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Intensity mapping with neutral
hydrogen and the Hidden Valley
simulations

Chirag Modi,a,b Emanuele Castorina,a,b Yu Feng,a,b Martin Whitea,b,c
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bBerkeley Center for Cosmological Physics, Berkeley, CA 94720
cDepartment of Astronomy, University of California, Berkeley, CA 94720

E-mail: modichirag@berkeley.edu, ecastorina@berkeley.edu, yfeng1@berkeley.edu,
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Abstract. This paper introduces the HiddenValley simulations, a set of trillion-particle N-body
simulations in gigaparsec volumes aimed at intensity mapping science. We present details of the
simulations and their convergence, then specialize to the study of 21-cm fluctuations between redshifts
2 and 6. Neutral hydrogen is assigned to halos using three prescriptions, and we investigate the
clustering in real and redshift-space at the 2-point level. In common with earlier work we find the
bias of HI increases from near 2 at z = 2 to 4 at z = 6, becoming more scale dependent at high z.
The level of scale-dependence and decorrelation with the matter field are as predicted by perturbation
theory. Due to the low mass of the hosting halos, the impact of fingers of god is small on the range
relevant for proposed 21-cm instruments. We show that baryon acoustic oscillations and redshift-space
distortions could be well measured by such instruments. Taking advantage of the large simulation
volume, we assess the impact of fluctuations in the ultraviolet background, which change HI clustering
primarily at large scales.

Keywords: cosmological parameters from LSS – power spectrum – 21 cm – galaxy clustering
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1 Introduction

The study of the large-scale structure of the Universe promises to shed light on a wide variety of
topics from theories of the early Universe to the formation and evolution of galaxies within the
evolving cosmic web. The high redshift Universe, in particular, combines a large cosmological volume
for precise statistical inference with a more linear density field which can be more reliably modeled
and which is better correlated with the initial conditions. Accessing the high redshift Universe in
3D with a high enough density of tracers over a large fraction of the sky is, however, observationally
challenging since the galaxies become fainter and their spectroscopic detection harder. In this regard
intensity mapping has emerged as a promising means of efficiently mapping the high z Universe.

Intensity mapping methods carry out a low resolution, spectroscopic survey to measure integrated
flux from unresolved sources on large areas of sky at different frequencies. They capture the largest
elements of the cosmic web and map out the distribution of matter in very large cosmological volumes
in a fast and efficient manner, with good radial resolution [1]. Emission from cosmic neutral hydrogen
(HI) offers one tracer to map out the Universe in such a way. The ground state of neutral hydrogen is
split into two energy levels because of the spin-spin interaction between the electron and the proton
and when the electron makes a transition from the higher energy level to the lower one, it emits a
photon with the rest frame wavelength of 21 cm. This 21-cm signal provides an efficient way to probe
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the spatial distribution of neutral hydrogen, and hence the underlying dark matter from the local
Universe to the dark ages [1, 2].

A number of upcoming (CHIME [3], HIRAX [4], BINGO [5], Tianlai [6]) or planned (CVDE
[2]) interferometric instruments will use the 21-cm signal to probe the redshift window 2 < z < 6,
which remains largely unexplored on cosmological scales. There is strong theoretical motivation to
survey this redshift window since it increases our lever arm for constraining any deviation from the
standard paradigm of ΛCDM model, such as alternative models of dark energy and modified gravity.
For example, one of the primary goal of the aforementioned experiments is to constrain the expansion
history of the Universe in the pre-acceleration era by measuring the baryon-acoustic-oscillations (BAO)
in the clustering of the 21-cm signal.

State-of-the art cosmological analyses of large-scale structure rely on high fidelity numerical sim-
ulations and on accurate analytical modeling of the expected signal, the former frequently being used
to test the latter. The goal of sampling the largest possible volume while simultaneously maintaining
high enough mass resolution to resolve the low-mass dark matter halos which host the majority of the
neutral hydrogen makes simulating 21-cm signal quite challenging. At the same time the very large
survey volumes and low noise levels expected in 21-cm measurements will require characterization of
the theory to unprecedented levels.

In this paper we present a series of large, N-body simulations designed to model the signals
relevant to intensity mapping surveys. Each simulation evolves 102403 particles in a 1h−1Gpc vol-
ume, simultaneously providing large volumes for precise measurements while resolving the halos most
relevant for intensity mapping surveys. This makes it possible to address several modeling issues with
higher precision than has been possible to date and at the same time analyze the response of the
observed signal to these modeling choices.

Our initial focus will be on modeling the 21-cm signal over the range 2 < z < 6, using a halo
model formalism. The halo model combines a large degree of astrophysical realism while maintaining
a flexibility which is highly desirable in our current state of ignorance about the high-z, 21-cm signal.
We will present several different models motivated by existing theoretical ideas and simulations and
assess their commonalities and differences, with the expectation that these models will need to be
revised as further observational information becomes available.

This paper is organized as follows. We begin by outlining the requirements imposed upon the
simulations by the challenge of modeling 21-cm emission in Section 2. In Section 3 we present the
‘Hidden Valley’ simulations, describing briefly the N-body code used, validation of the results and
basic performance metrics with the details of code development in the Appendix A. Section 4 describes
the different semi-analytic and halo based models we use to populate the simulated halos with HI
as well as their calibration. The details of the satellite model used for this purpose are discussed in
Appendix B. We then use these models to look at the clustering of HI in real- and redshift space
in Section 5, with separate focus on redshift space distortions to the clustering and baryon acoustic
oscillations. This section also presents a preliminary comparison with perturbative, analytic models.
In Section 6, we study the response of HI clustering to different parameters and show how going
beyond linear theory breaks denegeneracies amongst them, as anticipated by ref. [7]. Then we use our
simulations in Section 7 to model spatially fluctuating ultraviolet ionizing background and study the
response of the 21-cm signal to these background fluctuations. Finally we summarize our key results
and some further avenues for investigation in Section 8.

2 Setting the requirements

We begin by discussing the physical and observational constraints that drive the requirements on the
numerical simulation suite. We start with a discussion of the required mass resolution (set by ideas
about how HI inhabits dark matter halos) and then turn to the epochs and length scales that will be
probed by proposed experiments.
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2.1 Mass resolution: the HI-halo connection

In the post-reionization era most of the hydrogen in the Universe is ionized, and the 21-cm signal
comes from self-shielded regions such as galaxies (between the outskirts of disks until where the gas
becomes molecular within star-forming regions). Unfortunately, there are not many observational
constraints on the manner in which HI traces galaxies and halos in the high-z Universe, so we are
forced to rely on numerical simulations [8–10] and inferences from other observations [11, 12].

Both physical intuition and numerical simulations suggest that there is a minimum halo mass
(Mcut) below which neutral hydrogen will not be self-shielded from UV photons. Above this mass the
amount of HI should increase as the halo mass increases, though not necessarily linearly. A reasonable
model of the distribution of HI in halos is thus [12, 13]

MHI(Mh; z) = A(z)M
α(z)
h e−Mcut(z)/Mh (2.1)

where we have explicitly written the redshift dependence of the model parameters. The normalization
constant can be fixed by matching the global HI abundance (see below). Simulations suggest α ≈ 1
at z > 2. The characteristic halo mass scale (Mcut) is determined by the clustering of HI. At z ≤ 1
this number is known approximately from cross-correlation with optical galaxies [14–16], however at
higher z there are no direct measurements. The clustering of Damped Lymanα systems (DLAs) has
been measured at z ' 2− 3 by ref. [17], and since the DLAs contain the majority of the HI at those
redshifts this can be used as a proxy for the HI clustering amplitude. For the model in Eq. (2.1) the
DLA measurement implies Mcut = few × 109 h−1M� if α ' 1 [12]. These numbers agree with an
analysis of the most recent hydrodynamical simulations (see Table 6 of ref. [10]). This requirement
sets a particle mass resolution of about 108 h−1M� or better in order to be able to resolve the majority
of the HI.

2.2 Volume and force resolution: relevant scales

The scope for the simulations and model has been set by considering the Stage ii 21-cm experiment
suggested by ref. [2], i.e. a compact, square array of 256× 256, fully illuminated 6 m dishes observing
half the sky with frequencies corresponding to 2 < z < 6. We shall use this strawman proposal in
order to motivate the range of scales our simulations should aim to resolve and the level of accuracy
desired. At z < 2.5 the simulations could also be useful for CHIME and HIRAX, and at z > 2 for
experiments targeting CO and/or C-II lines.

The Stage ii experiment is an interferometer and as such it makes measurements directly in
the Fourier domain. The correlation between every pair of feeds, i and j, measures the Fourier
transform of the sky emission times the primary beam at a wavenumber, k⊥ = 2π~uij/χ(z), set by
the spacing of the two feeds in units of the observing wavelength (~uij) [18]. The visibility noise is
inversely proportional to the number (density) of such baselines [19–27]. Where necessary, we take
the noise parameters from Refs. [2, 28]. A defining feature of the Stage ii experiment is that the total
noise is dominated by shot noise at low k, in contrast with previous surveys that were thermal-noise
dominated [3, 4, 6, 27, 29].

While the Stage ii experiment has very low thermal noise, and as we shall see below the HI signal
has intrinsically low shot-noise, it must still contend with bright foregrounds: primarily free-free and
synchrotron emission from the Galaxy and unresolved point sources [29–33]. Foregrounds make it
very difficult to recover low k‖ modes, i.e. modes close to transverse to the line-of-sight. The precise
value below which recovery becomes impossible is currently unknown (see Refs. [31, 32, 34, 35] for a
range of opinions). In addition to low k‖, non-idealities in the instrument lead to leakage of foreground
information into higher k‖ modes. This is usually phrased in terms of a foreground “wedge” which
renders modes with k‖/k⊥ < sin θR unusable, with [29, 31–39]

R ≡ χ(z)H(z)

c(1 + z)
=
E(z)

1 + z

∫ z

0

dz′

E(z′)
(spatially flat) (2.2)

where θ ≈ θFOV . Information in this wedge is not irretrievably lost, but it becomes more and more
difficult to extract the deeper into the wedge one pushes. The better the instrument can be calibrated
and characterized the smaller the impact of the wedge.
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Figure 1: The region of k⊥ − k‖ space well probed by the Stage ii 21-cm experiment described in
ref. [2]. The color scale shows Psig/Ptot at z = 2 (left) and z = 6 (right), including thermal noise and
shot-noise appropriate to our fiducial model. Modes at very low k⊥ are lost because dishes cannot
be closer together than their diameters, imposing a minimum baseline length. Dashed lines show the
foreground wedge assuming kmin

‖ = 0.05hMpc−1 and the ‘primary beam wedge’ while the dotted line

shows the equivalent cut for 3× the primary beam (see ref. [28] for more information). Modes below
and to the right of those lines become increasingly contaminated by foregrounds (see text).

