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NO INFINITE SPIN FOR PLANAR TOTAL COLLISION

RICHARD MOECKEL AND RICHARD MONTGOMERY

1. Introduction

Consider the planar n body problem with masses mi > 0, positions qi ∈ R2

and let q = (q1, . . . , qn) ∈ R2n. The motion is governed by Newton’s equations of
motion

miq̈i = ∇iU(q)

where

(1.1) U(q) =
∑
i<j

mimj

rij
rij = |qi − qj |

and ∇i is the partial gradient with respect to qi. The translation symmetry of
the problem implies that we may assume without loss of generality that the total
momentum is zero and that the center of mass is fixed at the origin, that is

(1.2) m1q1 + . . .+mnqn = 0 m1v1 + . . .+mnvn = 0.

A solution q(t) has a total collision at time T if all of the positions qi(t) converge
to the same point as t→ T . This collision point must be the center of mass so we
have q(t)→ 0 ∈ R2n. Let

I(q) =
∑
i

mi|qi|2

be the moment of inertia with respect to the origin. We can think of I(q) as
the square of a mass norm on R2n and write I(q) = ‖q‖2. Then the quantity

r(q) =
√
I(q) = ‖q‖ is a convenient measure of the distance to collision. The

unit vector q̂ = q/‖q‖ is the corresponding normalized configuration. Taking into
account the center of mass condition, the normalized configurations form a sphere
S ' S2n−3.

A classical result of Chazy [4] about total collision solutions asserts that their
normalized configuration curve q̂(t) converges to the set of normalized central con-
figurations as t→ T , the total collision time.

Definition 1.1. A point q ∈ R2n is a central configuration or CC if

(1.3) ∇iU(q) + λmiqi = 0

for some constant λ > 0.
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This means that the gravitational acceleration on the i-th body is −λqi which points
toward the origin and is proportional to the distance to the origin. If we release the
masses at a central configuration q0 with initial zero velocity we obtain a simple
example of a total collision solution of the form q(t) = f(t)q0 where f(t) > 0 is
a scalar function with f(t) → 0 as t → T . There are many other less obvious
examples of total collision but always the limit points of q̂ are CCs.

A normalized CC is just a CC with I(q) = ‖q‖ = 1, that is, q ∈ S. If we think
of λ as a Lagrange multiplier, then (1.3) can be viewed as the equation for critical
points of the Newtonian potential U(q) restricted to the unit sphere S. The problem
of infinite spin arises due to the rotational symmetry of the n-body problem. Any
configuration q = (q1, . . . , qn) 6= 0 determines a circle of symmetrical configurations
R(θ)q = (R(θ)q1, . . . , R(θ)qn) where R(θ) ∈ SO(2) is a 2× 2 rotation matrix. If q
is a CC, then so is every one of its rotates R(θ)q ∈ SO(2)q. In other words, there
are circles of critical points for U(q) on S. Now pass to the (2n − 4)-dimensional
quotient manifold S/SO(2) which is diffeomorphic to the complex projective space
CP(n− 2). Write the quotient map S → CP(n− 2) as q 7→ [q]. Write [q] 7→ U([q])
for the function on CP(n− 2) induced by U .

A famous conjecture about CCs is that there are only finitely many of them
up to symmetry, or equivalently, that U([q]) has only finitely many critical points.
Smale mentioned mentioned this as problem 6 in his list of problems for the 21st
century [22]. It’s classical that finiteness holds for n = 3. More recent work shows
that it also holds for n = 4 and for generic masses when n = 5 [10, 2]. Whether or
not the conjecture holds, we call q an isolated CC if [q] is an isolated critical point
of U([q]) and a nondegenerate CC if it is a nondegenerate critical point of U([q]).
(Nondegenerate CCs are necessarily isolated CCs.)

If q(t) is a total collision solution we can form the curves q̂(t) ∈ S and [q̂(t)] ∈
S/SO(2). It follows from Chazy’s result that [q̂(t)] converges to a compact subset
of the set of critical points of U([q]) as t→ T . If the limit set of [q̂(t)] contains an
isolated critical point [q0] then it must be that [q̂(t)] → [q0] as t → T . It follows
that q̂(t) ∈ S converges to the corresponding circle of normalized critical points in
S and it is natural to wonder if q̂(t) converges to a particular CC or to a nontrivial
subset of the circle. For example it’s easy to imagine that by undergoing infinite
spin it might converge to the whole circle. The main goal of this paper is to show
this can’t happen.

Theorem 1.2. Suppose q(t) is a solution of the planar n-body with q(t) → 0
as t → T and suppose its reduced and normalized configuration [q̂(t)] ∈ S/SO(2)
converges to an isolated CC. If θ(t) is an angular variable on the corresponding circle
of CCs in S, then θ(t) converges as t→ T and so q̂(t) converges to a particular CC
in the circle.

This theorem was proved by Chazy under the assumption that the limiting CC
is nondegenerate [4] so the problem is really to handle degenerate cases. Wint-
ner mentions this as an open problem and it appears as problem 5 in a list of
open problems in celestial mechanics [1]. Here we are solving the planar case
with an isolated limiting CC. While all of the central configurations of the three-
body problem are nondegenerate, degenerate examples can be found for higher n
[18, 14, 27]. A simple example discovered by Palmore consists of three bodies of
mass 1 in an equilateral triangle and a fourth body with mass m at the center.

