UC Irvine
ICS Technical Reports

Title
Distributed Computer Operating System: Programming Guide Version 3

Permalink
https://escholarship.org/uc/item/8mi557d7

Authors

Rowe, Lawrence A.
Earl, William .
Foodym, Allan D.

Publication Date
1974-04-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8mj557d7
https://escholarship.org/uc/item/8mj557d7#author
https://escholarship.org
http://www.cdlib.org/

DISTRIBUTED COMPUTER OPERATING SYSTEM
Programming Guide

. Version 3 April 1974

Lawrence A. Rowe
7 William J. Earl
Allan D, Foodym
Frank R, Heinrich

hid

Technical Report #46 - April 1974

’

This work was supported by the National Science Foundation under
Grant GJ-1045.

ACKNOWLEDGEMENTS

This programming guide describes how to write pPrograms
for the Distributed Computer Operating System. Many people
have contributed to the Distributed Computer Project and the
growth of the operating system.

Dave Farber and Julian Feldman., co-principal
investigators, provided guidance and an environment in which
to develop the system-.

Don Loomis designed the communication system interfaces
and maintained the hardware used by the project. He also
developed the "Quickie Operating System," without which the
software development would have been much more painful.

Greg Hopwood developed and maintained the higher level
system implementation language (MOLSUE)-. As manager of the
Varian 620/i lab, he has sailed that always difficult course
of “satisfying all of the people all of the time."

Bill Crosby modified and maintained much of the file
system and has been an invaluable “systems hack," working on
QED, Q0S-3, PIP, FAILSAFE, and the start-up process for DCOS
version 3. . '

Alan Bell, Ken lLarson, Steve Howell and Ed Schwartz
have developed many of the components in Q0S and DCOS. Alan
designed the initial file system in the 620/1. Ken
contributed to the early design of the DCOS and implemented
an early version of the input/output process. Steve and Ed4
have worked on a variety of "little" projects which have
been useful in a “big" way. ,

Elaine Gord and Mar sha Hopwood have provided a
sympathetic ear, and insightful comments on the many
occasions when all seemed doomed. '

l. IntrOdUCtion - [. - o . - . - - - - . .

List of Figures. .

TABLE OF CONTENTS

- - . - . - - . . - . - . - - .

2' ““ Using this Manualo - . - - - . - . - . - - . Y . .

3.

4.

System Environment
3.1 Overview Of DCS o v o« v o o o s o o o o o
3.2 System Organization « + « o « « o o o o .

3.5

Services

4.

1

3. 2.1
3. 2.2
3. 2.3

. . . . 3 . . - . . . 3 . - . .

Message Protocol. « « « ¢« o .+ .
Process Names « « « o « o o o @
Process Context Block « « « «

System FUunctionse. « « o « o o o o o o o =«

3.3.1
3.3.2
3. 3.3
3. 3.4

Send Messagee o« s o o o o o o @
Receive MesSsage « « « « o o o @
Exit Process. + « « o o« & o o« &
Read Time « « ¢ o o o o o o o

Input/Output Facilities « + « « & o « « .

3.4.1

. .

wwww
[N = NN
Ut N

- -

3.4.6

Message Formats « « « « o o o &
Operation Codes « « « « o o « &
File Specification Format . . .
Device Names and Specifications
Device Status Word Bit

Assignments « .« . < ¢
Definition FileSe « o « ¢ « « .

Process Initiation and Termination. - s« .

and ProCesSSeS « o « o o o o o s o s o o
Command Interpreter ProcCess » « « « « o o

4.1.1
4.1.2

4. l. 3

4.1.4
4.1.5

Service Requestse « « « « « . .
Loading a Process . I
Killing a Process « « « « o« o
Logging on to DCS « « ¢« & « o« &
Logging off DCS &« &« &« & & o o .

DIRECT (Directory ProcCess)s « « « o o« o »

LAP (Lockheed Assembly Program)

MATIL. . .
MOLSUE. .

.
.
]
.
L]

- - - . - - - - . . - . . . - -

PIP (Peripheral Interchange Program). . -

QED . . .

RLDP (Ring Load Process)e + « « « o « « .
RLL (Relocating Link Ioader). « « « « « &

0 RUNOFF .

. . - . . . [3 - . . . - . - -

ii

iv

5.

6.

4.11 SPM (Software Protection Module)

Using DCS.

5.1 Operating

5.2 Preparing

5.2.1
5.2.2
5. 2.3

5.3 Libraries

References

5. 3‘1
5.3.2

.

-

Instructions.

a Process to Execute on DCS

-

.

Filename Extension Conventions.
SUE Programming Conventions .

Program Preparation Example

-

-

System Library.
User Library.

iii

*

.

64

66
67
68
68
69
70
71
71
72

73

1 1

B W W WwWw
N W N

1

List of Figures

Context Block Formate « « » o + o o o
Message Buffer and Receive Message Call
System Detected Error Codes ¢ « « « . .
I/0 Handler Error CodesS « « « « o o« o &
List of Command Process CommandsS. . . .
RLL Filename Conventionss. « « « « o

iv

1. INTRODUCTION

The Distributed Computer Operating System (DCOS) is a
multiprogramming operating system distributed over several
processors linked together in a network. The particular way
of | connecting up the machines is transparent to a person
writing a programe. Each program executing under DCOS 1is
considered to be a process. Processes communicate by
sending and receiving messages. All resources are
controlled by processes; thus, programs request resource
services by sending messages to the processes providing the
resource involved.

This programming guide describes how to use the system.
It reflects version 3 of the DCOS. The reader is assumed to
be familar with the language for the particular machine for

which he will be writing programs (presently MOLSUE [1] or
IAP [2] for the Lockheed SUE [3]).

2. USING THIS MANUAL

This reference is divided into three main sections:
system environment, services and Processes, and using the
DCsS. The section on the system environment describes the
details of how a program, or process, interacts with the
system. The section on services and processes describes the
different processes available on the system. It also
describes the command process with which a person sitting at
& terminal interacts. The 1last section. using the DCS,
discusses how to go about writing a program to run on the
system, and gives an example-.

Readers unfamiliar with the system are encouraged to
skim through the latter two sections discussed above and to
log onto the system and run some processes before digging
into the details of the system environment.

3. SYSTEM ENVIRONMENT

This section describes the system environment in which
a process executes and the system functions available.
Section 3.1, a reprint of an article which .was presented at
C OM PCON 1973 (41, presents a general overview and
introduction to DCS. Section 3.2 describes the
communication protocol: process names and context blocks.
Section 3.3 defines the functions provided by the system,
including their calling sequences. Section 3.4 describes
the input/output facilities provided. Lastlys section 3.5

describes how a process can initiate and terminate other
processes.

3.1 Overview of DCS

sEvelbd annuvas lbhor Cenputer Society
February 2702

<1028, arch 1, 1973

lntcrnational Conference

THE DISTRIBUYED COMPUTING SYSTEM

David J. Farber, Julfan Feldman, Frank R. Heinrich,

Marsha D. W woud, Ecnneth C. Larson,

Donald C.

Loowis, and Lawrence 4. Rowa

Departrment of Infermation and Computer Science

University of Californla '

Irvine, California 52664

The ﬁistributed Couputing System* {s an
fnformation utility designed to provide reliable,
fall-saft service at rclatively low cost to a large
class of users with modest requiremcncé. The
galicnt feature of this system is the distribution
;f hardware, software, and system control. Hard-
ware distribution is achieved using a network
architecture. Software and control distribution is
facilitated through the use-of communication by
name, rather than address, among the network
components. The' combined effect of distribution,
vhich provides both redundancy and isolation, and
of controlled access, makes total failure of the
computing sysﬁgm unlikely. Reliability is achieved
by minimizing the probability of total failure,
using isolation to keep local failures from
spreading and causing global failure, and using

redundancy to negate the effects of local failures.
INTRODUCTION

The Distributed Cémputing System (DCS) is a
local network designed to provide reliable, fail-
soft service at relatively low cost. The distrib-
uted organization of this systen inborporates
‘redundancy and isolation in both the hardware and

.8oftware. The implementation of the DCS organiza-

tion, with emphasis on how interactions are carried

‘out, is briefly described in this paper.

OBGANIZATION AND COMMUNICATION

The DCS hardware system is a collection of
computing system components connected to a digital
Communication ring by ring interfaces. The
Comnunication ring serveé as a unidirectional
Information path and the ring interfaces assist in
{nformation routing. Figure 1 shows a DCS config-

————

'*Thls work has been supported by the National
Science Foundation under Grant CJ - 1045,

Al

. destination process name is present,

uration with six processors.