Fig. 1 shows this information in graphical form. The color scale shows the fraction of the total
power which is signal, as a function of k⊥ and k‖. The modes lost to foregrounds are illustrated by

the gray dashed and dotted lines assuming a fiducial kmin
‖ = 0.05hMpc−1 and θ equal to the primary

beam (i.e. field of view) or 3× the primary beam. At z = 2 and low k the signal dominates, at
intermediate k the shot-noise starts to become important and at high k‖ the thermal noise from the
instrument dominates. At z = 6 the thermal noise is a larger fraction of the total for all k, but the
fraction of the total which is signal is also increased by the higher bias of the HI at high z.

To benefit from the wide range of linear and quasi-linear scales that will be probed with high
fidelity, we need to simulate a large cosmological volume. Resolving k ' 0.01 − 0.05hMpc−1 well
requires a box size of 1h−1Gpc or larger. However, in the spirit of intensity mapping, the inteferometer
will not resolve individual dark matter halos or galaxies. This suggests that the detailed profiles
and subhalo properties of dark matter halos are less likely to be important than their relation to
the evolving cosmic web. For this reason we choose to set our force resolution by the requirement
that halos be properly formed, not that their internal properties be resolved or that we can track
substructures within them.

3 Hidden Valley simulation suite

As outlined above, the simulation requirements for this project are quite demanding, since we need to
simultaneously resolve the small-mass halos in which the majority of the neutral hydrogen signal lives
while covering a large cosmological volume to make precise predictions for the clustering statistics
that will be exquisitely measured by future surveys. To meet this challenge we employed the FastPM
code [40] to evolve 102403 particles in a periodic, cubic volume of 1024h−1Mpc resulting in a mean
inter-particle separation of 100h−1kpc (comoving) and a mass resolution of 8.58 × 107 h−1M�. The
code used a 204803 mesh (i.e. force resolution factor B = 2) for the gravity calculation and took 35
time steps from z = 99 to z = 2. We simulated ΛCDM cosmologies with parameters close to the latest
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Run ΩM h σ8 ΩB ns Amplitude
HV10240/F 0.309167 0.677 0.8222 0.04903 0.96824 Fixed
HV10240/F+ – – 0.8633 – – Fixed
HV10240/F- – – 0.7811 – – Fixed
HV10240/R – – 0.8222 – – Rayleigh
HV2560/F 0.309167 0.677 0.8222 0.04903 0.96824 Fixed
HV2560/F+ – – 0.8633 – – Fixed
HV2560/F- – – 0.7811 – – Fixed
HV2560/R – – 0.8222 – – Rayleigh

Table 1: The cosmological parameters used in the simulations. The number in the name of each

simulation represents N
1/3
part and the box size, in 0.1h−1Mpc (comoving).

Planck results, as given in Table 1. The linear power spectrum1 was computed using CAMB [41] at
z = 2 and initial conditions were generated from this using second-order Lagrangian perturbation
theory at z = 99. We saved halo catalogs and a 4% subset of the dark matter particles at z = 6 to
2 every 0.5 in z. The subsampling ensures the shotnoise level in the particles is less than 1% of the
non-linear power spectrum at k = 1hMpc−1 at redshift z ≤ 6. In addition to the large volume we
also ran a smaller, 256h−1Mpc simulation with the same spatial resolution as the larger box. The
smaller volume is used for development of the numerical model and software tools.

We ran several realizations which differed only in the construction of the initial conditions. The
realizations have identical phases, but the amplitudes are drawn differently. Our primary focus in
this work is the ‘F’ simulations, which we ran with initial conditions chosen such that |δk| =

√
P (k)

with no scatter in order to reduce sampling variance (i.e. Fixed amplitude). This technique has been
shown to produce unbiased estimates of a large variety of 2 point and 3 point statistics [42, 43].
The Hidden Valley simulation suite also contains three other amplitude settings: ‘R’, where the
amplitude is sampled from a Rayleigh distribution, corresponding to Gaussian initial conditions,
and two additional fixed amplitude simulations, ‘F+’ and ‘F-’ where the power spectrum amplitude is
changed by ±5%, corresponding to a change in the σ8 parameter which we can use to assess sensitivity
of our results to σ8.

To demonstrate the accuracy of the scheme at these high redshifts, we compare the FastPM
simulation to a TreePM simulation run with the same initial conditions and mass resolution [44–46]
in a smaller box. The comparison is performed on a box with side length of 256h−1Mpc utilizing 25603

particles. In Fig. 2 we compare the halo mass, large-scale bias (b) and power spectrum anisotropy
from the two simulations. We see that at fixed abundance, the halo mass reported by FastPM is
within 5% of that reported by TreePM though with a mass-dependent trend. The bias and power
spectrum anisotropy (expressed as an equivalent growth rate, f) are consistent at the 1% level, except
at very low abundance (n̄ ' 10−3 h3Mpc−3) where the fitting is strongly affected by shot-noise. This
level of agreement is perfectly satisfactory for HOD modeling.

In terms of scale and anisotropy, we find that the halo positions and velocities produced by
FastPM and TreePM are highly correlated and the redshift-space power spectra agree at the few
percent level up to k = 1hMpc−1. In Fig. 3 we show the transfer function, T (k, µ) =

√
P/Ptpm,

and the cross-correlation coefficient, r×(k, µ), at z = 3 for two halo abundances (n̄ = 10−2 and
10−4 h3 Mpc−3). The agreement is very similar at other redshifts and even better at lower abundances
than shown.

The majority of the HI in a halo lies in the central galaxy, however a fraction can be distributed
to larger radii. If a non-negligible fraction of the HI moves with close to virial velocity within the halo,
this can impact the observed redshift-space clustering through a finger-of-god effect. Unfortunately,
the observational constraints on this distribution are almost non-existent and so we are forced to
model the satellites with simple prescriptions (described below and in Appendix B).

1We provide the CAMB parameter file and matter power spectrum as part of the public data release.
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Figure 2: Linear bias and power spectrum anisotropy (expressed as an effective growth rate, f) as a
function of abundance for halos from this FastPM scheme compared against those of TreePM in the
256h−1Mpc calibration simulation. The halos masses are within 5%, but the bias and growth rate at
fixed abundance agree at the percent level except at all the number densities of interest. This level
of agreement is perfectly satisfactory for HOD modeling.
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Figure 3: The transfer function, T (k, µ) =
√
P/Ptpm, and cross-correlation coefficient, r(k, µ),

between TreePM and FastPM at z = 3 for two halo abundances (n̄ = 10−2 and 10−4 h3 Mpc−3). The
level of agreement is similar at other redshifts and even better for halos of lower abundance. In the
transfer function plots (left), we show the power ratio for individual (k, µ) bins to give an idea of the
level of agreement.

Fig. 4 shows the real-space distribution of dark matter and HI in the simulation at our central
redshift, z = 4. Each panel in the first column shows a 10h−1Mpc thick slice of the matter or HI
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100h 1Mpc

DM

10h 1Mpc 1h 1Mpc

100h 1Mpc

HI

10h 1Mpc 1h 1Mpc

Figure 4: Slices through the simulation showing the projected dark matter (top) and HI (bottom)
densities at our middle output, z = 4. The left panels show a 100h−1Mpc thick slice through the full
simulation box, while the middle and right panels show successive zooms by a factor of 10, centered
around the 5th most massive halo in the simulation. The solid line in each panel indicates the linear
scale while the color scale is log of the density. The HI clearly traces the large-scale structure seen in
the matter.

field. Moving from left to right the panels show successive zooms by a factor of 10, which highlights
the high dynamic range of the simulation in mass and force resolution. The cosmic web is clearly
visible in the left and middle panels, while the complex environment around massive halos at high z
is obvious in the right-most panels. Due to the paucity of HI in low mass halos, and the sub-linear
scaling at higher mass, the low density regions are more empty in the HI than in the matter and the
highest density regions have lower contrast. Overall the structure is more pronounced in the HI than
in the matter, as the former has a high bias.

4 The HI model

There is lot of uncertainty in how hot and cold gas inhabit halos at high z. This is further complicated
by the lack of any direct observational evidence on the mass scales of relevance. Thus the flexibility
of being able to alter the prescription for assigning HI to the halos as we build our mock catalog
upon a dark matter simulation is highly desirable. In what follows we shall consider three methods
for assigning HI to our halos and subhalos (generated by Monte Carlo as described in Appendix B).
Given the dearth of high redshift clustering observations, we will use the following two pieces of data
to calibrate these models.

Our first calibration will be to the amount of neutral hydrogen at high z. We follow stan-
dard convention2 and write the neutral hydrogen density as a fraction of critical at redshift z as

2Some previous work (e.g. ref. [10, 12, 47]) introduced a related quantity where the density at z is instead normalized
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Model Redshift 105ΩHI b1 Psn fsat

A

z = 2 7.46 1.91 53.29 0.07
z = 3 4.80 2.15 15.81 0.07
z = 4 2.65 2.58 10.1 0.06
z = 5 1.52 3.12 9.00 0.04
z = 6 0.91 3.72 9.24 0.03

B

z = 2 8.08 1.79 40.42 0.03
z = 3 5.01 2.45 42.44 0.02
z = 4 2.86 3.10 42.93 0.02
z = 5 1.50 3.72 43.62 0.01
z = 6 0.79 4.33 43.6 0.01

C

z = 2 7.51 1.81 73.70 –
z = 3 4.67 2.30 39.74 –
z = 4 2.74 2.89 29.35 –
z = 5 1.47 3.54 27.44 –
z = 6 0.78 4.27 29.63 –

Table 2: Properties of the HI distribution in different models. The bias (b1) is estimated from the
(real-space) HI-matter cross-spectrum at low k. The shot noise PSN is in (h−1Mpc)3. fsat is the
fraction of total HI that is in the satellites.