When m = 81+64
√

3
249 ' 0.77048695, the central configuration is degenerate.
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Theorem 1.2 will follow from another result about solutions in a blown-up and
rotation-reduced phase space. The modern approach to studying total collision uses
McGehee’s blow-up technique which involves introducing the size coordinate r and
a set of coordinates on the unit sphere S as well as suitable velocity variables and a
new timescale τ [12, 13, 5]. In these coordinates {r = 0} becomes an invariant total
collision manifold. There are restpoints in the collision manifold associate to the
normalized CCs. Orbits which previously experienced total collision as t↗ T now
converge to a compact subset of the set of restpoints in the collision manifold as
τ → +∞. In the next section, we will introduce such coordinates together with an
angular coordinate θ and reduced coordinates corresponding to the quotient space
S/SO(2). In the end we obtain a blown-up and rotation reduced problem together
with an integral formula for the angle θ. Then we will show

Theorem 1.3. For the blown-up and rotation reduced problem, total collision solu-
tions which converge to isolated CCs have finite arclength with respect to a natural
Riemannian metric.

This will imply Theorem 1.2 since the finite arclength implies that the integral
giving the change in θ as τ →∞ is finite. The proof using an arclength argument
is modeled on  Lojasiewicz’s arguments for analytic gradient flows [11]. He shows
that if a critical point is an ω limit point of an orbit of such a flow, then the orbit
must converge to that critical point. The arclength of the orbit is shown to be finite
and this implies that the limit set is a single point. He did not need to assume that
the critical point was isolated. Our proof is based on showing that flow on the
center manifold of the limiting CC is approximately a gradient. Even though the
center manifold may not be analytic, a  Lojasiewicz type argument can be made
to work. While  Lojasiewicz worked with a flow which was globally a gradient our
local approach, based on the local center manifold theorem, does not seem to allow
an extension to the case of a nonisolated CC (if such points exist) due to possible
excursions out and then back in to the local center manifold neighborhood.

Several previous works have claimed to solve this problem by estimating the
rotational component of the velocity. But this does not take into account the
“falling cat” phenomenon where rotation is produced by changes in shape even
though the rotational component of the velocity is zero. We have included an
Appendix which contains a fuller discussion of this issue. Our approach is based on
combining a study of the flow on the center manifold of a degenerate restpoint with
an integral formula for the change in angle. A recent preprint based on power series
expansions for the flow on the center manifolds claims to solve the spin problem
for one-dimensional and some two-dimensional center manifolds [24].

2. Reduced Planar n-Body Problem and the Spin Angle

Assume that the center of mass is at the origin and the total momentum is zero.
We can parametrize the (2n − 2)-dimensional center of mass subspace, W, by a
linear map q = Pz, P : R2n−2 → W ⊂ R2n where z = (z1, . . . , zn−1) ∈ R2n−2,
zi ∈ R2. For example, we could use relative positions zi = qi − qn with respect to
the n-th body or generalized Jacobi variables.

No matter how these coordinates are chosen, the mutual distances will be ex-
pressible in terms of z and (1.1) determines an analytic function U(z) on R2n−2 \∆
where ∆ = {z : rij = 0 for some i 6= j}. −U(z) is the Newtonian potential energy
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function. The moment of inertia and squared mass norm I(q) =
∑
imi|qi|2 will

become

I(z) = ‖z‖2 = zTMz

where M is the (2n− 2)× (2n− 2) positive-definite symmetric matrix

M = PT diag(m1,m1, . . . ,mn,mn)P.

Let ζ = ż be the corresponding velocity variables. Then since q̇ = Pζ the kinetic
energy K = 1

2

∑
imi|q̇i|2 becomes

K(ζ) =
1

2
‖ζ‖2 =

1

2
ζTMζ

Then the translation-reduced problem can be viewed as a Lagrangian system on
the tangent bundle T (R2n−2 \∆) with Lagrangian L = K(ζ) + U(z). The Euler-
Lagrange equations are

ż = ζ

ζ̇ = M−1∇U(z)

and the total energy of the system is

K(ζ)− U(z) =
1

2
‖ζ‖2 − U(z) = h.

Next we will introduce new coordinates which represent the size, rotation angle
and shape of the configuration. To describe these, it’s convenient to view the
positions and velocities as complex numbers, so we have z, ζ ∈ Cn−1. We will
introduce a Hermitian mass metric on Cn−1

〈〈v, w〉〉C = vTMw v,w ∈ Cn−1 ' R2n−2

where v is the complex conjugate of v. The real part 〈〈v, w〉〉 = re〈〈v, w〉〉C will be
called the mass inner product. The corresponding norm is just our mass norm ‖v‖.
The imaginary part im〈〈v, w〉〉C, a nondegenerate antisymmetric bilinear form, will
also be useful below.

Let r = ‖z‖ and define the normalized configuration ẑ = z/r ∈ S2n−3. Then we
will have

(2.1) ‖ẑ‖ = 1 〈〈ẑ, ζ̂〉〉 = 0

where ζ̂ = ˙̂z. To introduce an explicit rotation angle, restrict to the open subset
of S2n−3 where ẑn−1 6= 0 and introduce polar coordinates such that ẑn−1 = keiθ

where k > 0. Note that the angle is chosen so that θ = 0 represents a state with
zn−1 in the positive real axis. This represents a choice of a local section for the
rotation group action. Different choices for the angular variable would differ only
by a constant shifts on each rotation group orbit and would not affect the question
of convergence.

Define new variables si = zi/zn−1 = ẑi/ẑn−1. Then

ẑ = keiθ(s1, . . . , sn−1, 1) = keiθ(s, 1) s ∈ Cn−2.

Since ‖ẑ‖ = 1 we have k = ‖(s, 1)‖−1 and our coordinate change is given by
ψ : R+ × S1 × Cn−2 → Cn−1

(2.2) z = ψ(r, θ, s) = r eiθ
(s, 1)

‖(s, 1)‖
.
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Differentiating, we compute that

(2.3) ż = (ṙ + k̇k−1r + iθ̇r)eiθk(s, 1) + reiθk(ṡ, 0)

where we continue to use k = ‖(s, 1)‖−1 from which the chain rule yields

k̇ = − G(s, ṡ)

‖(s, 1)‖3
, and G(s, ṡ) = 〈〈(s, 1), (ṡ, 0)〉〉.