Processcr
I: Ring Interface
Figure 1: A DCS with Six Processors,

The DCS software system is Process-oriented,
that is, all activities are carried out by proe-
esses. Processes interact by sending aud receiving
messages. Messages are addressed to processes by
name, rather than by physical hardware address. A
message from one process addressed to another proc-
ess is placed onto the ring. As the message arrives
at each ring in:erfaée, the interface compares the
destination process name with its list of all
processes active in the attached processor. If the.
the interface
attempts to copy the message into the processor

memory. Whether the destinarion Drocess name is

present or not, the interface allows the message to

travel on to the next interface on the ring. The
message continues around the ring'until it arrives
at the interface for the processor in which the
sending process resides.
message from the ring.
Two status bit, MSB1 and MSB2, are set by each
ring interface as a ﬁessage passes. MSBl.is set if
the ring intcrface matches the destination process
name to a name in its list of active processes and
attempts to copy the message into its attached
' MSB2 is set if
Figure 2

processor but 1s unable to do so.
the message 1s successfully copied.
descrlbes the possible values and mecaningss associa~

ted with the message status Lits. Since the ring

: -5~

This interface removes the

‘

interface which places the message on the ring is
the one which removes the message, the scnding
process can tell if the message was received by
examining the nessage status bits,

A process normally sends a message to another

specific process. However, tliere are occcasions
when 2 process wishes to send a message to a set

of processes. This is called wessage broadcasting.
An example of message broadcasting is given belaw

in the discussion of resource allocation.

0 0 The destination process name was not
matched by any ring interface.

0 1 The message has been matched and
copled by at least one ring
interface.

1 0 The destination process name wa
matched by at least one ring‘inter—
face, but not copied by any of them.

1 1

The destination process name was
matched by at lcast two ring inter-
faces. At least one ring interface
copied the messagc and at least one
did not.

Figure 2: .Possible Values of Message Status Bits.

RESIDENT SYSTEM SERVICES

Each processor on the ring\has a resident
software system called the nucleus. The nucleus
schedules processes running in the processor and
provides message transmission facilities. ’

The nucleus schedules user processes in a

first-come, first-serve round-robin order. Each
processor has a time-out mechanism which prevents
-@ user process from holding the processor indefi-
nitely. Within each nucleus there are scme system
processes which have priority over all user proc-
esses. These system processes, such as the out~
put message routine described below, are scheduled
when thelr services are needed.

When a process wants to send a message,
it issues a system call with two arguments: the
destination process name and the nessage. A

routine for servicing system calls in the nucleus

‘received.

copies the message and other message protocol
information into a system buffer. This routine is
also responsible for placing the originating
process.namg into the message.

The formatted message is placed on a queue for
the output message routine. The output message
routine takes messages from the queue and places
them on the ring. When the message has been
copied into the receiving processor, that processor
is interrupted signaling that a message has been
The interrupt routine places the message
on the general input message queue and‘reinitializes
the ring interface to receive the next nessage.

The message is moved from the general input
message queue to the input message queue for the
particular process to which the message is '
addressed. The next time the addressed process is
scheduled, a special nessage receiving routine
copies the message into a buffer within
the process data space. It is the responsibilicy
of the process to check its message buffer periodi-
cally for an incoming message.

Because the majority of activities carried out
between processes require sending a message and
then waiting for a reply, a process may block
itself waiting for a reply. This block is usually
fequested along with a time limit so that a process
is not suspended indefinitely.

Before placing the formatted message on the
output message routine queue, the routine for
servicing system calls looks to see if the
addressed process resides in the same processor.

If it does, the message is placed on the general
input message queue rather than the queue for the
output message routine. In this way, a message is
not needlessly transmitted around the ring.

In sunmary, the nucleus provides facilities
for scheduling processes and transmitting and
receiving messages. Other system functions, such
as resource allocation, device input-output, and
file system services[b], are provided by processes
executing in the DCS. Because the nucleus is the’
only software unit bound to a particular wmachine,
these other system services may be executing in
any machine in the ring and are accessed from user

processes by sending and ieceiving messagds. A

provens requesting service does not need to know
wte In the DCS the service process resides,
tecause messages are addressed to processes

rather than processors.,
PROTECTION

The functions one needs to protect a system,

{~wolation and controlled access{1,2], are

vaplicitly included in the DCS design. 1In
addition to the standard machine-level protection
nechanisms, the DCS must also employ network-level

protection. Because the DCS is process-oriented
and process access is doune by sending and
receiving messages, protection is achieved by

Insuring the integrity of messages. In particular,

protecfion is achieved by insuring that the sending
process name placed in a wessage by the resident
nucleus 1s actually the name of the process
sending the message. If forgery of the sending
process name has been prevented, a receiving
process can discriminate in the services it

provides depending on the source of the request, .

RESOURCE ALLOCATION

Resources in the DCS are treated as processes.

Each resource is associated with a process and all
uwse of that resource is through the associated

Process. Resource allocation can then be achieved

through the process management mechanism. The

mechanism by which processes are initiated is

talled request-bid or request for quotation. Each

Processor in the network has a resource allocator,

which does not necessarily reside on that proc-

wasOr, controlling resources, e.g., memory and

veripheral devices, connected to that processor.

la fnitfate a process, a user sends a broadrast

Bessage to all resource allocators requesting a bid

0 the services desired. The resource allocators

teply with bids to perform the requested service.

e

Tequestor receives these bids and selects the

Feat According to its own criteria,

A message
' epting the bid. is then returned to the offering

T source allocator,
Uy

but this does not yet complete
freement, Bids are not binding and the

.t--. en
vmource allocator may have accepted other work

Yetwee ; :
“tveen the time the allocator sent the bid and

the requestor scnt the accéptance. Thus the
allocator may not be able to satisfy the request,
in which case the requestor is notified and must
rencgotiate a contract. If, on the other hand,

the resource allocator can still honor the bid,

it returns a message to the requestor acknowledging
the contract. At this point the agreement is
complete and the requestor can assume that the
resource has been assigned to him.

There are three points to notice about this
scheme: control is distributed, load balancing is
carried out implicitly by the relationshipq between
the different bids, and expansion or contraction of
available resources requires little or no program-
ming effort. 1In this resource allocation schexe,
control is distributed throughout the system.

No central authority controls the relationship of
the bids which determines which processor will
provide the service. Load balancing, dynamically
distributing the load so that each processor
receives some portion of the total work, is being
effected every time z new process is created. The
processor with the most unused capacity, or best
able to provide the requested service, will return
2 low bid, while processors that are relatively
full will bid high. This insures the distribution
of work. A change of configuration, thereby
altering available resources, is achieved with
litcle progranming effort, since all thar is
required is the addition, deletion, or change of the

appropriate resource allocators.

The Distributed Computing System is a reliable,
fail-soft information utility with a network

architecture. Reliability is achieved through

redundancy, isplation, and controlled access.,
Redundancy allows the DCS to continue to function
with no loss of capability but some loss of
capacity if a component fails, Isolation and con-
trolled access prevent the failure of one cdmponent
from causing the failure of other compdnents and

thus precipitating a total system fajilure,

Several other papers give greater detail about
certain aspects of the DCS, in particular, the
communication system[6], the cummunications‘
protocbls[7], the file system{4], and the fall-

7 -

soft behavior of tue software system{5]. For

purposes of comparing the DCS to other networks,

[3,8] may be helpful.

REFERENCES

Brinch Hansen, P. "The Nucleus of a
Multiprogramming System." Comm. ACM 13,

(April 1970), 238~241, 250.

Denning, P. J. "Third Gencration Computer

Systems." Computing Surveys 3, (Dec. 1971),
175-216,

Farber, D. J. '"a Survey of Computer Networks,™

Datamation 18, 4 (April 1972), 36-39.

Farber, D. J. and F. g, Heinrich. '"The
Structure of a Distributed'Computer System--The
Distributed File System." Proc. Internatiqggl
Confergggg{gg Computer pc:munications,

(Oct. 1972), 364-370.

Farber, D. J., M. D, Hopwood, and L. A. Rowe.
"Fail-Soft Behavior of the Distributed
Computer Systenm." Technicai Report #24,
Department of Information and Computer Science,
University of California, Irvine, California,
(November 1972).

Farber, D. J. and K. Larson. "The Structure of

a Distributed Computer System--The

Communications System." Proc. Sywposium on

" Com uter-Communications Networks and
_._Jlwu‘,_,--__ﬁ_.__._*_ == T2IRS and

Teletraffic, Microwave Research Institute of
ehiluiiddabitaleioied

Polytechnic Institute of Brooklyn,

(April 1972).

Loomis, D. C. "Ring Communication Protocols."
UC Irvine Distributed Computer Project,
Memo 46-4, (May 1972).

Roberts, L. G. and B. D. Wessler. 'Computer
Network Development to Achieve Resource
Sharing." " Proc. AFIPS 1970 sJcc, Vol. 36,
AFIPS Press, Montvale, N. J., 543-549,

3.2 System Organization

3.2.1 Message Protocol-. The message protocol has the
following fields defined:

| peN | oen LEN TEXT |

where:
DPN Destination process name (one word),
OPN Originating process name (one word):
LEN TILength of text in characters (one word), and
TEXT Text of the message (byte string).

There is no restriction on message length. Messages may be
packeted by the system for transmission, but are reassembled
before being passed to the destination process. DCOS
handles all aspects of message communication, error recovery
and retry. Thus, a process need not concern itself with the
problem of message communication, only with passing the
correct arguments to the send and receive procedures
described in section 3. 3.