ΩHI(z) = ρHI(z)/ρc(z). Existing constraints on ΩHI are obtained by integrating the HI column
density distribution function inferred from QSO spectra. We take the compilation of ΩHI from Table
5 of ref. [47], as shown in Fig. 5.

In order to fit for the characteristic mass scale and relative occupancy (e.g. Mcut and α in Eq. 2.1)
we need some information about the clustering of the HI. Lacking such measurements in the redshift
window of interest (2 < z < 6), we will use the clustering of Damped Lyman-α systems, which contain
more than 90% of the neutral hydrogen in the Universe, as a proxy for the HI distribution. If the HI
column density distribution is only weakly dependent on Mh, then bDLA ≈ bHI and we shall assume
this is true for z ' 2 − 3 (there is support for this from the hydrodynamics simulation of ref. [10]
and data [17]). The BOSS collaboration has measured bDLA = 2.0 ± 0.1 in a broad bin centered at
z = 2.3 [17]. As the clustering of DLAs is measured only at one redshift with sufficient accuracy,
extrapolating the model in Eq. (2.1) requires some assumptions. We detail our fiducial model, and
possible variants, below. Future data from high redshift QSOs in DESI [48], or direct measurement
of the 21-cm signal, will be required to more accurately model MHI(Mh).

4.1 Model A

Our first model, which we shall also use as a fiducial model for most of our plots, assigns HI to the
halos using the MHI−Mh relation of Eq. (2.1). This HI is then distributed between the central and the
satellite galaxies such that the total HI in galaxies adds up to that in the halo. Our primary motivation
for this split is to include Finger of God (FOG) effects in the redshift-space power spectrum. To that
end, assuming that all the HI in halos is associated with either centrals or satellites and ignoring the
free HI content inside the halo not associated with any galaxy is a fair assumption [10].

The MHI −Mh relation we choose is motivated by the desire that the total HI content of a
halo be given (at least approximately) by Eq. (2.1), as this has some support from recent numerical
simulations. To calibrate this model, we are guided by Table 6 of ref. [10] and the data shown in
Fig. 5. We take the parameters for this model to be

α(z) =
1 + 2z

2 + 2z
and Mcut(z) = 3× 109 h−1M�

[
1 + 10

(
3

1 + z

)8
]

(4.1)

by the present day critical density, ΩHI,0 ≡ ρHI(z)/ρc,0. This differs by a factor of ρc(z)/ρc(0) = E2(z) from our
definition.
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Figure 5: (Left) The neutral hydrogen density, in units of the critical density, as a function of z.
The squares with error bars are from the compilation of ref. [47] (Table 5) and the line is their best
fit. The circles show the results from our models. (Right) The bias of DLAs, which contain most
of the HI in the high-z Universe, at z ' 2 − 3. Squares with error bars are the measurements from
ref. [17] while the circles and line show the predictions from our models. The horizontal grey band is
the redshift-average value from ref. [17]. The inset shows the same bias prediction from our models
up to z = 6. For comparison, we also show the bias for mass-weighted halo field with gray line in the
inset.

valid over the range 2 ≤ z ≤ 6. The steep drop of Mcut with z is required in order to flatten the
increasing bias with z at lower redshifts to better match the DLA data. To fit the abundance of HI
we set

Ah(z) = 8× 105 h−1M�

[
1 +

(
3.5

z

)6
]

(4.2)

This leads to the predictions shown in Fig. 5 and Table 2, where we see relatively good agreement
with the available data at high z. The parameters in Eq. 4.1 are slightly different than those in ref. [10].
The reason is that the hydrodynamical simulations in ref. [10], despite being in better agreement with
the HI data than their predecessors, still underestimate both the measured bDLA (by 2σ) and ΩHI.
In a halo based approach we have enough freedom to tune our parameters to better match the data.

Next we want to split this HI between centrals and satellites. We use the same relation for the
satellites as for halos, albeit with a different normalization where we put more HI in satellites at the
same (sub)halo mass and increasingly so with increasing redshift.

As(z) = Ah(z)× (1.75 + 0.25 z) (4.3)

The centrals then take up the residual HI from the halos that is not assigned to satellites. With our
simple prescription, we are able to match the HI fraction in satellites observed by [10] in Illustris
simulations.

We show the distribution of the HI for our model in halos of different mass and at different
redshifts in Fig. 7. The top row shows the MHI −Mh relation as given by Eq. 2.1 for this model. The
middle row shows the fraction of total HI that resides in the halos of a given mass. Towards highest
halo masses the contribution decreases because of the exponential drop in the halo mass function,
while at the lower end the HI hosted in the individual halos drops due to the cutoff (Eq. 4.1). Hence
most of the signal contribution comes from halos of intermediate masses: ∼ 1011 h−1M� at z = 2
and decreasing to ∼ 1010 h−1M� at z = 6. This also illustrates the convergence of our simulations
with respect to the HI signal i.e. for this model our simulations have enough resolution to capture
essentially all the expected HI signal across all the redshifts of interest.
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Figure 6: (left) The halo mass function from our simulations at z = 2, 4 and 6. The dashed lines are
the Sheth-Tormen mass function prediction [49]. (right) Stellar mass function from our simulations
(points) at the same redshifts. The data (dashed line with error bars) are taken from the compilation
of ref. [50]3.

The last row of Fig. 7 show the fraction of total HI inside a halo that is embedded in the satellites
as a function of halo mass. This fraction increases with the halo mass, with as much as ∼ 50% HI
residing in satellites for ∼ 1014 h−1M� halos. As described above, the remaining HI of the halos is
assigned to centrals. This is in qualitative agreement with satellite HI fraction seen in the Illustris
simulations in ref. [10].

While it would be straightforward to include a random scatter in HI at fixed Mh, we have no
observational constraints on the form or evolution of the scatter. Thus we choose to neglect it, noting
where this impacts our results.

4.2 Model B

Inspired by ref. [8], our second model assumes that the HI content of galaxies depends upon stellar
mass. We use the fit of ref. [51] to assign stellar masses (M?) to our central and satellite halos. The
corresponding stellar mass function is shown in Figure 6 which agrees fairly well with the data [50].
We could likely improve the fit by adjusting the parameters in the stellar-mass halo-mass relation,
but this is sufficient for our purposes so we keep the fiducial parameters of ref. [51]. Then we assign
an HI mass to each of these galaxies based on the same ‘HI richness’ (MHI/M?) relation. Ref. [8] find
that MHI/M? evolves relatively little with redshift (e.g. see their Fig. 4) implying that the redshift
evolution of Mh −MHI is due to the evolution of M?. We take

MHI

M?
= f

(
M1

M1 +M?

)α
(4.4)

where by calibrating the against the observations we get f = 0.18, α = 0.4, and M1 = 3 × 108M�.
Similar to the M? −Mh relation, it would be straightforward to include a random scatter in HI at
fixed Mh, however we have no observational constraints on the form or evolution of the scatter. Thus
we choose to neglect it.

Unlike our fiducial model, this model does not have an explicit lower mass cut-off. Instead the
HI distribution in small halos is implicitly suppressed (but not exponentially) by the stellar-mass
halo-mass relation. Due to this lack of flexibility, it performs slightly worse in matching the DLA
bias at low redshifts (Fig. 5). This model also puts more HI in the intermediate mass halos and less

3https://www.peterbehroozi.com/data.html
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Figure 7: Distribution of HI for different models (colors) at different redshifts (columns): i) The
top row shows the halo HI mass function i.e. the average HI mass inside halos as a function of halo
mass. ii) The middle row shows the fraction of the total HI that resides in halos of a given mass. This
illustrates the convergence of our simulations with respect to HI signal on the low halo mass end. iii)
The bottom row shows the fraction of HI mass inside the halos that resides in the satellites (this is
zero for Model C by assumption).

in the highest mass halos than our fiducial Model A (Fig. 7, top row) due to the flattening of the
M?−Mh relation at high mass. Hence the peak of the signal contribution as a function of halo masses
(middle row) is shifted to slightly higher mass, and is lower compared to that of Model A. Since we
use the same relation (Eq. 4.4) for both centrals and satellites, we lack the flexibility of Model A in
distributing HI inside halos. As a result, we find that the satellite HI fraction for this model declines
sharply with redshift and is in qualitative disagreement with ref. [10] at higher redshifts.

One advantage of this model is that the redshift dependence of the Mh −MHI distribution is
entirely determined by the stellar mass evolution, which is fairly well constrained. Thus we have
effectively only two free parameters, M1 and α, that impact the impact the shape of b(z) and ΩHI(z)
with f impacting the overall amplitude. Hence any precise observations at high redshift which fix
these shapes will help constrain these parameters and test the validity of this model.

4.3 Model C

As our last model, we use a simplistic alternative which assumes a constant Mcut and α at all redshifts
to assign HI to halos. This has been used in the literature in refs. [12, 28]. We set α = 0.9 (which is
roughly the average of the values at the extreme redshifts used in Model A) and Mcut = 1010 h−1M�.
Given the current state of the high z clustering observations this model is difficult to completely rule
out. However, like Model B, due to the lack of the flexibility in varying the lower mass cut-off this
model to performs poorly in matching the DLA bias (Fig. 5). With these parameters fixed, one can
match the observed HI density up to high redshifts by making the normalization redshift dependent.
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We find that the following form fits the data well:

Ah(z) = 3.5× 106 h−1M�

(
1 +

1

z

)
(4.5)

As can be seen from Fig. 7, despite having minimal redshift evolution in the parameters, this model
qualitatively follows Model A and Model B in the distribution of HI as a function of halo masses.
However unlike the other two models, we deliberately do not include any satellites to distribute HI
inside an individual halo. This is to avoid having any 1-halo finger-of-god effects in the redshift space.
Thus when compared with other models, this will serve to illustrate their impact over and above the
redshift space distortions that are captured by the halo velocities themselves.

5 HI clustering

The amplitude of the 21-cm signal depends on the abundance and the clustering of the HI. In the
previous section, we considered three different models for distributing HI in halos and measured its
abundance. In this section, we look in detail at the clustering of HI. We will mostly show the results
from our fiducial Model A and simply comment on similarities or differences with the prediction of
other models, unless explicitly showing the differences is more insightful.