Introduce velocity variables ζ = ż, ρ = ṙ, ω = ṡ. Also introduce

Ω(s, ω) = im〈〈(s, 1), (ω, 0)〉〉C
and write ‖ω‖ instead of ‖(ω, 0)‖. Then simplifying we get the Lagrangian to be

L =
1

2
ρ2 +

1

2
r2θ̇2 +

r2‖ω‖2

2‖(s, 1)‖2
− r2G(s, ω)2

2‖(s, 1)‖4
+
r2θ̇Ω(s, ω)

‖(s, 1)‖2
+

1

r
V (s)

where

V (s) = ‖(s, 1)‖U(s, 1).

The first five terms of the Lagrangian L are just the kinetic energy 1
2‖ζ‖

2 rewritten
in terms of our new variables. The formula relating V and U follows from the
rotation invariance and homogeneity of the potential:

U(z) = U

(
reiθ(s, 1)

‖(s, 1)‖

)
=
‖(s, 1)‖

r
U(s, 1)

The last step of the reduction uses that the Lagrangian is independent of θ to
eliminate (θ, θ̇). First compute the angular momentum and solve for θ̇:

(2.4) µ = Lθ̇ = r2θ̇ +
r2Ω(s, ω)

‖(s, 1)‖2
θ̇ =

µ

r2
− Ω(s, ω)

‖(s, 1)‖2
.

Then the reduced Lagrangian or Routhian is Rµ = L−µθ̇ where θ̇ is to be eliminated
in terms of µ. Carrying out this computation gives

Rµ =
1

2
ρ2 +

r2‖ω‖2

2‖(s, 1)‖2
− r2G(s, ω)2

2‖(s, 1)‖4
− 1

2

(
rΩ(s, ω)

‖(s, 1)‖2
− µ

r

)2

+
1

r
V (s).

A classical result shows that total collision is possible only when µ = 0 and from
now on we will concentrate on this case [23, 26]. Then the Routhian becomes

R(r, ρ, s, ω) =
1

2
ρ2 +

r2

2
‖ω‖2FS +

1

r
V (s)

where

(2.5)

‖ω‖2FS =
‖(s, 1)‖2‖(ω, 0)‖2 − |〈〈(s, 1), (ω, 0)〉〉C|2

(‖(s, 1)‖2)2

=
‖ω‖2

‖(s, 1)‖2
− G(s, ω)2 + Ω(s, ω)2

(‖(s, 1)‖2)2
.

We will also use the notation F (s, ω) = ‖ω‖2FS . It is the local coordinate repre-
sentation of the square of the Fubini-Study norm on the complex projective space
CP(n − 2) induced by the mass norm on Cn−1. There is also a corresponding
Fubini-Study metric.

Since we are using local coordinates we have a Lagrangian system on the tangent
bundle of R+×Cn−2 \∆ or R+×R2n−4 \∆. Reverting to real coordinates, we can
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write the Fubini-Study norm as F (s, ω) = ωTA(s)ω where A(s) is a positive-definite
(2n− 4)× (2n− 4) matrix. Then we have

(2.6)

ṙ = ρ

ρ̇ = rF (s, w)− 1

r2
V (s)

ṡ = ω

ω̇ =
1

r3
A−1(s)∇V (s)− 2ρω

r
+

1

2
A−1(s)∇F (s, ω)−A−1(s)Ȧ(s)ω

where ∇ denotes the Euclidean gradient or partial gradient with respect to s. The
total energy of the system is

1

2
ρ2 +

r2

2
F (s, ω)− 1

r
V (s) = h.

The last equation in (2.6) follows from the Euler-Lagrange equation (Rω)· = Rs.
We have Rω = r2A(s)ω so

(Rω)· = r2A(s)ω̇ + r2Ȧ(s)ω + 2rρ (A(s)ω).

The equation for ω̇ can be written more concisely if we make use of gradients and
covariant derivatives with respect to the Fubini-Study metric. Let ∇̃ = A−1(s)∇
denote the gradient or partial gradient with respect to the Fubini-Study metric and
let D̃t denote the covariant time derivative of a vectorfield along a curve s(t). Then
we have

D̃tω = ω̇ − 1

2
A−1(s)∇F (s, ω) +A−1(s)Ȧ(s)ω

= ω̇ − 1

2
∇̃F (s, ω) +A−1(s)(DA(s)(ω))ω

and the last Euler-Lagrange equation simplifies to

(2.7) D̃tω =
1

r3
∇̃V (s)− 2ρω

r
.

Even though we eliminated the angle θ, we want to study its behavior for solu-
tions approaching the total collision singularity. Although the angular momentum
is zero, θ(t) need not be constant. In fact we have

(2.8) θ̇ = − Ω(s, ω)

‖(s, 1)‖2
.

It’s conceivable that as the shape s(t) changes, the integral of θ̇(t) could diverge
producing “infinite spin’ (see the Appendix for a fuller explanation). We will show
that this does not happen.

3. Collision Manifold and Center Manifold

To study orbits converging to total collision we will use McGehee’s blowup
method. Namely, introduce rescaled velocity variables v =

√
rρ, w = r

3
2ω and
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a new time variable τ such that ′ = r
3
2 ·. The blown-up differential equations are

(3.1)

r′ = vr

v′ =
1

2
v2 + F (s, w)− V (s)

s′ = w

D̃τw = ∇̃V (s)− 1

2
vw

where

D̃τw = w′ − 1

2
∇̃F (s, w) +A−1(s)(DA(s)(w))w.