Two types of interprocess communication are supported
by DCS. The first is process to process. The second type
is one process to many processes, called broadcast messages.
Broadcast messages are used only in special circumstances,
mostly by system processes, so that, in general, users need
not be concerned with this type of communication. ,

3.2.2 Process MNames. Processes communicate by sending
messages back and forth. To send a message to a particular
process all that must be known by the sending process is the
name of the receiver. Process names are 16 bits long. The
format of a name is: -

bits
class 15-12
machine 11-8
sequence 7-0

the class definitions are:

not used

system processes

reserved for resource allocators
-8 reserved for system classes
' user processes
-F reserved for user classes

P Oowhe—o

Machines are numbered 1 to N and are marked on the front of
each machine (N currently is 3). Sequence numbers must be
greater than 1. The pair (machine number, sequence number)
ensures that process names are unique throughout the DCOS.
The machine number does not always indicate on which machine
the process is currently executing, only the machine on
which the process was first initiated. (The current version
of the operating system does not support process migration
so the machine number does reflect what machine the process
is executing on.) When a process is initiated by the
nucleus, the generated hardware name and start address are
returned to the requestor. 1In this way the initiator knows
how to send messages to the process it created.
Certain system processes have predefined names:

1X01 Nucleus Process

1X02 I/0 Handler Process

1X03 Command Interpreter Process

1X04 Sequence Bit Process

1X05 reserved for Status Checker Process

where X is the machine number. This implies that system
process names are generated starting at sequence number 6.
The existence of the reserved system process names does not

imply that all of these processes exist. Different
configurations of the system may include some but not all of
the @ processes. For example, 1203 "would be a command

interpreter process first intiated on machine 2. However,

any given DCS configuration may not have a command process
with that name.

- 11 -

3.2.3 Process Context Block. Process dependent information
is maintained in a context block (CB). The format of a
context block is shown in figure 3-1. The symbol ":CB:" 1is
defined as the address of the context block by the system
procedures. Processes may access values in the context
block by declaring "“:CB:* to be an external and referencing
context block entries relative to it.

' On the SUE, program execution begins at the address
specified in CBSRO (program location counter) which is
defined when the CB 4is created. A procedures 1library
("PROC.OB [DCS]™) must be linked with each user process.
Included in the library are MOLSUE procedures for calling
the system functions and a context block for the process.
The context block definition establishes location “START" as
the process start address. Hence, every procedure must
define a variable "START" and declare it as internal.
Furthermore, a wuser process must not declare a start
location using the YEND" statement in ILAP or the YDONE"
statement in MOLSUE, since this transfer address is used to
pass the address of the context block to the system when the
process is loaded-.

Items of interest to the programmer in the context
block are: CBINI, CBIOH, CBTNO and CBNTF. CBINI is the name
of the process which initiated this process. If a terminal
was connected to the initiated process when it was created,
CBIOH is the name of the I/0 Handler for the terminal., and
CBTNO is its 1logical file number (see section 3.4). The
logical file number is a byte value. If a terminal was not
connected to the process when it was initiated these two
fields are =zero. CBNTF is the process which will be
notified when this process terminates. The terminal, if one
is connected to the terminating process, is connected to the
process named in CBNTF. Initially CBNTF is set equal to
CBINI: however, a process may create arbitrary structures of
processes by changing CBNTF.

- Figure 3-1 describes all the fields in a context block,
and their offsets from ":CB:". A definition file ("CB.DE"“)
defines the MOLSUE offsets for a context block and users are
encouraged to append it to the front of their programs.
Thus, if the context block definition changes, all that must
be done to a program is to recompile/reassemble using the
updated definition file.

symbol

CBSRO
CBSR1
CBSR2
CBSR 3
CBSR 4
CBSR5
CBSR6
CBSR7
CBMBF
CBRSB

CBSSB
CBIME
CBS N4
CBINI
CBIOH
CBTNO

CBNTF

Figure 3-1

Context Block Format

type

wo rd
word
wo rd
word
wo rd
word
wo rd
word
word
woxrd

word
word

6 words
word -
word

byte

word

meaning

register 0 save word
register 1 save word
register 2 save word
register 3 save word
register 4 save word
register 5 save word
register 6 save word
register 7 save word

message buffer address
receive sequence bit table
address

send sequence bit table
address

illegal mdf message error
symbolic name for process
name of initializing process
name of I,/0 handler for
process’s terminal (0 if no
terminal connected

logical file number for
terminal

process to be notified

when this process terminates

- 13 -

3.3 System Functions

There are four system functions provided: send a

message (SEND), receive a message (RECV), exit a process
(EXIT), and read the time (CLCK). These procedures are

defined in the procedures file which must be linked with
every process run on DCS. Tc be used the procedure names
must be declared as externals in the user process. The
Procedures are written using MOLSUE argument and calling
conventions. The examples in this section are sample MOLSUE
calls. MOLSUE conventions are described in section 5. 2. 2.

3.3.1 Send a Message. The arguments necessary to send a
message are: 1) the destination process name, 2) message
length, and 3) the text of the message. Message sending is
synchronous, which means only one message may be sent at a
time. Upon completion of a send request, a status is
returned to indicate whether the message was received at the
destination-. The status is returned as the value of the

send request function call, and has the following possible
values:

status meaning

0 Addressed process is not known in the system.

1 Message was successfully received by all
machines on which the addressed process 1is
executing.

2 Addressed process exists but the machine it
is executing on was not ready to receive
messages. '

3 Message was successfully received by at least

one machine on which the destination process
exists. However, at least one machine which
is executing the process was not ready to-
receive the message. (This happens only with
broadcast messages.) :

If an unsuccessful transmission condition (0, 2 or 3) is
returned, transmission was actually tried a couple of times
(approximately 5) and a user can usually assume that the

pProcess or processor has failed. .
The format for a send message function call is:
SEND (DPN,MA, LEN)

where:

DPN
MA

LEN

destination process name.

message address, if a length is not specified (i.e.
LEN=0) then the length of the message is in the
first word of the message.

if 0 then the 1length is in first word of the
message; otherwise, the length is in the argument
list. The length is the number of characters in the
message not including the length field-.

The message to be sent at the location given by MA must
begin on a word boundry.

3.3.2 Receive a Message. A process receives a message Dby
requesting to receive one. If a message is available it is
copied into the process address space. If a message is not
available,; the process may wait for the message, i.e. be
blocked wuntil a message arrives, or it may continue
execution. The receive function has three arguments:

\ RECV (BUF, BBIT, TIME)

where:

BUF address of the buffer in which the message 1s
returned, the first word of the buffer is the length

of the buffer in bytes, not counting the length
word.

BBIT block bitse. If this argument is 0, control is
returned to the process whether a message was copied

or note. If the argument is 1, the process is
blocked until a message is received. User processes
may only block on a message or time. System

processes may block on any of the conditions in the
system status word (SS). The conditions defined are
described elsewhere [6].
TIME number of clock ticks (a clock tick is about 1/60~-th
' of a second) to wait before the process resumes
execution. Time wait is an "or" condition with wait
for message. This means the process waits until a
message 1s received or for the 1length of time
specified, whichever occurs first. A zero argument
means no wait on time.

RECV returns 0 if no message was copied, and 1 if a message
was copied. A complete message, as shown in section 3.2.1
with DPN, OPN and LEN, is copied into the buffer.

If the buffer address given in the call is 0, then a
message 1is not copied. Thus, a process may wait until a
message is available, without it being copied, by doing a
receive with BBIT=1 and BUF=0. Or a process may wait for
some length of time by calling RECV with BUF=0, BBIT=0 and
TIME#0.

Figure 3-2 shows an example of a receive messadge buffer
and a sample call to receive a message.

Figure 3-2
Message Buffer and Receive Message Call

ALPHA

1 150] ¢ | ¢ |

— J

RN
h¥

150 bytes

RECV (@ALPHA,1,120)

Wait for message or 2 seconds, whichever occurs first. When
the message arrives it will look like:

ALPHA

| 150 1 DPN [OPN | LEN | message text |

-.17.—

3.3.3 Exit the Process. Another system function provided
allows a task to terminate itself. The format of an exit
process call is:

CALL EXIT (TERM)

where:
TERM is the termination code, >=0.

The termination code is returned to the notification process
on termination (CBNTF in the context block). The format for
this notification message is:

| 80, RESP | TOH |LFN /0 |PNM |DIR |

where:

RESP is the termination code,

IOH 1is the I/0 handler name for the terminal which was
connected to the terminated process (note that the
terminal is connected to the process which receives
this message),

IFN is the logical file number for the terminal,

PNM is the name of the process which was terminated, and

DIR is the 6 byte directory name for +the terminating
process.

The termination code is forced positive since negative codes
are system detected errors; such as unimplemented
instruction trap, receive message buffer overflow or bad
arguments to a system function. Figure 3-3 lists the system
detected error codes. A zero code means normal termination.

Figure 3-3
System Detected Error Codes

Meaning

Normal termination

Illegal memory reference

Unimplemented instruction

Illegal message definition field in user send
request (must be less than or equal 2)
Illegal system request function code

Receive sequence bit table overflow,
unrecoverable error

Send sequence bit table overflow,
unrecoverable error

Receive message buffer overflow

Message buffer address not in process address
space

Message to be sent not within process address
space (either a bad address or length)
Message to be sent not on word boundry

3.3.4 Read the Time. Each processor on DCS has a clock.
Two time functions are available, return the system clock
and return the current date~time block. The format for a
read clock call is:

CALL CLCK(FCT,ADDR)

where:
FCT function requested:
0 return clock variable
1 return date-time block
ADDR address of an area to return the value in-.