We will look only at the 2-point statistics of HI clustering. Even though it’s not observable, we
will begin with real space clustering of HI as a function of redshift since it helps elucidate its relation
to the underlying dark matter clustering. Next we will discuss the clustering in redshift space where
the signal will actually be observed. Lastly, we will discuss the baryon acoustic oscillations (BAO) in
21-cm signal since its one of the major goals of upcoming 21-cm surveys to detect BAO and measure
distances to high redshifts with them.

In order to optimize what can be learned from the surveys mentioned above, theoretical predic-
tions in the mildly and fully non-linear regimes are also needed. Previous work has suggested that
perturbative models can accurately predict the clustering of biased tracers to a significant fraction of
the nonlinear scale knl = Σ−1 at high z [52–56], where Σ is mean square one-dimensional displacement
in the Zeldovich approximation given by

knl = Σ−1 =

[
1

6π2

∫
PL(k) dk

]−1/2

. (5.1)

with PL the linear theory power spectrum. For high redshift tracers such as HI, perturbative models
with their sophisticated biasing schemes become more useful due to increasing complexity of bias
and decreasing non-linearity of the matter field as we go further back in time [56]. While we leave a
detailed study of modeling 21-cm signal with such models for future work, when more sophisticated
models and more simulation volume could become available, here we will compare the clustering
signal to the predictions of linear theory and ‘Zeldovich effective field theory’ (ZEFT [57]). ZEFT is
a combination of lowest order Lagrangian perturbation theory (i.e. the Zeldovich approximation [58])
plus a counter-term going as k2 (it can also be thought of as a k2 component to the bias).

5.1 Real-space clustering

We begin with a discussion of the real-space clustering of the HI as a function of redshift, and its
relation to the underlying dark matter clustering and to linear theory. Fig. 8 shows the real-space
power spectra on the left, and the two-point functions (i.e. correlation functions) as a function of
separation, r, on the right at some selected redshifts. The blue, orange and green lines show matter
auto-clustering (spectra + correlation), matter-HI clustering and the HI auto-clustering respectively,
and we compare them to the predictions of linear theory with constant bias (i.e. b2PL(k) and bPL(k)
respectively for power spectra) as dotted lines with b matched to the amplitude of the matter-HI
cross-spectra at low k (we perform a simple unweighted average of points with k < 0.06hMpc−1).
The difference between the simulations and linear theory predictions, coming from a combination of
non-linear clustering and scale-dependent bias, is clearly visible at all redshifts.
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Figure 8: The real-space power spectrum (left) and cross correlation function (right) of the dark
matter and HI in our fiducial model at z = 2, 4, and 6. Solid lines show the N-body results while
dotted lines show linear theory with scale-independent bias (set by the amplitude of the cross-spectra
at low k or cross-correlation at large r). Blue, orange and green line show the matter clustering,
matter-HI cross-clustering and the HI auto-clustering respectively. The downturn in the HI auto-
spectrum (green) at high k is due to our subtraction of a constant ‘shot-noise’ component (see text).
The vertical grey lines mark knl and Σnl of Eq. (5.1).

Fig. 9 shows the bias explicitly for both power spectra and correlation functions. The solid lines
show the bias estimated from the auto-clustering ba(k) ≡

√
PHI,HI/Pmm (and corresponding ratios

in configuration space) while the dashed lines are the cross-clustering biases b×(k) ≡ PHI,m/Pmm.
The difference between them indicates the degree to which the HI and matter fields are decorrelated.
At larger scales, the two biases converge to same values showing that the HI provides a good tracer
of the matter field and the cross-correlation coefficient is close to unity. The decorrelation occurs on
the scales of a few Mpc and shifts to larger scales (lower k) with increasing bias as we go higher in
redshift.

On large scales (> 10h−1Mpc), the bias is scale-independent and our simulations are large
enough that we can clearly see the ‘flat’ low k plateau in the Fourier space. However we see the
bias becoming scale dependent on small scales in both Fourier and configuration space, with the
dependence extending to larger scales and lower k for the more biased objects at higher redshifts.
For this figure, we have defined the biases with respect to the non-linear matter spectra (correlation
function) – the scale-dependence of the bias would be larger if we had used the linear theory spectrum
in the definition. Note also that as the the bias of the HI in our fiducial model becomes larger and
more scale dependent at higher redshifts, the non-linear scale shown in dotted gray lines knl/Σnl

simultaneously shifts to smaller scales. Thus scale-dependence of the bias thus becomes relevant
before the non-linear clustering (a similar effect is seen for high-z galaxies in ref. [56, 59]).

The trade-off between complex biasing and non-linearity makes modeling high redshift tracers an
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viz. ba(r) ≡

√
ξHI,HI/ξmm and b×(r) ≡ ξHI,m/ξmm.

ideal application for perturbative models with sophisticated biasing models, such as those developed
in Refs. [54, 56, 57] (see also ref. [10]). Fig. 10 shows real-space power spectrum at z = 2 and 6
compared to the predictions of ZEFT. We have fit all three spectra simultaneously, e.g. the same
value of b2 that fits the HI auto-spectrum fits the cross-spectrum. At high redshift the contribution of
shear terms becomes suppressed so we have not included shear terms in our fit, though we do include
a b∇2 contribution, leading to a total of 4 free parameters in our model. The agreement is very good
up to about ∼ 0.75 knl, as suggested by ref. [10] in a much smaller volume, and within the expected
sample variance over the perturbative range. We expect theoretical models including higher-order
effects would do even better. Over this range the N-body results can depart by order unity from the
linear theory predictions.

One complication while fitting HI clustering with any model is to take into account the shot
noise. Unlike galaxies, HI is not a discrete tracer of the underlying matter field, hence the Poisson
approximation for noise is no longer true. This is also shown in ref. [10] who find that P (k) does not
asymptote to a constant at high k, likely due to the HI profile inside the halos on small scales. Thus
if one knows the shape of 1−halo term, this can be fit for or subtracted while modeling the signal.
In addition the 21-cm signal is dominated by low mass halos, ∼ 1010h−1M�, whose clustering has a
complex shot noise form. While this needs to be investigated in the future, here we approximate the
noise as Poisson, i.e. PSN ∼

∑
hM

2
HI/(

∑
MHI)

2, where MHI is the HI mass in a halo and the sum is
over all the halos. This simplistic form ignores any scale dependence of the noise and ref. [10] show
that this over-estimates the noise on small scales.

Lastly, we have shown the results only for HI distribution with Model A. The results in real space
are qualitatively similar for the other models with the only difference being in the amplitude of the
clustering i.e. Model B and Model C predict slightly higher bias on large scales at higher redshifts.
This can be seen from the inset plot in Fig. 5. As expected, this also leads to greater scale dependence
of bias and higher decorrelation with matter clustering on smaller scales.
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Figure 10: (Top) The real-space power spectrum of the dark matter and HI in our fiducial model
at z = 2 and 6. Solid lines show the N-body results, dashed lines show the Zeldovich effective field
theory calculation and dotted lines linear theory. Blue lines show the matter power spectrum, orange
lines the matter-HI cross-spectrum and green lines the HI auto-spectrum. A single set of parameters
fits all curves simultaneously. The dotted and dash-dot vertical grey lines mark 0.75knl and knl of
Eq. (5.1). (Bottom) The ratio of the the N-body results to Zeldovich fit. The dark and light grey
shaded regions show ±2% and ±5%. The shaded magenta region shows the sample variance error in
our simulation volume (including shot noise).

5.2 Redshift-space clustering: supercluster infall

Future experiments will measure the clustering signal in redshift space, not real space, thus it is
useful to look at the impact of peculiar velocities on the signal. There are several effects which are
of interest. First, the fact that only the line-of-sight peculiar velocity contributes to the measured
redshift imprints an anisotropy in the clustering signal [60, 61]. In the distant observer limit4 our power

spectrum becomes a function of k and |µ|, with µ ≡ k̂ · ẑ if ẑ is the (common) line-of-sight direction.
On large scales, supercluster infall enhances the signal, while on smaller scales inter- and intra-halo
virial motions lead to anisotropic power suppression. The amount of suppression, also referred to as
the finger-of-god (FOG) effect, is dependent upon the amount of HI that lives in satellites within
massive halos and their virial motions. We focus here on the former and explore the FOG effect in
the next section.

Fig. 11 shows the HI auto-spectrum in redshift space in two different forms and at various
redshifts - on the left are the P (k, µ) wedges in 4 slices of µ while on the right are the first three
multipoles generated by anisotropic clustering along the line of sight. We have multiplied the curves
by k2 to reduce the dynamic range in order to better separate the different curves. In addition, we
have subtracted the shot noise with the same approximation of weighted means as for the real space

4Since the observations are at high z we make the distant observer approximation throughout. From the analysis of
Refs. [62, 63] we expect this introduces errors well below our other uncertainties.
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Figure 11: The redshift-space power spectrum of the HI in our fiducial model at z = 2, 4 and 6. (Left)
The solid lines show the N-body result for P (k, µ) wedges while the dotted lines show linear theory
prediction with scale-independent bias. (Right) The first three, even multipoles of the anisotropic
redshift space power spectrum along with the linear theory, constant bias predictions (dotted).

clustering. In linear theory, the line-of-sight power is enhanced by supercluster infall [60] by a factor
(1 + [f/b]µ2)2, where f = d lnD/d ln a ' Ω0.55

m (z) ≈ 1 is the growth rate. This prediction is shown in
dotted lines for different wedges and multipoles and agrees well with the simulations on large scales.

To model intermediate scales, similar to real space clustering, we turn to perturbative models
and compare the power spectrum multipoles with ZEFT prediction. This is shown in Fig. 12. There
are numerous ways of computing the redshift-space power spectrum in the Zeldovich approximation
[64], here we have performed a Hankel transform of the correlation function multipoles. The N-body
multipole power spectra are noisier than their real-space counterparts, but the level of agreement is
still quite good for such a simple model. Over the range shown the N-body results depart from linear
theory by order unity, while the agreement with our Zeldovich model is always within sample variance.
In addition, we also show the sample variance after including the thermal noise, which dominates on
small scales, for a HIRAX-like and Stage ii experiment and find that perturbation theory fits the
model well within the errors for HIRAX-like experiment on these small scales as well. Higher order
perturbation theory and a more sophisticated treatment of redshift-space distortions would almost
certainly improve the agreement, however this preliminary investigation suggests that even low order
perturbation theory is correctly predicting the signatures of non-linear evolution and complex bias
in our simulations. Given the enormous uncertainties associated with the manner in which HI traces
the matter field, this suggests the Zeldovich approximation can be used as an efficient and relatively
accurate forecasting tool [7].