The energy equation is

1

2
v2 +

1

2
F (s, w)− V (s) = rh.

The collision manifold {r = 0} is invariant. The equilibrium points are of the

form P = (r, v, s, w) = (0, v0, s0, 0) where v2
0 = 2V (s0) and ∇̃V (s0) = 0. The

last equation, which is equivalent to ∇V (s) = 0, characterizes the reduced central
configurations. If q(t) is a total collision solution with t↗ T then the corresponding
solution γ(τ) = (r(τ), v(τ), s(τ), w(τ)) converges to a compact subset of the set of

equilibrium points in the level set v = v0 = −
√

2V (s0) < 0. Since r′ = vr and
v(τ)→ v0, it follows that r(τ) converges to 0 exponentially.

Suppose P is an isolated equilibrium point with v0 < 0 which is one of the limit
points of such a total collision solution, γ(τ). Since P is isolated we have γ(τ)→ P
as τ →∞. We want to show that the Fubini-Study arclength L(s) is finite, where

(3.2) L(s) =

∫
‖s′(τ)‖FS dτ =

∫
‖w(τ)‖FS dτ.

The linearized differential equations at P have matrix
δr′

δv′

δs′

δw′

 =


v0 0 0 0
0 v0 0 0
0 0 0 I

0 0 D∇̃V (s0) − 1
2v0I



δr
δv
δs
δw

 .
Since∇V (s) = 0, it follows that thatD∇̃V (s0) = D(A−1(s)∇V (s)) = A−1(s)D∇V (s).

The tangent space to the energy manifold is given by v0δv = hδr so the upper
left 2 × 2 block gives rise to a single eigenvalues v0 < 0. This corresponds to the
exponential convergence of r(τ) to 0. Let B be the lower right (4n− 8)× (4n− 8)
block, representing the linearized differential equations within the collision mani-
fold. If δs satisfies D∇̃V (σ0)δs = c δs then (δs, δw) = (δs, λ±δs) is an eigenvector
of B with eigenvalue

λ± =
−v0 ±

√
v2

0 + 16c

4
.

Since v0 < 0, it follows that any nonreal eigenvalues are unstable. Also reλ+ > 0
and we have λ− = 0 if and only if c = 0.

If the matrix D∇V (s0) is nonsingular, then the corresponding restpoint P is
hyperbolic and therefore isolated. Any solutions approaching P as τ → ∞ are in
the stable manifold and converge exponentially fast. From this, it follows that the
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integrand of the arclength integral (3.2) converges to 0 exponentially and therefore
L(s) <∞. Since the angular momentum is zero, the spin angle θ(τ) satisfies

(3.3) θ′ = − Ω(s, w)

‖(s, 1)‖2
.

This admits an estimate of the form |θ′| ≤ K‖w‖FS so θ(τ) also converges to a limit
as τ →∞. This proves Theorems 1.2 and 1.3 when the omega limit set contains a
nondegenerate CC.

Suppose now that there is a degenerate CC with corresponding restpoint P in
the limit set. By choice of local coordinates, it’s possible to assume that s0 =
0 ∈ R2n−4. This is equivalent to choosing the unreduced coordinates z ∈ Cn
so that the coordinates of the chosen central configuration are of the form z0 =
(0, . . . , 0, zn), which is easily arranged by a change of complex basis. We will need
to use the center manifold and center-stable foliation for which we refer to [3, 8,
25]. Modify the differential equations by introducing a cutoff function so that the
new differential equations are linear outside of some neighborhood of the origin.
The modified equations have invariant center-stable, center-unstable and center
manifolds, tangent to the corresponding subspaces. These are unique but depend
on the choice of cutoff function. However, the solutions of interest will be contained
in the center-stable manifold no matter how the cutoff is done. Furthermore, the
center-stable manifold W cs is foliated over the center manifold W c so that solutions
in W cs approach the corresponding solution in W c exponentially.

The rest of the proof will focus on estimating the arclength of solutions γ(τ)
which start close to P and lie in the center manifold W c(P ). Later it will be
straightforward to handle solutions in the center-stable manifold. One technical
problem is that center manifolds may only have finite smoothness even though the
original differential equations are real analytic.

4. Flow on the Center Manifold

From the discussion of eigenvalues above, the center subspace is

Ec = {(δr, δv, δs, δw) = (0, 0, δs, 0) : D∇V (s0)δs = 0}.

Let K ⊂ R2n−4 be the kernel of D∇V (0). Suppose it has dimension k > 0 and
suppose the s-coordinates are chosen so that K = Rk×{0}. Then write s = (x, y) ∈
Rk × Rl, l = 2n − 4 − k and similarly split w as w = (ξ, η). The center manifold
will take the form of a graph

(4.1) y = f(x) ξ = φ(x) η = ψ(x)

where f(0) = 0, Df(0) = 0 and similarly for φ, ψ. Since the collision manifold and
energy manifolds are invariant we can assume that our center manifold also satisfies

r = 0 v(x) = −
√

2V (s(x))− ‖w(x)‖2.

Since the center manifold is invariant, the parametrization (4.1) can be used to
pull-back the restriction of the blown-up Euler-Lagrange equations (3.1) to get a
first-order differential equation on some neighborhood U of the origin in Rk. If x(τ)
is a solution of this pull-back equation then

s(τ) = (x(τ), f(x(τ))) w(τ) = (φ(x(τ)), ψ(x(τ)))
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is a solution of (3.1). It follows that

x′ = ξ = φ(x) y′ = η = ψ(x) = Df(x)φ(x).

These are to hold along every solution curve x(τ) but since there is a solution curve
through every point x ∈ U , they can be regarded as functional equations satisfied
by f, φ, ψ. In particular, our pull-back differential equation is just x′ = φ(x).

