vulnerable to cue-induced relapse.
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Furthermore, while anxiety and stress, and even chronic pain have been correlated with 

higher levels of craving, studies show that the strength of craving, and not the affective or 

pain state, is most predictive of drug use [15]. It could also be argued that negative 

reinforcement model does not necessarily account for periods of prolonged abstinence when 

withdrawal symptoms have dissipated, so perhaps negative reinforcement is facilitating 

incentive sensitization/salience, which contributes to the incubation of craving that in turn 

drives relapse during protracted abstinence [22]. Therefore, in describing the etiology and 

continuance of OUD, especially in chronic pain states [26], perhaps neither “incentive 

sensitization” via positive reinforcement nor “antireward” involving negative reinforcement 

are fully encompassing of the processes involved in OUD, and might better be summarized 

as a “reward processing imbalance”, involving dysregulation of the neurocircuitry between 

reward & motivation, stress & negative affect, and learning, memory & executive function.

Inclusion of craving in future OUD studies

In human studies, we need to broaden the metrics used to identify craving in iatrogenic-

induced OUD in patients prescribed opioid medications. While some individuals 

experiencing OUD may readily and accurately report persistent cravings, other individuals 

may use different language, such as urges or intrusive thoughts and memories correlated 

with previous drug use. Additionally, more subtle indicators such as physiological measures 

and brain imaging responses to drug related cues may provide further support and insight 

into how active a “craving network” may be in an individual. This more complete picture of 

craving can more accurately identify the role of craving in continued drug use, and assist 

researchers and clinicians in finding useful treatments that may help reverse or modify the 

allostatic changes and neuroplasticity within circuitry that led to enhancement and 

strengthening of craving [97].

If craving is indeed a strong driver of continued drug use and relapse, and craving is a result 

of enhanced learning of drug related cues, perhaps the key to breaking the cycle involves 

leveraging the learning and memory system in a way that overrides past associations with 

new positive associations, rather than simply attempting to block them [98]. This might be 

similar to approaches taken in PTSD cognitive behavioral therapy, which involve 

reimagining a traumatic event in order to reprocess and reappraise negative narratives that 

might be trigger reexperience of the traumatic experience [99]. In the same way, if strong 

memories are attached to past drug use, and the cues continue to be triggering, rather than 

focusing on the negative consequences of drug use, individuals reimage a drug-free future 

and focus on positive outcomes as rewards, which are inconsistent with drug use, and in fact, 

this approach has shown some efficacy with other drugs of abuse [98].

In pre-clinical studies, researchers must carefully consider how to accurately model and 

measure the various domains of craving observed in human populations of OUD. A large 

majority of publications regarding craving are from contingent self-administration studies 

that utilized cue-induced, drug-induced, and stress-induced reinstatement models following 

extinction [81]. Although these models have been effective for studying neural circuitry and 

behavior involved in craving, abstinence through extinction training is not a realistic 

representation of human behavior, since human abstinence is usually forced, due to 
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incarceration or inpatient treatment, or voluntary, due to a cognitive recognition of the 

negative consequences of continued drug use. Rather than using extinction-based models, 

newer research models have focused on forced abstinence or abstinence induced by negative 

consequences [23,81]. Punishment-based model employ the use of foot-shock after operant 

responding for the drug [23]. These studies are then able to assess the impact of incubation 

of craving and cue-induced relapse following abstinence [81]. Another method for inducing 

voluntary abstinence in rodents is by offering alternative rewards, such as food or social 

interaction, which studies have shown decrease opioid drug-seeking and even lower cue-

induced relapse [23]. However, when using sweetened water as a palatable alternative to 

heroin, extended access to heroin actually increased choice in heroin over a nondrug 

alternative [100], which might suggest these models are not ideal for opioid specific 

abstinence.

Conclusions

Neurocircuitry changes that occur following repeated exposure to an opioid result in 

incentive salience state that facilitates learning of drug-relevant cues, both internal and 

external, while blunting circuitry related to non-drug related rewards. Chronic opioid use 

results in rapid allostatic changes that lead to the development of tolerance, resulting in 

periods of acute withdrawal that provide additional salience to cues via negative 

reinforcement. The long-term adaptations result in altered executive function and increased 

stress and negative affect, which in turn continue to support a strong craving network, 

formed from these learned associations, which continue to drive drug-seeking or produce 

vulnerability in protracted abstinence.
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Figure 1. 
Allostatic changes in neurocircuitry following repeated opioid exposure in OUD. Following 

repeated opioid use, allostatic changes are observed in circuitry that mediates reward and 

motivation (a switch from “liking” to “wanting”), stress and negative affect (decreases in 

anti-stress; increases in stress), as well as cognitive function (decreases in executive 

function, and increased incentive sensitization to drug cues); Amy, amygdala; dlPFC, dorsal 

lateral PFC; DS, Dorsal striatum; Hipp, hippocampus; Hypothal, hypothalamus; NAc, 

nucleus accumbens; OFC, orbitofrontal cortex; vlPFC, ventral lateral PFC; vmPFC, ventral 
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medial PFC; VP, ventral pallidum; VTA, ventral tegmental area. Figure created with 

Biorender.com.
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