In Fig. 13, we also show the comparison for power spectrum wedges in redshift space. To be more
realistic here, we have taken into account the “pessimistic” case of the foreground wedge as outlined
in ref. [28] and split only the observable modes outside this into two equal wedges with respect to the
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Figure 12: (Top) The redshift-space, HI power spectrum multipoles in our fiducial model at z = 2
and 6. Solid lines show the N-body results while dashed lines show the Zeldovich effective field theory
calculation. Blue lines show the monopole (` = 0) while red lines show the quadrupole (` = 2). A
single set of parameters fits both multipoles simultaneously. The dotted and dash-dot vertical grey
lines mark 0.75knl and knl of Eq. (5.1). (Bottom rows) The two rows show the ratio of the N-body
results to the Zeldovich fit for monopole and quadrupole. The dark and light grey shaded regions show
±2% and ±5%. The shaded green region shows the expected sample variance error in our simulation
volume, including shot noise, though the actual error in our simulations is expected to be less due to
our fixed amplitude construction of initial conditions. The dashed red and black lines show the sample
variance error after including the thermal noise for HIRAX-like and Stage ii experiment respectively.

line of sight. This allows us to see the impact of anisotropic thermal noise that is otherwise averaged
over in case of multipoles. We clearly see that the thermal noise is larger perpendicular to the line
of sight, but is however small in comparison to the sample variance for our 1h−1Gpc volume. To fit
Zeldovich perturbation theory to the power spectrum wedges, we have used only first three multipoles
and find that it is able to fit the simulations to within 5% up to non-linear scales. Despite being
within sample variance, the fit on the large scales for z = 2 seems biased for the two wedges which is
likely due to using only the first three, even multipoles to get the model power spectrum wedges.

5.3 Redshift-space clustering: Fingers of God

Small-scale clustering in redshift space is suppressed due to FOG effects along the line of sight. This
puts an upper limit on the modes which can be used to extract information and hence it is important
to look at the amplitude of these effects. The simplest phenomological expression to model the redshift
space spectrum using FOG effects is:

P sHI(k, µ) = (1 + [f/b]µ2)2b2LPL(k)K(k, µ, σs) +N(k) (5.2)
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Figure 13: (Top) The redshift-space, HI power spectrum wedges for our fiducial model at z = 2 and
6. Solid lines show the N-body results while dashed lines show the Zeldovich effective field theory
calculation. A single set of parameters fits both the wedges simultaneously. The dotted and dash-dot
vertical grey lines mark 0.75knl and knl of Eq. (5.1). (Bottom rows) The two rows show the ratio of the
N-body results to the Zeldovich fit for the two wedges. The dark and light grey shaded regions show
±2% and ±5%. The shaded green region shows the expected sample variance error in our simulation
volume, including shot noise, though the actual error in our simulations is expected to be less due to
our fixed amplitude construction of initial conditions. The dashed red and black lines show the sample
variance error after including the thermal noise for HIRAX-like and Stage ii experiment respectively.

where bL, PL are the linear bias and linear power spectrum, N(k) is the additive component of shot
noise and the kernel K(k, µ, σs) contains both perturbative and non perturbative effects. Usually the
FOG effect contribution to this kernel is modeled using a Gaussian or a Lorentzian. To quantitatively
see where FOG lead to suppression of power and loss of information on small scales, we extract the
kernel as

K(k, µ, σs) =
1

(1 + [f/b]µ2)2

[P sHI(k, µ)− P sHI(k, 0)

b2LPL(k)
+ 1
]

(5.3)

where we assumed that the shot noise N(k) is µ independent and K(k, 0, σs) = 1. This kernel is
shown in Fig. 14 for different HI models. On large scales, where linear theory is valid, we find the
kernel to be close to unity as per our expectations. On intermediate scales, the signal increases due
to nonlinear redshift space distortions and biasing. At high-k the FOG suppress the signal, and this
suppression becomes smaller at high redshfit because the low mass halos we probe at high z have
low velocity dispersion. As seen in Fig. 7, since the amount of HI in satellites is higher in Model
A, compared to the other two models, the FOG suppression is higher and at slightly larger scales.
Interestingly, though Model C does not have satellites and hence does not strictly have 1-halo FOG
effects caused due to velocity dispersion, it sees the same suppression as Model B at high redshifts.
This suggests that this suppression is due to the combined effect of cluster-infall velocities of halos
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Figure 14: Fingers of god suppression in the form of the kernel defined in Eq. 5.3 for the three
models of the distribution of HI for various redshifts.

and the 1-halo contribution to clustering.
Given that FOG effect is subdominant in suppressing clustering at k ≤ kNL, they will not set

the limit to the scales along the line of sight from which we can extract cosmological information.
This is one advantage of 21-cm surveys over other spectroscopic surveys which can be severely limited
by FOG effects (and redshift measurement uncertainties [59]). Small FOG also mean that the radial
resolution of the analysis will be set by the channel bandwidth or the frequency resolution. The
channel bandpass can be approximated with a Gaussian which gives an effective beam in the parallel
direction [22]

B‖(k‖) = exp

(
−

[rνk‖ δν/ν21]2

16ln2

)
(5.4)

where rν = c(1 + z)2/H(z) and δν is the channel bandwidth. Based on Fig. 14, if we expect to be
able to model the signal up to k = 0.6, 0.8 and 1hMpc−1 at z = 2, 3 and z ≥ 4, and we require the
beam suppression on these scales to not be greater than e−1, then this sets the minimum bandwidth
to δν = 5, 2, 1, 0.8 and 0.6 MHz respectively.

5.4 Baryon acoustic oscillations

A major goal of high z, 21-cm cosmology is the measurement of distances using the baryon acoustic
oscillation method [65]. In Fig. 15 we show this signal, in real and redshift space, as power spectrum
and correlation function monopole and compare it against linear theory (dotted lines). We find that
scale-dependent biasing, redshift-space distortions and non-linear evolution have only a small effect
on the BAO signal, and this observation gets stronger as we go higher in redshift.

In Fourier space the BAO signal appears as a quasi-periodic sequence of damped oscillations
superposed upon the smooth shape of the power spectrum. To enhance the visibility of peaks, we
divide P (k) in Fig. 15 by a “no-wiggle” template which is formed simply by smoothing the power

– 19 –



0.1 0.2 0.3 0.4
k [h Mpc 1]

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
P(

k)
/P

nw
(k

)+
of

fs
et

z=2.0
z=4.0

z=6.0

60 70 80 90 100 110 120
r [Mpc/h]

0

5

10

15

20

25

30

35

r2
(r)

+
of

fs
et

Figure 15: BAO signal in real (solid lines) and redshift space (monopole, dashed) at various redshift
compared with the linear theory in real (gray dots) and redshift space (gray solid line): (Left) Ratio
of power spectrum to the “no-wiggle” template which is formed by smoothing with a Savitsky-Golay
filter. We have moved lines for different redshift vertically by 0.2 to enhance visibility. (Right)
Correlation function estimated by Hankel transform of the power spectrum, compared with linear
theory i.e. linear bias and Kaiser prediction in real and redshift space respectively. We have offset
lines for different redshift together vertically by multiples of 10 to enhance visibility.

spectrum with a Savitsky-Golay filter. This disentangles effects like scale-dependent bias which leads
to only a smooth trend in P (k) and are hence removed by the broad-band division. It is clear from
Fig. 15 that the BAO peaks would be easily visible in the k-band probed by the upcoming 21-cm
surveys. Non-linear structure formation damps the BAO peaks and reduces the signal-to-noise ratio
for measuring the acoustic scale [52, 66–73]. Since the non-linear scale shifts to smaller scales at
high-redshifts, this damping is expected to be small. In Fig. 15 only the fourth BAO peak is slightly
damped at z = 2 as compared to linear power spectrum and no damping is visible at z = 6, in
accordance with the value of kNL at these redshifts.

Since the amount of damping is small at high redshifts and therefore quite difficult to see in the
power spectrum, we also show the correlation function where the BAO signal appears as a single,
well-localized peak at the BAO scale ∼ 100h−1Mpc. Since our purpose here is to only visually
assess the degree of peak broadening, we do not measure the correlation function on these scales via
pair-counting in the simulations, but compute it from the power spectrum measurement via Hankel
transform. For this purpose, we extrapolate the measurement on large scales with the linear power
spectrum and linear bias, and on small scales with a power-law.

The peak broadening over the linear theory prediction is more clearly visible in correlation space,
for both real and redshift space clustering, and it decreases significantly between redshift z = 2 and
4. While not shown here to maintain clarity of the figure, we find that the Zeldovich approximation
provides a good fit to the peak damping in the correlation function at all redshifts. As an aside,
we note that the real and redshift space signals at higher redshifts are closer than at low redshifts,
illustrating the decreasing effects of redshift space distortions on the broadband due to the increasing
bias. Thus though the peak damping is slightly larger in redshift space than in real space at z = 2,
but this is no-longer (noticeably) the case at z = 6.

The BAO peak can be sharpened, or the high-k oscillations partially restored, by a process
known as ‘reconstruction’ [74]. Reconstruction is adversely affected by modes lost to foregrounds and
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Figure 16: BAO signal for the power spectrum wedges for the same configuration as Figure 13 at
redshifts z = 2 and 6, after taking the ratio of the power spectrum to the “no-wiggle” template
which is formed by smoothing with a Savitsky-Golay filter. We have moved lines for different µ-bins
vertically by 0.2 to enhance visibility. The black dashed line is the linear theory prediction. We show
error bars for the two experiments HIRAX-like (red) and Stage ii (green). The error bars include
the shot noise, thermal noise and sample variance for the volume corresponding to redshift slice of
∆z = 0.2 around the the central redshift. We have assumed sky coverage of 15000 deg2 and 20000 deg2

for the two experiments respectively.

instrument imperfections [33], but this can be partly overcome by combining 21-cm observations with
other surveys [29]. Conveniently, the gains from reconstruction are largest at the lowest redshifts,
where the overlap with other probes of large-scale structure is also the largest.