If we introduce the notation g(x) = (x, f(x)) the functional equation for ψ shows
that the parametrization of the center manifold (4.1) can be written

s = g(x) w = (φ(x), ψ(x)) = Dg(x)φ(x).

Let x(τ) be any solution of the pull-back differential x′ = φ(x) and let w(τ) =
Dg(x)φ(x)|x=x(τ). Then the chain rule gives

w′(τ) = Dg(x)Dφ(x)φ(x) +D(Dg(x))(φ(x))φ(x)

where x = x(τ) and the covariant derivative in (3.1) takes the form

D̃τw(τ) = w′(τ)− 1

2
∇̃F (g(x), w(x)) +A−1(g(x))(DA(g(x))(w(x)))w(x)

where w(x) = Dg(x)φ(x) and x = x(τ). Substituting all this into (3.1) gives an
estimate which will be needed later.

Lemma 4.1. In a sufficiently small neighborhood U of the origin in Rk, there are
positive constants k1, k2 such that

(4.2) k1|φ(x)| ≤ |∇̃V (g(x))| ≤ k2|φ(x)|.

Proof. Let x(τ) be any solution of x′ = φ(x) and w(τ) = Dg(x)φ(x). Then (3.1)
gives

(4.3) D̃τw = ∇̃V (g(x))− 1

2
v(x)Dg(x)φ(x)

where v(x) = −
√

2V (g(x))− ‖Dg(x)φ(x))‖2 and x = x(τ). The equations for
w′(τ) and Dτw(τ) above give a formula for the left-hand side of (4.3) in terms of
g(x(τ)) and φ(x(τ)). Since there is a solution x(τ) through any given x ∈ U we can
obtain a functional equation in x. Note that most of the terms on the left-hand side
depend quadratically on φ(x) with one exceptional term depending on Dφ(x)φ(x).
Recall that φ(0) = 0 and Dφ(0) = 0 and observe that the matrix norm |Dg(x)| is
bounded. It follows that given any constant c > 0 we have an estimate of the form
|D̃τw| ≤ c|φ(x)| in every sufficiently small neighborhood of the origin.

Since v(x) ' −
√

2V (0) < 0, the last term in (4.3) will satisfy c1|φ(x)| ≤
| 12v(x)Dg(x)φ(x)| ≤ c2|φ(x)| for some positive constants c1, c2. Then we have

(c1 − c)|φ(x)| ≤ |∇̃V (g(x))| ≤ (c2 + c)|φ(x)|.

Working in a sufficiently small neighborhood we can get c < c1 to complete the
proof. �

The functional equation (4.3) involves the Fubini-Study gradient ∇̃V (s) in R2n−4,
evaluated at s = g(x). The next step is to reformulate this equation in terms of a k-
dimensional gradient of the function W (x) = V (g(x)). Let X denote the projection
of the center manifold to configuration space. The function s = g(x) = (x, f(x)) is
an immersion which parametrizes X so we can use g to pull-back the Fubini-Study
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metric to a Riemannian metric on X. Denote the squared norm of this metric by
‖ξ‖2X = F̂ (x, ξ) where x, ξ ∈ Rk. Then

‖ξ‖2X = F̂ (x, ξ) = F (g(s), Dg(x)ξ) = ‖Dg(x)ξ‖2FS
where F (s, w) is the squared Fubini-Study norm (2.5). Explicitly, we have F̂ (x, ξ) =
ξTB(x)ξ where B(x) is the k × k matrix

Â(x) = Dg(x)TA(g(x))Dg(x) Dg(x) =

[
I

Df(x)

]
and A(s) is the matrix for the Fubini-Study metric.

The pull-back metric will determine a covariant derivative which we will denote
by D̂. Now let x(τ) be curve in X and ξ(τ) a vectorfield along x(τ). There
will be a corresponding curve and vectorfield in R2n−4 given by s(τ) = g(x(τ)),
w(τ) = Dg(x(τ))ξ(τ). Since g is an isometric immersion, it can be shown that the

covariant derivatives D̂τξ in X and D̃τw in R2n−4 are related by

π(τ)D̃τw(τ) = Dg(x(τ))D̂τξ(τ)

where π(τ) is the orthogonal projection from Ts(τ)R2n−4 → im(Dg(x(τ)) with
respect to the Fubini-Study metric. We can also pull-back the potential function
V (s) to the function W (x) = V (g(x)). If ∇̂ denotes the gradient with respect to
the pull-back metric on X, we have

π(τ)∇̃V (s(τ)) = Dg(x(τ))∇̂W (x(τ)).

Let x(τ) be any solution of x′ = φ(x) and let ξ(τ) = x′(τ) = φ(x(τ)). Then
s(τ) = g(x(τ)), w(τ) = Dg(x(τ))ξ(τ) satisfies (4.3). Applying the orthogonal
projection π(τ) to both sides of (4.3) gives

Dg(x)D̂τξ = Dg(x)∇̂W (x)− 1

2
vDg(x)ξ.

Since g is an immersion, we conclude that x(τ), ξ(τ) satisfies

(4.4) D̂τξ = ∇̂W (x)− 1

2
vφ(x).

Since ξ′(τ) = Dφ(x(τ))φ(x(τ)), the explicit formula for the covariant derivative D̂
is

D̂τξ = Dφ(x)φ(x)− 1

2
∇̂F̂ (x, ξ) + Â−1(g(x))(DÂ(x)(ξ)ξ

where ξ = φ(x) and x = x(τ). As above, we can replace x(τ) by x and view this
as a functional equation. Then an argument analogous to the proof of Lemma 4.1
gives

Lemma 4.2. In a sufficiently small neighborhood U of the origin in Rk, there are
positive constants l1, l2 such that

(4.5) l1|φ(x)| ≤ |∇̂W (x)| ≤ l2|φ(x)|.