A clock variable is a 2-word integer value incremented each
time a clock interrupt (60 cycle clock) is received. The
format for a clock value is:

15 14 . . . 015 14 . . 0
| high order | low order |

the sign bits in both words are always off (0).
The date-time Dblock 1is returned as a 10 byte
Tepresentation of the current time:

IDD{MM 7Y |HAIM N |

where:
DD Day of the month (1-31)
MM Month of the year (1-12)
7Y Year (0-9)
HH Hour (0-24)
M°M° Minute (0-60)

- 20 -

3.4 Input/Output Facilities

The DCOS 1I/0 Handlers are system processes which
supervise all input/output devices and provide I/0 services
to other programs. these services are requested by messages
sent to an I/0 Handler which replies to the requests by
sending messages to the regquestors. In addition +to
responding to specific requests, the I/0 Handler also
provides the terminal user with certain special services;
one is the recognition of Control-C on input, which causes
the I/0 Handler to send a special message which results in
the process being interrupted. a user process finds the
name of the I/O Handler process for its terminal (if one 1is
connected at initiation time) in the “CBIOH" word of its
context block.

3.4.1 Message Formats. Requests to the 1/0 Handler are in
the general format of other DCOS messages, with some
additional fields. Request messages to and response
messages from the I/0 Handler have the following general
format (all offsets and values hereafter are in hexadecimal,
unless otherwise noted):

FIELD OFFSET DESCRIPTION

IODPN O Destination Process Name (DPN).

IOOPN 2 Originating Process Name (OPN).
Note that the wvalue of this field in
response messages permits the user
process to distinguish between responses
from two different I/0 Handlers. (The
LFN returned is not sufficient, since
LFNs are not unique among I/0 Handlers.)

IOLEN 4 Message Length (LEN).
This is the length of the entire message.,
including any arguments or returned
values.

IOLFN 6 Logical File Number.
This byte serves as a logical name for
communications between the requestor and
the I/0 Handler about a particular file.
The requestor may match replies to
requests by examining this field.

I00P 7 Operation Code (request messages only) .
This Dbyte is one of several codes
described below, specifying what +the

IORSP

IOARG

IORVL

IOCNT

IOFLG

" IOFFS

IODEV

IOFIN

IOEXT

IODIR

IOWLD

IORFN

10

16

18

20

22

reguest is-.

Response Code (response messages only).
This Dbyte is the error number if any (0
indicates successful completion of the
request)-. The meanings of the various
error codes are listed below.

Argument Block (request messages only) .

The nature of the arguments depends on
the particular function to be performed,
as described below.

Returned Value (response messages only) .
This field constitutes the balance of the
message and depends on the particular
request, as described below. Its length
may be derived from the message length
(IOLEN).

Byte Count for Read (request only).

Count of the maximum number of bytes to
be returned in response to a READ
operation-

Open Flags.

Flags used in RESERVE and OPEN operations
and returned as values.

Free Format Specification (request only) .
Start of a free format file specification
supplied as an argument to a RESERVE or
OPEN request.

Device Name.

Start of the device name field in a fixed
format file specification used or
returned by a RESERVE or OPEN request.

File Name- '
Start of the file name field in a fixed
format file specification used or
returned by a RESERVE or OPEN request.

File Name Extension-

Start of the file name extension field in
a fixed format file specification used or
returned by a RESERVE or OPEN request.

Directory Name.

Start of the directory name field in a
fixed format file specification used or
returned by a RESERVE or OPEN request.

Wild Character Maske.

Wild character mask word in a fixed
format file specification used or
returned by a RESERVE or OPEN request.

Returned LFN (response only) .

The IFN returned by a RESERVE or OPEN
operation-

IOPOS 8 Position Number (response only) .
Position number returned by a SENSE
POSITION request.

IOHMM 8 Process Hardware Name.
The hardware name of a process used or
returned by various regquests, such as
LIST LOGICAL FILE NUMBERS.

IOCLS 8 Close Argument (request only).
One word argument *to a CLOSE request.

I0SDS C Set Status Argument (reguest only).
One word status argument to the SET
DEVICE STATUS request.

IORDS 8 Read Status Value (response only) .
One word value returned by the READ
DEVICE STATUS request.

IOTRT 8 Transfer To Name (request only) .
The hardware name of the process to which
the device should be transferred on a
TRANSFER DEVICE request. '

IOTRF 2 Transfer From Name (request only).
The hardware name of the process from
which the device should be transferred on
a TRANSFER DEVICE request.

IORDN 8 Read Status Name (request only).
On a READ DEVICE STATUS regquest, the
hardware name or the process which has
reserved the device.

IORDL A Read LFN (request only).
The LFN for which a READ DEVICE STATUS
regquest should be executed.

IOLSN 8 List Name (request only).
The hardware name of the process in a
LIST ILOGICAL FILE NUMBERS regquest.

IOLSL A List LFN (regquest only).
The ILFN argument to a LIST FILE NAME
operation.

A Logical File Number (LFN) is a "name" for the message
dialogue Dbetween the I/0 Handler and a user process in
regard to the reservation of a specific device or an opening
of a particular file on a device. Most operations
concerning a given LFN are synchronous. That 'is, a process
must wait for a response to a request associated with a
particular LFN before it sends the I/0 handler another
request associated with that LFN. Requests may, however, be
pending for several different LFNs at the same time. Also,

- 23 -

LFNs assigned by an I/0 Handler are unigue among user
processes; in the present implementation, a specific device
will in general always have the same LFN. User processes
should not, however, assume that the assignment of LFNs to
devices is fixed; it may often change with new versions of
the I/0 Handler-. The LFN for a device is returned to the
user when he requests that a device be reserved for his use.

See the description of the reserve operation code in the
next section-.

- 24 -

3.4.2 Operation Codes. The following are the currently

available operation codes (codes preceded by an asterisk
have not been implemented):

NAME _CODE DESCRIPTION

O PR SM 00 READ SYMBOLIC.
The only argument is the IOCNT field (one
word), the maximum number of bytes to be
read-. Returned value is the string of
bytes read-.
OPRB1 10 READ BINARY I.
Same argument and value as READ SYMBOLIC.
OPRB2 20 READ BINARY II.
Same argument and value as READ SYMBOLIC.
OPRVR 30 READ AND VERIFY.

Same argument and value as READ SYMBOLIC.
O PWSM 01 WRITE SYMBOLIC.
The only argument is the string of bytes
to be written- No value 1is returned in
the response message.
OPWB1 11 WRITE BINARY I.
Same argument and value as WRITE SYMBOLIC.
OPWB2 21 WRITE BINARY II.
Same argument and value as WRITE SYMBOLIC.
OPWAVR 31 WRITE AND VERIFY.
Same argument and value as WRITE SYMBOLIC.
OPWEF 41 WRITE EOF.
There are no arguments or value. A
physical EOF mark will be written on
devices which use such marks.
OPWER 51 ERASE.
Same argument and value as WRITE SYMBOLIC.
OPSBS 02 SENSE BUSY.
There is no argument or returned value.
The returned response code (ECBSY or
ECNRM) indicates if the device was busy.
OPSPS 12 SENSE POSITION.
There are no arguments. The returned
value is the IOPOS field (one word)., the
position, which is device dependent..
OPLPFR 22 LIST PROCESSES HAVING RESFERVED DEVICES.
There are no arguments. The value 1is a
string of words, each of which is the name
of a process which has reserved at least
one 1/0 device.
OPLNO 32 LIST ILOGICAL FILE NUMBERS.
The argument is +the IOHNM field (one

OPLNM

OPPRW

OPPRU

OPPFF

OPPFR

OPPRF

OPPRR

42

03

13

23

33

43

53

word), the hardware name of a process.
The value 1is a string of the LFNs in use
by that process, one byte each-. If the
argument 1s zero or absent, the 1list
returned will constitute the LF Ns
associated with devices not reserved by
any process (where the se LF Ns are
arbitrarily assigned by the I/0 Handler) .

LIST FILE NAME.
The arguments are the IOLSN field (one
word), which is the name of a process;:; and
the IOLSL field (one byte), which is an
LFN in use by that process. The value 1is
the fixed format file specification
associated with the pair of arguments. A
Zero process name 1is interpreted as in
LIST LOGICAL FILE NUMBERS.

REWIND.
There is no argument or value. The effect
is to rewind the device if that .operation
is defined for it:; if it is not, this is a
no-operation-.

REWIND AND UNLOAD.
Same as REWIND, except that the device
will be unloaded, if that is meaningful.

POSITION FILE FORWARD.
There are no arguments. The value is the
position after the operation- The effect
is to skip to the start of the next file,
for sequential access devices; for direct
access devices, it positions to the end of
the current file.

POSITION FILE REVERSE.
There are no arguments. The value is the
position after the operation- The effect
is to position to the beginning of the
file preceding the current one for
sequential access devices which c¢an be
backspaced; for other devices, it is a
no-operation-.

POSITION RECORD FORWARD.
There are no arguments. The value is the
position after the operation,. The effect
is to position the start of the next
physical record after the current one.

POSITION RECORD REVERSE.
There are no arguments. The value is the
position after the operation. The effect

OPPPA

OPRDV

OPCFL

OPFDV

63

04

14

05

is to position the file at the start of
the record before the current one, for
devices which can be backspaced: for other
devices, it is a no-operation-

POSITION ABSOLUTE.