To assess the feasibility of detecting BAO signature in presence of foreground wedges, we also
show in Fig. 16 BAO wiggles in the power spectrum wedges after removing the broadband. We
consider the “pessimistic” foreground wedge as outlined in the previous section for Fig. 13 [28]. We
estimate realistic error bars for two experimental setups: HIRAX-like with sky coverage of 15000 deg2

and Stage ii covering 20000 deg2 in the sky. The errors include the shot noise, thermal noise and
sample variance for the volume corresponding to redshift slice of ∆z = 0.2 around the the central
redshift. At redshift z = 2, both the experiments should be able to detect the BAO signature with
equally high significance on all the scales that are not damped due to non-linear evolution. At redshift
z = 6, Stage ii is able to detect the signal with high significance despite having access to a very narrow
wedge due to foregrounds.

6 Power spectrum response

In this section we present the response of the HI clustering to changes in parameters, both cosmological
and astrophysical. We focus on the response (d lnP/d ln θ) to σ8 and the lowest order Eulerian bias,
b1, which are degenerate with each other and with the mean brightness temperature, T̄ , in linear
theory (see discussion in e.g. ref. [28]). For simplicity, we will use Model C to distribute HI in halos
since it has the fewest free parameters but still gives similar results to the other models at the 2-point
function level. To get the derivatives of the power spectrum with respect to σ8 we use our ‘F+’ and ‘F-’
simulations, which have the initial power spectrum amplitude changed by ±5%. Simply distributing
HI with the same HOD parameters as the fiducial cosmology leads to a different linear bias on large
scales. Thus we change the value of the parameter Mcut (while keeping α fixed to original value of
0.9) such that the large scale bias, b1, remains the same as in fiducial case. We then use finite central
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Figure 17: Response of HI clustering to σ8 (solid lines) and (Eulerian) b1 (dashed lines). The gray
horizontal line corresponds to derivative with brightness temperature Tb. The panels show derivative
of real space power spectrum, monopole and quadrapole at three different redshifts

difference to get the response. To estimate the response to b1 at fixed σ8, we change Mcut by ±5%
in dex in the fiducial cosmology and measure the change in clustering as well as change in bias, then
evaluate the derivative with respect to bias using the chain-rule.

The power spectrum response, i.e. the log-derivatives of PHI with respect to the different param-
eters, is shown in Fig. 17 at three different redshifts. We present the results for the real space power
spectrum, the redshift space monopole and the redshift space quadrupole and for σ8, b1 and T̄ . In
linear theory these are all degenerate. This can be seen on large scales in first panel as all the curves
converge to 2. However on mildly non-linear and smaller scales the response of real space spectra
to both these parameters is different. As we go higher in redshift, where the bias of HI becomes
increasingly non-linear, the shape of the derivatives becomes increasingly different. In redshift space,
this degeneracy is also partially broken on linear scales due to redshift space distortions. While it is
not possible to compare our derivatives one-to-one due to the differences in the bias model, our results
are very similar to those of ref. [7] who presented a Fisher forecast for 21-cm surveys constraining the
growth of large-scale structure. Since our derivatives are easily distinguishable within the band that
could be probed by upcoming 21-cm experiments, we too expect such experiments should be able to
make highly precise measurements of the rate-of-growth of large-scale structure.

7 Ultraviolet background fluctuations

Radiation backgrounds in the ultraviolet (UV) regime have the ability to ionize HI and thus modulate
the HI content of halos and galaxies. Spatial fluctuations in the UV background can hence modify the
clustering of HI, leading to systematic effects in signals from different large scale structure surveys.
This modulation has been shown to be significant for e.g. 3D Lyα forest surveys [75–79]. Recently
ref. [80] investigated the importance of this effect for the 21-cm signal and found it to be non-negligible,
with an ‘intensity bias’ of HI fluctuations ∼ −0.20 to −0.45 for 1 < z < 3 and different photoionization
models.

Given the size and resolution of our simulations we have the unprecedented capability to imple-
ment these models in the N-body simulations and estimate this response directly from the simulations
at high redshifts. To this end we will adopt a simple5 ionization model, motivated by that of ref. [81],
henceforth referred to as MHR. In the MHR model one assumes that there is a critical density, ∆S ,
above which HI is self-shielded. This critical density is set by the by the photo-ionization rate, with
Γ ∝ ∆−κS . If we further assume a power-law profile for the density of hydrogen inside each absorber

5Since our goal is a preliminary study to gauge the impact on the HI power spectrum on the scales relevant for
proposed interferometers we also neglect light-cone and radiative transfer effects. A more accurate calculation would
be an interesting avenue for further exploration.
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The dashed lines are the double power law fitting function of ref. [82]. The points are data compiled
by ref. [83]6in bins of ∆z = 0.2 around the central redshift. (right) Power spectrum of the QSO
luminosity and ionizing UV background, with and without a stellar contribution, at z = 4.

(ρ ∝ r−α), the HI content is modulated by the local ionizing radiation field as:

MHI

MHI,0
=

(
Γ

Γ0

)p
(7.1)

where p = (3− α)/(ακ), Γ0 is the mean background radiation and MHI,0 is the fiducial HI mass that
will be hosted inside the galaxy in case of the mean ionizing background. Here, we will take MHI,0

to be the HI mass assigned to the galaxies previously in our Model A. In what follows we consider
eq. 7.1, with free parameter p, as our basic ‘model’ of the impact of UV background fluctuations.
In Appendix C we give further details of our implementation and motivate reasonable choices for
p. Specifically we argue that in the MHR model the ionization index, κ, can be directly related to
the galaxy density profile slope, α. Choosing α = 2, 2.5, and 2.9 (with α = 2 corresponding to an
isothermal distribution and α = 2.9 motivated by the HI profile in halos as seen by ref. [10]) leads
to 0.02 < p < 1/3 in eq. 7.1. Regardless of the validity of the model, as we will see this range of p
generates an interesting range of signatures to explore.

We use the model proposed by ref. [84] to make mock QSOs and generate a UV background
field from the halos in the simulation (further details are provided in Appendix C). The mock QSO
luminosity function is shown in Fig. 18, compared to recent observational determinations. Given a
mean free path7 of ionizing photons, λ912

mfp, one can generate a UV background. The power spectra of
the QSO luminosity field, LQ, and of the UV background are shown in Fig. 18. For QSOs, we find
that the luminosity field ρL is dominated by shot noise at all redshifts that we consider.

In addition to QSOs, the ionizing background is also generated by star forming galaxies. In fact,
this contribution dominates at high redshifts [85]. To model this scenario we consider a second case
where we add to the QSO background one based on the stellar mass field, under the assumption that
the mass-to-light ratio is constant. The amplitude of this redshift-dependent stellar background is
estimated from Fig. 1 of ref. [85]. Given our scaling of LQ with Mgal, the main difference between the
stellar background and the QSO background is stochasticity and scatter.

We are interested in estimating the effect of the fluctuations in the ionizing UV background on
HI clustering. This can be measured most simply in the form of an ‘intensity bias’. To estimate this

6https://github.com/gkulkarni/QLF/blob/master/Data/allqlfs.dat
7We assume the mean free path is constant, neglecting the impact of density-driven fluctuations. Within linear

theory including this effect would serve to increase the intensity bias at fixed p [80].
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background (left) and QSOs with a redshift dependent stellar background (right).

effect, we make the simple ansatz assuming a direct relation between density and temperature:

δΓ
HI = bΓ1 δm + bΓδΓ (7.2)

where bΓ1 is the ‘correct’ HI bias with respect to matter in the presence of a fluctuating UV background,
and bΓ is the corresponding intensity bias. While there is apriori no reason for bΓ1 to be the same as
the fiducial HI bias (b1) measured in §5, we find that the change in this bias is small (< 3%). Thus,
henceforth, we assume bΓ1 ≡ b1 and so bΓ1 δm = δfid

HI .
Under this assumption, we estimate bΓ in three different ways

1. Regression: we split our 1, 024h−1Mpc simulation into voxels of size 128h−1Mpc and measure
the change in mean HI overdensity as a function of the mean ionizing background in them. This
is akin to the peak-background split method for estimating bias (e.g. see ref. [86]). We fit for

bΓδΓ = δΓ
HI − δfid

HI (7.3)

For z = 3.5 and 4 the default size of the voxels is smaller than the mean free path of the photons,
but we have verified that using larger voxels does not change the measurement.

2. Cross correlation: We can also cross-correlate Eq. 7.2 with matter and on large scales fit for the
linear bias in the form

bΓPmΓ + b1Pmm = PmδΓ
HI

(7.4)

where PmΓ, Pmm and PmδΓ
HI

are the cross-spectrum between the UV and matter field, the matter
auto-spectrum and the cross-spectrum between the modulated HI field and the matter. Here b1
is the fiducial HI bias measured from §5 that we have used in place of bΓ1 . In principle, one would
fit for both bΓ1 and bΓ simultaneously, but we have verified that doing so does not significantly
change the value of either bias.

3. Auto correlation: We can estimate the auto-power spectrum of Eq. 7.2 to estimate bias. This
gives us a quadratic equation which can be solved at each scale and then the bias can be
estimated from the mean value on large scales:

b2Γ(k)PΓΓ + 2b1bΓPmΓ + PδHIδHI
= PδΓ

HIδ
Γ
HI

(7.5)

where in addition to previous definitions, we have defined PΓΓ, PδHIδHI and PδΓ
HIδ

Γ
HI

as the auto-
spectra of the UV, fiducial HI and modulated HI fields.
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Figure 20: Ratio of HI-matter cross power spectra in the presence of a fluctuating ionizing back-
ground to the fiducial case with uniform ionizing background, for three different redshifts (columns).
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1/8 and 1/3 respectively. The top row is with a background generated by QSOs only, while the
bottom row is includes a fluctuating stellar background as described in the text. Dashed lines are the
fit from Eq. 7.6 and legends are best-fit value of corresponding bI when fit up to kmax shown by gray
vertical line.