We can also use (4.4) to see that the differential equation on the center manifold
is approximately a gradient. This will be the key to ruling out infinite spin.

Lemma 4.3. The differential equation on the center manifold is x′ = φ(x) where

φ(x) = −k∇̂W (x) + γ(x) where k = −2/v(0) > 0 and γ(x) = o(|∇̂W (x)|).
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Proof. The left-hand side of (4.4) is o(|φ(x)|) so we can rearrange the equation to
get

φ(x) =
2

v(x)
∇̂W (x) + o(|φ(x)|).

Also v(x) = v(0) +O(|∇̂W (x)) +O(|φ(x)|) and |φ(x)| ≤ l2|∇̂W (x)| so

φ(x) = −k∇̂W (x) +O(|∇̂W (x)|2) +O(|φ(x)||∇̂W (x)|) + o(|φ(x)|)

= −k∇̂W (x) + o(|∇̂W (x)|).
�

The final ingredient is a  Lojasiewicz gradient inequality for W (x).

Lemma 4.4. In a sufficiently small neighborhood of the origin, the restricted po-
tential W (x) satisfies

(4.6) |∇̂W (x)|2 ≥ |W (x)−W (0)|α

where 1 < α < 2.

Proof. Since V (s) is real analytic, it satisfies a  Lojasiewicz gradient inequality
|∇V (s)|2 ≥ C|V (s) − V (0)|α in some neighborhood of s = 0 where 0 < α < 2

and C > 0. Replacing ∇ by ∇̃ would just modify the constant C. It is no loss
of generality to assume 1 < α < 2 since when |V (s) − V (0)| ≤ 1, increasing the
exponent makes the inequality weaker.

Since center manifolds are not necessarily analytic, we can’t immediately get such
an inequality for W (x) = V (g(x)). However, when s = g(x) we have V (s)−V (0) =

W (x) −W (0). It follows from Lemmas 4.1 and 4.2 that |∇̂W (x)| ≥ K|∇̃V (g(x))|
with K = l1/k2. This gives |∇̂W (x)| ≥ KC|W (x) − W (0)|α and by a further
increase of α we can arrange that KC = 1. �

 Lojasiewicz used his inequality to show that for analytic gradient differential
equations, solutions converging to a critical point have finite arclength [11, 6]. The
same property holds for our equation on the center manifold.

Lemma 4.5. Suppose x(τ) is a solution of a differential equation of the form

x′ = −k∇̂W (x)+γ(x) where k > 0 and γ(x) = o(|∇̂W (x)|) and suppose that W (x)
satisfies an inequality of the form (4.6). Suppose x(τ) is a solution with x(τ)→ 0
as τ → ∞. Then the arclength of the curve x(τ) is finite. Here the gradient and
arclength are taken with respect to some smooth Riemannian metric.

Proof. Without loss of generality we can assume thatW (0) = 0. Given any constant
c > 0 we can work in a neighborhood U of x = 0 where (4.6) holds and such that

|γ(x)| ≤ c|∇̂W (x)|. We will assume that c < k. Since x(τ) → 0 we can assume
that x(τ) ∈ U for all τ ≥ 0.

To estimate the arclength, note that since |x′| ≤ k|∇̂W (x)| + |γ(x)| ≤ (k +

c)|∇̂W (x)|, it suffices to estimate the integral of |∇̂W (x(τ))|. First considerW (x(τ)).
We have

W ′ = −k|∇̂W |2 + 〈γ, ∇̂W 〉 ≤ −(k − c)|∇̂W |2 ≤ −k2W
α

where k2 = k − c > 0. The first inequality shows that W ′(τ) ≤ 0 and since
W (x(τ))→ W (0) = 0, we must have W (x(τ)) ≥ 0 for all τ ≥ 0. This allows us to
drop the absolute value in (4.6) to obtain the second inequality.
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Integrating this over [0, τ ] gives

(4.7) W (τ) ≤ W0

(1 + λτ)
1

α−1

where W0 = W (x(0)) and λ = k2(α − 1)Wα−1
0 . Since 1 < α < 2, we have

1
α−1 = 1 + 2ε for some ε > 0.

Since W ′ ≤ −k2|∇̂W (x)|2 we can use the Cauchy-Schwartz inequality in a tricky
way [6] to find∫ T

0

|∇̂W (x(τ)| ≤
∫ T

0

√
−W ′/k2 =

∫ T

0

√
−W ′/k2 τ

1+ε
2 τ−

1+ε
2

≤

(
1

k2

∫ T

0

−W ′ τ1+ε

) 1
2
(∫ T

0

τ−(1+ε)

) 1
2

.

It suffices to show that the first integral is bounded. Integrating by parts gives∫ T

0

−W ′ τ1+ε = W (T )τ1+ε|0T + (1 + ε)

∫ T

1

W (τ)τ ε.

Since W (τ) satisfies (4.7) with exponent 1 + 2ε, both terms are bounded �

Putting these lemmas together we get the following description of the flow in the
local center manifold.

Theorem 4.6. Suppose P is a degenerate restpoint with v0 < 0. Let U be a
sufficiently small neighborhood of P and let W c

U be the local center manifold. If γ(τ)
is a solution in W c

U which converges to P as τ →∞, then γ has finite arclength.