The arguments are device dependent and
consist of one or more words specifying an
absolute ©position on the device. On
magnetic tape, only one word is used; it
indicates the number of the file on the
tape, counting from 1. On disk, only one
word 1is wused; it indicates the Dblock
number in the file on which the next read
or write operation should be executed.

RESERVE DEVICE.

The argument and the first value are file
specifications, as described below. This
operation reserves a device without
opening a file on it-. Thus: if the file
specification is a disk file;, the file is
not opened. Is reserved to the exclusive
use of the reserving process. The IOLFN
field in the response message will be set
to the LFN supplied in the request:; the
LFN of the device, which must be used in
any further requests related to that
device, will be returned in the IORFN
field (the first byte after the file
specification). For disk, the reservation
is for a software channel, rather than the
entire device.

OPEN FILE.

The argument is a file specification as
described below; it is optional if <the
file was previously OPENed and CLOSE4
without RELEASing the device, as described
below.’ The values, if any, are the fixed
format version of the file specification
for the device and file, with changes made
to reflect the wvalues of unspecified
parameters, such as the file position for
disk files or the file number for magnetic
tape files, and the IORFN field, which
will contain the LFN for the device (which
may differ from the one in the IOLFN

fields if the device was not already
reserved) .

RELEASE DEVICE.

- 27 -

The arguments are the IOHNM field, which
contains the hardware name of a process,
and the IOLNO field, which contains an LFN
in use by that process. If the arguments
are absent, they default to the values of
the IOOPN and IOLFN fields respectively-
The effect is to release the device, if
any, associated with the LFN given. If no
device is associated with the LFN, this is
a no-operatione If a file is open on the
device, it is closed.

OPFAD 15 RELEASE ALL DEVICES.

OPCFL 25

OPRSD 35

* OPRDS 06

The argument., which defaults to the
requesting process’s name if not supplied,
is a string of one or more hardware
Process names. For each name supplied,
all devices reserved by that process will
be released- If files are open on any
such devices: they are closed. There 1is
no value.

CLOSE FILE.

The argument is one word, the value of
which determines certain parameters of the
close process; if not present, it is
assumed to Dbe ZEero. The only value
currently available is 1, which indicates
that no EOF mark should Dbe written on
devices which use them. There 1s no
value. The effect is to close the file-.
Note that the IFN and the file are not
released. A subsequent open may use just
the LFN rathér than the complete file
specification.

RESET DEVICE.

ECIOC will De returned if the RESET
operation 1is not implemented for the
device specified by the LFN. If RESET is
implemented for the device and an
operation 1is in progress. the operation
will be terminated, an ECBSY response will
be returned for it, and an ECNRM response
will Dbe returned for the RESET operation-
If no operation is in progress, an ECNRM
response wWill be returned.

READ DEVICE STATUS

The arguments, which are optional, are as
for the OPLNM operation; if they are not
supplied, the requestor’s own name and LFN

will be used. The value, returned in the
IORDS field (one word):. is the Device
Status Woxrd for the device specified by
the LFN. Bit assignments for the Status
Word are given below.

OPSDS 16 SET DEVICE STATUS
There are three arguments: the first two
of which are the same as for the OPRDS
operation- The third is the IOSDS field
(one word). which is the word which should
be wused to replace the user-accessible
bits in the Device Status Word. The
value: returned in the IORDS field (one
word), is the previous value of the Status
Woxrd -

* OPSYN 07 SYNCHRONIZE.

There is no argument or value. The effect
is to direct the I/0 Handler o walt to
transmit the response message for any I/O0
operation in progress on the specified
device until the next request message for
that device arrives (this does not apply
to the response to the SYNCHRONIZFE
operation itself). This constraint
applies only until the next regquest
message arrives; that is, it affects only
one operation. If an I/0 operation is in
progress, the ECSYN error code is
returned. If SYNCHRONIZE is illegal for
the device specified, ECIOC is returned:
otherwvise., the ECISY error code is
returned. Note that +this 1s a second
exception to the message protocol. This
operation may be used to resolve the
ambiguity noted above; if the user process
first sends a request for this operation,
and then notes whether the response code
in the next response message is one of the
two SYNCHRONIZE response codes (no other
operation ever returns them), it can
decide whether the last previous operation
is still in progress (and whether its
response has been arrested by the
SYNCHRONIZE operation) .

OPTDC 08 TRANSFER DEVICE.
The first argument, IOTRT (one word): is
the name of +the process to which the
device 1is to be transferred; the second

argument, IOTRF (one word), is the name of
the process which currently has the device
assigned. There 1is no value. If the
reduesting process currently has the
device reserved, the second argument is
optional; if not, it is regquired. If the
reguestor is privileged to make this
request, the device is transferred. User
processes may only transfer devices which
they currently have reserved; certain
system programs may use the general form-
If any file 1s currently open on the
device, its status is unchanged.
OPCNV 09 CONVERSE.

The arguments are the same as for a WRITE
BINARY I command- The value is the same
as for a READ SYMBOLIC command . The
effect is to execute a WRITE BINARY I
followed by a READ SYMBOLIC. The 1length
of the READ SYMBOLIC is +the maximum
defined for the device. This operatiocn
may be used to prompt and then read a line
from a terminal.

- 30 -

3.4.3 File Specification Format. A file specification as
supplied to the I/0 Handler may be in either a free or a
fixed format. The free format consists of one "FSFLG" word
followed by an arbitrary 1length byte string of ASCII

characters, constituting a file specification having the
general form

<device>: <filename>.<extension> [<directory>]

where the default "<device>:", if it is not specified, is
“DSK:", and the default “<directory>" 1is the requesting

process’s LOGIN directory. The "." 1is optional if the
"<extension>" is not supplied, and the “[" and “]" are
illegal if the "<directory>»" 4is not supplied. The "]1* 1is
optional if the "<directory>" is supplied. "“#" 1Is supplied

as the "<filename>" if it is omitted, as the "<extension>"
if both it and the "." are omitted, and as the "<directory>"
if it and the "[" are omitted. The fixed format, which is
used by the I/0 Handler whenever it returns a file
specification as a value, is as follows: :

FIELD QFFSET DEFINITION

FSFLG 0 Open Flags (1 word).
FSDEV 2 Device Name (6 bytes).
FSFIN 8 File Name (6 bytes).
FSEXT E Extension (2 bytes).
FSDIR 10 Directory Name (6 bytes).
16 (Reserved) (2 bytes).
FSWLD 18 Wild Characters Mask (1 word).
1A (Reserved) (5 bytes).

FSDEV, FSFLN, FSEXT, and FSDIR are the left-justified ASCII
representations of the device, file name: and directory
name. The device name must be of the form described below.
The response from the I/0 Handler to a RESERVE or OPEN
request includes the fixed format specification for the
file. The contents of the file specification returned will
correspond to the name of the device as reserved and the
file as opened. (On a RESERVE operation, the file name:
extension, and directory will returned as supplied.) An
OPEN operation will return a file specification with the
reserved and FSWLD fields cleared; a RESERVE operation will
return them as supplied in a fixed format specification or
as filled in by the I/0O Handler’s file scanning routines.
In the latter case, FSWLD will form a left-justified bit
mask for the FSFLN, FSEXT, and FSDIR fields indicating wild
characters in the specification- (Wild characters are "2"

in place of specific letters and "*" in place of entire
elements; wild devices are not allowed.) The user process
may make use of this wild character information in opening
a file if it first calls the I/0 Handler to reserve the
device. FSFLG determines the specific nature of certain
operations and is returned, appropriately modified, in the
response. Possible values for the FSFLG word are as
follows:

NAME CODE FUNCTION

OCORD 0 Open file for reading-

OC OWR 1 Open file for writing.

OCOWN 2 Do not deallocate unused blocks at the end
of the file when it is closed.

OCDIR 4 Open directory file for reading.

OCOUP 8 Open file in update mode-.

OCOAP 10 Open file in append mode.

OCDEL 20 Delete file-.

OCREN 21 Rename file (unimplemented) .

OCRIB 40 Open RIB of file for reading-

Code OCREN; when implemented, will require that the file
first be OPENed under the old name and then reOPENed under
the new name, with this code and the new name specification
as the arguments; this will have no effect except to rename
the file. 1In addition to the above, the high-order bit of
the FSFLG word (bit 15) indicates whether the free or fixed
format is Dbeing used. If zero, the free format is
indicated and if one, the fixed format is supplied.

In converting from free format to fixed format, the
I/0 Handler ignores -all characters lower in the ASCII
collating sequence than a blank, except to treat them as

separators. All lower case characters (including the
“lower case" equivalents of “[" and "]") are converted to
upper case. The only characters which may be used in names
are letters ("A" - "2") and digits ("0" - “9") and the wild

characters (%Y?" and "“*"). Other characters, however, may
be used if each is preceded with a "““" character, which
indicates that the following character should be taken
literally (this applies to “°" itself and all other
characters as well, including lower case and control
characters). Furthermore, any sequence of characters not
including """ may be enclosed in a matching pair of °*°
characters, and will be interpreted as a single name. If a
name supplied is longer than permitted by the equivalent
field in the fixed format, it will be truncated on the

right to fit.
The symbol FSSIZ gives the size in bytes of a complete
fixed format file specification.