We show the value of bΓ as estimated from these three methods in Fig. 19 and find them to be
consistent with each other. Interestingly the size of bΓ does not seem to have much redshift dependence,
despite the strongly varying stellar background in the right panels. This is not too surprising given
our bΓ definition and could reflect the simplifying assumptions we have made. However, bΓ depends
strongly on the parameter p with larger values showing larger bias. This is expected on physical
grounds if we associate larger p with shallower HI profiles, since the shallower the profile the more HI
mass is affected by a change in the threshold density for ionization. The modulation of the HI with
Γ goes away as the power-law slope approaches 3, since the enclosed mass becomes log-divergent at
r → 0 in this case leading to an infinite amount of mass at arbitrarily high density (> ∆S).

To highlight how the HI clustering has changed in the presence of a UV background we measure
the ratio of cross-spectra of HI with matter in our fiducial and fluctuating background cases (in real
space). This is shown in Fig. 20 for three different redshifts.

To further quantify this effect, we can model the cross-spectra on large scales as:

PmδΓ
HI

=
(
bΓ1 + bI

arctan(kλ)

kλ

)
Pmm (7.6)

where bI is the combined bias to take into account bΓ and bL, which is the luminosity bias of the
sources of ionizing radiation. We again approximate bΓ1 to the fiducial value of b1 since we find that it
does not change the values measurably and improves the fit. Fig. 20 shows that this model provides a
good fit to our N-body results (solid vs. dashed lines) and gives the corresponding values of bI . Since
the scale dependent component in Eq. 7.6 becomes unity on large scales, bI measures the maximum
impact that the ionizing background can have on HI clustering over the fiducial case where this
clustering is assumed to be only dependent on the underlying matter field. Although we do not show
it here, we verified that the impact on the HI auto-spectrum on large scales is approximately twice
the size of the effect shown in Fig. 20, as expected since the auto-spectrum scales as b2 rather than
b. On small scales however, the auto-spectrum is noisier than the cross-spectrum, possibly due to
non-Poisson shot noise and one halo clustering. Further, in our model the signal modulation occurs
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in real space, so the multipole moments of the redshift-space power spectrum are affected differently.
While the monpole looks similar to the real-space spectrum, the impact on the quadrupole is closer
to a scale-independent suppression (at large scales).

Fig. 20 and eq. 7.6 illustrate that the impact of UV background fluctuations on the HI is pre-
dominantly on large scales. It is larger in the case that QSOs are the only source of UV radiation
at z = 6, since QSOs are rare and highly biased as compared to stellar contribution at that redshift,
while at z = 3.5, the stellar contribution seems to increase the bias slightly. Based on our simplified
model, UV background fluctuations will not be a major concern for RSD measurements, where most
of the signal to noise is located at high-k, where kλ � 1, and the angular structure gives additional
information. However on large scales a non-zero response to the UV background will likely affect con-
straints on primordial non-Gaussianities [80]. On the other hand the presence of foregrounds will limit
21-cm measurements to k > 0.01hMpc−1, and most of the constraining power will come from the
bispectrum rather than the power spectrum [2]. The relative sensitivity of the bispectrum and power
spectrum depends, in part, on how UV background fluctuations change the 21-cm bias on non-linear
scales. Based on these preliminary results we concur with the authors of ref. [80] that UV background
fluctuations need to be investigated more thoroughly, and we anticipate that our simulations may
prove valuable in building a more refined model.

8 Conclusions

Intensity mapping techniques have emerged as a promising tool to efficiently probe the dark matter
distribution at high redshifts, and a number of upcoming surveys plan to use the 21-cm emission signal
from neutral hydrogen to probe this largely unexplored territory. The major challenge in accurately
simulating 21-cm signal at these redshifts and on cosmological scales is simultaneously achieving high
enough mass resolution to properly resolve the 21-cm emission while simultaneously covering a large
enough volume to make precise statements about the clustering of the HI.

In this paper, we have introduced the HiddenValley simulations, a set of 102403 particle N-body
simulations of a 1 (h−1Gpc)3 volume motivated by intensity mapping science. We have focused on the
study of 21-cm fluctuations between redshifts 2 and 6 to demonstrate how the scales and resolution
of these simulation allow us to address several modeling issues with higher fidelity than before.

We used three different prescriptions from the literature to model the cosmological distribution
of neutral hydrogen (§4). Our first model is (sub)halo-based, where each halo contains some amount
of HI which is then distributed between central and satellites galaxies. The second assumes HI traces
the stellar mass of galaxies. The third is a simple halo-only model with constant parameters across the
redshift range, primarily as a contrast to the other two models. We find that all the three models are
able to match the abundance of neutral hydrogen at all redshifts of interest (Fig. 5). Despite having
very different mechanism for HI distribution, all three models predict that majority of HI occupies
halos in the mass range 1010 − 1011.5 h−1M� (Fig. 7).

For every model we also investigate the clustering in real and redshift-space at the 2-point level,
in both Fourier and configuration space. While the models broadly predict similar clustering, only the
first model (with redshift dependent parameters) has enough flexibility to match the observed DLA
bias at z = 2− 3 while the other models predict a sharper evolution of bias with redshift. In common
with earlier work we find the bias of HI increases from near 2 at z = 2 to 4 at z = 6, becoming more
scale dependent at high z (Fig. 9).

Though the contribution of satellites to the 21-cm signal is sub-dominant at all redshifts and in
all models, the prediction for its value differs very much between the three models. Despite this, none
of the models predict any significant from finger of god effects on the redshift space clustering for the
range of scales relevant for proposed 21-cm instruments (Fig. 14). Super-cluster infall on large scales
accounts for most of the redshift space distortions observed in 21-cm signal at high redshifts. This
is likely due to the low mass of the halos hosting the majority of the neutral hydrogen, which lack
satellites and have low velocity dispersion.

The scale of our simulations also allows us to extract the baryon acoustic oscillations in the 21-cm
clustering. Non-linear evolution damps the BAO signal and significantly reduces the signal-to-noise
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ratio at low redshifts. However since the evolution becomes increasingly linear at higher redshifts, we
find that the damping of BAO signal decreases and is negligible at z = 6 (Fig. 15). Moreover, the
damping along the line of sight due to redshift space distortions also decreases significantly by z = 6.
In addition, we estimate uncertainties assuming a “pessimistic” wedge and realistic thermal noise to
show that a HIRAX-like experiment is able to detect the BAO signal at z = 2 in power spectrum
wedges, and a Stage ii experiment can detect the same at z = 6 with high significance (Fig. 16).

As a preliminary step towards theoretical modeling of observed 21-cm clustering, we fit these
signals with ‘Zeldovich effective field theory’ (ZEFT [57]) which is a simple, tree-level, Lagrangian
perturbation theory model. We find that the model is simultaneously able to fit the matter auto-
spectra, HI-matter cross spectra and the HI auto-spectra in real space at these redshifts, thus capturing
the scale-dependence of the bias and the decorrelation with the matter field (Fig. 10). Though the
redshift space spectra are noisier in our simulations, the simple model is still able to fit both the
multipoles (Fig. 12) and the wedges (Fig. 13) within sample variance to beyond half knl. We expect
the performance can be improved using more sophisticated models, especially an improved treatment
of redshift-space distortions, but we leave a more complete exploration for future work.

Pushing beyond linear scales also allows one to constrain parameters such as the growth of
fluctuations, Eulerian bias and the brightness temperature. These parameters are degenerate in linear
theory but non-linear clustering breaks the degeneracy from the auto-spectrum of the 21-cm signal
only. Using our simulations, we show explicitly that the clustering in both real and redshift space
responds to these parameters differently on mildy non-linear and smaller scales (Fig. 17), lending
support to perturbative treatments which reach a similar conclusion [7].

Lastly, we also demonstrate the reach of our simulations by modeling the intensity bias that can
be caused by spatial fluctuations in the ultraviolet background that ionizes HI and hence modulates
the HI content of halos. We measure this bias in three different ways: peak-background-split based
regression, cross-spectra and auto-spectra and find them to be consistent with each other. In our
model the value of intensity bias depends on the profile of HI inside the halos, with shallower profiles
leading to increasing bias (Fig. 19). While intensity bias measures the response of HI clustering to
the UV background, we also explicitly see how the overall clustering of HI changes with respect to
the underlying matter field in the presence of such a background (Fig. 20). We find that the effect
is non-negligible for the largest response we consider. Given our preliminary results and simplifying
assumptions (such as constant mean free path for photons and lack of lightcone evolution) we believe
that UV background fluctuations need to be investigated more thoroughly in the future, with our
simulations providing an opportunity to do so.

The focus of this paper has been upon 21-cm cosmology, but we anticipate that the Hidden
Valley simulations will be useful for a wide variety of other science including other intensity mapping
probes [1], high-redshift galaxies and QSOs [59] and modeling the inter-galactic medium [87, 88]. To
facilitate these other investigations we will make the halo catalogs and the subsampled dark matter
particles publicly available at cyril.astro.berkeley.edu upon acceptance of this paper.
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A Code Development and Operational Notes

We employ the C/MPI implementation of FastPM [40] for the simulations. Several updates to the
software were developed and deployed during the prepare of the HiddenValley simulations, and we
summarize them in this section.

First, a Friends-of-Friends (FOF) halo finder [89] is added to FastPM for online data analysis,
to avoid the need to write the full particle catalog. The local halo finder uses the fof module from
kdcount, which is based on a disjoint-set algorithm [90]. The global merge algorithm is similar to the
one in Gadget2 [91]. In addition to halo mass, center of mass position and velocity, the halo finder also
computes the moments of inertia tensor, the velocity dispersion tensor, and the angular momentum
tensor. In addition to the on-the-fly halo finder, a new command-line interface, fastpm-fof is added.
The command-line interface post-processes an existing particle catalog to produce a FOF catalog of
a new linking length.

Secondly, we identified a slow down in FastPM initial condition code that become severe in
the HV10240 runs. FastPM uses a resolution invariant Gaussian random generator scheme, that
is identical to Gadget / N-GenIC. The scheme always samples in the z-direction contiguously from
a random number sequence. In previous FastPM, the z direction of the initial Gaussian field is
distributed to multiple MPI ranks, causing ranks to perform redundant sample draws (in order to
preserve the exact sequence). In this update we switched to a decomposition where the z-direction of
the initial Gaussian field is contiguously stored with in a single MPI rank. We expect a reduction of
factor 256 of wallclock time on relevant sections of the HV10240 run due to this update. The exact
improvement was not measured because the runs with the previous initial conditions module were
killed after they were stuck in the module for more than 10 minutes. The updated version spent only
107 seconds in the initial condition module.