5. Completion of the proofs

To complete the proof of Theorems 1.2 and 1.3, consider any total collision orbit
whose reduced and normalized orbit converges to an isolated CC and let γ(τ) be
the corresponding solution of the blown-up, reduced equations (3.1). Then γ(τ)
converges to a restpoint P = (0, v0, s0, 0) on the collision manifold with v0 < 0
and with s0 representing the isolated CC. We have already considered the case
where s0 is a nondegenerate critical point so suppose s0 is degenerate. Choose a
neighborhood of P where Theorem 4.6 is valid. We may assume that γ(τ) ∈ U for
all τ ≥ 0 and it follows that γ(τ) is in the local center-stable manifold W cs

U for τ ≥ 0.
The center-stable fibration implies that there will be an associated orbit γc(τ) in
the center manifold on the same fiber. Since the fibers of the center-stable fibration
are exponentially contracting we also have γc(τ)→ P as τ →∞ and Theorem 4.6
implies that γc(τ) has finite arclength. To see that γ(τ) also has finite arclength
note that since the distance between γ(τ) and γc(τ) converges to zero exponentially
and since both curves are solutions of a smooth first-order differential equations, the
distance between derivatives γ′(τ) and γ′c(τ) also converges to zero exponentially.
It follows that difference of their arclengths is bounded.

This completes the proof of Theorem 1.3. As explained above, the finite ar-
clength implies that the integral defining the spin angle θ(τ) converges which gives
Theorem 1.2.
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6. Appendix

We point out an error in previous claims of proofs that total collision solutions to
the N-body problem cannot have infinite spin. See [19] and [7]. Those proofs rely
on a configuration-dependent projection of velocity vectors onto their “rotational
part”. See definition 6.1 below. The authors correctly prove that the velocities of
their colliding solutions have zero rotational part. (In the case of partial collisions
they prove that these “rotational parts” tend exponentially fast to zero.) The error
made is in an implication drawn from this vanishing. The papers claim that if the
velocities have zero rotational part then the net rotation suffered during the motion
must be finite. We will show through explicit examples that the rotational part of
velocity can be identically zero and that nevertheless the n-body configuration can
suffer infinite rotation, i.e., infinite spin.

A sensible reader might complain: “If the rotational part of a motion is zero how
can the object spin at all, let alone have infinite spin?” If this object were a rigid
body then indeed this complaint is legitimate, such a body cannot spin at all when
the rotational part of its motion is zero. But our objects are not rigid, rather they
are “constellations” – configurations of n moving points in the plane. Making sense
of net rotation or spin for non-rigid bodies is a rather subtle matter. At the heart
of the matter are ideas from gauge theory as formalized by the theory of principal
bundles with connections as we now describe by reverting to the falling cat. (See
[17], [16] and [15] for more details on this perspective on rotation and re-orientation
of non-rigid bodies and its relation to the n-body problem.)

To set the stage it is important to know that the “rotational part” of our velocity
is zero if and only if the total angular momentum of the motion is zero. See
proposition 6.2 below. A falling cat, dropped with zero angular momentum, will
perform a net rotation and right itself. Despite the fact that the rotational part of
the velocity of the cat’s configuration is zero, nevertheless it still spins enough to
right itself. The cat cannot change its angular momentum (as viewed from its center
of mass). Angular momentum is conserved. It rights itself by changing its shape
and taking advantage of the fact that “angular momentum equals zero” defines a
connection with non-zero curvature.

We think of our moving n-body system as a kind of falling cat. Setting the
total angular momentum to zero defines a connection on the principal circle bundle
S = S2n−3 → CP(n− 2). (The equation of parallel transport for this connection is
equation (3.3) in the body of the paper.) The key to generating infinite spin is that
the curvature of this connection is not zero. As a consequence, we can draw curves
on CP(n − 2) which limit in infinite time to a fixed point s0 but whose horizontal
lifts have no limit, but rather contain the whole fiber over s0 in their closure.

Write R2n for the planar n-body configuration space. The group G of trans-
lations, scalings and rotations acts on R2n. These three generating subgroups of
G define three linear subspaces of R2n which we call (translation), (scaling), and
(rotation). The last two subspaces depend on the configuration q ∈ R2n. See below
for details on the subspaces. These three subspaces do not exhaust R2n if n > 2.
The orthogonal complement of their direct sum represents the rest of configuration
space and vectors in this complement represent “pure shape” deformations so we



14 RICHARD MOECKEL AND RICHARD MONTGOMERY

call that the pure shape subspace. Altogether then we get the “Saari decomposi-
tion” of velocity space:

(6.1) R2n = translation⊕ scaling⊕ rotation⊕ pure shape.

It is essential that we compute the orthogonal complement defining (pure shape)
relative to the mass metric.

〈v, w〉 = Σmava · wa
on R2n.

Remark. Saari formalized this decomposition in [20] hence his name became
attached to it. The first three subspaces are mutually orthogonal provided the
center of mass of the configuration is zero.

Definition 6.1. The ‘rotational part’ of a vector v ∈ R2n is its orthogonal projecton
onto the rotation subspace. The vector is called ‘horizontal’ if it lies in the pure
shape subspace. A curve q(t) ∈ R2n is called horizontal if its derivative q̇(t) is
everywhere horizontal.

When we fixed the center of mass at the origin we got rid of the translational
degrees of freedom and hence the translation subspace of R2n. Recall that we
identify the center-of-mass zero subspace of R2n with Cn−1 in which case the Saari
decomposition becomes

(6.2) Cn−1 = scaling⊕ rotation⊕ pure shape.

and the mass metric is the real part of the Hermitian mass metric. The scaling and
rotation groups act on this Cn−1 by scalar multiplication, with scaling acting by
z 7→ λz, λ > 0 real, while the rotation group acts by z 7→ eiθz, with θ the rotation
angle. Differentiating these actions at the identity, or what is the same, take the
tangent space to their orbits at z yields the scaling and rotation subspace. So the
scaling space consists of the real span of z while the rotation subspace consists of
the real span of iz.