- 33 -

3.-4.4 Device Names and Specificationse. Device names are
up to sixX characters long and may be either the name of a
specific physical device or simply a generic name for a
certain class of devices. A generic name is the same as a
physical name, except one or more of the trailing letters
is omitted. Thus, in the table below, the device "“DSKAQO"
appearse. This denotes disk channel 0 for disk pack 0 of
disk file structure A. Hencer, the generic “DSK" (or
"DSKA") refers to any one of the available channels,
"DSKAOO" through “DSKAOB". The following are the currently
available devices for the I,/0 Handler on machine 1:

NAME DESCRI PT ION

DCS System device (equivalent to “DSK: [DCS]").

DSKAOn CALCOMP Disk, Channel n (0 <= n <= B) .

LPTO CENTRONICS Lineprinter.

MTAOQ KENNEDY Magnetic Tape Drive.

NULAOn Null device (write-only memory), channel n
(0 <= n <= 1).

PLTO CAICOMP Plotter.

PTRO REMEX Paper Tape Reader.

SYS System device (equivalent to "DSK: [SYS]") .

CTTX1 TELETYPE Model 35.

TTY2 TELETYPE Model 33 (near Machine 1).

TTY 4 DATAPOINT 3300 terminal.

TTX50 MICROSWITCH Keyboard and TEKTRONIX Scope.

The following devices are those currently available from
the I/0 Handler on machine 3:

NAME DESCRIPTION

NULBOn Null Device, channel n (0 <= p <= 1).
TTYO DATAPOINT 3300 terminal.
TTY3 DATAPOINT 3300 terminal.

Disk channels are software constructions used for
buffering purposes. The number of disk files which may be
open at any one time is constrained to be at most the
nunber of available channels. Absolute position numbers on
disk reference the block number of the next disk block to
be read, relative to the start of the file (the first block
is block 1).

The CENTRONICS Lineprinter accepts only a 1limited
character set (no lower case). Maximum line length is 80
characters. :

- 34 -

The KENNEDY Magnetic Tape Drive reads and writes
9-track, industry-compatible 1/2-inch magnetic tape. If a
file name is specified on an open command, the software
will assume that the tape is in Q0S3-DCOS directoxry format;
that is, file 1 on the tape is a directory file, the first
block of which is the directory- If in directory format,
the tape may be treated much as a disk, except that only
one file may be open at one time, and space occupied by
deleted files is not reclaimed until there are no useful
files beyond them on the tape-. A directory holds a maximum
of 32 files, including deleted but unreclaimed files-. If
no file name is specified, then the position number is
taken to be the number of the file desired, and the tape is
positioned to that file-.

The driver for “TTY??2?" devices provides 1limited
editing of input during READ SYMBOLIC operations. The
following characters are interpreted by the driver:

TU Delete current line.
TR or TY Retype current line.
' RUBOUT Delete last character on current line.

TC Terminate input operation and send Control-C
Interrupt control me ssage to the process
controlling the terminal-. (Presently, this
me ssage will cause the process to be
terminated.)

On input, the high-order bit of all characters will be set
to "1". If the DSICP in the device status word is not set,
characters input will be echoed to the +terminal as
received, except that Control-R (TR), Control-Y (TY) and
RUBOUT are not echoed, ESCAPE is echoed as “$" and all
other control characters are echoed as *“~* followed by the
corresponding ASCII letter. (For example, Control-A (TA)
is echoed as “TA".)

For detailed descriptions of the actions of the READ

and WRITE commands, see the Lockheed IOCS specifications
[51.

3.4.5 Device
following table.,

status Wozxrd Bit Assignments. In the
names followed by a "“*" may not be set or

reset by the user via the OPSDS operation; any attempt to
do so will be ignored.

NAME CODE

DESCRIPTION

DSBSY* 8000

DSUWPp* 4000

DSNAC* 2000

DSOPN* 1000

DSWDR* 800

DSILCP 400

DSHDX* 200
DSSYS* 200

DSRSM* 100

DSWIO* 80

DSRLS* 20

I/0 REQUEST IN PROGRESS.
An I/0 request relating to this device
is currently in progress.

WRITE PROTECT.
The device or file is write-protected.

RESPONSE MESSAGE NOT ACCEPTED.
The last response message for the device
was returned "MATCH--NO ACCEPT" and is
presently waiting for retransmission.

FIILE OPEN.
If set, the device 1is currently in
"OPEN" statuse.

WAITING FOR DIRECTORY RESPONSE.
1t set, processing of a request
requiring the reserving process’s ILOGIN
directory has been suspended; pending
receipt of a response to a message
requesting that name.

LOCAL COPY (TERMINALS ONLY).
If set: there will be no echo on input
for the device; if cleared, the device
will echo input in its normal manner.

HALF -DUPLEX (TERMINALS ONLY)-.
If set: DSICP will be ignored, as the
device supports only "“echo" mode.

SYSTEM FILE (DIRECTORY DEVICES ONLY) .
If set, the file currently open is from
logical device "SYS:* or "DCS:".

READ SYMBOLIC STARTED (TERMINALS ONLY).
If set, on completion of the current
read request, the input will checked for
a Control-C; if one is found, a
Control-C Interrupt message will be sent
to the requesting process.

WAITING FOR I/0O OPERATION.
If set: processing of a request has been
suspended pending completion of a
physical i/o0 operation.

RELEASE OPERATION STARTED.
If set, a release operation 1is in
progress on the device.

- 36 -

DSOPC* 10 OPEN OPERATION STARTED.

If set, an open operation is in progress
on the device.

Figure 3-4
I/0 Handler Error Codes

Normal Completion-

Device Not Reserved By Reguestor.
No I/0 operations except RESERVE, OPEN,
and:; for privileged processes, TRANSFER
are permitted before the device in
question has been reserved by the

Byte Count Non-positive.
The byte count supplied as an argument to
a READ operation was non-positive.
Illegal Operation Code.
Device Reqguested could not be Reserved.

Access Protection Failure-.
A - WRITE operation failed because the
device or file in question wa s
write-protected oxr an OPEN operation
failed because the requestor was not
privileged to access that file-.

Transmission Error.
End-of-Medium or End-~of-Tape.

Start-of-Medium of Beginning-of-Tape.

Buffer Not Available.
The 1I/0 Handler could not allocate a
buffer it required to complete the

Parameters Out of Range.
This error should never occur under DCOS ;
it reflects an internal error in the I/0

Illegal Logical File Number.

I/0 Device Buffer Overflow.
' On a READ operation, the data block read
overflowed the input buffer; on a WRITE
or. POSITION operation, the data suppl ied

in the request message over flowed the
device buffer.

NAME CODE CONDITION
ECNRM 0
ECDNR 1

reduestor.
ECBCN 2
ECIOC 3
ECNRS 4
ECBSY 5 Device Busy.

6 (Reserved code) .

ECPRT 7
ECNRD 8 Device Not Ready.
ECTRN 9
ECEOT A
ECEOF B End-of-File-
ECBOT C
ECCNV D Conversion Error.
ECNBF E

request.
EC PRM F

Handler.
ECLFN 10
ECROV 11
ECIRQ 12

Invalid Requestor.

ECS YN
ECISY

ECNOP

ECOPN

ECRDE

ECFRF

ECFNF

ECDFF

ECDRF
ECDKF
ECFWP
ECDNF

ECPNM
ECSDS
ECRST
ECODM
ECFEI
ECFOE

ECIRS

13
14
15

17-1F

20

21

22

23

24

25
26
27
28

29
2B
2C

2D
2E

2F

The requestor was not privileged to
execute the operation requested.

(Reserved code) .

Synchronize Succeeded-.

Synchronize Failed-.
A SYNCHRONIZE operation was requested
when no I/0 operation was in progress.

File Not Open.
An I/0 transfer or position operation was
attempted on a directory device Dbefore
any file had been opened.

(Reserved codes) .

Open Attempted While File Open-
An OPEN operation was attempted when a
file was already open on the specified
device.

Read after End-Of-File.
This error should never occur under DCOS:
"ECEOF" should be returned instead.

File RIB Full.
A disk operation could not be completed
because all pointers in the file s
Retrieval 1Information Block (RIB) had
been used-.

File Not Found.
The file specified in an OPEN operation
could not be found-

Directory Full.
The file specified in an OPEN operation
could not be entered in the directory on
that device Dbecause the directory was
full.

Directory RIB Full.

Disk Full-

File Write Protected.

Directory Not Found.
The directory specified in an OPEN
operation could not be found.

Pack Not Mounted.

System Stopped in Disk Software-.

System Reset since Open-.

ODCB Modified since Open-

File Entered Improperly into MFD.

File Open El sewhere.
A file may not simultaneously be opened
for writing on one channel and opened for
anything on another-.

Improper Read/Save Format.

- 39 -

ECWIC

ECUKC

ECDWP

ECE20

30

31

32

33

This error should never occur under DCOS.
Write on Illegal Cylinder.

This error should never occur under DCOS.
Unknown Command-

Generally:, this error indicates an

illegal OPEN parameter was supplied.
Device Write Protected.