Thirdly, the sorting module, mpsort, and IO module, bigfile [92, 93], were modified to simplify
the communication pattern in large scale runs. The update introduces a gather stage before the
communication to reduce the number of MPI ranks that actually participates to the global all-to-all
communication. The simplified communication pattern improved the reliability of runs via reducing
the number of MPI messages posted to the communication network.

Finally, we made extensive use of the Data Warp Burst Buffer device on Cori, which provides
very high IO bandwidth and IO operation throughput. We find a huge speed up (more than a factor
of 10) switching from the scratch space (lustre file system) to burst buffer. The speed up increased
the fraction of communication overhead of the IO module, and motivated our change to bigfile that
added the new gather stage. The updated version of bigfile further reduced the IO time by a factor
of 10. With the new software, IO took a small 7% of the total wall-clock time of HV10240 runs. Since
the IO / Computation ratio of FastPM is already higher than typical full N-body simulations and
hydro-dynamical simulations, this finding suggests that on-the-fly compressed IO will not meaningfully
reduce the wall clock time for N-body simulations on systems equipped with similar fast on-line IO
devices. We also note that the bandwidth utilization is only a small fraction of the peak of the burst
buffer, and further improvements are still possible.

The HV10240 runs were performed on the Cori computer at NERSC with 8192 KNL computing
nodes and 524,288 MPI ranks. Utilizing 90% of the full Cori KNL partition, and operating with half
a million MPI ranks, requires special tweaks to the CrayMPI run-time environment. We explored
several and summarize our findings here:

1. enabling huge pages of size 2 MB reduces the run time by 10% comparing to not using huge
pages.

2. increasing the all-reduce block size to 8 MB significantly improved the speed of the global
reduction operation. (MPICH ALLREDUCE BLK SIZE)

3. increasing the number of Cray GNI message boxes to the number of MPI ranks negatively
affected the reliability of the runs due to an exhaustion of 2 MB huge pages used for the
message boxes. This is in contrast to our experience with BlueTides-II (81,000 ranks on NCSA
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Figure 21: The fraction of time in each component of the application for the HV2560 and HV10240
simulations. The HV2560 simulation was run on 128 nodes with 8,192 MPI ranks. The HV10240
simulation was run on 8192 nodes with 524,288 MPI ranks.

BlueWaters), where the simulation could only proceed with the parameter set to the number of
MPI ranks. ( MPICH GNI MBOXES PER BLOCK)

4. allowing GNI to fall back to regular page sizes improved the reliability of the runs.
(MPICH GNI MALLOC FALLBACK)

In Figure 21, we show the wall clock time in different components of the HV2560 (128 nodes)
and HV10240 runs (8192 nodes). Both simulations have the same load per MPI rank, and we see
that the LOCAL operations took the same amount of computing time. We also see that operations
that use network communication are penalized in the larger (HV10240) run compared to the smaller
(HV2560) run:

• Fourier transform in the Poisson solver (FFT), 3×;

• decomposition and ghost particles (DOMAIN), 2×;

• sorting snapshots (SORT) and writing snapshots (IO), 10×;

• initial condition generator (IC), 5×.

The penalty in the FFT is expected as network communication becomes limited by the bandwidth
of nodes further away in the topology. The IC penalty is more severe than the FFT penalty; we
believe this is because the IC module samples the full x− y plane for random seeds, which is 16 times
larger in HV10240 than in HV2560. There is a penalty in DOMAIN, because the 2-D pencil beams
become narrower in HV10240, increasing the surface to volume ratio. The penalty in SORT and IO
are more severe than for the FFT, suggesting there is still space for further optimization in future
work. However, we note that any gains in SORT and IO will only bring marginal improvement to the
run time, as each currently uses less than 10% of the total wall clock time.

B Satellite model

We allow some of the HI in our halos to be hosted by satellites, in addition to centrals. As there is
no observational data set with which to constrain the manner in which HI traces mass in satellite

– 29 –



galaxies as a function of host halo mass and redshift, we shall opt for a simple model. Our simulation
does not resolve halo substructure directly, so we add satellites in post-processing. We assume that
the number of satellites is self-similar with [94–96]

Nsat(> Msat) =

(
M1

Msat

)0.8

with 0.1Mcut < Msat < 0.1Mh (B.1)

where M1 = 0.03Mh corresponds roughly to the mass of the heaviest subhalo [95]. The slope of
the HI-hosting subhalo mass function is not well known, but we have assumed it to be 0.8, slightly
shallower than that of all satellites which is ∼ 0.9 [95]. The lower mass limit of 0.1Mcut is purely for
convenience as lower mass subhalos are essentially free of HI. Since the rate of HI mass loss within
subhalos is not well constrained, we opt to use an instantaneous assigned subhalo mass rather than
attempting to correct for differential matter-HI mass loss.

Eq. B.1 implies that the total number of subhalos more massive than 0.1Mcut is (M1/0.1Mcut)
0.8

.
We take this number of to be fixed and introduce stochasticity by randomly assigning masses to these
satellites following Eq. B.1. Each satellite is distributed within the halo following an NFW [97] profile
with a concentration of 7 and given an additional line-of-sight velocity drawn from a Gaussian whose
width equals the halo velocity disperion, σh. We use two velocity dispersions, one corresponding
to matter (from [98]) and one with σh reduced by two-thirds. The latter is motivated by Table 4
of [10] who find that the dispersion of HI is lower than that of matter. The details of the spatial
distribution of subhalos significantly affects the clustering only on scales smaller than are of interest
for proposed interferometric 21-cm experiments. The line-of-sight velocity affects the redshift-space
power spectrum, leading to an additional damping of power at high k‖.

C UV Background and ionization model

In this appendix, we discuss the way we generate the ionizing UV background, as well as details of
MHR model for photo-ionization.

C.1 Generating ionizing background

To generate the UV ionization background field, we follow ref. [84] to populate our galaxies with black
holes and convert the black hole mass to QSO luminosity. Then we propagate these photons assuming
a fixed mean free path λ912

mfp (i.e. neglecting any density-dependence of λ912
mfp). We use the relation in

ref. [99] for the (comoving) mean free path at redshifts 2.3 < z < 5.5, who provide a power law fit:

λ912
mfp = 150h−1Mpc

[
1 + z

5

]−4.4

(comoving). (C.1)

For simplicity, we assume that the same relation holds at z = 6. Since the mean free path is larger
than our box size at z ≤ 3 we focus our attention on higher redshifts.

To model the QSO sources of UV photons we assign our mock galaxies a black hole mass [84]

MBH

1010M�
= 10α

( Mgal

1010M�

)β
(C.2)

with (α, β) = (−3.5, 1), (−4, 0.75), (−3.7, 0.8), (−3.6, 0.8) and (−3.65, 0.7) at z = 6, 5, 4.5, 4 and 3.5
respectively. We adopt an Mgal-independent scatter in this relation of 0.3 dex. We assume a fraction,
fon = 0.01, of the black holes are radiating as QSOs with

LQ = 3.3 × 104L� η
MBH

1010M�
(C.3)

and sample the Eddington ratio, η ≡ L/LEdd, from a log-normal distribution with redshift in-
dependent mean η0 = 0.1 and dispersion 0.1 dex. We convert LQ to magnitudes via M1450 =
72.79− 2.5 log10 LQ.

– 30 –



In figure 18, we show that the QSO luminosity function matches recent measurements where
there is overlap, though our simulation volume is small and observations do not probe faint QSOs.
With the QSOs in hand, the UV background is generated from the QSO luminosity field ρL in our
simulation as

ρΓ(x) =

∫
d3r

ρL(x + r)e−r/λ

r2
⇒ ρΓ(k) = ρL(k)

arctan(kλ)

kλ
(C.4)

Since we do not attempt to model small-scale radiative transfer within halos or other small-scale
effects, we additionally smooth the UV background by 1h−1Mpc to tame the r−2 divergence above.

The contribution from the stellar background follows a similar approach, except we assume a
constant stellar-mass-to-light ratio so LQ above is replaced by M? as estimated from fit of ref. [51].
This is added to ρΓ with amplitude 〈ρΓ〉 times the ratio of the contribution from star forming galaxies
to that of QSOs. From figure 1 of ref. [85] we take this ratio to be 1, 2, 4, 7, 10 and 100 at redshift
z = 3, 3.5, 4, 4.5, 5 and 6 respectively.

C.2 MHR model

Given a UV background we modulate the HI content of every galaxy as a power-law in Γ at its location.
While this model can be taken as phenomenological, it can also be motivated by the MHR model
[80, 81, 100]. To see this assume that there is a critical density, ∆S , above which HI is self-shielded.
Further assume that this critical density is set by the by the photo-ionization rate with the relation

Γ ∝ ∆
(7−γ)/3
S ∝ ∆−κS (C.5)

where γ is the power-law index of the volume weighted gas density distribution P (∆) for ∆� 1 and
we define κ = (7 − γ)/3 for convenience. If the density profile of HI inside the galaxies is assumed
to be a power-law with index α (ρ ∝ r−α) then α = 3/(γ − 1). The mass of HI inside a galaxy is

MHI ∝ R3−α
∆S

where R∆S
∝ ∆

−1/α
S is the radius corresponding to the critical self-shielding density.

Combining these equations, we find that there is a power-law relation between the mass of HI inside
galaxies and the ionizing background:

MHI ∝ Γp with p =
3− α
ακ

(C.6)

To estimate a plausible range for p, consider α varying from 2, corresponding to the isothermal case,
through 2.9, which is roughly the slope of HI profile in the halos as found by ref. [10]. This gives
0.02 < p < 1/3. We assume that in the case of a uniform mean background, Γ0, there is a fiducial
mass of HI, MHI,0, that will be hosted inside each galaxy (which we take to be the HI mass assigned
to the galaxies in our Model A). We then modulate this mass as a power of the local Γ as in Eq. 7.1.
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