Proposition 6.2. The rotational part of a velocity vector ζ attached at z is zero if
and only if the total angular momentum J(z, ζ) is zero. Moreover,

J(z, ζ) = im〈〈z, ζ〉〉C

Proof. In order to make the expressions conform more closely to standard physics
usage we will use v for ‘velocity’ instead of ζ. The rotational part of v = ζ is zero
if and only if it is orthogonal to the rotational subspace which is the real span of
iz. So v has zero rotational part if re〈〈iz, v〉〉C = 0. But re〈〈iz, v〉〉C = − im〈〈z, v〉〉C.
Expanding out

− im〈〈z, v〉〉C = −Σma im(z̄ava))

= −Σmaza ∧ va
where in the middle line the wedge denotes the planar version of the cross prod-
uct: (x, y) ∧ (a, b) = im(x − iy)(a + ib) = xb − ya for (x, y), (a, b) ∈ R2. This
final expression will be recognized as the standard expression for planar angular
momentum:

Σmaza ∧ va = J(z, v).

�
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remark The orthogonal projection of z onto the rotational subspace at z is iωz
where the scalar ω = 1

I(z)J(z, iz).

We rewrite the angular momentum in terms of our variables r, θ, s introduced
in the equation (2.2)): z = rkeiθ(s, 1) with k = 1

‖(s,1)‖ and the corresponding

velocities

ζ = ż = (
ṙ

r
+
k̇

k
+ iθ̇)z + reiθk(ṡ, 0).

It follows that 〈〈z, ζ〉〉C = (( ṙr + k̇
k + iθ̇)r2 + r2k2〈〈(s, 1), (ṡ, 0)〉〉C and from J(z, ζ) =

im〈〈z, ζ〉〉C we get

J(z, ζ) = r2θ̇ + r2k2Ω(s, ṡ), where Ω(s, ṡ) := im〈〈(s, 1), (ṡ, 0)〉〉C.

It follows that

(6.3) J(z, ζ) = 0 ⇐⇒ θ̇ = − Ω(s, ṡ)

‖(s, 1)‖2

in agreement with equation (2.4) where the angular momentum was denoted µ.
It will help in what follows to simplify this last expression by applying a linear

transformation to the original complex linear coordinates zi which puts the mass
metric in standard form. In these new variables, which we continue to call zi, we
have that 〈〈z, z〉〉C = Σz̄izi. We similarly redefine the si as the quotients of the new
zi by the new zn−1. Then with the si similarly redefined:

Ω(s, ṡ)

‖(s, 1)‖2
=

im Σs̄iṡi

Σn−2
i=1 |si|2 + 1

Here then, is the main result of this appendix.

Proposition 6.3. Given any s0 ∈ CP(n − 2) there are analytic curves c(t) con-
verging to s0 in infinite time and whose horizontal lifts z(t) to Cn−1\0 have infinite
spin.

Horizontal curves all have zero rotational part. The proposition shows that having
zero rotational part does not guarantee finite spin.

Proof. We may take s0 to have affine coordinates si = 0 and so represented by the
point with homogeneous coordinates [0, . . . , 0, 1]. Any curve whose projection to
CP(n − 2) converges to s0 is represented in affine coordinates by a curve s(t) =
(s1(t), . . . , sn−2(t)) with the si(t) → 0 as t → ∞. Any curve in Cn−1 \ {0} which
projects onto this curve has the form (r(t), θ(t), s(t)) in our coordinates. The curve
is horizontal if and only if θ satisfies the differential equation (6.3). We integrate
this zero angular momentum equation to find that

θ(t)− θ(0) = −
∫
s([0,t])

Ω(s, ds)

‖s‖2 + 1
.

where we set Σn−2
i=1 |si|2 = ‖s‖2.

In order to achieve the desired curves c(t) of the lemma we only need to vary
the first affine coordinate s1, which is to say, we take curves of the form s(t) =
(s1(t), 0, . . . , 0). For such a curve the integrand occuring in the line integral is
im(s̄1ds1)
|s1|2+1 . For the purposes of the proof, we set

s1 = reiψ
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in which case im s̄1ds1 = r2dψ and |s1|2 + 1 = r2 + 1 so that our integrand is

Ω(s, ds)

|s|2 + 1
=

r2dψ

r2 + 1
.

Now suppose our curve s1(t) lies in the unit disc r < 1 so that 1/(r2 + 1) > 1/2
and that our curve also spirals counterclockwise into the origin of the s1 plane so
that ψ(t) increases monotonically with t. We then get

θ(t) < θ(0)− 1

2

∫ t

0

r(t)2ψ̇dt.

To produce curves c(t) with infinite spin we are left with an easy task: insure

that r(t)→ 0 as t→∞ while the integral
∫ t

0
r(t)2ψ̇dt diverges to +∞. As one class

of examples, take r(t) = 1√
t

and ψ = ct for any positive constant c. Then r2ψ̇ = c
t

and the angle θ(t) diverges logarithmically to minus infinity. �
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Abstract. The infinite spin problem is an old problem concerning the rota-

tional behavior of total collision orbits in the n-body problem. It has long been

known that when a solution tends to total collision then its normalized config-
uration curve must converge to the set of normalized central configurations. In

the planar n-body problem every normalized configuration determines a circle

of rotationally equivalent normalized configurations and, in particular, there
are circles of normalized central configurations. It’s conceivable that by means

of an infinite spin, a total collision solution could converge to such a circle

instead of to a particular point on it. Here we prove that this is not possible,
at least if the limiting circle of central configurations is isolated from other

circles of central configurations. (It is believed that all central configurations
are isolated, but this is not known in general.) Our proof relies on combining

the center manifold theorem with the  Lojasiewicz gradient inequality.
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