This error should never occur under DCOS:

"ECPRT" should be returned instead-.
Disk Error 20.

This error should never occur under DCOS.

3.4.6 Definition Files. All symbols 1listed above are
defined in the standard system definition files "CB.DE" and
“IOC.DE", which may be placed on the front of a MOLSUE
Progr am. Users are encouraged to make use of these
definition files as much as possible, in order that any
changes in the values of the above symbols. may easily be
incorporated in programs referencing them. Changes are not
anticipated: but are possible-.

3.5 Process Initiation and Termiﬁation

See the command process documentation {section 4.1)

for a description of facilities for initiating and killing
processes.

4. SERVICES and PROCESSES

This section describes some of the processes which are
available on the system-

4.1 Command Interpreter Process

The Command Process is a system procedure operating
under DCOS. This process services requests from terminals
and from other processes running under DCOS. Requests come
in the form of “command me ssages”. Each command message is
acknowledged either by a response message indicating that
the service has been performed, by an error message,
indicating why the service could not be performed; or: in
the case of the command ‘QUEUE’, which requests service at
a later time, an acknowledgement of the reguest.

4. 1.1 Service Requests. In the description that follows
requests from a terminal are made by entering the
appropriate command string in response to the prompt
character ("."). For example, to run the mail process
(described in section 4.4) one enters the command string

. RUN MAIL

where stands for carriage return. Terminal dinput is
done in symbolic mode so the standard editing characters
are meaningful (TU0 - delete current line, TY or TR - retype
current line, and rubout - delete last character) .

Requests from other processes use the higher level
protocol:

|LEN }ID!0 !|command |

where
LEN is the length of the message in bytes,
ID is the request identifier, and

command is the command string.

A command string consists of one- or more parts,
separated from each other by one or more spaces. All
commands begin with the “command operator”. Most commands

require one or more “arguments". In this case, the
argument or arguments make up the second part of the
command . Multiple arguments are separated by commas-.

Commands which cause a process to be initiated, may have a
third part, the "program string“, which is sent as a
message to the process which the command has initiated.
For a list of current command formats see figure 4-1.

The command operator is a string of characters
sufficient for the command process to recognize the
command . From one tc three characters are required to

Figure 4-1
List of Command Process Commands

(commands preceded by an asterisk have not been implemeneted)

*

CC [ONTINUE]

CO[NTINUE]

COP [Y] <BLNKS ><PGM STRING>

CR[UN]<BLNKS><FILE SPEC.>[,<MACH.NO>] [<BLNKS><PGM STRING>]
CS [TART] [<BLNKS><PROCESS H.N>]

D [EPOSIT] [<BLNKS><PROCESS H. N>, <LOCATION>,<VALUE >

DI [RECTORY] [<BLNKS><PGM STRING>]

E [XAMINE] <BLNKS ><PROCESS H. N>, <LOCATION>

K [JOB]

KI [LL] [<BLNKS><PROCESS H.N>]

L [OAD] <BLNKS><FILE SPEC>[,<MACH.NO>] [<BLNKS><PGM STRING>]
LOG [IN] <BLNKS><USER DIR.NAME>

Q [UEUE] <BLNKS ><TIME>, <ANY COMMAND >

R [UN] <BLNKS><FILE SPEC>[,<MACH.NO>] [<BLNKS><PG1 STRING>]
S [TART] [<BLNKS ><PROCESS H.N>]

T [YPE] <BLNKS> <PGM STRING>]

 <FILE SPEC>[,<MACH.NO>] [<BLNKS ><PGM STRING>]

notes:

1. Items in [] are optional, at least under certain
circumstances. : .

2. <BILNKS> is a string of one or more spaces
Numerical input arguments are base 16.

3.

- 45 =

uniquely identify a commang. If additional characters are
provided, the first six characters of +the command must
match those expected. Further characters will be ignored.
If no command is found which matches the command string,
the command is assumed to be °‘RUN’ and the entire command
string is treated as argument and program strings.

Once a command has been recognized, the command
process scans off the required arguments and attempts to
perform the requested service. The reply, error, or
acknowledgement message is returned. Terminals are then
initialized with the command process prompt character
(“+")+ and another command is awaited-

4.1.2 Loading a Process. The commands “RUN‘, “CRUN“, and
"LOAD” all cause a process to be loaded on the DCS. The
arguments to these commands are: a specification for a load
file in the free format required by the I/0 handler, and a
machine number for the machine on which the process is to
be run- The file must be output from the relocating link
loader. This is the process to be loaded in relocatable
binary form.

Certain fields may be omitted from the arguments. If
no extension is specified in a disk file specification, the
command process will first attempt to find a file with no
extension, and, if that fails, will attempt to find the
file with a default extension °‘RB° (for “relocatable
binary”’). If no directory name is specified, the command
process will first look for the file on the directory under
which the terminal user or process which sent the command
message is logged in, and will then look for the file on
the system directory ‘DCS’. If no machine number 1is
specified, (the second argument is optional), the command
process will attempt to load the process successively on
each processor on the DCS, by increasing machine number
until a load attempt is successful or all machines have
failed to load the process-

When the process has been loaded, the command ‘LOAD-
is completed and the acknowledgement message is sent. The
program string (possibly empty) is sent to the new process,
and if the command is from a terminal, the terminal is
readied for another command input. The command °“CRUN®
loads the process and, after sending the program string
message,; sends a message to initiate execution of the
process. The command ‘RUN° (and the implicit run command)
loads and starts the process and in addition, if the
command to run the process came from a terminal, ownership
of the terminal is transferred to the new process so that
the user can communicate with the process. The hardware
name of the terminal I/0 handler and the terminal LFN are
stored in the process context block and are passed in the
program string message to the process. If the command to
rum the process came from another process, no transfer
occurs, but the initiating process name and the identifier
from the command. message are passed to the process in the
program string message.

The format of the program string message sent to every
process initiated is:

LEN |LFN|1 !IOH istring

where:
LEN 1is the length of the message.
LFN is the 1logical file number for the terminal
connected to the process (if any) -
IOH is the I/0 Handler name for the terminal (if any) .
string is the string of characters after the file name on

the 1load request (not including the carriage
return) .

As an example, suppose the following command was entered at
the terminal:

, PIP X=Y.SU
- u> |
The command process would initiate the process named “PIP",

connect the terminal to it and send "X=Y.SU" as the
"string” in the program string message.

4.1.3 Killing a Process. The command ‘KILL" terminates a
process. It takes one argument, the hardware name of the
process to be terminated. If the last command prior to the
"KILL" is the command which initiated +the process, the
argument is optional. Any terminal user who has logged in
with the same user name as the process to be killed, or any
process which has the same user name, may kill a process.
If the process had a terminal, that terminal is transferred
to the process named in the CBNTF field in the process
context Dblock (initialized to the command process if the
locad reguest was from a terminal) . A termination reply
message 1is written and the terminal is initialized to
accept a new command.

~ 49 -

4.1.4 Logging on to DCS. The command ‘LOGIN’ allows a
user to 1log onto the DCS. The command requires one
argument, the user name, currently the user directory name-.
This command is temporarily implemented by the command
Process. Future versions of DCOS will log users in by
connecting the user to a login process.

4.1.5 Logging off DCS. The command “KJOB’® allows a user
to log off the DCS. The command requires no arguments-.

4.2 DIRECT (Directory Process)

<Not available at this time.>

4.3 LAP (Lockheed Assembly Program)

<Not available at this time.>

7

- 53 ~

4.4 MAIL

The mail process provides a message (or mail) sending
and receiving service. Messages are addressed to a person
by using their DCOS login name. Commands are available for
sending, receiving, and saving messages.

‘ Mail is maintained in the file “MSG.TX" in the users
file directorye Mail received from another user is copied
into “MSG.TX" and the receiver is notified the next time he
logs on that mail has arrived. Mail is retained in the
file until the receiver explicitly requests that the file
be deleted-. Users are encouraged to use 'MSG.-TX" 1like a
mailbox. Mail to be saved should be archived in another
file (commands are provided for saving pieces of mail).

The mail process maintains a current mail file and a
current mail pointer. When MAIL is entered, °‘MSG.TX® is
initialized as the current mail file, the subjects of all
messages in the file are 1listed, and the current mail
pointer is set to the first message. At this point the top

level command loop is entered and the user may 1issue a
request.

"This description uses the following conventions:

<mp> Message pointer:
i message # i, and
i,j messages i through j inclusive.
A null message pointer means the
current message-.
<file spec> A standard DCOS file specification:
device:filename-extldir]
with the usual defaults-
<user spec> User name. Currently logon directory
name.

The commands available are:

<mp>COPY <file spec>
Copy the messages specified in the range <mp> to
the file <file spec>. This command allows a user

to make copies of selected pieces of mail in an
archive file.

DELETE
Delete the current mail file. With this command a
user can delete a mail file. This command should
be used when deleting the default mail file after

EXIT

FILE

having read and saved the selected mail .

Exit the process. Before exiting another attempt
is made to send unsent mail.

<file spec>

This command allows a user to redefine the current

mail file. The 0l1d mail file is closed and the new
one opened.

LIST
This command 1lists the subjects of all messages in
the current mail file.

NEXT - :
This command moves the current message pointer to
the next message. If the current message pointer
is at the end of the message file the command is a
noop -

PREV
This command moves the current message pointer to
the previous message in the current mail file. 1f
the pointer is at the front of the file the command
is a noop-

<mp>READ

<mp><blank or null line>

This command prints the message at the current
message pointer on the user’s terminal and leaves

the current message pointer at the beginning of the
next message.

SEND <user spec>

This command initiates a send mail request to the
user specified. A subject for the mail 1is
requested and then the user may enter the text of
the mail. Control characters recognized by the
mail process while entering the text are:

TZ send the message

TF incorporate message from file

TV retype message

TE do not send message, return to command loop

4.5 MOLSUE

<Not available at this time.>

4.6 PIP (Peripheral Interchange Program)

<Not available at this time.>

4.7 QED

<Not available at this time.>

- 58 -

4.8 RLDP (Ring Load Process)

<Not available at this time.>

4.9 RLL (Relocating Link ILoader)

The Relocating Link Ioader (RLL) links together object
modules to produce a relocatable binary module which can be
run on the DCOS. To run RLL, one types the following to

the command process (constructs in brackets “[" and “]% are
optional):

.RLL
SR

When loaded, RLL will prompt the user terminal with a °*°,
and the user should type a command string of the form:

X<RB-FILE>[,<MP-FILE>]=<OB-FILE>[/<SW>] [,<OB-FILE>i)

where:

<SRB-FILE> is the relocatable binary output file. If the
extension is omitted: .RB will be the default.

<MP-FILE> is the symbolic memory map output file, where the
default extension is -MP.

<OB-FILE> is an object dinput file, where the default
extension is .OB. If no OB file is found, a
search is made for a file without an extension.

<SW> is either "LU" or "LC". A toggle is maintained
within RLL indicating whether the object file is
to be linked in the unconditional or conditional
mode. The toggle is initialized to the
unconditional (/LU) mode, and changed when a
switch indicating the other mode is interpreted
in a command string-.

For example,
iDCS,DCS=DCSl,DCS2,LIB/LC,LIBZ,DCS3/LQ;
&=

links a process together, where DCS.RB is the relocatable
binary output file, DCS.MP is the symbolic memory map
output file, DCS1.0B, DCS2.0B and DCS3.0B are the object
modules linked in the unconditional mode, and LIB.OB and
LIB2.0B are object modules linked in the conditional mode.

Command strings which cannot fit on one line may be
continued by placing a semicolon at the end of a line to be
continued (instead of a comma). For example,

*DCS, DCS=DCS 1, DCS 2
FLIB/LC, LIB27,
y:

.

2

jDCS3/L%)
is equivalent to the previous example’s command stringe.
The 1linking operations are perfromed as each 1line is
entered, not after the entire command string is entered.

Figure 4-2 summarizes the filename conventions for
RLL.

Figure 4-2
RLL Filename Conventions

Output Files (RB; MP files)

command string filename meaning
filename filename.RB or filename-MP
filename. filename (no extension)
filename .xx filename .xx

Input Files (OB files)

command string filename meaning

filename filename.OB or if no such file exists
then filename (no extension)

filename. filename (no extension)

filename .xx filename - xx

4.10 RUNOFF

<No’r__ available at this time.>

4.11 SPM (Software Protection Module)

SPM provides protection for the system while a user is
debugging a process. Each instruction is interpreted so
that memory references out of the process address space and
certain instructions can be trapped- SPM is included in a
special version of the procedures file, SPM.OB [DCS].

‘ To run a program under DCOS and SPM control, the
programmer must:

l. Link his user program with SPM.OB[DCS] instead of
PROC. OB [DCS .

2. Define as a program entry point (internal) the
label °START’, which must be the execution start
address of the user program.

3. Run the program under DCOS as usual.

SPM interprets each user instructuion and verifies that:

l. The instruction is ‘legal’. all instructions are
legal except control (class 0) instructionse.
Exception: control instructions ‘REGM° and ‘MREG’
are considered legal. This checks for instructions
which would mess up the system, such as HALT, RETN,
and other instructions which affect the processor
status word-

2. The memory location referenced lies within the core
block allocated to the process by the system.

In the event that an illegal instruction or an illegal
memory reference is detected by the SPM, a message will be
displayed on the user’s teletype of the form:

?<error—code><program—counter><instruction><operand-address>

where the possible error-codes are:

IN - illegal instruction detected

MR - illegal (out of bounds) memory reference
detected

ID - indirect-address error. In computing the

effective operand address, more than 15 levels
of indirection were counted.

The <program-counter> will be the core address of +the

instruction after the one that triggered the error.
Exception: if the program counter itself was not within the

- 64 -

core block allocated (mr error) then the <program-counter>

will be the out of bounds address. In this case the
<instruction> and <operand-address> fields will be
meaningless. The <instruction> will be the instruction
that +triggered the error (see exception above). The

<operand-address> will be the computed operand address of
the instruction that triggered the error (see exception
above). Another exception: if the error was an “in”
(illegal instruction) the <operand—-address> will be
meaningless. After the error message is displayed, the
process 1is terminated.

- 65 -

5. USING DCS

This section describes how to start up the system
(operating instructions), how to write a program to be
executed on DCS (including an example), and the system and
user libraries of useful definitions and procedures.

- 66 -

5.1

DCS Operating Instructions

To run the DCOS first load the Q0S-3 system [7]. When

interp has been loaded enter

.>DCS[DCSL2

This loads the current version of DCOS (it takes about 30
seconds) .

1.

2.
3.
4.
5.
6.
7.

To halt DCOS and reload Q0S-3:

Wait until there is no i/o activity between the Varian
620/1 and Lockheed SUE.

Halt the SUE.

Step the 620/i.

Set P=2, U=0 in 620/i.

Hit system reset and then run on the 620/i.

Store H'80° into location 6 in the SUE.

Hit reset and then attn on the SUE.

After about 5 seconds QO0S wiil have been reloaded.

- 67 -

5.2 Preparing a Process to Execute on DCS

5.2.1 Filename Extension Conventions. Standard filename
extensions are:

Extension Type of file
SU MOLSUE
LA IAP
B Object
™ TREEMETA
PL Plotter
LS Listing
RN RUNOFF
LP Line Printer
RB Relocatable Binary
DE Structure definition files (MOLSUE)
TX Mail file format
MP Link loader memory map

5.2.2 SUE Programming Conventions. On the SUE the
programmable flags (Fl, F2 and F3) in the status word are
used by the system so processes must not change them. This
restriction extends to almost all of the SUE control class
instructions. The only exceptions are MREG and REGM. The
instructions which must not be used are: HALT, RSTS, SETS,
ENBL, ENBW, DSBL, DSBW, STSM, RETN and MSTS.

MOLSUE procedures are limited to three arguments which
are passed by value in registers 1, 2 and 3. Register 4 is
the return address. A sample I1AP call of a MOLSUE
procedure is:

MOVW value arg 1,R1
MOVW value arg 2,R2
MOVW value arg 3,R3
JSBR procedure name,R4

Values returned by functions are returned in register 1.
MOLSUE procedures do not, in general, save registers on
entry, so registers containing values used by the program

must be saved before the call and restored after +he
return.

5.2.3 Program Preparation Example-. To run a program On
DCOS it must be linked by the relocating link loader (RLL),
a modified version of the Lockheed Link Iocader 1I[8]. At
present RLL is only available on Q0S-3.

To link a set of object modules into a relocatable
binary module establishes binary input, binary output and
listing output (optional) devices. The following example
links together two files, MAI.OB and MUT.O0B, into the file

MAIL.RB. A load map is output into file MAIL.MP (system
responses are underlined):

=2PIPy

jTMP=MAI.OB,MUT.O%2

*TC

+>RLL; BI=TMP, BO=MAIL. OB, LO=MAIL.MP -

e

£§T3

CURRENT CORE SIZE IN THOUSANDS>16>

TARGET CORE SIZE IN THOUSANDS>16-
ﬁ-/

OK

5.3 Libraries

5. 3.1 System Library- No description available.

, - 71 -

5.3.2 User Library. No description available.

- 72 -

6.

REF ERENCES

(1]
(2]
131

(4]

[51]

[61]

(71

(8]

Hopwood, G. L. "Notes on MOLSUE." U. C. Irvine
Distributed Computer Project, Project Memo
(October 1973).

LAP-2 Assembler Manual. ILockheed Electronics, Ios
Angeles, Ca., (December 1971).

SUE Computer Handbook. Iockheed Electronics, los
Angeles, Ca-.

Farber, D. Je, J. Feldman, F. R. Heinrich, M.
D. Hopwood, K. C. Larson, D. c. Loomis, and
L. A. Rowe. "The Distributed Computing System."
Proc. Seventh Annual IEEE Computer Society
International Conference, (February 1973), 31-34.

“Input Output Control System (I0CS)
Specifications." Lockheed Electronics, los
Angeles, Ca. (June 1972).

Rowe, L. A. “Notes on System Programming in
DCOS. ™ U. C. Irvine Distributed Computer
Project, Project Memo (April 1974).

"Q0S -3 Version 3." U. C. Irvine Distributed
Computer Project, Project Memo (August 1973).

"Link Loader Specifications.” Lockheed
Electronics, Los Angeles, Ca. (Decemeber 1971).

- 73_

